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Abstract

In this thesis, we mainly consider continuous-time Markov decision processes (CT-

MDPs) with risk-sensitive case and other applications. In an effort to extend the

cost/reward rates to be unbounded, we may weaken some conditions compared

with previous articles, or use another method to make the main results better

in some way. Chapter 1 is a general introduction to continuous-time Markov

decision problems. For risk-sensitive problems, chapter 2 to chapter 5 make a

detailed discussion. where finite horizon case, average case, gradual-impulse case

and piecewise case are included. The last two chapters are about other problems

in CTMDPs.

Chapter 2 considers a risk-sensitive CTMDP over a finite time duration. Un-

der the conditions that can be satisfied by unbounded transition and cost rates,

we show the existence of an optimal policy, and the existence and uniqueness

of the solution to the optimality equation out of a class of possibly unbounded

functions, to which the modified Feynman-Kac formula was also justified to hold.

Chapter 3 is about risk-sensitive average optimization for denumerable CT-

MDPs, in which the transition and cost rates are allowed to be unbounded, and

the policies can be randomized history-dependent. Based on the results obtained

in last chapter and some new properties, we establish the existence and unique-

ness of a solution to the risk-sensitive average optimality equation (RS-AOE),

and also prove the existence of an optimal stationary policy via the RS-AOE and

the extended Feymanm-Kac’s formula. Furthermore, for the case of finite actions

available at each state, we construct a sequence of models of finite-state CTMDPs

with optimal stationary policies which can be obtained by a policy iteration algo-

rithm in a finite number of iterations, and prove that an average optimal policy

for the case of infinitely countable states can be approximated by those of the

finite-state models.

In chapter 4, the risk-sensitive gradual-impulse control problem of CTMDPs



is studied. We prove, under very general conditions on the system primitives, the

existence of a deterministic stationary optimal policy out of a more general class

of policies. Policies that we consider allow multiple simultaneous impulses, ran-

domized selection of impulses with random effects, relaxed gradual controls, and

accumulation of jumps. After characterizing the value function using the opti-

mality equation, we reduce the continuous-time gradual-impulse control problem

to an equivalent simple discrete-time Markov decision process, whose action space

is the union of the sets of gradual and impulsive actions.

Chapter 5 discusses piecewise deterministic Markov decision process (PDMD-

P), where the expected exponential utility of total (nonnegative) cost is to be

minimized. The cost rate, transition rate and post-jump distributions are under

control. Under natural conditions, we establish the optimality equation, justify

the value iteration algorithm, and show the existence of a deterministic stationary

optimal policy. Applied to special cases, the obtained results already significant-

ly improve some existing results in the literature on finite horizon and infinite

horizon discounted risk-sensitive CTMDPs.

After risk-sensitive problems, Chapter 6 talks about discounted CTMDPs,

where the negative part of each cost rate is bounded by a drift function, say w,

whereas the positive part is allowed to be arbitrarily unbounded. Our focus is on

the existence of a stationary optimal policy for the discounted CTMDP problems

out of the more general class. Both constrained and unconstrained problems

are considered. As a consequence, we withdraw and weaken several conditions

commonly imposed in the literature.

And the last chapter 7 is an application of CTMDPs, a two-person zero-sum

continuous-time Markov pure jump game in Borel state and action spaces over

a fixed finite horizon. The main assumption on the model is the existence of a

drift function, which bounds the reward rate. Under some regularity conditions,

we show that the game has a value, and both of the players have their optimal

policies.
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Notation

a A generic action for gradual control / for maximizer

b A generic action for impulse control / for minimizer

i A generic state for a denumerable state space model

x A generic state for a Borel state space model

B(X) The Borel σ-algebra on a Borel space X

BV (X) The space of all V -bounded functions on X

Cb(X) The space of all bounded continuous functions on X

C1
V,V1

The space of all continuous V -bounded ϕ on [0, T ] with V1-bounded ϕ′

Eσx Expectation wrt the strategic measure of the DTMDP under the strategy σ

J The risk-sensitive average CTMDP criterion

K Set of all feasible state-action pairs

L The risk-sensitive gradual-impulse CTMDP criterion

P(X) Space of probability measures on (X,B(X)) endowed with weak topology

R Collection of P(X)-valued measurable mappings

V The finite horizon risk-sensitive CTMDP criterion

i



1 Continuous-time Markov decision processes

In this chapter we formally introduce the precise definitions of state and action

processes in continuous-time Markov decision processes (CTMDP), some funda-

mental properties, and the basic optimality criteria that we are interested in.

1.1 Introduction

Notation: Given a Borel space X, its Borel σ-algebra is denoted by B(X).

By convention, when referring to sets or functions, “measurable” means “Borel-

measurable.” we denote by Cb(X) the space of all bounded continuous functions

on X

Given any T > 0, for each measurable function ψ on [0, T ] ×X, if ψ(·, x) is

absolutely continuous on [0, T ], then we put ψ′ a measurable function on [0, T ]×X

such that ψ(t, x)− ψ(0, x) =
∫ t

0
ψ′(s, x)ds for each x ∈ X and t ∈ [0, T ].

For any measurable function V, V1 ≥ 1 on X, we define the V -weighted supre-

mum norm ‖ · ‖V of a real-valued measurable function ϕ on [0, T ]×X by

‖ϕ‖V := sup
(t,x)∈[0,T ]×X

{|ϕ(t, x)|
V (x)

},

we call the function ϕ V -bounded if the norm is finite, and C1
V,V1

([0, T ] ×X) is

the collection of V -bounded functions ϕ(t, x) on [0, T ] × X such that ϕ(t, x) is

absolutely continuous on [0, T ] for each x in X, which admits some V1-bounded

ϕ′, and define BV (X) := {ϕ : ‖ϕ‖V <∞}.

We adopt the conventions of

0

0
:= 0, 0 · ∞ := 0,

1

0
:= +∞, ∞−∞ :=∞. (1.1)
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1.2 The general control model

The control model associated with the CTMDP that we are concerned with is a

five-tuple

M = {S,A,A(·, ·), q(dy|t, x, a), c(t, x, a)} (1.2)

with the following components:

(a) a Borel set S, called the state space, which is the set of all states of the system

under observation;

(b) a Borel space A, called the action space;

(c) a family (A(t, x), t ∈ [0,∞), x ∈ S) of nonempty measurable subsets A(t, x)

of A, where A(t, x) denotes the set of actions or decisions available to the

controller when the state of the system is x ∈ S. Let

K := {(t, x, a)|x ∈ S, a ∈ A(t, x)} (1.3)

be the set of all feasible state-action pairs.

(d) the transition rates q(dy|t, x, a) is a signed kernel defined on B(S) given

(t, x, a) ∈ K such that q̃(Γ|t, x, a) := q(Γ \ {x}|t, x, a) ≥ 0 for all Γ ∈ B(S).

Throughout this thesis, we assume that q(·|t, x, a) is conservative and stable,

i.e.,

q(S|t, x, a) = 0, q̄x = sup
a∈A(t,x)

qx(a) <∞, (1.4)

where qx(a) := −q({x}|t, x, a).

(e) a measurable real-valued function c(t, x, a) on K, called the cost function,

which is assumed to be measurable in a ∈ A(t, x) for each fixed t ≥ 0 and
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x ∈ S. (As c(t, x, a) is allowed to take positive and negative values, it can

also be interpreted as reward function).

Now we describe the construction of CTMDP. Let us take the sample space Ω

by adjoining to the countable product space S×((0,∞)×S)∞ the sequences of the

form (x0, θ1, . . . , θn, xn,∞, x∞,∞, x∞, . . . ), for some n ≥ 0, where x0, x1, . . . , xn

belong to S, θ1, . . . , θn belong to (0,∞), and x∞ /∈ S is the isolated point. Below

we denote S∞ := S ∪ {x∞} We equip Ω with its Borel σ-algebra F .

Let ω := (x0, θ1, x1, θ2, . . . ) ∈ Ω, t0(ω) := 0 =: θ0, and for each n ≥ 0,

tn(ω) := tn−1(ω) + θn,

and

t∞(ω) := lim
n→∞

tn(ω).

Obviously, tn(ω) are measurable mappings on (Ω,F). In what follows, we often

omit the argument ω ∈ Ω from the presentation for simplicity. Also, we regard

xn and θn+1 as the coordinate variables, and note that the pairs {tn, xn} form a

marked point process with the internal history {Ft}t≥0, i.e., the filtration gen-

erated by {tn, xn}; see Chapter 4 of [71] for greater details. The marked point

process {tn, xn} defines the stochastic process on (Ω,F) of interest {ξt, t ≥ 0} by

ξt(ω) =
∑
n≥0

I{tn ≤ t < tn+1}xn + I{t∞ ≤ t}x∞. (1.5)

Here we accept 0 · x := 0 and 1 · x := x for each x ∈ S∞.

Definition 1.1. (a) A (history-dependent) policy π is determined and often

identified by a sequence of stochastic kernels {πn, n = 0, 1, . . . } such that

π(da|ω, t) = I{t ≥ t∞}δa∞(da) +
∞∑
n=0

I{tn < t ≤ tn+1}πn(da|x0, θ1, . . . , θn, xn, t− tn)

where a∞ /∈ A is some isolated point. For each n, πn(da|x0, θ1, . . . , xn, s) is a s-
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tochastic kernel concentrated on A(tn+s, xn) given x0 ∈ S, θ1 ∈ (0,∞), . . . , xn ∈

S, s ∈ (0,∞). We identify a policy π with the sequence of stochastic kernels

{πn}∞n=0.

(b) A policy π is called Markov if, for some stochastic kernel πM on A concentrated

on A(t, x) from (x, t) ∈ S × (0,∞), one can write π(da|ω, t) = πM (da|ξt−, t)

whenever t < t∞. A Markov policy is identified with the underlying stochastic k-

ernel πM . A Markov policy πM is called deterministic if there exists a measurable

function f(t, i) on [0,∞]× S such that πM (da|i, t) = δ{f(t,i)}(da)

(c) A policy π = {πn}∞n=0 is called stationary if, with slight abuse of notations,

πn(da|x0, θ1, . . . , xn, s) = π(da|xn)

for each of the stochastic kernels πn. A stationary policy is further called deter-

ministic if π(da|x) = δ{f(x)}(da) for some measurable mapping f from S to A

such that f(x) ∈ A(t, x) for each x ∈ S. We shall identify such a deterministic

stationary policy with the underlying measurable mapping f .

The class of all policies for the CTMDP is denoted by Π, and the class of all

Markov policies is Πr
m. We also denote by Πd

m the set of deterministic Markov

policies, by F the set of all stationary policies.

For each π ∈ Π, the random measure mπ defined by

mπ(j|ω, t)dt :=

∫
A

q(j \ {ξt−}|t, ξt−, a)π(da|ω, t)dt (1.6)

is predictable, see [64].

For any initial distribution γ on S and policy π ∈ Π, the Ionescu Tulcea

theorem ensures the existence of a unique probability measure P π
γ on (Ω,F) in

[54, 55]. The following facts show how the initial distribution and transition

probabilities can decide the probability P π
x on (Ω,F) : for any Cn ∈ B(A) and

En ∈ B(S), as well as n ≥ 0, we have

(1) P π
x (x0 = x) = 1;
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(2) P π
x (xn ∈ En|x0, a0, . . . , xn−1, an−1) = q(En|xn−1, an−1) for n ≥ 1;

(3) P π
x (an ∈ Cn|hn) = πn(Cn|hn) ;

(4) P π
x (a0 ∈ C0, . . . , xn ∈ En, an ∈ Cn, xn+1 ∈ En+1) =

∫
C0
π0(da0|x)∫

E1
q(dx1|x0, a0) · · ·

∫
Cn
π1
n(dan|hn)q(En+1|xn, an).

Let Eπ
γ be its corresponding expectation operator. In particular, Eπ

γ and P π
γ

will be respectively written as Eπ
x and P π

x when γ is the Dirac measure located

at a state x in S.

Then we introduce some further notations. P(A) stands for the space of

probability measures on (A,B(A)). We endow P(A) with its weak topology

(generated by bounded continuous functions on A) and the Borel σ-algebra, so

that P(A) is a Borel space, see Chapter 7 of [9]. Let R be the collection of

P(A)-valued measurable mappings on [0,∞) with any two elements therein being

identified the same if they differ only on a null set with respect to the Lebesgue

measure. It is known, see Lemma 1 of [104], that the space R, endowed with

the smallest σ-algebra with respect to which the mapping ρ = (ρt(da)) ∈ R →∫∞
0
e−tg(t, ρt)dt is measurable for each bounded measurable function g on (0,∞)×

P(A), is a Borel space. Then, according to Section 43 of [23], the space R is a

compact metrizable space, endowed with the Young topology when A is compact,

which is the coarsest topology with respect to which, the mapping

ρ = (ρt(da)) ∈ R →
∫ ∞

0

∫
A

g(t, a)ρt(da)dt

is continuous for each function g on (0,∞) ×A satisfying that (a) for each t ∈

(0,∞), g(t, ·) is continuous on A; (b) for each a ∈ A, g(·, a) is measurable on

(0,∞); and (c)
∫∞

0
supa∈A |g(t, a)|dt < ∞. Such a function g satisfying these

requirements is called a strongly integrable Caratheodory function.
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For each µ ∈ P(A), we denote

qx(µ) :=

∫
A

qx(a)µ(da), q̃(dy|x, µ) :=

∫
A

q̃(dy|x, a)µ(da)

c(x, µ) :=

∫
A

c(x, a)µ(da).

1.3 Risk-sensitive problems

Before stating the optimality criteria, we spend some time talking about the risk-

sensitive problems, which we have to deal with in most of our thesis. We consider

the performance of CTMDP measured by the expectation of the exponential

utility of the total cost. Such problems are often called risk-sensitive (RS) because

they take both the first order (expectation) and higher order moments. We give

the following formal justifications as in [12, 43].

Let X be the (possibly random) reward, and so the concerned performance

measure is E[eθX ], where θ > 0 is a fixed constant. Let ceq(X) := 1
θ

ln(E[eθX ]) be

a (deterministic) constant such that E[eθX ] = eθceq(X). (For simplicity, assume all

the involved expectations are finite.) Then applying the Taylor expansion around

E[X]:

eθX ≈ eθE[X] + θeθE[X](X − E[X]) +
1

2
θ2eθE[X](X − E[X])2

eθceq(X) ≈ eθE[X] + θeθE[X](ceq(X)− E[X]);

(where the second function uses the fact of Taylor expansion of ln(1 + x) to get

ln(1 + x) ≈ x and we take x := θ(ceq(x) − E(x))), so that eθceq(X) = E[eθX ] ≈

eθE[X] + 1
2
θ2eθE[X]V ar(X) by taking expectation on the both sides of the second

equality in the above. Comparing this with the first equality in the above, we see

ceq(X)− E[X] ≈ 1
2
θV ar(X) ≥ 0.

Thus, the performance of E[eθX ] takes into account both E[X] and V ar(X)

6



compared to the case of linear utility where only E[X] is counted. We also

mention that ceq(X) is the so called certainty equivalent of X, which can be

interpreted as the reward the controller decides to accept. Thus ceq(X)−E[X] ≥

0 means the decision maker is risk-averse, that’s to say the decision maker will

accept the certain reward only when it is more than expected. Below, we will

regard θ = 1 without loss of generality. The CTMDP with a linear utility is

called risk-neutral. Risk-sensitive and risk-neutral problems might admit quite

different optimality results in general. For example, in a model with finite state

and action space, there is always an optimal deterministic stationary policy for

discounted risk-neutral CTMDPs, whereas this is not the case for the risk sensitive

counterpart, see [43].

1.4 Optimality criteria

After the preliminaries and introduction of risk-sensitive problems above, we now

define several optimality criteria, some of which do not consider the change of

time t and are called homogeneous while the others are called non-homogeneous

models. When referring to homogeneous models we just omit t in the previous

notations like A(x), q(dy|x, a), c(x, a) etc. Criteria listed below are what we are

interested, the risk-sensitive finite horizon CTMDP, risk-sensitive average CT-

MDP problems, risk-sensitive gradual-impulse CTMDP, risk-sensitive piecewise

deterministic Markov decision processes (PDMDP) and the expected discounted

CTMDP problem.

We have to note that in the following chapters, when the state space S is

denumerable, we use i, j, · · · to denote the states for convenience.

Definition 1.2. (The finite horizon nonhomogeneous RS-CTMDP cri-

terion)

V(π, i) := Eπ
i

[
e
∫ T
0

∫
A c(t,ξt,a)π(da|ω,t)dt+g(ξT )

]
. (1.7)

7



defines the performance measure. For each x ∈ S, let

V∗(i) = inf
π∈Π
V(π, i) = V(π∗, i).

where the policy π∗ ∈ Π is said to be optimal.

Definition 1.3. (The risk-sensitive average CTMDP criterion)

J(i, π) := lim sup
T→∞

1

T
lnEπ

i

[
e
∫ T
0

∫
A c(ξt,a)π(da|ω,t)dt

]
(1.8)

for each i ∈ S and π ∈ Π.

A policy π∗ ∈ Π is said (risk-sensitive average) optimal if for all i ∈ S

J(i, π∗) = inf
π∈Π

J(i, π)

Definition 1.4. (The risk-sensitive gradual-impulse CTMDP criterion)

L(u, x) := Eu
x

[
e
∑∞
n=1

(
CI(Yn)+

∫ Tn+1
Tn

∫
AG

cG(x̄(ξs),a)Πn(da|Hn,s−Tn)ds
)]

A policy u∗ satisfying L(x, u∗) = L∗(x) for all x ∈ S is called optimal for the

gradual-impulse control problem:

Minimize over u ∈ U : L(x, u). (1.9)

The exact meaning of notations in the gradual-impulse model can be referred

in Chapter 5.

Definition 1.5. (The risk-sensitive PDMDP criterion)

It is assumed that for each x ∈ S

φ(x, t+ s) = φ(φ(x, t), s), ∀ s, t ≥ 0; φ(x, 0) = x, (1.10)

8



For each x ∈ S, and policy π = (πn),

V (x, π) = Eπ
x

[
e
∑∞
n=0

∫ θn+1
0

∫
A c(φ(xn,s),a)πn(da|x0,θ1,...,xn,s)ds

]
A policy π∗ is called optimal if V (x, π∗) = infπ∈Π V (x, π) =: V ∗(x).

Definition 1.6. (The expected discounted CTMDP criterion)

Wα(x, π) = Eπ
x

[∫ ∞
0

e−αt
∫
A

c(ξt, a)π(da|ω, t)dt
]
, (1.11)

defines the concerned performance measure of the policy π ∈ Π given the

initial state x ∈ S and fixed discount factor ∞ > α > 0.

The corresponding optimal value function of the problem is

W ∗
α(x) := inf

π∈Π
Wα(x, π) = W ∗

α(x, π∗)

9



Part I

Risk-sensitive problems

2 Finite horizon risk-sensitive CTMDP with un-

bounded rates

2.1 Introduction

In this chapter, we consider a risk-sensitive continuous-time Markov decision

process over a finite time duration. From the results of chapter 5 about the

PDMDP, it is naturally to think that whether we can extend the finite horizon

CTMDP problem with nonnegative cost rates to the unbounded case. At the same

time, considering discounted CTMDP problem with a lower bounding function

in chapter 6, where the technique used there is a transformation from general

case to the nonnegative cost rate. If we can use the similar transformation, then

it is just an application of the risk-sensitive PDMDP results. Unfortunately, we

still don’t know how to combine these two ways together to get what we want

for the finite horizon risk-sensitive CTMDP with unbounded cost rates, so we

change a way to look for the modified Feyman-Kac formula to get the results. In

the following, under the conditions that can be satisfied by unbounded transition

and cost rates, we show the existence of an optimal policy, and the existence and

uniqueness of the solution to the optimality equation out of a class of possibly

unbounded functions, to which the Feynman-Kac formula was also justified to

hold.

2.2 Conditions and statements

In this section, we impose a set of conditions allowing one to consider unbounded

transition and cost rates, see Example 2.1 below, and present several preliminary
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statements, which will serve the proof of Theorem 2.2 below.

First we recall the definition of the corresponding criteria and give some con-

ditions that should be satisfied:

V(π, i) := Eπ
i

[
e
∫ T
0

∫
A c(t,ξt,a)π(da|ω,t)dt+g(ξT )

]
.

Condition 2.1. There exist a [1,∞)-valued function V defined on S and con-

stants ρ > 0, M > 1 such that

(a)
∑

j∈S q(j|t, i, a)V (j) ≤ ρV (i) for each (t, i, a) ∈ K;

(b) q̄i ≤MV (i) for all i ∈ S;

(c) e2(1+T )|c(t,i,a)| ≤ MV (i) for each (t, i, a) ∈ K, and e2(1+T )|g(i)| ≤ MV (i)

for each i ∈ S. (For the case of g(i) ≡ 0, Condition 2.1(c) is weaken as

e2T |c(t,i,a)| ≤MV (i))

Compared to the risk-neutral (linear utility) case, to ensure the performance

V (π, i) to be finite in the risk-sensitive setup, it is necessary to impose more

restrictive conditions on the growth of the cost rate. Part (c) of Condition 2.1 is

motivated by part (b) of the next lemma and the Jensen inequality, see the proof

of Lemma 2.1 below.

Lemma 2.1. Suppose Condition 2.1 is satisfied. For each π ∈ Π, the following

assertions hold.

(a) P π
i (t∞ =∞) = 1 for each i ∈ S.

(b) Eπ
i [V (ξt)] ≤ eρtV (i), for each t ≥ 0 and i ∈ S.

(c) V(π, i) ≤MeTρV (i) for all i ∈ S and π ∈ Π.

Proof. Parts (a) and (b) are known, see e.g., [54, 89, 90]. We next verify part (c).

By part (a), for P π
i -almost all ω ∈ Ω, there are finitely many values taken by in

11



{ξt(ω)} over [0, T ]. For such ω ∈ Ω, by Condition 2.1(c), we legitimately write

∫ T

0

∫
A

c(t, ξt, a)π(da|ω, t)dt+ g(ξT ) =

∫
(0,T ]

∫
A

c̃(t, ξt, a)π(da|ω, t)µ(dt),

where µ(dt) = I[0,T )(t)dt + δT (dt), with δT (dt) being the Dirac measure concen-

trated on {T}, and c̃(t, i, a) := c(t, i, a)I[0,T )(t) + g(i)I{T}(t) for each (t, i, a) ∈ K.

Now,

Eπ
i

[
e
∫ T
0

∫
A c(t,ξt,a)π(da|ω,t)dt+g(ξT )

]
= Eπ

i

[
e
∫
[0,T ]

∫
A(1+T )c̃(t,ξt,a)π(da|ω,t)µ(dt)

T+1

]
≤ Eπ

i

[
1

1 + T

∫
[0,T ]

e(1+T )
∫
A |c̃(t,ξt,a)|π(da|ω,t)µ(dt)

]
≤ M

1 + T
Eπ
i

[∫ T

0

V (ξt)dt+ V (ξT )

]
≤ MeρTV (i) (2.1)

where the first inequality is by the Jensen inequality, the second inequality is by

Condition 2.1(c), and the last inequality is by part (b). �

Part (a) of the previous lemma asserts that under the imposed conditions

therein, the controlled process is nonexplosive under each policy. This fact is

used in the proof of Theorem 2.1 below, see the first paragraph therein as well as

(2.7).

Condition 2.2. There exist a [1,∞)-valued function V1 defined on S, and con-

stants ρ1 > 0, M1 > 0 such that

(a)
∑

j∈S V
2

1 (j)q(j|t, i, a) ≤ ρ1V
2

1 (i) for each (t, i, a) ∈ K;

(b) V 2(i) ≤M1V1(i) for all i ∈ S, with the function V as the Condition 2.1.

The role of this condition is seen in the proof of Theorem 2.1 below, where

the Cauchy-Schwarz inequality is used, see (2.4) therein. Conditions 2.1 and

2.2 guarantee the growth of the value function and its derivative to be suitably

12



bounded by the drift functions V and V1, and it is out of this class of functions

that we show the Feynman-Kac formula applies. The previous works [43, 101]

only showed that the Feynman-Kac formula is applicable to a class of bounded

functions, and so confined themselves to the class of bounded cost rates, which

excludes some potentially interesting applications. Let us formulate such an ex-

ample, which are with unbounded transition and cost rates and satisfy Conditions

2.1 and 2.2.

Example 2.1. Consider a controlled M/M/∞ queueing system, where the com-

mon service rate a of each server can be tuned from a finite interval [µ, µ] ⊆ [0,∞].

Let the arrival rate be denoted by λ > 0. The holding cost is C1i given the cur-

rent number of jobs in the system being i ≥ 0, where C1 > 0 is a constant, and

maintaining a service rate at µ costs µ per unit time. A terminal reward of C2i

is received if there are i jobs remaining in the system at the end of the horizon

[0, T ], where C2 ∈ (−∞,∞) is a constant. The decision maker aims at the op-

timal control of the service rate to minimize the expected exponential utility of

the total cost over the horizon [0, T ].

This problem can be formulated as a CTMDP with the following primitives.

The state space is S = {0, 1, . . . }, the action space is [µ, µ] ≡ A(t, i). The

transition rate is given by q(i + 1|t, i, a) ≡ λ, q(i − 1|t, i, a) = ai if i ≥ 1,

qi(a) = λ + ai if i > 0, and q0(a) = λ. The running cost rate is given by

c(t, i, a) = C1i+ a, and the terminal cost is given by g(i) = −C2i.

Observe the following. Let d > 0 be a fixed constant. Let ρ(d) := ed+1λ. Then

for each constant ρ ≥ ρ(d),
∑

j∈S q(j|t, i, a)edj = ed(i+1)λ+ ed(i−1)a− (λ+ a)edi ≤

ρedi for each i ≥ 1, and
∑

j∈S q(j|t, 0, a)edj = λed − λ ≤ ρ. Therefore, for the

verification of Condition 2.1, one can take M = e2(1+T )µ +µ+λ, V (i) = ed1i with

d1 = 2(1 + T )(C1 + |C2|), ρ = ρ(d1). For the verification of Condition 2.2, one

can take M1 = 1, and V1(i) = ed2i with d2 = 2d1, and ρ1 = ρ(d2).

Theorem 2.1. Suppose Conditions 2.1 and 2.2 are satisfied. Then, for each

13



i ∈ S, π ∈ Π and ϕ ∈ C1
V,V1

([0, T ]× S),

Eπ
i

[∫ T

0

(
ψ′(ω, t, ξt) +

∑
j∈S

ψ(ω, t, j)

∫
A

q(j|t, ξt, a)π(da|ω, t)

)
dt

]
= Eπ

i [ψ(ω, T, ξT )]− ϕ(0, i),

where outside a P π
i -null set, say Ω \ Ω′, T∞ =∞,

ψ(ω, t, j) = e
∫ t
0

∫
A c(v,ξv ,a)π(da|ω,v)dvϕ(t, j), ∀ t ∈ [0, T ], j ∈ S,

ψ(ω, ·, j) is absolutely continuous on [0, T ] so that we can take

ψ′(ω, t, j) =

∫
A

c(t, ξt, a)π(da|ω, t)e
∫ t
0

∫
A c(v,ξv ,a)π(da|ω,v)dvϕ(t, j)

+e
∫ t
0

∫
A c(v,ξv ,a)π(da|ω,v)dvϕ′(t, j), (2.2)

for each ω ∈ Ω′ and j ∈ S.

Proof. According to Lemma 2.1(a), we concentrate on Ω′ on which T∞ =∞, and

hence (2.2) holds. Since ϕ ∈ C1
V,V1

([0, T ] × S), we have |ϕ(t, i)| ≤ ‖ϕ‖V V (i) for

all (t, i) ∈ [0, T ]×S, which, together with the relation (1 +T )|c(v, i, a)| ≤MV (i)

(by Condition 2.1(c)), leads to

|ψ′(ω, t, ξt)|

≤ M

1 + T
V (ξt)e

∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dv‖ϕ‖V V (ξt) + ‖ϕ′‖V1e

∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dvV1(ξt),

≤ ‖ϕ‖V + ‖ϕ′‖V1

1 + T
(1 + T +MM1)e

∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dvV1(ξt). (2.3)

By the Cauchy-Schwarz inequality,

Eπ
i

[
e
∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dvV1(ξt)

]
≤
√
Eπ
i

[
e2
∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dv

]
Eπ
i [V 2

1 (ξt)]

≤ Eπ
i

[
e2
∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dv

]
Eπ
i

[
V 2

1 (ξt)
]
≤MeTρV (i)Eπ

i

[
V 2

1 (ξt)
]

≤ MeTρV (i)eρ1TV 2
1 (i), t ∈ [0, T ], (2.4)
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where the second to the last inequality is obtained by a similar argument to the

one for (2.1), and the last inequality is by Lemma 2.1(b). Now it follows from

(2.3) that

Eπ
i

[∫ T

0

|ψ′(ω, t, ξt)|dt
]
<∞. (2.5)

On the other hand, by Conditions 2.1 and 2.2, we have

∑
j∈S

e
∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dv|ϕ(t, j)|

∣∣∣∣∫
A

q(j|t, ξt, a)π(da|ω, t)
∣∣∣∣

≤ ‖ϕ‖V
(
ρV (ξt) + 2MV 2(ξt)

)
e
∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dv

≤ ‖ϕ‖VM1(ρ+ 2M)e
∫ t
0

∫
A |c(v,ξv ,a)|π(da|ω,v)dvV1(ξt).

Now it follows from (2.4) that

∫ T

0

∑
j∈S

Eπ
i

[∣∣∣∣∫
A

q(j|t, ξt, a)π(da|ω, t)
∣∣∣∣ |ψ(ω, t, j)|

]
dt <∞. (2.6)

For each 0 ≤ s ≤ T ,

ψ(ω, T, ξT ) = ψ(ω, 0, ξ0) +

∫ T

0

ψ′(ω, t, ξt)dt+
∑
n≥1

∫
(0,T ]

∆ψ(ω, t, ξt)δTn(dt) (2.7)

with ∆ψ(ω, t, ξt) := ψ(ω, t, ξt)−ψ(ω, t−, ξt−). (Recall that the function ψ(ω, t, j)

is absolutely continuous in t over any finite interval, and for each fixed ω ∈ Ω′

with Ω′ being defined in the beginning of this proof, ξt(ω) is piecewise constant

in t ∈ [0, T ], and thus has finitely many values over that interval.) By (2.5)

and (2.6), we take legitimately the expectation on the both sides of the previous
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equality, and obtain

Eπ
i [ψ(ω, T, ξT )] = Eπ

i [ψ(ω, 0, ξ0)] + Eπ
i

[∫ T

0

ψ′(ω, t, ξt)dt

]
+Eπ

i

[∑
n≥1

∫
(0,T ]

∆ψ(ω, t, ξt)δTn(dt)

]

= ϕ(0, i) + Eπ
i

[∫ T

0

ψ′(ω, t, ξt)dt

]
+Eπ

i

[∑
j∈S

∫
(0,T ]

(ψ(ω, t, j)− ψ(ω, t, ξt−))mπ(j|ω, t)dt

]

= ϕ(0, i) + Eπ
i

[∫ T

0

ψ′(ω, t, ξt)dt

]
+Eπ

i

[∑
j∈S

∫ T

0

∫
A

ψ(ω, t, j)q(j|t, ξt−, a)π(da|ω, t)dt

]
,

where the last equality holds because the random measure mπ is the dual pre-

dictable projection of the random measure
∑

n≥1 δ(Tn,Xn)(dt, dx) on B((0,∞)×S)

under P π
i , see p.131 of [71]. The statement is proved. �

The above Feynman-Kac formula in the above theorem was justified in [101],

see Theorem 3.1 therein, when π is a Markov policy, and ϕ is assumed to be

bounded.

The next statement provides a verification theorem, which was known in [88]

when the transition rate is bounded.

Corollary 2.1. Suppose Conditions 2.1 and 2.2 are satisfied. If there exists

ϕ ∈ C1
V,V1

([0, T ]× S) and a deterministic Markov policy f ∈ Πd
m such that

ϕ(s, i)− eg(i) =

∫ T

s

inf
a∈A(t,i)

{
c(t, i, a)ϕ(t, i) +

∑
j∈S

ϕ(t, j)q(j|t, i, a)

}
dt

=

∫ T

s

{
c(t, i, f(t, i))ϕ(t, i) +

∑
j∈S

ϕ(t, j)q(j|t, i, f(t, i))

}
dt,

s ∈ [0, T ], i ∈ S, (2.8)
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then

V(f, i) = ϕ(0, i) = V∗(i), ∀ i ∈ S. (2.9)

Proof. Concentrate on Ω′ as in the proof of the previous theorem. It holds for

almost all t ∈ [0, T ] that

0 = ϕ′(t, ξt) + inf
a∈A(t,ξt)

{
c(t, ξt, a)ϕ(t, ξt) +

∑
j∈S

ϕ(t, j)q(j|t, ξt, a)

}
= ϕ′(t, ξt) + c(t, ξt, f(t, ξt))ϕ(t, ξt) +

∑
j∈S

ϕ(t, j)q(j|t, ξt, f(t, ξt))

≤ ϕ′(t, ξt) +

∫
A

{
c(t, ξt, a)ϕ(t, ξt) +

∑
j∈S

ϕ(t, j)q(j|t, ξt, a)

}
π(da|ω, t).

Now by applying Theorem 2.1 to the deterministic Markov policy f and an arbi-

trarily fixed π ∈ Π, we see

V(π, i)− ϕ(0, i) = Eπi

[
e
∫ T
0

∫
A c(v,ξv ,a)π(da|ω,v)dvϕ(T, ξT )

]
− ϕ(0, i)

= Eπi

[∫ T

0
e
∫ t
0

∫
A c(v,ξv ,a)π(da|ω,v)dv

∫
A
{c(t, ξt, a)ϕ(t, ξt)

+ ϕ′(t, ξt) +
∑
j∈S

ϕ(t, j)q(j|t, ξt, a)

π(da|ω, t)


≥ 0,

where the first equality holds because ϕ(T, i) = eg(i), see (2.8); similarly, replacing

f for π in the equalities in the above, V(f, i)−ϕ(0, i) = 0. Consequently, V(f, i) =

ϕ(0, i) ≤ V(π, i) for each i ∈ S. Since π was arbitrarily fixed, V(f, i) = ϕ(0, i) =

V∗(i), as required. �

According to the previous statement, (2.8) is called the optimality equation,

and the policy f in (2.9) is optimal.

The next statement was basically obtained in Theorem 2.1 in [43], see also

[101].
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Proposition 2.1. Suppose that the transition and cost rates are bounded, i.e.,

sup
i∈S

q̄i <∞, sup
(t,i,a)∈K

|c(t, i, a)| <∞, sup
i∈S
|g(i)| <∞.

If for each i ∈ S and t ∈ [0, T ], A(t, i) is compact, c(t, i, a) is lower semicontinu-

ous in a ∈ A(t, i), and q(j|t, i, a) is continuous in a ∈ A(t, i), then there exists a

unique ϕ in C1
1,1([0, T ]× S) and some f ∈ Πd

m satisfying (2.8) and (2.9).

The main objective in this chapter is to relax the boundedness requirements

in the previous statement.

2.3 Optimality results

We impose the following condition, which guarantees the existence of an optimal

policy.

Condition 2.3. (a) For each t ∈ [0, T ], i, j ∈ S, the function q(j|t, i, a) is

continuous in a ∈ A(t, i).

(b) For each (t, i) ∈ [0, T ] × S, the function c(t, i, a) is lower semicontinuous

in a ∈ A(t, i), and the function
∑

j∈S V (j)q(j|t, i, a) is continuous in a ∈

A(t, i), with V as in Condition 2.1.

Under Conditions 2.1 and 2.3, the function
∑

j∈S q(j|t, i, a)u(t, j) is continuous

in a ∈ A(t, i), for every fixed (t, i) ∈ [0, T ]×S and V -bounded measurable function

u on [0, T ]× S, see the proof of Lemma 8.3.7(a) in [58]. This fact will be used in

the proof of the next statement.

Also note that Condition 2.3 is satisfied by Example 2.1.

The main optimality result is the following one.

Theorem 2.2. Suppose Conditions 2.1, 2.2 and 2.3 are satisfied. Then there

exists a unique ϕ in C1
V,V1

([0, T ] × S) and some f ∈ Πd
m satisfying (2.8) and

(2.9). In particular, there exists a deterministic Markov optimal policy.
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Proof. The statement would follow from Corollary 2.1, once we showed the exis-

tence of some ϕ ∈ C1
V,V1

([0, T ]× S) satisfying (2.8). We verify this fact following

a similar reasoning as in [52] dealing with a risk-neutral CTMDP problem, which

was also adopted in [101], dealing with a model with a bounded cost rate. Name-

ly, we shall obtain the desired solution ϕ as a limit point of an equicontinuous

family {ϕn} of functions, which in turn are obtained from a sequence of CTMDP

models with bounded transition and cost rates. The denumerable state space

serves to prove the equicontinuity of the family {ϕn}. The details are as follows.

For each integer n ≥ 1, let Sn := {i ∈ S : V (i) ≤ n}. Without loss of

generality, assume for each n ≥ 1, Sn 6= ∅. For each i ∈ S and t ∈ [0,∞), let

An(t, i) := A(t, i). For each (t, i, a) ∈ Kn := K, define

qn(j|t, i, a) := q(j|t, i, a)ISn(i), ∀ j ∈ S

cn(t, i, a) := c(t, i, a)ISn(i), gn(i) := g(i)ISn(i).

We consider the resulting sequence of CTMDP modelsMn := {S,An(t, i), cn, gn, qn} .

Note that the models {Mn} are all with bounded transition and cost rates,

and so Proposition 2.1 implies, for each n ≥ 1, the existence of a unique ϕn in

C1
1,1([0, T ]× S) and some fn ∈ Πd

m satisfying

ϕn(s, i)− egn(i) =

∫ T

s

inf
a∈A(t,i)

{
cn(t, i, a)ϕn(t, i) +

∑
j∈S

ϕn(t, j)qn(j|t, i, a)

}
dt

=

∫ T

s

{
cn(t, i, fn(t, i))ϕn(t, i) +

∑
j∈S

ϕn(t, j)qn(j|t, i, fn(t, i))

}
dt,

s ∈ [0, T ], i ∈ S. (2.10)

Let n ≥ 1 be fixed. For each s ∈ [0, T ], consider the s-shifted model

M(s)
n :=

{
S,A(s)

n (t, i), q(s)
n , c(s)

n , gn

}
with A(s)

n (t, i) := An(t + s, i), q
(s)
n (·|t, i, a) := qn(·|s + t, i, a) and c

(s)
n (t, i, a) :=
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cn(t + s, i, a). Then Condition 2.1 is clearly satisfied by M(s)
n , so that one can

apply the reasoning in the proof of Lemma 2.1(c) and deduce

Ef
(s)
n
i

[
e
∫ T−s
0 |c(s)n (t,ξt,f

(s)
n (t,ξt))|dt+|gn(ξT−s)|

]
≤MeTρV (i)

where Ef
(s)
n
i denotes the expectation in the M(s)

n model under the shifted policy

f
(s)
n (t, i) := fn(t + s, i). On the other hand, according to the uniqueness of the

solution to (2.10) in C1
1,1([0, T ]× S) and the second application of main theorem

in section 5.1 of chapter 5,

Ef
(s)
n
i

[
e
∫ T−s
0 c

(s)
n (t,ξt,f

(s)
n (t,ξt))dt+gn(ξT−s)

]
= ϕn(s, i).

