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ABSTRACT. In this paper, we provide the spectral decomposition in Hilbert space of the Co-
semigroup P and its adjoint P having as generator, respectively, the Caputo and the right-sided
Riemann-Liouville fractional derivatives of index 1 < a < 2. These linear operators, which
are non-local and non-self-adjoint, appear in many recent studies in applied mathematics and
also arise as the infinitesimal generators of some substantial processes such as the reflected
spectrally negative a-stable process. Our approach relies on intertwining relations that we
establish between these semigroups and the semigroup of a Bessel type process whose generator
is a self-adjoint second order differential operator. In particular, from this commutation relation,
we characterize the positive real axis as the continuous point spectrum of P and provide a power
series representation of the corresponding eigenfunctions. We also identify the positive real
axis as the residual spectrum of the adjoint operator P and elucidates its role in the spectral
decomposition of these operators. By resorting to the concept of continuous frames, we proceed
by investigating the domain of the spectral operators and derive two representations for the
heat kernels of these semigroups. As a by-product, we also obtain regularity properties for
these latter and also for the solution of the associated Cauchy problem.

1. INTRODUCTION

Fractional calculus, in which derivatives and integrals of fractional order are defined and
studied, is nearly as old as the classical calculus of integer orders. Ever since the first inquisition
by L’Hopital and Leibniz in 1695, there has been an enormous amount of study on this topic for
more than three centuries, with many mathematicians having suggested their own definitions
that fit the concept of a non-integer order derivative. Among the most famous of these definitions
are the Riemann-Liouville fractional derivative and the Caputo derivative, the latter being a
reformulation of the former in order to use integer order initial conditions to solve fractional
order differential equations. In this context, it is natural to consider the following Cauchy
problem, for a smooth function f on x > 0,

%u(t,m) = Dyu(t,z)

(1) u(0,2) = f(a)
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where, for any 1 < o < 2, the linear operator D, is either the Caputo a-fractional derivative

AR () dy
1.2 D, = D¢ = ,
( ) f(l’) +f(.%') /O ({II _ y)a_[a] F([a] 41— Oé)
with, for any k =1,2,..., f(k)(:c) = d%f(a:) stands for the k-th derivative of f, or, the right-
sided Riemann-Liouville (RL) derivative
o d\ T )y — )l
(1) Dof) =D ) = (1) [T

with [a] representing the integral part of . We point out that when o = 2, in both cases,
D, f(z) = 3 f®(x) is a second order differential operator.

In this paper, we aim at providing the spectral representation in L?(R,) Hilbert space and
regularities properties of the solution to the Cauchy problem (1.1).

The motivation underlying this study are several folds. On the one hand, the last three
decades have witnessed the most intriguing leaps in engineering and scientific applications of
such fractional operators, including but not limited to population dynamics, chemical technology,
biotechnology and control of dynamical systems, and, we refer to the monographs of Kilbas
et al. [20], Meerschaert and Sikorskii [26] and Sankaranarayanan [40] for excellent and recent
accounts on fractional operators. On the other hand, some recent interesting studies have
revealed that the linear operator CDS‘r is the infinitesimal generator of P = (P;);>o the Feller
semigroup corresponding to the so-called spectrally negative reflected a-stable process, see e.g. [2]
9, [36]. We will provide the formal definition of this process and semigroup in Section [2| and, we
simply point out that the reflected Brownian motion is obtained in the limiting case a = 2. The
reflected a-stable processes have been studied intensively in the stochastic processes literature.
In particular, we mention that, in a recent paper, Baeumer et. al. [2] showed the interesting fact
that the transition kernel of P allows to map the set of solutions of a Cauchy problem to its
fractional (in time) analogue. Motivated by these findings, they provide a numerical method to
approximate this transition kernel. In this perspective, in Theorem below, we provide two
analytical and simple expressions for this transition kernel.

Although the Cauchy problem for the fractional operators associated to reflected stable pro-
cesses plays a central role in many fields of sciences, to the best of our knowledge, their spectral
representation remain unclear. This seems to be attributed to the fact that there is not a unified
theory for dealing with the spectral decomposition of non-local and non-self-adjoint operators,
two properties satisfied, as we shall see in Proposition by the fractional operators considered
therein. For a nice account on classical and recent developments on this important topic, we
refer to the two volume treatise of Dunford and Schwartz [16, [17] and the monograph of Davies
[15], and the survey paper by Sjostrand [43].

The purpose of this paper is to provide detailed information regarding the solution of the
Cauchy problem along with its elementary solution which corresponds to the transition
probabilities of the Feller semigroups P and its dual P. More specifically, we provide a spectral
representation of this solution in an integral form involving the absolutely continuous part of the
spectral measure, the generalized Mittag-Leffler functions as eigenfunctions and a weak Fourier
kernel, a terminology which is defined in [34] and recalled in Section [5} This kernel admits on

a dense subset an integral representation which is given in terms of a function, having a simple
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expression, that we name a residual function for the dual semigroup (or co-residual function
for P), as it is associated to elements in its residual spectrum. We refer to Section [5| for more
precise definitions. As by-product of this spectral representation, we manage to derive regularity
properties for the solution of and also for the transition kernel. We already mention that
we observe a cut-off phenomenon in the nature of the spectrum for the class of operators indexed
by the parameter o € (1,2]. Indeed, while the class of Bessel operators which include the limit
case Dy, i.e. @ = 2, has the positive axis (0,00) as continuous spectrum, we shall show that this
axis corresponds, when a € (1,2), to the continuous point spectrum of the Caputo operator and
the residual spectrum of the right-sided RL fractional operator.

Our approach relies on an in-depth analysis of an intertwining relation that we establish
between the Caputo fractional operator and a second order differential operator of Bessel type,
which the latter turns out to be the generator of a self-adjoint semigroup in L?(R,). This
is combined with the theory of continuous frames that have been introduced recently in the
mathematical physics literature, see [I]. This work complements nicely the recent works of Patie
and Savov in [35] and [33] where such ideas are elaborated between linear operators having a
common discrete point spectrum. We also mention that recently Kuznetsov and Kwasnicki [21]
provide a representation of the transition kernel of a-stable processes killed upon entering the
negative real line, by inverting their resolvent density that they manage to compute explicitly.
In this vein but in a more general context, Patie and Savov in the work in progress [34] explore
further the idea developed in our paper to establish the spectral theory of the class of positive
self-similar semigroups.

The rest of this paper is organized as follows. In Section [2| we introduce the reflected one-
sided a-stable processes and establish substantial analytical properties of the corresponding
semigroups. In Section 3| we shall derive the intertwining relation between the spectrally nega-
tive reflected stable semigroup and the Bessel-type semigroup. From this link, we extract a set
of eigenfunctions that are described in Section [4] which also includes some of their interesting
properties such as the continuous upper frame property, completeness and large asymptotic be-
havior. In Section [5] we investigate the so-called co-residual functions. Finally, in Section [6] we
gather all previous results to provide the spectral decomposition of the two semigroups P and
P including two representations for their transition kernels. The regularity properties are also
stated and proved in that Section.

1.1. Notations. Throughout, we denote by R, = (0, 00) the positive half-line. For any —oo <
a < a < oo, we denote the strip C(,5) = {z € C; a < R(2) < a}, and write simply C; = Cj .
We write C(_o0)c = {# € C; arg(z) # 7} for the complex plane cut along the negative real
axis. We also write L2(R ) for the Hilbert space of square integrable Lebesgue measurable
functions on Ry endowed with the inner product (f,g) = [~ f(z)g(x)dz and the associated
norm | - ||. For any weight function v defined on Ry, i.e. a non-negative Lebesgue measur-
able function, we denote by L?(v) the weighted Hilbert space endowed with the inner product
(f,9), = [;° f(@)g(x)v(z)dz and its corresponding norm || - [|,. We use Co(Ry) to denote the
space of continuous real-valued functions on R tending to 0 at infinity, which becomes a Banach
space when endowed with the uniform topology || - |ls. Additionally, we denote C3(R4) to be
the space of twice continuously differentiable functions on R, which vanishes at both 0 and
infinity, and C*°(R4) the space of functions with continuous derivatives on Ry of all orders, and

By(R4) the real-valued bounded Borel measurable functions on R . For Banach spaces Hj, Ho,
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we define
B(H;,Hy) = {L : H; — Hy linear and continuous mapping}.

