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We measured current-voltage and optical emission for self-sustained discharges obtained using two forms of cylindrical

wire grid cathode, having either an enclosed or an open end. Enclosure of the open end extended the low-pressure

range for a ’cathode-confined’ or CC mode, from around 12.5 Pa to below 3.5 Pa, conditions at which a ’beam’ mode

discharge otherwise occurs. The modification also caused dark space to envelop the glow within the cathode, bridged

by bright emission resembling plume for the CC mode, and electron beam for the beam mode. We explain these results

by treating the CC mode as a hollow cathode discharge, for which only γ-electrons that suffer inelastic loss before

escaping the cathode grid are significant. For the two cathodes, respective degrees of electron confinement possible

for the different sheath configurations predict the low-pressure ranges, and calculated values of cathode fall for self-

sustenance by the hollow cathode effect agree approximately with experimental voltages across a range of pressures.

Plume- and beam-like forms of emission indicate inherently different electron energies, consistent with bulk transport

across potential distributions characteristic to mode. Where these features bridge the enclosed cathode boundary, this

shows existence of an otherwise closed potential surface within the cathode, confirmed by geometry of the plume-

CC mode configuration, where relation between main glow and plume interface surfaces indicates the arrangement to

self-organise in a state of non-ambipolar current flow. Similarities in mode structure reported elsewhere for related

discharges indicates the findings to be relevant for these also.

I. INTRODUCTION

The aim of this paper is to establish further understanding

of modes of glow discharge operation that may occur at low

pressures in apparatus with a hollow grid cathode. This type

of device, often referred to colloquially as a fusor, was first

researched in the 1950s and 60s as part of the Inertial Elec-

trostatic Confinement (IEC) approach to fusion energy. Early

IEC work used a spherical grid electrode, variously as anode

or cathode, to inject charged particles into a central region at

conditions of very low pressure1–3. Theory based upon col-

lisionless particle flow predicted complex space charge struc-

tures to form4–6, that would confine and heat fuel ions to pro-

vide high reaction rates. Such high-gain operation has not yet

been realised, despite continuing innovation and research7–9,

and fusion efficiencies for laboratory IEC devices remain

10−7 or smaller. Since the 1990s much IEC research has in-

vestigated relatively simple devices operating in the glow dis-

charge regime. Most of this work has been directed toward

non-power fusion application as sources of MeV protons and

neutrons, e.g.10,11. Other research has considered non-fusion

application as spacecraft thrusters, that might utilise either the

fast neutral products of charge exchange reactions12 or jets

and beams that occur at certain operating conditions13–17. For

this work a spherical or cylindrical grid cathode is generally

operated at sufficiently high pressures for a self-sustained dis-

charge to occur, that has been called a transparent cathode dis-

charge (TCD)18,19. We use this term since it conveniently de-

scribes both the electrode configuration and operating regime.

a)tom.hardiment@gmail.com
b)mark.bowden@liverpool.ac.uk

FIG. 1. Layout of vacuum chamber used for our experiments. The

two co-axial grid electrodes are shown approximately to scale with

the cube-shaped chamber.

TCDs are known to operate in a variety of different modes,

that have been characterised in the literature according to pat-

terns of optical emission, as ’spray’ or ‘spray jet’, ’jet’ or

‘tight jet’, ’halo’, ’central spot’ and ’star’ modes15,18,20,21.

Current-voltage behaviour, plasma properties, dependences

upon electrode geometry and fusion reactivity are recorded for

some of these, although the IEC and TCD literature contains

no definitive account of fundamental processes that underpin

the reported mode structure. Different sustaining and self-

organisation mechanisms entail characteristic potential dis-

tributions and discharge properties, and since these will de-

termine utility for different applications, practical interests
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lie in the identification of physical processes underlying dif-

ferent modes, and in understanding the influence of device

configuration upon conditions at which these may operate.

Fusion yields for lower-pressure modes such as ‘star’ and

‘halo’ modes indicate these to be associated with the activ-

ity of energetic ions and neutrals20,21, and higher-pressure

discharges within an IEC cathode have been described vari-

ously as hollow cathode type-discharges4 and spherical dou-

ble layer (SDL) structures16,17. These types of plasma have

been extensively researched in other fields22–28, and devices

with transparent electrodes have also been studied outside of

the IEC context. In some of these cases, positively-biased

wire grids have been operated within an externally generated

plasma29,30. In others a mesh cathode has been used to gen-

erate self-sustained discharges31–37, for which apparatus and

conditions are more analogous to TCDs, and we shall consider

our experimental results in this wider context.

In a previous study of a TCD obtained in a set-up with

an open-ended cylindrical grid cathode surrounded by a

grounded anode grid19 (Figs. 1, 2) we examined optical emis-

sion from two principal modes evident at pressures of he-

lium smaller than 100 Pa, and found these to represent dis-

charges sustained by the activity of energetic electrons at con-

ditions of higher pressure/lower voltage, and ions and neu-

trals at lower pressure/higher voltage. Observed in various

gas species, this broad mode structure is the manifestation of

a universal progression of different regimes of reduced elec-

tric field, E/n, at which electrons and the much-heavier ions

and neutrals (that we shall refer to as ’heavy particles’) gain

reactive energies. We called the low-pressure discharge the

’beam’ mode, since visible emission in this mode takes the

appearance of radial beams of heavy particle-induced emis-

sion that pass diametrically through apertures of both grids,

and an axial electron beam that occurs between the cathode

and chamber wall. The electron-driven mode, that we called

the ’cathode-confined’, or ’CC’ mode, showed characteristics

of a discharge sustained by the hollow cathode effect, that oc-

curs as energetic electrons emitted from the cathode under ion

bombardment become confined within the field structure be-

tween plasma and cathode22,23. We projected the low-pressure

limit for this mode in our apparatus to be determined by loss

of such electrons via the open end of the cylindrical cathode,

affording insufficient electron confinement to extend electron-

driven operating conditions from conventional E/n suggested

in the literature. This apparent dependence upon cathode form

however suggests the influence of the hollow cathode effect

will vary for different cathode geometries, and so electrode

construction may determine conditions at which TCD proper-

ties will be analogous to those of hollow cathode discharges.

In this paper, we investigate the influence of cathode form

upon this mode structure, by observing the effect of enclos-

ing the open cathode end with further wire grid-work. The

description concentrates principally upon the discharge in he-

lium, since the mode structure is well-defined in terms of both

electrical characteristics and optical emission. After descrip-

tion of the experimental apparatus in Section II, we describe

measurements of optical emission distributions and electrical

characteristics in Section III. The results are analysed and

FIG. 2. Form and dimensions of the standard electrode assembly,

with open-ended cathode positioned inside the grounded anode.

discussed in Sections IV and V.

II. EXPERIMENTAL APPARATUS

Our experimental apparatus has been described

previously19, and in the following summary we also de-

scribe the modification made to the cathode for this work.

The experiment is contained within a cube-shaped vacuum

chamber with 30 cm sides, five of these are stainless steel and

the top is acrylic with glass shielding. A viewport window is

fitted to one of two larger ports, services and diagnostics to

others. The system is evacuated using a Leybold Turbovac50

turbo-molecular pump, backed by an Edwards RV3 rotary

vane pump, with base pressure of around 10−3 Pa. Gas may

be admitted into the chamber via MKS mass flow controllers,

and pressure is monitored using either a Pfeiffer capacitance

manometer for pressures lower than around 12 Pa, or a

Pfeiffer dual pirani gauge for higher pressures.