(The cost rate and the terminal cost were assumed to be nonnegative in chapter

5, but the results obtained there apply becauseM(s)
n has bounded transition and

cost rates, which can be reduced to the nonnegative case after one add to the cost

rate and the terminal cost a large enough constant.) Thus, we obtain the bound

|ϕn(t, i)| ≤MeTρV (i), ∀ n ≥ 1, (t, i) ∈ [0, T ]× S. (2.11)

which means |ϕn(t, i)| is uniformly bounded.

Next, we show that {ϕn, n ≥ 1} is an equicontinuous family of functions on

[0, T ]× S, as follows. Let

Hn(t, i) := inf
a∈An(t,i)

{
cn(t, i, a)ϕn(t, i) +

∑
j∈S

ϕn(t, j)qn(j|t, i, a)

}
, ∀ (t, i) ∈ [0, T ]× S.
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Then, from Condition 2.1 and (2.11), we see

|Hn(t, i)| ≤ sup
a∈An(t,i)

{
|cn(t, i, a)ϕn(t, i)|+

∑
j∈S

|ϕn(t, j)||qn(j|t, i, a)|

}

≤ sup
a∈An(t,i)

{
MV (i)MeTρV (i) +MeTρ

∑
j∈S

|q(j|t, i, a)|V (j)

}
≤ eTρ(M2V 2(i) + ρMV (i) + 2M |q(i|t, i, a)|V (i))

≤ MeTρM1(3M2 + ρ)V1(i) =: L(i), ∀ (t, i) ∈ [0, T ]× S. (2.12)

(Recall that M > 1.)

Now, fix arbitrarily some (s0, i0) ∈ [0, T ] × S and ε > 0, and take δ :=

min{ ε
L(i0)

, 1
2
}. Then, for every (s, i) in the open neighborhood {(s, i) ∈ [0, T ] ×

S : |s− s0| < δ, |i− i0| < δ}, we have i = i0, and

|ϕn(s, i)− ϕn(s0, i0)| = |ϕn(s, i0)− ϕn(s0, i0)| =
∣∣∣∣∫ T

s

Hn(t, i0)dt−
∫ T

s0

Hn(t, i0)dt

∣∣∣∣
≤ L(i0)|s− s0| < ε, ∀ n ≥ 1.

Hence, {ϕn, n ≥ 1} is equicontinuous at (s0, i0), which, together with the arbi-

trariness of (s0, i0) ∈ [0, T ] × S, yields that {ϕn, n ≥ 1} is equicontinuous on

[0, T ] × S. By Arzela-Ascoli theorem, see, e.g., p.96 of [57], there exist a subse-

quence {ϕnk , k ≥ 1} of {ϕn, n ≥ 1} and a continuous function ϕ on [0, T ] × S

such that

lim
k→∞

ϕnk(s, i) = ϕ(s, i), and |ϕ(s, i)| ≤MeTρV (i) ∀ (s, i) ∈ [0, T ]× S, (2.13)

where the last inequality is by (2.11).

Let

H(t, i) := inf
a∈A(t,i)

{
c(t, i, a)ϕ(t, i) +

∑
j∈S

ϕ(t, j)q(j|t, i, a)

}
,∀ (t, i) ∈ [0, T ]× S.

We next verify that limk→∞Hnk(t, i) = H(t, i) for each (t, i) ∈ [0, T ] × S, as
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follows. Let (t, i) ∈ [0, T ]×S be arbitrarily fixed. Since qnk(j|t, i, a)→ q(j|t, i, a)

for all j ∈ S and a ∈ A(t, i) as k → ∞, by virtue of Lemma 8.3.7 in [58] and

(2.11), we have

lim sup
k→∞

Hnk(t, i) ≤ lim sup
k→∞

{
cnk(t, i, a)ϕnk(t, i) +

∑
j∈S

ϕnk(t, j)qnk(j|t, i, a)

}
≤ c(t, i, a)ϕ(t, i) +

∑
j∈S

ϕ(t, j)q(j|t, i, a), ∀ a ∈ A(t, i),

so that

lim sup
k→∞

Hnk(t, i) ≤ inf
a∈A(t,i)

{
c(t, i, a)ϕ(t, i) +

∑
j∈S

ϕ(t, j)q(j|t, i, a)

}
.(2.14)

According to the fact mentioned below Condition 2.3, there exists a sequence

of policies {fnk} ⊆ Πd
m such that

Hnk(t, i) = inf
a∈A(t,i)

{
cnk(t, i, a)ϕnk(s, i) +

∑
j∈S

ϕnk(t, j)qnk(j|t, i, a)

}
= c(t, i, fnk(t, i))ϕnk(t, i) +

∑
j∈S

ϕnk(t, j)qnk(j|t, i, fnk(t, i)).

Since A(t, i) is compact, by taking subsequences if necessary, we can assume

without loss of generality that lim infk→∞Hnk(t, i) = limk→∞Hnk(t, i) and for

some a ∈ A(t, i), fnk(t, i)→ a as k →∞. By the virtue of Lemma 8.3.7 in [58],

we have

lim inf
k→∞

Hnk(t, i) = lim inf
k→∞

c(t, i, fnk(t, i))ϕnk(t, i) +
∑
j∈S

ϕnk(t, j)qnk(j|t, i, fnk(t, i))


≥ c(s, i, a)ϕ(t, i) +

∑
j∈S

ϕ(t, j)q(j|t, i, a) ≥ inf
a∈A(t,i)

c(t, i, a)ϕ(t, i) +
∑
j∈S

ϕ(t, j)q(j|t, i, a)

 .

(Recall Condition 2.3.) This, together with (2.14), implies that limk→∞Hnk(t, i) =

H(t, i). Since (t, i) ∈ [0, T ] × S was arbitrarily fixed, we see from (2.10), (2.12)
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and (2.13) that ϕ satisfies (2.8). The same argument as in (2.12) leads to

|ϕ′(t, i)| = |H(t, i)| ≤MeTρM1(3M2 + ρ)V1(i), ∀ (t, i) ∈ [0, T ]× S.

Therefore, we see that ϕ ∈ C1
V,V1

([0, T ]× S). The required deterministic Markov

policy f exists because of the fact mentioned below Condition 2.3, a measurable

selection theorem, see Proposition D.5 of [57].

Finally, we verify the uniqueness part. Let ϕ ∈ C1
V,V1

([0, T ] × S) be an

arbitrarily fixed solution to (2.8). (The above reasoning shows that there ex-

ists at least one.) Let s ∈ [0, T ] be fixed, and consider the s-shifted model

M(s) =
{

S,A(s)(t, i), q(s), c(s), g
}

, which is defined as for the M(s)
n model with n

being omitted everywhere. Let

V(s)(i) := inf
π∈Π

Eπ
i

[
e
∫ T−s
0

∫
A c(s)(t,ξt,a)π(da|ω,t)dt+g(ξT−s)

]
with Eπ

i signifying the expectation in the s-shifted model. Then the function

ϕ(s) ∈ C1
V,V1

([0, T − s] × S) defined by ϕ(s)(τ, i) := ϕ(τ + s, i) for each (τ, i) ∈
[0, T − s]× S satisfies

ϕ(s)(τ, i)− eg(i) =

∫ T−s

τ

inf
a∈A(s)(t,i)

c(s)(t, i, a)ϕ(s)(t, i) +
∑
j∈S

ϕ(s)(t, j)q(s)(j|t, i, a)

 dt

=

∫ T−s

τ

c(s)(t, i, f (s)(t, i))ϕ(s)(t, i) +
∑
j∈S

ϕ(s)(t, j)q(s)(j|t, i, f (s)(t, i))

 dt,

τ ∈ [0, T − s], i ∈ S,

for some deterministic Markov policy f (s). By applying Corollary 2.1 to the

s-shifted model M(s), we see ϕ(s)(0, i) = V(s)(i), and thus ϕ(s, i) = V(s)(i) for

each i ∈ S. Since s ∈ [0, T ] was arbitrarily fixed, it follows that ϕ is the unique

solution to (2.8) out of ϕ ∈ C1
V,V1

([0, T ]× S). The proof is completed. �

Remark 2.1. We can refer to Chapter 6 for risk-sensitive piecewise determinis-

tic Markov decision processes (RS-PDMDP), where we get the optimality results

for RS-PDMDP with non-negative cost rates by the technique of reducing the
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original problem to a RS-DTMDP problem. As an application, finite horizon and

infinite horizon discounted RS-CTMDP can be reformulated as total undiscount-

ed RS-PDMDP. As we can notice naturally, if the cost rate in this chapter can

transfer from the drift function bounded to nonnegative, then we can easily use

the conclusion of PDMDP in this chapter to get the results, but this is still an

open problem.

I have to mention that recently we find there is an outstanding research pub-

lished in 2019 that can not only cover our results but extend it to a more general

case, see [63]. It deals with finite horizon RS-PDMDP with reward rates bounded

by drift function (need not to be nonnegative), and the state space is Borel space.

Compared with ours, it can be used more extensively. [63] adapts the approach

where the value function is characterized as a solution to the related integro-

differential HJB equation. And it develops Feyman Kac’s formula for PDMDPs

with unbounded transition rates.
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3 Risk-sensitive average CTMDP with unbound-

ed rates

Having the results of finite horizon risk-sensitive CTMDP with unbounded cost

and transition rates, we can keep on to get the average case problem based on

them. Because in the risk-sensitive average CTMDP problem, we always consider

the finite horizon case first. This chapter considers the risk-sensitive average op-

timization for denumerable CTMDPs, in which the transition and cost rates are

allowed to be unbounded, and the policies can be randomized history-dependent.

We first derive the multiplicative dynamic programming principle and some new

properties for the risk-sensitive finite-horizon CTMDPs. Then, we establish the

existence and uniqueness of a solution to the risk-sensitive average optimality

equation (RS-AOE) by the results for risk-sensitive finite-horizon CTMDPs de-

veloped here, and also prove the existence of an optimal stationary policy via

the RS-AOE and the extended Feymanm-Kac’s formula. Furthermore, for the

case of finite actions available at each state, we construct a sequence of models

of finite-state CTMDPs with optimal stationary policies which can be obtained

by a policy iteration algorithm in a finite number of iterations, and prove that an

average optimal policy for the case of infinitely countable states can be approxi-

mated by those of the finite-state models. Finally, we illustrate the conditions in

this paper and show the difference between the conditions here and those in the

previous literature with some examples.

3.1 On the risk-sensitive finite-horizon optimality

Here, the state space is also denumerable but the model is homogeneous. We

assume c(i, a) is bounded below (i.e., c(i, a) ≥ L for all (i, a) ∈ K, for some
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constant L), so we have c(i, a) + |L| ≥ 0 on K, and

lim sup
T→∞

1

T
lnEπ

i

[
e
∫ T
0

∫
A[c(ξt,a)+|L|]π(da|ω,t)dt

]
= J(i, π) + |L|

Thus, adding a constant to all the costs c(i, a) will affect all policies identically in

both criteria, we may without loss of generalization assume that the costs c(i, a)

are nonnegative.

To prove the existence of risk-sensitive average optimal policies, we need to

develop some preliminary facts about the risk-sensitive finite-horizon CTMDPs,

some of which are from Chapter 2, and some of which are new.

Since the transition and cost rates (i.e., q(j|i, a) and c(i, a)) may be unbound-

ed, to guarantee the non-explosion of {ξt, t ≥ 0} and the finiteness of J(i, π), we

need the following conditions from [47, 52, 54, 74]

Condition 3.1. There exist real-valued functions V0 ≥ 1 and δ > 0 on S, positive

constants b0 and M0, and a state i0 ∈ S, such that

(a)
∑

j∈S V0(j)q(j|i, a) ≤ −δ(i)V0(i) + b0I{i0}(i) for all (i, a) ∈ K := {(i, a)|i ∈

s, a ∈ A(i)};

(b) q̄i ≤M0V0(i) for all i ∈ S;

(c) δ∗ := infi 6=i0 δ(i) > 0, and c(i, a) ≤ δ(i) ≤
√

lnV0(i) for all (i, a) ∈ K.

Remark 3.1. (a) Although the indicator function I{i0} in Condition 3.1(a) is

stronger than the indicator function IC in [74] with a finite subset C of S, we

will understand that such a restrictiveness is required; see Remark 3.4 below for

detail. Condition 3.1(a) is an extension of Assumption (A2) in [74], Assumption

(A5) in [43], and Assumption 7.1 in [50] from a constant δ to a function δ(i) on

S here. Thus, it is satisfied for the examples in [43, 50] and will be verified with

other examples below.

(b) Condition 3.1(c) is new and serves the finiteness of Eπ
i

[
e
∫ τi0
0

∫
A c(ξv ,a)π(da|ω,v)dv

]
,

where τi0 := min{t ≥ 0|ξt = i0} denotes the first passage time to i0. Since the
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cost c(i, a) satisfying Condition 3.1(c) is allowed to be unbounded (see Example

3.2 and Remark 3.9 below), Condition 3.1(c) is weaker than the small condition

(i.e., ‖c‖ < δ∗) in [43, 74].

(c) Condition 3.1(a) is slightly stronger than Condition 2.1(a).

Lemma 3.1. Under Conditions 3.1(a)(b), the following assertions hold.

(a) P π
i (t∞ =∞) = 1, and P π

i (ξt ∈ S) = 1 for each t ≥ 0, i ∈ S, and π ∈ Π.

(b) Eπ
i [V0(ξt)] ≤ V0(i) + b0t, for each t ≥ 0, i ∈ S, and π ∈ Π;

(c) Eπ
γ [V0(ξt)

∣∣ξs = i] ≤ V0(i) + (t− s)b0, for each t ≥ s ≥ 0, i ∈ S and π ∈ Πr
m.

Proof. (a) and (b) follow from Theorem 3.1 in [55], while (c) from Lemma 6.3 in

[50].

Lemma 3.1 gives conditions for the non-explosion of {ξt, t ≥ 0} and also

provides an estimate of Eπ
i [V0(ξt)]. In order to deal with the risk-sensitive average

optimality, we next need some notations and facts on the risk-sensitive finite-

horizon optimality.

For any π ∈ Π, t ≥ 0, i ∈ S, the following t-horizon risk-sensitive criterion

ϕ(t, i, π) := Eπ
i

[
e
∫ t
0

∫
A(xs) c(ξs,a)π(da|ω,s)ds

]
, (3.1)

is well defined. Then, let

ϕ(t, i) := inf
π∈Π

ϕ(t, i, π) (for i ∈ S), (3.2)

which is called the value function of the t-horizon risk-sensitive criterion. Since c

is nonnegative, ϕ(t, i) is increasing in t ≥ 0, and ϕ(0, i) = 1 as well as ϕ(t, i) ≥ 1

for all t ≥ 0.

To further characterize risk-sensitive finite-horizon CTMDPs, we need the

extension of Feymanm-Kac’s formula in Theorem 2.1 from a Markov chain case
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to a more general case of non-Markov processes, which is based on the following

condition (similar as Condition 2.2).

Condition 3.2. There exist a real-valued function V1 ≥ 1 on S, and positive

constants ρ1, b1, and M1, such that

(i)
∑

j∈S V
2

1 (j)q(j|i, a) ≤ ρ1V
2

1 (i) + b1 for all (i, a) ∈ K;

(ii) V 2
0 (i) ≤M1V1(i) for all i ∈ S, where V0 comes from Condition 3.1.

Lemma 3.2. (The extension of Feymanm-Kac’s formula) Under Conditions 3.1

and 3.2, for any T > 0, the following assertions hold.

(a) For any π ∈ Π and u ∈ C1
V0,V1

([0, T ]× S),

Eπ
i

[∫ T∧τD

0

((
e
∫ t
0

∫
A c(ξv ,a)π(da|ω,v)dvu(t, ξt)

)′
+
∑
j∈S

e
∫ t
0

∫
A c(ξv ,a)π(da|ω,v)dvu(t, j)

∫
A

q(j|ξt, a)π(da|ω, t)
)
dt

]
= Eπ

i

[
e
∫ T∧τD
0

∫
A c(ξv ,a)π(da|ω,v)dvu(T, ξT∧τD)

]
− u(0, i), i ∈ S

where τD := inf{s ≥ 0|ξs ∈ D} is the hitting time of the process {ξt} to a

set D ⊆ S, and {ξt, t ≥ 0} may be not Markovian since the policy π may

depend on histories.

(b) For each π = πt(da|·) ∈ Πr
m, and u ∈ C1

V0,V1
([0, T ]× S),

Eπγ

∫ T∧τD

s

(e∫ ts c(ξv,πv)dvu(t, ξt)
)′

+
∑
j∈S

(
e
∫ t
s
c(ξv,πv)dvu(t, j)

)
q(j|ξt, πt)

 dt
∣∣∣ξs = i


= Eπγ

[
e
∫ T∧τD
s

c(ξv,πv)dvu(T ∧ τD, ξT∧τD)
∣∣∣ξs = i

]
−u(s, i) ∀ (s, i) ∈ [0, T ]×S, D ⊆ S.

where c(i, πv) :=
∫
A(i)

c(i, a)πv(da|i), q(j|i, πt) :=
∫
A(i)

q(j|i, a)πt(da|i) for i, j ∈

S, t ≥ 0.
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Proof. By Condition 3.1(c), we have 2tc(i, a) ≤ 2tδ(i) ≤ 2t
√

lnV0(i) ≤ t2 +

lnV0(i) for all t ≥ 0, thus e2Tc(i,a) ≤ eT
2
V0(i) for all i ∈ S, which verifies Condition

2.1(c) with M0 := eT
2

. Thus, in the proof of Theorem 2.1, replacing T with

T ∧ τD, we see that this lemma is also true.

Lemma 3.3. If Conditions 3.1 and 3.2 are satisfied, then the following assertions

hold.

(a) Eπ
i

[
e
∫ τi0
0

∫
A c(ξv ,a)π(da|ω,v)dv

]
≤ Eπ

i

[
e
∫ τi0
0 δ(ξv)dv

]
≤ V0(i) for i ∈ S and π ∈ Π.

(b) Eπ
i [τi0 ] ≤ V0(i)

δ∗
, and P π

i (τi0 <∞) = 1, for all i ∈ S and π ∈ Π.

Proof. (a) Obviously, the results hold for i = i0. For any i 6= i0, since V0 ≥ 1, by

Lemma 3.2(a), we have

Eπ
i

[
e
∫ T∧τi0
0 δ(ξv)dv

]
− V0(i),

≤ Eπ
i

[
e
∫ T∧τi0
0 δ(ξv)dvV0(ξT∧τi0 )

]
− V0(i)

= Eπ
i

[∫ T∧τi0

0

e
∫ t
0 δ(ξv)dv

(
δ(ξt)V0(ξt) +

∑
j∈S

V0(j)q(j|ξt, πt)

)
dt

]

≤ b0E
π
i

[∫ T∧τi0

0

e
∫ t
0 δ(ξv)dvI{i0}(ξt)dt

]
= 0,

which, together with letting T →∞, proves this lemma.

(b) Since δ∗ = infi 6=i0 δ(i) > 0, by (a) and the Jensen inequality, we have

δ∗E
π
i [τi0 ] ≤ eδ∗E

π
i [τi0 ] ≤ Eπ

i

[
e
∫ τi0
0 δ(ξv)dv

]
≤ V0(i),

which implies (b).

Remark 3.2. The reference state i0 in Lemma 3.3 directly comes from Condition

3.1(a). However, the reference state i0 in [74] has been determined by the condi-

tion “V (i0) ≥ 1 + b
δ
”, where the constants δ and b are the same as in Assumption

A2 in [74]. Example 3.1 below shows that the condition “V (i0) ≥ 1 + b
δ
” is not

used to get a reference state.
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Example 3.1. Let S := {0, 1, 2}, all A(i) be singleton sets, and then there is a

unique stationary policy, say f . Moreover, let q(0|0, f(0)) = −1, q(1|0, f(0)) =

1, q(2|0, f(0)) = 0; q(0|1, f(1)) = 8, q(1|1, f(1)) = −9, q(2|1, f(1)) = 1; q(0|2, f(2)) =

0, q(1|2, f(2)) = 8, q(2|2, f(2)) = −8.

Obviously, Assumption A2 in [74] are satisfied for the V (i) := 1 + i for i ∈ S,

C := {0, 1} (or {0}), δ := 4
3
, b := 11

3
. It follows from this example that 1 + b

δ
=

3.75 > V (i) for all i ∈ S, and thus this example does not have any reference state

for [74].

However, since Conditions 3.1 and 3.2 above are also satisfied for V (i) := 1+ i

for i ∈ S and i0 = 0, the state “0” is a reference one for this paper.

To characterize some optimality results for the risk-sensitive finite-horizon

CTMDPs, we introduce the following condition.

Condition 3.3. (a) For any fixed i, j ∈ S, q(j|i, a) and c(i, a) is continuous in

a ∈ A(i);

(b) For any given i ∈ S, the convergence of
∑

j∈S V0(j)q(j|i, a) holds uniformly

in a ∈ A(i).

Remark 3.3. Obviously, Condition 3.3(b) is not required when
∑

j∈S(i) q(j|i, a) =

0 for a ∈ A(i),where S(i) is a finite subset of S ,which may depend on any given

i ∈ S. Condition 3.3 implies that
∑

j∈S V0(j)q(j|i, a) is continuous in a ∈ A(i),

and so slightly stronger than the well known continuity-compactness conditions

[43, 74, 73]. In fact, it is required not only for the following facts from previous

Chapter but also for the continuity of ϕ′(t, i) at everywhere t ≥ 0 (instead of at

almost everywhere t ≥ 0 in [74]), see Remark 3.5 below for more details.

Theorem 3.1. Under Conditions 3.1 and 3.2, and 3.3, for any T > 0, the

following assertions hold.

(a) The value function ϕ(t, i) is the unique solution in C1
V0,V1

([0, T ] × S) of the
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following risk-sensitive finite-horizon optimality equation:ϕ
′(t, i) = infa∈A(i)[c(i, a)ϕ(t, i) +

∑
j∈S ϕ(t, j)q(j|i, a)],

ϕ(0, i) = 1,

(3.3)

for each (t, i) ∈ [0, T ]× S, and ϕ′(t, i) is continuous in t ≥ 0 (for any fixed

i ∈ S).

(b) There exists a deterministic Markov policy π∗ = f ∗(t, i) ∈ Πd
m such that

ϕ′(t, i) = c(i, f ∗(t, i))ϕ(t, i) +
∑
j∈S

ϕ(t, j)q(j|i, f ∗(t, i)) ∀ (t, i) ∈ [0, T ]× S

and ϕ(t, i) = ϕ(t, i, π∗) = infπ∈Πdm
ϕ(t, i, π) = infπ∈Πrm ϕ(t, i, π) for all i ∈ S

and t ∈ [0, T ].

(c) (The multiplicative dynamic programming principle.) For any subset D of

S, the value function ϕ(i, t) can be represented as

ϕ(t, i) = inf
f∈Πdm

Eπ
i

[
e
∫ t∧τD
0 c(ξv ,f(v,ξv))dvϕ(t− t ∧ τD, ξt∧τD)

]
(3.4)

= inf
π∈Πrm

Eπ
i

[
e
∫ t∧τD
0 c(ξv ,πv)dvϕ(t− t ∧ τD, ξt∧τD)

]
∀ i ∈ S, t ≥ 0.

Proof. (a)-(b): Since Condition 2.1(c) has been verified in the proof of Lemma 3.2,

the first part of (a) comes from Theorem 2.2 and an obvious change of time. To

show the second part of (a), for any fixed i ∈ S, t1, t2 ∈ [0, T ], ε > 0, Condition 3.3

together with Lemma 4.1 in [52] ensures the existence of a(i, t1, t2) ∈ A(i) and a fi-

nite subset S(i)(3 i) of S such that supa∈A(i)

∑
j 6∈S(i) |ϕ(t1, j)−ϕ(t2, j)||q(j|i, a)| =∑

j 6∈S(i) |ϕ(t1, j)− ϕ(t2, j)||q(j|i, a(i, t1, t2))|, and
∑

j 6∈S(i) V0(j)q(j|i, a) < ε for all
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a ∈ A(i). Thus, for any t1, t2 ∈ [0, T ], by (3.3), we have

|ϕ′(t1, i)− ϕ′(t2, i)| ≤ ‖c(i, ·)‖|ϕ(t1, i)− ϕ(t2, i)|+ sup
a∈A(i)

∑
j∈S
|ϕ(t1, j)− ϕ(t2, j)||q(j|i, a)|

≤ ‖c(i, ·)‖|ϕ(t1, i)− ϕ(t2, i)|+
∑
j∈S(i)

|ϕ(t1, j)− ϕ(t2, j)|q∗(i)

+2‖ϕ‖V0

∑
j 6∈S(i)

V0(j)q(j|i, a(i, t1, t2))

≤ ‖c(i, ·)‖|ϕ(t1, i)− ϕ(t2, i)|+
∑
j∈S(i)

|ϕ(t1, j)− ϕ(t2, j)|q∗(i) + 2‖ϕ‖V0ε

which,together with the continuity of ϕ(t, i) in t and the finiteness of ‖c(i, ·)‖,S(i)

and q∗(i), implies the second part of (a). Part (b) is also from Theorem 2.2.

(c) Let π = f(t, i) be any Markov policy in Πd
m, and π∗ = f ∗(t, i) a fixed

deterministic Markov policy from part (b). Define a policy π̂ by

π̂(da|ω, s) = I{t∧τD>s}δf(s,ξs(ω))(da) + I{t∧τD≤s}δf∗(s,ξs(ω))(da).

Let Ft∧τD be the algebra,which is generated by the stopping time t ∧ τD with

respective the filtration Fs := σ(ξv, v ≤ s). Then, since ϕ(t, i) = ϕ(t, i, π∗) for

t ∈ [0, T ] and i ∈ S, we have

ϕ(t, i) ≤ Eπ̂
i

[
e
∫ t
0

∫
A c(ξs,a)π̂(da|ω,s)ds

]
= Eπ̂

i

[
e
∫ t∧τD
0 c(ξs,f(s,ξs))dsEπ̂

i

[
e
∫ t
t∧τD

c(ξs,f∗(s,ξs))ds|Ft∧τD
]]

= Eπ
i

[
e
∫ t∧τD
0 c(ξs,f(s,ξs))dsϕ(t− t ∧ τD, ξt∧τD , π∗)

]
= Eπ

i

[
e
∫ t∧τD
0 c(ξs,f(s,ξs))dsϕ(t− t ∧ τD, ξt∧τD)

]
≤ Eπ

i

[
e
∫ t∧τD
0 c(ξs,f(s,ξs))dsϕ(t− t ∧ τD, ξt∧τD , π)

]
= ϕ(t, i, π).

Taking the infimum over π ∈ Πd
m on the both sides of the above inequality and

using (b) again, we see that part (c) holds.

Theorem 3.2. Under Conditions 3.1, 3.2 and 3.3, the following assertions hold.

(a) ϕ(t,i)
ϕ(t,i0)

≤ V0(i) for all and i ∈ S and t ≥ 0;
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(b) ϕ′(t, i) ≥ 0 and supt≥0
ϕ′(t,i)
ϕ(t,i0)

≤ L(i) for all i ∈ S and t ≥ 0, where L(i) :=

2V0(i)q∗(i) + b0 .

Proof. (a) Since 1 = ϕ(0, i) ≤ ϕ(t, i) for all i ∈ S and t ≥ 0, by Theorem 3.1(c)

we have, for each f ∈ Πd
m,

ϕ(t, i) ≤ Eπ
i

[
e
∫ t∧τi0
0 c(ξv ,f(v,ξv))dvϕ(t− t ∧ τi0 , ξt∧τi0 )

]
= Eπ

i

[
e
∫ t∧τi0
0 c(ξv ,f(v,ξv))dvϕ(t− t ∧ τi0 , ξt∧τi0 )I{t≤τi0}

]
+Eπ

i

[
e
∫ t∧τi0
0 c(ξv ,f(v,ξv))dvϕ(t− t ∧ τi0 , ξt∧τi0 )I{t>τi0}

]
= Eπ

i

[
e
∫ t∧τi0
0 c(ξv ,f(v,ξv))dvI{t≤τi0}

]
+Eπ

i

[
e
∫ t∧τi0
0 c(ξv ,f(v,ξv))dvϕ(t− τi0 , ξτi0 )I{t>τi0}

]
≤ Eπ

i

[
e
∫ t∧τi0
0 c(ξv ,f(v,ξv))dvϕ(t, ξτi0 )I{t≤τi0}

]
+Eπ

i

[
e
∫ t∧τi0
0 c(ξv ,f(v,ξv))dvϕ(t, ξτi0 )I{t>τi0}

]
≤ Eπ

i

[
e
∫ τi0
0 c(ξv ,f(v,ξv))dvϕ(t, ξτi0 )

]
(3.5)

= ϕ(t, i0)Eπ
i

[
e
∫ τi0
0 c(ξv ,f(v,ξv))dv

]
,

which, together with Lemma 3.3(a), completes the proof of part (a).

(b) Since ϕ(t, i) is increasing in t for each i ∈ S, and thus ϕ′(t, i) ≥ 0.

Moreover,for each t ≥ 0, by (a) and Theorem 3.1(b) we have

0 ≤ ϕ′(t, i)

ϕ(t, i0)
= inf

a∈A(i)
[c(i, a)

ϕ(t, i)

ϕ(t, i0)
+
∑
j∈S

ϕ(t, j)

ϕ(t, i0)
q(j|i, a)]

≤ inf
a∈A(i)

[δ(i)V0(i) +
∑
j∈S

V0(j)|q(j|i, a)|]

= inf
a∈A(i)

[δ(i)V0(i) +
∑
j∈S

V0(j)q(j|i, a)− 2q(i|i, a)V0(i)]

≤ 2q∗(i)V0(i) + b0.

and so part (b) follows.
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Remark 3.4. If the I{i0} in Condition 3.1(i) is replaced with the indicator func-

tion IC of some finite subset C of S, as the proof of (3.5), we can prove that

Eπ
i

[
e
∫ τC
0 δ(ξv)dv

]
≤ V0(i), and ϕ(t, i) ≤ Eπ

i

[
e
∫ τC
0 c(ξv ,πv)dv

]
ϕ(t, i0(t)) ∀ t ≥ 0 .(3.6)

where the states i0(t) (depending on t ≥ 0) are determined by ϕ(t, i0(t)) :=

maxi∈C ϕ(t, i). However, we can not prove Lemma 3.3 and Theorem 3.2 by (3.6).

In fact, from (3.6) we cannot establish the existence of some fixed i0 ∈ C such

that :

Eπ
i

[
e
∫ τi0
0 δ(ξv)dv

]
≤ V0(i),

ϕ(t, i)

ϕ(t, i0)
≤ Eπ

i

[
e
∫ τi0
0 c(ξv ,πv)dv

]
∀ t ≥ 0,

which are required in [74] and our arguments below. This is because τi0 ≥ τC and

the states i0(t) may change with t ≥ 0.

3.2 On the risk-sensitive average optimality equation

In this section, we will establish the existence of a solution to the RS-AOE for

the risk-sensitive average CTMDPs without loss of generalization. We suppose

that S = {0, 1, · · · } (the set of all nonnegative integers).

To begin with, we need some notation given as follows: For each n ≥ 1, let

cn(i, a) :=

c(i, a), for i ∈ {0, . . . , n}, a ∈ A(i),

0, otherwise,

(3.7)

Using Theorems 3.1 and 3.2, we give the extensions of the corresponding ones

in [74] to the unbounded transition and cost rates.

Theorem 3.3. Under Conditions 3.1, 3.2 and 3.3, for each n ≥ i0, the followings

hold.
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(a) There exists a solution (ρn, ψn) in [0, L(i0)]×BV0(S) to the following equation

ρnψn(i) = inf
a∈A(i)

{cn(i, a)ψn(i) +
∑
j∈S

ψn(j)q(j|i, a)}, ψn(i0) = 1, i ∈ S. (3.8)

(b) ρn ≤ infπ∈Π J(i, π) for all i ∈ S.

(c) There is a policy f ∗n ∈ F such that

ψn(i) = E
f∗n
i

[
e
∫ τi0
0 (cn(ξt,f∗n(ξt))−ρn)dt

]
= inf

f∈Πdm

Ef
i

[
e
∫ τi0
0 (cn(ξt,f(t,ξt))−ρn)dt

]
∀i ∈ S.

Proof. (a) For any fixed n ≥ 1, let

ϕn(t, i) := inf
f∈Πdm

Ef
i

[
e
∫ t
0

∫
A cn(ξv ,f(v,ξv))dv

]
, and ϕ̂n(t, i) :=

ϕn(t, i)

ϕn(t, i0)
, for t ≥ 0, i ∈ S.(3.9)

Then, since 0 ≤ cn ≤ c, the conditions of Theorems 3.1 and 3.2 still hold when c

is replaced with cn. Thus, using Theorem 3.2(a), we have

0 ≤ ϕ̂n(t, i) ≤ V0(i) ∀ t ≥ 0.

Thus, for any m ≥ 1, the mean value theorem together with Theorems 3.1(a)

gives the existence of k0(i,m) ∈ [m, 2m] (depending on the given m and i) such

that

ϕ̂′n(k0(m, i), i) =
ϕ̂n(2m, i)− ϕ̂n(m, i)

2m−m
→ 0 (as m→∞). (3.10)

Since S is denumerable, the diagonalization arguments as well as (3.10) ensures

the existence of a subsequence of {k1} of the {k0(i,m),m ≥ 1, i ∈ S} such that

lim
k1→∞

ϕ̂′n(k1, i) = 0, ϕ̂n(k1, i0) ≡ 1, for all i ∈ S.

which, together with the boundedness of |ϕ̂n(k1, i)| in k1 and the denumerability
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of i ∈ S, gives the existence of a subsequence {k2} of the {k1} such that the limits

lim
k2→∞

ϕ̂n(k2, i) =: ψn(i) ∈ [0, V0(i)], (3.11)

exist for all i ∈ S, and ψn(i0) = 1.

Furthermore, Theorem 3.2(b) together with (3.11) guarantees the existence

of a subsequence {k3} of the {k2} ensuring the existence of the following limit

lim
k3→∞

ϕ′n(k3, i0)

ϕn(k3, i0)
=: ρn ∈ [0, L(i0)]. (3.12)

Hence, along the sequence {k3}(⊂ {k2} ⊂ {k1} ⊂ {k0(i,m),m ≥ 1, i ∈ S}), we

have

lim
k3→∞

[
ϕ̂′n(k3, i) + ϕ̂n(k3, i)

ϕ′n(k3, i0)

ϕn(k3, i0)

]
= ρnψn(i) ∀ i ∈ S. (3.13)

On the other hand, for each k3 ∈ {k3}, using the definition of ϕ̂n(t, i) in (3.9)

and Theorem 3.1(b) with (c, ϕ) replaced with the corresponding (cn, ϕn), a direct

calculation gives for each (i, a) ∈ K

ϕ̂′n(k3, i) + ϕ̂n(k3, i)
ϕ′n(k3, i0)

ϕn(k3, i0)
= inf

a∈A(i)
{cn(i, a)ϕ̂n(k3, i) +

∑
j∈S

ϕ̂n(k3, j)q(j|i, a)}

≤ cn(i, a)ϕ̂n(k3, i) +
∑
j∈S

ϕ̂n(k3, j)q(j|i, a) (3.14)

which, together with the dominated convergence theorem and (3.11)-(3.13), im-

plies

ρnψn(i) ≤ inf
a∈A(i)

{cn(i, a)ψn(i) +
∑
j∈S

ψn(j)q(j|i, a)} ∀ i ∈ S. (3.15)

Moreover, for each given k3 and i ∈ S, by Condition 3.3 and (3.13)(3.14), there
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exists a(i, k3) ∈ A(i) (depending on k3, i ∈ S) such that

ϕ̂′n(k3, i) + ϕ̂n(k3, i)
ϕ′n(k3, i0)

ϕn(k3, i0)
= cn(i, a(i, k3))ϕ̂n(k3, i) +

∑
j∈S

ϕ̂n(k3, j)q(j|i, a(i, k3)).(3.16)

Since A(i) is compact, there exist a subsequence of {k4} of of {k3} and a′(i) ∈

A(i) such that limk4→∞ a(i, k4) = a′(i). Thus, replacing k3 in (3.16) with k4 and

then letting k4 →∞, by (3.13) and (3.16) we have

ρnψn(i) = cn(i, a′(i))ψn(i) +
∑
j∈S

ψn(j)q(j|i, a′(i)) (3.17)

≥ inf
a∈A(i)

{cn(i, a)ψn(i) +
∑
j∈S

ψn(j)q(j|i, a)},

which, together with (3.14) and (3.11)-(3.12), gives (a).

(b) Fix any i ≥ n+ 1 with n ≥ i0, and let τ(n) := τ{0,1,...,i0,...,n} be the hitting

time. Then, by Lemma 3.3(b) and τ(n) ≤ τi0 , P π
i (τ(n) < ∞) = 1. Moreover,

since ϕn(0, i) ≡ 1 and ϕn(t, i) is increasing in t ≥ 0, using (3.7)and Theorem

3.1(c) (with c replacing by cn here) as well as the fact that cn(ξv, πv) ≡ 0 for

v < τ(n) and π ∈ Πr
m, we have, for each π ∈ Πr

m,

ϕn(t, i) ≤ Eπ
i

[
e
∫ t∧τ(n)
0 cn(ξv ,πv)dvϕn(t− t ∧ τ(n), ξt∧τ(n))

]
= Eπ

i

[
e
∫ t∧τ(n)
0 cn(ξv ,πv)dvϕn(t− t ∧ τ(n), ξt∧τ(n))I{t≤τ(n)}

]
+Eπ

i

[
e
∫ t∧τ(n)
0 cn(ξv ,πv)dvϕn(t− t ∧ τ(n), ξt∧τ(n))I{t>τ(n)}

]
= Eπ

i

[
ϕn(0, ξt)I{t≤τ(n)}

]
+ Eπ

i

[
ϕn(t− τ(n), ξτ(n))I{t>τ(n)}

]
≤ 1 + Eπ

i

[
ϕn(t, ξτ(n))I{t>τ(n)}

]
≤ 1 + max{ϕn(t, k), k = 0, 1, . . . , n},

which,together with Theorem 3.2(a) and ϕn ≥ 1, implies

ϕ̂n(t, i) ≤ 1 + max{V0(k), k = 0, 1, . . . , n} =: K(n) ∀ t ≥ 0, i ∈ S.
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Hence, using (3.11) and Theorem 3.2(a) again, we have

ψn(i) ≤ K(n) ∀ t ≥ 0, i ∈ S. (3.18)

For each π ∈ Π and i ∈ S, using Lemma 3.2(a) and (3.8), we have

Eπ
i

[
e
∫ T
0

∫
A[cn(ξt,a)−ρn]π(da|ω,t)dtψn(ξT )

]
− ψn(i) ≥ 0, for T > 0.

Hence, by (3.18) we have

K(n)e−TρnEπ
i

[
e
∫ T
0

∫
A cn(ξt,a)π(da|ω,t)dt

]
≥ ψn(i).

Taking logarithm in the above sides, dividing by T and letting T →∞, we obtain

ρn ≤ lim sup
T→∞

1

T
lnEπ

i

[
e
∫ T
0

∫
A cn(ξt,a)π(da|ω,t)dt

]
≤ lim sup

T→∞

1

T
lnEπ

i

[
e
∫ T
0

∫
A c(ξt,a)π(da|ω,t)dt

]
,

which, together with the arbitrariness of π, completes the proof of (b).

(c) For each f ∈ Πd
m and i ∈ S, using Lemma 3.2(b) and (3.8) again, we have

Ef
i

[
e
∫ T∧τi0
0 (cn(ξt,f(t,ξt))−ρn)dtψn(ξT∧τi0 )

]
− ψn(i) ≥ 0, for T > 0.