In the case of one Banach space H, the unital Banach algebra B(H, H) is simply denoted by
B(H). Moreover, a semigroup P = (P;);>0 where P, € B(H) is called a positive Cyp-semigroup
on Hif Poys = P,o Py, P,f >0 for f > 0, and for any functions f € H, ||P.f — fllu — 0 as
t — 0. In the case when H = Cy(R) endowed with the uniform topology, we say P is a Feller
semigroup on Ry. Furthermore, for an operator 7' € B(H;y, Hs), we use the notation Ran(7T)
(resp. Ker(T)) for the range (resp. the kernel) of T and Ran(T) (resp. Ker(T)) for its closure.
For any set of functions E C H, we use Span(E) to denote the set of all linear combinations of
functions in E, and Span(E) for its closure. We now proceed to define a few further notations.

For two functions f,g : Ry — R, we write f = O(g) (resp. f < o(g)) if limsup,_,, o) o

(resp. limy_sq % =0), and f < g (resp. f~g) if 3¢ > 0 such that ¢ < % <c ! fgi ;11 x €
Ry (resp. if limg_,q % = 1 for some a € RU {£o0}). Finally, for any ¢ € R4, we write
dqf(z) = f(gz) and for any o, 7 > 0, we set

(1.4) eor(z) = dré e, (r)=e ", >0,

2. FRACTIONAL OPERATORS AND THE REFLECTED STABLE SEMIGROUP

Let Z = (Z¢)t>0 be a spectrally negative a-stable Lévy process with a € (1,2), defined on
a filtered probability space (2, F, (Ft)i>0,P = (Py)zer). It means that Z is a process with
stationary and independent increments, having no positive jumps, and its law is characterized,
for t > 0, by

(2.1) log E[e*#] = 2%, z€Cj.

Here and below z® is the main branch of the complex analytic function in the complex half-plane
R(z) > 0, so that 1* = 1. Let X = (X¢)s>0 be the process Z reflected at its infimum, that is,
for any t > 0,

. _ Z if t<T(Z_ooo],
"7 Z—infe Z, if t> 17, o)
with T({m,o] = inf{t > 0; Z; < 0}, and we write, for any f € By(Ry), ¢,z > 0,
(2.2) Bif(z) = E:[f(X4)],
where [E, stands for the expectation operator associated to P,(Zy = x) = 1. Next, let 7=-Z

be the dual process of Z (with respect to the Lebesgue measure), which is a spectrally positive
a-stable process, and, let X = (X;):>0 be the process defined from Z by a random time-change
as follows, for any t > 0,

~

(2.3) X, =2

9

where 7; = inf{u > 0; A, > t} and Ay = fg ]I{25>0}ds. We also write for any f € By(R4),t,2 > 0,

ﬁtf($) = I/E\:x[f()?t)L

where IE;C stands for the expectation operator associated to ]@I(Z) = z) = 1. We are now ready
to state our first result.
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Proposition 2.1. (1) P is a positive contractive Co-semigroup on Co(Ry), i.e. a Feller
semigroup, whose infinitesimal generator is (CDE“F,DOC) where

Do = {1 € ColRo) 0) = [ (7le) = Tl = gy ) sl € o)

with
T L\

1 = (e72)
2.4 Ta(z) = , z€C,
(2.4) a(2) F(l—i—é)zf(anJrl)
which is easily seen to define a function holomorphic on C(_y gye.
(2) P admits a unique extension as a contractive Co-semigroup on L*(R.y), which is also
denoted by P = (P;)¢>0 when there is no confusion (otherwise we may denote PF for
the Feller semigroup). The domain of its infinitesimal generator LX is given by

(25) Pat2(®) = {7 e L@ [ |Fp@) lede < oo}

where F;(é) = fooo e’ f(z)dx is the one-sided Fourier transform of f taken in the L2
sense.

(3) X is the (weak) dual of X with respect to the Lebesgue measure. Moreover, P is a Feller
semigroup which admits a unique extension as a contractive Co-semigroup on L2(R,),
also denoted by P, which has (DY, Dy(L?(R.))) as infinitesimal generator. Clearly as

P £ 13, we get that P is non-self-adjoint in L2(R,).

n=0

Remark 2.1. We point out that when o = 2, P 1is the 1-dimensional Bessel semigroup, see
[10, Appendix 1], which also belongs to the class of the so-called a-Bessel semigroups, which are

reviewed in more details in Appendiz . In this case, P="P and P is self-adjoint in L2(R,).

Remark 2.2. Note that the function ja(ei”zé) is the (generalized) Mittag-Leffler function of
parameters (a, 1), see e.g. [20] for a detailed account on this function.

In order to prove this Proposition, we first state and prove the following lemma, which
generalizes [6l Lemma 2] and may be of independent interests.

Lemma 2.1. Let Y, = Z,,,t > 0, where 1, = inf{u > 0; A, >t} and A; = fg Iiz,>01ds. Then
(Y)i>0 is a (Fr,)e>0 strong Markov process and for any f € By(R4),t,2 > 0, we have
(2.6) Py f(x) = B [f(Y2)].

Moreover, (Y)t>0 and (Xt)tzo are dual processes with respect to the Lebesgue measure.

Proof. For any f € By(Ry),q > 0, let
Uif(e) = [ Pt Uf) = [ e B [F0) Ly | di
0 0

be the resolvents of X and XT = (X;[)tzo, the process X killed at time 75 = inf{t > 0; X; = 0},
respectively. It is easy to observe from the construction of X that T dX = T({ 50,0]" Moreover, by

[39, Example 3], X can also be defined as the unique self-similar recurrent extension of X' and
we get, from an application of the strong Markov property, that for all z > 0,
_mX
(2.7) Uaf (x) = Ujf(2) + B, [~ | U, £(0).
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Next, since Z has paths of unbounded variation, by [22], Theorem 6.5], we have Px(Tfm) =0)=
1 for x > 0 and Pm(T[g,oo) > 0) =1 for any z < 0, where T[goo) = inf{t > 0; Z; > 0}. Thus, the
fine support of the additive functional (A¢)>0, defined as the set {z € R; Py(1p = 0) = 1}, is
plainly [0, 00). Moreover, as the Lévy process Z is a Feller process and therefore a Hunt process
(see e.g. [12] Section 3.1]), we have from [19] that (Y;)i>0 is a (Fy,)i>0 strong Markov process,
whose resolvent is defined, for f € By(R4), by

Vof(z) = /OOO e U, [f(Vy)]dt.

Furthermore, it is easy to observe that A; = t for any t < T(Z_ 50,0] and thus 7 = ¢ for any
t<T, (é 00,0]" On the other hand, since Z is a spectrally negative Lévy process with no Gaussian
component, Z does not creep below, see e.g. [22, Exercise 7.4], and therefore TOZ = inf{t >
0; Z, = 0} > T, 5 50,0] @5+ where a.s. throughout this proof, means P,-almost surely for all
x > 0. Moreover, observe that a.s.

T(Z—oo,O] TOZ 7
ATOZ = A H{Zs>0}d‘9 + /Z ]I{Z_9>0}d5 = AT<270070] = T(—oo,O]'
(—00,0]
Next, recalling that T(Z_ 0,0] = TOX , we deduce from the previous identity that, with the obvious
notation, a.s.

