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Abstract

For a one-locus haploid infinite population with discrete generations, the celebrated
Kingman’s model describes the evolution of fitness distributions under the competition
of selection and mutation, with a constant mutation probability. Letting mutation prob-
abilities vary on generations reflects the influence of a random environment. This paper
generalises Kingman’s model by using a sequence of i.i.d. random mutation probabili-
ties. For any distribution of the sequence, the weak convergence of fitness distributions
to the globally stable equilibrium for any initial fitness distribution is proved. We define
the condensation of the random model as that almost surely a positive proportion of the
population travels to and condensates on the largest fitness value. The condensation
may occur when selection is more favoured than mutation. A criterion is given to tell
whether the condensation occurs or not.
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1 Motivation and background

Various biological forces interact with each other and drive the evolution of population
all together. One important competing pair consists of selection and mutation. It was as
early as 1937 that Haldane [14] put forward the concept of mutation-selection balance.
The foundations of this subject was given by Crow and Kimura [7], Ewens [11], and
Kingman [19]. For more details on this topic, we refer to Bürger [5, 6].

A simple setting is to consider a one-locus haploid infinite population with discrete
generations under selection and mutation. The locus is assumed to have infinitely many
possible alleles which have continuous effects on a quantitative type. The continuum-of-
alleles models were introduced by Crow and Kimura [7] and Kimura [16] and are used
frequently in quantitative genetics.

Kingman [17] suggested to explain the tendency that most mutations are deleterious
by the assumption of the independence of the gene before and after mutation. This
feature was named “House of Cards”, as the mutation destroys the biochemical house of
cards built up by evolution, by Kingman in [18] where the most famous one-locus model
was proposed. In this model, a population is characterised by its type distribution,
which is a probability measure on [0, 1] and any x ∈ [0, 1] is a type value. In Kingman’s
setting, an individual with a larger type value is fitter, which means more productive.
So the type value can also be named fitness value. Kingman’s model can be seen as the
limit of a finite population model, see [13].

Bürger [4] generalised the selection mechanism which allows the gene after mutation
to depend on that before and proved the convergence in total variation. The genetic
variation of the equilibrium distribution was computed and discussed. I proposed [21] a
more general selection mechanism which can model general macroscopic epistasis, with
the other settings the same as in Kingman’s model. This model was applied to the
modelling of the Lenski experiment (see [12] for a description of the experiment).

There are also many models on the balance of mutation and selection in the setting of
continuous generations. Bürger [3] provided an exact mathematical analysis of Kimura’s
continuum-of-alleles model, focusing on the equilibrium genetic variation. Steinsaltz et
al [20] proposed a multi-loci model using a differential equation to study the ageing
effect. Later on the recombination was incorporated to the model [10]. Betz et al’s
model [2] generalised a continuous-time version of Kingman’s model and other models
arising from physics.

However to the best of my knowledge, Kingman’s model has never been generalised
to a random version. In this paper we will assume that the mutation probabilities of all
generations form an i.i.d. sequence with the other settings unchanged. So the feature
of “House of Cards” is retained. Biologically we think of a stable random environment
such that the mutation probabilities are different but independently sampled from the
same distribution.

In Kingman’s model, the condensation occurs if a certain proportion of the popu-
lation travels to and condensates on the largest fitness value. This is due to the dom-
inance of selection over mutation. Kingman [18] called the regime with condensation
Meritocracy or Aristocracy depending on contexts, and the regime without condensation
Democracy. In the random model, we consider also the convergence of (random) fitness
distributions to the equilibrium and the condensation phenomenon. Moreover, King-
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man’s model has been revisited recently in terms of the travelling wave of mass to the
largest fitness value [8]. The random model provides another example for consideration
in this direction.

2 Models

2.1 Kingman’s model with time-varying mutation probabilities

Consider a haploid population of infinite size and discrete generations under the com-
petition of selection and mutation. We use a sequence of probability measures (Pn) =
(Pn)n≥0 on [0, 1] to describe the distribution of fitness values in the nth generation.
Individuals in the nth generation are children of the n − 1th generation. First of all,
the fitness distribution of children is initially Pn−1 (an exact copy from parents). Then
selection takes effect, such that the fitness distribution is updated from Pn−1 to the
size-biased distribution

xPn−1(dx)
∫

yPn−1(dy)
.

Here we use
∫

to denote
∫ 1

0 . Basically the new population is resampled from the existing
population by using their fitness as a selective criterion. Next, each individual mutates
independent with the same mutation probability which we denote by bn and which takes
values in [0, 1). Each mutant has the fitness value sampled independently from a common
mutant distribution, that we denote by Q, a probability measure on [0, 1]. Then the
resulting distribution is the distribution in the nth generation

Pn(dx) = (1− bn)
xPn−1(dx)
∫

yPn−1(dy)
+ bnQ(dx). (1)

The fact that we exclude the case that a mutation probability can be 1 is because in this
situation Pn = Q which loses accumulated evolutionary changes. This is not interesting
neither biologically nor mathematically.

