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Abstract: Pedestal looseness and rotor-stator rub are two common faults in rotating machines. To 

increase the thrust-weight ratio and enhance fuel efficiency of aero engines, the structural design of a 

dual-rotor system has to address these two kinds of common faults. The aim of this paper is to gain 

insight into the vibration behaviours of a dual-rotor system with pedestal looseness and rotor-stator 

rub. Firstly, a dual-rotor-bearing-double casing system is modelled. After that, considering the effects 

of two disc imbalances, and pedestal looseness which exists in high pressure rotor, the rub-impact 

fault between the multi-stage turbine blades and the multi-layer casings is further introduced to the 

system. In combination with the distribution of soft and hard coatings, the impact stiffness of the 

rub-impact model is adjusted accordingly. Then an experimental study is performed on a dual-rotor 

test rig for verifying the validity of the theoretical model and revealing the dynamic responses at 

different rotor speed ratio. Finally, taking the stiffness of loosened pedestals, disc eccentricities, 

speed ratio, and initial gap as the key parameters, the potential effects of pedestal looseness and 

rub-impact on the dynamic characteristics of the dual-rotor system are investigated in detail. 
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1. Introduction 

The thrust has always been towards attaining an optimum and compact engine structure to 

realize minimum weight for given engine rating and minimum sensitivity to unbalance [1]. A 

dual-spool arrangement is a common configuration adopted in aero engines to pursue higher thrust 

and better aerodynamic stability [2]. Being distinct from a single rotor, a dual-rotor system contains 

two coaxial spools, and their rotational speeds may be the same or different. More importantly, the 

inclusion of a special inter-shaft bearing connects the inner rotor with the outer rotor facilitates 

cross-excitation. This design trend of moving from a single rotor system to a dual-rotor system 

requires more complex theoretical models, in which more factors would be considered and better 

captured. 

To lower vibration noise and enhance overall performance of rotating machines, it is essential 

for engineers to determine dynamic characteristics of dual-rotor systems in advance. Ferraris et al. [3] 
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analysed the natural characteristics of a non-symmetric coaxial co- or counter-rotational rotor and 

discussed the vibration responses due to mass imbalance. Childs [4] proposed a transient modal 

simulation model for a typical two-spool jet engine configuration, which included a low-speed rotor, 

a high-speed rotor and a support structure. Then he predicted the vibration responses of the model by 

numerical simulation. Using the harmonic balance-alternating frequency/time domain (HB-AFT) 

method, Hou et al. [5] focused on the primary resonance analysis of a dual-rotor system having two 

unbalance excitations of different rotational speeds. Li et al. [6] evaluated two model truncation 

schemes with regard to the critical speed, stability, and unbalance response of a two-spool gas 

turbine engine. Meanwhile, the numbers of modes required to yield acceptable accuracy in these 

cases were determined as well. Guskov et al. [7] carried out an experimental study of a dual-rotor 

test rig and measured the vibration responses in the process of rub-ups. The influences of the rotation 

of each rotor on the critical speed and the associated amplitude were studied in [7]. Anilkumar et al. 

[8] investigated the dynamics of a rigid body with two attached rotors and used the Floquet theory to 

identify the stability boundaries. Overall, the above research mainly concentrates on the natural 

characteristics (i.e., critical speed, vibration mode) and whirling motion of dual-rotor systems. 

In the past years, fault analysis of dual-rotor systems has attracted a huge amount of interest as 

well. Yu et al. [9] studied the dynamic responses of a dual-rotor system at instantaneous and 

windmilling states when the event of fan blade-out happened. Aiming at analyzing a dual-rotor gas 

turbine engine supported on bearings and squeeze film dampers, Sun et al. [10] presented an 

approach for blade loss simulation including thermal growth effects. Lu et al. [11] investigated the 

nonlinear vibration of a dual-rotor system with a transverse breathing crack in the hollow shaft of the 

high-pressure rotor. Wang et al. [12] set up a dynamic model for a dual-rotor system with inter-shaft 

bearings and then revealed the vibration characteristics corresponding to the unbalance-misalignment 

coupled fault. Taking a dual-rotor system as the object, Yang et al. [13, 14] simulated the dynamic 

behaviours of the system with fixed-point rub and observed the combination forms in the frequency 

domain. 

In the aviation industry, blade-casing rub is usually caused by misalignment, imbalance, oil 

whipping and pedestal looseness [15-19]. Although rub-impact is only a secondary fault, it could 

accelerate erosion and thermal fatigue. Furthermore, rub-impact may even cause the blades to break, 

the casing to fracture and other catastrophic failures in the worst cases [20, 21]. Based on a 

numerical model and an experimental set-up, Torkhani et al. [22] investigated the partial rub of a 

rotor due to contact with a non-rotating obstacle. Tofighi-Niaki et al. [23] employed mixed 

lubrication theory along with elastic-plastic asperity contact model to simulate the nonlinear 

dynamics of a flexible rotor system with rub-impact. Roques et al. [24] investigated the speed 

transients of a system with rotor-to-stator rubbing caused by an accidental blade-off imbalance. 

Using time frequency techniques, the fault identification problems, such as misalignment, crack and 

rub, were solved in [25]. Weaver et al. [26] analytically examined a three-disk rotor for nonlinear 

behaviour due to an unbalance-driven rub. A mathematical model to investigate the dynamics of a 

Jeffcott rotor having intermittent contact with a stator was presented in [27] and the parameter 

variations of the rotor speed and the mass ratio of the stator and the rotor were examined. Shaw et al. 



[28] performed an analysis of sustained bouncing phenomenon of rotating shafts under the 

rotor-stator contact. Based on a survey of the literature, it can be seen that the main concern is the 

rub-impact between the single-turbine and the casing. However, rub-impact between multi-stage 

turbine blades and multi-layer casings has been rarely studied. According to the actual needs in 

practice, rub-impact occurring in a multi-stage structure must be understood through an in-depth 

study. 

As one of the common faults in rotating machines, pedestal looseness could reduce the elastic 

constraint stiffness of a pedestal and can cause violent vibration of a rotor system, which greatly 

increases the possibility of rub-impact. In [30], a nonlinear mathematical model was developed for a 

rotor-bearing system including pedestal looseness. At the same time, the nonlinear dynamic 

characteristics were discussed by a nonlinear fitting method under different looseness clearances. 

Based on an elastic half space soil model, Ruhl et al. [31] determined the unbalanced responses of a 

large rotor-pedestal-foundation. Qin et al. [32] analysed the time-varying stiffness of a connective 

structure with bolt loosening by means of a three-dimensional (3D) nonlinear finite element model. 

Nataraj et al. [33] studied the dynamic response of a rotor-bearing system with angular misalignment 

and pedestal looseness. Although much progress has been made to analyse the pedestal looseness, 

most of the previous studies are on single rotor systems. 