(2.8) Ty =Apz =T o =T5 -

Since it is clear that Y; = Z,, = Z; = X, for t < TOX7 we have for any f € By(Ry) and ¢ > 0,

V;;ff(x) = /0 e TR, [f(Y;f)H{t<T3/}} dt = /0 e TR, [f(Xt)H{t<TOX}} dt = U;ff(x)
Hence, the strong Markov property of (Y;):>0 together with (2.8) yield that, for every = > 0,
Vol (2) = Vi f() + By [T Vo £(0) = U f(2) + B [ V, £ (0).

Next, according to [6, Lemma 2] and after an obvious dual argument, (Y;);>0 and (X¢)¢>0 have
the same law under Py and therefore V, f(0) = U, f(0). Hence

Uaf (@) = ULf () + B [ | Uy (0) = UL (@) + B, [ | Vo (0) = Vof (@),

which proves the identity (2.6). Next, by [46, Proposition 4.4], we observe that (A;);>o and
(A\t)tzo are dual additive functionals, both of which are finite for each ¢ and continuous. Hence
by [46, Theorem 4.5], (Y;)+>0 and ()A(t)tzg are dual processes with respect to the Revuz measure
associated to A, which, by [38], is the Lebesgue measure. This completes the proof of this
lemma. g

Proof of Proposition[2.1 The Feller property of the semigroup P is given in [7, Proposition
VIL.1]. Moreover, the fact that the infinitesimal generator of P is CD?(_ has been proved in
various papers, see e.g. [5] and [36], and the domain D,, is given in [36, Proposition 2.2], which
completes the proof of the first item. Next, from [39, Lemma 3] and its proof, we know that, up to
a multiplicative positive constant, the Lebesgue measure is the unique excessive measure for P,
where with the notation of [39, Example 3], v = 1—%. Thus, since X is stochastically continuous,
see [23, Lemma 2.1], a classical result from the general theory of Markov semigroups, see e.g. [14]
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Theorem 5.8], yields that the Feller semigroup P admits a unique extension as a contractive Cy-
semigroup on L2(R, ). We now proceed to characterize the domain of the infinitesimal generator
of the L?(R, )-extension, denoted by DX. To this end, we first observe from [4, Theorem 12.16]
that since Z is a Lévy process, its semigroup (Pt)i>0, i.e. Prf(z) = E.[f(Z1)],# € R, is a L2(R)-
Markov semigroup, and its infinitesimal generator, denoted by LZ, has the following anisotropic
Sobolev space as its domain

(2.9) D7 = {f crmy [ | e < oo},

where F(§) = [ e®* f(z)dx is the Fourier transform of f. Now for a function f on R we
define its extension f : R — R as f(z) = f(2)l{z>0}. Then, for any f € Do(L*(Ry)) = {f €
Do (L2(Ry)); f € CE(R)}, we have clearly f € D? N CZ(R) and thus by combining [7, Section

1.2] and [I9, Theorem 2.1] we get, that for any x > 0,
(2.10) L¥ f(x) = a(z)L” f(x),

where a(r) = I{;0y from [19, (3.6)]. Therefore, since L?f € L2(R), it is obvious that LX f €
L2(Ry), which implies that f € DX. Next, for any 7 > 0, let f,(z) = 7323~ ™, 2 > 0, then
easy computations yield that for all 7 > 0 f, € D, (L?(R,)), hence by the Wiener’s theorem for
Mellin transform D, (L?(R,)) is dense in L?(R,) and therefore, for any f € Dy (L?(R.)), we
can take (fy)n>0 C Do(L2(R4)) N C3(Ry) such that f, — f in L2(R,). Writing f,, and f their
corresponding extensions to L2(R) as above, we still have f,, — f in L2(R) and f € D?. Also
note that for each £ € R,

(2.11) Fixp, (&) = Frap, (&) = (—i&)*Fp, (&) — (—i&)"Ff(&) = Fpz5(8),

where we used [4, Theorem 12.16] for the second and last identity. Therefore LX f,, converges in
L2(R,) and f € DX by the closedness of infinitesimal generator. This shows that D, (L%(R;)) C
DX. On the other hand, take now f € DX N C3(R;) and let f be constructed as above. Then
by [19, Theorem 2.6] and recalling that the fine support of (A;)¢>0 is R4, we have

= | bx)LXf(z) for x>0,
(2.12) L7 f(x) = { 0 for <0,

where, denoting I (7) = Iy,

E,[[‘T d PP (z)d
ba) = tim oo Tz ]y Jo Polle(@)ds

t—0 t t—0

= lim Pyl (2) = Lpsoy

for each x € R. Therefore, we have
[ (125@) o = [ (e + Lo E27@) do = [ (127@) e = [ (¥ (@)’ da,
R R 0 0

which implies that f € D and f € D,(L?(R,)). Next, since we have proved that D, (L?(R;)) C
DX and D, (L*(R4)) N CE(R) is dense in L%(Ry), we have that DX N C3(R.) is also dense in
L2(Ry). Hence the same argument as above shows that still holds for any f € DX, which
further proves that DX C D, (L?(Ry)) and completes the proof for the second argument. For
the duality argument, we first observe from Lemma that X and X are dual processes with
respect to the Lebesgue measure. Moreover, note that the minimal process X' belongs to the

class of positive é—self—sz’mz’lar Markov processes as introduced in [23], which also provides a
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bijection between positive self-similar processes and Lévy processes stated as follows. Let us
define, for any ¢t > 0, ¥, = inf{u > 0; fgt(Xl)_o‘ds > t}, then the process

(2.13) & =log X} ,

is a Lévy process killed at an independent exponential time. More specifically, by [36], the
Laplace exponent of &% is

F(u+1)

(2.14) Yl(u) = Tu—a+l)

, u>—1.

Note that by writing @ for the largest non-negative root of the convex function 1, it is easy
to check that § = o« — 1 € (0,1). Hence by [39, Section 5], there exists a dual process of XT,
denoted by X f, with the Lebesgue measure serving as the reference measure. Moreover, Xtis
also a positive é—self—simﬂar process with its corresponding Lévy process denoted by ?f , which
is the dual of the Lévy process obtained from &' by means of Doob h-transform via the invariant
function h(z) = e, 2 € R. Therefore, the Laplace exponent of gf takes the form, for u < 0,

INa—u)

D) = 0 (—u+0) = ¥ (-u o —1) =

Note that & drifts to —co a.s. and thus X' has a a.s. finite lifetime T())A(T = inf{t > 0;)?',5T <
0}. Hence by recalling that X can be viewed as the recurrent extension of X that leaves 0
continuously a.s., we deduce from [39, Lemma 6] that X can also be viewed as the recurrent

extension of XT which leaves 0 by a jump according to the jump-in measure Cx~“, x,C > 0. The
Feller property of the semigroup of such recurrent extension has been shown in [9, Proposition
3.1], while the existence of the L?(IR; )-extension follows by the same argument than the one we

developed for P. Moreover, from [4, Theorem 12.16], we deduce easily that DZ = p? , hence

using the same method as above, we get that DX = DX = D, (L%(R,)). Finally, using the same
arguments as in (2.11)), we see that for any f € Do (L2(Ry)),
Fre () = Fyu l€) = (€ F1(€).

LXf

Comparing this identity with [I8, Lemma 2.1 and Theorem 2.3], we conclude that X f=Df
on D, (L2(R,)). This completes the proof. O

3. INTERTWINING RELATIONSHIP

We say that a linear operator A is a multiplicative operator if it admits the following repre-
sentation, for any f € By(R),

Af(z) = /O " e w)dy,

for some integrable function A. When in addition A is the density of the law of a random variable
X, i.e. A(y) > 0 and (1,\) = 1, we say that A is a Markov multiplicative operator. Moreover,
M)y = My = Mx is called a Markov multiplier where for at least R(s) =1,

M (s) = /OOO v A(y)dy,
8



is the Mellin transform of A\. By adapting the developments in [45, 2.1.9] based on the Fourier
transform, we also have that if [} y_%)\(y)dy < oo then A € B(L?(R,)) with, for any f €
LZ(R+)7

(3.1) May(s) = Ma(L = s)M(s).