Expanding (1), we can also obtain

Pn(dx) =

(

n−1
∏

l=0

1− bl+1
∫

yPl(dy)

)

xnP0(dx) +

n
∑

j=1





n−1
∏

l=j

1− bl+1
∫

yPl(dy)



 bjmn−jQ
n−j(dx) (2)

where

Qk(dx) :=
xkQ(dx)
∫

ykQ(dy)
, mk :=

∫

xkQ(dx), ∀k ≥ 0.

In particular if Q = δ0, the dirac measure on {0}, Qk = δ0.
When all bn’s are equal to the same number, that we denote by b ∈ [0, 1), this

is the model introduced by Kingman [18]. In the general setting we allow mutation
probabilities to be different. We call it Kingman’s model with time-varying mutation
probabilities or the general model for short.

We introduce a few more notations. Let M be the space of (nonnegative) measures
on [0, 1] and M1 the subspace of M consisting of probability measures. Let M,M1

be endowed with the topology of weak convergence T . We use
d

−→ to denote weak
convergence. We say a sequence of measures (un) converges in total variation to a
measure u, denoted by

un
TV
−→ u,

if the total variation ‖un − u‖ converges to 0.
For any u ∈ M1, define

Su := sup{x : u[x, 1] > 0}. (3)
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So Su is interpreted as the largest fitness value in a population of distribution u. Since
SP1

≥ SQ, we can always assume SP0
≥ SQ, otherwise we take P1 as P0. We summarise

it as follows
[SQ, 1] ∋ h := SP0

≥ SQ.

It is straightforward to see that SPn
= h for any n ≥ 0.

The general model has parameters (bn)n≥1, Q, P0, h. We use {(bn), Q, P0, h} to
denote the general model and call (Pn) the forward sequence or just the sequence of
{(bn), Q, P0, h}. We use {(b), Q, P0, h} for Kingman’s model.

2.2 Convergence and condensation in Kingman’s model

Kingman [18] proved the convergence of (Pn) when all mutation probabilities are equal.

Theorem 1 (Kingman’s theorem, [18]). 1. If
∫ Q(dx)

1−x/h ≥ b−1, (Pn) converges in total
variation to

K(dx) =
bθbQ(dx)

θb − (1 − b)x
,

with θb, as a function of b, being the unique solution of

∫

bθbQ(dx)

θb − (1 − b)x
= 1. (4)

2. If
∫ Q(dx)

1−x/h < b−1, (Pn) converges weakly to

K(dx) =
bQ(dx)

1− x/h
+
(

1−

∫

bQ(dy)

1− y/h

)

δh(dx).

We say there is a condensation on h in Kingman’s model if Q(h) = 0 but K(h) > 0.
We call K(h) the condensate size when Q(h) = 0. In the case 1 above, there is no
condensation. The condition is satisfied only if b is big and/or Q is fit (i.e., having more
mass on larger fitness values). It means mutation is stronger against selection, so that
the limit does not depend on P0.

In the case 2, the condition
∫ Q(dx)

1−x/h < b−1 implies Q(h) = 0, but we see that

K(h) > 0. So there is a condensation. Contrarily to the first case, selection is more
favoured so that the limit depends on P0 through h. If P0(h) = 0 (implying SPn

= h

and Pn(h) = 0 for any n), a certain amount of mass
(

1−
∫ bQ(dy)

1−y/h

)

travels to the largest

fitness value h, by the force of selection.
Next we introduce the random model, which is the main object of study in this

paper.

2.3 Kingman’s model with random mutations probabilities

Let β be a random variable taking values in [0, 1) with P(β = 0) 6= 1. Let (βn)n≥0 be an
i.i.d. sequence sampled from the distribution of β. The Kingman’s model with random
mutation probabilities or simply the random model is defined by the following iteration:

Pn(dx) = (1− βn)
xPn−1(dx)
∫

yPn−1(dy)
+ βnQ(dx), n ≥ 1. (5)

We use {(βn), Q, P0, h} to denote the random model. This model is a generalisation of
Kingman’s model, as β can be defined to be equal to b with probability 1.

We are interested in the convergence of (Pn) to the equilibrium and the phenomenon
of condensation, resulting from the competition of selection and mutation. Since we are

4



dealing with random probability measures, let us recall the definition of weak conver-
gence in this context. Random probability measures (µn) supported on [0, 1] converge
weakly to a limit µ if and only if for any continuous function f on [0, 1] we have

lim
n→∞

E [f(x)µn(dx)] = E [f(x)µ(dx)] .

As the sequence (Pn) is completely determined by (βn), Q and h, the only randomness
arises from (βn). In comparison to the terminology in statistical physics, the weak limit
of (Pn) is an annealed limit, which is obtained given the law of (βn). A quenched limit,
which is obtained by conditioning on the values of (βn), is impossible, as the independent
βn’s destroy the accumulated evolution, unless P0 = Q = δ0. However we will see that
it is possible to obtain a quenched limit if the evolution is seen backwards.

Consider the particular case that Q = δ0. It can be easily deduced that

Pn(dx) = (1− βn)
xnP0(dx)
∫

ynP0(dy)
+ βnδ0(dx),

which converges weakly to
(1− β)δh(dx) + βδ0(dx).

So we assume from now on Q 6= δ0.

3 Main results

3.1 Weak convergence

In this part we show the convergence of (Pn) in the random model. But to explain what
the limit is, we need some notations and some small results.