Up to now, the blade-casing rub and imbalance excitation have been studied in depth. However, 

previous investigations on the pedestal looseness are mainly limited to simple single rotor systems, 

which are obviously different from the actual rotating machines. Actually, it is of practical 

significance for diagnosing faults and ensuring stability to carry out the prediction of the dynamic 

responses of a complete aero-engine subjected to pedestal looseness fault. 

This paper aims at revealing the vibration characteristics of a complete aero-engine system 

having pedestal looseness and multi-stage turbine blade-casing rub, a dual-rotor-bearing-double 

casing dynamic model is set up and the influences of the pedestal looseness are studied emphatically. 

The structure of the paper is organized as follows: Firstly, the dynamic modelling of a complete 

aero-engine system, including dual-rotor part, bearings, pedestals, inner casing, outer casing, and 

blade-casing rub, is set up in Section 2. Next, different types of vibration behaviours of a dual-rotor 

test rig are reported and in particular the beat vibration and frequency spectrum for identifying 

rub-impact are analysed in Section 3. Moreover, the effects of pedestal looseness and rub-impact on 

the dynamic characteristics of the dual-rotor system are revealed in Section 4, in which the loosening 

pedestal stiffness, disc eccentricities, speed ratio, and initial gap are considered as the key parameters. 

Finally, some conclusions are summarized in Section 5. 

2. Dynamic modelling 

In order to predict vibration behaviours of an aero-engine system with both pedestal looseness 

and rub-impact faults, a complete dual-rotor dynamic model is established in this paper. According to 

[34], three main modes of rotor vibrations – lateral, torsional and axial modes – may be present in the 

actual operation of a rotating machine. Among these modes, the lateral modes are of the greatest 

concern. 



A schematic of a dual-rotor-bearing-double casing system capable of lateral vibration is shown 

in Fig. 1. This complicated integrated system may be divided into four subsystems, including low 

pressure rotor (LP rotor), high pressure rotor (HP rotor), inner casing and outer casing. In addition, 

these four subsystems are coupled by the rolling bearings and pedestals. In many cases, under the 

influence of high frequency excitation, the looseness fault is more likely to occur in the HP rotor. 

Therefore, a looseness fault is assumed to happen at the one of pedestals of the HP rotor in this paper. 

In particular, an inter-shaft bearing is installed on the HP turbine disc for coupling the LP rotor and 

the HP rotor. 

For each rotor subsystem, two discs (i.e., compressor disc and turbine disc) with eight straight 

blades are mounted on the uniform elastic shaft. The inner casing and the outer casing are connected 

by elastic rods, and the outer casing is supported on the foundation. In the process of modelling, 

some assumptions are made as follows: 

(1) The two rotating shafts are considered as Rayleigh beams, in which the shear effects and the 

torsion are not considered. 

(2) All the discs are assumed to be rigid and their deformations are ignored. 

(3) Both inner casing and outer casing are simplified to two lumped mass blocks. 

(4) According to a real aero engine device in which the stiffness of blades is much larger than that of 

the flexible shafts, the elastic deformations of the blades are ignored. 

(5) All identical blades are rigidly installed on the discs and the blade-loss event never happens. 

(6) The balls of the bearing model are only rolling and the bearing deformation is mainly contact 

deformation between the rolling balls and the raceway. 

(7) The mass eccentricity of the LP turbine disc keeps the same as that of the HP turbine disc. 

(8) The effects of thermal and friction torque in rub-impact are ignored. 
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Fig. 1 Schematic diagram of a dual-rotor-bearing-double casing system. 

According to the modelling method reported in [35] and the above assumptions, a mathematic 

model of the dual-rotor-bearing-double casing system is shown in Fig. 2. It can be seen that the 

elastic rods are modelled as the linear springs and the viscous dampers. The global coordinate system 

is o xyz , which is fixed to the Earth. Due to the existence of two mass eccentricities, the dual-rotor 



system is subjected to two imbalance forces and the excitation frequencies of the two imbalance 

forces may be the same or not. 

In order to achieve gas path sealing, oxidation and corrosion control, coatings have been applied 

to the surfaces various components [36]. Fig. 2 illustrates that soft coatings are used in the LP rotor 

and hard coatings are used in the HP rotor. Moreover, a nonlinear spring and a nonlinear viscous 

damper are introduced to the mathematic model for describing the pedestal looseness. The specific 

expressions of the nonlinear spring and the nonlinear damping will be given later. 
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Fig. 2 Mathematic model of a dual-rotor-bearing-double casing system. 

2.1 Finite element discretization of dual rotor part 

Firstly, the equations of motion for the dual-rotor part are derived by using the finite element 

method. The finite element discretization of the LP and HP rotors is illustrated in Fig. 3, in which the 

two rotating shafts are divided into several segments. The rigid discs are arranged on the 

corresponding nodes according to the actual installation location. 
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Fig. 3 Finite element discretization of the dual-rotor part in the coordinate plane of xoz: (a) LP rotor 

and (b) HP rotor. 

The variable  b 1 4xiF i   denotes the vertical component of the constraint force provided by 

the rolling bearing. b 2xF
 

is seen as a particular constraint force provided by the inter-shaft bearing. 

The variable  r 1,2xjF j   denotes the vertical component of the rub-impact force between the 

multi-stage turbine blades and the multi-layer casings. In addition, the variable  e 1,2xjF j   denotes 

the vertical component of the imbalance force. 



As shown in Figs. 4(a) and (b), Rayleigh beam elements are used to model the shaft segments of 

the LP and HP rotors. Each Rayleigh beam element has four degrees of freedom at each node, 

including two translations and two rotations. Therefore, the generalized displacement vector of the 

shaft element of the LP rotor in the coordinate planes of xoz and yoz can be expressed as 

 
T

Lb A A B B A A B B, , , , , , , ,y y x xx x y y       u   (1) 

where ix  and iy  ( A, Bi  ) denote the four translations; xi  and 
yi  (i = A, B) denote the four 

rotations, respectively. 

Analogously, the generalized displacement vector of the shaft element of the HP rotor can be 

given as 

 
T

Hb C C D D C C D D, , , , , , , ,y y x xx x y y       u   (2) 

where ix  and iy  ( C, Di  ) denote the four translations, xi  and yi  ( C, Di  ) denote the four 

rotations, respectively. 
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Fig. 4 Discrete elements during the process of the finite element modelling: (a) shaft element of LP 

rotor, (b) shaft element of HP rotor, (c) disc element of LP rotor, and (d) disc element of HP rotor. 

Because of the assumption that all the discs are seen as the rigid ones, the generalized 

displacement vectors of the discs of the LP and HP rotors (see Figs. 4(c) and (d)) are satisfied as 

 
T

Ld Ld Ld Ld Ld, , , ,y xx y    u  (3) 

 
T

Hd Hd Hd Hd Hd, , , .y xx y    u   (4) 



As given in [13, 14], the mass matrix of the shaft element usually includes the translational 

inertia part and the rotational inertia part. In the coordinate plane of xoz, the mass matrix of the shaft 

element of the LP rotor is 

 
 

Lb Lb Lb Lb
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   
       

M  (5) 

where Lbm
 
denotes the mass per unit length of the shaft; Lbl

 
denotes the length of the shaft 

element of the LP rotor; LbR  and Lbr  denote the outer and inner radii of the cross section, 

respectively. 

