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Abstract

This study evaluates whether a combination of photodiode sensor mea-
surements, taken during laser powder bed fusion (L-PBF) builds, can be
used to predict the resulting build quality via a purely data-based approach.
We analyse the relationship between build density and features that are ex-
tracted from sensor data collected from three different photodiodes. The
study uses a Singular Value Decomposition to extract lower-dimensional
features from photodiode measurements, which are then fed into machine
learning algorithms. Several unsupervised learning methods are then em-
ployed to classify low density (< 99% part density) and high density (≥
99% part density) specimens. Subsequently, a supervised learning method
(Gaussian Process regression) is used to directly predict build density. Using
the unsupervised clustering approaches, applied to features extracted from
both photodiode sensor data as well as observations relating to the energy
transferred to the material, build density was predicted with up to 93.54%
accuracy. With regard to the supervised regression approach, a Gaussian
Process algorithm was capable of predicting the build density with a RMS
error of 3.65%. The study shows, therefore, that there is potential for ma-
chine learning algorithms to predict indicators of L-PBF build quality from
photodiode build-measurements. Moreover, the work herein describes ap-
proaches that are predominantly probabilistic, thus facilitating uncertainty
quantification in machine-learnt predictions of L-PBF build quality.
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1. Introduction

The potential for Additive Manufacturing (AM) to lead to a reduction in
production steps and higher resource efficiency have encouraged the adop-
tion of AM for serial production over conventional manufacturing processes
such as milling, grinding, drilling, boring etc. Consequently, over a span of
two decades, AM has become a multi-billion dollar industry [1]. The 2017
UK industrial strategy white paper [2] states that businesses have begun to
exploit the potential of AM to make transformational improvements to pro-
ductivity. Although the most widely used application of AM technologies
so far has been rapid prototyping [1], the cost-effectiveness of the process
and the ability of AM to fabricate geometrically complex and light-weight
parts has increased the demand for AM end-use products. These include,
for example, applications in aerospace and bio-medical industries. In order
to meet the certification constraints imposed by these sectors, ensuring the
quality of AM-produced parts is critical [3]. A lack of process robustness and
repeatability have been noted as two of the major barriers which prevents
the full breakthrough of AM into risk-averse sectors [4, 5]. Thus, quality
control in AM is an important issue which demands feasible solutions.

The current study focuses on laser powder bed fusion (L-PBF) pro-
cesses (also known as Selective Laser MeltingTM and Direct Metal Laser
SinteringTM ); AM technologies which produce complex metallic parts from
powder materials. The L-PBF process is a cycle of three steps. First, a
powder deposition system deposits a thin layer of metal powder (20− 60µm
thickness). A laser then melts the powder following a predefined scanning
path [6]. The bed which holds the part is then lowered and the cycle is
repeated.

Due to the layer-wise nature of the L-PBF process, defects are not al-
ways visible once the part has been completed. Consequently, expensive CT
scans are often employed post-build to identify defects. By introducing an
on-line process monitoring system, part quality could be monitored during
the build. This would allow the operator to guarantee the quality of the
resulting parts without using expensive CT measurements. At a later stage,
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such an on-line process monitoring system could, potentially, enable the im-
plementation of automatic in-process corrective measures, thus facilitating
process control for L-PBF. On-line process monitoring is also crucial for
allowing the rapid qualification of parts in the R&D stage and to decrease
machine downtime [7].

Several studies have already investigated the relationship between L-
PBF process parameters, variations in photodiode signals and their affect
on the final build quality. Bisht et al. [8] studied the correlation between
sensor readings, taken from an off-axial photodiode, and tensile properties of
L-PBF builds (ultimate tensile strength and plastic elongation). The work
described in [9] explored the ability of two co-axial photodiode sensors to
predict the ultimate tensile strength of L-PBF builds via a semi-supervised
machine learning algorithm. The paper [10] analysed the ratio between two
co-axial photodiode readings (ADC-1/ADC-2), that capture different near-
infrared wavelengths, under different process conditions. According to their
study both part density and photodiode signal ratio (ADC-1/ADC-2) grad-
ually increase as the energy per unit volume (transferred to the material)
increases up until 100% of part density. S. Coeck et al. [11] examined off-
axial photodiode sensor readings, which measure the light emitted by the
melt-pool, and identified porous structures within a L-PBF build by identi-
fying abrupt fluctuations in the signal collected in adjacent scan vectors.

The aim of the current study is to investigate the feasibility of predicting
L-PBF build quality, in terms of build density, using a combination of dif-
ferent co-axial photodiode sensor measurements collected during the build
process. Build density (measured by OGP smartscope Zip Lite 300 at 75
magnification) is used to quantify the quality of the parts as it is a well-
known indicator of global part quality [10]. It is noted that while many
developmental on-line process monitoring systems employ images collected
via cameras to detect defects in L-PBF builds [3, 12, 13, 14, 15, 16], using
only photodiode measurements to monitor the build process is potentially
beneficial as photodiode sensors are cost-efficient and typically have a higher
sample rate compared to camera-based systems.