For the general model, we introduce the finite backward sequence (Pn
j ) = (Pn

j )0≤j≤n

which has parameters n, (bj)1≤j≤n, Q, Pn
n , h with h = SPn

n
:

Pn
j (dx) = (1 − bj+1)

xPn
j+1(dx)

∫

yPn
j+1(dy)

+ bj+1Q(dx), ∀ 0 ≤ j ≤ n− 1. (6)

Lemma 1. In the general model, for the finite backward sequence with Pn
n = δh, P

n
j

converges in total variation to a limit, denoted by Gj = Gj,h (and G = G0,GQ = G0,SQ
),

as n goes to infinity with j fixed, such that

Gj−1(dx) = (1− bj)
xGj(dx)
∫

yGj(dy)
+ bjQ(dx), j ≥ 1. (7)

As a consequence, G : [0, 1)∞ → M1 is a measurable function, with Gj = G(bj+1, bj+2,···)
supported on [0, SQ] ∪ {h} for any j ≥ 0.

Note that either Gj(h)’s are all zero or all strictly positive. Note also that (Gj) has
parameters (bj+1, bj+2, · · · ) and Q, h. Define

Ij = Ij,h = G(βj+1, βj+2, · · · ), I = I0 and IQ = I0,SQ
.

Therefore Ij is the quenched limit of the finite backward sequence with Pn
n = δh in

the random model. More generally a dynamical system is easier to handle if we take a
backward point of view, see Diaconis and Freedman [9].

Corollary 1. The sequence (Ij) = (Ij)j≥0 is stationary ergodic and satisfies

Ij−1(dx) = (1− βj)
xIj(dx)
∫

yIj(dy)
+ βjQ(dx), j ≥ 1. (8)

The convergence theorem is as follows.

Theorem 2. For the random model {(βn), Q, P0, h}, the sequence (Pn) converges weakly
to I whose distribution depends on β,Q, h but not on P0.
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3.2 Condensation criterion

It is clear that if h = SQ and Q(SQ) > 0, we have I(h) > 0, a.s.. In general, we have
P(I(h) > 0) ∈ {0, 1}. A justification will be provided in Corollary 3. Then we can
introduce the definition of condensation in the random model.

Definition 1. For the random model, we say there is a condensation on {h} if Q(h) = 0
but I(h) > 0 a.s..

Theorem 3 (Condensation criterion). 1. If h = SQ, then there is no condensation
on SQ if

E

[

ln
SQ(1− β)
∫

yIQ(dy)

]

< 0. (9)

2. If h > SQ, then there is no condensation on h if and only if

E

[

ln
h(1− β)
∫

yIQ(dy)

]

≤ 0. (10)

By Corollary 4 to be given later, if h = SQ, we can only have E

[

ln
SQ(1−β)∫
yIQ(dy)

]

≤

0. The fact that we cannot say anything about the occurrence of condensation by

E

[

ln
SQ(1−β)∫
yIQ(dy)

]

= 0 can be better understood in Kingman’s model, which is a special

random model. In Kingman’s model, E
[

ln
SQ(1−β)∫
yIQ(dy)

]

= 0 becomes

ln
SQ(1− b)
∫

yKQ(dy)
= 0.

By some simple computations using Theorem 1, the above display is equivalent to

∫

Q(dx)

1− x/SQ
≤ b−1.

But it covers cases with and without condensation.
Theorem 3 provides a condensation criterion in the random model relying on the

limit which however has no explicit expression. Therefore we cannot know how the
limit looks like and whether the condensation really happens in concrete cases. This
problem will be solved in a follow-up paper based on a matrix approach.

3.3 Invariant measure

We introduce the notion of invariant measure, which includes the limit I. We will
heavily use the invariant measures in the proofs which possess interesting properties by
themselves.

Definition 2 (Invariant measure). A random probability measure ν is invariant if it is
supported on [0, 1] and satisfies

ν(dx)
d
= (1− β)

xν(dx)
∫

yν(dy)
+ βQ(dx) (11)

where β is independent of ν.

Theorem 4 (Compoundness of invariant measures). For any invariant measure ν,

ν
d
= I0,Sν

.
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Using the notion of invariant measures, we can solve a distributional equation in the
following example. For a survey on distributional equations, we refer to Aldous and
Bandyopadhyay [1].

Example 1. Consider a particular case: Q is supported only on {c} for some c ∈ (0, 1),
with h ∈ (c, 1). Let ν be an invariant measure supported on {c} ∪ {h}. Then ν can be
written as ν = Xδc + (1 −X)δh where X is a random variable taking values in [0, 1],
and satisfies

Xδc + (1 −X)δh
d
= (1− β)

cXδc + h(1−X)δh
cX + h(1−X)

+ βδc,

where β is independent of X. The above display is equivalent to

X
d
=

c+ (hβ − c)(1 −X)

c+ (h− c)(1−X)
.

We are interested in a necessary and sufficient condition for the above equation to have
a solution X with 0 ≤ X < 1 a.s. (i.e., ν(h) > 0 a.s.). In this case, by Theorem 4,

ν
d
= I0,h. So it is equivalent to saying that I0,h(h) > 0 a.s., which means a condensation

occurs on h. By Theorem 3, the condition is simply E[ln(h(1− β)/c)] > 0. Moreover as
such ν is unique, the solution X is also unique.