Through the same derivation, the following expression is used to describe the mass matrix of 

the shaft element of the HP rotor. 
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Hb Hb Hb Hb

2 22 2 2 2
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Hb
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   
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M  (6) 

where Hbm  denotes the mass per unit length; Hbl  denotes the length of the shaft element of the HP 

rotor; HbR  and Hbr  denote the outer and inner radii of the cross section, respectively. 

Under the two imbalance excitations, the whirling motion will appear in the dual-rotor system. 

In this condition, the polar inertial moments of the two rotating shafts can lead to the gyroscopic 

effects, which should be taken into consideration. 

The gyroscopic matrices of the shaft elements of the LP and HP rotors are given in the 

following expressions: 

 
 

Lb Lb

2 2 2 2
Lb Lb Lb L Lb Lb Lb Lb

Lb

Lb LbLb

2 2

Lb Lb Lb Lb

36 3 36 3

3 4 3
,

36 3 36 360

3 3 4

l l

m R r l l l l

l ll

l l l l



 
   
 
   
 

  

G   (7) 

 
 

Hb Hb

2 2 2 2
Hb Hb Hb H Hb Hb Hb Hb

Hb

Hb HbHb

2 2

Hb Hb Hb Hb

36 3 36 3

3 4 3
,

36 3 36 360

3 3 4

l l

m R r l l l l

l ll

l l l l



 
   
 
   
 

  

G   (8) 

where L  and H  denotes the rotational speeds of the LP and HP rotors. 

In addition, the stiffness matrix of the shaft element of the LP rotor in the coordinate plane of 

xoz can be expressed as 



 

Lb Lb

2 2
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where E  denotes the elastic modulus of the LP shaft, LbI  denotes the second moment of area of 

the cross section of the LP shaft. 

Since the LP rotor and the HP rotor have the same material characteristics, the elastic modulus 

of the HP rotor is also defined as E . Therefore, the stiffness matrix of the shaft element of the HP 

rotor can be expressed as 
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where HbI  denotes the second moment of area of the cross section of the HP shaft. 

It must be noted that each disc element has only on node. The mass matrix and the gyroscopic 

matrix of the disc are written in a 2 2  form in the coordinate plane of xoz, namely 
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and 
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where Ldm  and Hdm  are the mass matrices of the discs of the LP and HP rotors; LddJ
 
and HddJ  

are the diametric inertia of the discs; 
LdpJ

 
and 

HdpJ
 
are the polar inertia of the discs, respectively. 

Then the equations of motion for the dual-rotor part of the complete system can be obtained by 

assembling the mass and stiffness matrices of the disc elements and the shaft elements, so that 
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in which, LM  and HM  are the masses matrices of the LP and HP rotor subsystems; LG  and HG  

are the gyroscopic matrices; LK  and HK  are the stiffness matrices; LxQ  and 
LyQ  are the 

generalized force vectors acting on the LP rotor; HxQ  and 
HyQ  are the generalized force vectors 

acting on the HP rotor, respectively. 

It needs to be stressed that the LP rotor and the HP rotor are coupled by the inter-shaft bearing. 

And the corresponding constraint force between them is reflected in the generalized force vectors of 

Eq. (13). 

2.2 Bearing and pedestal model 

As shown in Fig. 2, the dual-rotor part is supported by the rolling bearings and the pedestals. 

Next the dynamic equations of the rolling bearings and the pedestals are derived in this subsection. 

Fig. 5 gives the physical model and the mathematical model of the bearing and the pedestal, 

which are installed on the LP rotor. According to the motion characteristics, the generalized 

displacement vector of them is defined as 

 
T

b br p br p, , , ,x x y y   v   (14) 

where brx  and 
px  denote the vertical displacement of bearing outer ring and pedestal; bry  and 

py  denote the lateral displacement of bearing outer ring and pedestal, respectively. 
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Fig. 5 Schematic diagram of bearing and pedestal models without looseness fault: (a) physical model 

and (b) mathematical model. 



Because the pedestal is connected with the outer casing (see Fig. 5(b)), the interaction between 

them should be accounted for in the modelling process. Based on the Lagrange’s equation, the 

equations of motion for the bearing outer ring and the pedestal are determined as 
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where brm  and 
pm  denote the masses of bearing outer ring and pedestal; brk  and brc  denote 

the linear stiffness and damping of bearing outer ring; 
pk  and 

pc  denote the linear stiffness and 

damping of pedestal; ocx  and ocy  denote the vertical and lateral displacement of outer casing. 

The above analysis strategy can also be applied to the other bearing and pedestal models. So the 

equations of motion for all the bearing and pedestal models are presented in this paper. 

The specific derivation of forces bxF  and 
byF

 
provided by the rolling balls is further given. 

Fig. 6 shows two kinds of bearing models, namely support bearing and inter-shaft bearing. Both are 

mainly composed of inner ring, outer ring and rolling balls. As shown in Fig. 6(a), this bearing is 

used to support the LP shaft, in which the inner ring of the bearing is in contact with the shaft, and 

the outer ring is mounted on the pedestal. Different from a support bearing, the inter-shaft bearing 

(see Fig. 6(b)) is used to realize the coupling relationship between the LP rotor and the HP rotor, 

where the inner ring of the bearing is in contact with the LP shaft, and the outer ring of the bearing is 

in contact with the HP shaft. 
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(a) support bearing (b) inter-shaft bearing 

Fig. 6 Schematic diagram of two kinds of bearing models: (a) support bearing and (b) inter-shaft 

bearing. 

According to [37], the cage of the bearing model has no mass but could be considered a 

geometric constraint that keeps the rolling balls evenly distributed on the circumference. For the 



dual-rotor system, there may be four cases for calculating the rotational speed of the cage. Case 1 is 

the support bearing of the LP rotor; Case 2 is the support bearing of the HP rotor; Case 3 is the 

inter-shaft bearing under the co-rotation; Case 4 is the inter-shaft bearing under the counter-rotation. 

Based on the above four cases the rotational speed of the cage is obtained as 
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where bR  and br  denote the radii of the bearing outer and inner orbits. 

For the support bearing shown in Fig. 6(a), the contact displacement of the jth rolling ball 

satisfies the following expression: 
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where Lbx  and Lby  are the vertical and lateral displacements of the shaft node corresponding to 

the installation position of bearing; rN  is the number of rolling balls; 0r  is the initial clearance. 

If the above contact displacement of the jth rolling ball is larger than zero, the shaft is 

considered to be subjected to a force from this rolling ball. Otherwise, there is no interaction between 

them. Therefore, according to the Hertz contact theory [38], the two components of the contact force 

of the jth rolling ball in the vertical and lateral directions are as follows: 
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and 
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where bC  denotes the contact stiffness of the rolling ball, which is mainly determined by the 

contact geometry and material characteristics. 