In our standard experimental set-up, the chamber contains

two cylindrical, coaxially-arranged grid electrodes, with the

cathode positioned inside the anode. Both electrodes have

fourteen apertures around the circumference, and are made

from 1.6 mm diameter stainless steel. The cathode is 10 cm

in length, with radius a little less than 3 cm, half that of the

anode. One end of the cathode is open, and the other enclosed

by wire struts. These are attached to the high-voltage feed-

through, that also serves as cathode support. The anode is

supported by a simple stainless steel stand, and has an addi-

tional row of apertures at each end giving it a barrel-shaped

appearance. The anode grid is held close to ground by a small

resistance, so that this electrode and the grounded chamber

both act as anode for the discharge. Fig. 2 shows a sketch of

this electrode arrangement. For the experiment described in

this paper, we wished to observe the effect of enclosing the
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FIG. 3. Photograph showing i) the enclosed, and ii) the open-ended

grid cathodes used for experiments described in this paper. Both

electrodes are made from 1.6 mm diameter stainless steel wire (sur-

faces appear different since only ii) had been sputtered in operation).

open cathode end. This was done by constructing an alterna-

tive cathode, for which both ends were enclosed by wire struts

(Fig. 3). This second electrode was constructed using half the

number of wire struts for each end, so that the degree of enclo-

sure was altered without changing the geometric transparency.

In the following we shall refer to the original cathode as the

’open-ended’ cathode, and the other as the ’enclosed’ cathode.

Either cathode could be fitted to the experimental apparatus

described previously, without further change to the set-up.

The cathode was driven by a Glassman WX series negative

DC power supply, capable of sinking 100 mA at voltages up

to 10 kV. Limiting values for current and voltage may be inde-

pendently configured, and the unit operates in either a voltage-

or current-controlled mode, according to which set parameter

limits the output. For the work described in this paper, the cur-

rent limit was set to maximum and voltage varied manually,

so that the dependence of current upon voltage was observed.

The power supply outputs analogue monitoring signals, that

were sampled using the analogue-digital conversion (ADC)

functionality of an Arduino microcontroller board in order to

record measurements of voltage and current. The ADC has a

10-bit resolution, corresponding to around 0.1 % of full scale.

Current-voltage relations were recorded using the following

procedure: after operation for a short conditioning time, volt-

age was ramped up and down over a period of a few seconds,

with values of current and voltage sampled and recorded at

tens of Hz. This technique records many values, including

fluctuations corresponding to power supply regulation, and

the results shown in Section III have some points removed

for clarity. Optical emission distributions were recorded us-

ing standard imaging cameras.

III. EXPERIMENTAL OBSERVATIONS

This section contains measurements and observations of

discharges operated in helium and argon, using the two dif-

ferent cathodes. Part III A contains measurements of electri-

cal properties while Part III B contains images that show both

the generic appearance of the discharges and some distinctive

features observed for specific operating conditions. In both

sections, we concentrate on the appearance and the behaviour

of the cathode-confined mode of the discharge.

A. Current-voltage behaviour

Figure 4 shows current-voltage measurements for the two

systems, recorded in each case for a range of pressures. The

results shown for the open-ended cathode in Fig. 4 i) are sim-

ilar to those we have reported previously19, and the same in-

terpretation can be applied. The results in the upper left of the

figure correspond to beam mode discharges, the results in the

lower right of the figure correspond to cathode-confined dis-

charges and the arrows on the figure indicate discontinuities in

the I-V curves that are associated with transitions between the

two modes. The discontinuities are observed during the in-

creasing part of the curve, and we previously observed these

to be consistent with the increased ionisation efficiency asso-

ciated with operation of the hollow cathode effect. During

ramp-down a significant hysteresis occurs. For curves shown

in Fig. 4 this causes the discharge to persist in the cathode-

confined mode until the discharge extinguishes, although we

have observed transition back to the beam mode for lower

pressures in the range19.

Fig. 4 ii) shows I-V curves measured from discharges with

the fully enclosed cathode. In some respects, the results are

qualitatively similar to those for the case of the open-ended

cathode such as the beam mode occurring at lower-pressure

and/or lower-current conditions, cathode confined mode for

higher-pressure and/or higher current cases, and discontinu-

ities and hysteresis associated with the transition between the

modes. However, there are important differences.

For the open-ended cathode, I-V discontinuities were ob-

served for pressures between around 33 Pa and 13 Pa, and

for the enclosed cathode between 13 Pa and 5 Pa. Not only

is the low-pressure range for the cathode-confined mode dif-

ferent for each cathode, but the discharge behaves differently

in the low-pressure limit. With the open-ended cathode, the

mode ceases to appear at pressures below around 12.5 Pa.

With the enclosed cathode, the mode may persist at pressures

above 5 Pa, but also appears to instigate at pressures signif-

icantly lower than this. This was observed at pressures as

low as 3.5 Pa, which was the lowest pressure tested. In this

extra-low-pressure range, the mode extinguishes almost im-

mediately and then re-instigates, causing a flickering effect.

The low-pressure limit for this behaviour was not ascertained.

The results shown in Fig. 4 are from helium discharges.

In our previous study19 we found a qualitatively similar mode

structure to occur in both helium and argon for the open-ended

cathode, and so the effect of cathode enclosure was observed

for argon also. When the apparatus with enclosed cathode was

operated in argon, the cathode-confined mode was observed

to form at pressures as low as 0.5 Pa, compared with a low-

pressure limit of around 2.5 Pa for the open-ended cathode.
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FIG. 4. Current-voltage curves in helium for apparatus with i) open-ended cathode and ii) closed cathode, corresponding to pressures: a) 32

Pa; b) 18 Pa; c) 15 Pa; d) 14 Pa; e) 10 Pa; f) 5.9 Pa; g) 5.5 Pa; h) 4.9 Pa; j) 3.5 Pa. Arrows represent discontinuities occurring upon appearance

of the CC mode, as voltage was increased. The mode exhibits a strong hysteresis, and generally persists until extinction of the discharge as

voltage is reduced (colour online).

In this respect, the discharge showed broadly similar charac-

teristics to the helium results, with the low-pressure limit for

the cathode-confined mode considerably smaller for the en-

closed cathode. With the enclosed cathode, we also observed

the transition to the CC mode to generally occur at compar-

atively low threshold currents, making it hard to operate the

beam mode discharge in argon at significant power using this

electrode.

B. Distributions of optical emission

The electrical measurements in III A show that, for both

electrode cases, the discharges can be identified as operating

in either the cathode-confined mode or the discharge mode

we have called the beam mode. While this mode structure is

distinct for either set-up, there are significant differences in

discharge behaviour within the regimes, and to describe these

it is helpful to examine the physical appearance of the dis-

charge as well as its electrical nature. Figure 5 shows the char-

acteristic appearance of discharge modes that occur for each

electrode arrangement, when operated at two significantly dif-

ferent pressures. For each electrode, images show cathode-

confined and beam mode discharges at respective conditions

of high and low pressure, and also examples of each mode oc-

curring at same pressure. We show images of the discharge

with open-ended cathode on the left-hand side of Fig. 5 [i),

iii) and v], and images with enclosed cathode on the right [ii),

iv) and vi)]. Upper left images [i)–iii)] represent discharges at

18-20 Pa, and lower right [iv)-vi)] show discharges at ∼7 Pa.

Minor adjustments have been made to brightness and contrast

for individual images, so that discharge appearance is consis-

tently represented within the figure.