Since ψn is bounded and cn(i, a) ≤ c(i, a) ≤ δ(i) for all (i, a) ∈ K, by the

dominated convergence theorem and Lemma 3.3(a), letting T →∞, we obtain

ψn(i) ≤ Ef
i

[
e
∫ τi0
0 [cn(ξt,f(t,ξt))−ρn]dtψn(ξτi0 )

]
(3.19)

= Ef
i

[
e
∫ τi0
0 [cn(ξt,f(t,ξt))−ρn]dt

]
≤ V0(i)

which, together with the arbitrariness of π ∈ Πd
m, implies

ψn(i) ≤ inf
f∈Πdm

Ef
i

[
e
∫ τi0
0 [cn(ξt,f(t,ξt))−ρn]dtψn(ξτi0 )

]
≤ V0(i). (3.20)
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On the other hand, take f ∗n ∈ F be a minimizing stationary policy in (3.8), that

is,

ρnψn(i) = c(i, f ∗n(i))ψn(i) +
∑
j∈S

ψn(j)q(j|i, f ∗n(i)) ∀ i ∈ S. (3.21)

Using Lemma 3.2(b) and (3.21), as the proof of (3.20) (by the Fatou’s lemma

again) we have

ψn(i) ≥ E
f∗n
i

[
e
∫ τi0
0 (cn(ξt,f∗n(ξt))−ρn)dt

]
.

This inequality as well as (3.20) gives (c).

Remark 3.5. In order to establish the existence of k0(m, i) for (3.10) to hold, the

existence of ϕ′(t, i) of the function ϕ(t, i) at each t ≥ 0 is required. Otherwise,

such k0(m, i) can not be guaranteed. For example, for some given i ∈ S and

n ≥ 1, suppose that

ϕ̂n(t, i) :=

2t− 2, t ∈ [1, 2),

4− 2t, t ∈ [2, 4].

(3.22)

Take m = 1. Then, ϕ̂n(2,i)−ϕ̂n(1,i)
2−1

= 0 6= ϕ̂′n(k0(1, i), i) for any k0(1, i) ∈ [1, 2).

Theorem 3.4. Under Conditions 3.1, 3.2 and 3.3, the followings hold.

(a) There exists a solution (ρ∗, ψ∗) in [0, L(i0)]×BV0(S) to the following RS-AOE

ψ∗(i0) = 1, ρ∗ψ∗(i) = inf
a∈A(i)

{c(i, a)ψ∗(i) +
∑
j∈S

ψ∗(j)q(j|i, a)} ∀ i ∈ S(3.23)

(b) ρ∗ ≤ infπ∈Π J(i, π) for all i ∈ S.

(c) There exists some policy f ∗ ∈ F such that

(c1) ρ∗ψ∗(i) = c(i, f ∗(i))ψ∗(i) +
∑

j∈S ψ
∗(j)q(j|i, f ∗(i)) ∀ i ∈ S;
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(c2) ψ∗(i) = inff∈Πdm
Ef
i

[
e
∫ τi0
0 (c(ξt,f(t,ξt))−ρ∗)dt

]
= Ef∗

i

[
e
∫ τi0
0 (c(ξt,f∗(ξt))−ρ∗)dt

]
Proof. (a)-(b): Take (ρn, ψn) as in Theorem 3.3. Then, since ρn ∈ [0, L(i0)]

for all n ≥ i0, there exist a subsequence {n1} of {n, n ≥ i0} and a constant

ρ∗ ∈ [0, L(i0)] such that ρ∗ = limn1→∞ ρn1 , and ρ∗ ≤ infπ∈Π J(i, π) (by Theorem

3.3(b)). Furthermore, since ψn ∈ BV0(S) and ψn(i0) = 1 for all n ≥ i0 and S is

denumerable, the diagonalization argument ensures the existence of a subsequence

{n2} of {n1} and a function ψ∗ ∈ BV0(S) satisfying

ρ∗ = lim
n2→∞

ρn2 , ψ
∗(i) = lim

n2→∞
ψn2(i) ∀i ∈ S, ψ∗(i0) = 1.

Then, replacing n in (3.15) and (3.17) with n2 and letting n2 →∞, get

ρ∗ψ∗(i) = inf
a∈A(i)

{c(i, a)ψ∗(i) +
∑
j∈S

ψ∗(j)q(j|i, a)} ∀i ∈ S.

Thus, we completes the proof of (a) and (b).

(c). For any given f ∈ Πd
m, since cn2 ≤ c and ρn2 ≥ 0, Theorem 3.3(c) gives

that

ψn2(i) ≤ Ef
i

[
e
∫ τi0
0 (cn2 (ξt,f(t,ξt))−ρn2 )dt

]
≤ Ef

i

[
e
∫ τi0
0 c(ξt,f(t,ξt))dt

]
≤ V0(i) ∀ n2 ≥ 1.

Thus, using the dominated convergence theorem and letting n2 →∞, we have

ψ∗(i) ≤ Ef
i

[
e
∫ τi0
0 (c(ξt,f(t,ξt))−ρ∗)dt

]
,

and hence,

ψ∗(i) ≤ inf
f∈Πdm

Eπ
i

[
e
∫ τi0
0 (c(ξt,f(t,ξt))−ρ∗)dt

]
∀ i ∈ S. (3.24)

Taking f ∗n2
as in (3.21). Since f ∗n2

(i) ∈ A(i) belongs to the compact A(i) (for

each i ∈ S) and S is denumerable, there exists a subsequence {n3} of {n2} and
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f ∗ ∈ F ⊂ Πd
m such that

c(i, f ∗(i)) = lim
n3→∞

c(i, f ∗n3
(i)), q(j|i, f ∗(i)) = lim

n3→∞
q(j|i, f ∗n3

(i)) ∀ i, j ∈ S.

Replacing n in (3.21) with n3 and then letting n3 →∞, we have

ρ∗ψ∗(i) = c(i, f ∗(i))ψ∗(i) +
∑
j∈S

ψ∗(j)q(j|i, f ∗(i)) ∀ i ∈ S,

which, implies (c1) and also (by the extended Feymanm-Kac’s formula)

ψ∗(i) = Ef∗

i

[
e
∫ T∧τi0
0 (c(ξt,f∗(ξt))−ρ∗)dtψ∗(ξT∧τi0 )

]
, for T > 0. (3.25)

Hence, using Fatou’s lemma and noting ψ∗(xτi0 ) = ψ∗(i0) = 1, letting T → ∞

we have

ψ∗(i) ≥ Ef∗

i

[
e
∫ τi0
0 [c(ξt,f∗(ξt))−ρ∗]dt)

]
≥ inf

f∈Πdm

Eπ
i

[
e
∫ τi0
0 (c(ξt,f(t,ξt))−ρ∗)dt

]
, (3.26)

which, together with (3.24) gives (c2).

3.3 Existence of risk-sensitive average optimal policies

In this section, we will prove the existence of a risk-sensitive average optimal

stationary policy using the RS-AOE. To do so, besides Conditions 3.1, 3.2 and

3.3, which are assumed to hold throughout this section, we need the following

condition, whose necessity will be illustrated in the example.

Condition 3.4. infi∈S ψ
∗(i) > 0, where ψ∗ is from Theorem 3.4.

Condition 3.4 is new. We will show that, under Condition 3.4 and the con-

ditions in Theorem 3.4, a risk-sensitive average optimal stationary policy exists.

Before proving this, we provide some sufficient conditions for the verification of

Condition 3.4.
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Proposition 3.1. Each one of the following conditions (a)−(c) implies Condition

3.4.

(a) The state space S is finite.

(b) Suppose that infa∈A(i) q(i, a) > 0 for all i 6= i0, and there exist a nonnegative

bounded function V2 on S satisfying

∑
j 6=i0

q(j|i, a)V2(j) ≤ −1 ∀ a ∈ A(i), i 6= i0, V2(i0) := 0.

(c) (Stochastic monotonicity condition). For any f ∈ F , c(i, f(i)) is increasing

in i ∈ S; and
∑

j≥k q(j|i, f(i)) ≤
∑

j≥k q(j|i + 1, f(i + 1)) for all i, k ∈ S

with k 6= i+ 1; and i0 = 0.

Proof. (a) Take f ∗ and ρ∗ as in Theorem 3.4. ψ∗(i) = Ef
∗

i

[
e
∫ τi0
0 (c(ξt,f∗(ξt))−ρ∗)dt

]
> 0

for all i ∈ S. Thus, it is obvious that (a) implies Condition 3.4.

(b) Let M := supi∈S V2(i) < ∞ (by the condition). Then, as the proof of

Lemma 6.1.5 in [3], we have Ef∗

i (τi0) ≤ V2(i) ≤ M. Therefore, by the Jensen

inequality and c ≥ 0, we have

ψ∗(i) = Ef∗

i

[
e
∫ τi0
0 (c(ξt,f∗(ξt))−ρ∗)dt

]
≥ e−ρ

∗Ef
∗
i (τi0 ) ≥ e−ρ

∗M ≥ e−L(i0)M ∀ i ∈ S,

which also verifies Condition 3.4

(c) Obviously, it suffices to show that ψ∗ is increasing on S. First, for any

nonnegative increasing function u on S and t ≥ 0, by Theorem 7.3.4 and Propo-

sition 7.3.2 in [3], we see that
∑

j≥k P
f∗

i (ξt = j) is nondecreasing in i ∈ S (for

every fixed k ∈ S and t ≥ 0), which together with Proposition 7.3.1 in [3], im-

plies that Ef∗

i (u(ξt)) is increasing in i ∈ S. For any given n ≥ 1 and T > 0, let

ξ̂k := ξ k
2n
T , k = 0, 1, . . . , 2n. Then, since {ξt, t ≥ 0} is right continuous, we have

(by the dominated convergence theorem)

ψ∗(i) = Ef∗

i

[
e
∫ τi0
0 (c(ξt,f∗(ξt))−ρ∗)dt

]
= lim

T→∞
lim
n→∞

Ef∗

i

[
e
∑2n

k=0 I{ξ̂k 6=0}[c(ξ̂k,f
∗(ξ̂k))−ρ∗] T

2n

]
.
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Thus, the rest needs to show that g(i) := Ef∗

i

[
e
∑2n

k=0 I{ξ̂k 6=0}[c(ξ̂k,f
∗(ξ̂k))−ρ∗] T

2n

]
is

increasing in i ∈ S. Fix any n ≥ 1, and let ū(j) := eIS\{0}(j)(c(j,f
∗(j))−ρ∗) T

2n for all

j 6= 0 and ū(0) := 0. Thus, the ū(j) is increasing in j ∈ S, and so is Ef∗

i [ū(ξ̂2n)]

in i ∈ S. Moreover,

g(i) = Ef∗

i

[
Π2n

k=0ū(ξ̂k)
]

= Ef∗

i

[
Π2n−1
k=0 ū(ξ̂k)E

f∗

ξ̂2n−1

[
ū(ξ̂2n)

]]
.

Let G1(j) := ū(j)Ef∗

j [ū(ξ̂2n)] for j ∈ S. Then, G1 is nonnegative and increasing

on S, and

g(i) = Ef∗

i

[
Π2n−2
k=0 ū(ξ̂k)G

1(ξ̂2n−1)
]
.

Let Gm+1(j) := ū(j)Gm(j) for j ∈ S and m = 1, · · · , 2n − 1. Then, by induction

we see that all Gm+1 are nonnegative and increasing on S, and so is g(i) =

Ef∗

i [G2n(ξ̂1)] in i ∈ S.

We now present our main result as follows.

Theorem 3.5. Under Conditions 3.1, 3.2, 3.3, and 3.4, the followings hold.

(a) There exists a solution (ρ∗, ψ∗) in [0, L(i0)]×B+
V0

(S) to the RS-AOE:

ψ∗(i0) = 1, ρ∗ψ∗(i) = inf
a∈A(i)

{c(i, a)ψ∗(i) +
∑
j∈S

ψ∗(j)q(j|i, a)} ∀i ∈ S.(3.27)

where B+
V0

(S) := {ψ ∈ BV0(S) : infi∈S ψ(i) > 0}.

(b) ρ∗ = infπ∈Π J(i, π) for all i ∈ S.

(c) There exists some policy f ∗ ∈ F such that

(c1) ρ∗ψ∗(i) = c(i, f ∗(i))ψ∗(i) +
∑

j∈S ψ
∗(j)q(j|i, f ∗(i)) ∀ i ∈ S;

(c2) ψ∗(i) = Ef∗

i

[
e
∫ τi0
0 (c(ξt,f∗(ξt))−ρ∗)dt

]
= inff∈Πdm

Ef
i

[
e
∫ τi0
0 (c(ξt,f(t,ξt))−ρ∗)dt

]
;
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(c3) J(i, f ∗) = ρ∗ = infπ∈Π J(i, π) for all i ∈ S, which means that f ∗ is

optimal.

Proof. Using the notation and results in Theorem 3.4, we only need to show that

ρ∗ ≥ J(i, f ∗) for all i ∈ S. Indeed, for each i ∈ S, by Lemma 3.2 and Assumption

3.4 that ψ∗ := infi∈S ψ
∗(i) > 0, we have

ψ∗(i) = Ef∗

i

[
e
∫ T
0 (c(ξt,f∗(ξt)−ρ∗)dtψ∗(ξT )

]
≥ ψ∗Ef∗

i

[
e
∫ T
0 (c(ξt,f∗(ξt)−ρ∗)dt

]
∀ T > 0.

Therefore,

lnψ∗(i) ≥ lnψ∗ + lnEf∗

i

[
e
∫ T
0 c(ξt,f∗(ξt)dt

]
− Tρ∗, for T > 0.

which, implies that

ρ∗ ≥ lim sup
T→∞

1

T
lnEf∗

i

[
e
∫ T
0 c(ξt,f∗(ξt)dt

]
= J(i, f ∗).

3.4 A policy iteration algorithm and finite-approximation

We have shown the existence of an optimal stationary policy above. In this

section, we focus on the computational approach for finding optimal stationary

policies.

Under Conditions 3.1-3.3 and 3.4, for each f ∈ F , by taking A(i) := {f(i)}

for all i ∈ S, it follows from Theorem 3.5 that J(i, f) is independent of states

i (i.e., a constant denoted by ρf ), which together with the function ψf (i) :=

Ef
i

[
e
∫ τi0
0 (c(ξt,f(ξt))−ρf )dt

]
≤ V0(i)(i ∈ S), solves the following multiplicative Poisson
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equation

ρψ(i) = c(i, f(i))ψ(i) +
∑
j∈S

ψ(j)q(j|i, f(i)) ∀i ∈ S, with ψ(i0) = 1. (3.28)

To establish the uniqueness of a solution to the Poisson equation (3.28) and the

RS-AOE (3.27), we introduce the following condition.

Condition 3.5. supi∈S ψ
f (i) <∞ for each f ∈ F , ψf (i) := Efi

[
e
∫ τi0
0 (c(ξt,f(ξt))−ρf )dt

]
.

Remark 3.6. Since ψf (i) ≥ ψ∗ for any f ∈ F , Conditions 3.4 and 3.5 together

with Theorem 3.5(c) implies that the ψ∗ in the solution (ρ∗, ψ∗) to the RS-AOE

needs to be a bounded, positive function which is uniformly bounded away from

zero. As mentioned in Remark 5.3 in [43], it is unsolved to show the existence of

such a solution. Obviously, Conditions 3.4 and 3.5 are satisfied when S is finite.

For the case of infinitely denumerable states we next give suitable conditions and

examples for the verifications of Conditions 3.4 and 3.5.

Proposition 3.2. Suppose that q∗ := infa∈A(i),i 6=i0 q(i, a) > 0, and there exist a

nonnegative bounded function V3 on S and a constant δ̂ > 0 such that

δ̂ < q∗, V3(i0) = 0, and
∑
j 6=i0

q(j|i, a)V3(j) ≤ −δ̂V3(i)−1 ∀a ∈ A(i), for all i 6= i0.

Then, the following assertions hold.

(a) ψf (i) ≥ e−L(i0) supi∈S V3(i) for all i ∈ S and f ∈ F , which implies Conditions

3.4.

(b) If in addition c(i, a) ≤ δ̂ for all (i, a) ∈ K, then Conditions 3.5 and 3.4 are

satisfied.

Proof. Let M := supi∈S V3(i). Then,for any f ∈ F , it follows from the proof of

Lemma 6.1.5 in [3] that

Ef
i (τi0) ≤ V3(i) ≤M and Ef

i

[
eδ̂τi0

]
≤ δ̂V3(i) + 1 ≤ 1 + δ̂M <∞, for all i ∈ S.
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Thus, by ψf (i) = Ef
i

[
e
∫ τi0
0 (c(ξt,f(ξt))−ρf )dt

]
≥ e−ρ

fEfi (τi0 ) ≥ e−L(i0)M , we see that

(a) is true. Obviously, (b) follows from that ψf (i) ≤ Ef
i

[
e
∫ τi0
0 c(ξt,f(ξt))dt

]
≤

Ef
i

[
eδ̂τi0

]
≤ 1 + δ̂M .

We next prove the uniqueness of a solution to (3.28) or (3.27).

Proposition 3.3. Under Conditions 3.1, 3.2, 3.3, 3.4 and 3.5, the followings

hold.

(a) The solution (ρ∗, ψ∗) to the RS-AOE (3.27) is unique in [0, L(i0)]×B+
1 (S).

(b) For each f ∈ F , the solution (ρf , ψf ) to the multiplicative Poisson equation

(3.28) is unique in [0, L(i0)]×B+
1 (S).

Proof. (a) In Theorem 3.5, we have shown that (ρ∗, ψ∗) is a solution in [0, L(i0)]×

B+
V0

(S) to the RS-AOE (3.27) and (ρ∗, ψ∗) = (ρf
∗
, ψf

∗
) for some f ∗ ∈ F . Under

Condition 3.5, it is obvious that ψ∗ ∈ B+
1 (S). Hence, it remains to show that

such a solution is unique to the RS-AOE (3.27) in [0, L(i0)] × B+
1 (S). To do

so, suppose that (ρ, ψ) is an arbitrary solution in [0, L(i0)] × B+
1 (S) to the RS-

AOE. Since (ρ, ψ) ∈ [0, L(i0)] × B+
1 (S), using a similar argument as in proving

Theorem 3.3(b,c) and Theorem 3.5(b) yields that ρ = infπ∈Π J(i, π), and ψ(i) =

infπ∈Πdm
Eπ
i

[
e
∫ τi0
0 (c(ξt,πt)−ρ)dt

]
for all i ∈ S. It then follows that ρ = ρ∗ and ψ(i) =

ψ∗(i) for all i ∈ S.

(b) The proof is similar to those of part (a) above.

Basing on the uniqueness of a solution to (3.28), we next provide a policy

iteration algorithm for computing optimal stationary policies.

The policy iteration algorithm:

1. Pick an arbitrary f ∈ F . Let n = 0, and take fn := f .

2. Policy evaluation (by Proposition 3.3(b)): Compute ρfn and ψfn by solving

the following multiplicative Poisson equation

ρψ(i) = c(i, fn(i))ψ(i) +
∑
j∈S

ψ(j)q(j|i, fn(i)) ∀ i ∈ S, with ψ(i0) = 1.
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3. Policy improvement: Obtain a policy fn+1 ∈ F such that, for each i ∈ S,

fn+1(i) :=

fn(i) when Bfn(i) = ∅

a with any a ∈ Bfn(i) 6= ∅,
(3.29)

where

Bfn(i) := {a ∈ A(i)| c(i, a)ψfn(i) +
∑

j∈S q(j|i, a)ψfn(j) < ρfnψfn(i)}.

if the set Bfn(i) contains more than one action, then we choose any one of

them to be fn+1(i).

4. If fn+1 = fn (i.e., Bfn(i) ≡ ∅),then stop because fn+1 is optimal (by Theo-

rems 3.3 and 3.5(c) above). Otherwise, increase n by 1 and return to step

2.

To establish the convergence of this algorithm, M := {S,A(i), c(i, a), q(j|i, a)}

needs to be irreducible, which means that {ξt, t ≥ 0} is irreducible under each

f ∈ F . Then, we have the following.

Lemma 3.4. Under the conditions in Theorem 3.3, suppose that S and A(i)(i ∈

S) are finite andM is irreducible. Let {fn} be a sequence obtained by the policy

iteration algorithm, then the following assertions hold.

(a) ρfn+1 ≤ ρfn for all n ≥ 1.

(b) If fn+1 6= fn for some n ≥ 0, then ρfn+1 < ρfn , and

ρfn+1 − ρfn = c(i0, fn+1(i0))ψfn+1(i0) +
∑
j∈S

ψfn+1(j)q(j|i0, fn+1(i0))

−c(i0, fn(i0))ψfn(i0)−
∑
j∈S

ψfn(j)q(j|i0, fn(i0)).

(c) An optimal policy can be obtained by the algorithm in a finite number of

steps.
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Proof. By Theorem 5.1 in [43] and Proposition 3.3, we see that (a)-(c) are true.

In order to get optimal policies for the case of infinite states by finite-approximation,

we construct models Mn := {Sn,An(i), cn(i, a), qn(j|i, a)}(n ≥ 1) with finite s-

tates, where

Sn := {0, . . . , n}; An(i) := A(i); cn(i, a) := c(i, a); and

qn(j|i, a) :=


q(j|i, a) + 1

n

∑
k>n q(k|i, a) for 0 ≤ j ≤ n, j 6= i, 0 ≤ i ≤ n− 1

q(i|i, a) for j = i

q(j|i, a) + 1
n

∑
k>n q(k|i, a) for i = n, 0 ≤ j < n.

(3.30)

for each i ∈ Sn and a ∈ An(i).

Obviously, the transition rates qn(j|i, a)(n ≥ 1) are also conservative and

stable. Moreover, if the function V0 in Condition 3.1 is nondecreasing on S, then

Condition 3.1 holds for each model Mn, which is verifies as follows: For each

n ≥ 1, i ∈ Sn, a ∈ An(i),

∑
j∈Sn

qn(j|i, a)V0(j) =
∑

j∈Sn,j 6=i

[q(j|i, a) +
1

n

∑
k>n

q(k|i, a)]V0(j) + q(i|i, a)V0(i)

=
∑
j∈Sn

q(j|i, a)V0(j) +
1

n

∑
k>n

q(k|i, a)[
∑

j∈Sn,j 6=i

V0(j)]

≤
∑
j≤n

q(j|i, a)V0(j) +
∑
k>n

q(k|i, a)V0(k)

≤ −δ(i)V0(i) + b0I{i0} (by Condition 3.1). (3.31)

Thus, in summary, we have the fact below.

Theorem 3.6. Under Conditions 3.1, 3.2 and 3.3, if the functions V0 and V1 are

nondecreasing on S, then the following assertions hold for each Mn(n ≥ 1).

(a) The solution (ρ∗n, ψ
∗
n) to the RS-AOE (3.32) for Mn is unique in [0, L(i0)]×

48



B+
1 (S):

ρ∗nψ
∗
n(i) = inf

a∈A(i)
{cn(i, a)ψ∗n(i) +

∑
j∈Sn

ψ∗n(j)qn(j|i, a)} ∀ i ∈ Sn, (3.32)

ψ∗n(i0) = 1, ρ∗n ≤ L0(i0), ψ∗n(i) ≤ V0(i), for all i ∈ Sn and n ≥ 1.

(b) There exists a f ∗n ∈ F achieving the minimum in (3.32). Moreover, a policy

f in F is optimal forMn if and only if f(i) achieves the minimum in (3.32)

for all i ∈ Sn.

(c) If, in addition, M is irreducible and A(i) is finite for each i ∈ S, then an

optimal stationary policy f ∗n forMn can be obtained by the policy iteration

algorithm in a finite number of steps.

Proof. (a)and (b). Since Sn are finite, it follows from (3.31) that the Conditions

3.1, 3.2, 3.3, 3.4 and 3.5 are satisfied for eachMn. Thus, (a) follows from Theorem

3.5 and Proposition 3.3(a) as well as (3.31), (b) from Proposition 3.3.

(c) First, we show that Mn is also irreducible for each n ≥ 1. Indeed, given

any stationary policy fn ∈ F for model Mn and i, j ∈ Sn, i 6= j, we extend

fn to f ∈ F by letting f(i) := fn(i) for all i ∈ Sn and f(i) := ai for any

i 6∈ Sn, where ai ∈ A(i) is any fixed action. Then, since M is irreducible, there

exists K ≥ 0 states ik ∈ S \ {j}(k = 0, . . . K, with i0 = i, iK+1 = j) such that

q(ik+1|ik, f(ik)) > 0 for all k = 0, . . . , K. For the K + 2 states ik, if ik ∈ Sn

for all k = 0, · · · , K + 1, then q(ik+1|ik, fn(ik)) > 0 for all k = 0, · · · , K + 1,

which implies that i can reach j under fn. Otherwise, let k∗ := min{k : ik 6∈ Sn}.

Since i0, iK+1 ∈ Sn, we have 1 ≤ k∗ ≤ K and ik∗+1 /∈ Sn. Then we have

{i0, . . . , ik∗−1} ⊂ Sn, but ik∗ 6∈ Sn. Thus, by the definition of the transition rates

qn(·|·, ·) in (3.30) and ik∗−1 6= j ∈ Sn, we have

qn(j|ik∗−1, fn(ik∗−1)) = qn(j|ik∗−1, f(ik∗−1)) ≥ 1

n
q(ik∗ |ik∗−1, f(ik∗−1)) > 0,

which, together with q(ik+1|ik, f(ik)) > 0 for k = 0, . . . , k∗ − 1, implies that i
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can reach to j under fn for the model Mn. Thus, Mn is irreducible, and so (c)

follows from Lemma 3.4.

Since the sets A(i) are compact, and so is F . Thus, any sequence {f ∗n} in

Theorem 3.6(c) has a limit policy (say f̂ ∗) in F , that is, there is a subsequence

{f ∗nk} of {f ∗n} such that limk→∞ f
∗
nk

(i) = f̂ ∗(i) for each i ∈ S.

Theorem 3.7. (Finite-approximation.) Suppose that Conditions 3.1, 3.2 and

3.3 are satisfied, and the V0 is nondecreasing on S. Then, the followings hold.

(a) A sequence {f ∗n} of optimal stationary policies f ∗n exists for Mn, and it has

a limit policy f̂ ∗ such that

ρ̂ψ̂(i) = c(i, f̂ ∗(i))ψ̂(i) +
∑
j∈S

q(j|i, f̂ ∗(i))ψ̂(j)

= inf
a∈A(i)

{c(i, a)ψ̂(i) +
∑
j∈S

q(j|i, a)ψ̂(j)} ∀i ∈ S. (3.33)

for some function ψ̂ on S such that ψ̂ ≤ V0.

(b) If, in addition, the condition in Proposition 3.2 holds with a nondecreasing

V3 on S and a constant δ̂ ≥ c(i, a) on K, then the policy f̂ ∗ in (a) is optimal

for the model M.

Proof. (a) Suppose that f̂ ∗(i) = limk→∞ f
∗
nk

(i) for all i ∈ S. Then, by Theorem

3.5, we have 0 ≤ ρ∗nk ≤ L0(i0) and ψ∗nk(i) ≤ V0(i) for all k ≥ 1. Thus, the

diagonalization arguments ensure the existence of a subsequence {nkl , l ≥ 1} of

{nk, n ≥ 1} and (ρ̂, ψ̂) ∈ [0, L0(i0)]×BV0(S) such that ψ̂(i0) = 1 and:

lim
l→∞

f ∗nkl
(i) = f̂ ∗(i), lim

l→∞
ρ∗nkl

= ρ̂, lim
l→∞

ψ∗nkl
(i) = ψ̂(i) ≤ V0(i) ∀i ∈ S (3.34)

For given i ∈ S, there exists ñ such that i ∈ Sn for n ≥ ñ. Then, Theorem
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3.6(a,b) gives ∀ l ≥ ñ

ρ∗nkl
ψ∗nkl = cnkl (i, f

∗
nkl

(i))ψ∗nkl
(i) +

∑
j∈Snkl

ψ∗nkl
(j)qnkl (j|i, f

∗
nkl

(i)) (3.35)

= inf
a∈A(i)

{cnkl (i, a)ψ∗nkl
(i) +

∑
j∈Sn

ψ∗nkl
(j)qnkl (j|i, a)} (3.36)

≤ cnkl (i, a)ψ∗nkl
(i) +

∑
j∈Sn

ψ∗nkl
(j)qnkl (j|i, a) ∀ a ∈ A(i).

On the other hand, since ψ∗n ≤ V0 for all n ≥ 1, by (3.30), we have

∑
j∈Sn

ψ∗n(j)qn(j|i, f∗n(i)) (3.37)

=
∑
j∈Sn

ψ∗n(j)q(j|i, f∗n(i)) +
1

n

∑
k>n

q(k|i, f∗n(i))
∑

0≤j≤n,j 6=i
ψ∗n(j)

which, together with the monotonicity of V0 and the following

0 ≤ 1

n

∑
k>n

q(k|i, f ∗n(i))
∑

0≤j≤n,j 6=i

ψ∗n(j) ≤
∑
k>n

q(k|i, f ∗n(i))V0(k)→ 0 as n→∞,

implies that

lim
n→∞

[∑
j∈Sn

ψ∗n(j)qn(j|i, f ∗n(i))

]
=
∑
j∈S

ψ̂∗(j)q(j|i, f̂ ∗(i)). (3.38)

Thus, by (3.34)-(3.38), we get (3.33).

(b) As the proof of (3.31), we have

δ̂ < qn(i, a), and
∑
j 6=i0

qn(j|i, a)V3(j) ≤ −δ̂V3(i)−1 ∀a ∈ A(i), for every i 6= i0, n ≥ 1,

which, together with the proofs of Proposition 3.2 and Theorem 3.5(c), gives

e−L(i0)M ≤ ψ∗n(i) ≤ 1 + δ̂M , where M = supi∈S V3(i) < ∞, and so e−L(i0)M ≤

ψ̂∗(j) ≤ 1 + δ̂M for all i ∈ S. Hence, by (3.33) and Theorem 3.5, we see that (b)

is also true.
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3.5 Examples

In this section, we will give two examples, which are used to verify the conditions

in this paper and show the difference between the conditions here and those in

the previous literature for the risk-sensitive average CTMDPs.

Example 3.2. (Controlled population processes.) In a population process, our

aim is to minimize the cost of the system caused by birth & death rate and each

individual. We regard the population size at any time as the state variable, and

suppose that the birth and death parameters can be controlled by a decision

maker and denoted by λi(a1) and µi(a2) respectively, which may depend on the

system’s state i and decision variables (a1, a2) taken by the decision maker. When

the state of the process is at i ∈ S := {0, 1, . . . , }, the decision maker takes

an action a := (a1, a2) from a given set A(i), which may increase or decrease

the parameters λi(a1) and µi(a2). On the other hand, because of some possible

catastrophe, it is suitable to suppose that a transition from i to 0 may happen

at rate β(i) for all i ≥ 1. Choosing any action a = (a1, a2) at state i results in

some cost denoted by c(i, a). Moreover, the decision maker wishes to minimize

the associated risk-sensitive average cost.

We now formulate the controlled population processes as CTMDPs. Obvious-

ly, the state space S = {0, 1, . . .} is denumerable; the corresponding transition

rates q(j|i, a) are as follows. When there is no population in the system (i.e.,

i = 0), any control of death is unnecessary, and so we set A2(0) := {0}. Thus,

we have

q(1|0, a) = −q(0|0, a) := λ0(a1), for a = (a1, a2) ∈ A1(0)×A2(0),

where a1 denote immigration rates varying in A1(0) := [0, α1] for some constant
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α1 > 0. Moreover, for each i ≥ 1, a = (a1, a2) ∈ A1(i)×A2(i), we have

q(j|i, a) =



λi(a1) if j = i+ 1,

−λi(a1)− µi(a2)− β(i) if j = i,

µi(a2) if j = i− 1, i ≥ 2,

µ1(a2) + β(1) if j = 0, i = 1,

β(i) if j = 0, i ≥ 2

0 otherwise.

(3.39)

We aim to find conditions imposed on q(j|i, a) in (3.39) and c(i, a), which can

ensure the existence of an optimal policy, and thus consider the following sets of

hypotheses H1 and H2 with given positive constants µ and λ. A characterization

of these hypotheses is that their conditions are imposed on the elements of the

model and thus can be verified.

H1 (On controlled birth and death processes with catastrophes [3, p.292]):

(a) A(i) := [−λ, λ]× [−µ, µ] for all i ≥ 1 and µ ≥ max{λ, 1
2
};

(b) λi(a1) := λi+a1 for all i ≥ 0, and µi(a2) =: µ(i+2)2 +a2, for all i ≥ 1;

(c) β∗ := infi≥1 β(i) > 0;

(d) 0 ≤ c(i, a) ≤ ln
√
i+ 2 for all i ≥ 0 and a ∈ A(i), and c(i, a) is

continuous in a ∈ A(i) for each fixed i ∈ S.

Remark 3.7. The transition and cost rates in the condition H1 can be unbound-

ed. However, H1 needs the catastrophe hypothesis (i.e., infi≥1 β(i) > 0), which

is for the usage of Proposition 3.1(b). To remove the catastrophe hypothesis,

we need some price of the stochastic monotonicity, and thus modify H1 as the

following H2, which is for the verification of the conditions in Proposition 3.1(c).

H2 (On controlled birth and death processes without any catastrophe [3, p.292]):

(a) A1(0) = [0, α1],A(i) := [−λ, λ] × [µ, µ] for all i ≥ 1, where µ ≥

max{λ, 1
2
};
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(b) λi(a1) := λi+ a1 for i ≥ 0, and µi(a2) =: µ(i+ 2)2 + a2, for all i ≥ 1;

(c) β(i) = 0 for all i ≥ 1;

(d) 0 ≤ c(i, a) ≤ ln
√
i+ 2 for all (i, a) ∈ K, and c(i, a) is continuous in

a ∈ A(i) for each fixed i ∈ S;

(e) infa′∈A(i+1) c(i + 1, a′) ≥ c(i, a) for all (i, a) ∈ K, which implies that

c(i, f(i)) is increasing in i ∈ S for any given f ∈ F .

Proposition 3.4. Under one of H1 and H2, conditions 3.1, 3.2, 3.3 and 3.4 are

satisfied. Thus, an optimal stationary policy exists for Example 3.2.

Proof. (a) Under H1, in order to verify the assumptions, let i0 := 0, and

V0(i) := (i+2)2, δ(i) := ln
√
i+ 2, V1(i) := (i+2)4, V2(i) :=

1

β∗
for i 6= 0, V2(0) := 0.

Then, using the condition in H1, a directive calculation gives, for all i ≥ 1 and

(a1, a2) ∈ A(i),

∑
j∈S

q(j|0, a)V0(j) = 4a1 ≤ −δ(0)V0(0) + 8µ+ 4b1, (3.40)

∑
j∈S

q(j|i, a)V0(j) ≤ −µ
2

(i+ 2)V0(i) ≤ −δ(i)V0(i); (3.41)∑
j∈S

q(j|i, a)V 2
1 (j) ≤ 192(λ+ µ)(i+ 2)8 = 192(λ+ µ)V 2

1 (i); (3.42)

∑
j 6=0

q(j|i, a)V2(j) = −β(i)

β∗
≤ −1. (3.43)

Thus, since q∗(i) ≤ (λ + µ)(i + 2)2 ≤ (λ + µ)V0(i), Condition 3.1 follows from

(3.40)-(3.41). From the descriptions of the example and H1, we see that Condition

3.3 is satisfied, and (3.42) implies Condition 3.2. Thus, the rests need to verify

Condition 3.4. Indeed, since infa∈A(i) q(i, a) = infa∈A(i)(λi+ a1 + µ(i+ 2)2 + a2 +

β(i)) ≥ 3µ > 0 (by H1) for each i 6= 0, by (3.43) and Proposition 3.1(b), we know

Condition 3.4 is satisfied.
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Under H2, as the arguments for H1, we see that Conditions 3.1-3.2 are all

satisfied. Moreover, since the birth and death processes without any catastrophe

(by H2(c)) are stochastic monotone and the H2(e) implies that c(i, f(i)) is nonde-

creasing in i ∈ S (for any given stationary policy f), Condition 3.4 follows from

Proposition 3.1(c). Thus , Theorem 3.5 gives the desirable result.

Remark 3.8. Under H1 or H2, take any policy stationary policy f with f(0) =

(0, 0) (or f(1) = (−µ,−λ). Then, we have q(0|0, f(0)) = 0 (or q(1|1, f(1)) =

0), and so the state “0” (or “1”) is absorbing under the policy f , while the

state process under every stationary policies has been assumed to be ergodic in

[43, 74, 73, 102]. Of course, if the sets A(0) and A(i)(i ≥ 1) are taken to be

compact subsets of (0, b1] and (−λ, λ) × (−µ, µ) respectively, then the M (i.e.,

process {xt, t ≥ 0}) is irreducible under any stationary policy.

To illustrate the calculation of optimal stationary policies for the case of infi-

nite states by the policy iteration algorithm, we consider the following conditions

H3.

H3 (On (On controlled irreducible birth and death processes with catastrophes

[3, p.292])):

(a) A1(0) := [α2, α3] for constants α3 > α2 > 0, and A(i) := [0, λ] × [0, µ]

for i ≥ 1;

(b) λi(a1) := λi + a1 for all i ≥ 0, µi(a2) =: µi + a2, for all i ≥ 1, and

µ ≥ λ;

(c) β(i) ≥ max{2 + 3(µ+ λ) + L, 4
√

ln(1 + i) + 2λ− µ} for i ≥ 1, with a

constant L > 0;

(d) 0 ≤ c(i, a) ≤ min{L, 1
4
(2 + 4µ+ λ+L)} for all i ≥ 0 and a ∈ A(i), and

c(i, a) is continuous in a ∈ A(i) for each fixed i ∈ S.

Proposition 3.5. Under H3 for Example 3.2, an optimal policy exists and can

be obtained as a limit policy of {f ∗n} of optimal policies f ∗n for the models Mn.
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Proof. Let i0 := 0, V0(i) := 1+i, δ(i) := 1
4
(β(i)+µ−2λ), V1(i) := (1+i)2, V3(i) :=

i
1+i

for all i ≥ 0, and δ̂ := L. Then, V0 and V3 are nondecreasing on S, and

q∗ = infa∈A(i),i≥1 q(i, a) = λ + µ > δ̂. Moreover, simple calculations give that

c(i, a) ≤ δ(i) ≤
√

lnV0(i)(a ∈ A(i)) and

∑
j∈S

q(j|i, a)V0(j) ≤ −δ(i)V0(i) + 3α3I{0}(i), for i ∈ S,∑
j∈S

q(j|i, a)V 2
1 (j) = : p1 + p2i+ p3i

2 + p4i
3 + p4i

4 ≤ K1V
2

1 (i) +K2, for i ∈ S,

∑
j∈S

q(j|0, a)V3(j) =
a1

2
≤ α3,

∑
j 6=0

q(j|i, a)V3(j) ≤ −LV3(i)− 1 for i ≥ 1,

where the constants p1, p2, p3, p4, K1, K2 are determined by the given λ and µ.

Thus, from the inequalities above and Proposition 3.2 we see that all conditions

in Theorem 3.7(b) are satisfied, and thus the result follows from Theorem 3.7.

Example 3.3. (The stochastic logistic process with immigration [3, p.307].) This

is a birth and death process with a finite state space S := {0, 1, . . . , N}, the birth

rate λi(a1) := λi(1− i
N

) for all i ≥ 1, the death rates µi(a2) := µi(1 + a2i
N

) (for all

i ≥ 0) with parameters a2, and immigration rates a1 when there is no population,

where λ and µ are given positive constants. Suppose that the parameters (a1, a2)

may be changed in the set {0, 1, . . . , ā} × {0, 1, . . . , µ}] for some ā ≥ 1, µ ≥ 1,

and any change of a = (a1, a2) at state i results in some cost c(i, a). We wish to

minimize the associated risk-sensitive average cost.