By including all the forces from the individual balls, the interaction between the bearing and the 

LP shaft is obtained as 
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A schematic diagram of bearing and pedestal models having looseness fault is shown in Fig. 

7(a). According to [39], the stiffness and damping forces with tri-linear form are adopted in a 

nonlinear mathematical model (see Fig. 7(b)). 

Hence, the following equations describing the constraint stiffness are acquired: 
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where 
px  denotes the vertical vibration displacement of the loose pedestal; l  denotes the initial 

looseness gap; 
p1k  denotes the constraint stiffness under the loose state; 

p2k  denotes the constraint 

stiffness under the locked state. 

Meanwhile, the constraint damping of the pedestal with looseness fault is as follows: 
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where 
p1c  denotes the constraint damping under the loose state; 

p2c  denotes the constraint damping 

under the locked state. 
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Fig. 7 Schematic diagram of bearing and pedestal models with looseness fault: (a) physical model 

and (b) mathematical model. 

2.3 Inner and outer casing model 

For the dual-rotor system established in this paper, the structural stiffness of the inner and outer 

casings is much greater than that of the flexible shaft. Therefore, the elastic deformations of both 

inner casing and outer casing are ignored, that is to say, both are modelled as two lumped mass 



blocks. 

A partial sketch for describing the vibration of inner and outer casings is shown in Fig. 8, in 

which  p 1 3xiF i   denotes the vertical force from three pedestals, and  r 1,2xiF i 
 
denotes the 

vertical components of rub-impact force. Because of the double casing structure, the multi-stage 

turbine blades may collide with the inner and outer casings. The mechanical mechanism of 

rub-impact will be further discussed later. 

r 1xF
p 1xF

p 2xF

r 2xF p 3xF

z

x

o

Outer casing

Inner casing

ocx

icx

Foundation

 

Fig. 8 A partial sketch of inner and outer casings in the coordinate plane of xoz. 

Through the force analysis for the subsystem shown in Fig. 8, the equations of motion for the 

inner and outer casings are expressed as 
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  (23) 

where icm  and ocm  represent the masses of inner and outer casings; ock  and ick  represent the 

constraint stiffness; occ  and icc  represent the constraint damping, respectively. 

2.4 Multi-stage turbine blade-casing rub model 

Due to two imbalance excitations and pedestal looseness, serious rub-impact fault between the 

multi-stage turbine blades and the multi-layer casings may be induced. Consequently, the mechanical 

mechanism of blade-casing rub is revealed in this subsection. 

Usually, soft coating is used for the low pressure rotor, while hard coating is used for the high 

pressure rotor. Then the influences of coatings painted on the aero-engine components are considered 

in this paper. As shown in Fig. 9, the LP turbine disc with blades may rub against the outer casing 

with soft coating. Meanwhile, the HP turbine disc with blades may also rub against the inner casing 

with hard coating. It is assumed that LN  and HN  blades are evenly distributed on the two turbine 

discs. So the angular positions of the ith blade of the LP turbine disc and the jth blade of the HP 

turbine disc at time t  can be determined as 
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On the basis of Eq. (24), the impact displacement and the impact velocity between the ith blade 

and the outer casing can be further obtained as 
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where L0  denotes the initial gap between the blades of LP turbine disc and the outer casing. 

In the same way, the impact displacement and the impact velocity between the jth blade of the 

HP turbine disc and the inner casing are 
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where H0  denotes the initial gap between the blades of HP turbine disc and the inner casing. 
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Fig. 9 Schematic diagram of rub-impact between multi-stage turbine blades and multi-layer casings: 

(a) LP turbine disc and outer casing with soft coating and (b) HP turbine disc and inner casing with 

hard coating. 

Then the Lankarani-Nikravesh model [40] is utilized to describe the mechanical mechanism of 

rub-impact between multi-stage turbine blades and multi-layer casings. This contact model is 

developed from the Hertz contact theory and accounts for several features, such as local contact area, 

material characteristics and energy loss. 

As a result, the impact forces of the ith blade of the LP turbine disc and the jth blade of the HP 



turbine disc are obtained as 
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and 
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where Lk  and Hk  denote the impact stiffness, which is mainly determined by the elastic modulus 

of coatings and the curvature radius in the contact area. In the numerical simulation, two values are 

used to describe the two different impact stiffness caused by the different coating hardness. Moreover, 

ec  denotes the restitution coefficient;  L i   and  H j   denote the initial impact velocity, 

respectively. 

The tangential rub between the blades and the casings is seen as a sliding friction in this paper. 

Accordingly, the Coulomb friction law [41] is employed as 
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where L  and H  denote the coefficients of friction, which are mainly determined by the 

smoothness of soft and hard coatings. 

Fig. 9 suggests that the sign function in Eq. (29) depends primarily on the tangential relative 

velocity between the two surfaces at the blade-casing contact points. Therefore, the tangential 

relative velocities  Lv i  and  Hv j  can be determined as 
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where LdR  and HdR  denote the outer radii of the turbine discs;  Lbl i  and  Hbl j  denote the 

length of the ith blade and the jth blade, respectively. 

The total rub-impact force of the dual-rotor system is the sum of the rub-impact forces acting on 

the blades of the turbine discs. So the impact forces and the tangential forces could be further 

transformed as the external forces in Eq. (23) by using the following relations: 
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and 
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2.5 Integration of the dual-rotor-bearing-double casing model 

Based on the previous analysis, the discrete parts, including dual-rotor part, bearings, pedestals, 

inner casing and outer casing, are further integrated here. Therefore, the equation of motion for the 

dual-rotor-bearing-double casing system can be written in the following matrix form. 
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where CM , CC , CK  denote the mass, damping, stiffness matrices of the subsystem, which 

includes the bearings, pedestals, inner casing and outer casing. Moreover, CxQ  and 
CyQ  denote the 

generalized force vector of this subsystem. 

3. Experimental study on the dual-rotor rig 

To predict the vibration behaviour of the dual-rotor system subjected to two imbalance 

excitations, an experimental study at different rotational speeds is performed on a dual-rotor test rig. 

   

(a) external construction (b) inner construction (c) blade-casing rub 

Fig. 10 Diagram of a dual-rotor test rig: (a) external construction, (b) inner construction, and (c) 



blade-casing rub. 

Fig. 10 shows the dual-rotor test rig, which is set up in the Aircraft Dynamics and Vibration 

Control Lab, Harbin Institute of Technology. The main structural characteristics of the test rig are 

very close to the theoretical model proposed in this paper. Both the LP rotor and the HP rotor are 

driven by their own motors. As shown in Fig. 10(b), a double casing is present and several straight 

blades are installed on the two turbine discs. 