Fig. 5 i) and ii) show the cathode-confined mode discharges

for both electrode cases, observed for similar pressures of 18-

20 Pa. In both cases, emission is observed within a central

region of the cathode interior, surrounded by a dark space be-

tween the glow and the cathode itself. For the open-ended

cathode the glow diverges as it extends into the chamber out-

side the electrode, becoming dimmer and more diffuse. For

the enclosed cathode the central glow is entirely surrounded

by dark space, except at the end of the cylindrical electrode,

where a plume-shaped glow extends into the open chamber.

The plume appears to be attached to the inner glow, and passes

through one of the apertures in the cathode. This discharge

configuration (Fig. 5 ii)) is observed to appear over a wide

range of conditions of both cathode current and pressure, and

is characteristic of the cathode-confined mode for the enclosed
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5

FIG. 5. Discharges in helium obtained using i), iii) and v) the open-ended cathode, and ii), iv) and vi) the enclosed cathode. For either electrode

case, these photographs show the mode states evident for two sets of conditions, representing higher and lower pressure. Characteristic

distributions of emission are shown for discharges operating in the CC mode at high pressure in i) and ii), and in the beam mode at low

pressure in v) and vi). Discharges shown in iii) and iv) represent beam mode operation at high pressure, and CC mode operation at low

pressure, for apparatus where these states may occur (colour online).
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cathode. At lower levels of cathode current, two or three

plumes have been observed, that often appear to flicker.

Fig. 5 v) and vi) show the beam mode at ∼7 Pa for both

electrodes. As was discussed in our previous work, the beam

mode with open-ended cathode is characterized by a series

of radial beams that extend from the interior of the cathode

through the apertures in the cathode and out towards the cham-

ber walls. As well as these radial beams, Fig. 5 v) shows an

axial beam that extends from the open end of the cathode.

For the beam mode in the enclosed cathode, shown in Fig. 5

vi), it can be seen that the axial beam appears significantly

brighter than that observed with the open-ended cathode. As

for the plume accompanying the CC mode discharge with this

electrode, the beam originates within the cathode and passes

through an aperture, to then continue in a straight line to the

wall, where significant local heating causes the 10 mm stain-

less steel to become very hot in minutes.

To understand the formation of the cathode-confined mode

in each electrode arrangement, it is useful to examine the con-

ditions just before and just after its formation, to see the tran-

sition from beam mode to cathode-confined mode. Fig. 5

i) and iii) show the discharge in the open-ended cathode to

either side of the mode transition, at 18-20 Pa. Towards

the upper pressure limit the ‘beam’ mode discharge does not

take the characteristic appearance described for lower pres-

sures, instead consisting principally of a large axial plume-

shaped glow that extends from the open cathode end. Fig. 5

iv) and vi) are images showing the transition from beam

mode to cathode-confined mode for the enclosed cathode, at

7 Pa. Fig. 5 iv) shows the discharge after transition to the

cathode-confined mode. It can be seen that the axial beam

is replaced by the plume-shaped formation characteristic of

cathode-confined mode at higher pressure [as in Fig. 5 ii)].

There is no image of enclosed-cathode beam mode at 18-20

Pa, or open-ended CC mode at 7 Pa, since such states do not

occur at these pressures.

Much emission from the helium discharges illustrated in

Fig. 5 appears green or orange to the eye, the green colour

reproducing in these photographs as green/blue. In our pre-

vious work19, we found this distinctive emission structure to

result as either electrons or heavy particles gain reactive ener-

gies at different E/n conditions. The green colour is caused as

electron-impact excitation to 31P results in significant emis-

sion at 501.6 nm, and the orange emission occurs primarily

at 587.6 nm after heavy particle collisions cause excitation to

33D. This arises due to very different magnitudes of respec-

tive cross sections, and is made visually unambiguous for en-

ergetic species at conditions of relative low pressure by the

difference in wavelength, and generally sparse helium spec-

trum. For conditions illustrated in Fig. 5, distributions of these

colours may therefore be associated with the local presence of

energetic electrons and heavy species. These will also gen-

erally coincide with regions of smaller and greater respective

E/n, although since fast neutrals may propagate regardless of

field structure, these may cause emission away from the re-

gion of ion acceleration. Orange emission is only significantly

present for the lower pressure discharges Fig. 5 iv)-vi), oc-

curring principally within the inter-electrode region and also

FIG. 6. Discharges in argon at 1 Pa, showing i) beam and ii)-iii)

plume formations associated with the enclosed cathode. All three

images were obtained from the same perspective, and ii) and iii) il-

lustrate how the plume may appear from different apertures of the

cathode (colour online).

within the cathode for beam mode states. For these discharges

the axial beam or plume-type features remain green, as does

the glow within the cathode for the low-pressure CC mode

(Fig. 5 iv)). At higher-pressure conditions the CC mode glow

appears green in both electrode cases, with the axial plume

appearing paler.

In argon, spatial distributions of emission observed for the

CC and beam modes were similar to those described above for

helium. These general similarities were evident for operation

with both the open-ended cathode and the enclosed cathode,

the cathode modification causing principal effects for either

species.

In the images shown for helium in Fig. 5, the perspective

makes details of these features hard to see, and so the dis-

charge was also operated (in argon) with the enclosed cath-

ode and without the anode grid, enabling clearer observation
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of beam and plume structures. A detailed investigation was

not carried out for this arrangement, and we did not quan-

tify the effect of using only the chamber wall as anode. The

CC mode was however observed to occur at broadly similar

conditions of pressure and voltage, and significantly for our

purpose here the plume and beam features were evident in the

same way. We show images obtained during this run in Fig. 6,

these are generally representative of structures occurring in

either species, and with or without the anode grid.

Dimensions of the plume and beam appear to be largely in-

dependent of current or pressure, although parts of each fea-

ture where these cross the cathode boundary appear consis-

tently narrower in argon than in helium. For either species, a

small region of relatively intense emission that contacts the

cathode interior glow is considerably smaller for the beam

than for the plume. The entire structure of the beam feature

is co-linear and oriented normal to the plane of the aperture,

expanding in width as it crosses the boundary. In contrast,

the plume narrows within the aperture, before curving and ex-

panding to contact the CC mode glow in a more globular inter-

face. We observed some variation in shape of this at different

conditions of current, although the overall size of the feature

varied little.

C. Mode transition

At certain conditions during operation with the enclosed

cathode, an evolution in the discharge was observed to occur

whilst no adjustment was made to the apparatus, that resulted

in a more gradual transition to the CC mode. In general the CC

mode occurs spontaneously, either at breakdown or as levels

of voltage and current are actively increased, but at pressures

below around 7 Pa in helium, levels of cathode current were

observed to gradually increase whilst voltage was kept con-

stant. For the helium discharge, the colour of emission within

the cathode interior was also observed to change during this

process, becoming progressively more green, until transition

to the CC mode occurred. A rise in current similar to this may

be observed in the current-voltage curve obtained using the

enclosed cathode at 3.5 Pa, in Fig. 4 ii).

IV. ANALYSIS

Enclosing the open cathode end caused the cathode-

confined mode plasma to appear additionally surrounded by

cathode sheath, and also to occur at significantly lower pres-

sures. These properties are consistent with enhanced confine-

ment of energetic electrons occurring within a more extensive

sheath structure, and so agree with our previous analysis for

the open-ended cathode19. In the following Section IV A we

consider extension of this to describe the observed effects of

cathode modification, and the hollow cathode effect more gen-

erally for grid cathode discharges. We shall then consider how

emission distributions occurring in the different electrode ar-

rangements relate to discharge configurations of potential and

current, in IV B.