Note that this latter provides that A is one-to-one in L2(R) if My (1 — s) # 0. We also recall
from [31] that if s — M (s) is defined, absolutely integrable and uniformly decays to zero along
the lines of the strip s € C(,3) for some a < @, then the Mellin inversion theorem applies to
yield, for any x > 0,

1 a+io0o
(3.2) AMz) = / x *My(s)ds, a<a<a.
a

21 — oo

Now we are ready to state the following.

Theorem 3.1. Let us write, for any o € (1,2),
L=+ 1)r(2)
L(r(s)

(3.3) My, (s) = seCy.

Then, the following holds.

(1) My, is a Markov multiplier and A, € B(L2(R;)) NB(Co(Ry)). Moreover, it is one-to-
one on Co(Ry), and, in L?(Ry), Ran(A,) = L2(R,).
(2) Moreover, for any t >0 and f € L2(Ry), the following intertwining relation holds

(3.4) P Ao f = AaQ1f,

where Q = (Q¢)r>0 is the L2(Ry)-extension of the a-Bessel self-adjoint semigroup as
defined in Appendiz 4]
(3) Consequently, we have, for any f € Dr(L2(R,)),

(3.5) “DYAof = ALf,

where the fractional operator CDi was defined in (1.2)), while the second order differ-

ential operator L and its L2(Ry)-domain Dr(L%(Ry)) are defined in (A1) and (A7),
respectively.

The proof of this Theorem is split into three steps. First, we show that is indeed
a Markov multiplier. Then, we establish the identity in the space Co(Ry). Finally, by
remarking that Co(Ry) is dense in L?(R), we can extend the intertwining identity to L2(R)
by a continuity argument.

3.1. The Markov multiplicative operator A,. In order to prove Theorem , which
provides some substantial properties of A, we shall need the following claims.

Lemma 3.1. Let us define
< r4Hr 1) .

then go is holomorphic on C(_y gye. Moreover, g, € L2(R,) with Apga = en where ey, is defined

m .

n=0
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Proof. First, from the Stirling approximation

(3.7) INCAESRY, 2ma’"2e 7,

I'(an+a+1)T(n+2) _ .
F(a"fln)r?"HJrg)(nﬂ)zOZOO(na 3), hence, as a € (1,2), ga is

holomorphic on C(_, g)c. We now proceed to show that g, € L2(R, ). To this end, let us define,
for 0 < R(s) <1

see [24, (1.4.25)], we get that

T+ LHrE)ra-s)

[0}

P(1— (5

(07

M, (s) =

and we first aim at proving that M, = M, the Mellin transform of g,. For this purpose,
observe that s — M, (s) is holomorphic on C(g 1) and then consider the contour integral Iy p =
27” fCN . 27* M, (s) ds where C p is the rectangle with vertices at % +iB and —aN — § +£iB
for some large N € N and B > 0. Then we can obviously split Iy p into four parts, namely
IN,B =11 + Iy + I3 + I, where

1 —aN-%+iB 1 —aN-5—iB
L =— 2 Mq(s)ds, In=— 2 My (s)ds
2mi 14iB 2mi —aN—%+iB
1 [3-iB . 1 [3+iB B
I3 = — 2 *Ma(s)ds, Iy = — 27 My (s)ds
210 J_aN—g—iB 2mi J1_ip

Next, observing from the Stirling approximation, see e.g. [31], (2.1.8)], that for fixed a € R,

(3.8) ID(a + ib)| =>° C|p|* 2510,

with C' = C(a) > 0, we deduce, for some C, > 0, that

(3.9) IMa (a +ib)| T C, [b|ae—a— a5 1-2)0L

and, hence

(3.10) 2@ AL (@ + ib)| Oy |2| o b 200w e 2 (I g)IblFars()b

Therefore, if |arg(z)| < Z(1 — 1) and N is kept fixed, we have both
(3.11) BlgnOO || = BlgnOO |I3| = 0.

For the integral Is, we have

00
|I2| < 1|ZaN+g/ 6arg(z)b
27 o

1 aN+% > arg(z)b
e
2 .

where we have used the reflection formula for the gamma function. Using the Stirling approxi-
mation again, it is easy to derive, for large IV, the upper bound

I+ 4Hr-nN-1+idra+ aN + 9 +ib)
T(N+3—irwv+i+1 g>
T(1+ D1+ aN + ¢ +ib)

DN+ 3 —i2)2T(N + 1+ L —i2)cosh(Z2)

db

db

T(1+aN + % +ib)

< CeN(a log a—a—Q)N(a—Q)N_A,_O‘T—l
M+ - ik

10



which is uniform in b € R and where C' > 0. Moreover, recalling, from [31) (5.1.3)], that, for
1,1
N>TlandbeR, [D(N+1+1 by > (02t

> T , we find
cosh2 (%b)

I < C db

eNla logt;v—(;v—2)]\'7(0172)N+0‘771 /oo e218(2)b

I(N+141) )

s cosh? (

where the last integral converges absolutely whenever |arg(z)| < -~ For such z, since 1 < a < 2,
we get that limy_,o [I2| = 0. Therefore, combining this with , we have, for |arg(z)| <

2a (1 B *) 27;7
1 %Jrioo
lim Iyp= l1m Iy =— 2 %M (s)ds

N,B—o0 B—oo 27 7—1'00

Hence an application of Cauchy’s integral theorem yields

1, -
1 et . T(HT(an +1)
12 27 Mgy (8)ds = —a (1) =g,
where we sum over the poles s = —an,n = 0,1... of I’ (g) with residues 06(7—17'1)" This shows

that Mg, = M,. Since o € (1,2), we have, from (3.9), that b — My (3 +ib) € L*(R) and by
the Parseval identity for the Mellin transform we conclude that g, € L?(R,). Finally, by means
of a standard application of Fubini theorem, see e.g. [44] Section 1.77]), one shows that, for any
x>0,

>0 \(an > "
Aogo(z) = Z w/\/l/\a(cm + 1)(—=1)"z" = Z(—l)"— = eq(x),

1 2 !
24 Tn+ L)(n) =
where we used the expression (3.3). This completes the proof of the lemma. ]

Next, let us show that My, is the Mellin transform of a random variable that we denote by
1. To this end, we write, for any u > 0,

Tt 1 a P emyle=l) e
¢a(u)_F(au+1—o¢)u—1+é _F(2—a)+/0 (1 y)r(2—a) (1—67%)0}@:

Y
o

where the second identity follows after some standard computation, see e.g. [32, (4.2)]. As

plainly [;™(y A 1)ﬁdy < o0, we get, from [4I, Theorem 3.2], that ¢, is a Bernstein
function, whose definition is given in [4I, Definition 3.2]. Moreover, by [41], Section 5], ¢,
is the Laplace exponent of a subordinator, that is an increasing process with stationary and

independent increments, which we denote by (& ):>0. Next, observing that for any n € N,
n!T'(n + é) n!

P(ET(an+1) ~ Tz ¢alk)’

we deduce, from [I1], Proposition 3.3], that (M, (an+1)),>0 is the Stieltjes moment sequence

of the random variable fooo e~¢tdt. Moreover, observe from its definition and applications

of the recurrence relation of the gamma function that M, satisfies the functional equation, on
s e Cy,

(3.13) My, (an+1) =

My, (as+1) = My, (a(s—=1)+1), My, (1) =1,

11
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hence, by a uniqueness argument developed in [33 Section 7], we have

(/Ooo e&dt> D‘] =E[I3)].