This study involves using a Singular Value Decomposition (SVD) to ex-
tract low-dimensional features from large datasets of photodiode measure-
ments, so that the extracted features can then be fed into machine learning
algorithms. The research exploits data collected during L-PBF builds fabri-
cated in a RenishawTM AM 500M machine. Low density specimens are first
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identified via unsupervised clustering methods (K-means and a Gaussian
mixture model (GMM)) before a supervised regression algorithm (Gaussian
Process) is used to directly predict build density from the same extracted
features.

This paper is organised as follows: Section 2 describes the motivation
behind this research and discusses the state-of-the-art; Section 3 describes
the feature extraction process and Section 4 introduces the machine learning
methods used to cluster and predict the density of the L-PBF builds; Section
5 presents the results of the analysis. Finally, conclusions and suggestions
for further extensions of the techniques are discussed in Section 6.

2. Literature Review

According to Mani et al. [17] and Yadroitsev et al. [18], there are over 50
process parameters which could affect the final quality of L-PBF builds. The
laser serves as the energy source in the heat transfer process thus, parame-
ters such as the peak power of the laser, pulse width, and pulse frequency
impact the output of L-PBF builds. The focal point of the laser is moved
across the build surface using a galvanometer scanner; the scan speed of the
laser beam is also critical, as it impacts the energy applied to a particular
spot of the build. Powder layer thickness, layer uniformity, powder temper-
ature, and packing density can also significantly impact the heat transfer
process [19].

There are several studies [10, 20] which demonstrate an association be-
tween the energy density transferred to the material and L-PBF build den-
sity. According to Gu et al. [20] the energy density (i.e. energy per unit
volume) transferred to the material is given by

E =
P

vht
(1)

where P is the laser power, v is the scan speed, t is the layer thickness and h
is the hatch distance. Consequently, the studies [10, 20, 21, 22] focus on the
influence of these parameters on build quality. Arisoy et al. [21] discusses
the effect of scan strategy, laser power, scan speed and hatch distance on
grain sizes and showed that increasing the energy density results in larger
grain sizes. The work described in [22] has used scan speed and laser power
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to predict the porosity of metallic parts produced using L-PBF.

One common approach to melt-pool monitoring involves using camera-
based sensing systems with CCD or CMOS detectors, which can achieve a
relatively high spatial resolution. Such camera-sensing systems can allow
evaluation of the temperature profile and shape of the melt-pool [23]. The
optical set-up suggested by Kruth et al.[12] consisted of a high-speed NIR
CMOS camera and a photodiode (sampling rate 10kHz) that was coaxial
with the laser beam. Grasso et al. [3] utilised an off-axial camera sensing
system with a CMOS detector which collected images at a rate of 300Hz. A
pyrometer with an in-built CMOS detector (sampling rate 6.4Hz) was used
by Khanzadeh et al. [13] to capture thermal images of the melt-pool.

Kruth et al. [12] suggested an approach for in-situ monitoring where
the sensor measurements, taken from a high-speed NIR CMOS camera and
a photodiode, were mapped into interpretable process-quality images with
a relatively high response rate (10kHz). Mapped sensor data, with the in-
tensity and the area of each melt-pool, were examined for anomalies using
pre-defined expected values. This system requires a position-dependent ref-
erence database unique to each part, generated by traditional validation
techniques in order to generate those expected values for different scanning
patterns (i.e. fill and contour). While the study stated that there is an
excellent compatibility between the detected errors and actual defects, the
statistical significance of this study has not been reported.

A recent study carried out by Grasso et al. [3] used principal component
analysis to compress image data of the melt-pool (collected via an off-axial
camera sensing system) and output a statistical descriptor that can be used
to identify defect areas. The proposed method was able to automatically
detect and localise a defect during the layer-by-layer L-PBF process. How-
ever, the statistical significance of this study has not been reported.

A real-time porosity prediction method was developed by Khanzadeh
et al. [13], using morphological characteristics of the melt-pool boundary.
The suggested method used a polar transformation to convert Cartesian
co-ordinates of the melt-pool boundaries into polar co-ordinates (ρ and θ).
Once the polar transformed melt-pool contour were represented using a func-
tion (ρ = g(θ), where θ ∈ (−π, π)), functional principal component analysis
(FPCA) was used to fit a smooth functional curve and extract critical fea-
tures to classify defective and non-defective melt-pools. An accuracy level of
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98.44% was realised in classifying melt-pools obtained during fabrication of
a thin wall structure. However, this approach had a relatively slow response
rate due to the use of a camera-based monitoring system.

The studies [14, 15, 16] utilised off-axial high resolution imaging, ob-
tained through visual cameras, to detect anomalies in L-PBF build layers.
Aminzadeh et al. [14], captured build images using a 8.8 megapixel USB
digital camera with high focus lenses and Gobert et al. [15] used a 36.3-
megapixel DSLR camera (Nikon D800E) to take multiple images of the
build layers.

The method suggested by Aminzadeh et al. [14], used a database of cam-
era images with pre-identified zones (Zone I being the range where parts with
no noticeable pores are created, Zone II being the ‘high-energy zone’ where
small spherical, gas pores are created, and Zone III being ‘low-energy zone’
where large irregular pores and lack of fusion occur) in layers of AM parts
made with varying part quality, to train a Bayesian classifier. Appropriate
features were selected by taking texture characteristics into consideration
and by converting the images into the frequency domain. The developed
Bayesian classifier was able to achieve a 89.5% true positive rate and 82%
true negative rate. However, as the high resolution images being used cap-
tured the entire build layer, significant image post-processing was required
to correct for image contrast between the part and powder.