4 Proofs

4.1 Relations between measures

We introduce firstly some notations to describe relations between measures.
1). For measures u, v ∈ M , we say u is a component of v on [0, a] (resp. [0, a)), denoted
by u �a v (resp. �a−), if

u(A) ≤ v(A), for any measurable set A ⊂ [0, a] (resp. [0, a)).

For random measures µ, ν ∈ M , we write µ �a ν if there exists a couple (µ′, ν′) with
µ′, ν′ ∈ M such that

µ′ �a ν′ a.s. and µ′ d
= µ, ν′

d
= ν. (12)

The relation µ �a− ν is defined in a similar way.
2). For measures (un) and u, we introduce a notation

un �a
TV
−→ u

which means that un �a un+1 for any n, and un converges in total variation to u. We

define similarly �a−
TV
−→ . We also define �a

TV
−→ and �a−

TV
−→ for random measures in a

similar way as in (12).
3). For any u ∈ M1, let the distribution function of u be

Du(x) := u([0, x]), ∀x ∈ [0, 1].

For any u, v ∈ M1, we write u ≤ v if Du(x) ≥ Dv(x) for any x ∈ [0, 1]. For random
probability measures µ, ν, we also define µ ≤ ν similarly as in (12).
4). For real-valued random variables ξ, η, we write ξ ≤d η if

P(ξ ≤ x) ≥ P(η ≤ x), ∀x ∈ R.
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4.2 Proofs of Lemma 1 and Corollary 1

Proof of Lemma 1. We prove a stronger version below

For any j, Pn
j �h−

TV
−→ Gj , as n → ∞. (13)

It suffices to show that
Pn
j �h− Pn+1

j

as Pn
j ’s are all supported on [0, SQ] ∪ {h}.

First of all, Pn
n = δh �h− Pn+1

n . Assume for some 1 ≤ j ≤ n, we have Pn
j �h− Pn+1

j .
By definition

Pn
j−1(dx) = (1− bj)

xPn
j (dx)

∫

yPn
j (dy)

+ bjQ(dx), Pn+1
j−1 (dx) = (1− bj)

xPn+1
j (dx)

∫

yPn+1
j (dy)

+ bjQ(dx).

(14)
Since Pn

j �h− Pn+1
j , we have

∫

yPn
j (dy) ≥

∫

yPn+1
j (dy)

and thus
x

∫

yPn
j (dy)

≤
x

∫

yPn+1
j (dy)

, ∀x ∈ [0, 1].

Together with Pn
j �h− Pn+1

j and (14), we get Pn
j−1 �h− Pn+1

j−1 . By induction,

Pn
j �h− Pn+1

j , for any 0 ≤ j ≤ n, n ≥ 0. (15)

The monotonicity analysis in the above proof will be used many times in this paper.
An immediate application is the following: we can compare (Gj) and (G′

j = Gj,h′) for
h < h′ with the same (bj), Q as follows.

Corollary 2. Let (Gj) and (G′
j) be the above sequences. Then we have

G′
j �h− Gj , G′

j(h
′) ≥ Gj(h), ∀j ≥ 0. (16)

Moreover we have the exact equalities in the above display if and only if G′
0(h

′) = 0.

Before proving Corollary 1, we need the following lemma which is proved by Lemma
9.5 in [15].

Lemma 2. Let (S,S ) and (S′,S ′) be measurable spaces. Let (αj) ∈ S∞ be a stationary
ergodic sequence of random variables. Let f : S∞ → S′ be a measurable function. Then
(f(αj , αj+1, · · · )) is also stationary ergodic.

Proof of Corollary 1. Since (βj) is i.i.d., it is stationary ergodic. As G is a measurable
function from [0, 1)∞ to M1, we apply Lemma 2 to obtain that (In) is also stationary
ergodic. The iteration equation (8) is inherited from (7).

4.3 Limits of the finite backward sequences

The reason to consider finite backward sequences is due to a simple observation: Let
(Pn) be a forward sequence and (Pn

j ) be the finite backward sequence with Pn
n = P0,

both in the random model with the same Q and (βj). Since (βj) is i.i.d., we have

(P0, P1, · · · , Pn)
d
= (Pn

n , P
n
n−1, · · · , P

n
0 ). (17)

8



So showing the convergence of (Pn) is equivalent to showing that of (Pn
0 ). But investi-

gating the finite backward sequences will appear to be more convenient.
We start with the general model. Specifically, we consider (Pn

j ) with Pn
n = δh, the

one studied in Lemma 1. Developing (6) we obtain

Pn
0 (dx) =

(

n
∏

l=1

1− bl
∫

yPn
l (dy)

)

xnPn
n (dx) +

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yPn
l (dy)

)

bj+1mjQ
j(dx) (18)

=

(

n
∏

l=1

h(1− bl)
∫

yPn
l (dy)

)

δh(dx) +

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yPn
l (dy)

)

bj+1mjQ
j(dx). (19)

Proposition 1. Let (Pn
j ) be the finite backward sequence in the general model with