3.1 Effect of speed ratio of LP and HP rotors 

This subsection focuses on the vibration features of the dual-rotor test rig with different speed 

ratios of LP and HP rotors. The speed ratio of the LP and HP rotors is defined as 
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where 0   indicates the co-rotation state, and 0   indicates the counter-rotation state. 

In this paper, co-rotation of the dual-rotor test rig is considered. To understand the dynamic 

responses more comprehensively, the speed ratio of the LP and HP rotors is set to 1  , 1.1  , 

1.2   and 1.4  , respectively. For the turbine disc of the LP rotor, the time histories of lateral 

displacement are shown in Fig. 11. 

  

(a) L 190 rad/s   and H 194 rad/s   (b) L 195 rad/s   and H 217 rad/s   

  

(c) L 200 rad/s   and H 240 rad/s   (d) L 350 rad/s   and H 490 rad/s   

Fig. 11 Time histories of lateral displacement in the different condition of speed ratio: (a) 

L 190 rad/s   and H 194 rad/s  , (b) L 195 rad/s   and H 217 rad/s  , (c) L 200 rad/s   

and H 240 rad/s  , (d) L 350 rad/s   and H 490 rad/s  . 

From Fig. 11, it is clear that there are different types of vibration behaviours. Fig. 11(a) shows a 

transition from periodic motion to beat vibration. When the speed ratio is 1.1   and 1.2  , the 



time histories of lateral displacement obviously exhibit beat vibration, while the period of beat 

vibration under 1.1   is different from that under 1.2  . Furthermore, with the increase of 

speed ratio, the phenomenon of beat vibration will be gradually replaced by quasi-periodic motion, 

as shown in Fig. 11(d). 

Hence it can be concluded that when the rotational speed of the LP rotor is close to that of the 

HP rotor, the beat vibration is more likely to occur in the dynamic responses of the dual-rotor system. 

3.2 Vibration response in simulation and experiment 

The experimental study in the previous subsection illustrates that the beat vibration is a typical 

dynamic behaviour for the dual-rotor system. In view of this, the beat vibration is emphatically 

investigated by numerical simulation and experiment. Under the excitation, the vibration responses 

of the system include the transient-state part and the steady-state part. In order to capture the 

dynamic characteristics of the system, the steady-state part is selected and studied. 

In terms of experiment, multiple eddy current sensors are used to simultaneously measure the 

lateral and vertical displacements of the LP turbine disc. When the rotational speeds of the LP and 

HP rotors are L 200 rad/s   and H 240 rad/s  , the vibration responses in the two directions 

are shown in Figs. 12(a) and (b). 

  

(a) experimental result in vertical direction (b) experimental result in lateral direction 

  

(c) theoretical result in vertical direction (d) theoretical result in lateral direction 

Fig. 12 Time histories of displacement of the LP turbine disc at L 200 rad/s 
 
and 

H 240 rad/s  : (a) experimental result in vertical direction, (b) experimental result in lateral 

direction, (c) theoretical result in vertical direction, and (d) theoretical result in lateral direction. 

The main parameters of the dual-rotor system in the simulation are taken from [13] and given in 

the Appendix. Then the fourth-order Runge-Kutta method is applied to carry out the dynamics 



simulation of Eq. (33). Keeping the rotational speeds of the LP and HP rotors unchanged, the 

numerical results for describing the vertical and lateral displacements of LP turbine disc are depicted 

in Figs. 12(c) and (d). By comparative analysis, it can be seen that the numerical results are well 

matched with the experimental results, including the vibration amplitude and the vibration period. 

Obviously, there is one beat in every 0.1 s . 

While keeping 1.2  , the rotational speed of the LP rotor is increased to L 300 rad/s  . 

Consequently, the displacements of the LP turbine disc obtained by simulation and experiment are 

given in Fig. 13. It is clear that the phenomenon of beat vibration still exists in the responses of the 

dual-rotor system. More importantly, the theoretical results are basically consistent with the 

experimental results. 

  

(a) experimental result in vertical direction (b) experimental result in lateral direction 

  

(c) theoretical result in vertical direction (d) theoretical result in lateral direction 

Fig. 13 Time histories of displacement of the LP turbine disc at L 300 rad/s   and 

H 360 rad/s  : (a) experimental result in vertical direction, (b) experimental result in lateral 

direction, (c) theoretical result in vertical direction, and (d) theoretical result in lateral direction. 

For a dual-rotor system, there are generally two operating modes, namely co-rotation and 

counter-rotation. The so-called co-rotation means that the rotation direction of the HP rotor is the 

same as that of the LP rotor. However, the so-called counter-rotation means that the rotation direction 

of the HP rotor is opposite to that of the LP rotor. For the case of co-rotation, the theoretical and 

experimental research on the beat vibration has been conducted. Next, by theoretical and 

experimental methods, the vibration response of the dual-rotor system is further studied in the 

counter-rotation mode. 

As shown in Fig. 14, when the rotational speeds of the LP and HP rotors are L 180 rad/s   



and H 216   , the phenomenon of beat vibration is observed in Fig. 14, in which the theoretical 

result is similar to the experimental result. 

Combined with the structural characteristics of the experimental platform, a rub testing device is 

designed at the low pressure disc (see Fig. 10(c)), and the blade-casing rub experiment is carried out 

accordingly. As shown in Fig. 15, the frequency spectrum of the system without and with 

blade-casing rub is respectively obtained by theoretical and experimental methods. When the 

blade-casing rub is not considered, Figs. 15(a) and (c) only contain two frequency components, i.e., 

two excitation frequencies of the LP and HP rotors. Due to blade-casing rub, there are rich frequency 

components in Figs. 15(b) and (d), including L , H , H L  , L H   and H2 . In addition, 

rub response obtained by the theoretical method is consistent with that obtained by the experiment. 

  

(a) experimental result in vertical direction (b) experimental result in lateral direction 

 ` 

(c) theoretical result in vertical direction (d) theoretical result in lateral direction 

Fig. 14 Time histories of displacement of the LP turbine disc at L 180 rad/s   and 

H 216 rad/s   : (a) experimental result in vertical direction, (b) experimental result in lateral 

direction, (c) theoretical result in vertical direction, and (d) theoretical result in lateral direction. 

  



(a) experimental result without rub-impact (b) experimental result with rub-impact 

  

(c) theoretical result without rub-impact (d) theoretical result with rub-impact 

Fig. 15 Frequency spectra of the vertical responses of the dual-rotor system at L 184 rad/s   and 

H 276 rad/s  : (a) experimental result without rub-impact, (b) experimental result with rub-impact, 

(c) theoretical result without rub-impact, and (d) theoretical result with rub-impact. 

In this subsection, the comparison between the theoretical result and the experimental result is 

carried out. This illustrates that the dynamic model of the dual-rotor-bearing-double casing system 

proposed in this paper is effective to some extent. Based on this model, the vibration response of the 

system having pedestal looseness and blade-casing rub will be further investigated by numerical 

simulation in the following part. 