FIG. 7. Sketch of conventional hollow cathode discharge showing

a) cathode cavity, b) anode, c) plasma, and d) confined trajectory

for a γ-electron, emitted at top centre, and reflected several times

within the plasma-cathode fall before exiting the cavity via aperture

e) (colour online)

A. The hollow cathode effect in grid electrodes

We first outline some principal properties that enable hol-

low cathode discharges (HCDs) to operate at low pressures,

referring throughout to a review of the ’electrostatic electron

trapping’ or ’hollow cathode’ effect23. For a discharge to self-

sustain, electrons emitted from the cathode under ion bom-

bardment, that we refer to as ‘γ-electrons’ after the second

Townsend coefficient γ , must subsequently cause sufficient

ionisation for the resulting ion flux to replace them. This con-

dition may be expressed in terms of M, the average multipli-

cation factor required for all γ-electrons emitted:

M = 1/γ + 1 (1)

The hollow cathode effect (HCE) occurs as γ-electrons emit-

ted from the inner surface of a cathode cavity, held at voltage

VC, become reflected in opposing cathode falls of magnitude

VCF until they exit the cavity, causing relative increase of their

trajectories within the discharge (Fig. 7). This confinement of

energetic electrons results in an enhanced efficiency of ioni-

sation, that may assist a discharge to occur at additionally low

pressures. The configuration illustrated in Fig. 7 is known

as the ‘conventional’ hollow cathode discharge, which resem-

bles our discharges in having no physical anode within the

cathode cavity. Optimal conditions exist for the HCE when γ-

electrons lose all possible potential energy to ionisation before

escaping the electrostatic trap. At these conditions VCF must

be sufficient for γ-electron multiplication to satisfy (1), and is

independent of pressure. The fields important in the sustain-

ing of the discharge occur in an otherwise field-free region,
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and cathode voltage is characteristically of similar magnitude

to VCF. Expressions for M as a function of cathode fall, in the

low pressure/long confined path regime, take the form:

M =
eVCF

W

(

1+C
d

a

eVCF

W

)

(2)

in which d is sheath width, where e is fundamental charge and

W represents electron energy cost per ionisation, around twice

the ionisation potential for atomic gas species. a refers to dis-

tance travelled by a confined electron between reflections at

the trap boundary, defined a= 4V/S, in which V refers to vol-

ume and S to surface area of the trap, so that d/a represents

the proportion of a confined trajectory spent in the sheath. Dif-

ferent formulations of (2) have C as a constant between 0.13

and 0.5, or as a weak function of eVCF/W returning 0.2-0.5 for

eVCF/W of 10-30. As a confined electron loses energy to in-

elastic collisions the ionisation length λiz varies considerably,

but study of hollow cathode discharges has shown this may

be well-approximated for electron energies within the range

50-500 eV as λ0, an average path length between successive

ionising collisions. This same value may conveniently be ap-

plied also for cathode fall larger than 500 V, since reduction in

ionisation cross section is largely offset as greater ion energies

impacting the cathode cause γ to increase above its γ0 value.

Towards the low pressure limit, the HCE becomes heavily re-

liant upon electron multiplication by ionisation in the cathode

fall, and VCF typically rises from hundreds to thousands of V.

The extinction pressure for the discharge, Pex, occurs where

λ0 exceeds the confined path length within the trap, L:

λ0 (Pex)∼ L (3)

The expression given for L is:

L =
4V

S0

(4)

in which S0 refers to the part of the trap surface across which

electrons may escape. This is valid for isotropic electron

velocity distributions within cathode geometries of arbitrary

form.

In our previous study19 we considered the low-pressure

limit for the helium CC mode in the open-ended cathode,

making a simple adaptation to established HCD analysis to

account for losses of γ-electrons through perforations of the

grid. The approach taken was as follows. When (4) is evalu-

ated for a largely transparent cathode, the grid-confined path

LG is similar to cathode diameter. This describes how in

vacuum, most emitted γ-electrons will pass through oppos-

ing apertures to be lost. For conditions where a plasma exists

within the cathode space however, electrons that suffer inelas-

tic loss before reaching the boundary will be much more likely

to become confined within the sheath structure. We suggested

effective L for a grid electrode discharge might therefore be

described by trapped path length within the plasma LT, multi-

plied by probability for a γ-electron to become confined. As-

suming average ionisation energy loss W to be sufficient for

confinement by the sheath, probability for this was approxi-

mated as for a collision to occur before escaping the grid, ex-

pressed as the smaller of LG/λiz or 1. We evaluated the LHS

of (3) using λ0 = 1/nσ0 (where n is background gas density

at 300K and σ0 an average ionisation cross section size for

50-500 eV electrons in helium, of 3× 10−17cm2), and calcu-

lated LT from (4) by substitution of a value S0T describing

escape surface for confined electrons. This was approximated

as the cross-sectional area of the open cathode end, making

LT around 44 cm. At the extinction pressure of 12.5 Pa, the

cross section size derived from calculated λiz (around 23 cm)

predicted an initial electron energy around 850 eV, consistent

with VCF similar to VC. Probability for confinement LG/λiz

was around 0.25. At these conditions, λ0 and effective L for

emitted γ-electrons are of similar order to the distance be-

tween electrodes and chamber wall, and so the HCE may not

extend the electron-driven discharge regime to significantly

lower pressures in the set-up with open-ended cathode.

To consider our present results we shall apply the same

principle, for an ionising collision to be necessary and suf-

ficient for γ-electron confinement. The probability for this,

that we defined as the smaller of LG/λiz or 1, serves as an ef-

fective grid confinement parameter that is a function of grid

geometry, pressure and cathode fall, and in the following we

shall refer to this as ΓG. To consider extinction pressures for

the CC mode in the different cathodes, (3) becomes:

λ0 (Pex)∼ ΓG (Pex,VCF)LT (5)

Whilst we only know Pex to be smaller than 3.5 Pa for the

enclosed cathode, we may calculate Pex(VCF) for both elec-

trodes by finding values for which ΓGLT/λ0 ∼ 1. For this we

use same σ0 as previously, and the recommended function for

σiz(eVCF) from38. LG is almost identical for either cathode.

For S0T in the enclosed cathode, we use the cross sectional

area of the plume as this passes through the cathode aperture,

judged to be a circular area around 0.8 cm diameter for the

helium discharge. This makes LT larger than for the open-

ended cathode by a factor of around 50. Calculated values

are shown in Fig. 8 for both cathodes, plotted against VCF to

which values of σiz correspond. The results broadly reproduce

the different low-pressure ranges for the two cathodes, and so

demonstrate how a more continuous sheath occurring within

a more evenly-enclosed cathode may influence low-pressure

range for the CC mode.

For a CC mode discharge sustained by the hollow cathode

effect, little additional discharge potential should be required

other than the cathode fall, and we may calculate VCF in or-

der to compare with experimental cathode voltage. We con-

sider viability of a self-sustained cathode-internal plasma, as-

suming all ions to be generated within and collected by the

cathode, and (1) to hold within the cathode interior. Since we

consider initial confinement of γ-electrons to occur with prob-

ability ΓG, a correspondingly larger multiplication factor M′

will be required for those confined:

M ∼ ΓGM′ (6)

The RHS of (2) may be substituted for M′ in (6), and com-

bined with (1), giving:

1

γ
+ 1 = ΓG

eVCF

W

(

1+Cd

eVCF

W

)

(7)
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FIG. 8. Ranges of VCF, Pex satisfying (5) for a) enclosed cathode, and

b) open cathode. Experimental Pex for the open cathode is indicated,

experimental Pex for the enclosed cathode will lie within the shaded

area

We have incorporated the d/a term into C and given this a de-

pendence upon eVCF/W , redefining the term Cd for clarity and

scaling values suggested for C in (2) by an appropriate value

for d/a. This is estimated to be around 1/6, for d of 0.7-0.8

cm and with a calculated to be ∼4.65 cm for either electrode.