Gobert et al. [15] proposed a method to identify discontinuities (e.g.
porosity, cracks), in which the co-ordinates of anomalies and nominal vox-
els in the CT scan domain were matched with layer-wise images. Features
extracted from this matching layer-wise image stack were employed to train
a binary classifier. Discontinuities were detected with an 80% success rate,
however the approach heavily relied on embedded reference points for the
calibration of coordinate transformations.

In the study conducted by Guo et al. [24] predictions of the melt-pool
shape and dimensions were made using a 3D finite element model. However,
the study suggests a rather complex model which makes the analysis time
consuming and difficult to apply.

Table 1 summarises some of the state-of-the-art in-situ monitoring sys-
tems designed for the L-PBF build process. Table 1 also reports the data
processing and analysis techniques utilised in those systems.
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Table 1: Selected literature on in situ monitoring for automated defect detection in L-PBF

Reference Process Data processing Analysing
signature technique technique

Kruth Melt-pool Sensor data processed Statistical Process
et al. geometry and by a FPGA chip is Control is carried out
[12] plume mapped into a 2D with reference data,

characteristics regular grid, according generated by previous
to their logged built parts using
positions, to assign traditional validation
the melt-pool data to techniques (CMM, CT,
a particular pixel Archimedes, microscope)

Grasso Melt-pool A statistical descriptor K-means Clustering
et al. geometry and based on principal for Automated Defect
[3] plume component analysis Detection

characteristics (PCA) is applied to
image data,
which is suitable
for identifying defective
areas within a layer

Fu Temperature A 3D finite element Melt-pool shape and
et al. profile thermal model dimensions was predicted
[24] was developed using process parameters

to investigate and then verified with
the thermal process previously collected
of L-PBF using commercial experimental data
software ABAQUS

Khanzadeh Melt-pool Polar transformation was Four different
et al. geometry and applied to position methods were
[13] temperature co-ordinates of the used for melt-pool

profile melt-pool boundaries and classification:
then functional principal K-nearest
component analysis (FPCA) neighbour, support
was performed to extract vector machine,
key characteristics decision tree,
of those boundaries discriminant analysis

Continued on next page
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Table 1 – Continued from previous page

Reference Process Data processing Analysing
signature technique technique

Foster Plume Images of layers Post-processed and
et al. characteristics were taken both analyzed images were
[25] immediately after stacked to create

re-coating and 3D models to find
after laser exposure anomalies

Craeghs Plume Melt-pool length and Change in length to
et al. characteristics width of the captured width ratio is used
[16] melt-pool images were detect process

determined using image abnormalities
processing algorithms
with the help of a
FPGA chip

Aminzadeh Plume Features, carefully Extracted features
et al. characteristics selected based on were classified using
[14] physical intuition into a Bayesian classifier

the process, were
extracted from the
images of L-PBF
builds

Gobert Plume Multi-dimensional Extracted features
et al. characteristics visual features were were evaluated using
[15] extracted from binary classification

layer-wise image techniques, i.e. a
stacks linear support

vector machine
(SVM)

Coeck Plume Identifying position Identified defective
et al. characteristics co-ordinates of melt-pools within close
[11] melt-pools where proximity were utilsed

the signal is fluctuating to detect defective
within a scan vector
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Of the aforementioned work, [8, 9, 10, 11] utilised photodiode sensors.
Photodiodes are spatially integrated single-channel detectors that provide
a voltage corresponding to the amount of light collected by the detector at
each focal point. Cost effectiveness, high sensitivity, robustness, and fast
data collection rates (typically ∼ 50kHz) make these devices attractive for
L-PBF in-process monitoring. These sensors are, however, typically sensi-
tive only over a limited range of wavelengths. Thermal radiation from the
melt-pool is generally in the visible to IR range (900 to 2300 nm) while
plasma emission is near UV or visible wavelengths (400 to 650 nm) [26].
Photodiodes simplify the data processing, relative to a camera-sensing sys-
tem. On the other hand, camera-sensing systems provide a more detailed
overview of the melt-pool characteristics. Consequently, choosing a sensor
system for melt-pool monitoring is a trade-off between the response rate,
cost and usefulness of the data that can be collected. Thus, many studies
([12, 23, 27], for example) exploit both photodiodes and CCD or CMOS
cameras to capture the process dynamics of the melt-pool. However, the
response rate of the monitoring system decreases as the response rate of a
camera system is quite low compared to that of photodiodes [1].

The current study explores the feasibility of using a set of measurements
collected through different co-axial photodiode sensors to predict the den-
sity of L-PBF builds. The overall aim of this paper, then, is to develop a
model that can predict L-PBF build quality via build-data acquired through
photodiode sensors.

3. Feature Extraction

A RenishawTM AM 500M machine was utilised to build the test samples
used in this study. The machine sensor system, shown in Figure 1, consists
of two high precision co-axial single-channel detectors that are designed to
capture melt-pool plume characteristics.