Obviously, the model of CTMDPs for the stochastic logistic process with

immigration is as follows: S = {0, 1, . . . , N}, A(0) = {0, 1, . . . , ā} × {µ},A(i) =
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{λ} × {0, 1, . . . , µ} for all i ≥ 1, the transition rates q(j|i, a)

q(j|i, a) =



λi(1− i
N

) if j = i+ 1, i ≥ 1

−λi(1− i
N

)− µi(1 + a2i
N

) if j = i ≥ 1

µi(1 + a2i
N

) if j = i− 1, i ≥ 1,

−a1 if j = 0, i = 0,

a1 if j = 1, i = 0

0 otherwise.

(3.44)

Proposition 3.6. If 0 ≤ c(i, a) < 1
3
(µ − λ + λ

N
) ≤ ln 2, µ > λ, and c(i, a)

is continuous in a ∈ A(i) for each i ∈ S, then Example 3.3 has an optimal

stationary policy, which can be obtained by the policy iteration algorithm in a

finite number of iteration steps.

Proof. Let

V0(i) := i+ 2, V1(i) := (N + 2)(i+ 2), δ(i) ≡ 1

3
(µ− λ+

λ

µ
) ∀ 0 ≤ i ≤ N.

Then, we have V 2
0 (i) ≤ V1(i) for all 0 ≤ i ≤ N , and

∑
j∈S

q(j|0, a)V0(j) = a1 ≤ −δ(0)V0(0) +
2

3
(µ− λ+

λ

µ
) + ā; (3.45)

∑
j∈S

q(j|i, a)V0(j) = −µi(1 +
a2i

N
) + λi(1− i

N
) ≤ −δ(i)V0(i); (3.46)

∑
j∈S

q(j|i, a)V 2
1 (j) = (N + 2)2[−µi(1 +

a2

N
i)(2i+ 3) + λi(1− i

N
)(4i+ 8)]

≤ (N + 2)2λi(4i+ 8) ≤ 4λV 2
1 (i). (3.47)

Thus, since q∗(i) ≤ N(1 + λ + µ)2 for all 0 ≤ i ≤ N , Condition 3.1 follows

from (3.45)-(3.46). From the descriptions of this example and (3.44), we see that

Condition 3.3 is satisfied, and (3.47) implies Condition 3.2. Moreover, Condition

3.4 follows from Proposition 3.1(a) and the finiteness of the states space.
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Remark 3.9. In the conditions H1 and H2 for Example 3.2, the cost and tran-

sition rates are allowed to be unbounded. Moreover, if the c(i, a) in H1(d) is

unbounded (for example, c(i, a) :=
√

ln(i+ 1 + |a1|+|a2|
µ+λ

), then the smallness con-

dition (stronger than the standard boundedness condition) on the costs in [43, 74]

is not satisfied. If taking c(i, a) =
√

ln[1 + |a1|+|a2|
(µ+λ)(i+1)

] which satisfied H1(d), then

lim infi→∞ infa∈A(i) c(i, a) = 0. But the near-monotone condition in [73] (i.e.,

lim infi→∞ infa∈A(i) c(i, a) > inff∈F J(i, f)) fails to hold; Furthermore, the unifor-

m boundedness hypothesis on the transition rates in [43, 74, 73, 102] fail to hold

for H1(b).
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4 Risk-sensitive gradual-impulse CTMDP

4.1 Introduction

In this chapter, we consider the gradual-impulse control problem of continuous-

time Markov decision processes, where the system performance is measured by

the expectation of the exponential utility of the total cost. We prove, under

very general conditions on the system primitives, the existence of a deterministic

stationary optimal policy out of a more general class of policies. Policies that we

consider allow multiple simultaneous impulses, randomized selection of impulses

with random effects, relaxed gradual controls, and accumulation of jumps. After

characterizing the value function using the optimality equation, we reduce the

continuous-time gradual-impulse control problem to an equivalent simple discrete-

time Markov decision process, whose action space is the union of the sets of

gradual and impulsive actions.

There is no lack of situations, where an action can affect the state of the con-

trolled process instantaneously. For example, in a Susceptible-Infected-Recovered

(SIR) epidemic model, the controller elaborates the immunization policy, affecting

the transition rate from the susceptibles to the infectives, as well as the isolation

policy, which reduces instantaneously the number of infectives. Let us formulate

another simple example, which contains some features motivating this chapter.

Example 4.1. A rat (or intruder) may invade the kitchen. For each time unit

it remains alive in the “kitchen”, a constant cost of l ≥ 0 is incurred. The rat

spends an exponentially distributed amount of time with mean 1
µ
> 0 in the

kitchen, and then goes outside and settles down in another house (and thus never

returns). When the rat is in the kitchen, the housekeeper (defender) can decide

to shoot at it, with a chance of hitting and killing the rat being p ∈ (0, 1). If the

rat dodged, it remains in the kitchen. Each bullet costs C > 0. Assume that the

successive shootings are independent.
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Let us mention some features in the above example. “Shoot” is an impulse.

The location of the rat is the state. The effect of an impulse on the post-impulse

state is random, as the shooting may be dodged. It is costly for each time unit

the rat is present in the kitchen. Suppose the cost of impulse is relatively low.

It can happen that after one impulse, if the rat is still alive and in the kitchen,

then it is reasonable to immediately shoot again. This means, one should allow

multiple impulses at a single time moment in this problem. We will return to this

problem in Example 4.2 below, which demonstrates the situations when applying

only one impulse is insufficient for optimality.

4.2 Model description and problem statement

4.2.1 System primitives of the gradual-impulse control problem

We describe the primitives of the model as follows. Because there are two kind

of spaces here containing both continuous and discrete time cases, we denote all

of the gradual control model notations with index G (the same as our previous

notations for CTMDP, see Chapter 2) and the impulsive control model with index

I. Therefore, the space of gradual controls is AG, and the space of impulsive

controls is AI .

If the current state is x ∈ S, and an impulsive control b ∈ AI is applied,

then the state immediately following this impulse obeys the distribution given

by Q(dy|x, b), which is a stochastic kernel from S × AI to B(S). Finally, given

the current state x ∈ S, the cost rate of applying a gradual control a ∈ AG is

cG(x, a) and the cost of applying an impulsive control b ∈ AI is cI(x, b, y), where

cG and cI are [0,∞)-valued measurable functions on S × AG and S × AI × S,

respectively.

Throughout the chapter, we assume that both action space AG and AI are

compact Borel spaces. It is without loss of generality to assume AG and AI as

two disjoint compact subsets of a Borel space Ã, for otherwise, one can consider
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AG×{G} instead of AG and AI×{I} instead of AI and Ã = AG×{G}
⋃

AI×{I}.

Furthermore, we assume that

sup
a∈AG

cG(x, a) <∞, ∀x ∈ S. (4.1)

In what follows, we will not make specific reference to this assumption.

The system dynamics in the concerned gradual-impulse control problem can

be described as follows. In absence of impulses, the system is just a controlled

Markov pure jump process in the state space S, where the (gradual) control,

selected from AG, acts on the local characteristics of the process, leading to

natural jumps. This is conveniently described as a marked point process, which

consists of the pairs of subsequent jump moments and the the post-jump states

(marks). The mark space is thus S. We would still describe the system in

the concerned gradual-impulse control problem using a marked point process.

However, when the decision maker is allowed to apply a finite or countably infinite

sequence of impulses from AI at a single time moment, and each impulse results

in a post-impulse state, there would be a sequence of states in S at a single

time moment. Moreover, the order of the impulses and their resulting states is

also relevant. Therefore, the marked point process we use now is in an enlarged

mark space. More precisely, each mark contains a sequence of impulses applied

at the same time moment, the state before the impulses are applied, and all

the states resulted by these impulses. Each jump moment is either triggered by

an impulse (or a sequence of impulses), or by a natural jump. A mark in this

marked point process is referred to as an intervention. This term is naturally

understandable when the mark consists of impulses. Having said so, we will

also allow that an “intervention” does not contain any impulse or say an empty

sequence of impulses. This appears when the decision maker chooses not to

apply any impulse immediately after a natural jump. In the rest of this section,

following the method of [28], we will elaborate this idea and describe rigorously

the concerned continuous-time gradual-impulse control problem. To this end, we
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will firstly state the precise definition of an intervention in the next section.

4.2.2 Definition and interpretation of an intervention

At the beginning of an intervention, the decision marker chooses whether to apply

an impulse, and which one to apply. If the current state is x ∈ S, and after an

impulse b ∈ AI is chosen, the new state say y ∈ S is instantaneously realized,

following the distribution Q(dy|x, b). Then based on x, b, y, the decision maker

will choose the next impulse, if any at all, and so on. To be consistent, a cemetery

point ∆ /∈ AI ,S is artificially fixed, which is chosen when the decision maker

decides not to apply any more impulse at the current time, and it leads to the

post-impulse state, also denoted as ∆, which is absorbing, i.e., Q(∆|∆,∆) ≡ 1.

Therefore, an intervention is a sequential decision process. More precisely, an

intervention can be regarded as a trajectory or sample path of the following

DTMDP, which we refer to as the “intervention” DTMDP model, to distinguish

it from several other DTMDP models to appear subsequently.

Definition 4.1. The intervention DTMDP model is specified by the following

tuple {S∆,A
I
∆, Q}, which are defined in terms of the primitives of the gradual-

impulse control problem given in Subsection 4.2.1.

• The state space is S∆ := S
⋃
{∆}, where ∆ is a cemetery point not belong-

ing to S or AI .

• The action space is AI
∆ := AI

⋃
{∆}.

• The one-step transition probability from S∆ ×AI
∆ to B(S∆) is Q(dy|x, b),

where we have accepted that Q({∆}|x, b) := 1 if x = ∆ or b = ∆.

Let the initial distribution in the intervention DTMDP be always concentrated

on S. Then its canonical sample space is

Y :=

(
∞⋃
k=0

Yk

)⋃
(S×AI)∞,
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where for each ∞ > k ≥ 1

Yk := (S×AI)k × (S× {∆})× ({∆} × {∆})∞,

and Y0 := (S× {∆})× ({∆} × {∆})∞. Here, if y ∈ Yk, ∞ > k ≥ 0, then there

are k impulses applied in the intervention y. Similarly, if y ∈ (S × AI)∞, then

there are infinitely many impulses applied in the intervention y. Now we give the

following definition.

Definition 4.2. An intervention is an element of Y.

In other words, Y defined above is the space of all interventions. It will be

the mark space of the marked point process {(Tn, Yn)} introduced in the next

subsection.

With the notations introduced above, we now reiterate, more rigorously com-

pared to the one in the beginning of this subsection, the interpretation of an

intervention as follows. Given the current state x ∈ S, if the controller decides

to use ∆, then it means, no more impulse is used at this moment, and the in-

tervention DTMDP is absorbed at ∆; if the controller decides to use an impulse

b ∈ AI , then the post-impulse state follows the distribution Q(dy|x, b). At the

next post-impulse state y, if y = ∆, then the only decision is ∆; if y 6= ∆, then

the controller either decides to use no impulse, leading to the next post-impulse

state ∆, or to use impulse b′, leading to the next post-impulse state, which follows

the distribution given by Q(·|y, b′), and so on. In other words, an intervention

consists of a state and a finite or countable sequence of pairs of impulsive actions

and the associated post-impulse states. In particular, no impulse is applied in an

intervention if the intervention belongs to Y0, see Figure 1 and its caption for an

example. Let

Y∗ := Y \Y0 =

(
∞⋃
k=1

Yk

)⋃
(S×AI)∞
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be the set of interventions, where some impulses are applied.

In an intervention, locally, the selection of impulses (including the “pseudo”

impulse ∆) from AI
∆ is governed by a strategy in the intervention DTMDP mod-

el. This adverb “locally” is understood in comparison with the definition of a

policy for the gradual-impulse control problem, as given in Definition 4.3 below,

which governs the selection of impulsive controls as well as gradual controls, and

is thus “global”. Let Ξ be the set of (possibly randomized and history-dependent)

strategies σ in the intervention DTMDP. The way how a strategy in the inter-

vention DTMDP model is incorporated into a policy in Definition 4.3 below is

through its strategic measure. We recall the definition of a strategic measure in a

DTMDP model in Definition B.1. Let βσ(·|x) denote the corresponding strategic

measure of a strategy σ of the intervention DTMDP, given the initial state x ∈ S.

By the Ionescu-Tulcea theorem, see e.g., Proposition C.10 in [57], the mapping

x ∈ S → βσ(·|x) is measurable. Let PY be the collection of all such stochastic

kernels generated by some strategy σ ∈ Ξ, and

PY(x) := {βσ(·|x) : σ ∈ Ξ}

for each state x ∈ S. Let

PY∗ := {β(·|·) ∈ PY : β(Y∗|x) = 1, ∀ x ∈ S},

and for each x ∈ S,

PY∗(x) := {β(·|x) : β(·|·) ∈ PY, β(Y∗|x) = 1}.

4.2.3 Construction of the controlled processes

Let us now describe the promised marked point process {(Tn, Yn)}∞n=1 for the

system dynamics of the concerned gradual-impulse control problem, where the

mark space is the space of interventions. Then the continuous-time controlled
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process {ξt}t≥0 is defined based on the marked point process.

Let

Y∆ := Y
⋃
{∆},

Ω0 := Y × ({0} ×Y)× ({∞} × {∆})∞,

Ωn := Y × ({0} ×Y)× ((0,∞)×Y)n × ({∞} × {∆})∞,∀ n = 1, 2, . . . .

The canonical space Ω is defined as

Ω :=

(
∞⋃
n=0

Ωn

)⋃(
Y × ((0,∞)×Y)∞

)
and is endowed with its Borel σ-algebra denoted by F . The following generic

notation of a point in Ω will be in use: ω = (y0, θ1, y1, θ2, y2, . . .). where we recall

yi is the intervention and θi is the sojourn time between two interventions. Below,

unless stated otherwise, x0 ∈ X will be a fixed notation as the initial state of the

gradual-impulse control problem. Then we put

y0 := (x0,∆,∆, . . . ), θ1 ≡ 0. (4.2)

The sequence of {θn}∞n=1 represents the sojourn times between consecutive inter-

ventions. Here θ1 = 0 corresponds to that we allow the possibility of applying im-

pulsive control at the initial time moment, c.f. (4.5) below. For each n = 0, 1, . . . ,

let

hn := (y0, θ1, y1, θ2, y2, . . . θn, yn) = (y0, 0, y1, θ2, y2, . . . θn, yn),

where the second equality holds because θ1 ≡ 0, see (4.2). The collection of all

such fragmental histories hn is denoted by Hn. Let us introduce the coordinate
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mappings:

Yn(ω) = yn, ∀ n ≥ 0; Θn(ω) = θn, ∀ n ≥ 1.

The sequence {Tn}∞n=1 of [0,∞]-valued mappings is defined on Ω by Tn(ω) :=∑n
i=1 Θi(ω) =

∑n
i=1 θi and T∞(ω) := limn→∞ Tn(ω). LetHn := (Y0,Θ1, Y1, . . . ,Θn, Yn).

Finally, we define the controlled process
{
ξt
}
t∈[0,∞)

:

ξt(ω) =

 Yn(ω), if Tn ≤ t < Tn+1 for n ≥ 1;

∆, if T∞ ≤ t,
.

It is convenient to introduce the random measure µ of the marked point

process {(Tn, Yn)}∞n=1 on (0,∞)×Y:

µ(dt× dy) =
∑
n≥2

I{Tn<∞}δ(Tn,Yn)(dt× dy),

where the dependence on ω is not explicitly indicated. Let Ft := σ{H1} ∨

σ{µ((0, s]×B) : s ≤ t, B ∈ B(Y)} for t ∈ [0,∞).

We use the following notation in next definition. For each y = (x0, b0, x1 . . . ) ∈

Y

x̄(y) := xk

if ∞ > k = 0, 1, . . . is the unique integer such that y ∈ Yk (if k ≥ 1, then x̄(y)

is the state after the last impulse in the intervention y); if such an integer k does

not exist, then y ∈ (X×AI)∞ and

x̄(y) := ∆.

That previous equality corresponds to that we kill the process after an infinite

number of impulses was applied at a single time moment. An example of a
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trajectory of the system dynamics in the gradual impulse control problem is

displayed in Figure 1.

Definition 4.3. A policy is a sequence u = {un}∞n=0 such that u0 ∈ PY and, for

each n = 1, 2, . . . ,

un =
(
Φn,Πn,Γ

0
n,Γ

1
n

)
,

where Φn is a stochastic kernel on (0,∞] given Hn, Πn is a stochastic kernel on

AG given Hn × (0,∞) such that Φn({∞}|hn) = 1 if yn ∈ (S × AI)∞, Γ0
n is a

stochastic kernel on Y given Hn× (0,∞)×S satisfying Γ0
n(·|hn, t, x) ∈ PY(x) for

each hn ∈ Hn and x ∈ S and t ∈ (0,∞); and Γ1
n is a stochastic kernel on Y given

Hn satisfying Γ1
n(·|hn) ∈ PY∗(x̄(yn)) for each hn ∈ Hn. (The above conditions

apply when yn 6= ∆; otherwise, all the values of Φn(·|hn), Πn(·|hn, t), Γ0
n(·|hn, t, ·)

are immaterial and may be put arbitrarily. )

The set of policies is denoted by U .

Let us provide an interpretation of how a policy u acts on the system dynam-

ics. Roughly speaking, an intervention is over as soon as the (possibly empty)

sequence of simultaneous impulses is over. Given that the nth intervention is over,

the kernel Φn specifies the conditional distribution of the planned time until the

next impulse (or next sequence of impulses). The (conditional) distribution of

the time until the next natural jump (if there were no interventions before it) is

the non-stationary exponential distribution with rate
∫
AG qx̄(Yn)(a)Πn(da|Hn, t).

In other words, Πn is the relaxed gradual control. Given the nth intervention is

over, the next intervention is triggered by either the next planned impulse or the

next natural jump; in the former case, the new intervention has the distribution

given by Γ1
n, and in the latter case the new intervention has the distribution giv-

en by Γ0
n. This interpretation will be seen consistent with (4.3) and (4.4) below,

where one can see how a policy u acts on the conditional law of the marked point

process {(Tn, Yn)}∞n=1. See also the caption of Figure 1.
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Figure 1: Illustration of the system dynamics in the gradual-impulse control problem,
and how the policy acts on the system dynamics. Here X = [0,∞). The second co-
ordinate indicates the impulse (including the “pseudo” impulse ∆) used at that state,
which is recorded in the first coordinate. At the initial time t = θ1 ≡ 0, three impulses
are applied in turn. The first jump in the indicated sample path of the marked point
process {(Tn, Yn)}∞n=1 takes place at t2 = θ2. It is triggered by a natural jump because
x′0 6= x3. Along the displayed sample path, the system state remains to be x3 before the
first jump of the marked point process. The second jump of the marked point process
is triggered by a planned (or say active) impulse, because x′′0 = x′0. Infinitely many im-
pulses are applied at t3 = t2+θ3, so that the process is “killed” after the infinitely many
impulses at t3, i.e., ω = (y0, 0, y1, θ2, y2, θ3, y3,∞,∆,∞,∆, . . . ). Note also that, under
the policy u = {un}∞n=0 in Definition 4.3, y1 ∈ Y3 is a realization from the distribution
u0(·|x0), x̄(y1) = x3; y2 ∈ Y0 is a realization from the distribution Γ0

1(·|h1, θ2, x
′
0) as

the jump at t2 is triggered by a natural jump, x̄(y2) = x′0; and y3 ∈ (X ×AI)∞ is a
realization from the distribution Γ1

2(·|h2) as the jump at t3 is not triggered by a natural
jump, x̄(y3) = ∆.
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Suppose a policy u = {un}∞n=0 is fixed. Let us now present the conditional law

of the marked point process {(Tn, Yn)}∞n=1 under the policy u, which determines

the underlying probability measure Pu
x0

on (Ω,F), where x0 ∈ X is the fixed initial

state of the system dynamic. For brevity, we introduce the following notations

for each n ≥ 1, Γ ∈ B(X) and hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn:

λun(Γ|hn, t) :=

∫
AG

q̃(Γ|x(yn), a)Πn(da|hn, t),

Λu
n(Γ|hn, t) :=

∫ t

0

λun(Γ|hn, s)ds.

where and below, we put q∆(a) := 0 for each a ∈ AG. Now, for each n ≥ 1, we

introduce the stochastic kernel Gu
n on (0,∞]×Y∆ given Hn as follows. For each

hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn,

Gu
n({+∞}× {∆}|hn) := δyn({∆}) + δyn(Y)e−Λun(S|hn,+∞)Φn({+∞}|hn), (4.3)

and

Gu
n(dt× dy|hn) := δyn(Y)

{
Γ1
n(dy|hn)e−Λun(S|hn,t)Φn(dt|hn)

+

∫
S

Φn([t,∞]|hn)Γ0
n(dy|hn, t, x)λun(dx|hn, t)e−Λun(S|hn,t)dt

}
(4.4)

on (0,∞)×Y. For each fixed initial state x0 ∈ S, by the Ionescu-Tulcea theorem,

see e.g., Proposition C.10 in [57], there exists a probability Pu
x0

on (Ω,F) such

that the restriction of Pu
x0

to (Ω,F0) is given by

Pu
x0

(
({y0} × {0} × Γ× ((0,∞]×Y∆)∞)

⋂
Ω
)

= u0(Γ|x0) (4.5)

for each Γ ∈ B(Y); and for each n ≥ 1, under Pu
x0

, the conditional distribution of

(Yn+1,Θn+1) given FTn := σ(Hn) is determined by Gu
n(·|Hn) and the conditional

survival function of Θn+1 given FTn under Pu
x0

is given by Gu
n([t,+∞]×Y∞|Hn).

The cost associated with an intervention y = (x0, b0, x1, b1, . . .) ∈ Y is given
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by

CI(y) :=
∞∑
k=0

cI(xk, bk, xk+1).

Here, recall that an intervention consists of the current state, the sequence of

impulses applied in turn at the same time moment and the associated post-

impulse states; and each impulse b applied at state x results in a cost cI(x, b, z)

if it leads to the post-impulse state z. (We accept that cI(x,∆,∆) := 0 for all

x ∈ S∆.) With this notation, we now recall the performance measure considered

in this section:

L(u, x) := Eu
x

[
e
∑∞
n=1

(
CI(Yn)+

∫ Tn+1
Tn

∫
AG

cG(x̄(ξs),a)Πn(da|Hn,s−Tn)ds
)]

for each x ∈ S and policy u ∈ U . Here we recall that T1 = Θ1 ≡ 0, see (4.2).

To illustrate more explicitly how the policy acts on the impulses, consider the

example of only one intervention and null gradual cost cG(x, a) ≡ 0. Then we

may write

Eu
x

[
eC

I(Y1)
]

=

∫
Y

u0(dx0 × db0 × dx1 × db1 × . . . |x)e
∑∞
k=0 c

I(xk,bk,xk+1)

=

∫
Y

u0(dy|x)eC
I(y).

More generally, one can compute Eu
x

[
eC

I(Yn+1)
]

= Eu
x

[
Eu
x

[
eC

I(Yn+1)|Hn

]]
, where

Eu
x

[
eC

I(Yn+1)|Hn

]
can be written out as a similar integral to the case of n = 0

using the conditional laws (4.3) and (4.4).

Let the value function L∗ be denoted by

L∗(x) := inf
u∈U
L(x, u)

for each x ∈ S. A policy u∗ satisfying L(x, u∗) = L∗(x) for all x ∈ S is called
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optimal for the gradual-impulse control problem:

Minimize over u ∈ U : L(x, u). (4.6)

In this section, we will present conditions on the system primitives that guarantee

the existence of an optimal policy in a simple form as defined as follows.

Definition 4.4. A policy u is called deterministic stationary if there exist some

measurable mappings (ϕ, ψ, f) on S, where ϕ(x) ∈ {0,∞} for each x ∈ S, ψ

and f are AI-valued and AG-valued, such that Φn({∞}|hn) = 1, Πn(da|hn, t) =

δf(x̄(yn))(da) for all t ≥ 0, and un(·|x) = Γ0
n(·|hn, t, x) = βπ(·|x) for some de-

terministic stationary strategy π in the intervention DTMDP model defined by

π({∆}|x0, b0, x1, b1, . . . , xn) = I{ϕ(xn) = ∞}, and π(db|x0, b0, x1, b1, . . . , xn) =

I{ϕ(xn) = 0}δψ(xn)(db).

In the above definition, Γ1
n was left arbitrary, because, under such a deter-

ministic stationary policy, a new intervention is always triggered by a natural

jump.

4.3 Optimality results

In this section, we present the main optimality results in this paper. In a nutshell,

under quite general conditions on the system primitives of the gradual-impulse

control problem (4.6), we show that it can be solved via problem (B.1) in Ap-

pendix B for a simple DTMDP model, which we refer to as the tilde DTMDP

model. In this way, we show that the gradual-impulse control problem (4.6)

admits a deterministic stationary optimal policy.

In order to formulate the tilde DTMDP model, we impose the following con-

dition.

Condition 4.1. There exists an [1,∞)-valued continuous function w on S such

that cG(x, a) + qx(a) + 1 ≤ w(x) for each (x, a) ∈ S×AG.
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If cG is a continuous function, then the above condition is a consequence

of Condition 4.2 and the Berge theorem, see Proposition 7.32 of [9]. Several

statements below do not need the bounding function w in Condition 4.1 to be

continuous. In this connection, we also mention that a Borel measurable function

w satisfying the inequality in Condition 4.1 always exists, see Lemma 1 of [36]

and recall (4.1).

Recall that Ã = AI ⋃AG is the disjoint union of AG and AI . We are now in

position to define the tilde DTMDP model in terms of the system primitives of

the gradual-impulse control problem (4.6).

Definition 4.5. The tilde DTMDP model is specified by the following four-tuple

{S, Ã, Q̃, l̃}, where S and Ã are its state and action spaces, and its transition

probability Q̃ on S given S× Ã and cost function l̃ are defined by

Q̃(dy|x, a) :=
q(Γ|x, a)

w(x)
+ δx(dy), l̃(x, a, y) := ln

w(x)

w(x)− cG(x, a)

for all a ∈ AG,

Q̃(dy|x, b) := Q(dy|x, b), l̃(x, b, y) := cI(x, b, y)

for all b ∈ AI .

For the solvability of problem (B.1) for the tilde DTMDP model, we impose

the following compactness-continuity condition.

Condition 4.2. The functions cI and cG are lower semicontinuous on S×AI×S

and S × AG, respectively; and for each bounded continuous function g on S,∫
S
g(y)Q(dy|x, b) and

∫
S
g(y)q̃(dy|x, a) are continuous in (x, b) ∈ S × AI and

(x, a) ∈ S×AG, respectively. (Recall also that AG and AI are compact.)

Under Conditions 4.1 and 4.2, one can easily check that the tilde DTMDP

model is semicontinuous, so that the value function W ∗ for problem (B.1) of

the tilde DTMDP model is lower semicontinuous, and there exists an optimal
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deterministic stationary strategy for it, see Proposition B.1(f). We collect these

observations in the next statement for future reference.

Proposition 4.1. Suppose Conditions 4.1 and 4.2 are satisfied. Then the value

functionW ∗ of problem (B.1) for the tilde DTMDP model coincides is the minimal

[1,∞]-valued lower semicontinuous function satisfying

V (x) = inf
ã∈Ã

{∫
S

el̃(x,ã,y)V (y)Q̃(dy|x, ã)

}
, x ∈ S, (4.7)

and the above relation holds with equality being replaced by “≥”, too. A pair of

measurable mappings (ψ∗, f ∗) from S to AI and AG, respectively, is a determin-

istic optimal stationary strategy for problem (B.1) of the tilde DTMDP model if

and only if

∫
S

el̃(x,ã
∗,y)W ∗(y)Q̃(dy|x, ã∗) (4.8)

= inf
ã∈Ã

{∫
S

el̃(x,ã,y)W ∗(y)Q̃(dy|x, ã)

}
=

∫
S

el̃(x,ψ
∗(x),y)W ∗(y)Q̃(dy|x, ψ∗(x))I{ã∗ ∈ AI}

+

∫
S

el̃(x,f
∗(x),y)W ∗(y)Q̃(dy|x, f ∗(x))I{ã∗ ∈ AG}.

Such a pair (ψ∗, f ∗) of measurable selectors exists.

We introduce the notation to be used in the next statement. Define for each

[1,∞]-valued universally measurable function g on S

SG(g) :=

{
x ∈ S :∞ > g(x) = inf

a∈AG

{∫
S
g(y)q̃(dy|x, a)− (qx(a)− cG(x, a))g(x)

}}
(4.9)

SI(g) :=

{
x ∈ S : g(x) = inf

b∈AI

{∫
S
g(y)ec

I(x,b,y)Q(dy|x, b)
}}

Proposition B.1 in the Appendix asserts that W ∗ is universally measurable

so that the integrals
∫
S
W ∗(y)q̃(dy|x, a) and

∫
S
W ∗(y)ec

I(x,b,y)Q(dy|x, b) are well
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defined.

Theorem 4.1. Suppose Conditions 4.1 and 4.2 are satisfied. Then the following

assertions hold.

(a) The value function W ∗ of problem (B.1) for the tilde DTMDP model coin-

cides with L∗.

(b) S \ SI(W ∗) ⊆ SG(W ∗).

(c) There is a deterministic stationary optimal policy for the gradual-impulse

control problem (4.6), which can be obtained as follows. For each pair

(ψ∗, f ∗) of measurable mappings satisfying (4.8) (and there exists such a pair

by Proposition 4.1), the following deterministic stationary policy (ϕ, ψ, F )

is optimal, where

ψ(x) = ψ∗(x), F (x)t(da) ≡ δf∗(x)(da)

for all x ∈ S, and ϕ(x) =∞ (respectively, ϕ(x) = 0) for all x ∈ S \SI(W ∗)

(respectively x ∈ SI(W ∗)).

The proofs and the other statements in this section are postponed to Section

4.5.

According to Theorem 4.1, roughly speaking, if the current state is in SG(W ∗),

then it is optimal not to apply impulse until the next natural jump; and if the

current state is in SI(W ∗), then it is optimal to apply immediately an impulse.

According to Theorem 4.1, (4.7) is the optimality equation for the gradual-

impulse control problem (4.6). It can be written out in an equivalent form that

does not involve the function w, which might be more convenient sometimes.

Corollary 4.1. Suppose Conditions 4.1 and 4.2 are satisfied. Then the following

assertions hold.

74



(a) L∗ is the minimal [1,∞]-valued lower semicontinuous function on S satis-

fying

inf
a∈AG

{∫
S

L∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))L∗(x)

}
≥ 0, (4.10)

∀ x ∈ S∗(L∗) := {x ∈ S : L∗(x) <∞}

and

L∗(x) ≤ inf
b∈AI

{∫
S

ec
I(x,b,y)L∗(y)Q(dy|x, b)

}
, x ∈ S, (4.11)

whereas at each x ∈ S, the inequality in either (4.10) or (4.11) holds with

equality.

(b) A pair (ψ∗, f ∗) of measurable mappings satisfies (4.8) if and only if

inf
a∈AG

{∫
S

L∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))L∗(x)

}
=

∫
S

L∗(y)q̃(dy|x, f ∗(x))− (qx(f
∗(x))− cG(x, f ∗(x)))L∗(x)

for each x ∈ SG(L∗), and

inf
b∈AI

{∫
S

ec
I(x,b,y)L∗(y)Q(dy|x, b)

}
=

∫
S

L∗(y)ec
I(x,ψ∗(x),y)Q(dy|x, ψ∗(x))

(According to Theorem 4.1, (ψ∗, f ∗) gives rise to a deterministic stationary

optimal policy for the gradual-impulse control problem (4.6).)

Under the conditions of the previous statement, in the first glance, given

L∗ being an [1,∞]-valued lower semicontinuous function on S, it may be not

immediately clear why the claimed measurable selector f ∗ exists because in

∫
S

L∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))L∗(x)

=

(∫
S

L∗(y)q̃(dy|x, a) + cG(x, a)L∗(x)

)
− (qx(a)L∗(x))
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the expressions in the two brackets are both lower semicontinuous in (x, a) ∈

S×AG, and the difference between two lower semicontinuous functions may be

not lower semicontinuous. This and Lemma 4.5 are the motivation of considering

the tilde DTMDP model.

To end this section, we present a simple example to demonstrate a situation,

where it is natural and necessary to allow multiple impulses at a single time

moment.

Example 4.2. Let us revisit Example 4.1. The model has a state space {1, 2},

where 1 stands for the rat being present in the kitchen, and 2 indicates the rat

either dead or outside the house. The space of gradual controls is a singleton and

will not be indicated explicitly, and the space of impulses is AI = {0, 1}, with 1

or 0 standing for shooting or not. So the inequalities (4.10) and (4.11) for the

value function L∗ read:

L∗(2) = 1; µL∗(2)− (µ− l)L∗(1) ≥ 0

L∗(1) ≤ min{eCpL∗(2) + eC(1− p)L∗(1),L∗(1)}.

Suppose 1−eC(1−p) > 0. By Theorem 4.1 and Corollary 4.1, if eCp
1−eC(1−p) >

µ
µ−l >

0, then L∗(1) = µ
µ−l , and the optimal deterministic stationary policy is to never

shoot at the rat; otherwise, L∗(1) = eCp
1−eC(1−p) = E[eCZ ] with Z following the

geometric distribution with success probability p, and the optimal deterministic

stationary policy is to keep shooting as soon as the rat is in kitchen until the rat

was hit.

The proofs of the statements in this section are based on the investigation of an

optimal control problem for another DTMDP model, which will be referred to as

the hat DTMDP model and introduced in Section 4.4. For this moment, we point

out that the hat DTMDP model is quite different from the tilde DTMDP model:

it is with a more complicated action space, and is not necessarily semicontinuous

under Conditions 4.1 and 4.2, see Examples 4.3 and 4.4.
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4.4 The hat DTMDP model

In this section, we describe a DTMDP problem, which will serve the investigations

of the gradual-impulse control problem. To distinguish it from the intervention

DTMDP model, we shall refer to it as the hat DTMDP model. The system prim-

itives of the DTMDP model are defined in terms of those of the gradual-impulse

control problem. We will reveal, in greater detail, the connections relevant to this

chapter between the hat DTMDP problem and the gradual-impulse control prob-

lem at the end of this section. For a first impression, roughly speaking, the state

process of the hat DTMDP model comes from the system dynamics of the grad-

ual impulse control problem in the following way. The state has two coordinates.

Along the (discrete-time) state process of the hat DTMDP model, the second

coordinates record the system states of the graduate-impulse control problem im-

mediately after a natural jump (of the marked point process {(Tn, Yn)}∞n=1) or

an “actual” impulse (thus the state immediately after the psuedo impulse ∆ will

not be recorded). The first coordinates record the time in the gradual-impulse

control problem elapsed between two consecutive states as recorded in the sec-

ond coordinates. For the sake of illustration, the realization of the state process

in the hat DTMDP model corresponding to the sample path in Figure 1 of the

gradual-impulse control problem is displayed in Figure 2.

The hat DTMDP is with a more complicated action space as compared with

the original gradual-impulse control problem by using the relaxed control space

R on AG.

Below we shall use, without special reference, the following notation. If µ is

a measure on a Borel space (S,B(S)), then the notation f(µ) :=
∫
S
f(x)µ(dx) is

in use for each measurable function f on (S,B(S)), provided that the integral is

well defined.
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Figure 2: The realization of the state process in the hat DTMDP model corresponding
to sample path in the gradual-impulse control in Figure 1. The time index is discrete
from {0, 1, . . . }. The realizations of the components {(Cn, Bn)}∞n=0 in the action process
{Ân}∞n=0 are indicated above the dashed lines between consecutive states. For example,
(0, b0) next to the state (0, x0) indicates that the decision maker applies an impulse b0
immediately, which results in the next state (0, x1). All the components x0, x1, . . . , x

′
0,

x′′1, x′′2 and b1, b2, b
′′
0, b
′′
1, b
′′
2 are the same as in Figure 1. The only exception is (c3, b3),

which does not appear in Figure 1. Nevertheless, c3 > θ2, because in Figure 1, the first
jump in the marked point process therein at the time moment θ1 + θ2 = θ2 is triggered
by a natural jump.
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4.4.1 Primitives of the hat DTMDP model

The state space of the hat DTMDP model is Ŝ := {(∞, x∞)}
⋃

[0,∞)×S, where

(∞, x∞) is an isolated point, and the action space of the DTMDP is Â := [0,∞]×

AI × R. Endowed with the product topology, where [0,∞] is compact in the

standard topology of the extended real-line, Â is also a compact Borel space.

Here, S, AI and AG are the state, impulse and gradual action spaces in the

gradual-impulse control problem.

The transition probability p is defined as follows, where the notation in-

troduced above this subsection is in use, e.g., qx(ρt) :=
∫
AG qx(a)ρt(da) and

cG(x, ρt) :=
∫
AG cG(x, a)ρt(da). For each bounded measurable function g on Ŝ

and action â = (c, b, ρ) ∈ Â,

∫
Ŝ

g(t, y)p(dt× dy|(θ, x), â)

:= I{c =∞}
{
g(∞, x∞)e−

∫∞
0
qx(ρs)ds +

∫ ∞
0

∫
S

g(t, y)q̃(dy|x, ρt)e−
∫ t
0
qx(ρs)dsdt

}
+I{c <∞}

{∫ c

0

∫
S

g(t, y)q̃(dy|x, ρt)e−
∫ t
0
qx(ρs)dsdt+ e−

∫ c
0
qx(ρs)ds

∫
S

g(c, y)Q(dy|x, b)
}

=

∫ c

0

∫
S

g(t, y)q̃(dy|x, ρt)e−
∫ t
0
qx(ρs)dsdt+ I{c =∞}g(∞, x∞)e−

∫∞
0
qx(ρs)ds

+I{c <∞}e−
∫ c
0
qx(ρs)ds

∫
S

g(c, y)Q(dy|x, b)

for each state (θ, x) ∈ [0,∞)× S; and

∫
Ŝ

g(t, y)p(dt× dy|(∞, x∞), â) := g(∞, x∞).

It is known, see e.g., [19, 42], that for each bounded measurable function g

on Ŝ, the above expressions are indeed measurable on Ŝ× Â, and the same also

concerns the cost function l on Ŝ× Â× Ŝ defined as follows:

l((θ, x), â, (t, y)) := I{(θ, x) ∈ [0,∞)× S}
{∫ t

0

cG(x, ρs)ds+ I{t = c}cI(x, b, y)

}

for each (θ, x), â, (t, y)) ∈ Ŝ× Â× Ŝ, accepting that cI(x, b, x∞) ≡ 0. Recall that

the generic notation â = (c, b, ρ) ∈ Â of an action in this hat DTMDP model has

79



been in use. The pair (c, b) is the pair of the planned time until the next impulse

and the next planned impulse, and ρ is (the rule of) the relaxed control to be used

during the next sojourn time. The realization of the components {(Cn, Bn)}∞n=0

of the action process in the hat DTMDP model corresponding to the sample path

in Figure 1 of the gradual-impulse control problem is displayed in Figure 2.

For the convenience in future reference, we make the following definition.

Definition 4.6. The hat DTMDP model is the following four-tuple {Ŝ, Â, p, l},

all defined above in terms of the primitives of the gradual-impulse control prob-

lem.