4. Simulation and discussion 

4.1 Dynamic analysis of the system with pedestal looseness 

In this part, the effects of the pedestal looseness on the vibration responses of the 

dual-rotor-bearing-double casing system are studied numerically. In the simulation process, a linear 

interpolation method [42] is adopted to determine the occurrence of the blade-casing rub. For a case 

of ‘no rub to rub’, the initial time step is modified by the linear interpolation method. When the 

target condition is satisfied, the iteration for refining the time step will stop. The parameters given in 

the Appendix are used in the simulation. Then the time histories, whirling orbits and spectrum 

cascades are used to describe the dynamic responses of the system in different work conditions. 

Keeping the rotational speed of the LP rotor as L 200 rad/s  , the speed ratio is set to 1   

and 1.2  , respectively. For the case of no looseness, the time histories of the vertical 

displacements of inner and outer casings are shown in Figs. 16(a) and (b). At 1  , the vibration 

responses of the inner and outer casings are regular 1T-periodic motion. While at 1.2  , the 

responses of the inner and outer casings evolve into beat vibration. Regardless of the above two 

speed ratios, the vibration amplitude of the inner casing is always larger than that of the outer casing. 

Next the pedestal looseness shown in Fig. 7(b) is accounted for and the stiffness of the 

loosening pedestal given in Eq. (21) is set to 
p1 0k  , which represents the most serious state. Under 

this circumstance, the vertical displacements of the inner and outer casings are shown in Figs. 16(c) 



and (d). It can be seen that the responses appear in pulses. Because of the decrease of the constraint 

stiffness caused by pedestal looseness, the vertical vibration amplitudes are obviously amplified. In 

addition, it should be emphasized that although the looseness fault only occurs in the local part of the 

HP rotor, both the LP rotor and the HP rotor will vibration violently. The main reason is that the LP 

rotor and the HP rotor are coupled through the inter-shaft bearing. Similarly, the dynamic responses 

of the inner casing and the outer casing are linked as well. In addition, according to the change of 

vibration amplitude shown in Fig. 16, it can be observed that the vibration of the system having 

pedestal looseness happens around a position which is not zero. 

To some extent, these particular dynamic phenomena, such as impulse responses with large 

amplitude and offset of vibration balance position can be used to determine whether there is a 

looseness fault in a rotating machine. 

  

(a) no looseness and 1   (b) no looseness and 1.2   

  

(c) looseness and 1   (d) looseness and 1.2   

Fig. 16 Time histories of vertical displacement of the inner and outer casings: (a) with no looseness 

and 1  , (b) with no looseness and 1.2  , (c) with looseness and 1  , and (d) with looseness 

and 1.2  . 

The above simulation proves that the pedestal looseness does have a significant influence on the 

rotor motion. To understand the motion state of rotating machine clearly, the analysis of whirling 

orbits is also an indispensable part in the field of rotor dynamics. 



Fig. 17 shows the whirling orbits of the inner and outer casings corresponding to the different 

looseness severity. The state of 1   indicates that the excitation frequency of the LP rotor is equal 

to that of the HP rotor. In this condition, with the decrease of pedestal stiffness 
p1k , the whirling 

orbits of the inner and outer casings gradually change from the initial regular circle to the irregular 

ellipse. Since the looseness fault mainly exists in the vertical direction, the variations of the whirling 

orbits in the vertical direction become more obvious than those in the lateral direction. 

When the speed ratio is 1.2  , the whirling orbits of the inner and outer casings with no 

looseness appear in a rose-like shape instead of a circle, as shown in Figs. 17(c) and (d). As the 

looseness severity increases, the rose-like shape disappears, and then it becomes irregular and 

complicated. 

  

(a) whirling orbits of inner casing at 1   (b) whirling orbits of outer casing at 1   

  

(c) whirling orbits of inner casing at 1.2   (d) whirling orbits of outer casing at 1.2   

Fig. 17 Variation of whirling orbits with different looseness severity: (a) whirling orbits of inner 

casing at 1  , (b) whirling orbits of outer casing at 1  , (c) whirling orbits of inner casing at 

1.2  , and (d) whirling orbits of outer casing at 1.2  . 

In terms of fault diagnosis, the spectrum feature analysis is an essential tool, which can identify 

the specific frequency components. Therefore, the 3D waterfall plot is introduced in this part to 

analyse the frequency characteristics. In order to avoid the complex situation caused by the two 



different excitation frequencies, and to more directly analyse the dynamic characteristics 

corresponding to the looseness fault, the speed ratio of the LP and HP rotors is set to 1   here. 

As shown in Fig. 18, the axis of the pedestal stiffness can be divided into two parts, including 

moderate states and serious states. Under the moderate states, only one frequency component (i.e., 

excitation frequency) is observed in the 3D waterfall plot. This indicates that the dual-rotor system 

has not been significantly affected by the pedestal looseness at this time. 

  

(a) frequency spectrum of vertical displacement 

of inner casing 

(b) frequency spectrum of vertical displacement 

of outer casing 

  

(c) frequency spectrum of lateral displacement of 

inner casing 

(d) frequency spectrum of lateral displacement of 

outer casing 

Fig. 18 The 3D waterfall plot of the inner and outer casings: (a) frequency spectrum of vertical 

displacement of inner casing, (b) frequency spectrum of vertical displacement of outer casing, (c) 

frequency spectrum of lateral displacement of inner casing, and (d) frequency spectrum of lateral 

displacement of outer casing. 

When the pedestal stiffness belongs to the serious states, there are rich frequency components in 

the 3D waterfall plot. In addition to the component synchronous to rotational speed (i.e., 1X  

component), the higher-order harmonics, such as 2X , 3X , 4X , 5X , 6X  and 7X , are 

observed in the spectrum diagram. Meanwhile, the amplitude of the 1X  component is larger than 

the other components. So it can be concluded that the existence of higher-order harmonics also 

provides a theoretical basis for the identification of pedestal looseness. 



The excitations induced by the mass imbalance are a major source of rotor vibrations. So it is 

necessary to analyse the effect of disc eccentricities on the motion of the dual-rotor system. Keeping 

the other parameters unchanged, the eccentricities of the LP turbine disc and the HP turbine disc are 

assumed to be   5

Ld Hd 1,2,3,4,5,6,7,8,9,10 10  mme e    , respectively. 

When the rotational speeds of the LP and HP rotors are L =200 rad/s  and H =240 rad/s , the 

variations of the maximum displacements due to different eccentricities are depicted in Fig. 19. 

Meanwhile, the comparison of the displacement with or without pedestal looseness is also conducted 

and shown in this figure. With the increase of the disc eccentricities, the maximum vertical 

displacements gradually become larger. Within this range of disc eccentricities, the looseness fault 

always aggravates the system vibration. It can enlarge the growth rate of the displacement as well. 