Photodiode-1 (PD1 - no. 4 in Figure 1, wavelength - 700 to 1050 nm)
is sensitive to plasma emissions whereas photodiode-2 (PD2 - no. 5 in Fig-
ure 1, wavelength - 1080 to 1700 nm) is sensitive to thermal radiation. A
third photodiode, photodiode-3 (PD3 - no. 10 in Figure 1) measures the
intensity of the laser beam. The optical window (no.16 in Figure 1), which
helps focus the laser beam, exhibits > 95% spectral transmission across the
wavelength of interest. The machine has a Galvo-scanner system (no. 19 in
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Figure 1: RenishawTM AM 500M machine schematic assembly of the optical sensing sys-
tem (image reproduced with permission from the Renishaw Brochure ‘InfiniAM Spectral’,
available at http://www.renishaw.com/en/infiniam-spectral–42310).

Figure 1) which controls the movement of the laser focal point, such that
it follows pre-defined (x, y) coordinates. In the following experiments, the
(x, y) coordinates of the laser focal point were collected at 100 kHz alongside
the photodiode measurements.

Sixty-two cubes (Figure 2(a)) were built using different combinations of
process parameters (i.e. laser power, scan speed and hatch distance) ac-
cording to a Design of Experiments (DoE) procedure. This DoE procedure
was carried out following standard practice implemented by Renishaw. Fig-
ure 2(b) shows the (x, y) coordinates of the laser point over a single layer
(the first layer created after the initial support layers) of the build. To fil-
ter the sensor measurements, data points recorded when the laser was off
(when the laser was moving in between specimens and in between hatches)
and when the laser was used on contours (edge of each specimen) were re-
moved from the analysis. The data was further filtered by extracting only
the maximum intensity of the laser beam per each exposure. The sensor
data was separated into 62 data sections, each corresponding to a single
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(a)

(b)

Figure 2: (a) 62 cubes built with different combinations of process parameters (laser power,
scan speed and hatch distance) (b) (x, y) coordinates of the laser point representing a single
layer of the build shown in (a).

cube. The data separation was carried out by creating polygons marking
the boundaries of each cube (see black outlines in Figure 2(b)) and then
indexing all the data points within each area as a single section. Examples
of the resulting data segments are shown in Figure 3(a). Even though some
data was removed when a single reading per exposure were extracted, the
number of data points corresponding to each cube was recorded separately,
as this value is proportional to the time spent by the laser on each bounded
area; the number of data points collected per cube is shown in Figure 3(b).
Subsequently, for each photodiode, the sensor data recorded for each cube
was arranged into separate columns, creating three separate data matrices
(one per photodiode). To ensure that these matrices had the same number
of elements in each column, the minimum column length across each speci-
men was determined and then the data was truncated accordingly. Each of
the resulting data matrices were of dimension 1216× 62. A Singular Value
Decomposition (SVD) was then performed on each data matrix to extract
the features that, later in this study, are used as inputs to various machine
learning approaches.

In the following, to illustrate the feature extraction procedure, we use
A to denote a data matrix obtained from one of the 3 photodiode sensors.
An SVD takes a data matrix, A, and factorises it into a product of three
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Figure 3: (a) The separation of the data was carried out by indexing all the data points
with respect to their location on the layer. (b) The number of samples collected while
building each cube.

separate matrices:

A = USV T (2)

If the original data matrixA is (m×n), then U will be an (m×m) orthonor-
mal matrix and V will be a (n × n) orthonormal matrix. S, an (m × n)
matrix, has the form

S =

[
Σ
0

]
, Σ = diag(S1, S2, ..., Sn) (3)

where the diagonal elements of Σ are sorted from largest to smallest. These
diagonal elements are the square root of the eigenvalues of AAT and are
commonly referred to as ‘singular values’.

As a result of the SVD, each column of A can be expressed as a linear
combination of basis vectors (u1,u2, ...,um). Specifically, by defining C =
S V T , one can write

A = U C ⇒ ai =
m∑
j=1

uj Cj,i (4)

where ai is the ith column of A and uj is the jth column of U . Thus,
each vector ai is now associated with a constant Cj,i for every basis vector
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uj . Often, only a small subset of singular values are significantly different
from zero. In such cases, the sum in equation (4) can be truncated and
each column of A can be well approximated using only a limited number
of k < m basis vectors, u1,u2, ...,uk. Specifically, by writing C̄ = Sk V

T
k

where V k is a (n × k) matrix, composed of the first k columns of V , and
Sk represents a (k × k) matrix which includes the first k singular values
(S1, S2....Sk):

A ≈ Ā = Uk C̄ ⇒ āi =
k∑

j=1

uj C̄j,i (5)
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Figure 4: Normalised Frobenius norm for the Photodiode-1 (a), Photodiode-2 (b) and
Photodiode-3 (c) data matrices. The first 15 basis vectors are shown (out of a total of
1216 basis vectors).

The difference between A and Ā can be quantified using the normalised
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Frobenius norm [28]:

‖A− Ā‖Fro =

√
Σn
i=1Σ

m
j=1(| aj,i − āj,i | / | aj,i |)2

mn
(6)

For each of the three data matrices, the number of basis vectors (k)
employed for generating the approximated matrix Ā was increased up un-
til k=15 and the Frobenius norm was used to quantify the contribution of
each basis vector to the information contained in the original matrix A.
Figure 4 shows how the Frobenius norm decreases as the number of basis
vectors increases for all three data matrices. It can be seen that the ap-
proximation realised using only the first basis vector captures most of the
data - in fact, the Frobenius norm for photodiode-1 is only 0.0934 (for con-
text the Frobenius norm when Ā = 0 is 1). Similarly, the Frobenius norm
for photodiode-2 and photodiode-3, using 1 basis vector only, is 0.0388 and
0.0218 respectively. In the following, the constants relating to the first basis
vectors of the three matrices are therefore used as the extracted features to
be inputted into the machine learning algorithms.