A simple linear function Cd = (eVCF/W )/300 returns values

equivalent to C = 0.2− 0.6 for eVCF/W of 10-30.

We solved (7) for VCF at a range of helium pressures, using

values for σiz(eVCF) as previously, and γ = 0.239, W = 45 eV

for helium22. LG varies by less than 1% for the two cathodes

and so we do not distinguish between them. The results are

compared in Fig. 9 with approximate lower cathode voltages

at which the CC mode has been observed, taken from data in

Fig. 4. Our observations were not made with the specific aim

of measuring extinction voltage, and so the experimental val-

ues are not precise, but these generally agree well with results

of the calculation, showing a broad trend for cathode voltage

to increase at lower pressure that appears similar for either

electrode. For the calculated values this pressure-dependence

is introduced by ΓG, since (7) otherwise describes optimal

conditions, at which VC and VCF for HCDs are generally in-

dependent of pressure. An effect of cathode perforation is

therefore introduction of a pressure-dependence for VCF and

VC, that results as a γ-electron becomes less likely to play a

role in the discharge at lower pressure. This effect operates in

addition to the range-limiting effects of geometry of principal

aperture and sheath configuration considered previously, and

we expect these to cause the apparent increase in experimental

voltage for the open-ended cathode in the low-pressure limit,

as occurs for HCDs. The results shown in Fig. 9 also suggest

explanation of the flickering observed for the enclosed cath-

ode at pressures smaller than around 5 Pa, since calculated VCF

starts to become significantly larger here than for any other

conditions, including the low-pressure operating range for the

open-ended cathode. The flickering is therefore consistent

with sufficient VCF required at these conditions for cathode

current to exceed the 100 mA supply limit.

FIG. 9. Ranges of VCF,Pex satisfying (5) for a) enclosed cathode,

and b) open cathode are reproduced from Fig. 8, with experimental

cathode voltages, marked × for enclosed cathode; + for open-ended

cathode, shown against c) VCF(P) calculated using (7). Experimental

Pex for the open cathode and Pflicker (threshold pressure for flickering

in the enclosed cathode) are also indicated

The CC mode discharge is well-described by established

principles of HCD operation, if we consider only γ-electrons

that suffer inelastic loss before reaching the cathode boundary.

This confirms the CC mode to be sustained by the HCE, and

the low-pressure discharge mode structure to be determined

by conditions at which such a plasma may exist within the

cathode interior. The success of the approach indicates po-

tential within cathode apertures, other than the open end, gen-

erally remains within W/e of cathode potential for the CC

mode in our apparatus. Where this holds, approximate condi-

tions of voltage and pressure at which a discharge mode may

be sustained by the HCE are predicted for arbitrary cathode

grid construction, which may assist identification of a hollow

cathode-type mode within a grid cathode. In addition to estab-

lishing physical dependences for such a mode, identification

of the sustaining mechanism also predicts discharge properties

for such a mode will be analogous to those of conventional

hollow cathode discharges. This provides insight for under-

standing potential distribution within the CC mode discharge,

as consisting of a characteristic positive space charge within

the cathode cavity with a potential relatively close to ground.

B. Emission distributions and discharge configurations

In the previous section we found the CC mode to be well-

described as a discharge sustained by the hollow cathode ef-

fect, this explaining observed dependences upon conditions

and electrodes, and predicting general similarities between

properties of this mode and those of conventional HCDs.

In the following we shall examine how this understanding

may be applied to interpret the appearance of the discharge.

We first consider how general distributions of emission may

correspond to discharge configurations predicted for the two

modes, before concentrating upon differences in emission
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caused by the cathode modification.

In Section III B we noted visible colour of emission from

helium discharges may provide a useful diagnosis of energetic

species, with green emission at 501.6 nm principally occur-

ring after excitation of the background gas by electrons, and

orange emission at 587.6 nm after excitation by energetic ions

and neutrals. Applying this understanding to discharges il-

lustrated in Fig. 5, we observe significant activity of energetic

heavy particles only at the lower-pressure conditions, and then

in radial locations chiefly associated with the strong field be-

tween the electrodes. The CC mode glow is generally green

and so associated with electron collisions, as is emission oc-

curring in the axial region between electrodes and chamber

wall, regardless of discharge mode or cathode format. This

axial emission appears as either a beam or diverging plume,

and in all instances appears to connect cathode internal dis-

charge with the external chamber volume. In a discharge sus-

tained by the hollow cathode effect, ionisation generates elec-

trons in a region significantly enclosed by cathode fall much

larger than electron temperature (eVCF ≫ Te), and these must

escape or accumulate to reduce eVCF (see e.g.40). Our de-

scription of the CC mode as such therefore associates axial

emission with transport of bulk thermal electrons from within

the cathode interior, and the universal electron-impact emis-

sion signature for axial features, irrespective of mode, indi-

cates these to perform this role generally.

For the emission distributions illustrated in Fig. 5, we ob-

serve a characteristic association between a plume-type axial

structure and all instances of the CC mode. We also expect

the potential difference across which bulk electrons are trans-

ported from CC plasma to chamber wall to be characteristi-

cally small, and so the association suggests plume- or beam-

like appearance might result directly from the effect of respec-

tive potential distributions upon electron energies. Such inter-

pretation of beam and plume form is consistent with proper-

ties of electron scattering in helium, where angle of scattering

becomes significantly reduced at progressively greater elec-

tron energies (Fig. 10), and total elastic cross section becomes

smaller by almost an order of magnitude as electron energy

increases from 20 eV to 100 eV41. To place this in the context

of our experiments, we calculate scattering mean free paths in

similar manner as in the previous section; over the decade of

helium pressures 3.2-32 Pa, these are approximately 5-0.5 cm

for 20 eV electrons, and 45-4.5 cm at 100 eV. This means for

a wide range of pressures relevant to our observations, lower-

energy electrons will on average become deflected in colli-

sions over the scale of the axial features, and electrons with

greater energies will not. Distributions of trajectories leading

to beam- or plume-like emission might therefore result from a

simple variation in electron energy of this order, separately to

any space charge repulsion or other field effects. If we as-

sociate the plume with a small gradient from the wall, the

axial electron beam indicates a much larger potential differ-

ence between ground and the discharge within either cathode

when operating in the beam mode. For the ’beam’ mode dis-

charge occurring at higher pressure in the open-ended cathode

[illustrated in Fig. 5 iii)], the plume-type axial emission sug-

gests a plasma potential that is also relatively close to ground,

FIG. 10. Differential cross sections for elastic scattering of electrons

in helium, at energies: a) 5 eV; b) 10 eV; c) 20 eV; d) 30 eV; e) 50

eV; f) 100 eV; g) 300 eV; h) 1 keV. Data taken from42,43

and that extends insufficiently far into the cathode for the CC

mode to self-sustain.