The numerical results confirm exactly that the disc eccentricities have a detrimental effect on 

the smooth operation of rotating machines. In order to prevent the serious amplification of vibration 

amplitude by looseness fault, more attention should be paid to the effective maintenance of pedestals. 

  

(a) maximum vertical displacement of LP turbine 

disc (LT disc) and HP turbine disc (HT disc) 

(b) maximum vertical displacement of inner and 

outer casings 

Fig. 19 Effects of eccentricities of LT and HT discs on the system responses: (a) maximum vertical 

displacement of LT and HT discs, and (b) maximum vertical displacement of inner and outer casings. 

4.2 Dynamic analysis of the system with looseness-rub coupled fault 

The severe imbalance and pedestal looseness can easily lead to the whirling motion with large 

amplitude. Under this circumstance, the probability of rotor-stator rub is increased sharply. So this 

subsection concentrates on studying the impact force and fault form of the dual-rotor system. 

Different from previous studies [23-25], the rub-impact between multi-stage turbine blades and 

multi-layer casings is taken as the object. It is worth noting that this is one of the main contributions 

of this paper. During dual-rotor operation, the blades mounted on the LP turbine disc may rub against 

the outer casing with soft coating. At the same time, the blades mounted on the HP turbine disc may 

rub against the inner casing with hard coating as well. Therefore, it is crucial to calculate the impact 

force between the blades and the casings for evaluating the operation state of the dual-rotor system in 

advance. 

When the effects of the pedestal looseness are not taken into account, the resultant impact forces 

of the dual-rotor system are analysed at 1   and 1.2  . Compared with the HP rotor, the LP 



rotor is the first to rub at the rotational speed L 200 rad/s  , as shown in Figs. 20(a) and (b). In the 

range of LP rotational speed of  200,375 rad/s , the LP rotor sustains a full annular rub but there is 

no contact between the HP rotor and the inner casing. After that, a partial rub replaces the full 

annular rub and lasts until L 425 rad/s  . Besides, affected by the LP rotor, the HP rotor also 

begins to rub and the fault form is identified as the partial rub. 

  

(a) impact force of LP rotor at 1   (b) impact force of HP rotor at 1   

  

(c) impact force of LP rotor at 1.2   (d) impact force of HP rotor at 1.2   

Fig. 20 Resultant impact force of the dual-rotor system without pedestal looseness: (a) impact force 

of LP rotor at 1  , (b) impact force of HP rotor at 1  , (c) impact force of LP rotor at 1.2  , 

and (d) impact force of HP rotor at 1.2  . 

When the speed ratio of the LP and HP rotors is 1.2  , the impact forces of the dual-rotor 

system are given in Figs. 20(c) and (d). Unlike the cases in Figs. 20(a) and (b), the rub-impact of the 

dual-rotor system happens at a lower speed. Meanwhile, the impact forces in Figs. 20(c) and (d) are 

larger than those in Figs. 20(a) and (b), which means that the more serious rub-impact happens at this 

time. From the perspective of fault form, the partial rub is more likely to occur in the dual-rotor 

system at speed ratio 1.2  . 

After a preliminary numerical analysis of the rub-impact between the multi-stage turbine blades 

and the multi-layer casings, the influences of pedestal looseness on the rub characteristics of the 

dual-rotor system are further discussed in detail. 

As shown in Fig. 21(a), the presence of the pedestal looseness will cause the LP rotor to start a 



partial rub from L 125 rad/s  . When the rotational speed increases to L =225 rad/s , a full 

annular rub happens and lasts until L =375 rad/s . After this, the full annular rub is replaced by a 

partial rub again. The variation of the impact force of the HP rotor having pedestal looseness is 

shown in Fig. 21(b). With the weakening of the constraint stiffness, the HP rotor will rub at a lower 

rotational speed. Meanwhile, the impact magnitude between the high turbine blades and the inner 

casing will be intensified by the pedestal looseness. 

  

(a) impact force of LP rotor at 1   (b) impact force of HP rotor at 1   

  

(c) impact force of LP rotor at 1.2   (d) impact force of HP rotor at 1.2   

Fig. 21 Resultant impact force of the dual-rotor system having pedestal looseness: (a) impact force of 

LP rotor at 1  , (b) impact force of HP rotor at 1  , (c) impact force of LP rotor at 1.2  , and 

(d) impact force of HP rotor at 1.2  . 

If the speed ratio is changed from 1   to 1.2  , the impact forces of the dual-rotor system 

having pedestal looseness are depicted in Figs. 21(c) and (d). Within the rotational speed range of 

 125,425 rad/s , the LP rotor is continuously affected by the partial rub. Meanwhile, compared with 

Fig. 20(d), the rotational speed corresponding to the first rub will go down even further, as shown in 

Fig. 21(d). 

Finally, the whirling orbits of the LP turbine disc and the HP turbine disc are discussed at 

different rotational speed ratios. When the rotational speeds of the LP and HP rotors are 

L 300 rad/s   and H 300 rad/s  , the whirling orbits of the LP turbine disc and the HP turbine 



disc exhibit two regular circles, as shown in Figs. 22(a) and (b). Among them, the radius of the 

former is larger than the initial gap, which indicates the occurrence of full annular rub, while the 

radius of the latter is less than the initial gap, which indicates that no rub happens. 

  

(a) LP rotor without pedestal looseness (b) HP rotor without pedestal looseness 

  

(c) LP rotor with pedestal looseness (d) HP rotor with pedestal looseness 

Fig. 22 Whirling orbits of the dual-rotor system at L 300 rad/s   and H 300 rad/s  : (a) LP 

rotor without pedestal looseness, (b) HP rotor without pedestal looseness, (c) LP rotor with pedestal 

looseness, and (d) HP rotor with pedestal looseness. 

Keeping the other parameters constant, the effects of the pedestal looseness are further 

considered. Then the corresponding whirling orbits of the system are shown in Figs. 22(c) and (d). 

Although the whirling orbit is an ellipse, the whirling displacement of the LP turbine disc is always 

larger than the initial gap. This explains the phenomenon shown in Fig. 21(a) that the LP rotor is 

subjected to a full annular rub, but the magnitude of rubbing is not constant. Since the whirling 

displacement of the HP turbine disc is only larger than the initial gap in a limited area, the fault form 

of the HP rotor is identified as a partial rub. 

At L 300 rad/s   and H 360 rad/s  , the whirling orbits of the dual-rotor system with and 

without pedestal looseness are shown in Fig. 23. Due to the pedestal looseness, the whirling orbit is 

in an ellipse-like shape, which is formed by a large number of dense curves. As the amplitude of 

whirling motion increases, rub-impact will occur in more areas. 

To sum up, the pedestal looseness will obviously induce rub-impact, especially partial rub. 

Meanwhile, it will increase the impact degree, which affects the safe operation of rotating machines 

to a great extent. 

When dealing with the rub-impact between the blades and the casings, the initial gap between 



them is one of the factors that cannot be ignored. At the end of this subsection, the influence of initial 

gap on the dynamic response of the dual-rotor under rub-impact is investigated. 