Note that Condition 4.2 does not imply that the hat DTMDP model is semi-

continuous, which is defined in the appendix. In fact, the transition probability p,

in general, does not satisfy the weak continuity condition, even under Condition

4.2. This is demonstrated by the next two examples.

Example 4.3. Suppose qx(a) ≡ 0, and AG and AI are both singletons. Consider

ân = (cn, b, ρ), where cn → ∞ and cn ∈ [0,∞) for each n ≥ 1; and the bounded

continuous function on Ŝ: g(t, x) ≡ 1 for each (t, x) ∈ [0,∞)×S, and g(∞, x∞) =

0. Then
∫
Ŝ
g(t, y)p(dt× dy|(θ, x), ân) =

∫
S
g(cn, y)Q(dy|x, b) = 1 for each n ≥ 1,

whereas
∫
Ŝ
g(t, y)p(dt× dy|(θ, x), (∞, b, ρ)) = g(∞, x∞) = 0 6= 1.

Example 4.4. Consider AG = [0, 1], AI an arbitrary compact Borel space, S

a finite set (endowed with discrete topology), qx(a) = a for each x ∈ S. Then

consider x(n) ≡ x ∈ S, b(n) ≡ b, c(n) ≡ c = ∞, and for each t ≥ 0, ρ
(n)
t (da) =

δ 1
n
(da), and ρt(da) = δ0(da). Then for each strongly integrable Caratheodory

function g(t, a),

∫ ∞
0

g(t, ρ
(n)
t )dt−

∫ ∞
0

g(t, ρ
(0)
t )dt =

∫ ∞
0

(g(t,
1

n
)− g(t, 0))dt→ 0

as n → ∞, by using the dominated convergence theorem. Thus, ρ(n) → ρ as

n → ∞. Let ân = (c(n), b(n), ρ(n)) and â = (c, b, ρ). It follows that ((θ, x), ân) →
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((θ, x), â) as n→∞. Now consider the bounded continuous function on Ŝ given

by g(∞, x∞) = 1 and g(t, x) ≡ 0 on [0,∞) × S. (Recall that (∞, x∞) is an

isolated point in Ŝ.) Then we see

lim
n→∞

∫
Ŝ

g(t, y)p(dt× dy|(θ, x), ân) = lim
n→∞

e−
∫∞
0 qx(ρ

(n)
s )ds = lim

n→∞
e−

∫∞
0

1
n
ds = 0

6= 1 = e−
∫∞
0 0ds =

∫
Ŝ

g(t, y)p(dt× dy|(θ, x), â).

Remark 4.1. Example 4.4 implies that the assertion of Lemma 5.12 in [108]

(stated without proof) is inaccurate without further conditions (such as qx(a) >

δ > 0 for some δ > 0). Similarly, Lemma 4.1(b) in [46] is correct if qx(a) > δ > 0

for some δ > 0. However, the optimality results in [108] all survive without

assuming extra conditions, as a particular consequence of the arguments presented

below in the present chapter.

We use the notation ĥn = ((θ0, x0), (c0, b0, ρ0), (θ1, x1), (c1, b1, ρ1) . . . (θn, xn)) for

the n-history in the hat DTMDP model.

The concerned optimal control problem for the hat DTMDP model reads:

Minimize over σ: Eσx̂
[
e
∑∞
n=0 l(Ŝn,Ân,Ŝn+1)

]
=: V ((θ, x), σ) (4.12)

where {Ŝn}∞n=0 and {Ân}∞n=0 are the state and action processes, and the minimiza-

tion problem is over all strategies σ in the hat DTMDP model. (See the appendix

for the basic notations in a DTMDP.) We denote by V ∗ the value function of this

optimal control problem, i.e.,

V ∗(θ, x) := inf
σ
Eσx̂
[
e
∑∞
n=0 l(Ŝn,Ân,Ŝn+1)

]
for each x̂ = (θ, x) ∈ Ŝ, where the infimum is over all strategies. Clearly,

V ∗(∞, x∞) = 1. It will be seen in Lemma 4.1 below that V ∗ depends on (θ, x)
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only through x, and a strategy σ is optimal if

V ((0, x), σ) = V ∗(x)

for each x ∈ S. Below, when the context is clear, we often consider the restriction

of V ∗ on S but still use the same notation. The definition of an optimal strategy

and other relevant notions of DTMDP are collected in the appendix.

Consider a strategy σ = {σn}∞n=0 in the hat DTMDP model, where for each

n ≥ 0, σn(dâ|ĥn) is a stochastic kernel on Â given ĥn, which specifies the condi-

tional distribution of the next action (c, b, ρ) given ĥn.

In general, a strategy in the hat DTMDP model can make use of past decision

rules of relaxed controls, and the selection of the next relaxed control, and that

of the next planned impulse time and impulse do not have to be (conditional-

ly) independent. Therefore, a general strategy in the hat DTMDP model does

not immediately correspond to a policy in the continuous-time gradual-impulse

control problem described in the previous section. To relate the continuous-time

gradual-impulse control problem (4.6) and the hat DTMDP problem (4.12), see

Proposition 4.2 below, we introduce the following class of strategies in the hat

DTMDP model.

Definition 4.7. A strategy σ in the hat DTMDP model is called typical if un-

der it, given ĥn, the selection of the next action (c, b) and ρ are conditionally

independent, and moreover, the selection of ρ is deterministic, i.e.,

σn(dc× db× dρ|ĥn) = σ′n(dc× db|ĥn)δFn(ĥn)(dρ),

where F n(ĥn) is measurable in its argument and takes values in R, and σ′n(dc×

db|ĥn) is a stochastic kernel on [0,∞]×AI given ĥn.

One can always write σ′n(dc×db|ĥn) = ϕn(dc|ĥn)ψn(db|ĥn, c) for some stochas-

tic kernels ϕn and ψn. Intuitively, ϕn defines the (conditional) distribution of the
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planned time duration till the next impulse, and ψn(db|ĥn, c) specifies the distri-

bution of the next impulsive action given the history ĥn and the next impulse

moment c, provided that it takes place before the next natural jump. Therefore,

we identify a typical strategy σ = {σn} as {(ϕn, ψn, F n)}∞n=0.

For further notational brevity, when the stochastic kernels ϕn are identified

with underlying measurable mappings, we will use ϕn for the measurable map-

pings, and write ϕn(ĥn) instead of ϕn(da|ĥn). The same applies to other stochastic

kernels such as ψn. The context will exclude any potential confusion.

Finally, in general, we often do not indicate the arguments that do not affect

the values of the concerned mappings. For example, if ϕn(ĥn) depends on ĥn only

through xn, then we write ϕn(da|ĥn) as ϕn(da|xn).

4.4.2 Connection between the gradual-impulse control problem and

the hat DTMDP problem

Each policy u as given in Definition 4.3 induces a (typical) strategy {(ϕn, ψn, F n)}∞n=0

in the hat DTMDP model as follows, where we only need consider xn ∈ S, as

the definition of the strategies at xn = x∞ is immaterial, and can be arbitrary.

For each m ≥ 1, and hm ∈ Hm, there exists a strategy πΓ1
m,hm = {πΓ1

m,hm
n }∞n=0 in

the intervention DTMDP model such that Γ1
m(dy|hm) = βπ

Γ1
m,hm (dy|x̄(ym)). Sim-

ilarly, for each x ∈ S, t > 0, there exists a strategy πΓ0
m,hm,t,x = {πΓ0

m,hm,t,x
n }∞n=0

in the intervention DTMDP model such that Γ0
m(dy|hm, t, x) = βπ

Γ0
m,hm,t,x(dy|x).

Finally, there is a strategy πu0 = {(πu0
n )}∞n=0 in the intervention DTMDP model

satisfying

u0(dy|x) = βπ
u0 (dy|x) (4.13)

for each x ∈ S.

Consider the case of n = 0 and let u0(·|x) , βπu0 (·|x) for some strategy
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πu0 = {πu0
n }∞n=0. Then we define

ϕ0({0}|θ, x) := 1− πu0
0 ({∆}|x);

ϕ0(dc|θ, x) := πu0
0 ({∆}|x)Φ1(dc|(x,∆,∆, . . . ), 0, (x,∆,∆, . . . )) on (0,∞];

ψ0(db|θ, x, c) :=
πu0

0 (db|x)

1− πu0
0 ({∆}|x)

I{c = 0}+ I{c > 0} π
Γ1
1,((x,∆,... ),0,(x,∆,... ))

0 (db|x)

1− πΓ1
1,((x,∆,... ),0,(x,∆,... ))

0 ({∆}|x)

=
πu0

0 (db|x)

1− πu0
0 ({∆}|x)

I{c = 0}+ I{c > 0}πΓ1
1,((x,∆,... ),0,(x,∆,... ))

0 (db|x);

F 0(θ, x)t(da) := Π1(da|(x,∆,∆, . . . ), 0, (x,∆,∆, . . . ), t)

where the second equality in the definition of ψ0(db|θ, x, c) holds because

π
Γ1

1,((x,∆,... ),0,(x,∆,... ))
0 ({∆}|x) = 0

which follows from the requirement that Γ1
n(·|hn) ∈ PY∗(x̄(yn)) for all n ≥ 1 in

Definition 4.3. Also concerning the definition of ψ0(db|θ, x, c), note that if the

denominator in 1− πu0
0 ({∆}|x) = 0, we put

π
u0
0 (db|x)

1−πu0
0 ({∆}|x)

as an arbitrary stochas-

tic kernel. The reason is that in the expression
π
u0
0 (db|x)

1−πu0
0 ({∆}|x)

I{c = 0}, equality

1− πu0
0 ({∆}|x) = 0 would indicate that the probability of selecting an instanta-

neous impulse is zero, and so I{c = 0} = 0 almost surely. The same explanation

applies to the definitions of ψn(db|ĥn, c) below, and will not be repeated there.

Note that the right hand side does not depend on θ ∈ [0,∞), because the initial

time moment is always fixed to be θ = 0.

The intuition behind the above definition of (ϕ0, ψ0, F
0) is as follows. Re-

call that, if the initial system state is x ∈ S, then the intervention y1 ∈ Y at

the initial time in the gradual-impulse control problem is a realization from the

distribution u0(·|x) = βπ
u0 (·|x), which is the strategic measure of some strategy

πu0 = {πu0
n }∞n=0 in the intervention DTMDP model, see (4.13). Then πu0

0 ({∆}|x)

is the probability that no impulse is applied at the initial time 0 (given the

initial system state x) in the gradual-impulse control problem. Consequently,

1 − πu0
0 ({∆}|x) is the probability to apply an impulse immediately, i.e., to wait

time 0 until the next impulse, and thus ϕ0({0}|θ, x). This quantity does not

depend on θ, because the initial time is always 0. Then for a measurable subset
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Γ1 ⊆ (0,∞],

πu0
0 ({∆}|x)Φ1(Γ1|(x,∆,∆, . . . ), 0, (x,∆,∆, . . . ))

= Probability (no impulse at initial time 0 given initial system state x)

×Probability (time to wait until next impulse is in Γ1

given no impulse is immediately applied at the initial time with the initial state x),

which is equal to

Probability (No immediate impulse, time duration until the next planned impulse is in Γ)

= Probability (the time duration until the next planned impulse is in Γ),

and thus ϕ0(Γ|θ, x), where the equality follows because Γ ⊆ (0,∞]. (Recall that

a planned impulse takes place if no natural jump occurs during the time duration

to wait for it.) Finally, as for ψ0(db|θ, x, c), if c = 0, and Γ2 ∈ B(AI), then

πu0
0 (Γ2|x)

1− πu0
0 ({∆}|x)

=
Probability (an immediate impulse from Γ2 is applied)

Probability(an immediate impulse is applied)

= Probability (an impulse is applied immediately from Γ2

given that an impulse is applied after time duration 0),

which is thus ψ0(Γ2|θ, x, 0). One can understand ψ0(db|θ, x, c) when c > 0 in the

same manner. The very similar intuition guides the definition of (ϕn, ψn, F
n)

below.

Now consider n ≥ 1. Let ĥn = ((θ0, x0), (c0, b0, ρ0), (θ1, x1), (c1, b1, ρ1) . . . (θn, xn))

be the n-history in the hat DTMDP model. If {1 ≤ i ≤ n : θi > 0} = ∅, then
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we define

ϕn({0}|ĥn) := 1− πu0
n ({∆}|x0, b0, . . . , bn−1, xn),

ϕn(dc|ĥn) := πu0
n ({∆}|x0, b0, . . . , bn−1, xn)Φ1(dc|y0, 0, (x1, b1, . . . , xn,∆,∆, . . . )) on (0,∞];

ψn(db|ĥn, c) :=
πu0
n (db|x0, b0, x1, b1, . . . , xn)

1− πu0
n ({∆}|x0, b0, x1, b1, . . . , xn)

I{c = 0}

+I{c > 0} π
Γ1
1,(y0,0,(x0,b0,...,xn,∆,... ))

0 (db|xn)

1− πΓ1
1,(y0,0,(x0,b0,...,xn,∆,... ))

0 ({∆}|xn)

=
πu0
n (db|x0, b0, x1, b1, . . . , xn)

1− πu0
n ({∆}|x0, b0, x1, b1, . . . , xn)

I{c = 0}+ I{c > 0}πΓ1
1,(y0,0,(x0,b0,...,xn,∆,... ))

0 (db|xn);

Fn(ĥn)t(da) := Π1(da|y0, 0, (x0, b0, . . . , xn,∆,∆, . . . ), t).

Recall that y0 = (x0,∆,∆, . . . ).

If {1 ≤ i ≤ n : θi > 0} 6= ∅, then let m(ĥn) := #{1 ≤ i ≤ n : θi > 0}, and

l(ĥn) := max{1 ≤ i ≤ n : θi > 0}. When the context is clear, we write m and l

instead of m(ĥn) and l(ĥn) for brevity. Let hm be the m-history in the gradual-

impulse control problem contained in ĥn. More precisely, hm is defined based on

ĥn as follows. Let τ0(ĥn) = 0, and τi(ĥn) := inf{j > τi−1 : θj > 0} for each i ≥ 1.

Note that l = τm. Then hm = hm(ĥn) = (y0, 0, y1, θτ1 , y2, . . . , θτm−1 , ym), where

y0 = (x0,∆,∆, . . . ); y1 = (x0, b0, x1, b1, . . . , xτ1−1,∆,∆, . . . );

if θτ1 = cτ1−1, then y2 = (xτ1−1, bτ1−1, xτ1 , bτ1 , . . . , xτ2−1,∆,∆, . . . ),

if θτ1 < cτ1−1, then y2 = (xτ1 , bτ1 , . . . , xτ2−1,∆,∆, . . . );

...

if θτm−1 = cτm−1−1, then ym = (xτm−1−1, . . . , xτm−1,∆,∆, . . . ),

if θτm−1 < cτm−1−1, then ym = (xτm−1 , . . . , xτm−1,∆,∆, . . . ).

For example, if

ĥ5 = ((0, x0), (b0, 0, ρ
0), (0, x1), (b1, 3, ρ

1), (3, x2), (b2, 0, ρ
2), (0, x3), (b3, 2, ρ

3), (1, x4),

(b4, 0, ρ
4), (0, x5)),

86



then n = 5, m = 2, l = 4, τ1 = 2, τ2 = 4, and h2 = (y0, 0, y1, 3, y2) with

y1 = (x0, b0, x1,∆, . . . ) and y2 = (x1, b1, x2, b2, x3,∆, . . . ). Roughly speaking, the

integer m(ĥn) counts the number of interventions (except y0) contained in the

n-history of the hat DTMDP model.

If 0 < θl = cl−1, we define

ϕn({0}|ĥn) := 1− πΓ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn),

ϕn(dc|ĥn) := π
Γ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn)Φm(dc|hm) on (0,∞];

ψn(db|ĥn, c) :=
π

Γ1
m,hm

n−l+1 (db|xl−1, bl−1, . . . , bn−1, xn)

1− πΓ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn)
I{c = 0}

+I{c > 0} π
Γ1
m+1,(hm,θl,(xl−1,bl−1,...,xn,∆,... ))

0 (db|xn)

1− πΓ1
m+1,(hm,θl,(xl−1,bl−1,...,xn,∆,... ))

0 ({∆}|xn)

=
π

Γ1
m,hm

n−l+1 (db|xl−1, bl−1, . . . , bn−1, xn)

1− πΓ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn)
I{c = 0}

+I{c > 0}πΓ1
m+1,(hm,θl,(xl−1,bl−1,...,xn,∆,... ))

0 (db|xn);

F n(ĥn)t(da) := Πm(da|hm, t).

Finally, if 0 < θl < cl−1, then we define

ϕn({0}|ĥn) := 1− πΓ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn),

ϕn(dc|ĥn) := π
Γ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn)Φm(dc|hm) on (0,∞];

ψn(db|ĥn, c) :=
π

Γ0
m,hm,θl,xl

n−l (db|xl, bl, . . . , bn−1, xn)

1− πΓ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn)
I{c = 0}

+I{c > 0} π
Γ1
m+1,(hm,θl,(xl,bl,...,xn,∆,... ))

0 (db|xn)

1− πΓ1
m+1,(hm,θl,(xl,bl,...,xn,∆,... ))

0 ({∆}|xn)

=
π

Γ0
m,hm,θl,xl

n−l (db|xl, bl, . . . , bn−1, xn)

1− πΓ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn)
I{c = 0}

+I{c > 0}πΓ1
m+1,(hm,θl,(xl,bl,...,xn,∆,... ))

0 (db|xn);

F n(ĥn)t(da) := Πm(da|hm, t).
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To be specific, we call the (typical) strategy σ = {(ϕn, ψn, F n)}∞n=0 defined

above as the strategy induced by the policy u. The next statement reveals a

connection between a policy u and its induced strategy σ for the hat DTMDP

model.

Proposition 4.2. For each policy u and the strategy σ = {(ϕn, ψn, F n)}∞n=0

induced by u, L(x, u) = V ((0, x), σ), and therefore, L∗(x) ≥ V ∗(x) for each

x ∈ S.

Proof. One can verify

Eu
x

[
e
∑n
i=1 C

I(Yi)+
∑n
i=2

∫Θi
0

∫
AG

cG(x(Yi−1),a)Πi−1(da|Hi−1,s)ds
]

= Eσ(0,x)

[
e
∑τn−1
i=0 cI(Xi,Bi,Xi+1)+

∑n
i=2

∫Θτi−1
0

∫
AG

cG(Xτi−1−1,a)F τi−1−1(Ĥτi−1−1)s(da)ds

]

for each n ≥ 1. The case of n = 1 can be readily seen (we accept
∑1

n=2(·) := 0),

as a consequence of the definitions of the strategy σ = {(ϕn, ψn, F n)}∞n=0 induced

by u. The general case follows from an inductive argument. The cumbersome

details are omitted. Passing to the limit as n → ∞ and an application of the

monotone convergence theorem yield the equality in the statement. The last

assertion holds automatically from the first assertion. �

Remark 4.2. A deterministic stationary policy say uD is associated with a strat-

egy σD = (ϕ, ψ, F ) in the hat DTMDP model, where F (x)t(da) = δf(x)(da) for

all t ≥ 0. It is evident that L(x, uD) = V (x, σD) for each x ∈ S. Thus, if the hat

DTMDP problem (4.12) has an optimal strategy in the form of σD = (ϕ, ψ, F ),

then the previous discussions lead to L∗(x) = V ∗(x), and that the determinis-

tic stationary policy uD associated with σD is optimal for the gradual-impulse

control problem (4.6).
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4.5 Proof of the main statements

In this section, we prove the results stated in Section 4.3. This is based on the

investigation of problem (4.12) for the hat DTMDP model described in Section

4.4. In this section, unless specified otherwise, V ∗ is understood as the value

function of problem (4.12) for the hat DTMDP model. More exactly, the main

properties concerning V ∗ are summarized in the next statement.

Proposition 4.3. (a) V ∗ is a [1,∞]-valued lower semianalytic function on S

satisfying

inf
a∈AG

{∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
≥ 0, (4.14)

∀ x ∈ S∗(V ∗) := {x ∈ S : V ∗(x) <∞}

and

V ∗(x) ≤ inf
b∈AI

{∫
S

ec
I(x,b,y)V ∗(y)Q(dy|x, b)

}
, x ∈ S, (4.15)

whereas at each x ∈ S, the inequality in either (4.14) or (4.15) holds with

equality.

(b) S \ SI ⊆ SG, where SG := SG(V ∗), see (4.9), and SI := SI(V ∗). (Lemma

4.1 below asserts that V ∗ is universally measurable so that the integrals∫
S
V ∗(y)q̃(dy|x, a) and

∫
S
V ∗(y)ec

I(x,b,y)Q(dy|x, b) are defined.)

Proof. See Lemmas 4.1, 4.3 and 4.4 below. �

Lemma 4.1. The following assertions hold.

(a) The value function V ∗ depends on the state (θ, x) only through the second

coordinate x, and thus we write V ∗(x) instead of V ∗(θ, x). The function V ∗
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is an [1,∞]-valued lower semianalytic function satisfying

V (x) = inf
â∈Â

{∫ c

0

∫
S

V (y)q̃(dy|x, ρt)e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt (4.16)

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V (y)ec
I(x,b,y)Q(dy|x, b)

}
;

V (x∞) = 1,

and is the minimal [1,∞]-valued lower semianalytic function satisfying the

following inequality

V (x) ≥ inf
â∈Â

{∫ c

0

∫
S

V (y)q̃(dy|x, ρt)e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt (4.17)

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V (y)ec
I(x,b,y)Q(dy|x, b)

}
;

V (x∞) = 1.

(b) For each ε > 0, there exists an ε-optimal deterministic Markov universal-

ly measurable strategy that depends on the state (θ, x) only through the

second coordinate for the hat DTMDP problem (4.12). (The meaning of

universally measurable strategies can be found in Appendix B.)

(c) A deterministic stationary strategy that depends on the state (θ, x) only

through x is optimal if and only if it attains the infimum in (4.16) with V ∗

replacing V , for each x ∈ S.

(d) For each x ∈ S, V ∗(x) = infπ∈ΠU V (x, π), where ΠU indicates the class of

universally measurable strategies in the hat DTMDP model.

Proof. The fact that the value function V ∗ is the minimal [1,∞]-valued lower
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semianalytic function satisfying

g(θ, x) ≥ inf
â∈Â

{∫ c

0

∫
S

g(t, y)q̃(dy|x, ρt)e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
S

g(c, y)ec
I(x,b,y)Q(dy|x, b)

}
;

g(∞, x∞) := 1,

where the inequality can be replaced by equality, follows from Proposition B.1.

The existence of an ε-optimal deterministic Markov universally measurable strat-

egy follows from Proposition B.1, too. Furthermore, note that the first coordinate

in the state (θ, x) does not affect the cost function or the transition probability,

from which the independence on the first coordinate of the state (θ, x) follows,

c.f. [34]. Now assertions (a,b) follow. Finally, the last two assertions follow from

Proposition B.1. �

Lemma 4.2. The function

t ∈ [0,∞)→
∫ t

0

∫
S
e−
∫ τ
0 (qx(ρs)−cG(x,ρs))dsV ∗(y)q̃(dy|x, ρτ )dτ + e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

is increasing, for each x ∈ S and ρ ∈ R.

Proof. Let 0 ≤ t1 < t2 <∞ and x ∈ S be fixed, and we will verify

∫ t2

0

e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t2
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

≥
∫ t1

0

e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t1
0 (qx(ρs)−cG(x,ρs))dsV ∗(x),

as follows. It is sufficient to consider the case when the left hand side is finite,

for otherwise, the above inequality would hold automatically. Then the goal is to
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show, by subtracting the right hand side from the left hand side,

0 ≤
∫ t2

t1

e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t2
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

−e−
∫ t1
0 (qx(ρs)−cG(x,ρs))dsV ∗(x).

The right hand side of this inequality can be further written as

∫ t2−t1

0

e−
∫ t1
0 (qx(ρs)−cG(x,ρs))dse−

∫ τ+t1
t1

(qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρτ+t1)dτ

+e−
∫ t1
0 (qx(ρs)−cG(x,ρs))ds

(
e−

∫ t2
t1

(qx(ρs)−cG(x,ρs))ds − 1
)
V ∗(x)

= e−
∫ t1
0 (qx(ρs)−cG(x,ρs))ds

{∫ t2−t1

0

e−
∫ τ
0 (qx(ρs+t1 )−cG(x,ρs+t1 ))ds

∫
S

V ∗(y)q̃(dy|x, ρτ+t1)dτ

+
(
e−

∫ t2−t1
0 (qx(ρt1+s)−cG(x,ρt1+s))ds − 1

)
V ∗(x)

}
.

Introduce ρ̃s := ρt1+s for each s ≥ 0. The target becomes to show

∫ t2−t1

0

e−
∫ τ
0

(qx(ρ̃s)−cG(x,ρ̃s))ds

∫
S

V ∗(y)q̃(dy|x, ρ̃τ )dτ + e−
∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV ∗(x) ≥ V ∗(x).

To this end, for a fixed ε > 0, let us consider a deterministic Markov ε-optimal

universally measurable strategy {(ϕ∗n, ψ∗n, F ∗,n)}∞n=0 coming from Lemma 4.1, and

an associated universally measurable strategy πNew = {(ϕn, ψn, F n)}∞n=0 defined

by ϕ0(θ, x) := ϕ∗0(x) + t2 − t1, ψ0(θ, x) = ψ∗0(x), F 0(θ, x)s = ρ̃s if s ≤ t2 − t1 and

F 0(θ, x)s = F ∗,0(θ, x)s−(t2−t1) if s > t2 − t1; and for n ≥ 1, ϕn((θ, x), â, (t, y)) =

ϕ∗n−1(y), ψn((θ, x), â, (t, y)) = ψ∗n−1(y), and F n((θ, x), â, (t, y))s = F ∗,n−1(y)s for

all s ≥ 0. Under the universally measurable strategy πNew, only the gradual

control action ρ̃ is used up to either t2−t1 or the natural jump moment, whichever

takes place first, after when, the ε-optimal universally measurable strategy is in
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use, and so

V ∗(x) ≤ V (x, πNew)

≤
∫ t2−t1

0
e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

∫
S
(V ∗(y) + ε)q̃(dy|x, ρ̃τ )dτ

+ e−
∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))ds(V ∗(x) + ε)

=

∫ t2−t1

0
e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

∫
S
V ∗(y)q̃(dy|x, ρ̃τ )dτ + e−

∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV ∗(x)

+ε

(∫ t2−t1

0
e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))dsqx(ρ̃τ )dτ + e−

∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

)
,

where the first inequality holds because of the last assertion of Lemma 4.1. Since

the expression in the last bracket is nonnegative and finite, and ε > 0 was arbitrar-

ily fixed, we see that V ∗(x) ≤
∫ t2−t1

0
e−

∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

∫
S
V ∗(y)q̃(dy|x, ρ̃τ )dτ +

e−
∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV ∗(x), as desired. �

Lemma 4.3. Relations (4.14) and (4.15) hold. (Recall from Lemma 4.1 that V ∗

is universally measurable.)

Proof. Let x ∈ S be fixed. Inequality (4.15) immediately follows from Lemma

4.1, if on the right hand side of (4.16) with V ∗ replacing V , one takes the infimum

over actions â ∈ Â with c = 0. (Recall the notation in use: â = (c, b, ρ) ∈ Â.)

Let us verify (4.14) as follows. Suppose V ∗(x) < ∞. Let a ∈ AG be arbi-

trarily fixed. If
∫
S
V ∗(y)q̃(dy|x, a) = ∞, then trivially,

∫
S
V ∗(y)q̃(dy|x, a) −

(qx(a) − cG(x, a))V ∗(x) ≥ 0. Consider the case when
∫
S
V ∗(y)q̃(dy|x, a) < ∞.

Let t > 0 be arbitrarily fixed. Then
∫ t

0
e−τ(qx(a)−cG(x,a))

∫
S
V ∗(y)q̃(dy|x, a)dτ +

e−t(qx(a)−cG(x,a))V ∗(x) is finite. Upon differentiating it with respect to t and ap-

plying the fundamental theorem of calculus, we see

e−(qx(a)−cG(x,a))t

∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))e−t(qx(a)−cG(x,a))V ∗(x) ≥ 0,

where the inequality follows from Lemma 4.2. Thus,
∫
S
V ∗(y)q̃(dy|x, a)−(qx(a)−

cG(x, a))V ∗(x) ≥ 0. Since a ∈ AG was arbitrarily fixed, we see that (4.14) holds.

�
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Lemma 4.4. For each x ∈ S, the inequality in either (4.14) or (4.15) holds with

equality.

Proof. Let x ∈ S be fixed. If the equality in (4.15) holds at this point, then

there is nothing to prove. Suppose the strict inequality holds in (4.15). Then

necessarily V ∗(x) < ∞. The objective is to show that, in this case, (4.14) holds

with equality. For the infimum in (4.16) with V ∗ replacing V , it suffices to

consider c > 0, because (4.15) holds with strict inequality at the fixed point

x ∈ S here. Let ε > 0 be fixed, and (c∗, b∗, ρ∗) ∈ Â be such that

V ∗(x) + ε

≥
{∫ c∗

0

∫
S

V ∗(y)q̃(dy|x, ρ∗t )e−
∫ t
0 (qx(ρ∗s)−cG(x,ρ∗s))dsdt+ I{c∗ =∞}e−

∫∞
0 qx(ρ∗s)ds

e
∫∞
0 cG(x,ρ∗s)ds +I{c∗ <∞}e−

∫ c∗
0 (qx(ρ∗s)−cG(x,ρ∗s))ds

∫
S

V ∗(y)ec
I(x,b∗,y)Q(dy|x, b∗)

}

There are two cases to be considered: (a) 0 < c∗ <∞; (b) c∗ =∞.

Consider case (a). Then

ε+ V ∗(x) ≥
∫ c∗

0

∫
S

V ∗(y)q̃(dy|x, ρ∗t )e−
∫ t
0 (qx(ρ∗s)−cG(x,ρ∗s))dsdt

+e−
∫ c∗
0 (qx(ρ∗s)−cG(x,ρ∗s))ds

∫
S

V ∗(y)ec
I(x,b∗,y)Q(dy|x, b∗)

≥ inf
ρ∈R

{∫ c∗

0

e−
∫ t
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρt)dt

+ e−
∫ c∗
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

}
≥ V ∗(x),

where the second inequality holds because of (4.15), and the last inequality holds

because of Lemma 4.2. Thus, as ε > 0 was arbitrarily fixed,

V ∗(x) = inf
ρ∈R

{∫ c∗

0

e−
∫ t
0

(qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρt)dt+ e−
∫ c∗
0

(qx(ρs)−cG(x,ρs))dsV ∗(x)

}
.(4.18)
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Let δ > 0 be fixed. There is some ρ ∈ R such that

∫ c∗

0

e−
∫ t
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρt)dt <∞,
∫ c∗

0

(qx(ρs)− cG(x, ρs))ds <∞

(for the infimum in (4.18), it suffices to concentrate on such elements of R as

V ∗(x) <∞), and

δ ≥
∫ c∗

0

e−
∫ s
0

(qx(ρv)−cG(x,ρv))dv

∫
S

V ∗(y)q̃(dy|x, ρs)ds+ e−
∫ t
0

(qx(ρs)−cG(x,ρs))dsV ∗(x)− V ∗(x)

=

∫ c∗

0

e−
∫ s
0

(qx(ρv)−cG(x,ρv))dv

∫
S

V ∗(y)q̃(dy|x, ρs)ds

−
∫ c∗

0

(qx(ρτ )− cG(x, ρτ ))e−
∫ τ
0

(qx(ρs)−cG(x,ρs))dsdτV ∗(x)

=

∫ c∗

0

e−
∫ s
0

(qx(ρv)−cG(x,ρv))dv

{∫
S

V ∗(y)q̃(dy|x, ρs)− (qx(ρs)− cG(x, ρs))V
∗(x)

}
ds

≥
∫ c∗

0

e−
∫ s
0

(qx(ρv)−cG(x,ρv))dvds inf
a∈AG

{∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
≥

∫ c∗

0

e−qxsds inf
a∈AG

{∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
≥ 0,

where the last inequality holds because of (4.14). Since
∫ c∗

0
e−qxsds > 0 and

δ > 0 was arbitrarily fixed, we see that (4.14) holds with equality.

Now consider case (b). Then

ε+ V ∗(x) ≥ inf
ρ∈R

{∫ ∞
0

e−
∫ t
0

(qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρt)dt+ e−
∫∞
0
qx(ρs)dse

∫∞
0
cG(x,ρs)ds

}
.

One can apply the proof of Lemma 5.3 of [108] to show that for each t ∈ [0,∞),

V ∗(x) = inf
ρ∈R

{∫ t

0

e−
∫ t
0

(qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρt)dt+ e−
∫ t
0

(qx(ρs)−cG(x,ρs))dsV ∗(x)

}
.(4.19)

To improve the readability, we provide the detailed justification of this fact as

follows. We only need consider when t > 0; the case of t = 0 is trivial. Let δ > 0

be arbitrarily fixed. Then there is some ρ̂ ∈ R such that

ε+ V ∗(x) + δ ≥
∫ ∞

0

e−
∫ τ
0

(qx(ρ̂s)−cG(x,ρ̂s))ds

∫
S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫∞
0
qx(ρ̂s)dse

∫∞
0
cG(x,ρ̂s)ds.
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Define ρ̃ ∈ R by ρ̃s = ρ̂t+s for each s ≥ 0. Then, for each t ≥ 0,

ε+ V ∗(x) + δ

≥
∫ t

0

e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
S

V ∗(y)q̃(dy|x, ρ̂τ )dτ

+

∫ ∞
t

e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
S

V ∗(y)q̃(dy|x, ρ̂τ )dτ

+e−
∫ t
0 (qx(ρ̂s)−cG(x,ρ̂s))dse−

∫∞
t qx(ρ̂s)dse

∫∞
t cG(x,ρ̂s)ds

=

∫ t

0

e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫ t
0 (qx(ρ̂v)−cG(x,ρ̂v))dv

×
{∫ ∞

0

e−
∫ s
0 (qx(ρ̃v))−cG(x,ρ̃v))dv

∫
S

V ∗(y)q̃(dy|x, ρ̃s)ds+ e−
∫∞
0 qx(ρ̃s)dse

∫∞
0 cG(x,ρ̃s)ds

}
≥

∫ t

0

e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
S

V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−
∫ t
0 (qx(ρ̂v)−cG(x,ρ̂v))dvV ∗(x)

≥ inf
ρ∈R

{∫ t

0

e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)q̃(dy|x, ρτ )dτ + e−
∫ t
0 (qx(ρv)−cG(x,ρv))dvV ∗(x)

}
≥ V ∗(x),

where the second inequality is by Lemma 4.1(a), which in particular, asserts that

V ∗ satisfies (4.16), and the last inequality is by Lemma 4.2. Since ε > 0 and

δ > 0 were arbitrarily fixed, the above implies (4.19). Comparing (4.19) with

(4.18), we see that case (b) is reduced to case (a). �

Lemma 4.5. Let w be a measurable [1,∞)-valued function satisfying the in-

equality in Condition 4.1, whose existence is guaranteed as mentioned in the

paragraph below Condition 4.1. Consider the transition probability p̃(dy|x, a) on

B(S) given (x, a) ∈ S×AG defined by

p̃(Γ|x, a) :=
q(Γ|x, a)

w(x)
+ δx(dy), ∀ Γ ∈ B(S), (x, a) ∈ S×AG.

Then a [1,∞]-valued lower semianalytic function V ∗ (here the notation V ∗ does

not necessarily mean the value function) satisfies (4.14) and (4.15), and for each

x ∈ S, either (4.14) or (4.15) holds with equality, if and only if this [1,∞]-valued
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lower semianalytic function satisfies (4.15), for each x ∈ S

V ∗(x) ≤ inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
S

V ∗(y)p̃(dy|x, a)

}
, (4.20)

and either (4.15) or (4.20) holds with equality, i.e.,

V ∗(x) = min

{
inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
S

V ∗(y)p̃(dy|x, a)

}
, inf
b∈AI

{∫
S

V ∗(y)ec
I(x,b,y)Q(dy|x, b)

}}
.(4.21)

Note that (4.20) automatically holds with equality at x ∈ S \ S∗(V ∗) := {x ∈

S : V ∗(x) =∞}. Also note that the function w in the previous lemma does not

need be continuous.

Proof. “Only if” part. Consider a [1,∞]-valued lower semianalytic function V ∗

satisfying (4.14) and (4.15), and for each x ∈ S, either (4.14) or (4.15) holds

with equality. For x ∈ S∗(V ∗) = {x ∈ S : V ∗(x) < ∞}, (4.14) implies for each

a ∈ AG that 0 ≤ cG(x, a)V ∗(x) +
∫
S
V ∗(y)q(dy|x, a) = (cG(x, a)− w(x))V ∗(x) +

w(x)
∫
S
V ∗(y)p̃(dy|x, a), and thus

V ∗(x) ≤ inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
S

V ∗(y)p̃(dy|x, a)

}
,

i.e., (4.20) holds. Let x ∈ S∗(V ∗) be a point where (4.14) holds with equality.

Let us verify at this point x ∈ S∗(V ∗), (4.20) also holds with equality. For each

ε > 0, there is some aε ∈ AG such that ε ≥ cG(x, aε)V
∗(x) +

∫
S
V ∗(y)q(dy|x, aε)

so that

V ∗(x) + ε ≥ V ∗(x) +
ε

w(x)− cG(x, aε)

≥ V ∗(x) +
cG(x, aε)V

∗(x) +
∫
S
V ∗(y)q(dy|x, aε)

w(x)− cG(x, aε)

=
w(x)

w(x)− cG(x, aε)

∫
S

p̃(dy|x, aε)V ∗(y)

≥ inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
S

V ∗(y)p̃(dy|x, a)

}
,
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and thus V ∗(x) ≥ infa∈AG

{
w(x)

w(x)−cG(x,a)

∫
S
V ∗(y)p̃(dy|x, a)

}
. The opposite direc-

tion of this inequality was seen earlier, and so (4.20) holds with equality at this

point. This completes the “Only if” part. The argument for the “If” part is the

same, and omitted. �

Remark 4.3. Consider the function V ∗ in the previous statement. By inspecting

the above proof we see the following useful fact: a pair of measurable mappings

ψ∗ and f ∗ from S to AI and AG satisfy

w(x)

w(x)− cG(x, f∗(x))

∫
S

V ∗(y)p̃(dy|x, f∗(x)) = inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
S

V ∗(y)p̃(dy|x, a)

}

for each x ∈ S, at which (4.20) holds with equality, and

∫
S

ec
I(x,ψ∗(x),y)V ∗(y)Q(dy|x, ψ∗(x)) = inf

b∈AI

{∫
S

ec
I(x,b,y)V ∗(y)Q(dy|x, b)

}
, ∀ x ∈ S,

if and only if

inf
a∈AG

{∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
=

∫
S

V ∗(y)q̃(dy|x, f ∗(x))− (qx(f
∗(x))− cG(x, f ∗(x)))V ∗(x)

for each x ∈ S, at which 0 coincides with the left hand side, and

∫
S

ec
I(x,ψ∗(x),y)V ∗(y)Q(dy|x, ψ∗(x)) = inf

b∈AI

{∫
S

ec
I(x,b,y)V ∗(y)Q(dy|x, b)

}
, ∀ x ∈ S.

Lemma 4.6. Conditions 4.1 and 4.2 are satisfied. Then W ∗(x) = V ∗(x) for each

x ∈ S.

Proof. According to Proposition B.1(a,b), the value function W ∗ for the tilde

model is the minimal [1,∞]-valued lower semianalytic function satisfying (4.7)

as well as the inequality obtained by replacing the equality in (4.7) by “≥”. Let

us verify that W ∗ = V ∗ as follows. According to Lemmas 4.3, 4.4 and 4.5, the

value function V ∗ is a [1,∞]-valued lower semianalytic function satisfying (4.7),
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c.f. (4.21). Therefore, W ∗ ≤ V ∗ pointwise.