4. Algorithm Descriptions

This section describes the supervised and unsupervised machine learn-
ing approaches that were used in the current study. The features considered
here are the constants Cj,i (defined in equation (5)) that are related to
the first basis vectors of photodiode-1, photodiode-2 and photodiode-3, as
well as the total number of scan samples used within each bounded area
(as it is proportional to the time spent by the laser on each specimen).
Herein, all the components of the feature space are represented by the vec-

tor xi =
[
x
(1)
i . . x

(D)
i

]T
, where D is the dimension of the feature space

and i is used to index each specimen. As an example, xi can be a combi-
nation of CPD1

1,i , the constants that are related to the first basis vectors of

photodiode-1 and CPD2
1,i , the constants that are related to the first basis vec-

tors of photodiode-2, which provides a 2D feature space (such that D = 2).
All the feature vectors were normalised by subtracting the mean value and
dividing by the standard deviation.

In the current work, the ability of two different unsupervised learning
approaches (K-means clustering and a Gaussian Mixture Model (GMM),
described in Section 4.1) to cluster the feature space was assessed. Subse-
quently, it was investigated whether supervised regression could be used to
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directly predict sample density using the same feature vectors. This was
investigated using a Gaussian Process (GP) regression algorithm with Au-
tomatic Relevance Determination, which is described in Section 4.2.

4.1. Unsupervised learning

The two unsupervised approaches used in this study are briefly explained
below.

4.1.1. K-means algorithm

Given a set of n observations {x1,x2, . . . ,xn} (in this case represent-
ing n points in the feature space, n = 62 ), K-means clustering aims to
partition the observations into sets hr = h1,h2, . . . ,hq (q ≤ n). The K-
means algorithm begins with an initial estimate of cluster centres (or where
r = 1, 2..., q) before calculating the distance between each point and each
centre. Each observation is then assigned to the cluster whose centre is
closest. In the next iteration of the algorithm, the centres are recomputed
by setting them equal to the mean of the newly classified points. The pro-
cess of estimating cluster centres and assigning observations to clusters is
then repeated until the cluster centers are judged to have converged. The
interested reader can can refer to [29] for further details.

4.1.2. Gaussian Mixture Model

K-means is a deterministic approach, based on the assumption of spher-
ical clusters. Gaussian Mixture Models (GMMs) are probabilistic and can
be used to identify non-spherical clusters. GMMs therefore provide more
flexibility compared to the K-means algorithm. With a GMM it is assumed
that each feature vector has been generated from one of H Gaussian distri-
butions, such that

p(xi) =

H∑
c=1

πcN (xi | µc,Σc) (7)

where the πc’s are called mixture proportions and c indexes each cluster.
The parameters µc and Σc represent the mean and the covariance matrix
of the c th cluster respectively.

Training a GMM involves inferring estimating the parameters, θGMM =
{πc,µc,Σc}, where c = 1, 2, ...,H, which maximises the likelihood of wit-
nessing the data x1, ..,xn. This estimation procedure is typically under-
taken using the Expectation Maximisation (EM) algorithm, which consists
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of two main steps: the expectation step (E-step) and the maximization step
(M-step). The EM algorithm begins by randomly initialising the GMM pa-
rameters for each cluster. Given these parameters, the posterior probability
that cluster c is responsible for generating xi is calculated as part of the
E-step. To do so, let us assume that each data point xi is given a ‘label’
zi ∈ RH describing which Gaussian was used to generate it, where the labels
are such that zc,i ∈ {0, 1} subject to

∑H
c=1 zc,i = 1, ∀i. These labels are

hidden to the user (and are therefore named ‘latent variables’) and deter-
mine the cluster from which each observation originates (zc,i = 1 means that
the point xi came from the c th Gaussian with probability 1). The expected
value of zc,i, at the t th iteration of the algorithm, is

γ(zc,i)
(t) =

πcN (xi | µc,Σc)∑H
c′=1 πc′N (xi | µc′ ,Σc′)

(8)

Fixing each zc,i equal to its expected value, in the M-step, a new set
of parameters for the Gaussian distributions are computed such that they
maximise the lower bound of the log likelihood of all the observations in
each cluster. This is called the M-step. It can be shown that the maximum
likelihood parameters are

µ(t+1)
c =

1

nc

n∑
i=1

γ(zc,i)
(t) xi (9)

Σ(t+1)
c =

1

nc

n∑
i=1

γ(zc,i)
(t)(xi−µ(t+1)

c )(xi−µ(t+1)
c )T (10)

π(t+1)
c =

nc
n

(11)

where

nc =

n∑
i=1

γ(zc,i)
(t) (12)

Once these parameters are calculated, the log likelihood is evaluated as
follows

ln p(x1, ...,xn | µ,Σ,π) =

n∑
i=1

ln

{
H∑
c=1

πcN (xi | µc,Σc)

}
(13)

Equation (13) can be used to analyse convergence of the EM algorithm as
it runs over a number of iterations.
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4.2. Supervised learning

In Supervised Learning, algorithms learn from labeled data. The ap-
proach used in this study, namely Gaussian Process regression, is briefly
explained below.