To consider the effect upon distributions of emission caused

by modification of the cathode end, we note this resulted in

significant local changes for either mode, affecting the degree

to which cathode-internal glow is enclosed by dark space, and

causing bright emission associated with the axial features to

cross the boundary of the enclosed electrode. The dark space

between the CC mode glow and the cathode is the cathode

sheath, which may become continuous when sheath width ex-

ceeds half the spacing between grid wires44. This condition

is satisfied for the enclosed cathode geometry, where the dark

space is interrupted only where the plume crosses the cathode

boundary. The electron beam that occurs with the beam mode

discharge in the enclosed cathode also constitutes the only

bright emission to connect cathode-internal glow with the ex-

terior region, and this indicates both structures to transport

electrons across a potential barrier within the cathode bound-

ary.

For such discharge configurations, geometry and potential

will be constrained to maintain equilibrium currents of elec-

trons and ions in steady state operation, and we may ob-

serve the effect of this by considering plasma dimensions for

a CC mode discharge. The dependence of sheath config-

uration upon electrode surface ratios was first described by

Langmuir45, where an ion sheath occurring for a larger anode

disappears for critical Sa, to become an electron sheath for

smaller-sized anodes. More recent investigation has shown

a state of ’non-ambipolar flow’ to exist for equilibrium ra-

tios of anode and cathode surfaces Sa and Sc, where an equal

and opposite unipolar current flows across each surface from

a plasma46. In this work, analysis of particle fluxes to anode

and into an ion sheath of Sc, for a quasineutral plasma in which
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FIG. 11. Overlaid scale and (inset) geometry used to estimate CC

mode plasma surfaces. Dotted line a) is a 2D circular area represent-

ing calculated interface area Sa; broken line b) outlines the boundary

of 3D Bohm surface SB. ∼ 1 Pa argon (colour online).

Te ∼ 10Ti, predicts the non-ambipolar state to exist for the ra-

tio of surfaces, µ 6 Sa/Sc 6 1.7µ , where critical surface ratio

µ =
√

2.3me/mi (mi and me refer to ion and electron mass).

In Fig. 11 the CC mode argon discharge shown previously

as Fig. 6 iii) is overlaid with a scale calibrated to cathode di-

mensions; this corresponds to the vertical plane on-axis and

no correction is made for foreshortening. Ions will be ac-

celerated away from the plasma and into the sheath as they

attain Bohm velocity, and the surface at which this occurs is

assumed to approximately coincide with the extent of bright

glow within the cathode. We call this surface SB, and the in-

terface with the plume Sa. In Fig. 11 the dashed line marked

b) describes the approximate boundary of SB modelled as an

assembly of hemisphere, cylinder and hemispheroid, as indi-

cated in the inset. Dimensions as defined in the figure are esti-

mated to be r1 = 1.8 cm, r2 = 3.8 cm and l = 3.3 cm, making

SB ∼ 94 cm2.The dotted line marked a) in Fig. 11 represents a

2D circular area of similar size to Sa. At ∼0.8 cm in diameter,

this area is a little greater than 0.5 cm2, and so related to SB by

SB ≈ µSa. The geometry of the configuration therefore shows

the plume to act as a virtual anode for the CC mode plasma,

and the discharge to operate in the non-ambipolar regime. In-

terestingly, electrons incident upon Sa are implied to be trans-

ported from the main plasma with no reflection, since signif-

icant reflection would require the interface area to be corre-

spondingly larger. For the open-ended cathode, the sheath

structure between cathode end and axial glow is expected to

rather consist of a small voltage drop of order Te, that will

moderate bulk electron transport from the plasma to main-

tain equilibrium. The non-ambipolar sheath configuration is

described to be more efficient for charge extraction46, in cut-

ting loss of energetic electrons to surfaces other than Sa whilst

allowing unimpeded flow for the lower-energy bulk popula-

tion. The geometry shown in Fig. 11 indicates the plume to

self-arrange in such an optimal sheath configuration with the

main plasma, and this demonstrates that only electrons, and

not ions, are transported from the main plasma by this route.

Similar characteristics are described for conventional hol-

low cathode discharges operating at conditions of small cav-

ity aperture47,48. For these, properties of the ‘anode’ sheath

that occurs at the aperture are also significantly determined

by ratio of aperture area, with an equilibrium occurring when

Sa ∼ Sc

√

me/mi. For smaller Sa/Sc two states are possible; ei-

ther a double layer of larger surface may act as plasma anode

in front of the aperture, drawing electrons across a potential

step of a few 10s V, or a positive sheath of larger potential oc-

curs and the discharge operates in a ’high voltage’ mode. By

analogy, this indicates the plume-plasma interface to also be a

double layer structure.

Extension of the electron beam to within the enclosed cath-

ode interior for the heavy particle discharge [Fig. 6 i)] indi-

cates existence of a positive space charge structure within the

cathode for this mode also, and the beam to play a similar

functional role to the plume in extracting thermal electrons

across an otherwise continuous cathode fall. The consistent

size of interface surface observed for the beam, that is largely

independent of pressure or current, suggests a qualitatively

similar geometric determination as that for the plume. These

observations indicate positive and negative products of ioni-

sation will also exit the region of positive potential inside the

cathode across separate surfaces. The generally smaller size

of the beam interface is expected to result from different con-

ditions within the cathode, possibly associated with the lack

of a clearly-defined cathode sheath. This mode appears analo-

gous to the ’high voltage’ mode described elsewhere for con-

ventional hollow cathode discharges, that is characterised as

an ion space charge rather than a plasma23, and that has also

been widely associated with an electron beam e.g.22,49.

C. Mode transition

The CC mode typically appears instantaneously, either at

breakdown or as sufficient voltage is applied, and condi-

tions for the mode to exist include requirement for ΓGLT >
lambda0, and sufficient VCF for the HCE to self-sustain. We

have considered general appearance of the beam and plume

features to be determined by the effect of potential distribu-

tions in the different modes, and research into similar mode

structure occurring for conventional HCDs and other trans-

parent cathode configurations has found electron outflow to

actually be causally important for establishing the potential

configuration within the cathode. For conventional HCDs

with small cathode aperture, the hollow cathode mode has

been associated with stability of a double layer/anode plasma

system existing within the aperture23, with a critical local

ionisation rate required to maintain the anode plasma and

avoid entering the high-voltage mode. Stability of such an

arrangement has been suggested to require a potential step

across the double layer that is sufficiently small for electrons

accelerated across this to have energies below the value at

which iz reaches a maximum ( 100 eV)48. Recent modelling

work has demonstrated a similar importance of electrons ex-

iting a hollow cathode aperture for determining the discharge

mode50, finding potential within the cathode to rely signif-

icantly upon the ionising activity of these as they cross the

cathode-anode space. Fast imaging of the transition from jet to
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spray mode in a spherical transparent cathode15,16 has shown

a burst of emission occurring both within the cathode and in

the beam preceding appearance of the spray mode, consis-

tent with sufficient ion production occurring in the beam for

an anode plasma to establish. In the description of the non-

ambipolar discharge regime46, plasma potential is noted to re-

main ‘locked’ to that of the electron extraction surface, in this

context suggesting that should potential along the electron ex-

traction channel become similar to anode, this will act to pull

up the plasma potential within the cathode.

We also described a more gradual transition from the beam

mode that may occur when using the enclosed cathode. In this

process an autonomous rise in current was observed at con-

ditions of constant voltage, with simultaneous increasingly-

green colour of emission within the cathode in helium sig-

nifying a rising rate of inelastic electron collisions occurring

within the cathode19. The association indicates an increase in

VCF , that continues until this becomes adequate for the HCE

to self-sustain. Why this growth in potential may occur on

a timescale relatively much longer than the more usual be-

haviour is unclear.