For the opposite direction of this inequality, let x ∈ S be fixed. It suffices to

show that W ∗ satisfies (4.17) at the point x. Then, since the point x ∈ S was

arbitrarily fixed, one could apply Lemma 4.1 to obtain V ∗ ≤ W ∗ pointwise.

Recall that, as observed in the beginning of this proof, W ∗ satisfies (4.21).

By Lemma 4.5, it satisfies (4.14) and (4.15), one of which holds with equality at

this point x. If (4.15) holds with equality for W ∗ at x, then

W ∗(x) = inf
b∈AI

{∫
S

W ∗(y)ec
I(x,b,y)Q(dy|x, b)

}
≥ inf

â∈Â

{∫ c

0

∫
S

W ∗(y)q̃(dy|x, ρt)e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
S

W ∗(y)ec
I(x,b,y)Q(dy|x, b)

}
,

and thus (4.17) is satisfied by W ∗ at x, as required. Now suppose (4.14) holds

with equality for W ∗ at x. It suffices to consider W ∗(x) <∞, for otherwise, (4.17)

automatically holds for W ∗ at x. According to Remark 4.3 after Lemma 4.5 and

because the tilde model is semicontinuous, there is some a∗ ∈ AG satisfying

∫
S

W ∗(y)q̃(dy|x, a∗)− (qx(a
∗)− cG(x, a∗))W ∗(x)

= inf
a∈AG

{∫
S

W ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))W ∗(x)

}
= 0,

and hence
∫
S
W ∗(y)q̃(dy|x, a∗) = (qx(a

∗)−cG(x, a∗))W ∗(x). This implies qx(a
∗) ≥

cG(x, a∗) as the left hand side of the previous equality is nonnegative and W ∗(x) ≥

1, and for the same reason, if cG(x, a∗) = qx(a
∗), then cG(x, a∗) = qx(a

∗) = 0, in
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which case,

W ∗(x) ≥ 1

=

∫ ∞
0

∫
S

W ∗(y)q̃(dy|x, a∗)e−
∫ t
0 (qx(a∗)−cG(x,a∗))dsdt+ e−

∫∞
0 qx(a∗)dse

∫∞
0 cG(x,a∗)ds

≥ inf
â∈Â

{∫ c

0

∫
S

W ∗(y)q̃(dy|x, ρt)e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
S

W ∗(y)ec
I(x,b,y)Q(dy|x, b)

}
.

That is, (4.17) is satisfied by W ∗ at x, as desired. Finally, if cG(x, a∗) < qx(a
∗),

then

inf
â∈Â

{∫ c

0

∫
S

W ∗(y)q̃(dy|x, ρt)e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
S

W ∗(y)ec
I(x,b,y)Q(dy|x, b)

}
≤

∫ ∞
0

∫
S

W ∗(y)q̃(dy|x, a∗)e−
∫ t
0 (qx(a∗)−cG(x,a∗))dsdt+ e−

∫∞
0 qx(a∗)dse

∫∞
0 cG(x,a∗)ds

=

∫
S
W ∗(y)q̃(dy|x, a∗)

qx(a∗)− cG(x, a∗)
+ 0 = W ∗(x),

as requested. Thus, W ∗ satisfies (4.17). Consequently, W ∗ = V ∗ on S, as re-

quired. �

Proof of Theorem 4.1. Part (b) was seen in the proof of Lemma 4.4.

Consider the pair of measurable mappings (ψ∗, f ∗) from Proposition 4.1. Re-

call that W ∗ = V ∗ on S by Lemma 4.6. Keeping in mind Remark 4.3, an

inspection of the proof of Lemma 4.6 reveals that the deterministic stationary

strategy (ϕ(x), ψ∗(x), t→ δf∗(x)(da)) ∈ Â in the hat DTMDP model, where ϕ is
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defined in part (c) of this theorem, attains the infimum in

V ∗(x) = inf
â∈Â

{∫ c

0

∫
S

V ∗(y)q̃(dy|x, ρt)e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
S

V ∗(y)ec
I(x,b,y)Q(dy|x, b)

}

for each x ∈ S. By Lemma 4.1, this deterministic stationary strategy (ϕ(x), ψ∗(x), t→

δf∗(x)(da)) ∈ Â is optimal for problem (4.12) for the hat DTMDP model. This

and Remark 4.2 imply that V ∗ = L∗ on S and part (c). By Lemma 4.6, we see

now L∗ = W ∗ on S, and thus part (a) holds. �

Proof of Corollary 4.1. This corollary follows at once from Theorem 4.1, Lemma

4.5 and Remark 4.3. �
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5 Risk-sensitive PDMDP with nonnegative cost

rates

In this chapter we consider a piecewise deterministic Markov decision process

(PDMDP), where the expected exponential utility of total (nonnegative) cost is

to be minimized. The cost rate, transition rate and post-jump distributions are

under control. The state space is Borel, and the transition and cost rates are

locally integrable along the drift. Under natural conditions, we establish the op-

timality equation, justify the value iteration algorithm, and show the existence

of a deterministic stationary optimal policy. Applied to special cases, the ob-

tained results already significantly improve some existing results in the literature

on finite horizon and infinite horizon discounted risk-sensitive continuous-time

Markov decision processes.

Between two consecutive jumps, the state of the process evolves according to

a measurable mapping φ from S× [0,∞) to S, see (5.2) below. It is assumed that

for each x ∈ S

φ(x, t+ s) = φ(φ(x, t), s), ∀ s, t ≥ 0; φ(x, 0) = x, (5.1)

and t→ φ(x, t) is continuous.

The marked point process {tn, xn} defines the stochastic process {ξt, t ≥ 0}

on (Ω,F) of interest by

ξt =
∑
n≥0

I{tn ≤ t < tn+1}φ(xn, t− tn) + I{t∞ ≤ t}x∞, t ≥ 0, (5.2)

where we accept 0 · x := 0 and 1 · x := x for each x ∈ S∞, and below we denote

S∞ := S
⋃
{x∞}.

Definition 5.1. (The risk-sensitive PDMDP criterion)
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For each x ∈ S, and policy π = (πn),

V (x, π) := Eπ
x

[
e
∫∞
0

∫
A c(ξt,a)π(da|ω,t)dt

]
= Eπ

x

[
e
∑∞
n=0

∫ θn+1
0

∫
A c(φ(xn,s),a)πn(da|x0,θ1,...,xn,s)ds

]
A policy π∗ is called optimal if for each x ∈ S

V (x, π∗) = inf
π∈Π

V (x, π) =: V ∗(x) (5.3)

Here and below, we put c(x∞, a) := 0 for each a ∈ A, and φ(x∞, t) = x∞ for

each t ∈ [0,∞).

Finally let the cost rate c be a [0,∞)-valued measurable function on S ×A.

For simplicity, we do not consider the case of different admissible action spaces

at different states.

Condition 5.1. (a) For each bounded measurable function f on S and each

x ∈ S,
∫
S
f(y)q̃(dy|x, a) is continuous in a ∈ A.

(b) For each x ∈ S, the (nonnegative) function c(x, a) is lower semicontinuous

in a ∈ A.

(c) The action space A is a compact Borel space.

Condition 5.2. For each x ∈ S,
∫ t

0
qφ(x,s)ds <∞, and

∫ t
0

supa∈A c(φ(x, s), a)ds <

∞, for each t ∈ [0,∞).

The integrals in the above condition are well defined: the integrands are

universally measurable in s ∈ [0,∞); see Chapter 7 of [9].

Roughly speaking, the uncontrolled version of the process evolves as follows:

given the current state, the process evolves deterministically according to the

mapping φ, up to the next jump, taking place after a random time whose distri-

bution is (nonstationary) exponential, and the dynamics continue in the similar

manner. A detailed book treatment with many examples of this and more general

type of processes, allowing deterministic jumps, can be found in [23].
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The objective of this chapter is to show, under the imposed conditions, the

existence of a deterministic stationary optimal policy, and to establish the corre-

sponding optimality equation satisfied by the value function V ∗, together with its

value iteration. Evidently, V ∗(x) ≥ 1 for each x ∈ S. Under the next condition,

it will be seen that for each x ∈ S, V ∗(φ(x, s)) is absolutely continuous in s.

Condition 5.3. For each x ∈ S, V ∗(x) <∞.

The above condition is mainly assumed for notational convenience. In fact,

the main optimality results (such as the existence of a deterministic stationary

optimal policy) obtained in this paper can be established without assuming Con-

dition 5.3, at the cost of some additional notations. In a nutshell, one has to

consider the sets Ŝ := {x ∈ S : V ∗(x) < ∞} and S \ Ŝ separately, and note

that if x ∈ Ŝ, then φ(x, t) ∈ Ŝ for each t ∈ [0,∞). The reasoning presented

under Condition 5.3 can be followed in an obvious manner. We formulate the

corresponding optimality results in Remarks 5.1 and 5.2 below.

5.1 Main statements

We first present the main optimality results concerning problem (5.3) for the

PDMDP model. Their proofs are postponed to the next section. Here and below,

we assume that qφ(x,t)(a) > ε(x) > 0. This additional assumption is because

that we can find the examples in Chapter 4 saying that when qx(a) = 0, one

of the continuity condition
∫
X
f(z)p(dz|(θ, x), a) is continuous for each bounded

measurable function f on X does not always hold, see Example 4.3 and Example

4.4.

Theorem 5.1. Suppose Conditions 5.1, 5.2 and 5.3 are satisfied. Then the

following assertions hold.

(a) The value function V ∗ for problem (5.3) is the minimal [1,∞)-valued solu-
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tion to the following optimality equation:

−(V (φ(x, t))− V (x))

=

∫ t

0

inf
a∈A

{∫
S

V (y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V (φ(x, τ))

}
dτ,

t ∈ [0,∞), x ∈ S.

In particular, V ∗(φ(x, t)) is absolutely continuous in t for each x ∈ S.

(b) There exists a deterministic stationary optimal policy f , which can be taken

as any measurable mapping from S to A such that

inf
a∈A

{∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V ∗(x))

}
=

∫
S

V ∗(y)q̃(dy|x, f(x))− (qx(f(x))− c(x, f(x)))V ∗(x)), ∀ x ∈ S.

Remark 5.1. By inspecting its proof, one can see the following version of The-

orem 5.1 holds without assuming Condition 5.3. Suppose Conditions 5.1 and 5.2

are satisfied. Then the following assertions hold.

(a) The value function V ∗ for problem (5.3) is the minimal [1,∞]-valued solu-

tion to the following optimality equation:

−(V (φ(x, t))− V (x))

=

∫ t

0

inf
a∈A

{∫
S

V (y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V (φ(x, τ))

}
dτ,

t ∈ [0,∞), x ∈ Ŝ;

V (x) <∞, x ∈ Ŝ; V (x) =∞, x ∈ S \ Ŝ.

In particular, V ∗(φ(x, t)) is absolutely continuous in t for each x ∈ Ŝ.

(b) There exists a deterministic stationary optimal policy f , which can be taken
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as any measurable mapping from S to A such that

inf
a∈A

{∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V ∗(x))

}
=

∫
S

V ∗(y)q̃(dy|x, f(x))− (qx(f(x))− c(x, f(x)))V ∗(x)), ∀ x ∈ Ŝ.

Next, we present the value iteration algorithm for the value function V ∗.

Theorem 5.2. Suppose Conditions 5.1, 5.2 and 5.3 are satisfied. Let V (0)(x) =

1 for each x ∈ S. For each n ≥ 0, let V (n+1) be the minimal [1,∞)-valued

measurable solution to

−(V (n+1)(φ(x, t))− V (n+1)(x))

=

∫ t

0

inf
a∈A

{∫
S

V (n)(y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V (n+1)(φ(x, τ))

}
dτ,

t ∈ [0,∞), x ∈ S, (5.4)

such that V (n+1)(φ(x, t)) is absolutely continuous in t for each x ∈ S. (For

each n ≥ 0, such a solution always exists.) Furthermore, {V (n)} is a monotone

nondecreasing sequence of measurable functions on S such that for each x ∈ S,

V (n)(x) ↑ V ∗(x) as n ↑ ∞.

Remark 5.2. Similar to Remark 5.1, we have the following version of Theorem

5.2 without assuming Condition 5.3. Suppose Conditions 5.1, 5.2 are satisfied.

Let V (0)(x) = 1 for each x ∈ Ŝ and V (0)(x) =∞ if x ∈ S \ Ŝ. For each n ≥ 0, let

V (n+1) be the minimal [1,∞]-valued measurable solution to

−(V (n+1)(φ(x, t))− V (n+1)(x))

=

∫ t

0

inf
a∈A

{∫
S

V (n)(y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V (n+1)(φ(x, τ))

}
dτ,

t ∈ [0,∞), x ∈ Ŝ,

V (n+1)(x) <∞, x ∈ Ŝ, V (n+1)(x) =∞, x ∈ S \ Ŝ.

Here V (n+1)(φ(x, t)) is absolutely continuous in t for each x ∈ Ŝ. (For each n ≥ 0,

such a solution always exists.) Furthermore, {V (n)} is a monotone nondecreasing

sequence of measurable functions on S such that for each x ∈ S, V (n)(x) ↑ V ∗(x)
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as n ↑ ∞.

We can apply our theorems to a special case of a CTMDP. That is, φ(x, t) ≡ x

for each x ∈ S. We next give two applications of what we obtained for PDMDP

model, which mainly focus on the transformation between them.

The first application considering the following α-discounted risk-sensitive CT-

MDP problem was considered in [43]:

Minimize over π ∈ Π: Eπ
x

[
e
∫∞
0 e−αt

∫
A c(ξt,a)π(da|ω,t)dt

]
, x ∈ S. (5.5)

Here α > 0 is a fixed constant. In fact, the authors of [43] were restricted

to Markov policies, bounded transition and cost rates, i.e., supx∈S qx < ∞, and

supx∈S,a∈A c(x, a) <∞, and a finite state space S. These restrictions were needed

for their investigations, see e.g., Remark 3.6 in [43]. Under the compactness-

continuity condition (Condition 5.1), it was shown in [43] that there exists an

optimal Markov policy for the discounted risk-sensitive CTMDP, and established

the optimality equation. By using the theorems presented earlier in this section,

we can obtain these optimality results for problem (5.5) in a much more general

setup: the state space S is Borel, there is no boundedness requirement on the

transition rate with respect to the state x ∈ S, and the optimality is over the

class of history-dependent policies. Furthermore, we let the CTMDP model be

nonhomogeneous, i.e., the transition rate q(dy|t, x, a) now is a signed kernel on

B(S) from (t, x, a) ∈ [0,∞)×S×A, satisfying the corresponding version of (1.4);

the notations q̃ is kept as before, with the extra argument t in addition to x.

Similarly, the nonnegative cost rate c is allowed to be a measurable function on

[0,∞)× S×A.

Corollary 5.1. Consider the α-discounted risk-sensitive (nonhomogeneous) CT-

MDP problem (5.5) with c(ξt, a) being replaced by c(t, ξt, a). Suppose

sup
t∈[0,∞)

{q(t,x)} <∞, ∀ x ∈ S, sup
t∈[0,∞),x∈S,a∈A

c(t, x, a) <∞,
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and the corresponding version of Condition 5.1, where x is replaced by (t, x), is

satisfied by the nonhomogeneous CTMDP model. Then the following assertions

hold.

(a) There exists some [1,∞)-valued measurable solution on [0,∞)× S to

−(V (t, x)− V (0, x))

=

∫ t

0

inf
a∈A

{∫
S

V (u, y)q̃(dy|u, x, a) + (e−αuc(u, x, a)− q(u,x)(a))V (u, x)

}
du,

x ∈ S, t ∈ [0,∞),

where V (t, x) and V (0, x) correspond to the V (φ(t, x)) and V (x) in PDMDP

respectively and V is actually the criterion of this application model (5.5).

V (t, x) is absolutely continuous in t for each x ∈ S.

(b) Let L be the minimal [1,∞)-valued measurable solution on [0,∞)×S to the

above equation. Then the value function say L∗ to the α-discounted risk-

sensitive CTMDP problem (5.5) (with c(ξt, a) being replaced by c(t, ξt, a))

is given by L∗(x) = L(0, x) for each x ∈ S.

(c) There exists an optimal deterministsic Markov policy f for the α-discounted

risk-sensitive CTMDP problem (5.5) (with c(ξt, a) being replaced by c(t, ξt, a)).

One can take f as any measurable mapping from [0,∞)×S to A such that

inf
a∈A

{∫
S

L(u, y)q̃(dy|u, x, a) + (e−αuc(u, x, a)− q(u,x)(a))L(u, x)

}
=

∫
S

L(u, y)q̃(dy|u, x, f(u, x)) + (e−αuc(u, x, f(u, x))− q(u,x)(f(u, x)))L(u, x)

for each u ∈ [0,∞) and x ∈ S.

Proof. We prove this by reformulating the nonhomogeneous version of the α-

discounted risk-sensitive (nonhomogeneous) CTMDP problem (5.5) in the form of

problem (5.3) for a PDMDP, which we introduce as follows. We use the notation
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“hat” to distinguish this model from the original (nonhomogeneous) CTMDP

model.

• The state space is Ŝ = [0,∞)× S.

• The action space is the same as in the CTMDP: Â = A.

• the transition rate q̂(ds× dy|(t, x), a) is defined by

q̂(ds× dy|(t, x), a) := ˜̂q(ds× dy|(t, x), a)− I{(t, x) ∈ ds× dy}q(t,x)(a),

where

˜̂q(ds× dy|(t, x), a) := I{t ∈ ds}q̃(dy|t, x, a),

for each (t, x) ∈ Ŝ and a ∈ Â.

• The drift is given by φ̂((t, x), s) := (t + s, x) for each x ∈ S and t, s ≥ 0.

Clearly it satisfies the corresponding version of (5.1).

• The cost rate is given by

ĉ((t, x), a) := e−αtc(t, x, a), ∀ t ∈ [0,∞), x ∈ S, a ∈ A.

Now the marked point process {t̂n, x̂n} and controlled process ξ̂t in this PDMDP

model is connected to those in the original (nonhomogeneous) CTMDP model,

namely (tn, xn) and ξt, via t̂n = tn and x̂n = (tn, xn), and ξ̂t = (t, ξt).

Clearly, Conditions 5.1, 5.2 and 5.3 are satisfied by this PDMDP model. It

remains to apply Theorem 5.1. �

The condition in the previous corollary is much weaker than in [43], and can be

further weakened; one only needs the reformulated PDMDP to satisfy Conditions

5.1, 5.2 and 5.3. Moreover, the finiteness of the cost rate c was assumed in the

previous corollary only to ensure Condition 5.3 to be satisfied. It can be relaxed
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if one formulates the previous corollary using the statements in Remarks 5.1 and

5.2.

Here comes the second application that one can consider the α-discounted

risk-sensitive nonhomogeneous CTMDP problem on the finite horizon [0, T ] with

T > 0 being a fixed constant:

Minimize over π ∈ Π: Eπ
x

[
e
∫ T
0 e−αt

∫
A c(t,ξt,a)π(da|ω,t)dt+g(ξT )

]
, x ∈ S,

where g is a [0,∞)-valued measurable function; g(x) represents the terminal cost

incurred when ξT = x ∈ S. Let us put g(x∞) := 0. Here α is a fixed nonnegative

finite constant. A simpler version of this problem was considered in [101] with

α = 0 and a bounded cost rate, where additional restrictions were put on the

growth of the transition rate. We can reformulate this problem into the PDMDP

problem (5.3) just as in the above but we add one more parameter ∆ ∈ {0, 1}.

Now the ’prime’ model is as below.

• The state space is S′ = [0,∞)× S× {0, 1}.

• The action space is the same: A′ = A.

• the transition rate q′(ds× dy × d∆|(t, x,∆), a) is defined by

q′(ds× dy × d∆|(t, x, 0), a) := δ0(d∆)q̂(ds× dy|(t, x), a) if t ≤ T

q′(ds× dy × d∆|(t, x, 0), a) := δ1(d∆)δ(t,x)(ds× dy) if t > T

q′(ds× dy × d∆|(t, x, 1), a) := δ0(d∆)δ(t,x)(ds× dy)

• The drift is given by φ′((t, x,∆), s) := (t+ s, x) for each x ∈ S

• The cost rate is given by

c′((t, x,∆), a) =

 e−αtc(t, x, a), if t ≤ T ;

e−(t−T )g(x) if t > T.
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Actually, we can notice that when t ≤ T , it is the same as the above (∆ = 0

in this case). But when t ≥ T , we have to construct a ”dynamic absorbing”

system between (t, x, 0) and (t, x, 1) to make sure whenever the state attains one

of them, it will jump to the other state with probability one. It is easy to see this

M′ model also satisfies Conditions 5.1 5.2.

5.2 Proof of the main statements

Lemma 5.1. Suppose Conditions 5.1 and 5.2 are satisfied. Then the following

assertions hold.

(a) The value function V ∗ is the minimal [1,∞]-valued measurable solution to

V ∗(x) = inf
ρ∈R

{∫ ∞
0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )

)
dτ

+e−
∫∞
0 qφ(x,s)(ρs)dse

∫∞
0 c(φ(x,s),ρs)ds

}
, ∀ x ∈ S.

(b) The mapping

ρ ∈ R → W (x, ρ) :=

∫ ∞
0

e−
∫ τ
0

(qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )

)
dτ

+e−
∫∞
0
qφ(x,s)(ρs)dse

∫∞
0
c(φ(x,s),ρs)ds

is lower semicontinuous for each x ∈ S.

Proof. One can legitimately consider the following DTMDP (discrete-time Markov

decision process): according to Lemma 2.29 of [19], all the involved mappings are

measurable.

• The state space is X := ((0,∞)× S)
⋃
{(∞, x∞)}. Whenever the topology

is concerned, (∞, x∞) is regarded as an isolated point in X.

• The action space is A := R.
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• The transition kernel p on B(X) from X× A, is given for each ρ ∈ A by

p(Γ1 × Γ2|(θ, x), ρ) :=

∫
Γ2

e−
∫ t
0 qφ(x,s)(ρs)dsq̃(Γ1|φ(x, t), ρt)dt,

∀ Γ1 ∈ B(S), Γ2 ∈ B((0,∞)), x ∈ S, θ ∈ (0,∞),

p({(∞, x∞)}|(θ, x), ρ) := e−
∫∞
0 qφ(x,s)(ρs)ds, ∀ x ∈ S, θ ∈ (0,∞);

p({(∞, x∞)}|(∞, x∞), ρ) := 1.

• The cost function l is a [0,∞]-valued measurable function on X × A ×X

given by

l((θ, x), ρ, (τ, y)) :=

∫ ∞
0

I{s < τ}c(φ(x, s), ρs)ds, ∀ ((θ, x), ρ, (τ, y)) ∈ X× A×X.

The relevant facts and statements for the DTMDP are included in the Appendix.

One can show that under Conditions 5.1 and 5.2, for each (θ, x) ∈ X, a ∈

A →
∫
X
f(z)p(dz|(θ, x), a) is continuous for each bounded measurable function

f on X; for each (θ, x) ∈ X and (τ, y) ∈ X, a ∈ A 7→ l((θ, x), ρ, (τ, y)) is lower

semicontinuous, and A is a compact Borel space. Hence, Condition B.2 for the

DTMDP model {X,A, p, l} is satisfied.

The controlled process in the above DTMDP model {X,A, p, l} is denoted by

{Yn, n = 0, 1, . . . }, where Yn = (Θn, Xn), and the controlling process is denoted

by {An, n = 0, 1, . . . }. For n ≥ 1, Θn and Xn correspond to the nth sojourn time

and the post-jump state in the PDMDP, Θ0 is fictitious, and X0 is the initial

state in the PDMDP. Let Σ be the class of all strategies for the DTMDP model

{X,A, p, l}, and Σ0
DM be the class of deterministic Markov strategies in the form

σ = (ϕn) where ϕ0((θ, x)) does not depend on θ ∈ (0,∞) for each x ∈ S. We

preserve the term of policy for the PDMDP and the term of strategy for the

DTMDP.
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According to Proposition B.1, the function

(θ, x) ∈ X→ V∗((θ, x)) := inf
σ∈Σ

Eσ(θ,x)

[
e
∑∞
n=0 l(Yn,An,Yn+1)

]
is the minimal [1,∞]-valued measurable solution to the optimality equation

V∗((θ, x)) = inf
ρ∈R

{∫ ∞
0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(∫
S

V∗((τ, y))q̃(dy|φ(x, τ), ρτ )

)
dτ

+e−
∫∞
0 qφ(x,s)(ρs)dse

∫∞
0 c(φ(x,s),ρs)ds

}
for each x ∈ S and θ ∈ (0,∞); this is just (B.3). Furthermore, by Proposition

B.1, there exists a deterministic stationary strategy σ∗ for the DTMDP such that

σ∗((θ, x)) attains the above infimum for each x ∈ S and θ ∈ (0,∞), and any such

strategy σ∗ verifies

Eσ∗(θ,x)

[
e
∑∞
n=0 l(Yn,An,Yn+1)

]
= inf

σ∈Σ
Eσ(θ,x)

[
e
∑∞
n=0 l(Yn,An,Yn+1)

]
, ∀ (θ, x) ∈ X.

Let θ̂ ∈ (0,∞) be arbitrarily fixed. The function V∗((θ, x)) being measurable in

(θ, x) ∈ X, it follows that x ∈ S→ V∗((θ̂, x)) is measurable. The strategy σ∗ and

the constant θ̂ induce a deterministic Markov strategy σ∗∗ = (ϕn) ∈ Σ0
DM , where

ϕ0((θ, x)) =: σ∗((θ̂, x)) for each θ ∈ (0,∞), x ∈ S, and ϕn((θ, x)) := σ∗((θ, x))

for each n ≥ 1, θ ∈ (0,∞), x ∈ S. (The control on the isolated point (0, x∞)

is irrelevant and we do not specify the definition of the strategy on that point.)

This strategy can be identified with a policy π∗ in the PDMDP. On the other

hand, each policy π = (πn) can be identified with a deterministic strategy in this

DTMDP. Thus,

V ∗(x) ≥ V∗((θ̂, x)) = Eσ
∗

(θ̂,x)

[
e
∑∞
n=0 l(Yn,An,Yn+1)

]
= Eσ

∗∗

(θ̂,x)

[
e
∑∞
n=0 l(Yn,An,Yn+1)

]
= V (x, π∗) ≥ V ∗(x)

for each x ∈ S. Consequently, the policy π∗ is optimal, V ∗(x) = V∗((θ̂, x)) for

each x ∈ S and θ̂ ∈ (0,∞); recall that θ̂ was arbitrarily fixed. The statement of

113



this lemma now follows. �

The policy π∗ in the proof of the previous lemma is actually optimal for

problem (5.3). However, it is not necessarily a deterministic nor stationary policy.

Also the reduction of the risk-sensitive PDMDP problem (5.3) to a risk-sensitive

problem for the DTMDP model {X,A, p, l} as seen in the proof of the above

theorem will be used without special reference in what follows.

Lemma 5.2. Suppose Conditions 5.1, 5.2 and 5.3 are satisfied. For each x ∈ S

and ρ ∈ R,

t ∈ [0,∞) →
∫ t

0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )dτ

+e−
∫ t
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t))

is monotone nondecreasing in t ∈ [0,∞).

Proof. Let 0 ≤ t1 < t2 <∞ be arbitrarily fixed. We need show

∫ t2

0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )dτ

+e−
∫ t2
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t2))

≥
∫ t1

0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )dτ

+e−
∫ t1
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t1)). (5.6)

It is without loss of generality to assume

∫ t2

0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )dτ <∞.

Then all the four terms in (5.6) are nonnegative and finite, and (5.6) is equivalent
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to

∫ t2

0

e−
∫ τ
0

(qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )dτ

+e−
∫ t2
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t2))

−
∫ t1

0

e−
∫ τ
0

(qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )dτ

−e−
∫ t1
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t1))

=

∫ t2

t1

e−
∫ τ
0

(qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), ρτ )dτ

+e−
∫ t1
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(
e−

∫ t2
t1

(qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t2))− V ∗(φ(x, t1))
)

=

{∫ t2−t1

0

e−
∫ τ
0

(qφ(x,s+t1)(ρs+t1 )−c(φ(x,s+t1),ρs+t1 ))ds

∫
S

V ∗(y)q̃(dy|φ(x, t1 + τ), ρt1+τ )dτ

+e−
∫ t2
t1

(qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t2))− V ∗(φ(x, t1))
}
e−

∫ t1
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

≥ 0, (5.7)

which is verified as follows. Let δ > 0 be arbitrarily fixed. By Lemma 5.1, there

exists some ν̂ ∈ R such that

V ∗(φ(x, t2)) + δ ≥
∫ ∞

0

∫
S

V ∗(y)q̃(dy|φ(x, t2 + τ), ν̂τ )e
−
∫ τ
0 (qφ(x,t2+s)(ν̂s)−c(φ(x,t2+s),ν̂s))dsdτ

+e−
∫∞
0 qφ(x,t2+s)(ν̂s)dse

∫∞
0 c(φ(x,t2+s),ν̂s)ds.

(Recall φ(x, t2 + t) = φ(φ(x, t2), t) for each t ≥ 0.) Consider ν̃ ∈ R defined by

ν̃s =

 ρt1+s, if s ≤ t2 − t1;

ν̂s−(t2−t1) if s > t2 − t1.
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Then routine calculations lead to

V ∗(φ(x, t1))

≤
∫ t2−t1

0

e−
∫ τ
0 (qφ(x,t1+s)(ν̃s)−c(φ(x,t1+s),ν̃s))ds

(∫
S

V ∗(y)q̃(dy|φ(x, t1 + τ), ν̃τ )

)
dτ

+

∫ ∞
t2−t1

e−
∫ τ
0 (qφ(x,t1+s)(ν̃s)−c(φ(x,t1+s),ν̃s))ds

(∫
S

V ∗(y)q̃(dy|φ(x, t1 + τ), ν̃τ )

)
dτ

+e−
∫ t2−t1
0 (qφ(x,t1+s)(ν̃s)−c(φ(x,t1+s),ν̃s))dse

−
∫∞
t2−t1

qφ(x,t1+s)(ν̃s)dse
∫∞
t2−t1

c(φ(x,t1+s),ν̃s)ds

=

∫ t2−t1

0

e−
∫ τ
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds

∫
S

V ∗(y)q̃(dy|φ(x, t1 + τ), ρt1+τ )dτ

+e−
∫ t2−t1
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds

×
{∫ ∞

0

e−
∫ τ
0 (qφ(x,t2+s)(ν̂s)−c(φ(x,t2+s),ν̂s))ds

∫
S

V ∗(y)q̃(dy|φ(x, t2 + τ), ν̂τ )dτ

+e−
∫∞
0 qφ(x,t2+s)(ν̂s)dse

∫∞
0 c(φ(x,t2+s),ν̂s)ds

}
≤

∫ t2−t1

0

e−
∫ τ
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds

∫
S

V ∗(y)q̃(dy|φ(x, t1 + τ), ρt1+τ )dτ

+e−
∫ t2−t1
0 (qφ(x,t1+s)(ρs+t1 )−c(φ(x,t1+s),ρs+t1 ))ds(V ∗(φ(x, t2)) + δ).

Since δ > 0 was arbitrarily fixed, now it follows that the term in the parenthesis

in (5.7) is nonnegative, and thus inequality (5.7) is verified. �

Lemma 5.3. Suppose Conditions 5.1, 5.2 and 5.3 are satisfied. For each x ∈ S,

there is some ρ∗ ∈ R such that

V ∗(x) = inf
ρ∈R

{∫ t

0

e−
∫ s
0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), ρs)ds

+e−
∫ t
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t))

}
=

∫ t

0

e−
∫ s
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), ρ∗s)ds

+e−
∫ t
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))dsV ∗(φ(x, t)), ∀ t ≥ 0. (5.8)

Proof. Let x ∈ S be fixed, and let ρ∗ ∈ R be such that V ∗(x) = W (x, ρ∗), see

Lemma 5.1. Suppose t ∈ [0,∞) is arbitrarily fixed. Consider ρ̃ ∈ R defined by
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ρ̃s = ρ∗t+s for each s > 0. Then

V ∗(x) =

∫ t

0

e−
∫ s
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), ρ∗s)ds

+ e−
∫ t
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))ds ×

{∫ ∞
0

e−
∫ τ
0 (qφ(x,t+s)(ρ̃s)−c(φ(x,s+t),ρ̃s))ds∫

S

V ∗(y)q̃(dy|φ(x, τ + t), ρ̃τ )dτ + e−
∫∞
0 qφ(x,t+s)(ρ̃s)dse−

∫∞
0 c(φ(x,t+s),ρ̃s)ds

}
≥

∫ t

0

e−
∫ s
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), ρ∗s)ds

+e−
∫ t
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))dsV ∗(φ(x, t));

recall (5.1). On the other hand, by Lemma 5.2,

V ∗(x) ≤ inf
ρ∈R

{∫ t

0

e−
∫ s
0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), ρs)ds

+e−
∫ t
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗(φ(x, t))

}
.

The statement of this lemma is thus proved. �

Lemma 5.4. Suppose Conditions 5.1, 5.2 and 5.3 are satisfied. Then for each

x ∈ S, t ∈ [0,∞)→ V ∗(φ(x, t)) is absolutely continuous.

Proof. This immediately follows from Lemma 5.3 and (5.8). �

Proof of Theorem 5.1. (a) Under Conditions 5.1, 5.2 and 5.3, by Lemma 5.4,

for each x ∈ S, let t ∈ [0,∞) → U∗(x, t) be an integrable real-valued function

such that U∗(x, t) coincides with the derivative of t ∈ [0,∞)→ V (φ(x, t)) almost

everywhere, that is, U∗(x, t) , dV (φ(x,t))
dt

. Let x ∈ S and t ∈ [0,∞) be fixed, and

let ρ∗ ∈ R be from Lemma 5.3.

By Lemmas 5.3 and 5.4,

∫ τ

0

e−
∫ s
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), ρ∗s)ds
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and

e−
∫ τ
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))dsV ∗(φ(x, τ))

are absolutely continuous in τ and are finite for each τ ∈ [0,∞). Since φ(x, 0) = x,

see (5.1),

e−
∫ t
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))dsV ∗(φ(x, t))− V ∗(x)

=

∫ t

0

e−
∫ τ
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))ds

{
U∗(x, τ)− (qφ(x,τ)(ρ

∗
τ )− c(φ(x, τ), ρ∗τ ))V

∗(φ(x, τ))
}
dτ.

which, together with Lemma 5.3, gives

0 =

∫ t

0

e−
∫ s
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), ρ∗s)ds

+e−
∫ t
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))dsV ∗(φ(x, t))− V ∗(x)

=

∫ t

0

e−
∫ τ
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

{∫
S

V ∗(y)q̃(dy|φ(x, τ), ρ∗τ ) + U∗(x, τ)

−(qφ(x,τ)(ρ
∗
τ )− c(φ(x, τ), ρ∗τ ))V

∗(φ(x, τ))
}
dτ

≥
∫ t

0

e−
∫ τ
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv {U∗(x, τ)

+ inf
a∈A

{∫
S

V ∗(y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V ∗(φ(x, τ))

}}
dτ

=

∫ t

0

e−
∫ τ
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

{
U∗(x, τ) +

∫
S

V ∗(y)q̃(dy|φ(x, τ), f(φ(x, τ)))

−(qφ(x,τ)(f(φ(x, τ)))− c(φ(x, τ), f(φ(x, τ))))V ∗(φ(x, τ))
}
dτ, (5.9)

where f is a measurable mapping from S to A such that

inf
a∈A

{∫
S

V ∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))V ∗(x)

}
=

∫
S

V ∗(y)q̃(dy|x, f(x))− (qx(ϕ(x))− c(x, f(x)))V ∗(x)

for each x ∈ S; the existence of such a mapping is according to a well known

measurable selection theorem, c.f. Proposition D.5 of [57].
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Note that e−
∫ τ
0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv is bounded and separated from zero in

τ ∈ [0, t] for each ρ ∈ R; recall Condition 5.2. So

∫ t

0

e−
∫ τ
0

(qφ(x,v)(ρ
∗
v)−c(φ(x,v),ρ∗v))dv

{
U∗(x, τ)− (qφ(x,τ)(f(φ(x, τ)))− c(φ(x, τ), f(φ(x, τ))))V ∗(φ(x, τ))

}
dτ

is finite. If

∫ t

0

∫
S

V ∗(y)q̃(dy|φ(x, τ), f(φ(x, τ)))dτ =∞,

then

∫ t

0

e−
∫ τ
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

{
U∗(x, τ) +

∫
S

V ∗(y)q̃(dy|φ(x, τ), f(φ(x, τ)))

−(qφ(x,τ)(f(φ(x, τ)))− c(φ(x, τ), f(φ(x, τ))))V ∗(φ(x, τ))
}
dτ =∞,

which is against (5.9). Therefore,

∫ t

0

∫
S

V ∗(y)q̃(dy|φ(x, τ), f(φ(x, τ)))dτ <∞.

Then

∫ v

0

e−
∫ τ
0 (qφ(x,s)(f(φ(x,s)))−c(φ(x,s),f(φ(x,s))))ds

∫
S

V ∗(y)q̃(dy|φ(x, τ), f(φ(x, τ)))dτ

+e−
∫ v
0 (qφ(x,s)(f(φ(x,s)))−c(φ(x,s),f(φ(x,s))))dsV ∗(φ(x, v))

is absolutely continuous on [0, t]. After legitimately differentiating the above ex-

pression with respect to v, and applying Lemma 5.2, we see

U∗(x, v) +

∫
S

V ∗(y)q̃(dy|φ(x, v), f(φ(x, v)))

−(qφ(x,v)(f(φ(x, v)))− c(φ(x, v), f(φ(x, v))))V ∗(φ(x, v)) ≥ 0
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for almost all v ∈ [0, t]. This and (5.9) imply

U∗(x, τ) + inf
a∈A

{∫
S

V ∗(y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V ∗(φ(x, τ))

}
= 0

almost everywhere in τ ∈ [0, t]. Remember, t ∈ [0,∞) was arbitrarily fixed. The

first part of (a) is thus verified, and we postpone the justification of the second

part of (a) after the proof of part (b).

(b) We use the same notation as in the above. Note that

lim inf
t→∞

{
e−

∫ t
0

(qφ(x,s)(f(φ(x,s)))−c(φ(x,s),f(φ(x,s))))ds
}
≥ e−

∫∞
0
qφ(x,s)(f(φ(x,s)))dse

∫∞
0
c(φ(x,s),f(φ(x,s))))ds.(5.10)

Indeed, if either
∫∞

0
qφ(x,s)(f(φ(x, s)))ds or

∫∞
0
c(φ(x, s), f(φ(x, s))))ds is finite,

then in the above inequality, the equality takes place; if both
∫∞

0
qφ(x,s)(f(φ(x, s)))ds

and
∫∞

0
c(φ(x, s), f(φ(x, s))))ds are infinite, then the right hand side of the in-

equality is zero.