4.2.1. Gaussian Process Regression

Let us assume there exists a function that can predict the density, d,
of each specimen from the extracted features x. However, that function is
unknown and regression is used to estimate it from the data. Here, it is
assumed that

di = f(xi) + ε, ε ∼ N (ε; 0, σ2) (14)

such that each observation, di, is equal to the function f evaluated at input
xi but corrupted with zero mean Gaussian noise of variance σ2. By defining

f = (f1, f2......, fn)T , fi ≡ f(xi) (15)

then, from the definition of a Gaussian process, p(f) is a Gaussian whose
mean is zero and whose co-variance is defined by a Gram matrix, K, so that

p(f) = N (f ; 0,K) (16)

The matrix K is defined using a kernel function, k, chosen to ensure
that K is a valid covariance matrix. In this study, the considered kernel [29]
is

k(x,x′) = exp

−1

2

D∑
j=1

1

L2
j

(xj − x′j)2
 (17)

where xj represents the jth component of x.

The ‘hyperparameters’, Lj (j = 1, ..., D) and σ are collected together
into the vector θGP={ L1, L2, ..., LD, σ}. The hyperparameter Lj controls
the lengthscale of the kernel function for the jth input dimension. By al-
lowing different lengthscales for each dimension of the input space, it is pos-
sible to control the sensitivity of the regression to each model input. The
identification of the hyperparameteres L1, ..., Ld is referred to as Automatic
Relevance Determination (ARD), as it helps one to establish the relevance
of different inputs to the model predictions. If, for example, the jth feature
has no relevance for the regression problem, the optimum lengthscale, Lj ,
will be relatively large (thus reducing the sensitivity of the regression model
to that feature). ARD can therefore be used to discard features that are

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2020                   doi:10.20944/preprints202004.0055.v1

https://doi.org/10.20944/preprints202004.0055.v1


less relevant.

From the noise model (equation (14)), the likelihood of observing d =
(d1, ..., dn)T , conditional on f , is

p(d |f) = N (d;f , Iσ2) (18)

where I is the identity matrix. By marginalising over f , the marginal like-
lihood is

p(d) =

∫
p(d |f)p(f)df = N (d; 0,K +σ2I) (19)

Given the training dataset, the optimum parameters θGP which maximise
the marginal log likelihood can be estimated using gradient-based optimisa-
tion algorithms (e.g. conjugate gradients [30]). Once the optimum param-
eters are identified, in response to a new input x∗ (generated using a build
that was not included in the training data, for example), the probability
that this sample has measured density d∗ is given by

p(d∗|d) = N (d∗|m∗, σ2∗) (20)

where
m∗ = kT C−1 d, σ2∗ = σ2 + k(x∗,x∗)− kT C−1 k . (21)

and
C = K +σ2I, k = k(xi,x∗) i = 1, 2, .....n (22)

5. Results and Discussion

As mentioned in Section 4, the constants relating to the first basis vec-
tors of the data matrices of Photodiode-1 (CPD1

1,i ), Photodiode-2 (CPD2
1,i ),

Photodiode-3 (CPD3
1,i ) and the total number of scan samples (Ti) of each

specimen were used to create the feature space.
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Table 2: Recognising clusters in the 2D feature space

Extracted features Evident
clusters

CPD1
1,i CPD2

1,i CPD3
1,i Ti

• • X

• • X

• • X

• • X

• • X

• • X

Initially, all the combinations of feature pairs were taken into consid-
eration. Figure 5 shows several combinations of pairs of feature vectors,
plotted on a 2-dimensional space, where the data points have been coloured
depending on the density of each specimen. The specimens with a density
higher than or equal to 99% were categorised as high density parts (green
triangles) and the specimens with a density less than 99% were categorised
as low density parts (red circles).

When observing the distribution of data points in Figure 5, it was evident
that when the coefficients relating to the first basis vector of photodiode-2
(CPD2

1,i ) and photodiode-3 (CPD3
1,i ) were plotted with the coefficients relat-

ing to the first basis vector of photodiode-1 (CPD1
1,i ) (Figure 5(a) and Figure

5(b)) or when CPD2
1,i and CPD3

1,i were plotted against each other (Figure 5(c)),
the categories of density did not appear in separate clusters. Again, when
CPD2
1,i were plotted against the total number of scan samples (Ti), there were

no evident clusters (Figure 5(e)). However, when CPD1
1,i were plotted against

Ti (Figure 5(d)), the categories of density appeared to be better separated.
Furthermore, when CPD3

1,i were plotted against Ti, there were also roughly
recognisable clusters (Figure 5(f)). The capability of these feature combi-
nations to separate the data points into clusters is summarised in Table 2.
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Figure 5: (a) CPD1
1,i plotted against CPD2

1,i (b) CPD1
1,i plotted against CPD3

1,i (c) CPD2
1,i

plotted against CPD3
1,i (d) CPD1

1,i plotted against Ti (e) CPD2
1,i plotted against Ti (f) CPD3

1,i

plotted against Ti
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5.1. Unsupervised learning

The feature combinations with recognisable clusters (CPD1
1,i plotted against

Ti and CPD3
1,i plotted against Ti) were used as input features for the unsuper-

vised machine learning algorithms. It is noted that the number of samples
was always included in the feature space. For the sake of completeness,
several features were added to the feature pairs recognised in the previous
stage to be successful in separating categories of densities, creating both 3D
and 4D feature spaces.