According to the above analysis, it can be known that the rub-impact fault mainly occurs in the 

LP rotor at low rotational speed. Therefore, in the process of studying the initial gap, the dynamic 

variation of the LP rotor is mainly discussed. When the rotational speeds of the LP and HP rotors are 

L 200 rad/s   and H 240 rad/s  , the initial gap of the dual-rotor system is reset to 

 L0 H0 0.05,  0.035  0.025  0.01  mm   ， ， . Through the numerical simulation, the impact force and 

the whirling orbits of the LP rotor in the four cases of initial gap are obtained, as shown in Figs. 24 

and 25. 

  

(a) LP rotor without pedestal looseness (b) HP rotor without pedestal looseness 

  

(c) LP rotor with pedestal looseness (d) HP rotor with pedestal looseness 

Fig. 23 Whirling orbits of the dual-rotor system at L 300 rad/s   and H 360 rad/s  : (a) LP 

rotor without pedestal looseness, (b) HP rotor without pedestal looseness, (c) LP rotor with pedestal 

looseness, and (d) HP rotor with pedestal looseness. 



  

(a) L0 H0= =0.05 mm   (b) L0 H0= =0.035 mm   

  

(c) L0 H0= =0.025 mm   (d) L0 H0= =0.01 mm   

Fig. 24 Impact force of LP rotor in the different condition of initial gap: (a) L0 H0= =0.05 mm  , (b) 

L0 H0= =0.035 mm  , (c) L0 H0= =0.025 mm  , and (d) L0 H0= =0.01 mm  . 

  

(a) L0 H0= =0.05 mm   (b) L0 H0= =0.035 mm   



  

(c) L0 H0= =0.025 mm   (d) L0 H0= =0.01 mm   

Fig. 25 Whirling orbits of the LP turbine disc in the different condition of initial gap: (a) 

L0 H0= =0.05 mm  , (b) L0 H0= =0.035 mm  , (c) L0 H0= =0.025 mm  , and (d) L0 H0= =0.01 mm  . 

Obviously, with the decrease of initial gap, the impact force of the LP rotor increases gradually. 

Meanwhile, more collisions between the blade and the casing will occur in the same time interval. 

From the view point of whirling orbit, the reduction of the initial gap can lead to the decrease of 

whirling amplitude of the LP rotor. The main reason is that when rub-impact fault happens, the 

casing provides the additional constraints on the LP rotor, which greatly limits the motion of the 

system. However, the probability of blade-casing rub is increased sharply by the tighter initial gap, 

which may result in decreased machine life and adverse thermal effects. 

5. Conclusions 

To ensure the smooth operation of rotating machines such as the dual-rotor system of an aero 

engine, predicting the dynamic performance associated with pedestal looseness fault is of high 

significance. Based on the structure of a test rig of a dual-rotor-bearing-double casing system, its 

dynamic model is proposed in this paper, in which a looseness fault occurs on one of the pedestals of 

the high pressure (HP) rotor. Two imbalance excitations may further lead to the rub-impact between 

the multi-stage turbine blades and the multi-layer casings. In combination with the distributed soft 

coating on the outer casing and distributed hard coating on the inner casing, the Lankarani-Nikravesh 

model and the Coulomb model are adopted to describe the mechanism of rub-impact. According to 

the experiment performed on the test rig, the vibration behaviours of the dual-rotor system are 

studied at different rotational speeds, and the particular frequency components caused by 

blade-casing rub are identified. On this basis, the influences of pedestal looseness and rub-impact on 

the dynamic characteristics of the dual-rotor system are discussed through numerical simulation. 

Some conclusions are summarized as follows: 

(1) Vibration experiment performed on a rotor test rig proves that the theoretical model for a 

dual-rotor-bearing-double casing system is valid to some extent. 

(2) The speed ratio of LP and HP rotors could directly affect the motion states of the system, 

leading to periodic motion, quasi-periodic motion and beat vibration. In order to ensure the smooth 

operation of the system, the rotational speed of the LP and HP rotors should not be close to each 

other. 

(3) Although the pedestal looseness fault only occurs in a local area, its influences may be 



global because the pedestal is a central component with the dual-rotor system. 

(4) Due to the pedestal looseness and partial rub, impulse responses of the inner and outer 

casings appear in the time domain. In condition monitoring of rotating machinery, these unique 

phenomena can be used to judge partial rub and pedestal looseness. 

(5) Under the influence of pedestal looseness, rub-impact fault, especially partial rub, is easy to 

occur in the dual-rotor system. At the same time, the rub-impact magnitude of the dual-rotor system 

with pedestal looseness tends to be more severe. 

(6) When designing the structure of a dual-rotor system, besides the goals of light weight and 

high thrust, the dynamic stability of the system should also be one. At the same time, the installation 

position and installation quality of bearing supports are important factors that directly affect the 

dynamic characteristics of the system. 
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Appendix 

Table 1 Main parameters of a dual-rotor-bearing-double casing system [13] 

Physical parameter Variable Value 

Length of LP and HP shaft (mm) Ll  and Hl  706, 501 

Outer radius of LP and HP shaft (mm) LbR  and HbR  12.5, 20 

Inner radius of LP and HP shaft (mm) Lbr  and Hbr  7.5, 15 

Elastic modulus of LP and HP shaft (GPa) E  210 

Density of LP and HP shaft (kg/m
3
)   7850 

Outer radius of LP and HP disc (mm)  LdR  and HdR  125 

Inner radius of LP and HP disc (mm) Ldr  and Hdr  12.5 

Thickness of LP and HP disc (mm) dT  27.3 

Density of LP and HP disc (kg/m
3
) d  7850 

Eccentricity of LP and HP turbine disc (mm) de  0.01 

Mass of inner and outer casing (kg) icm  and ocm  50 

Support stiffness of inner and outer casing (MN/m) ick  and ock  2500 

Support damping of inner and outer casing (N.s/m) icc  and occ  2100 

Mass of pedestal (kg) pm  10 

Stiffness of pedestal without looseness (MN/m) p2k   250 



Damping of pedestal without looseness (N.s/m) p2c  2100 

Mass of bearing outer ring (kg) brm  2 

Stiffness of bearing outer ring (MN/m) brk  25 

Damping of bearing outer ring (N.s/m) brc  1050 

Number of rolling balls rN  8 

Contact stiffness coefficient of bearing (MN/m
3/2

) 
bC  13340 

Initial clearance of rolling bearing (mm) 0r  0.004 

Impact stiffness of LP turbine-outer casing (MN/m
3/2

) Lk  2500 

Friction coefficient of LP turbine-outer casing L   0.1 

Impact stiffness of HP turbine-inner casing (MN/m
3/2

) Hk  50000 

Initial gap of LP turbine-outer casing (mm) L0  0.02 

Initial gap of HP turbine-inner casing (mm) H0  0.02 

Number of LP and HP blades LN  and HN  8 
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