Consequently My, (s) is the Mellin transform of the variable I, = ( f e Es ds) Finally, since
the law of fOOO e~$tdt is known to be absolutely continuous, see e.g. [33, Proposition 7.7], so is
the one of I, therefore we conclude that M, is indeed a Markov multiplier, which provides
the first claim of Theorem [3.1)1)). Next, the one-to-one property of A, follows from the fact
that the mapping s — Mp_(s) is clearly zero-free on the line 1 + iR. Moreover, writing A,
the density of I,, we have by dominated convergence that for any f € Co(Ry), Ao f € Co(R4)
with ||Aaflloo < [|f]loo, that is, Ay € B(Co(Ry)). On the other hand, for f € L?(Ry), Jensen’s
inequality and a change of variable yield

IAaf]? = /0 TE (el dr < /0 TE[f2(el)] dr = BT | £

(3.14) My (s+1)=E

1
where E[I1] = My, (0) = £8+i§ < co. Hence A, € B(L?(R;)). Moreover, from Lemma

it is easy to conclude that A,dyg9. = dqe, for all ¢ > 0, where dyg, € L%(R,) since qdg is a
unitary operator in L?(R;). Hence, by the well-known result that Span(d,es) >0 = L%(Ry), we
have that A, has a dense range in L?(R, ), which completes the proof of Theorem .

3.2. Proofs of Theorem and (3). We recall that a collection of o-finite measures (1;)¢>0
is called an entrance law for the semigroup P if for any t,s > 0 and any f € CO(R+) mPsf =
Ne+sf where n.f = fo x)ne(dz). We also recall from Appendix that G, is the * < power of

a gamma variable with parameter = > 0, that is P(G, € dy) = -%—dy,y > 0. NOW we are

( 2)

ready to state the following Lemma.

Lemma 3.2. P admits an entrance law (n)¢=o defined for any t > 0 by nof = mdef =
fo (ty)m (dy) where n1(dy) = Ix, (y)dy, with A\x, € L*(Ry), is the probability measure of
a variable X. Its Mellin transform takes the form

I'(s)
3.15 M ==, e C,.
Moreover, we have the following factorization of the variable G,
Gq iXa X I,

where % stands for the identity in distribution and X, is considered independent of I, which

we recall was characterized in (3.14]).

Proof. First, let us observe from (3.15)) that for any n > 0,

3

I'(ak+1
I'(an + 1) [Tz WE;@ 1)411

(3.16) Mx, (an+1) = o

(u—a+1)°
Laplace exponent of the killed Lévy process &' defined in (2.13)). Then by [3, Theorem 1],
we deduce that (Mx, (an + 1))p>0 is the moment sequence of the variable X{* under Py, for
12

where we recall from the proof of Proposition that ¢T(u) = Fr(uiﬂ)) u > a — 1, is the
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which we used the fact that since X is a é—self—similar process, X is a 1-self-similar process
whose minimal process is associated, through the Lamperti mapping, to a Lévy process with
Laplace exponent ¢, (u) = ¥ (au). Moreover, note from (3.15]) that Mx, satisfies the functional

equation Mx_(as+1) = %T(S)MXQ (a(s — 1) + 1) with Mx_ (1) = 1, hence by a uniqueness

argument, see again [33, Section 7], we conclude that Mx, (s + 1) = Eo[X7] is indeed the
Mellin transform of X; under Py. Using again the Stirling approximation (3.8, we see that
IMx. (3 + i) =°0 (\b\i—%e—%ﬂ—éﬂb\), and thus b — Mx_ (3 +ib) € L2(R). Hence by
Mellin inversion and Parseval identity, we get that the law of X, is absolutely continuous with a
density Ax, € L2(R;). Now, recalling that n;(dy) = Ax,, (y)dy and for any t > 0, 0, f = md.f,
we get, from (3.16) augmented by a moment identification that (7;)¢~o is an entrance law for
the semigroup P. Finally, from the expression of My, in (3.3)), we conclude that for s € C,

L(s) TCZF+DIE) _TE)

MXa (S)MAC!(S) = - a = MGa (S)
P(E+1-3) LTI L(3)
where we used for the last identity the expression (A.3). We complete the proof by invoking the
injectivity of the Mellin transform. O

We are now ready to prove the intertwining relation stated in Theorem . First, since
s — Mx,(s) is zero-free on the line 1 + {R, we again conclude that the Markov operator
Ax, associated to the positive variable Xq, i.e. Ax, f(z) = [;° f(zy)Ax. (y)dy, is injective on
Co(Ry). This combined with the fact that the law of G, is the entrance law at time 1 of the
semigroup @ and with the factorization of this latter stated in Lemma [3.2] provide all conditions
for the application of [I1}, Proposition 3.2], which gives that for any ¢ > 0 and f € Co(R4), the
following intertwining relationship between the Feller semigroups (P{");>¢ and (Qf);>o,

(3.17) PFAaf = MQF £

in Co(R). Futhermore, since Co(R;) NL2(Ry) is dense in L?(Ry), we can extend the inter-
twining identity into L2(R,) by continuity of the involved operators and complete the proof of

Theorem . Finally, Theorem follows directly from (3.4) by recalling that CDi and
L are the infinitesimal generators of P and Q, respectively, where the L2(R; )-domain of L is

given in (A.7). This concludes the proof of Theorem

4. EIGENFUNCTIONS AND UPPER FRAMES

We start by recalling a few definitions concerning the spectrum of linear operators and we
refer to [I7, XV.8] for a thorough account on these objects. Let P € B(L?(Ry)). We say that
a complex number 3 € S(P), the spectrum of P, if P — 3I does not have an inverse in L2(R)
with the following three distinctions:

e ; € Sy(P), the point spectrum, if Ker(P — 3/) # {0}. In this case, we say a function f;
is an eigenfunction for P, associated to the eigenvalue 3, if f; € Ker(P — 37).
e 3 € S.(P), the continuous spectrum, if Ker(P — 3I) = {0} and Ran(P — 3I) = L?(Ry)
but Ran(P — 3I) € L2(R,).
e 3 € S,(P), the residual spectrum, if Ker(P — 3I) = {0} and Ran(P — 3I) € L3(R,).
13



Moreover, we also recall from [I] that a collection of functions (g,)4>0 is a frame for LZ(Ry) if
for all ¢ > 0 g4 € L2(Ry) and there exists constants A, B > 0, called the frame bounds, such
that, for all f € L2(R4),

A2 < /0 (f. 90 dg < B f|%

Moreover, we say (gq)q>0 is upper frame if it only satisfies the second inequality. Finally, recalling
that J, was defined in (2.4), we are ready to state the following claims which include the
expression along with substantial properties of the set of eigenfunctions of F;.

Theorem 4.1. (1) For any q,t > 0, dqJo is an eigenfunction for P, associated to the
eigenvalue e=9"t. Consequently, we have (e=4)y=0 C Sp(P%).
(2) Let the linear operator Ho, be defined for any f € L2(R,) by

(4.1) Haf(q) = / " f@) Talqr)de, g>0,

1
then Ho € B(L2(Ry)) with |||Ha|l| = sup| fj=1 [Hafl < F(L“;. Consequently, the

collection of functions (dqgJun)q>0 i a dense upper frame for LQ(R+), with upper frame
ra- é)

L(l+7)’

(8) For any k € N, Jogk) admits the following asymptotic expansion for large x > 0,

bound

_k—a 00
42 (k) >~ 337 n —an

where a, ) = (—1)" T (an + a + k) sin(ra(n + 1)) and ~ means that for any N € N,

jo(ck) (x) - ﬂ:f{ll:‘i) Zﬁfzo n i proon x© o (xfkfafa(NJrl)) )

Remark 4.1. Note that there is a cut-off in the nature of the spectrum when one considers the
family of operators P indexed by o € (1,2). Indeed, when o = 2, then Jo = Jo ¢ L2(R+) (see

- for the degﬁmtwn of the Bessel-type function Js) and hence, for all q,t > 0, e™? *t ¢ Sp(Py)
but instead e~ 7" € S.(P;).