V. DISCUSSION

We have shown how a hollow cathode-type mode may sus-

tain in a very transparent cathode, and how conditions at

which this is possible will depend upon format of the cath-

ode. This indicates such a discharge mode will also occur

for a variety of other perforated cathodes, in accordance with

well-documented operation of the hollow cathode effect in

other modified geometries known variously as cage, multi-

rod and segmented configurations22,23. For transparent cath-

ode discharges, the discharge efficiency associated with the

hollow cathode effect means a discharge mode so sustained

will tend to dominate where conditions allow, and the na-

ture of the sustaining mechanism implies potential distribu-

tion, current-voltage and emission characteristics similar to

those of a conventional hollow cathode discharge. Such dis-

tinctive characteristics will cause a common mode structure

to be observed for various cavity-form cathodes, and we have

already described various similarities evident between our re-

sults and conventional hollow cathode discharges. We find

further parallels in the literature, both with discharges ob-

tained using mesh cathodes of much finer pitch than our grid,

and also with wire grid cathode discharges in the more usual

spherical IEC geometry. Mesh cathodes were used for hol-

low cathode electron beam source work31–35, although later

work also used a conventional solid-wall configuration51,52.

These investigations describe a similar mode structure, with

the transition from a high-impedance electron beam mode to

a low-impedance ’normal hollow cathode’ mode also asso-

ciated with a hysteresis. Other properties analogous to our

results include a description of a ’runaway’ build-up of cur-

rent that results in transition to the low-impedance mode32,

and difficulties in operating the electron beam mode stably in

argon34,35. This research placed emphasis upon properties of

the electron beam mode, describing an essential dependence

upon dark space external to the cathode33,52, and measuring

beam electron energies that indicated typical plasma potential

within the cathode to be a few hundreds of V more positive

than negative cathode voltages of kV35. More recent work

with spherical mesh cathodes36,37 has observed a mode struc-

ture with similar impedance change and hysteresis, and mea-

sured plasma potential in a low-impedance mode with plume-

like feature to be close to ground for cathode voltage of several

hundreds of V. The authors considered this mode sustained by

the hollow cathode effect, and also noted parallels with IEC

transparent cathode discharges. The modelling described in50

sought to investigate results of this experimental work. From

the IEC discharge literature, a similar change in discharge per-

veance and accompanying hysteresis is described for the tran-

sition between ’jet’ and ’spray’ modes reported for spherical

transparent cathode discharges15, and defining emission fea-

tures for these modes also significantly resemble the plume

and beam structures that we observe15,53,54.

These extensive similarities indicate potential distributions

characteristic of the hollow cathode mode structure to occur

quite generally in these related sets of apparatus. For modes

occurring in spherical IEC cathodes, this understanding is in-

consistent with description of the spray mode glow as a spher-

ical double layer (SDL) arrangement16,17, since a SDL is not a

self-sustaining discharge and has a magnitude of potential step

across the double layer similar to the ionisation energy for the

parent gas (see e.g.26). For the jet mode however, we note the

glow boundary may appear well-defined within spherical grid

cathodes15,16,53,54, suggesting a sheath structure that is not

present for beam mode discharges we describe here. A SDL

structure, or ’fireball’, has also been described to occur for

mesh cathode discharges36,37 as part of a plume-like feature

contacting the cathode-internal glow. This identification was

made by measurement of a potential difference at the interface

similar to the gas ionisation energy, and observation of non-

linear dynamic behaviour, referring to an extensive body of

work examining these objects in different apparatus e.g.25–28.

We will consider evidence for SDL objects occurring in our

open-ended cathode discharges in a separate paper.

Our results may be useful for evaluating applications for

transparent cathode discharges, both in facilitating identifica-

tion of a hollow cathode discharge mode, and informing the

engineering of mode transition pressure range by electrode

design, should a mode of operation be desirable at particular

conditions. For example, appearance of the CC mode at con-

ditions otherwise associated with the ion/neutral-driven dis-

charge would interrupt stable operation of a reactive plasma

source intended to create a particular chemistry using ener-

getic heavy particles, since this will will switch a significant

part of the plasma properties to those of an electron-driven dis-

charge. This may be observed directly in the change evident

for emission colour within the enclosed cathode, where the

orange heavy particle signature apparent for the beam mode

in Fig. 5 vi) becomes green due to principal activity of ener-

getic electrons for the CC mode in Fig. 5 iv). For our elec-

trode arrangement, the open cathode end limits confinement

of energetic electrons within the cathode-internal field struc-

ture, and so contributes significantly to the stability of the ion-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



13

driven beam mode discharge at more moderate conditions of

higher pressure and lower voltage. Confined path for elec-

trons also depends upon relative dimensions of the cathode

internal space, and so adequate electron escape will remain

a design consideration for any larger-scale implementation of

an open-ended cathode format. Our findings indicate the beam

and plume to play a functional role in the unipolar extraction

of thermal electrons from a virtual cathode region within the

cathode interior, which may inform utility of these features

for thruster applications15–17. In particular, ions produced

within a cathode-internal plasma operating in a state of non-

ambipolar flow, as illustrated for our discharge by geometry

of the plume-plasma configuration in Fig. 11, will flow only

to the cathode and not be ejected in the plume. This property

is in apparent contradiction to interpretation of such features

as intense space-charge neutralised beams of electrons and en-

ergetic ions13,14. For the plume that accompanies transparent

cathode discharges operating in the CC or spray mode, the

similarities with conventional hollow cathode discharges im-

ply these will be unlikely to offer significant advantages over

currently-used hollow cathode technology, the significant loss

of γ-electrons via apertures of a grid cathode rather resulting

in a reduced efficiency where such an electrode is used. Var-

ious applications for the electron beam have been previously

investigated by the work in Refs.31–35,51,52.

VI. CONCLUSION

In this study we investigated the dependence upon cath-

ode form for the low-pressure mode structure of a transpar-

ent cathode discharge, by observing the effect of enclosing an

open end of a cylindrical grid cathode. This was found to re-

sult in significant extension of the low-pressure range for the

discharge mode we call the ’cathode-confined’ or CC mode,

and also caused the appearance of additional discharge fea-

tures in the form of a beam and a plume that traverse cathode

boundary and dark space in beam and CC modes respectively.

In our analysis we have explained these discharge properties

by considering the hollow cathode effect to be the mechanism

responsible for sustaining the CC mode, extending our pre-

vious work that suggested initial confinement of a γ-electron

to be well-represented by probability for an inelastic collision

before escaping the grid. Ranges of possible extinction pres-

sures calculated for the two cathode geometries agree broadly

with experiment, although we were not able to measure the

precise value for the enclosed cathode. We calculated cath-

ode fall required for self-sustenance of the HCE as a function

of pressure and cathode transparency, with values agreeing ap-

proximately with experimental voltage for either cathode. The

analysis is expected to hold for a wide range of cathode grid

forms, where suitable assessment is made of electron escape

surface.

The efficiency associated with the hollow cathode effect

makes this liable to dominate wherever conditions enable it to

self-sustain, and this causes the similar mode structure widely

reported for other transparent cathode discharges in spherical

geometry, mesh cathode discharges and conventional hollow

cathode discharges. Discharge properties associated with the

CC mode and its analogues, that are called the ’spray’, ’low-

impedance’ or ’hollow cathode’ mode elsewhere, include a

plasma potential relatively close to ground since the sustaining

mechanism operates in the field between plasma and cathode.

The beam and CC modes are therefore associated with char-

acteristic distributions of potential in which voltage dropped

from chamber wall to internal cathode plasma varies consid-

erably, from a significant proportion of cathode voltage for

the beam mode, to a small fraction of this for the CC mode.