Pn
n = δh. Then for the sequence (Gj), we have

G0(dx)=G0δh(dx) +

∞
∑

j=0

j
∏

l=1

(1− bl)
∫

yGl(dy)
bj+1mjQ

j(dx), (20)

where the second term on the right side of (19) converges to that of (20):

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yPn
l (dy)

)

bj+1mjQ
j(dx) �SQ

d
−→

∞
∑

j=0

j
∏

l=1

(1− bl)
∫

yGl(dy)
bj+1mjQ

j(dx) (21)

and G0 = G0,h is

the limit to which

n
∏

l=1

h(1− bl)
∫

yPn
l (dy)

decreases in n (22)

equal to 1−
∞
∑

j=0

j
∏

l=1

(1− bl)
∫

yGl(dy)
bj+1mj ∈ [0, 1] (23)

equal to G0(h) if Q(SQ) = 0 (24)

the limit to which

∫

(y

h

)n

Gn(dy)

n
∏

l=1

h(1− bl)
∫

yGl(dy)
decreases in n, if G0 > 0. (25)

Moreover if we define Gj for Gj similarly as G0 for G0 (we denote G = G0), we have

Gj−1 = Gj
h(1− bj)
∫

yGj(dy)
, ∀j ≥ 1. (26)

As a consequence Gj ’s are either all 0 or all strictly positive.

Proof. By (13) and the expression (19), we obtain (21), (22) and hence(20). From (20)
we observe (23) and (24). To show (25), we develop (7) as follows

G0(dx)

=

(

n
∏

l=1

1− bl
∫

yGl(dy)

)

xnGn(dx) +

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yGl(dy)

)

bj+1mjQ
j(dx)

=

(

∫

(
y

h
)nGn(dy)

n
∏

l=1

h(1 − bl)
∫

yGl(dy)

)

xnGn(dx)
∫

ynGn(dy)
+

n−1
∑

j=0

(

j
∏

l=1

1− bl
∫

yGl(dy)

)

bj+1mjQ
j(dx).

Comparing the above display and (20) we obtain (25) and also that xnGn(dx)∫
ynGn(dy)

converges

weakly to δh. Finally, combining (7) and (20) we obtain (26).
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Remark 1. The results and notations in the proposition can be carried over to the
random model. Therefore (Pn

0 ) in the random model with Pn
n = δh converges in total

variation to I conditional on (βj). By (17), (Pn) in the random model with P0 = δh
converges weakly to I.

Moreover we have the following corollary.

Corollary 3. The process (Ij)j≥0 is stationary ergodic. Moreover P({Ij = 0, ∀j}) =
P(I0 = 0) ∈ {0, 1}.

Proof. By Proposition 1, G = G(b1, b2, · · · ) is a measurable function from [0, 1)∞ to
[0, 1]. For any j, we have

Ij = G(βj+1, βj+2, · · · ).

As (βj) is i.i.d., we obtain that (Ij) is stationary ergodic, thanks to Lemma 2.
By (26), for any k, {Ik = 0} = {Ij = 0, ∀j}. Note that {Ij = 0, ∀j} is an invariant

set in the sigma algebra generated by (Ij). By ergodicity of (Ij), P({Ij = 0, ∀j}) =
P(I0 = 0) ∈ {0, 1}.

The following result provides us a tool to have some more information about I and
Q.

Corollary 4. The following statements about E
[

(1−β)∫
yI(dy)

]

hold:

1). E

[

1−β∫
yI(dy)

]

exists, taking values in [−∞,− ln
∫

yQ(dy)], and does not depend on

the joint law of (β, I).

2). If Q(h) = 0, then

E

[

ln
h(1− β)
∫

yI(dy)

]

≤ 0.

3). If I(h) > 0 a.s. and Q(h) = 0, then

E

[

h(1− β)
∫

yI(dy)

]

= 0.

4). If h = SQ and Q(SQ) > 0, then

E

[

ln
SQ(1− β)
∫

yI(dy)

]

< 0 and I = 0, a.s..

Proof. 1). By (20), G = G0 is a convex combination of probability measures {δh, Q,Q1, Q2, · · · }.
As Qj ≤ Qj+1 ≤ δh for any j ≥ 0, we have

Q ≤ I ≤ δh. (27)

Then

ln

∫

yQ(dy) ≤ E

[

ln

∫

yI(dy)

]

≤ lnh.

In consequence

E

[

ln
1− β
∫

yI(dy)

]

= E

[

ln(1 − β)− ln

∫

yI(dy)

]

= E [ln(1− β)]− E

[

ln

∫

yI(dy)

]

∈

[

−∞,− ln

∫

yQ(dy)

]

.

We observe that the above display does not depend on the joint law of (β, I).
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2). Let (Pn
j ) be the finite backward sequence in the random model with Pn

n = δh. By
assumption, Q(h) = 0. Adapting (19) into the random model and taking the expectation
of the mass on {h} we obtain

E[Pn
0 (h)] = E

[(

n
∏

l=1

h(1− βl)
∫

yPn
l (dy)

)]

≥ exp

(

n
∑

l=1

E

[

ln
h(1− βl)
∫

yPn
l (dy)

]

)

where the inequality is due to Janson’s inequality. By (13)

E

[

ln
h(1− βl)
∫

yPn
l (dy)

]

increases in n to E

[

ln
h(1− βl)
∫

yIl(dy)

]

= E

[

ln
h(1− β)
∫

yI(dy)

]

.