In the proof of part (a), it was observed that

∫ t

0

e−
∫ s
0 (qφ(x,v)(f(φ(x,v)))−c(φ(x,v),f(φ(x,v))))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), f(φ(x, s)))ds

and

e−
∫ t
0 (qφ(x,s)(f(φ(x,s)))−c(φ(x,s),f(φ(x,s))))dsV ∗(φ(x, t))

are absolutely continuous in t and are thus finite for each t ∈ [0,∞). As in

the proof of part (a), similar calculations to those in (5.9) imply that for each

t ∈ [0,∞),

∫ t

0

e−
∫ s
0

(qφ(x,v)(f(φ(x,v)))−c(φ(x,v),f(φ(x,v))))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), f(φ(x, s)))ds

+e−
∫ t
0

(qφ(x,s)(f(φ(x,s)))−c(φ(x,s),f(φ(x,s))))dsV ∗(φ(x, t))− V ∗(x)

=

∫ t

0

e−
∫ τ
0

(qφ(x,v)(f(φ(x,v)))−c(φ(x,v),f(φ(x,v))))dv

{
U∗(x, τ) +

∫
S

V ∗(y)q̃(dy|φ(x, τ), f(φ(x, τ)))

−(qφ(x,τ)(f(φ(x, τ)))− c(φ(x, τ), f(φ(x, τ))))V ∗(φ(x, τ))
}
dτ = 0,

where the last equality is by what was established in part (a). Therefore, for
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each t ∈ [0,∞),

V ∗(x)−
∫ t

0

e−
∫ s
0

(qφ(x,v)(f(φ(x,v)))−c(φ(x,v),f(φ(x,v))))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), f(φ(x, s)))ds

= e−
∫ t
0

(qφ(x,s)(f(φ(x,s)))−c(φ(x,s),f(φ(x,s))))dsV ∗(φ(x, t))

≥ e−
∫ t
0

(qφ(x,s)(f(φ(x,s)))−c(φ(x,s),f(φ(x,s))))ds,

where the inequality holds because V ∗(x) ≥ 1 for each x ∈ S. Taking lim inft→∞

on the both sides of the previous equality yields:

V ∗(x)−
∫ ∞

0

e−
∫ s
0

(qφ(x,v)(f(φ(x,v)))−c(φ(x,v),f(φ(x,v))))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), f(φ(x, s)))ds

≥ e−
∫∞
0
qφ(x,s)(f(φ(x,s)))dse

∫∞
0
c(φ(x,s),f(φ(x,s))))ds

with the inequality following from (5.10). Hence

V ∗(x) ≥
∫ ∞

0

e−
∫ s
0

(qφ(x,v)(f(φ(x,v)))−c(φ(x,v),f(φ(x,v))))dv

∫
S

V ∗(y)q̃(dy|φ(x, s), f(φ(x, s)))ds

+e−
∫∞
0
qφ(x,s)(f(φ(x,s)))dse

∫∞
0
c(φ(x,s),f(φ(x,s))))ds = W (x, f̃x) ≥ V ∗(x).

Here it is clear that s ∈ [0,∞) → f(φ(x, s)) can be identified as an element

of R, denoted as f̃x. In fact, f̃xs = δ{f(φ(x,s))} for each s ∈ [0,∞), whereas

x ∈ S → f̃x ∈ R is measurable. This measurable mapping x ∈ S → f̃x ∈ R

defines a deterministic stationary optimal strategy for the risk-sensitive DTMDP

problem (B.3) by Proposition B.1. It is clear that the measurable mapping x ∈

S→ f(x) ∈ A defines an optimal deterministic stationary policy for the PDMDP

problem (5.3).

Finally, we show the remaining part of (a). Let H∗ be a measurable [1,∞)-

valued function on S such that

−(H∗(φ(x, t))−H∗(x))

=

∫ t

0

inf
a∈A

{∫
S

H∗(y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))H∗(φ(x, τ))

}
dτ,

t ∈ [0,∞), x ∈ S.
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There exists a measurable mapping h from S to A such that

inf
a∈A

{∫
S

H∗(y)q̃(dy|x, a)− (qx(a)− c(x, a))H∗(x)

}
=

∫
S

H∗(y)q̃(dy|x, h(x))− (qx(h(x))− c(x, h(x)))H∗(x), ∀ x ∈ S;

c.f., Proposition D.5 of [57]. It follows that
∫ s

0

∫
S
H∗(y)q̃(dy|φ(x, τ), h(φ(x, τ)))dτ

is absolutely continuous in s ∈ [0, t] for each t ≥ 0. As in the proof of part (b),

∫ t

0

e−
∫ s
0 (qφ(x,v)(h(φ(x,v)))−c(φ(x,v),h(φ(x,v))))dv

∫
S

H∗(y)q̃(dy|φ(x, s), h(φ(x, s)))ds

+e−
∫ t
0 (qφ(x,s)(h(φ(x,s)))−c(φ(x,s),h(φ(x,s))))dsH∗(φ(x, t))−H∗(x) = 0, ∀ t ∈ [0,∞),

and by passing to the lower limit as t→∞,

H∗(x) ≥
∫ ∞

0

e−
∫ s
0 (qφ(x,v)(h(φ(x,v)))−c(φ(x,v),h(φ(x,v))))dv

∫
S

H∗(y)q̃(dy|φ(x, s), h(φ(x, s)))ds

+e−
∫∞
0 qφ(x,s)(h(φ(x,s)))dse

∫∞
0 c(φ(x,s),h(φ(x,s))))ds

≥ inf
ρ∈R

{∫ ∞
0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(∫
S

H∗(y)q̃(dy|φ(x, τ), ρτ )

)
dτ

+e−
∫∞
0 qφ(x,s)(ρs)dse

∫∞
0 c(φ(x,s),ρs)ds

}
, ∀ x ∈ S. (5.11)

It remains to refer to Proposition B.1 for that H∗(x) ≥ V ∗(x) for each x ∈ S. �

Proof of Theorem 5.2. Let V ∗0 (x) := 1 for each x ∈ S. For each n ≥ 0, one can

legitimately define

V ∗n+1(x) = inf
ρ∈R

{∫ ∞
0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(∫
S

V ∗n (y)q̃(dy|φ(x, τ), ρτ )

)
dτ

+e−
∫∞
0 qφ(x,s)(ρs)dse

∫∞
0 c(φ(x,s),ρs)ds

}
, ∀ x ∈ S. (5.12)

Recall that the DTMDP model {X,A, p, l} satisfies Condition B.2, as noted in the

proof of Lemma 5.1. Then by Proposition B.1, {V ∗n } is a monotone nondecreasing

sequence of [1,∞)-valued measurable functions on S such that V ∗n (x) ↑ V ∗(x) as
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n ↑ ∞, for each x ∈ S.

Let n ≥ 0 be fixed. As in Lemma 5.3, for each x ∈ S, there is some ρ∗ ∈ R

such that

V ∗n+1(x) = inf
ρ∈R

{∫ t

0

e−
∫ s
0 (qφ(x,v)(ρv)−c(φ(x,v),ρv))dv

∫
S

V ∗n (y)q̃(dy|φ(x, s), ρs)ds

+e−
∫ t
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗n+1(φ(x, t))

}
=

∫ t

0

e−
∫ s
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

∫
S

V ∗n (y)q̃(dy|φ(x, s), ρ∗s)ds

+e−
∫ t
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))dsV ∗n+1(φ(x, t)), ∀ t ≥ 0.

Also the relevant version of Lemma 5.2 holds: for each x ∈ S and ρ ∈ R,

t ∈ [0,∞) →
∫ t

0

e−
∫ τ
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

∫
S

V ∗n (y)q̃(dy|φ(x, τ), ρτ )dτ

+e−
∫ t
0 (qφ(x,s)(ρs)−c(φ(x,s),ρs))dsV ∗n+1(φ(x, t))

is monotone nondecreasing in t ∈ [0,∞). Clearly, V ∗n+1(φ(x, t)) is absolutely

continuous in t ∈ [0,∞) for each x ∈ S.

Corresponding to (5.9), we now have

0 =

∫ t

0

e−
∫ s
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

∫
S

V ∗n (y)q̃(dy|φ(x, s), ρ∗s)ds

+e−
∫ t
0 (qφ(x,s)(ρ

∗
s)−c(φ(x,s),ρ∗s))dsV ∗n+1(φ(x, t))− V ∗n+1(x)

=

∫ t

0

e−
∫ τ
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

{∫
S

V ∗n (y)q̃(dy|φ(x, τ), ρ∗τ ) + U∗n+1(x, τ)

−(qφ(x,τ)(ρ
∗
τ )− c(φ(x, τ), ρ∗τ ))V

∗
n+1(φ(x, τ))

}
dτ

≥
∫ t

0

e−
∫ τ
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

{
U∗n+1(x, τ)

+ inf
a∈A

{∫
S

V ∗n (y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V ∗n+1(φ(x, τ))

}}
dτ

=

∫ t

0

e−
∫ τ
0 (qφ(x,v)(ρ

∗
v)−c(φ(x,v),ρ∗v))dv

{
U∗n+1(x, τ) +

∫
S

V ∗n (y)q̃(dy|φ(x, τ), f(φ(x, τ)))

−(qφ(x,τ)(f(φ(x, τ)))− c(φ(x, τ), f(φ(x, τ)))V ∗n+1(φ(x, τ))
}
dτ,
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where τ ∈ [0, t]→ U∗n+1(x, τ) is integrable and coincides with
∂V ∗n+1(φ(x,t))

∂t
almost

everywhere, and f is some measurable mapping from S to A, whose existence is

guaranteed by Proposition D.5 of [57]. Continued from the above relation, the

reasoning in the proof of the first assertion in part (a) of Theorem 5.1 can be

followed: eventually we see

U∗n+1(x, τ) + inf
a∈A

{∫
S

V ∗n (y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V ∗n+1(φ(x, τ))

}
= 0

almost everywhere in τ ∈ [0, t], i.e., the equation

−(V (φ(x, t))− V (x))

=

∫ t

0

inf
a∈A

{∫
S

V ∗n (y)q̃(dy|φ(x, τ), a)− (qφ(x,τ)(a)− c(φ(x, τ), a))V (φ(x, τ))

}
dτ,

t ∈ [0,∞), x ∈ S, (5.13)

is satisfied by V = V ∗n+1.

Recall that V ∗0 = V (0). Suppose the recursive definition in (5.4) is valid up to

step n, and V ∗n (x) = V (n)(x) for each x ∈ S. Consider an arbitrarily fixed [1,∞)-

valued measurable solution V to (5.13), and let f ∗ be a measurable mapping from

S to A such that

inf
a∈A

{∫
S

V ∗n (y)q̃(dy|x, a)− (qx(a)− c(x, a))V (x)

}
=

∫
S

V ∗n (y)q̃(dy|x, f ∗(x))− (qx(f
∗(x))− c(x, f ∗(x)))V (x), ∀ x ∈ S.

One can follow the reasoning in the last part of the proof of Theorem 5.1, and

see, c.f. (5.11),

V (x) ≥
∫ ∞

0

e−
∫ s
0

(qφ(x,v)(f
∗(φ(x,v)))−c(φ(x,v),f∗(φ(x,v))))dv

∫
S

V ∗n (y)q̃(dy|φ(x, s), f∗(φ(x, s)))ds

+e−
∫∞
0
qφ(x,s)(f

∗(φ(x,s)))dse
∫∞
0
c(φ(x,s),f∗(φ(x,s))))ds

≥ inf
ρ∈R

{∫ ∞
0

e−
∫ τ
0

(qφ(x,s)(ρs)−c(φ(x,s),ρs))ds

(∫
S

V ∗n (y)q̃(dy|φ(x, τ), ρτ )

)
dτ

+e−
∫∞
0
qφ(x,s)(ρs)dse

∫∞
0
c(φ(x,s),ρs)ds

}
= V ∗n+1(x), ∀ x ∈ S,
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where the last equality is by (5.12). Thus, V ∗n+1 is the minimal [1,∞)-valued

measurable solution to (5.13), and coincides with V (n+1). Therefore, by induction

V ∗n = V (n) for each n ≥ 0. It follows now that V (n)(x) ↑ V ∗(x) as n ↑ ∞ for each

x ∈ S. �
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Part II

Other Problems on CTMDP and

Stochastic Games

6 Discounted CTMDP with a lower bounding

function

In this chapter, we consider the discounted CTMDP problems, where the neg-

ative part of each cost rate is bounded by a drift function, say w, whereas the

positive part is allowed to be arbitrarily unbounded. Our focus is on the existence

of a stationary optimal policy for the discounted CTMDP problems out of the

more general class. Both constrained and unconstrained problems are consid-

ered. The investigations are based on the continuous-time version of the Veinott

transformation. This technique was not widely employed in the previous litera-

ture in CTMDPs, but it clarifies the roles of the imposed conditions in a rather

transparent way. As a consequence, we withdraw and weaken several conditions

commonly imposed in the literature.

6.1 The constrained and unconstrained problems

For each j = 0, 1, . . . , N, with N ≥ 1 being a fixed integer, let cj be a (−∞,∞]-

valued measurable function on K = {(x, a)|x ∈ S, a ∈ A(x)}, representing a cost

rate, and dj be a fixed finite constant, representing a corresponding constrain-

t. We shall consider the following unconstrained and constrained α-discounted

optimal control problems, respectively:

Minimize over π ∈ Π: Eπ
x

[∫ ∞
0

e−αt
∫
A

c0(ξt, a)π(da|ω, t)dt
]
, x ∈ S,(6.1)
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and

Minimize over π ∈ Π: Eπx

[∫ ∞
0

e−αt
∫
A
c0(ξt, a)π(da|ω, t)dt

]
subject to Eπx

[∫ ∞
0

e−αt
∫
A
cj(ξt, a)π(da|ω, t)dt

]
≤ dj , j = 1 . . . N.(6.2)

Here and below, we put

c(x∞, a) := 0, ∀ a ∈ A
⋃
{a∞}. (6.3)

The conditions we impose below will ensure that the performance measures in

the above two problems are well defined, though not necessarily finite.

A policy π is called feasible for the constrained problem (6.2) if it satisfies all

the inequalities therein. A feasible policy π for problem (6.2) is said to be of a

finite value if

Eπ
x

[∫ ∞
0

e−αt
∫
A

c±0 (ξt, a)π(da|ω, t)dt
]
<∞.

where c±0 denote the negative and positive part of function c0.

A policy π∗ is said to be optimal for problem (6.2) if it is feasible and satisfies

Eπ∗

x

[∫ ∞
0

e−αt
∫
A

c0(ξt, a)π∗(da|ω, t)dt
]
≤ Eπ

x

[∫ ∞
0

e−αt
∫
A

c0(ξt, a)π(da|ω, t)dt
]

for each feasible policy π.

Note that the definition of optimality of a feasible policy for the constrained

problem (6.2) requires a fixed initial state x ∈ S. Here, we did not consider the

more general case of a fixed initial distribution just for brevity and readability.

The case of a fixed initial distribution γ can be similarly treated with additional

conditions regarding γ.

We would like to allow the possibility of cost rates unbounded from both

above and below. We consider the following set of conditions to guarantee that
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the performance measures in problems (6.1) and (6.2) are well defined.

Condition 6.1. There exists a [1,∞)-valued measurable function w on S such

that

(a) for some finite constant 0 ≤ ρ < α,

∫
S

w(y)q(dy|x, a) ≤ ρw(x), ∀ (x, a) ∈ K;

(b) for some finite constant L > 0,

c−i (x, a) ≤ Lw(x), ∀ (x, a) ∈ K, i = 0, 1, . . . , N.

Here, for each i = 0, 1, . . . , N, c−i is the negative part of the function ci.

Below, we allow that w(x∞) := 0. The cost rates satisfying part (b) of the

above condition are said to be lower bounded by the drift function w; c.f. p.251 of

[6] for a related definition for piecewise deterministic Markov decision processes.

Lemma 6.1. Suppose Condition 6.1 is satisfied. Let a policy π be arbitrarily

fixed. Then

Eπ
x

[∫ ∞
0

e−αtw(ξt)dt

]
<∞, ∀ x ∈ S.

In particular, for each x ∈ S, the integrals Eπ
x

[∫∞
0
e−αt

∫
A
ci(ξt, a)π(da|ω, t)dt

]
,

i = 0, 1, . . . , N, are well defined.

Proof. This follows from Lemma 2 of [90] and (6.3). �

Assumption 1. Throughout this paper, unless stated otherwise, Condition 6.1

is assumed to hold automatically, without specific reference.
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6.2 Conditions, statements and comments

Condition 6.2. There exist a (0,∞)-valued measurable function w′ on S and a

monotone nondecreasing sequence of measurable subsets {Zm}∞m=1 ⊆ B(S) such

that the following hold.

(a) Zm ↑ S as m→∞.

(b) supx∈Zm qx <∞ for each m = 1, 2, . . . .

(c) For some constant ρ′ ∈ (0,∞),

∫
S

w′(y)q(dy|x, a) ≤ ρ′w′(x), ∀ x ∈ S, a ∈ A(x).

(d) infx∈S\Zm
w′(x)
w(x)

→ ∞ as m → ∞, where the function w is from Condition

6.1.

Condition 6.3. (a) The multifunction x ∈ S 7→ A(x) ∈ B(A) is compact-

valued and upper semicontinuous.

(b) For each w-bounded continuous function g on S, (x, a) ∈ K→
∫
S
g(y)q̃(dy|x, a)

is continuous. Here and below the function w is from Condition 6.1.

(c) The function w is continuous on S, and the functions ci are lower semicon-

tinuous on K.

The conditions formulated in the above can be satisfied when the negative

part of each cost rate is bounded by a drift function, whereas the positive part

is arbitrarily unbounded. In the literature of economics, such a cost rate might

appear e.g., when one considers the logarithmic utility function, where they put

− ln 0 := ∞, see Section 7 of [97]; see also Example 2 of [69]. We formulate an

example of such a CTMDP as follows.

Example 6.1. Consider a controlled M/M/∞ queueing system. The state x ∈

{0, 1, . . . } = S represents the number of customers in the system. The control
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is the arrival rate a ∈ [0, x] ⊆ [0,∞) for each x ∈ S. The service rate µ > 0 is

uncontrolled. The cost rate is given by c0(x, a) = − ln a, and the constraint cost

rate is given by c1(x, a) = x. Then Conditions 6.1, 6.2 and 6.3 are all satisfied

(for a large enough discount factor); one can put w(x) = x+1 and w′(x) = 1+x2.

On the other hand, there is no finite bounding function for |c0|.

The next condition is for constrained problem only.

Condition 6.4. There exists a feasible policy for problem (6.2) with a finite value.

The main statement of this paper is the following one.

Theorem 6.1. Suppose Conditions 6.1, 6.2 and 6.3 are satisfied. Then the fol-

lowing assertions hold.

(a) There exists a deterministic stationary optimal policy for the unconstrained

problem (6.1). In fact, one can always take a deterministic stationary policy

providing the minimum in the equation (6.14) as a deterministic stationary

optimal policy.

(b) If Condition 6.4 is also satisfied, then there exists a stationary optimal policy

for the constrained problem (6.2).

In the previous literature, general discounted CTMDPs have not been con-

sidered when the cost rates were bounded below by a lower bounding function,

and arbitrarily unbounded from the above, although for specific piecewise deter-

ministic Markov decision processes with jumps driven by a Poisson process, this

was considered in [6] following a different method. Discrete-time problems with

a lower bounding function were considered in [6, 68], and in latter reference, the

motivation for considering such cost functions was explained with their applica-

tions to economics. For discounted DTMDP problems, the treatment in [6, 68]

was direct. But it is possible to reduce this to equivalent problems with nonneg-

ative cost functions, using the technique in p.101 of [99], see also [29] and p.79 of
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[2]. The proof of Theorem 6.1 will be based on a similar technique for CTMDPs,

which, to the best of our knowledge, has not been widely applied to CTMDPs.

For the more restrictive case, where the cost rates are w-bounded, with w

coming from Condition 6.1, Theorem 6.1(a) was obtained in [10] under essentially

equivalent conditions for discounted CTMDPs in a denumerable state space but

restricted to the class of stationary policies. Here we show that it is without

loss of generality to be restricted to this narrower class of policies under the

imposed conditions. Otherwise, this sufficiency result seems not to follow from

other known results in the relevant literature. The approach in [10] was directly

based on the application of the Dynkin’s forumla, and is different from ours.

When the cost rates are only lower w-bounded, the value function is in general

not w-bounded. Since under the conditions in [10] and here, Dynkin’s formula is

only applicable to the class of w-bounded functions, the treatment in [10] does

not directly apply to the general case dealt with here.

Also when the cost rates are w-bounded, Theorem 6.1(b) was obtained in e.g.,

[89] but under stronger conditions. We include them here for ease of reference.

Instead of Condition 6.2, the following condition was imposed in [89].

Condition 6.5. There exists a (0,∞)-valued measurable function w̃′ on S such

that the following hold.

(a) For some constant L̃′ ∈ (0,∞), qx ≤ L̃′w̃′(x) for each x ∈ S.

(b) For some constant ρ̃′ ∈ (0,∞),
∫
S
w̃′(y)q(dy|x, a) ≤ ρ̃′w̃′(x) for each (x, a) ∈

K.

(c) For some constant L̃ ∈ (0,∞), (qx+1)w(x) ≤ L̃w̃′(x) for each x ∈ S, where

the function w comes from Condition 6.1.

It is easy to see that, if the above condition is satisfied, then so is Condition

6.2 with w′ = w̃′+1, ρ′ = ρ̃′, Zm =
{
x ∈ S : w̃′(x)+1

w(x)
≤ m

}
for each m = 1, 2, . . . .

Furthermore, under Conditions 6.1, 6.2 and 6.4, in addition to Condition

6.3, it was also assumed in [89] that the function w̃′

w
is a moment function on
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K, see Definition E.7 of [57], in order to apply the Prokhorov theorem in their

proof, see Proposition E.8 and Theorem E.6 of [57]. This is not needed here.

The investigations in [89] are largely based on the Dynkin’s formula, and do not

handle the more general cost rates considered here.

The rest of this section proves Theorem 6.1. On the way, we comment and

clarify the roles of the imposed conditions, and present the auxiliary statements.

6.3 Proof of the main statement

The proof of Theorem 6.1 follows from a sequence of lemmas. The outline of the

proof steps is announced in the next remark.

Remark 6.1. The main themes in the proof of Theorem 6.1 can be summarized

as follows.

1. Under Condition 6.1, the w-transformation, see Lemma 6.3, allows one to

reduce the original problems (6.1) and (6.2) to problems (6.5) and (6.6)

for the w-transformed CTMDP model with cost rates bounded from below,

equivalently.

2. Under the extra Condition 6.2, problems (6.5) and (6.6) are reduced to

discounted CTMDP problems (6.8) and (6.9) with nonnegative cost rates

by adding some large enough constant. This is possible because Condition

6.2 ensures that the controlled process in the w-transformed CTMDP model

is nonexplosive under each Markov policy, according to Lemma 6.4.

3. By applying the reduction technique in [33, 35], discounted CTMDP prob-

lems (6.8) and (6.9) with nonnegative cost rates are reduced to total undis-

counted DTMDP problems (6.12) and (6.13) with nonnegative cost func-

tions.

4. Apply the optimality results in [26] to the DTMDP problems (6.12) and
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(6.13) with nonnegative cost functions. Then deduce from here the corre-

sponding optimality results for the original problems (6.1) and (6.2).

The details are as follows.

Proof of Theorem 6.1. The following statement is a consequence of Theorem 4.2

of [37], see also [36], and is the starting point of our reasoning.

Lemma 6.2. For each initial state x ∈ S and policy π, there exists a Markov

policy ϕ such that

Eπ
x

[∫ ∞
0

e−αt
∫
A

f(ξt, a)π(da|ω, t)dt
]

= Eϕ
x

[∫ ∞
0

e−αt
∫
A

f(ξt, a)ϕ(da|ξt, t)dt
]

for each [0,∞]-valued measurable function f on K.

The above lemma implies that without loss of generality, we can restrict to

the class of Markov policies for problems (6.1) and (6.2), i.e., if we obtain an

optimal policy out of the class of Markov policies for problem (6.1) (or (6.2)),

then that policy is optimal for problem (6.1) (or (6.2)) out of the general class.

We recall some definitions related to the process {ξt, t ≥ 0} under a Markov

policy ϕ. Let us consider the signed kernel on S from S× [0,∞) defined by

qϕ(dy|x, t) :=

∫
A

q(dy|x, a)ϕ(da|x, t), ∀ x ∈ S, t ∈ [0,∞).

Then qϕ is a conservative and stable Q-function in the sense of [38, p.262]. For the

ease of reference, we recall some relevant definitions and facts about Q-functions

in the appendix.

According to Theorem 2.2 of [38], under a Markov policy, say ϕ, the process

{ξt, t ≥ 0} is a Markov pure jump process on {Ω,F , {Ft}, Pϕ}, that is, for each

s, t ∈ [0,∞),

Pϕ(ξt+s ∈ Γ|Ft) = Pϕ(ξt+s ∈ Γ|ξt), ∀ Γ ∈ B(X∞);
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and each trajectory of {ξt; t ≥ 0} is piecewise constant and right-continuous,

such that for each t ∈ [0, t∞), there are finitely many discontinuity points on the

interval [0, t], see Definition 1 in Chapter III of [44]. Here and below, we omit the

subscript in Pϕ
γ , whenever the initial distribution γ is irrelevant. Furthermore,

by Theorem 2.2 of [38], pqϕ defined by (A.1) with q being replaced by qϕ is the

transition function corresponding to the process {ξt, t ≥ 0}, i.e., for each s ≤ t,

on {s < t∞},

Pϕ(ξt ∈ Γ|Fs) = pqϕ(s, ξs, t,Γ), ∀ Γ ∈ B(S),

c.f. p.1397 of [76]. Consequently, for each Markov policy ϕ,

Eϕ
x

[∫ ∞
0

e−αt
∫
A

ci(ξt, a)ϕ(da|ξt, t)dt
]

=

∫ ∞
0

∫
S

e−αt
∫
A

ci(y, a)ϕ(da|y, t)pqϕ(0, x, t, dy)dt

for each i = 0, 1, . . . , N and ∀ x ∈ S.

Given the Q-function qϕ on S induced by a Markov policy ϕ, let us introduce

the w-transformed Q-function qwϕ on Sδ defined as follows.

Let

Sδ := S
⋃
{δ}

with δ /∈ S being an isolated point concerning the topology of Sδ that satisfies

δ 6= x∞. The w-transformed (stable conservative) Q-function qwϕ on Sδ is defined

by

qwϕ (Γ|x, s) :=


∫
Γ w(y)qϕ(dy|x,s)

w(x)
, if x ∈ S, Γ ∈ B(S), x /∈ Γ;

ρ−
∫
S w(y)qϕ(dy|x,s)

w(x)
, if x ∈ S, Γ = {δ};

0, if x = δ, Γ = Sδ.

(6.4)
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for each s ∈ [0,∞); and

qwϕ x(s) := ρ+ qϕx(s), ∀ s ∈ [0,∞).

Here, qϕx(s) = −qϕ(S \ {x}|x, s); see the appendix for more definitions and rele-

vant notations concerning a Q-function. This transformation is the continuous-

time version of the Veinott transformation, see [100], widely known in the lit-

erature of DTMDPs. For (uncontrolled) homogeneous continuous-time Markov

chains, this transformation was used in e.g., [3, 96, 95].

Lemma 6.3. Let a Markov policy ϕ be fixed. For each x ∈ S, s, t ∈ [0,∞), s ≤ t

and Γ ∈ B(S), the following relation holds;

pqwϕ (s, x, t,Γ) =
e−ρ(t−s)

w(x)

∫
Γ

w(y)pqϕ(s, x, t, dy).

Proof. See Lemma A.3 of [107]. �

By Lemma 6.3, we see that for each i = 0, 1, . . . , N,

w(x)

∫ ∞
0

∫
S

pqwϕ (0, x, t, dy)

∫
A

ci(y, a)

w(y)
ϕ(da|y, t)e−(α−ρ)tdt

=

∫ ∞
0

∫
S

∫
A

ci(y, a)ϕ(da|y, t)e−αtpqϕ(0, x, t, dy)dt, ∀ x ∈ S.

Hence, problem (6.1) is equivalent to

Minimize over ϕ ∈ ΠM :

∫ ∞
0

∫
S

pqwϕ (0, x, t, dy)

∫
A

c0(y, a)

w(y)
ϕ(da|y, t)e−(α−ρ)tdt(6.5)

and problem (6.2) is equivalent to

Minimize over ϕ ∈ ΠM :

∫ ∞
0

∫
S

pqwϕ (0, x, t, dy)

∫
A

ci(y, a)

w(y)
ϕ(da|y, t)e−(α−ρ)tdt

subject to

∫ ∞
0

∫
S

pqwϕ (0, x, t, dy)

∫
A

cj(y, a)

w(y)
ϕ(da|y, t)e−(α−ρ)tdt ≤ dj

w(x)
,

j = 1, 2, . . . , N. (6.6)
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Thus, one can consider the w-transformed CTMDP {Sδ,A
⋃
{a∞},Aδ(·), qw},

where Aδ(δ) := {a∞}, and Aδ(x) := A(x) for each x ∈ S, while the transition

rate qw is defined by, c.f. (6.4),

qw(Γ|x, a) =


∫
Γ w(y)q(dy|x,a)

w(x)
, if x ∈ S, Γ ∈ B(S), x /∈ Γ;

ρ−
∫
S w(y)q(dy|x,a)

w(x)
, if x ∈ S, Γ = {δ};

0, if x = δ, Γ = Sδ.

for each x ∈ Sδ and a ∈ Aδ(x); and

qwx (a) := ρ+ qx(a), ∀ x ∈ S, a ∈ Aδ(x).

The requirement of α > ρ in Condition 6.1(a) is needed so that problems (6.5) and

(6.6) are legitimate (α − ρ)-discounted problems of the w-transformed CTMDP

with the cost rates cwi defined by

cwi (x, a) :=
ci(x, a)

w(x)

for each x ∈ S, a ∈ A(x); and

cwi (δ, a∞) := 0.

According to the reduction technique for discounted CTMDPs, see [35], the CT-

MDP problems (6.5) and (6.6) can be reduced to equivalent total undiscounted

problems for the DTMDP {Sδ
⋃
{x∞},A

⋃
{a∞},Aδ(·), T} with the cost func-

tions Ci, where the transition probability T is defined by

T (Γ|x, a) :=

∫
Γ
w(y)q(dy|x, a)

(α + qx(a))w(x)
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for each Γ ∈ B(S), x /∈ Γ, and a ∈ Aδ(x);

T ({δ}|x, a) :=
ρw(x)−

∫
S
w(y)q(dy|x, a)

(α + qx(a))w(x)

for each x ∈ S and a ∈ Aδ(x);

T ({x∞}|x, a) :=
α− ρ

α + qx(a)

for each x ∈ S and a ∈ Aδ(x); and T ({x∞}|x∞, a∞) := 1 =: T ({x∞}|δ, a∞), and

the cost functions Ci are defined by

Ci(x, a) :=
ci(x, a)

(α + qx(a))w(x)

for each x ∈ S and a ∈ Aδ(x); and

Ci(δ, a∞) := 0 =: Ci(x∞, a∞).

More precisely, given the initial state x ∈ S, for each Markov policy ϕ for the w-

transformed CTMDP, there is a strategy σ for the DTMDP {Sδ
⋃
{x∞},A

⋃
{a∞},Aδ(·), T}

such that

∫ ∞
0

∫
S

pqwϕ (0, x, t, dy)
ci(y, a)

w(y)
e−(α−ρ)tdt = Eσx

[
∞∑
n=0

Ci(Xn, An)

]

for each i = 0, 1, . . . , N , and vice versa. Moreover, in the previous equality, if ϕ is

a deterministic stationary (respectively, stationary) policy, then σ can be taken

as a deterministic stationary (respectively, stationary) strategy for the DTMDP,

and vice versa. Here {Xn} and {An} are the controlled and controlling processes

in the DTMDP. The term “strategy” is reserved for the DTMDP to avoid the

potential confusion with the corresponding notion for the CTMDP. We refer the

reader to e.g., [57, 86] for the standard description of a DTMDP.

Note that in general, the DTMDP {Sδ
⋃
{x∞},A

⋃
{a∞},Aδ(·), T} is not ab-
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sorbing in the sense of [2, 39], and the cost function Ci can take both positive

and negative values. We formulate such a CTMDP in the next example.

Example 6.2. Suppose the CTMDP is an uncontrolled pure birth process with

S = {1, 2, . . . }. The birth rate at the state x ∈ S is 2x. The discount factor is

α = 2. We put ρ = 0 and w(x) = 1 for each x ∈ S. Suppose the cost rate is only

zero at the state δ. For the induced DTMDP, {x∞} is the absorbing set; the point

δ can be excluded from the state space because it is never reached starting from

S
⋃
{x∞}. Then one can show that starting from 1, the expected time until the

DTMDP reaches x∞ is infinite. In accordance with e.g., [2, 39], this means that

the model is not absorbing, i.e., the expected time to absorption is not finite.

On the other hand, the functions cwi , i = 0, 1, . . . , N, are bounded from below

under Condition 6.1(b). Let some common lower bound be c ≤ 0. Let

c̃wi := cwi − c (6.7)

for each i = 0, 1, . . . , N. Then the functions c̃wi are all nonnegative. In order for

problems (6.5) and (6.6) to be equivalent to

Minimize over ϕ ∈ ΠM :

∫ ∞
0

∫
Sδ

pqwϕ (0, x, t, dy)

∫
Aδ

c̃w0 (y, a)ϕ(da|y, t)e−(α−ρ)tdt (6.8)

and

Minimize over ϕ ∈ ΠM :

∫ ∞
0

∫
Sδ

pqwϕ (0, x, t, dy)

∫
Aδ

c̃w0 (y)ϕ(da|y, t)e−(α−ρ)tdt

such that

∫ ∞
0

∫
Sδ

pqwϕ (0, x, t, dy)

∫
Aδ

c̃wj (y)ϕ(da|y, t)e−(α−ρ)tdt ≤ dj
w(x)

− c

α− ρ
,

j = 1, 2, . . . , N, (6.9)

respectively, we need the following relation to hold for each ϕ ∈ ΠM :

pqwϕ (0, x, t,Sδ) = 1, ∀ x ∈ S, t ∈ [0,∞). (6.10)

In general, problems (6.5) and (6.6) are not equivalent to problems (6.8) and
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(6.9). We demonstrate this with the following example, which was also considered

by Spieksma in [95].

Example 6.3. Let S = {0, 1, 2, . . . }, A(x) ≡ A = {0, 1}. We endow them with

the discrete topology. The transition rate is given by

q({y}|x, 0) =


5
12

2x, if x 6= 0, y = x+ 1;

7
12

2x, if x 6= 0, y = x− 1;

0, if x = 0.

and q({y}|x, 1) = 0 for each x, y ∈ S. Let w(x) =
(

7
5

)x
for each x ∈ S. Then one

can verify that

∑
y∈S

w(y)q({y}|x, a) = 0, ∀ x ∈ S, a ∈ A,

and so let ρ = 0, and α = 1. Let c0(x, a) ≡ 0. Put c = −1. Conditions 6.1 and

6.3 are satisfied.

Now

qw({y}|x, 0) =



7
12

2x, if x 6= δ, x 6= 0, y = x+ 1;

5
12

2x, if x 6= δ, x 6= 0, y = x− 1;

0, if x 6= δ, y = δ;

0, if x = δ or x = 0.

and qwx (0) = 2x for each x 6= δ, 0, and qwx (0) = 0 if x = 0, δ. Also qwx (1) = 0 for

each x ∈ Sδ.

Consider the following two deterministic stationary strategies: ϕ0(da|x, t) ≡
δ0(da) and ϕ1(da|x, t) ≡ δ1(da). Clearly, they are both optimal for problem (6.5).

On the other hand,

∫ ∞
0

∫
Sδ

pqwϕi
(0, x, t, dy)

∫
Aδ

c̃w0 (y, a)ϕi(da|y, t)e−(α−ρ)tdt =

∫ ∞
0

pqwϕi
(0, x, t,Sδ)e

−tdt

x ∈ S, i = 0, 1.
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Clearly, pqwϕ1
(0, x, t,Sδ) ≡ 1 =

∫∞
0
pqwϕ1

(0, x, t,Sδ)e
−tdt. It is shown in Section 5 of

[95] that (6.10) does not hold for ϕ = ϕ0 with some x ∈ S; this can also be checked

using Theorem 2 of [14]. It follows that for some x ∈ S,
∫∞

0
pqwϕ0

(0, x, t,Sδ)e
−tdt <

1; see also Lemma 2.1 of [107]. Therefore, the policy ϕ1 is not optimal for problem

(6.8), although it is optimal for problem (6.5). Hence, in general, (6.5) and (6.6)

are not equivalent to problems (6.8) and (6.9).

Remark 6.2. Example 6.3 illustrates the role of the requirement (6.10). Con-

dition 6.2 is precisely imposed for this purpose, as seen in the next statement.

(An alternative justification of the role of Condition 6.2 is that it validates the

Dynkin’s formula for the original CTMDP to a certain class of functions, see [10]

for the homogeneous denumerable case. But the explanation here is more trans-

parent in our opinion.) In the literature, e.g., [48, 89, 91], stronger conditions,

e.g., Condition 6.5, than Condition 6.2, were imposed to guarantee (6.10) to hold.

The investigations there were not based on reduction method to DTMDP.

Lemma 6.4. Let some Markov policy ϕ be fixed. Suppose Condition 6.1(a) and

Condition 6.2 are satisfied. Then (6.10) holds.

Proof. According to Theorem A.1, for the statement it suffices to verify that

Condition A.1 is satisfied.

Since the Markov policy ϕ is fixed throughout this proof, we write qϕ as q for

brevity. Note that for ∀x ∈ S, s ≥ 0

∫
S

w′(y)

w(y)
qw(dy|x, s) =

∫
S

w′(y)

w(y)

w(y)

w(x)
q̃(dy|x, s)− (ρ+ qx(s))

w′(x)

w(x)

=

∫
S

w′(y)

w(x)
q̃(dy|x, s)− (ρ+ qx(s))

w′(x)

w(x)
≤ (ρ′ − ρ)

w′(x)

w(x)
(6.11)

Consider the [0,∞)-valued measurable function w̃ on [0,∞) × Sδ defined for

each v ∈ [0,∞) by w̃(v, x) = w′(x)
w(x)

if x ∈ S and w̃(v, δ) = 0. Then Condition

A.1, with S and q being replaced by Sδ and qw, is satisfied by the monotone

nondecreasing sequence of measurable subsets {Ṽn}∞n=1 of R0
+ × Sδ defined by

140



Ṽn = [0,∞) × Vn
⋃
{δ} for each n = 1, 2, . . . , and the function w̃ on [0,∞) × Sδ

defined in the above. In greater detail, part (d) of the corresponding version of

Condition A.1 is satisfied because, by (6.11),

∫ ∞
0

∫
Sδ

w̃(t+ v, y)e−ρ
′t−
∫
(0,t] q

w
x (s+v)dsq̃w(dy|x, t+ v)dt

≤
∫ ∞

0

e−ρ
′t−
∫ t
0 q

w
x (s+v)ds (qx(s) + ρ′) w̃(v, x)dt = w̃(v, x), ∀ x ∈ S,

and the last inequality holds trivially when x = δ.

Thus, by Theorem A.1, we see that relation (6.10) is satisfied, and the state-

ment follows. �

By the way, under Condition 6.1(a), in certain models, Condition 6.2 is also

necessary for (6.10) to hold under certain policies; see [107]. In the homogeneous

denumerable case, this was first observed in [96]. For more concrete examples

such as single birth processes, this necessity part was known earlier, see [15].