Proof. First, we recall that J,, the Bessel-type function, is defined in (A.4) as an holomorphic
function on C(_ gye. As o € (1,2) and Jo(z) = O(w 1 ) see e.g. [42], we get that J, € Co(R4).
Hence, as above, applying Fubini’s theorem, we obtain, for > 0, that

1 x (eiﬂxa)n
a1+ ) = I'(lan+1)

which shows, since A, € B(Co(R4.)), that both J, € Co(R4) and dgJa € Co(R4) for all ¢ > 0.
Thus, we can use the relation (3.17)) to get, for all ¢ > 0 and = > 0,

(44)  PldgTa(x) = Pl AadgJa(@) = AaQf dgJa(z) = e AadgJa(a) = e dgTa(@).
Next, proceeding as in the proof of Lemma we get, for |arg(z)| < (é — %) m, that

(43)  Aada(@)=a MMM (an+1) =

- ja($)7
= n!'(n + é)

1 §+ZOO
Jalz) = / 2 Mg, (s)ds

2 1 oo
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where, for 0 < R(s) < a,

(45) My (6) = Ty

Since from ((3.8), (M7, (% + ’Lb)| £ (]b\‘m_%e_i o )|b|>, we get, by the Parseval identity,
that 7, € L? (R+) Moreover, since P coincides with its extension P on Co(Ry) NL2(R,), we
conclude from ) that, for all ¢,¢ > 0, dgJ is an elgenfunctlon of P, with eigenvalue e,

This completes the proof of the first item. Next, with A, € B(L2(R4)) as the L2(R..)-adjoint
of Ay € B(L3(R;)), we have, for any f € L2(R;),

rQa-3)
Tl L)

where we used successively the identity (4.3 . the definition as Well as the unitary property of

IHo I = /0 (s Madg o) dg = | HoRo fII* = [Raf|® < 551 £117

_ 1
H,, see Proposition [A.1] and the identity |||Aq||| = ||[Aall] < 1+ ;a giving the second claim.

Furthermore, for any k£ € N, by a classical argument since the ﬁrst series below is easily checked
to be uniformly convergent in z € C(_ g)c, we get

1 (efmz)n _ (=)™ T'(n+1)z7"
k Y 7E) () = " ~) 2 A
1 = E =" ~ g
ST +a>ja (2) —(an—k+1) 1) ~ 2 — nl D(-an—a—k+1)’

where, for |arg(z)| < (2 —a), we used [30, Theorem 1], with the notation therein, that is, ;¥
stands for the Wright function and we made the choice of parameters p = ¢ = 1,01 = 1,a; =
1L,/ =a,by=—-k+1,k=14p1 —a; = a € (1,2). The proof is completed by an application
of the reflection formula for the gamma function. O

5. CO-RESIDUAL FUNCTIONS

In this section, we focus on characterizing the spectrum of the L?(R,)-adjoint operator
P= (ﬁt>t20- We point out that the non-self-adjointness of P; does not ensure the existence of
eigenfunctions for ]3t. In fact, we shall show in the following Lemma that the point spectrum of
]3t is empty and S,(FP;) = S, (ﬁt), the residual spectrum of ﬁt.

Lemma 5.1. For each t >0, Sp(P,) = 0 and (e77"t) 450 C S.(P,) = Sp(Fy).

Proof. Assume that there exists 3 € S (ﬁt) then there exists a non-zero function fj € L2(Ry)
such that P, f; = 3f;- Moreover, since A, has a dense range in L2(R,), we see that Ker(A,) = {0}

and therefore g; = Aafﬁ # 0 with g; € L*(Ry) as = B(L?(Ry)). Now by the adjoint
intertwining relation of (3.4 ., we have

Qg = QtKaf;y = Kaﬁtfz = 5Kaf3 = 39>
which implies that 3 € S,(Q;), a contradiction to the fact that S,(Q:) = 0. Therefore we have
Sp(P;) = 0 and moreover, from the known fact that S, (P;) U Sp(P:) = Sp(P:), we conclude that

(e7"")g>0 S Sy(P)- O
15



Next, we will characterize a sequence of the so-called residual functions associated to Sr(ﬁt),
by means of (weak) Fourier kernels. To this end, we first recall from [34] that a linear operator

~

7 is called a weak Fourier kernel if there exists a linear space D(H) dense in L2(R,) and
Mg % + iR — C such that, for any f € D(H),

1 1 1
(5.1) b»—>/\/lﬁf <2+ib> =My <2—|—ib> My <2—ib> e L2(R).
Theorem 5.1. Let us write, for s € C(q ),

(5.2) Mg (s) =

Then the following statements hold.

(1) He is a weak Fourier kernel and D C D(Ha), where the linear space D is defined by

(5.3) D= {f € L% (Ry); }Mf (; + ib)

=0 <|b|_7_€ = ahlbl) for some € > O} :

Moreover, we have H oHof =f on LZ(RJr) and Ha?':[\ag =g on D('}qa). Consequently,
’Ha is a self-adjoint operator on D(H ).

(2) We have Ran(Ay) € D(Hy), and, on L2(R+) Holo = Hy and Ho = Ao H,.

(3) For any f € L2(R}) and t,q > 0, we have HoPA of(q) = e_qatﬁa[\af(q). Moreover,
for any 1 < k < 5%, & = Span(ex)r>0 is a dense subset of L%(R,), and, for all
f € &, we have the integral representation, for almost every (a.e.) q >0,

(5.4) / flx Ja (qzr)d

where, for |arg(z)| <, we set, with 7o, = 7,

1
(5.5) ja(z) = Pgra)Sin(ﬂ'a—zsin(ﬂ'a))e_zcos(”a),

We say that dqja 1s a residual function for b (or co-residual function for P;) associated
to residual spectrum value e~ 1"t.

Proof. First, since from (3.8) and 0 < a < 1 fixed, i, (a + 1b) ’ =0 (\b\a_ie Zzg)w\b\) we
deduce from ([5.3) and the fact that, for all b € R, ‘/\/lf (f — zb)‘ = ‘Mf (5 + zb) ‘, that

e, ()0 (1)

Therefore D C D(ﬁa). Next, observing that for any 1 < x < 532, 7> 0 and s € C(g o),

=0 (o7+) e 12(R).

_ > s—1_—71z® s, -1 s
(5.6) /\/lew(s)—/o e T dr =1""K P(n)’

we get |[Me,, (3 — )‘ =0 (]b]%fie*%' ‘), and thus, for any 1 < k < 5%, (exr)r>0 € D.

Moreover, since (ey ;)r>o is dense in L?(R;), we obtain that D(H,) is dense in L2(R,) and
16



therefore ﬁa is a weak Fourier kernel. Next, using the definition of H, f in (4.1, we get, by
performing a change of variable in (3.1]), that for any f € L?(R,) and s € % + iR,

5.7) Mo, () = Mg, () My (1 - 5) = FF(S_) 1?()1F(§)) My(1=s).

[0}

Thus, for such s, we have

L(5) ()

8]

P )

«

Mg ()M p(1—5) = My, (1= 5) = My(s).
Therefore, an application of the Parseval identity yields that H,f € D(?qa) and HoHa f=f
for all f € L2(R,). Similarly, one gets that HoHag = g for all g € D(H,). Next, from (&.1)
one gets readily that #,, is self-adjoint in L2(R.), hence H, is also self-adjoint as the inverse
operator of H,, which concludes the proof of Theorem . Next, from (3.1)), we have, for
any f € L2(Ry), Ma,f(s) = Mf(s)Ma, (1 — s), therefore for at least s € 5 + iR,
L (3)T()
My (s)M 1-— = a M M(1 —
HQ(S) Aaf( S) P(%)F(l—é—l—%) Aa(3> f( 8)
I'(2)
p(ﬂ)

«

where the Mellin transform of H, f is given in . Since from Proposition H.f € L2(R,),
we get, by the Parseval identity, that A, f € D(?—A[a) and ﬁaAaf = H,f for any f € L2(R,).
Combine this relation with the self-inverse property of H, from Proposition we have, for any
f € L2(Ry), that ’}/-l\aAaHaf = H,H.,f = f, which implies H, = AqH, and finishes the proof
of Theorem . Next, combining the intertwining relation and the spectral expansion

for Q;, we get that, for any f € L2(Ry),t > 0,

(5.8) PAof =AQif = AaHoeotHof = Hao€atHaf.