Combining the above two displays, it must be that E[ln h(1−β)∫
yI(dy)

] ≤ 0.

3). Lemma 1 implies that, for any j,
h(1−bj)∫
yGj(dy)

is the value which is mapped to by

the same measurable function from (bj , bj+1, · · · ). By Lemma 2,

(

h(1− βj)
∫

yIj(dy)

)

is stationary ergodic.

By (25)

lim
n→∞

(I0)
1/n = lim

n→∞
exp

(

1

n
ln

∫

( y

h

)n

In(dy) +
1

n

n
∑

l=1

ln
h(1− βl)
∫

yIl(dy)

)

. (28)

Since I(h) = I0(h) = I0 > 0 a.s., the above two limiting terms equal 1 a.s.. As (Ij)
is stationary ergodic,

∫ (

y
h

)n
In(dy) ∈ [In, 1] converges weakly to I0, which is strictly

positive almost surely. So 1
n ln

∫

( yh)
nIn(dy) ∈ [ 1n ln In, 0] converges weakly to 0. Thus

the above display, together with the ergodicity of
(

h(1−βj)∫
yIj(dy)

)

, yield

1 = exp

(

E

[

ln
h(1− β)
∫

yI(dy)

])

or equivalently E

[

ln
h(1 − β)
∫

yI(dy)

]

= 0.

4). We show I0(= I) = 0 a.s. by contradiction. Adapting (19) in the random model

Pn
0 (dx) =

(

n
∏

l=1

SQ(1− βl)
∫

yPn
l (dy)

)

δSQ
(dx) +

n−1
∑

j=0

(

j
∏

l=1

1− βl
∫

yPn
l (dy)

)

βj+1mjQ
j(dx).

If I0 > 0 a.s., we consider the mass on {SQ} in the above display. Note thatmjQ
j(SQ) =

Sj
QQ(SQ). Together with (22) we obtain

Pn
0 (SQ) ≥ Q(SQ)

n−1
∑

j=0

(

j
∏

l=1

SQ(1− βl)
∫

yPn
l (dy)

)

βj+1 ≥ Q(SQ)

n−1
∑

j=0

I0βj+1
d

−→ ∞, a.s..

This is a contradiction. So I0 = 0, a.s.. Note that by (27), I0(SQ) ≥ Q(SQ) > 0. Then

we get E
[

ln h(1−β)∫
yI(dy)

]

< 0 using (28) and the arguments thereafter.

4.4 Proof of Theorem 3

Proof of Theorem 3. The first assertion holds due to assertion 3) of Corollary 4. We
consider the second one.

If there is a condensation on {h}, then I0,SQ
6= I0,h. By assertion 3) of Proposition

1 and Corollary 2,

11



E

[

ln
h(1− β)

∫

yI0,SQ
(dy)

]

> E

[

ln
h(1− β)
∫

yI0,h(dy)

]

= 0.

If there is no condensation on {h}, again by Corollary 2, I0,h = I0,SQ
. By assertion

2) of Corollary 4,

E

[

ln
h(1− β)

∫

yI0,SQ
(dy)

]

= E

[

ln
h(1− β)
∫

yI0,h(dy)

]

≤ 0.

4.5 Some properties of invariant measures

In this section, we prove some results concerning invariant measures. But we leave the
proof of Theorem 4 to the end. Those measures will play important roles in the proof
of Theorem 2.

Lemma 3. For any invariant measure ν, E
[

1−β∫
yν(dy)

]

exists, taking values in [−∞,− ln
∫

yQ(dy)],

and does not depend on the joint law of (β, ν).

Proof. By the definition of invariant measure

E

[∫

yν(dy)

]

= (1− E[β])E

[
∫

y2ν(dy)
∫

yν(dy)

]

+ E[β]E

[∫

yQ(dy)

]

≥ (1− E[β])E

[∫

yν(dy)

]

+ E[β]E

[∫

yQ(dy)

]

where the inequality is due to the fact that
∫

y2ν(dy) ≥ (
∫

yν(dy))2. Then we obtain

∫

yQ(dy) ≤ E

[∫

yν(dy)

]

≤ 1.

Proceeding similarly as in the proof of assertion 1) in Corollary 4, we conclude that this
lemma holds.

Corollary 5. The invariant measure supported on [0, SQ] is unique which is IQ.

Proof. Let (Pn) and (P ′
n) be two forward sequences as in the Appendix with

Q = Q′; h = h′ = SQ; P0
d
= ν, P ′

0 = δh

and P0 is independent of (βn). Using the notations in the Appendix, and by (17) and
the monotonicity analysis as in the proof of Lemma 1

∫

Mn(dx) ≤

∫

M′
n(dx), F ′

n �SQ
Fn. (29)

If IQ = 0 a.s., by Proposition 1 and Remark 1,

F ′
n

d
−→IQ,

∫

M′
n(dx)

d
−→ 0.