In the following, 50% of the available data was used for algorithm training
such that the remaining 50% was used to test each algorithm’s predictive
capabilities. The training and testing data consisted of 31 data points each.
2-fold cross validation was performed whereby the role of the two datasets
was reversed (such that the training data became the testing data and vice-
versa) before the predictive ability for each fold was averaged to estimate the
final accuracy level. Specifically, the average accuracy level was calculated
as

Avg. success rate% =

∑2
i=1

(Ncorrect,i

Ntotal,i

)
× 100

2
(23)

where Ncorrect,i is the number of correctly predicted specimens and Ntotal,i

is the total number of specimens in the ith fold.

We note that, with the GMM, the ‘threshold probability’ was set equal
to 0.5 such that, if the probability of a particular data point being in one
particular cluster is more than 0.5, the point is considered part of that clus-
ter.

All the combinations used to create the feature space and the obtained
accuracy levels are provided in Table 3. We used K-means first to clus-
ter the feature space as it is a relatively simple approach and because the
produced results provide a good reference to validate the subsequent GMM
results. Referring to Table 3, it can be observed that, in the case of the
GMM, the highest success rate (93.54%) was achieved when CPD1

1,i and Ti
were used as input features. The same success rate was obtained when CPD3

1,i

and Ti were used as input features. Comparing the results obtained with
K-means clustering for those feature pairs, the highest accuracy were given
when CPD1

1,i and Ti were used as input features. However, adding CPD2
1,i to

that feature pair (CPD1
1,i and Ti) was detrimental as the success rate of both
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Table 3: Accuracy in classification calculated using (23)

Extracted features K-means GMM

CPD1
1,i CPD2

1,i CPD3
1,i Ti

X X 80.65% 93.54%

X X 77.42% 93.54%

X X X 74.19% 79.03%

X X X 83.87% 83.87%

X X X 75.81% 90.03%

X X X X 66.13% 79.03%

clustering techniques was reduced with the introduction of the new feature.
Adding coefficients relating to CPD3

1,i to the same feature pair (CPD1
1,i and Ti)

also slightly reduced the success rate of both clustering techniques. There-
fore, in the following, we use the features relating to PD-1 and number of
samples (CPD1

1,i plotted against Ti) to quantify the performance of the GMM.

For illustrative purposes, Figure 6 and Figure 7 show the results obtained
for validation data in the first and second fold, respectively, when Ti and
CPD1
1,i were clustered using the GMM. Figures 6(a) and 7(a) illustrate the

measured part density (parts with high density in green and low density in
red) while Figures 6(b) and 7(b) illustrate the GMM results.

To further quantify the performance of the GMM, a Receiver Operating
Characteristic (ROC) curve was created. A Receiver Operating Charac-
teristic curve is a graphical plot that illustrates the diagnostic ability of a
probabilistic classification algorithm as the algorithm’s threshold probabil-
ity is varied from 0 to 1. To create a ROC curve, a classifier’s False Positive
Rate (FPR) and True Positive Rate (TPR) are recorded for a range of dif-
ferent threshold probabilities before being plotted against each another. For
the current example, the TPR is defined as the ratio of correctly identified
low density parts, relative to the total number of low density parts. Like-
wise, the FPR is defined as the ratio of falsely identified low density parts,
relative to the total number of high density parts. The Area Under the
Curve (AUC) represents a measure of separability. The higher the AUC is
or the closer the curve is to the top-left of the plot, the better the model is at
distinguishing between parts with high density and low density. AUC=0.5
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Figure 6: Combinations of feature vectors, plotted in a 2-dimensional space, where the
data points have been coloured depending on the density of the each specimen. CPD1

1,i vs.
Ti plotted for the validation data in the first fold of the cross-validation. (a) The colour
green represents samples with measured density ≥ 99% and red represents samples with
measured density < 99%. (b) The colour green represents cluster-1 (predicted density
≥ 99%) and red represents cluster-2 (predicted density < 99%).
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Figure 7: CPD1
1,i vs. Ti plotted for the validation data in the second fold of the cross-

validation. (a) The colour green represents samples with measured density ≥ 99% and red
represents samples with measured density < 99%. (b) The colour green represents cluster-
1 (predicted density ≥ 99%) and red represents cluster-2 (predicted density < 99%).

indicates that the model has no class separation capacity, while AUC=1.0
indicates that the model can separate the classes with 100% accuracy.

In order to analyse the performance of the GMM for a variety of thresh-
old probabilities, an ROC curve was plotted for the case where the feature
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space consisted of CPD1
1,i and Ti. The results obtained in both folds of the

validation data were used to plot the ROC curve shown in Figure 8. The
AUC value for both first fold and second fold is 0.946, which indicates that
GMM is capable of accurately classifying parts according to their densities
for a range of threshold probabilities.