Hence, by observing that P,A,f € Ran(H,) and by means of Theorem , we get
HoPhof = HoHaeorHof = €aiHof = €aiHolof-

Myp(1—5) = Mp,r(s)

Finally, since, from above, we have, for any 1 < x < 5%, (exr)r>0 C D, we get that ”;Qae,m €
L%*(R4) and by combining (5.2) with (5.6), that, for at least s € & + iR,

T T (s)T(122)

K

Mitcor ) = 0T 2y

«

By following a line of reasoning similar to the one used in the proof of Lemma [3.1] we obtain

> - p(n o n n .
Hoerr(q) = (3) 3 (—1)mr " Tt ;= (L) 3 (—1) F(%l)sm((n—i—l)wa)qn
o€k, K o n!F(l — é — g)F(nT—H) KT ~ TnT-Hn' s

n+tl
which defines an entire function since, by the Stirling approximation (3.7)), I;(F i )) =0 (n%—l)

and k > 1. On the other hand, since for any = > 0,

71 Ta(z) = cos(wa)g(e—xew) +sin(7ra)§re(e—xm> :i(—ll)” sin (n + 1)my) 2",
I‘(a) =

17



a standard application of Fubini’s theorem, see again [44], Section 1.77], yields

> o _ F(é) - (_1)71 sin ((n T n Ooe—Tx“xn x
/0 e () Tolqr)dr = nz (n+1) a)q/o d

n!

K n qn = Hc“e“ﬂ'(q)?
Q n=0 n‘

F(é)i ( ) ((n+1)my) ~

from which we conclude that Ha f(q fo ja (qr)dz for all f € &,. This completes the
proof. O

6. SPECTRAL REPRESENTATION, HEAT KERNEL AND SMOOTHNESS PROPERTIES

We have now all the ingredients for stating and proving the spectral representation of the
semigroups P and P along with the representation of the heat kernel.

6.1. Spectral expansions of P and P in Hilbert spaces and the heat kernel.
Theorem 6.1. (1) For any g € L2(R,) and t > 0, we have in L2(R,)
(6.1) 13tg = ﬁaemt?’-lag.

(2) The heat kernel of P admits the representation

(6.2) Py(z,y) = /OOO =1 To(g2) Ta(qy) da,

where the integral is locally uniformly convergent in (t,z,y) € Ri.
(3) For anyt > Ty, we have in L2(R,),

(63) Ptf = ’Haea’tﬁaf

where N

(a) if f € D(Hq) then T, =0,

(b) otherwise if f € L% (ey) f07" some k > %5 and n > 0, where we set €, ,(x) =
ez > 0, then T, = - (2"‘ lcos((oz—l—l)wa)>a]l{,€(a_1):a} and Hof(q) =
I F () Talay)dy.

Remark 6.1. We mention that D( o)\L? (€,)) # 0 meaning that the two conditions and
(Bb)) are applicable under different situations. For instance, for 0 < f < min (ﬂ’ ﬁ>’ eg €

Ran(Aq)\L? (€4,), as one can show that Ao Bg = eg with x — Bg(x) =
L*(R+).

—1)n
> o M, (Bvi—i—l)nlxﬁn €
Proof. First, since for any f € L2(Ry), ﬁtf € L2(R,), we get, for all ¢ > 0,

HaPif (0) = (Pif,dga) = (f, PedgJa) = €77 (£,dyT0) = € Ha f(q)
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where we used Theorem [4.1] .. for d,Ja € L?(R;) and for the third identity. Therefore, we can
apply Theorem [5.1} .. to get that for any g € L2(R,),

Ptg = HaHocPtg = Hoceoz,t%ag7

which proves (6.1). On the other hand, for any f € D(Ha),g € L2(R,), we have, using the
self-adjoint property of 7-[ and H,, see Theorem |5 .

(Pef,g) = <f7 ﬁt9> = <f7 ﬁaea,t/Hocg> = </Haea,t7/'zaf,g>a

which proves (6.3) for f € D(H,) and T, = 0, that is, the claim (B3a)). Next, let us consider
the density function A\x, € L?(R;) of the random variable X,, which we recall was studied

in Lemma Then using (5.7) again, it is easy to deduce that My ay (s) = %, which
coincides with the Mellin transform of G, (see (A.3])). Hence we have, for all ¢ S 0, that

Horx,(7) = A, (9) =

e (7T +t)q
T(1+1)

F?%l). Therefore, we see that for any 7 > 0, ¢ — eqHad - Ax,(q) =

€ &,. Hence, using Theorem , we can write

(6.4) ﬁtdr)\Xa (y) = ﬁaeayt%adﬁ\xa (y) :/ e_qatja(qy)/ Ax,, (T2)Ja(qx)dzdg.

0 0
Next, from (4.2)) we deduce that |7, (z)] gO(l) and |7, (x)| = O(z~%) and thus, since \x, is a
probability density function, [;° Ax, (7%)|Ja(qz)|dz < C(1+ ¢~*) for some C' = C(7) > 0. On
the other hand, from (5.5)), we get that there exists C' > 0 such that for all y > 0, | Ju(y)| < Ce?,
which justifies an application of Fubini theorem to obtain

(6.5) / e_qatja(qy)/ /\xa(Tx)Ja(qx)dwdQ—/ Axa(m")/ e~ 9" To(qz) Tu(qy)dgda.
0 0 0 0

Now let us define the Mellin convolution operator X by X f(r fo y)Ax,, (Ty)dy and, since
Mx, € L2(Ry), X € B(L?(R,)) and by performing a Change of varlable in (3.1) we get, from

(13.15), Mx(s) = Mx,(s) = % which is clearly zero-free on R(s) = 1 entailing that X

is one-to-one in L2(R, ). Moreover, by means of the same upper bounds used above, we deduce
that for any y fixed,

x> / e~ To(qx) Tu(qy)dg € L2(Ry)
0

and thus the right-hand side of (6.5)) is in L?(R,) and hence from (6.4), we get that, for any
T >0,

P x, (y / Ax, (T2 / e 1" Talg) Ju(qy)dqdz.

The one-to-one property of X implies that the transition kernel of ﬁt, denoted by ﬁt(y, x), can
be represented, for a.e. y > 0, as Pt (y,x f 2t 7.( qm)ja(qy)dq Since the last integral
is also locally uniformly convergent for any (¢,z,y) € R3, and Ja is continuous, the identity
holds everywhere. This last fact combined with the duality stated in Proposition |2.1] n. 3)) yield the
expression | . 6.2]) by recalling, from Proposmon E. that since the Lebesgue measure serves as

reference measure we get that Pi(x,y) = Pt(y, x), t,x,y > 0. While . ) has been proved above,
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we now proceed to the justification of . First, by the Cauchy-Schwarz inequality, observe

that for any f € L? (€,,), writing Js(qy) = o (‘gg, we have

/f Jaqydy—/ F@)Ts(q)&wn()dy < || flls..