Due to (29) and (37), (38),

ν
d
= Pn

d
−→ IQ

implying ν
d
= IQ.

12



If IQ > 0, a.s., then by assertion 4) of Corollary 4, Q(SQ) = 0. Again by monotonicity
analysis, contionally on (βj)

P ′
n �SQ− Pn, Pn(SQ) ≤ P ′

n(SQ). (30)

The above entails, using Remark 1

I0 �SQ− ν, ν(SQ) ≤d I0 = I0(SQ).

By assertion 3) of Corollary 4, we have E

[

SQ(1−β)∫
yIQ(dy)

]

= 0. Assume that ν is not equal

to IQ in distribution, then by the above display, we obtain

E

[

SQ(1 − β)
∫

yν(dy)

]

> 0.

The inequality implies that if ε > 0 is small enough, we also have

E

[

(SQ − ε)(1− β)
∫

yν(dy)

]

> 0.

By definition of invariant measures, it is straightforward to see that Sν = SQ almost
surely. Consequently

∫

( x
SQ−ε )

nP0(dx) > 0, a.s., for any n. Using again (37), we get

1 = E

[∫

P0(dx)

]

≥ E

[∫

Mn(dx)

]

= E

[

exp

(

n−1
∑

l=0

E

[

ln
(SQ − ε)(1− βl+1)

∫

yPn
l (dy)

]

+

∫ (

x

SQ − ε

)n

P0(dx)

)]

≥ E

[

exp

(

n−1
∑

l=0

ln
(SQ − ε)(1 − βl+1)

∫

yPn
l (dy)

)]

≥ exp

(

nE

[

(SQ − ε)(1− β)
∫

yν(dy)

])

n→∞
−→ ∞

where the third inequality is due to Janson’s inequality and Lemma 4.5. So this is a
contradiction, which means that ν is equal in distribution to IQ.

4.6 Proof of Theorem 2

The proof is given in 4 subcases.

Case 1. P0 = δh.

Proof of Theorem 2. This is shown in Remark 1.

Case 2. I0,h = 0 a.s..

Proof of Theorem 2. Let (Pn)n≥0, (P ′
n)n≥0 be two forward sequences in the Ap-

pendix with
Q = Q′, h = h′, P ′

0 = δh.

Next it suffices to follow the same procedure as in the proof of Corollary 5 in the case
IQ = 0 a.s.. The proof is omitted.

Case 3. I0,h > 0 a.s. and P0(h) > 0.
First of all, we recall a result from ([21], p.10), where only h = 1 is considered. But

it is easily generalised to any h.
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Lemma 4. Let two measures u1, u2 ∈ M1 such that Su1
= Su2

= h and u1 �h− u2. If
for some ε > 0 there exists a ∈ (0, h), such that Du1

(a) + ε ≤ Du2
(a), then

∫

yu1(dy) ≥ c(a, ε)

∫

yu2(dy)

where c(a, ε) = 1
1−ε(h−a) > 1.

Proof of Theorem 2. Let (Pn), (P
′
n) be the two forward sequences in the proof of

Case 2 of this theorem. Similarly as (30), conditionally on (βj) we have

P ′
n �h− Pn, Pn(h) ≤ P ′

n(h) (31)

implying
∫

yP ′
j(dy) ≥

∫

yPj(dy), ∀j ≥ 0.

For any ε > 0, a ∈ (0, h), let

κn := #{n : DP ′

j
(a) + ε ≤ DPj

(a), 0 ≤ j ≤ n}.

Note that by assertion 4) of Proposition 1, Q(h) = 0. Using (37) and (38)

P ′
n(h) =

n−1
∏

l=0

h(1− βl+1)
∫

yP ′
l (dy)

, Pn(h) =

(

n−1
∏

l=0

h(1− βl+1)
∫

yPl(dy)

)

P0(h).

Then by Lemma 4,

P ′
n(h) ≤

1

c(a, ε)κnP0(h)
.

But (22) of Proposition 1 and (17) entail that P ′
n(h) converges weakly to I0,h which is

by assumption non-zero almost surely. Then limn→∞ κn < ∞ a.s.. As ε can be any

small positive value and by Case 1 of this theorem P ′
n

d
−→ I0,h, we use (31) to conclude

that Pn also converges weakly to I0,h.

Case 4. I0,h > 0 a.s. and P0(h) = 0.

Proof of Theorem 2. The idea is to use a tripling argument similarly as in the proof
of Theorem 5 in [21]. For any u ∈ M1 and any a ∈ [0, 1], define

ua = u[0,a) + u([a, 1])δa, a < h

where u[0,a) is the restriction of u on [0, a). Let (Pn), (P
′
n), (P

′′
n ) be three forward se-

quences as defined in the Appendix with

h′′ < h = h′; Q′ = Q, Q′′ = Qh′′

; P ′
0 = δh, P ′′

0 = P h′′

0 .