This predicts different characteristic electron energies within

axial discharge features, that may explain the apparent beam

and plume forms in terms of different effects of scattering and

space charge. The extension of these structures to within the

enclosed cathode interior indicates these to extract thermal

electrons across a potential barrier caused by the electrode ge-

ometry, and comparison of surfaces across which electrons

and ions are extracted from the CC mode plasma finds these

to be related by a factor of µ =
√

2.3me/mi. This indicates

a state of non-ambipolar current flow to exist for the cath-

ode internal plasma, in which an optimal sheath configura-

tion causes all electrons to be extracted only by the plume and

all ions to flow only to the cathode. The interface between

plasma and plume for such a configuration is indicated to be

a double layer structure, by analogy to similar structures oc-

curring in conventional hollow cathode discharges. Whilst a

brighter glow of similar extent is evident within the cathode

for the electron beam mode, the plasma boundary is not well-

defined, suggesting different discharge conditions within the

cathode cause the characteristically-smaller beam-plasma in-

terface. In operation with the enclosed cathode, the extended

low-pressure range for the CC mode means this appears at

conditions otherwise associated with the ion/neutral-driven

discharge. This property will be unfavourable for any applica-

tions specific to heavy-particle operation, since a transition to

the CC mode will cause plasma properties to become those of

an electron-driven discharge. The form of the cathode grid is

therefore a critical design parameter for the engineering of dis-

charge mode structure. The functional role we ascribe to beam

and plume in the extraction of thermal electrons from within

the cathode interior, and the broad analogies drawn with re-

lated discharges, implies transparent cathode discharges op-

erating in the spray mode are unlikely to offer significant ad-

vantages over currently-used hollow cathode technology for

thruster applications.
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28C. Ionită, D. Dimitriu, and R. W. Schrittwieser, “Elementary processes at

the origin of the generation and dynamics of multiple double layers in dp

machine plasma. internatl,” Journal of Mass Spectrometry 233, 343–354

(2004).
29R. Stenzel, J. Gruenwald, B. Fonda, C. Ionita, and R. Schrittwieser, “Tran-

sit time instabilities in an inverted fireball. i. basic properties,” Physics of

Plasmas 18, 012104 (2011).
30R. Stenzel, J. Gruenwald, B. Fonda, C. Ionita, and R. Schrittwieser, “Tran-

sit time instabilities in an inverted fireball. ii. mode jumping and nonlinear-

ities,” Physics of Plasmas 18, 012105 (2011).
31H. L. L. Van Paassen, E. C. Muly, and R. J. Allen, “Electron beam phenom-

ena associated with perforated wall hollow cathode discharges,” in Proc.

Nat. Electron Conf. JL8 (1962) p. 596.
32M. A. Cocca and L. H. Stauffer, “Grid controlled plasma electron beam

(no,” in CONF-57-6; AED-Conf-63-031-12 (General Electric Co., Schenec-

tady, NY (United States), 1963).
33L. H. Stauffer, “Modulated plasma electron beams,” in CONF-60-3; AED-

Conf-63-128-1 (Advanced Technology Labs, General Electric Co., Sch-

enectady, NY (United States), 1963).
34G. Ward, “A perforated hollow cathode electron beam gun,” Vacuum 18,

507–509 (1968).
35D. P. Hale, “Energy analysis of electron beams from perforated-mesh

hollow-cathode gas discharge guns,” Journal of Physics D: Applied Physics

4, 1281 (1971).
36C. T. Teodorescu-Soare, D. G. Dimitriu, C. Ionita, and R. W. Schrit-

twieser, “Experimental investigations of the nonlinear dynamics of a com-

plex space-charge configuration inside and around a grid cathode with

hole,” Physica Scripta 91, 034002 (2016).
37R. W. Schrittwieser, C. Ionita, C. T. Teodorescu-Soare, O. Vasilovici,

S. Gurlui, S. A. Irimiciuc, and D. G. Dimitriu, “Spectral and electrical

diagnosis of complex space-charge structures excited by a spherical grid

cathode with orifice,” Physica Scripta 92, 044001 (2017).
38Y. Ralchenko, R. K. Janev, T. Kato, D. V. Fursa, I. Bray, and F. J. De Heer,

“Electron-impact excitation and ionization cross sections for ground state

and excited helium atoms,” Atomic Data and Nuclear Data Tables 94, 603–

622 (2008).
39H. C. Hayden and N. G. Utterback, “Ionization of helium, neon, and nitro-

gen by helium atoms,” Physical Review 135, A1575 (1964).
40M. Ohnishi, C. Hoshino, K. Masuda, Y. Yamamoto, H. Toku, and

K. Yoshikawa, “Electron streaming from central core region in inertial-

electrostatic confinement fusion,” in 18th Symposium on Fusion Engineer-

ing, 1999 (IEEE, 1999) pp. 213–216.
41A. Phelps, “Lxcat database,” (2013).
42M. J. Brunger, S. J. Buckman, L. J. Allen, I. E. McCarthey, and K. Rat-

navelu, “Elastic scattering from helium: absolute experimental cross sec-

tions, theory and derived interaction potentials,” Journal of Physics B:

Atomic, Molecular and Optical Physics 25, 1823 (1992).
43R. H. J. Jansen, F. J. De Heer, H. J. Luyken, B. Van Wingerden, and H. J.

Blaauw, “Absolute differential cross sections for elastic scattering of elec-

trons by helium, neon, argon and molecular nitrogen,” Journal of Physics

B: Atomic, Molecular and Optical Physics 9, 185 (1976).
44S. Humphries, Charged particle beams (Courier Corporation, 2013) p. 318.
45I. Langmuir, “The interaction of electron and positive ion space charges in

cathode sheaths,” Physical Review 33, 954 (1929).
46S. D. Baalrud, N. Hershkowitz, and B. Longmier, “Global nonambipo-

lar flow: Plasma confinement where all electrons are lost to one boundary

and all positive ions to another boundary,” Physics of plasmas 14, 042109

(2007).
47E. Oks, Plasma cathode electron sources: physics, technology, applications

(John Wiley & Sons, 2006).
48S. P. Nikulin, “The effect of the anode dimensions on the characteristics of

a hollow-cathode glow discharge,” Technical Physics 42, 495–498 (1997).
49W. Krug, “Eine neue glimmentladungserscheinung und ihre anwen-

dungsmöglichkeit für braunsche röhren mit niedrigen kathodenspannun-

gen,” Archiv für Elektrotechnik 30, 157–183 (1936).
50D. Levko, “Unmagnetized fireballs in the hollow cathode geometry,”

Physics of Plasmas 24, 053514 (2017).
51J. Rocca, J. Meyer, and G. Collins, “Hollow cathode electron gun for the

excitation of cw lasers,” Physics Letters A 87, 237–239 (1982).

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



15

52J. J. Rocca, J. D. Meyer, M. R. Farrell, and G. J. Collins, “Glow-discharge-

created electron beams: Cathode materials, electron gun designs, and tech-

nological applications,” Journal of applied physics 56, 790–797 (1984).
53M. Yousefi, V. Damideh, and H. Ghomi, “Low-energy electron beam ex-

traction from spherical discharge,” IEEE Transactions on Plasma Science

39, 2554–2555 (2011).
54B. Ulmen, Formation and extraction of a dense plasma jet from a helicon-

plasma-injected inertial electrostatic confinement device (Doctoral disser-

tation), Ph.D. thesis, University of Illinois at Urbana-Champaign (2014).

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
4
3
3
1
0


	Manuscript File
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