0 0.2 0.4 0.6 0.8 1

FPR
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ROC curve(AUC=0.946)
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Figure 8: The ROC curve plotted when GMM was used for the case where the feature
space consisted of CPD1

1,i and Ti. ROC curve was plotted for the results obtained in both
folds of the validation data. The area under curve for both first fold and second fold is
0.946.

5.2. Supervised learning

Given the promising clustering results reported in the previous section, it
was then investigated whether it was possible to directly predict build den-
sity from the aforementioned features using regression techniques. Specif-
ically, the features such as CPD1

1,i and Ti appeared to be quite helpful in
identifying categories of densities.

GP regression with Automatic Relevance Determination was used to
predict the density of the specimens. In order to train the algorithm, 50%
of the data (the first 31 datasets) was used and, once the optimum GP
hyperparameters were estimated, the remaining 50% of the data was used
to validate the algorithm. 2-fold cross validation was again performed to
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Table 4: Results of GP regression with ARD

RMS error 3.65%

Length scale for no of samples 9.213× 10−1

Length scale for CPD1
1,i 6.557× 103

Length scale for CPD2
1,i 1.426× 104

Length scale for CPD3
1,i 4.893

measure the predictive power of the algorithm outside the training set. The
RMS error for each of the analyses was calculated using

RMS of cross-validation =

∑2
j=1

(
1
31

∑31
i=1(d∗(i,j) − d(i,j))2

)1/2
2

(24)

where d∗(i,j) represents the predicted density of the ith part in the jth fold

while d(i,j) represents the measured density of the ith part in the jth fold.

As reported in Table 4, the averaged RMS error was 3.65%. The pre-
dicted density is plotted against the measured density in Figure 9(a). The
blue error bars represent a single standard deviation from the mean of each
predicted density. An ideal predictive model that can predict the exact mea-
sured density would place all predictions over the black diagonal line. The
results follow the line closely with sensible confidence bounds, indicating
that the algorithm is capable of accurately predicting build density.

As explained in Section 4.2, if the jth input has little predictive relevance,
then the corresponding estimated lengthscale hyperparameter, Lj , will be
large (effectively filtering out the jth feature). Thus, referring to the length-
scale parameters reported in Table 4, it can be observed that the highest
relevance was exhibited by Ti and CPD3

1,i . According to the ARD results,

CPD2
1,i can be discarded for GP regression since the associated lengthscale is

relatively high compared to the other lengthscales. As a result, part density
was again predicted without CPD2

1,i (results plotted in Figure 9(b)). The
averaged RMS error in this case was 3.75%, which is relatively close to the
previous RMS error 3.65%. Therefore, CPD2

1,i has very little predictive rele-
vance which confirms the results obtained via ARD.

This study shows the potential for predicting the quality of L-PBF builds
from sensor measurements, collected from three different photodiodes. We
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Figure 9: Measured density compared against the predicted density obtained via GP
regression. The black points represent the validation data points. The blue bars on
each data point represent the standard deviation of each predicted density and the black
diagonal line represent the predictions of an ideal model.(a) The results obtained with all
the extracted features (average RMS error was 3.65%).(b) The results obtained without
CPD2

1,i (average RMS error was 3.75%).

note that build density is often required to be between 99 -100%, but the
RMS error recorded was above 1%. Looking at the results produced for
the six specimens with density above 99%, the RMS error was only 1.24%.
As the experiment was originally designed to create specimens with a wide
range of density, the number of specimens found to have density above 99%
was a very small portion of the entire specimen set. Thus, we believe that
by expanding the sample size and focusing the experiment on specimens
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with higher density the overall accuracy of the model in this region can be
improved.

6. Conclusions

The absence of a robust quality control system in Additive Manufac-
turing introduces uncertainties regarding end-products’ quality and hinders
the adoption of AM technology in safety critical sectors. Most of the suc-
cessful monitoring systems in the literature have focused on image-based
approaches. Using only photodiode sensor measurements for online process
monitoring is an open challenge that is yet to be explored in depth. Ad-
vancing this approach would be beneficial as photodiodes are cost efficient,
robust, and have a relatively high sample rate.

The aim of the present research, therefore, was to investigate the fea-
sibility of predicting part density of L-PBF builds via photodiode sensor
data, obtained during the build process. Firstly, an unsupervised cluster-
ing approach was investigated, whereby L-PBF parts were separated into
2 classes depending on their density. Features, extracted from photodiode
measurements utilising a Singular Value Decomposition, were used as inputs
to two different unsupervised learning algorithms (K-means and a Gaussian
Mixture Model). It was shown that the L-PBF builds could be clustered,
depending on density, with accuracy levels of up to 93.54%.

Given the promising nature of the results realised using unsupervised
approaches, Gaussian Process regression, a supervised approach, was then
used to directly predict L-PBF build density. Again, these predictions were
made using features extracted from photodiode measurements. The Gaus-
sian Process was able to predict build density with an average RMS error
of 3.65%. We believe that the sample size of the training data has limited
the accuracy of our approach and that, by increasing the sample size and
focusing the experiment on specimens with higher density, the accuracy level
could be improved.

A natural progression of this work is to focus on the identification of spe-
cific anomalies (porous structures, for example) from photodiode measure-
ments, using the results of CT scan images and X-ray radiography images.
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