By monotonicity analysis, conditionally on (βj)

P ′
n �h− Pn �h′′− P ′′

n . (32)

Consider first the case SQ < h′′ < h = h′. Note that P ′′
0 (h

′′) > 0. Now using Case 1
and Case 3 of this theorem,

P ′
n

d
−→ I0,h, P ′′

n
d

−→ I0,h′′ . (33)

Next we show that I0,h′′ converges weakly to I0,h as h′′ approaches h. Since I0,h > 0, a.s.
and h > SQ, by Theorem 3,

E

[

h(1− β)
∫

yI0,SQ
(dy)

]

> 0.
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Then there exists a small number ε with SQ < h− ε such that

E

[

(h− ε)(1− β)
∫

yI0,SQ
(dy)

]

> 0.

We take h′′ ∈ [h− ε, h). Using the above display, we have

E

[

h′′(1− β)
∫

yI0,SQ
(dy)

]

> 0.

Then by Theorem 3
I0,h′′ > 0, a.s.

which entails, due to assertion 3) of Corollary 4

E

[

h′′(1− β)
∫

yI0,h′′(dy)

]

= 0.

Letting h′′ → h and using Corollary 2, I0,h′′ converges weakly to a limit, denoted by
ν. Since I0,h′′ is an invariant measure, ν is still an invariant measure. Using the above
display and Corollary 2,

E

[

h(1− β)
∫

yν(dy)

]

= 0, ν(h) > 0 a.s.. (34)

Using Corollary 2 again, we know

I0,h �h′′− I0,h′′ , I0,h′′(h′′) ≤d I0,h(h)

implying
I0,h �h− ν, ν(h) ≤d I0,h. (35)

The above display yields I0,h > 0, a.s.. By assertion 3) of Corollary 4,

E

[

h(1− β)
∫

yI0,h(dy)

]

= 0.

Together with (34) and (35) we obtain

ν
d
= I0,h (36)

Let f be any continuous function on [0, 1]. By (32), we have

E[f(x)P ′′
n (dx)] ≤ E[f(x)Pn(dx)] ≤ E[f(x)P ′

n(dx)].

Moreover by (36) and (33),

E[f(x)P ′′
n (dx)]

n→∞
−→ E[f(x)I0,h′′ (dx)]

h′′
→h

−→ E[f(x)I0,h(dx)] = lim
n→∞

E[f(x)P ′
n(dx)].

We conclude that (Pn) converges to I0,h.
If h = SQ, we follow the same procedure, except that to prove (36), we require

Corollary 5.
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4.7 Proof of Theorem 4

Firstly we prove two lemmas. Recall the definition of Su for u ∈ M1.

Lemma 5. S(·) is a continuous (hence measurable) function on (M1, T ).

Proof. Assume that a sequence (un) converges weakly to u. If Sun
does not converge

to Su, then there exists a subsequence (unk
) such that Sunk

converges to a limit a with
a < Su or a > Su. Without loss of generality, assume a < Su. We take any positive
and continuous function f supported on (a+Su

2 , Su] and then
∫

f(x)u(dx) > 0. But
∫

f(x)unk
(dx) converges to 0. This is against the weak convergence. We conclude that

S(·) is a continuous function on (M1, T ).

The next lemma generalises Corollary 5.

Lemma 6. For any invariant measure ν with Sν = h a.s., we have ν
d
= I.

Proof. Let (Pn) be the forward sequence in the random model with P0
d
= ν and P0

independent of (βn). By Theorem 2, conditionally on P0, Pn converges in distribution

to the same random measure I. Then unconditionally Pn
d
= ν converges in distribution

to I, implying ν
d
= I.

Proof of Theorem 4. Let ν be an invariant measure. By definition (11), Sν ∈ [SQ, 1].
By Lemma 5, Sν is a random variable. Applying Theorem 5.3 in [15], there exists a
probability kernel U(·, ·) from [0, 1] to M1 such that

(ν(dx)|Sν ) = U(Sν , dx), a.s..

Applying it to the right side of (11) we get
(

(1− β)
xν(dx)
∫

yν(dy)
+ βQ(dx)

∣

∣

∣Sν

)

= (1 − β)
xU(Sν , dx)
∫

yU(Sν , dy)
+ βQ(dx), a.s..

The above two displays show that, in order that ν be an invariant measure, conditionally
on Sν , U(Sν , ·) must be an invariant measure almost surely. Conditionally on Sν , By

Lemma 6, U(Sν , ·)
d
= I0,Sν

. Then unconditionally ν
d
= U(Sν , ·)

d
= I0,Sν

.

5 Appendix

Let (Pn), (P
′
n), (P

′′
n ) be three forward sequences corresponding respectively to

((βn), Q, P0, h), ((βn), Q
′, P ′

0, h
′), ((βn), Q

′′, P ′′
0 , h

′′).

Using (2), we write
Pn(dx) = Mn(dx) + Fn(dx) (37)

with

Mn(dx) =
(

n−1
∏

l=0

1− βl+1
∫

yPl(dy)

)

xnP0(dx)

and

Fn(dx) =

n
∑

j=1

(

n−1
∏

l=j

1− βl+1
∫

yPl(dy)

)

bjmn−jQ
n−j(dx).

Similarly we introduce
P ′
n(dx) = M′

n(dx) + F ′
n(dx) (38)

P ′′
n (dx) = M′′

n(dx) + F ′′
n(dx) (39)

with M′
n,F

′
n,M

′′
n,F

′′
n defined correspondingly.
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