As a result of the above lemma and the discussions above it, we see that

under Condition 6.1 and Condition 6.2, one can reduce the α-discounted problems

(6.1) and (6.2) for the original CTMDP {S,A,A(·), q} to the (α− ρ)-discounted

problems (6.8) and (6.9) for the CTMDP {Sδ,Aδ,Aδ(·), qw} with nonnegative

cost rates. Furthermore, according to the reduction technique [35], which was

also sketched in the above, problems (6.8) and (6.9) can be reduced to

Minimize over σ Eσx

[
∞∑
n=0

C̃0(Xn,An)

]
, x ∈ S, (6.12)
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and

Minimize over σ: Eσx

[
∞∑
n=0

C̃0(Xn,An)

]

such that Eσx

[
∞∑
n=0

C̃j(Xn,An)

]
≤ dj
w(x)

− c

α− ρ
,

j = 1, 2, . . . , N, (6.13)

respectively, for the DTMDP {Sδ
⋃
{x∞},A

⋃
{a∞},Aδ(·), T} defined earlier.

Here the cost functions C̃i for the DTMDP are defined by

C̃i(x, a) :=
c̃wi (x, a)

(α + qx(a))
≥ 0

for each x ∈ Sδ and a ∈ Aδ(x); and

C̃i(x∞, a∞) := 0,

with the functions c̃wi being defined by (6.7). Note that the cost functions C̃i

could be arbitrarily unbounded from above.

Finally, if Condition 6.1, Condition 6.2, and Condition 6.3 are all satisfied,

then it is easy to check that the DTMDP {Sδ
⋃
{x∞},A

⋃
{a∞},Aδ(·), T} with

the nonnegative cost functions C̃i is a semicontinuous model, see [6, 30], and it is

a standard result that there exists an optimal deterministic stationary strategy

for problem (6.12). For the constrained problem (6.13), under the extra Condi-

tion 6.4, one can refer to Theorem 4.1 of [26], see also Theorem A.2 of [20], for

the existence of a stationary optimal strategy for (6.13). Since these two DTMD-

P problems are equivalent to the original CTMDP problems, according to the

reduction technique for discounted CTMDP problems as mentioned earlier, we

immediately conclude the existence of an optimal deterministic stationary policy

for the unconstrained CTMDP problem (6.1) and an optimal stationary policy

for the constrained CTMDP problem (6.2). The proof of Theorem 6.1 is thus

142



completed. �

We finish this section with the following observation. Suppose Conditions 6.1

and 6.3 are satisfied. If one solves problem (6.8) with a deterministic stationary

policy ϕ, which also satisfies (6.10), then ϕ is also optimal for problem (6.5), in

spite that Condition 6.2 has not been assumed to hold uniformly in all actions.

The justifications are this claim are as follows. In general, problems (6.5) and

(6.6) are not equivalent to (6.8) and (6.9), respectively; recall Example 6.3. Ac-

cording to [35], (6.8) is equivalent to the DTMDP problem {Sδ
⋃
{x∞},A

⋃
{a∞},Aδ(·), T}

with the cost function C̃0. Suppose ϕ∗ is an optimal deterministic strategy for

this DTMDP problem. Under Conditions 6.1 and Condition 6.3, if W ∗
α denotes

the value function of this DTMDP problem, then such an optimal deterministic

stationary strategy exists and can be obtained by taking the measurable selector

providing the minimum in the following:

W ∗
α(x) = inf

a∈Aδ(x)

{
C̃0(x, a) +

∫
Sδ

T (dy|x, a)V ∗(y)

}
, ∀ x ∈ Sδ. (6.14)

We claim that ϕ∗ is also an optimal deterministic policy for the CTMDP

problem (6.5), provided that (6.10) holds for this particular strategy ϕ∗, i.e.,

pqw
ϕ∗

(0, x, t,Sδ) = 1, ∀ x ∈ S, t ∈ [0,∞). (6.15)

Indeed, since ϕ∗ is optimal for the DTMDP {Sδ
⋃
{x∞},A

⋃
{a∞},Aδ(·), T} with

the cost function C̃0, which is equivalent to problem (6.8),

inf
ϕ∈ΠM

{∫ ∞
0

∫
Sδ

pqwϕ (0, x, t, dy)

∫
Aδ

c̃w0 (y, a)ϕ(da|y, t)e−(α−ρ)tdt

}
=

∫ ∞
0

∫
Sδ

pqw
ϕ∗

(0, x, t, dy)c̃w0 (y, ϕ∗(y))e−(α−ρ)tdt

=

∫ ∞
0

∫
S

pqw
ϕ∗

(0, x, t, dy)
c0(y, ϕ∗(y))

w(y)
e−(α−ρ)tdt− c

α− ρ
, ∀ x ∈ S.
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Consider an arbitrarily fixed ϕ ∈ ΠM . Then for each x ∈ S,

∫ ∞
0

∫
S

pqw
ϕ∗

(0, x, t, dy)
c0(y, ϕ∗(y))

w(y)
e−(α−ρ)tdt− c

α− ρ

≤
∫ ∞

0

∫
Sδ

pqwϕ (0, x, t, dy)

∫
Aδ

c̃w0 (y, a)ϕ(da|y, t)e−(α−ρ)tdt

=

∫ ∞
0

∫
S

pqwϕ (0, x, t, dy)

∫
A

c0(y, a)

w(y)
ϕ(da|y, t)e−(α−ρ)tdt− c

∫ ∞
0

pqwϕ (0, x, t,Sδ)e
−(α−ρ)tdt.

Since c ≤ 0, and pqwϕ (0, x, t,Sδ) ≤ 1, it follows that

∫ ∞
0

∫
S

pqw
ϕ∗

(0, x, t, dy)
c0(y, ϕ∗(y))

w(y)
e−(α−ρ)tdt

≤
∫ ∞

0

∫
S

pqwϕ (0, x, t, dy)

∫
A

c0(y, a)

w(y)
ϕ(da|y, t)e−(α−ρ)tdt, ∀ x ∈ S.

Condition (6.15) can be checked using Theorem A.1 in the appendix. The similar

reasoning also holds for the constrained problem. To avoid repetition, we omit

the details.
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7 Zero-sum games for finite horizon continuous-

time Markov processes

This chapter considers a two-person zero-sum continuous-time Markov pure jump

game in Borel state and action spaces over a fixed finite horizon. The main

assumption on the model is the existence of a drift function, which bounds the

reward rate. Under some regularity conditions, we show that the game has a

value, and both of the players have their optimal policies. So there are two

action spaces A for the maximizer and B for the minimizer. Also π denotes the

policy for maximizer and ψ denotes the policy for minimizer. Other definitions

are the same as previous replacing one action with two. Π and Ψ denote the

classes of policies for the maximizer and minimizer respectively.

7.1 Model description

Now let T ∈ (0,∞) be a fixed time duration, and define

W (x, π, ψ) := Eπ,ψ
x

[∫ T

0

∫
A×B

r(t, ξt, a, b)π(da|ω, t)ψ(db|ω, t)dt
]

+ Eπ,ψ
x [g(T, ξT )]

for each (π, ψ) ∈ Π× Ψ, and x ∈ S. The conditions to be imposed below assure

that the above expectations are finite, see Lemma 7.1.

The lower value of the zero-sum continuous-time Markov pure jump game

over the fixed horizon [0, T ] is defined by

L(x) := sup
π∈Π

inf
ψ∈Ψ

W (x, π, ψ), ∀ x ∈ S,

and the upper value is defined by

U(x) := inf
ψ∈Ψ

sup
π∈Π

W (x, π, ψ), ∀ x ∈ S.
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Apparently, U(x) ≥ L(x) for each x ∈ S. If U(x) = L(x) for each x ∈ S, the

function W defined by their common values is called the value of the game.

Definition 7.1. A policy π∗ ∈ Π is called optimal for the maximizer if it satisfies

that infψ∈ΨW (x, π∗, ψ) = U(x) for each x ∈ S. A policy ψ∗ ∈ Ψ is called optimal

for the minimizer if supπ∈Π W (x, π, ψ∗) = L(x) for each x ∈ S.

It follows that the pair of optimal policies (π∗, ψ∗) in the above definition

satisfies

U(x) = inf
ψ∈Ψ

W (x, π∗, ψ) ≤ W (x, π∗, ψ∗) ≤ sup
π∈Π

W (x, π, ψ∗) = L(x), ∀ x ∈ S.

Then U(x) = L(x) for each x ∈ S, i.e., the value of the game exists, if both

players have their own optimal policies.

The main objective of this chapter is to show, under some conditions, that

the function V exists, and both players have an optimal policy.

7.2 Conditions and relevant facts

In this section, we present the conditions imposed on the continuous-time Markov

pure jump game model, and formulate their relevant consequences.

Condition 7.1. There exist [1,∞)-valued measurable functions w0 and w1 on S

and real constants c0 > 0, c1 > 0, M0 > 0 and M1 > 0 such that the following

assertions hold.

(a) For each (t, x, a, b) ∈ K,
∫
S
w0(y)q(dy|t, x, a, b) ≤ c0w0(x).

(b) For each x ∈ S, q̄x ≤M0w0(x).

(c) For each (t, x, a, b) ∈ K, |r(t, x, a, b)| ≤M0w0(x), |g(t, x)| ≤M0w0(x).

(d) For each (t, x, a, b) ∈ K,
∫
S
w1(y)q(dy|t, x, a, b) ≤ c1w1(x).

(e) For each x ∈ S, w0(x)q̄x ≤M1w1(x).
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Lemma 7.1. Suppose Condition 7.1 is satisfied. Let some pair of policies (π, ψ) ∈

Π×Ψ be arbitrarily fixed. Then the following assertions hold.

(a) P π,ψ
x (t∞ =∞) = 1 for each x ∈ S.

(b) Eπ,ψ
x [w0(ξt)] ≤ ec0tw0(x) for each t ≥ 0 and x ∈ S.

(c) |W (x, π, ψ)| ≤ (T + 1)M0e
c0Tw0(x) for each x ∈ S.

(d) For each u ∈ C1,0
w0,w1

([0, T ]× S),

Eπ,ψx

[∫ T

0

(
u′(t, ξt) +

∫
S

∫
A

∫
B

u(t, x)q(dx|t, ξt, a, b)π(da|ω, t)ψ(db|ω, t)
)
dt

]
= Eπ,ψx [u(T, ξT )]− u(0, x).

for each x ∈ S.

Proof. See Lemmas 3.1, 3.2 and 3.3 in [53]. �

Throughout the rest of this paper, let m be an [1,∞)-valued measurable

function on S such that q̄x ≤ m(x) for each x ∈ S. Such a function exists by

the Novikov seperation theorem, see [72]. We introduce the following stochastic

kernel on S from (t, x, a, b) ∈ K defined by

p̃(dy|t, x, a, b) := δx(dy) +
q(dy|t, x, a, b)

m(x)
, ∀ (t, x, a, b) ∈ K.

Condition 7.2. For each t ∈ [0, T ] and x ∈ S,

(a) r(t, x, a, b) is continuous in (a, b) ∈ A(t, x)×B(t, x); and

(b) for each measurable function u on S such that supx∈S
|u(x)|
w0(x) <∞,

∫
S
u(y)p̃(dy|t, x, a, b)

is continuous in (a, b) ∈ A(t, x)×B(t, x).

Suppose that Condition 7.1 is satisfied. For each t ∈ [0,∞), x ∈ S, λ ∈
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P(A(t, x)) and µ ∈ P(B(t, x)), we introduce the notations

q(dy|t, x, λ, µ) :=

∫
A(t,x)

∫
B(t,x)

q(dy|t, x, a, b)λ(da)µ(db),

r(t, x, λ, µ) :=

∫
A(t,x)

∫
B(t,x)

r(t, x, a, b)λ(da)µ(db).

(In particular, the integral in the second line of the above is finite under Condition

7.1.) Then q(dy|t, x, λ, µ) and r(t, x, λ, µ) are measurable on K, where

K := {(t, x, λ, µ) ∈ [0,∞)× S× P(A)× P(B) : λ ∈ P(A(t, x)), µ ∈ P(B(t, x))} .

In greater details, since (t, x) 7→ A(t, x) and (t, x) 7→ B(t, x) are measurable

and compact-valued multifunctions, as assumed earlier, by Theorem 3 of [60]

and Proposition 7.22 of [9], so are the multifunctions (t, x) 7→ P(A(t, x)) and

(t, x) 7→ P(B(t, x)). It follows from Theorem 3 of [59] that K is measurable in the

Borel space [0,∞)× S × P(A)× P(B). By Corollary 7.29.1 and Lemma 7.21 of

[9] that q(dy|t, x, λ, µ) and r(t, x, λ, µ) are measurable on K.

The next lemma, used repeatedly in the next section, is known. But we

include its rather short proof for completeness. Recall that A(t, x) and B(t, x) are

compact subsets of A and B as assumed in the beginning of the model description.

Lemma 7.2. Suppose that Conditions 7.1 and 7.2 are satisfied.

(a) Let t ∈ [0, T ] and x ∈ S be arbitrarily fixed. For each u ∈ Bw0([0, T ] ×

S), the functions r(t, x, λ, µ) and
∫
S
u(t, y)q(dy|t, x, λ, µ) are continuous in

(λ, µ) ∈ P(A(t, x))× P(B(t, x)).

(b) If a function h(t, x, λ, µ) is real-valued and measurable on K, and continuous

in (λ, µ) ∈ P(A(t, x)) × P(B(t, x)) (for each fixed (t, x) ∈ [0, T ] × S), then

the function

(t, x, λ)→ inf
µ∈P(B(t,x))

h(t, x, λ, µ)
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is measurable on {(t, x, λ) ∈ [0, T ] × S × P(A) : λ ∈ P(A(t, x))} and con-

tinuous in λ ∈ P(A(t, x)) (for each fixed (t, x) ∈ [0, T ]× S).

Proof. (a) For the fixed t ∈ [0, T ] and x ∈ S, the functions r(t, x, a, b) and∫
S
u(t, y)q(dy|t, x, a, b) are bounded and continuous in (a, b) ∈ A(t, x) × B(t, x).

The statement follows from Corollary 7.29.1 and Lemma 7.12 of [9], and the

Tietze extension theorem.

(b) The first assertion follows from Theorem 2 of [59]. The second assertion

is a consequence of the Berge theorem, see Theorem 17.31 in [1]. �

7.3 Main statement

In this section, we present and prove the main result of this paper; see Theorem

7.1 below.

Under Conditions 7.1 and 7.2, it follows from Lemmas 7.1 and 7.2 and the fun-

damental theorem of calculus that the following operator G maps u ∈ Bw0([0, T ]×
S) to C1,0

w0,w1
([0, T ]× S):

G[u](t, x)

:= e−m(x)(T−t)g(T, x) +

∫ T−t

0

e−m(x)s

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
r(t+ s, x, λ, µ) +m(x)

∫
S

u(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
ds

for each t ∈ [0, T ] and x ∈ S.

Proposition 7.1. Suppose that Conditions 7.1 and 7.2 are satisfied. There is a

fixed point of the operator G in C1,0
w0,w1

([0, T ]× S).

Proof. Let us define

u0(t, x) :=
M0

c0

{
c0e

c0(T−t) + ec0(T−t) − 1
}
w0(x) ≥ 0

for each t ∈ [0, T ] and x ∈ S. Then u0 belongs to C1,0
w0,w1

([0, T ] × S). For each

n ≥ 0, we legitimately define un+1 := G[un]. The rest of the proof goes in two
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steps.

Step 1. Show that {un} is a monotone nonincreasing sequence, and for each

n = 0, 1, . . . ,

|un(t, x)| ≤ u0(t, x) =
M0

c0

{
c0e

c0(T−t) + ec0(T−t) − 1
}
w0(x).

for each t ∈ [0, T ] and x ∈ S.

For each t ∈ [0, T ] and x ∈ S,

u1(t, x) = G[u0](t, x)

≤ e−m(x)(T−t)M0w0(x) +

∫ T−t

0

e−m(x)s

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
M0w0(x) +m(x)

∫
S

u0(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
ds

= e−m(x)(T−t)M0w0(x) +M0w0(x)

∫ T−t

0

e−m(x)sds

+
M0

c0

∫ T−t

0

e−m(x)sm(x)
{
c0e

c0(T−t−s) + ec0(T−t−s) − 1
}
w0(x)ds

+
M0

c0

∫ T−t

0

e−m(x)s sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
(c0e

c0(T−t−s) + ec0(T−t−s) − 1)∫
S

w0(y)q(dy|t+ s, x, λ, µ)

}
ds

≤ e−m(x)(T−t)M0w0(x) +M0w0(x)

∫ T−t

0

e−m(x)sds

+
M0

c0

∫ T−t

0

e−m(x)sm(x)
{
c0e

c0(T−t−s) + ec0(T−t−s) − 1
}
w0(x)ds

+
M0

c0

∫ T−t

0

e−m(x)s(c0e
c0(T−t−s) + ec0(T−t−s) − 1)c0w0(x)ds,

where the first and the last inequalities are by Condition 7.1. For the third
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summand on the right hand side of the last inequality, integration by parts gives

M0

c0

∫ T−t

0

e−m(x)sm(x)
{
c0e

c0(T−t−s) + ec0(T−t−s) − 1
}
w0(x)ds

= −w0(x)M0e
−m(x)(T−t) +

M0

c0

{
c0e

c0(T−t) + ec0(T−t) − 1
}
w0(x)

−M0

c0

w0(x)

∫ T−t

0

e−m(x)s
{
c2

0e
c0(T−t−s) + c0e

c0(T−t−s)} ds.
This, together with the previous calculations, shows that

u1(t, x) ≤ M0

c0

{
c0e

c0(T−t) + ec0(T−t) − 1
}
w0(x) = u0(t, x), ∀ t ∈ [0, T ], x ∈ S.

It follows from this and the monotonicity of the operator G that {un} is a mono-

tone nonincreasing sequence, and for each n ≥ 0,

un(t, x) ≤ u0(t, x) =
M0

c0

{
c0e

c0(T−t) + ec0(T−t) − 1
}
w0(x)

for each t ∈ [0, T ] and x ∈ S.

On the other hand, a similar calculation to the above gives

u1(t, x)

≥ −e−m(x)(T−t)M0w0(x)−
∫ T−t

0

e−m(x)s

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
−M0w0(x)−m(x)

∫
S

u0(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
ds

≥ −u0(t, x)

for each t ∈ [0, T ] and x ∈ S. Hence, for each n ≥ 0,

|un(t, x)| ≤ u0(t, x) =
M0

c0

{
c0e

c0(T−t) + ec0(T−t) − 1
}
w0(x).

for each t ∈ [0, T ] and x ∈ S.

Step 2. Consider the function u∗ defined by u∗(t, x) := limn→∞ un(t, x) for

each t ∈ [0, T ] and x ∈ S. The limit exists due to the monotone convergence. We
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show that u∗ is a fixed point of the operator G in C1,0
w0,w1

([0, T ]× S).

It follows from the definition of u∗ and what was established in Step 1 that

|u∗(t, x)| ≤ M0

c0

{
c0e

c0(T−t) + ec0(T−t) − 1
}
w0(x)

for each t ∈ [0, T ] and x ∈ S, that is, u∗ ∈ Bw0([0, T ]× S).

We verify that u∗ is a fixed point of G as follows. It is evident that for each

n ≥ 0, G[u∗](t, x) ≤ G[un](t, x) = un+1(t, x) for each t ∈ [0, T ] and x ∈ S. Hence,

G[u∗](t, x) ≤ u∗(t, x) (7.1)

for each t ∈ [0, T ] and x ∈ S.

The rest of this proof mainly verifies the opposite direction of the above in-

equality. Let x ∈ S be fixed, and consider the space of P(A)-valued measurable

mappings say λ on [0, T ] such that for each t ∈ [0, T ], λt ∈ P(A(t, x)). We denote

this space by RA and RB for the maximizer and minimizer respectively.

Note that by Theorem 2 of [59], applicable due to Lemma 7.2, for each x ∈ S

and t ∈ [0, T ],

∫ T−t

0

e−m(x)s

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
r(t+ s, x, λ, µ) +m(x)

∫
S

u(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
ds

=

∫ T−t

0

e−m(x)s

sup
λt+s∈RA

inf
µt+s∈RB

{
r(t+ s, x, λt+s, µt+s) +m(x)

∫
S

u(t+ s, y)p̃(dy|t+ s, x, λt+s, µt+s)

}
ds.

Fix (t, x) ∈ [0, T ]× S and some µt+s ∈ RB arbitrarily. By Theorem 2 of [59]

and Lemma 7.2, for each n ≥ 0, there exists λnt+s ∈ RA (λn depends also on
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(t, x))such that

un+1(t, x) = G[un](t, x)

≤ e−m(x)(T−t)g(T, x) +

∫ T−t

0

e−m(x)s{
r(t+ s, x, λnt+s, µt+s) +m(x)

∫
S

un(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)

}
ds (7.2)

Recall that A(t, x) ⊆ A(x) for each x ∈ S and t ∈ [0,∞). SinceRA is compact

metrizable, without loss of generality we assume that the sequence {λn} in RA

converges to some λ∗ ∈ RA, for otherwise one can take a convergent subsequence

and relabel it. Note that∣∣∣∣∣
∫ T−t

0

e−m(x)sm(x)

∫
S

un(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

−
∫ T−t

0

e−m(x)sm(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

∣∣∣∣∣
≤

∫ T−t

0

e−m(x)sm(x)

∫
A(t+s,x)

∫
S

|un(t+ s, y)− u∗(t+ s, y)|p̃(dy|t+ s, x, a, µt+s)λ
n
t+s(da)ds

≤
∫ T−t

0

e−m(x)sm(x) sup
a∈A(t+s,x)

{∫
S

|un(t+ s, y)− u∗(t+ s, y)|p̃(dy|t+ s, x, a, µt+s)

}
ds.

(7.3)

On the other hand,

lim
n→∞

sup
a∈A(t+s,x)

{∫
S

|un(t+ s, y)− u∗(t+ s, y)|p̃(dy|t+ s, x, a, µt+s)

}
= sup

a∈A(t+s,x)

{
lim
n→∞

∫
S

|un(t+ s, y)− u∗(t+ s, y)|p̃(dy|t+ s, x, a, µt+s)

}
= 0,

where the first equality is by Theorem A.1.5 of [6], applicable under Condition

7.2, and the last equality is by the dominated convergence theorem, applicable

under Condition 7.1. It follows from this, (7.3) and the dominated convergence
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theorem that

lim
n→∞

∣∣∣∣∫ T−t

0

e−m(x)sm(x)

∫
S

un(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

−
∫ T−t

0

e−m(x)sm(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

∣∣∣∣ = 0.

Now as n→∞,∣∣∣∣∫ T−t

0

e−m(x)sm(x)

∫
S

un(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

−
∫ T−t

0

e−m(x)sm(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ∗t+s, µt+s)ds

∣∣∣∣
≤

∣∣∣∣∫ T−t

0

e−m(x)sm(x)

∫
S

un(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

−
∫ T−t

0

e−m(x)sm(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

∣∣∣∣
+

∣∣∣∣∫ T−t

0

e−m(x)sm(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λnt+s, µt+s)ds

−
∫ T−t

0

e−m(x)sm(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ∗t+s, µt+s)ds

∣∣∣∣
→ 0,

where the convergence to zero is also by the definition of the Young topology.

It follows from this and the definition of the Young topology again that, after

passing to the limit as n→∞ on the both sides of (7.2),

u∗(t, x)

≤ e−m(x)(T−t)g(T, x) +

∫ T−t

0

e−m(x)s
{
r(t+ s, x, λ∗t+s, µt+s)

+m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ∗t+s, µt+s)

}
ds

≤ e−m(x)(T−t)g(T, x) +

∫ T−t

0

e−m(x)s sup
λ∈P(A(t+s,x))

{r(t+ s, x, λ, µt+s)

+m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ, µt+s)

}
ds. (7.4)
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By Theorem 2 of [59], applicable due to Lemma 7.2, there exists µ∗ ∈ RB

such that

inf
µ∈P(B(t+s,x))

sup
λ∈P(A(t+s,x))

{
r(t+ s, x, λ, µ) +m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
= sup

λ∈P(A(t+s,x))

{
r(t+ s, x, λ, µ∗t+s) +m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ, µ∗t+s)

}

for each s ∈ [0, T − t]. By the Ky Fan minimax theorem, see Theorem 2 of [31],

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
r(t+ s, x, λ, µ) +m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
= sup

λ∈P(A(t+s,x))

{
r(t+ s, x, λ, µ∗t+s) +m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ, µ∗t+s)

}

for each s ∈ [0, T − t]. Since µ ∈ RB in (7.4) was arbitrarily fixed, we see from

(7.4) and the previous equality that

u∗(t, x)

≤ e−m(x)(T−t)g(T, x) +

∫ T−t

0

e−m(x)s sup
λ∈P(A(t+s,x))

{
r(t+ s, x, λ, µ∗t+s)

+m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ, µ∗t+s)

}
ds

= e−m(x)(T−t)g(T, x) +

∫ T−t

0

e−m(x)s

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
r(t+ s, x, λ, µ) +m(x)

∫
S

u∗(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
ds

= G[u∗](t, x).

Since (t, x) ∈ [0, T ]× S was arbitrarily fixed, this and (7.1) imply

u∗(t, x) = G[u∗](x, t), ∀ t ∈ [0, T ], x ∈ S.

Finally, since u∗ ∈ Bw0([0, T ]×S), and G maps each element of Bw0([0, T ]×S)

to C1,0
w0,w1

([0, T ]× S) as mentioned earlier, it follows that u∗ is a fixed point of G

in C1,0
w0,w1

([0, T ]× S). �

Theorem 7.1. Suppose that Conditions 7.1 and 7.2 are satisfied. Then the

zero-sum continuous-time Markov pure jump game has a value V , and both the
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maximizer and minimizer have an optimal Markov policy. In particular, there is

a pair of Markov policies (πM∗ , ψ
M
∗ ) ∈ Π×Ψ such that W (x, πM∗ , ψ

M
∗ ) = V (x) for

each x ∈ S.

Proof. By Proposition 7.1, we can consider a solution u ∈ C1,0
w0,w1

([0, T ] × S) to

the following equation

u(t, x)

= e−m(x)(T−t)g(T, x) +

∫ T−t

0

e−m(x)s

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
r(t+ s, x, λ, µ) +m(x)

∫
S

u(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
ds,

∀ t ∈ [0, T ], x ∈ S.

Then

e−m(x)tu(t, x)

= e−m(x)T g(T, x) +

∫ T−t

0

e−m(x)(t+s)

sup
λ∈P(A(t+s,x))

inf
µ∈P(B(t+s,x))

{
r(t+ s, x, λ, µ) +m(x)

∫
S

u(t+ s, y)p̃(dy|t+ s, x, λ, µ)

}
ds

= e−m(x)T g(T, x) +

∫ T

t

e−m(x)(s)

sup
λ∈P(A(s,x))

inf
µ∈P(B(s,x))

{
r(s, x, λ, µ) +m(x)

∫
S

u(s, y)p̃(dy|s, x, λ, µ)

}
ds

∀ t ∈ [0, T ], x ∈ S.

It follows that for each x ∈ S,

u(T, x) = g(T, x) (7.5)

and

u′(t, x) + sup
λ∈P(A(t,x))

inf
µ∈P(B(t,x))

{
r(t, x, λ, µ) +

∫
S

u(s, y)q(dy|t, x, λ, µ)

}
= 0

almost everywhere on [0, T ].

By Theorem 2 of [59], applicable due to Lemma 7.2, there exists a Markov
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policy say πM∗ for the maximizer such that for each x ∈ S,

u′(t, x) + inf
µ∈P(B(t,x))

{∫
A

r(t, x, a, µ)πM∗ (da|x, t) +

∫
S

u(t, y)

∫
A

q(dy|t, x, a, µ)πM∗ (da|x, t)
}

= 0

almost everywhere on [0, T ], that is, for each µ ∈ P(B(t, x)),

u′(t, x) +

∫
A

r(t, x, a, µ)πM∗ (da|x, t) +

∫
S

u(t, y)

∫
A

q(dy|t, x, a, µ)πM∗ (da|x, t) ≥ 0

almost everywhere on [0, T ].

Now, by Lemma 7.1(d), for each policy ψ ∈ Ψ for the minimizer and x ∈ S,

E
πM∗ ,ψ
x [g(T, ξT )]− u(0, x) = E

πM∗ ,ψ
x [u(T, ξT )]− u(0, x)

= E
πM∗ ,ψ
x

[∫ T

0

(
u′(t, ξt) +

∫
S

∫
A

∫
B

u(t, x)q(dx|t, ξt, a, b)πM∗ (da|ξt, t)ψ(db|ω, t)
)
dt

]

≥ −Eπ
M
∗ ,ψ
x

[∫ T

0

∫
A

∫
B

r(t, ξt, a, b)π
M
∗ (da|ξt, t)ψ(db|ω, t)dt

]
,

where the first equality is by (7.5). That is,

u(0, x) ≤ W (x, πM∗ , ψ), ∀ x ∈ S.

Since ψ ∈ Ψ was arbitrarily fixed, we see

u(0, x) ≤ inf
ψ∈Ψ

W (x, πM∗ , ψ) ≤ sup
π∈Π

inf
ψ∈Ψ

W (x, π, ψ) = L(x), ∀ x ∈ S. (7.6)

Similarly, by By Theorem 2 of [59] and the Ky Fan minimax theorem (see

Theorem 2 of [31]), there exists a Markov policy say ψM∗ for the minimizer such

that for each x ∈ S,

u′(t, x) + sup
λ∈P(A(t,x))

{∫
B

r(t, x, λ, b)ψM∗ (db|x, t) +

∫
S

u(t, y)

∫
B

q(dy|t, x, λ, b)ψM∗ (db|x, t)
}

= 0

almost everywhere on [0, T ]. Then by using Lemma 7.1(d), one can show as in
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the above that

u(0, x) ≥ sup
π∈Π

W (x, π, ψM∗ ) ≥ inf
ψ∈Ψ

sup
π∈Π

W (x, π, ψ) = U(x), ∀ x ∈ S.

Combining this and (7.6) yields

u(0, x) = L(x) = U(x) = sup
π∈Π

W (x, π, ψM∗ ) = inf
ψ∈Ψ

W (x, πM∗ , ψ) = W (x, πM∗ , ψ
M
∗ ).

The proof is completed. �
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[7] Bäuerle, N. and Rieder, U. (2014). More risk-sensitive Markov decision pro-

cesses. Math. Oper. Res. 39, 105–120.
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A Q-function

The notations used in the Appendix are independent of the previous chapters.

Now we give some facts for ease of reading. A (Borel-measurable) signed kernel

q(dy|x, s) on B(S) from S× [0,∞) is called a (conservative stable) Q-function on

the Borel space S if the following conditions are satisfied.

(a) For each s ≥ 0, x ∈ S and Γ ∈ B(S) with x /∈ Γ, ∞ > q(Γ|x, s) ≥ 0.

(b) For each (x, s) ∈ S× [0,∞), q(S|x, s) = 0.

(c) For each x ∈ S, sups∈[0,∞) {q(S \ {x}|x, s)} <∞.

For each Q-function q on S, we put q̃(Γ|x, s) := q(Γ \ {x}|x, s), and qx(s) :=

q̃(S|x, s).

Given a Q-function q on S from S × [0,∞), for each Γ ∈ B(S), x ∈ S,

s, t ∈ [0,∞) and s ≤ t, one can define

p(0)
q (s, x, t,Γ) := δx(Γ)e−

∫ t
s qx(v)dv,

p(n+1)
q (s, x, t,Γ) :=

∫ t

s

e−
∫ u
s qx(v)dv

(∫
S

p(n)
q (u, z, t,Γ)q̃(dz|x, u)

)
du, ∀ n = 0, 1, . . . .

It is clear that one can legitimately define the sub-stochastic kernel pq(s, x, t, dy)

on S by

pq(s, x, t,Γ) :=
∞∑
n=0

p(n)
q (s, x, t,Γ) (A.1)

for each x ∈ S, s, t ∈ [0,∞), s ≤ t, and Γ ∈ B(S). This is the Feller’s construction

for a transition function, i.e., pq satisfies

pq(s, x, s, dy) = δx(dy)
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and the Kolmogorov-Chapman equation

∫
S

pq(s, x, t, dy)pq(t, y, u,Γ) = pq(s, x, u,Γ), ∀ Γ ∈ B(S)

is valid for each 0 ≤ s ≤ t ≤ u <∞.

Condition A.1. There exist a monotone nondecreasing sequence {Ṽn}∞n=1 ⊆

[0,∞)×S and a [0,∞)-valued measurable function w̃ on [0,∞)×S such that the

following hold.

(a) As n ↑ ∞, Ṽn ↑ [0,∞)× S.

(b) For each n = 1, 2, . . . , supx∈V̂n, t∈[0,∞) qx(t) < ∞, where V̂n denotes the

projection of Ṽn on S.

(c) As n ↑ ∞, inf(t,x)∈([0,∞)×S)\Ṽn w̃(t, x) ↑ ∞.

(d) For some constant ρ′ ∈ (0,∞), for each x ∈ S and v ∈ [0,∞),

∫ ∞
0

∫
S

w̃(t+ v, y)e−ρ
′t−
∫ t
0 qx(s+v)dsq̃(dy|x, t+ v)dt ≤ w̃(v, x).

The next statement follows from Theorem 3.2 of [107].

Theorem A.1. If Condition A.1 is satisfied, then pq(s, x, t, S) = 1 for each

x ∈ S, s, t ∈ [0,∞) such that s ≤ t.
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B Risk-sensitive DTMDP

For ease of reference, we present the relevant notations and facts about the risk-

sensitive problem for a DTMDP. The proofs of the presented statements can be

found in [67] or [108]. Standard description of a DTMDP can be found in e.g.,

[57, 86].

Consider a discrete-time Markov decision process with the following primi-

tives:

• S is a nonempty Borel state space.

• A is a nonempty Borel action space.

• p(dy|x, a) is a stochastic kernel on B(S) given (x, a) ∈ S×A.

• l a [0,∞]-valued measurable cost function on S×A× S.

Let us denote for each n = 1, 2, . . . ,∞, Hn := S× (A× S)n and H0 := S. A

strategy σ = (σn)∞n=0 in the DTMDP is given by a sequence of stochastic kernels

σn(da|hn) on B(A) from hn ∈ Hn for n = 0, 1, 2, . . . . A strategy σ = (σn) is called

deterministic Markov if for each n = 0, 1, 2, . . . , σn(da|hn) = δ{ϕn(xn)}(da), where

ϕn is an A-valued measurable mapping on S. We identify such a deterministic

Markov strategy with (ϕn). A deterministic Markov strategy (ϕn) is called de-

terministic stationary if ϕn does not depend on n, and it is identified with the

underlying measurable mapping ϕ from S to A. Let Σ be the space of strategies,

and ΣDM be the space of all deterministic strategies for the DTMDP.

Let the controlled and controlling process be denoted by {Yn, n = 0, 1, . . . ,∞}

and {An, n = 0, 1, . . . ,∞}. Here, for each n = 0, 1, . . . , Yn is the projection of

H∞ to the 2n + 1st coordinate, and An to the 2n + 2nd coordinate. Under a

strategy σ = (σn) and a given initial probability distribution ν on (S,B(S)), by

the Ionescu-Tulcea theorem, c.f., [57, 86], one can construct a probability measure
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Pσ
ν on (H∞,B(H∞)) such that

Pσ
ν (Y0 ∈ dx) = ν(dx),

Pσ
ν (An ∈ da|Y0, A0, . . . , Yn) = σn(da|Y0, A0, . . . , Yn), n = 0, 1, . . . ,

Pσ
ν (Yn+1 ∈ dx|Y0, A0, . . . , Yn, An) = p(dx|Yn, An), n = 0, 1, . . . .

As usual, equalities involving conditional expectations and probabilities are un-

derstood in the almost sure sense.

Definition B.1. The probability measure Pσ
ν is called a strategic measure (of

the strategy σ) in the DTMDP model {S,A, p,l} (with the initial distribution ν).

The expectation taken with respect to Pσ
ν is denoted by Eσ

ν . When ν is con-

centrated on the singleton {x}, Pσ
ν and Eσ

ν are written as Pσ
x and Eσ

x.

Consider the optimal control problem

Minimize over σ : Eσ
x

[
e
∑∞
n=0 l(Yn,An,Yn+1)

]
=: V(x, σ), x ∈ S. (B.1)

We denote the value function of problem (B.1) by V∗. Then a strategy σ∗ is called

optimal for problem (B.1) if V(x, σ∗) = V∗(x) for each x ∈ S. For a constant

ε > 0, a strategy is called ε-optimal for problem (B.1) if V(x, σ∗) ≤ V∗(x) + ε for

each x ∈ S.

Occasionally we will also consider the so called universally measurable strate-

gies, in which case, the stochastic kernels σn(da|hn) are universally measurable,

i.e., for each measurable subset Γ of A, σ(Γ|hn) is universally measurable in

hn ∈ Hn. The meaning of universally measurable deterministic Markov or de-

terministic stationary strategy is understood similarly, i.e., when the underlying

mappings are universally measurable in their arguments. See Chapter 7.7 of

[9] for the definition of universal measurability and other related measurability

concepts, such as the definition of a lower semianalytic function.

We collect the relevant statements in Section 3 of [108] in the next proposition.
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Condition B.1. (a) The function l(x, a, y) is lower semicontinuous in (x, a, y) ∈

S×A× S.

(b) For each bounded continuous function f on S,
∫
S
f(y)p(dy|x, a) is continu-

ous in (x, a) ∈ S×A.

(c) The space A is a compact Borel space.

Definition B.2. The DTMDP model {S,A, p,l} is called semicontinuous if it

satisfies Condition B.1.

Condition B.2. (a) The function l(x, a, y) is lower semicontinuous in a ∈ A

for each x, y ∈ S.

(b) For each bounded measurable function f on S and each x ∈ S,
∫
S
f(y)p(dy|x, a)

is continuous in a ∈ A.

(c) The space A is a compact Borel space.

Proposition B.1. (a) Let U be a [1,∞]-valued lower semianalytic function on

S. If

U(x) ≥ inf
a∈A

{∫
X

p(dy|x, a)el(x,a,y)U(y)

}
, ∀ x ∈ S,

then U(x) ≥ V∗(x) for each x ∈ S. In particular, if the function U satisfying

the above relation is [1,∞)-valued, then so is the value function V∗.

(b) Let ϕ be a deterministic stationary strategy for the DTMDP model {S,A, p, l}.

If

V∗(x) =

∫
S

p(dy|x, ϕ(x))el(x,ϕ(x),y)V∗(y), ∀ x ∈ S, (B.2)

then V∗(x) = V(x, ϕ) for each x ∈ S.
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(c) V∗(x) = infσ∈ΣU V(x, σ), where ΣU is the set of universally measurable

strategies. Moreover, for each ε > 0, there is some universally measurable

deterministic stationary ε-optimal strategy for problem (B.1).

(d) Suppose Condition B.1 is satisfied. Then the value function V∗ is the

minimal [1,∞]-valued lower semicontinuous solution to

V(x) = inf
a∈A

{∫
S

p(dy|x, a)el(x,a,y)V(y)

}
, x ∈ S. (B.3)

(e) Suppose Condition B.2 is satisfied, the value function V∗ is the minimal

[1,∞]-valued measurable solution to (B.3).

(f) Suppose Condition B.1 or Condition B.2 is saisfied, let V(0)(x) := 1 for each

x ∈ S, and for each n = 1, 2, . . . ,

V(n)(x) := inf
a∈A

{∫
S

p(dy|x, a)el(x,a,y)V(n−1)(y)

}
, ∀ x ∈ S.

Then (V(n)(x)) increases to V∗(x) for each x ∈ S, where V∗ is the val-

ue function for problem (B.1). Furthermore, there exists a deterministic

stationary strategy ϕ satisfying (B.2), and so in particular, there exists

a deterministic stationary optimal strategy for the risk-sensitive DTMDP

problem (B.1).

Part (c) of the above statement follows from the proof of Proposition 3.2 of

[108], whereas all the other parts are according to Propositions 3.1, 3.4 and 3.7

therein.
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