€r,n

Moreover, since for all y > 0, ’ja(y)’ < Ceveos(me) ' > 0, we have by an application of the
Laplace method, see e.g. [29, Ex.7.3 p.84], that for large g,

2 o0 o T
€r,n 0

where a > 0 and we set ¢, = (kK — 1)77ﬁ (

2 cos((a+1)ma)

)ﬁ > (0 since kK > o > 1. Note that

c_e_ =T, and for any t > Tq, since o > 55, ¢ = Fie(q) = eqat(q) (C’ + qaec“qm> is integrable
on R,. This justifies an application of Fubml Theorem which gives that, for such f,¢ and = > 0,

(6.6) Rf(e) = | i) / " e 7, () T qy)dady.

Finally, as F, € L?(R;) and from Theorem [6.1) the sequence (d, ja)q>0 is an upper frame,
we obtam that in fact Pf € L?(Ry) and, in LQ(RJr) Pf = Hpeq t?—[af with ”Haf( ) =
fo ja (qy)dy. This completes the proof. O

6.2. Regularity properties. Finally, we extract from the spectral decomposition stated in
Theorem the following regularity properties as well as an alternative representation of the
heat kernel.

Theorem 6.2. (1) For any f € L? (&) U D(Hy), (t,x) — Pif(x) € C°((Ty,00) x Ry)
and T, was defined in Theorem[6.1].
(2) We have (t,x,y) — Pi(z,y) € C®(R3) and, for any non-negative integers k,p,q,

d"

(6.7 G = 0 [T e 0,700 @) (4,7.) " g

where the integral is locally uniformly convergent in (t,z,y) € Ri.
(3) Moreover, the heat kernel can be written in a series form as

(6.8) Pi(a,y) = 3 (1+ 75 Pa(a)Va (31 +0)77)
n=0
n 5 k! oo _an a
where Pn(gg) = F(%@Zkio(_l) ((a12+1)$ and V =3 f e 4 ja(qy)dq and

the series is locally uniformly convergent in (t,z,y) € Ri.

Proof. We actually prove only the item ([2|) as the first item follows by developing similar argu-
ments. First, from Theorem [4.1| and Theorem we have that J,, ja € C*(R4) and for any
z,y >0 ﬁxed and non- negatlve integers k, p, q,

k

dtk

_qo‘t(d Tu) p)( )(dqfa)(q)(y)' 0 <qa(k_1)+q€_qat+qy>
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and
k

d o ~
A G OAU COICPVAREY

9 0 <qak+p+q) ]
Hence yields
L PV (a,) = (-1) /0 e (4,7 () (0092) 9 (0)dg
where the integral is locally uniformly convergent in (¢, z,y) € R%. Hence (¢,z,y) — Pi(z,y) €
C>®(R3). To prove (6.8), we first observe, from [13, Proposition 2.1(ii)], that for any z,q € R,

n

a > @ qa
(6.9) e o (qz) :T;)Pn(x )W’

which by substitution in (6.2]) gives, assuming, for a moment, that one may interchange the sum
and integral,

© ~ > Polx®) - 1 1

Py(z,y) = / e To(qy) Y 0™ dg =Y (141" a Pu(z®)Vy (y(1+t) &)-
0 n=0 G n=0

In order to justify the interchange we provide some uniform bounds for large n of P, and V,.

First, since z +— ja(zé) is an entire function of order En_ﬂw% = é and type 1, by

following a line of reasoning similar to the proof of [33, Theorem 8.4(5)], we obtain the following

sequence of inequalities, valid for all x > 0 and n large,
1\ dz

n! z
< — = —x" z —Za | ——
Pu@)| < Pal—2) = 5=z lfwe ACOE=

1 1 plp,—nlnn 2 1
< enere n‘62 / encosadg _ O<n§e(xn)a>
™ 0

where the contour is a circle centered at 0 with radius nx > 0 and for the last inequality we
1
used the bound n! < e'™™n""2. Hence, we have, for all fixed z > 0 and n large,

(6.10) P (2] = O<née‘mé).

Next, since for any ¢ > 0, |7a(q)| < Ja(—q) < Cel, for some constant C' = C(a) > 0, we get,
for all y > 0 and n € N,

c [® . = k X I'(n+1+%
V)l < gy W gy oy Tt L r )

- n' 0

where for the equality we use the integral representation of the gamma function. Now, by
performing the same computations that in the proof of [35, Proposition 2.2], we get, for all
y > 0 and n large,

o1
(6.11) Va(y)| = O(nec‘ly”a)
where ¢§¢ = —2-. Hence combining the bounds (6.10) and (6.11), we obtain, for any fixed

a—1"

xz,y,t > 0 and large n,

(6.12) (1+¢) " a

Pn(a:a)Vn <y(1 + t)fé> ’ -0 (nge(cay(lth)éJra:)né1n(1+t)n> 7

which justifies the interchange and completes the proof. O
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APPENDIX A. THE a-BESSEL SEMIGROUP AND THE OPERATOR H,,

We say Q = (Q¢)t>0 is an a-Bessel semigroup with index 1 < a < 2 if it is a Feller semigroup
whose infinitesimal generator is given by

(A1) Lf(z) = %xH A (x) + 2 (Z - 1) 2O, x>0,

(0] (0]

where f € Dy, = {f € Co(Ry); Lf € Co(Ry), f7(0) = 0}, the domain of L, with f*(z) =

limp, o % is the right-derivative of f with respect to the scale function s(x) = xaa:ll . We
point out that
(A.2) Qif(x) = Ktp%f(wa), x>0,

2

where K = (K);>0 is the semigroup of a squared Bessel process of dimension %, or equivalently of

order 1 —1 and péf(x) = f($é) We refer in this part to [10, Appendix 1] for concise information
on squared Bessel processes that can be easily transferred to Q by means of the identity (A.2]).
Furthermore, writing (9¢);0 for the entrance law of Q, we have 9, f = [ f(ty)Aa, (y)dy where

e, (y) = F'(B%l),y > 0, is the density of the variable G,. Note that G¢ is simply a gamma

variable of parameter é, the law of this latter being the entrance law at time 1 of K. The Mellin
transform of G, is given by

(s
(A.3) Mo, (s) = =a) sy > 0
NG
Next, defining the function J,, for 2 € C(_ g), by
0 (eiTrZoe)n
A4 Ja(2) = =T
(A-4) (2) OZHZ:% n!l'(n + é)

we can deduce from [10, Appendix 1] that for any ¢,t,z > 0,
QidgJu(x) = e 1"ty Jo ().

Next, we introduce the linear operator defined, for a smooth function f on ¢ > 0, by

(4.5) Haf(@) = [ Jalan) (o).

Then, H, has the following properties reminiscent of the classical Hankel transform.

Proposition A.1. H, is a unitary and self-inverse operator on L2(Ry.), i.e. |Haof|| = || f| and
HoHyf = f for all f € L2(Ry). Moreover, for any f € L2(R,), the Mellin transform of Huf
s given by

L)
p(ﬁ)

«

(A.6) MHaf(S) = MJQ(S)Mf(]. —s5) = ./\/lf(l —s5), sSE€ (C(O,l)‘

Proof. First, note that J,(x) = oz:L‘aT_l Ji_ 4 <2m%) where J1_, denotes the standard Bessel

o

function of the first kind of order é —1, see e.g. [24, Section 5.3]. Then recall that the standard
Hankel transform is defined, for any g € L?(m) where m(dr) = xdz, as

Huog(r) = /0 Jé_l(r:c)g(ac)mdm, r > 0.
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Then by [37, Chapter 9], H, is unitary and self-inverse on L?(m), i.e. for any g € L?(m), we
have |[Hagllm = ||gllm and HoHag = g. Now for any f € L2(R,), we set g(z) = za Lf ((g)% .
Then it can be easily checked, through a standard change of variable, that g € L?(m) and
lgll?2, = aQ%_lH flI% Therefore, by applying a change of variable, one gets

) 2 00 00 N 2 dq
| HoflI” = olqr)dz| dg= — J14(q2y)g(y)ydy| ——
2a 0 * q
o 12
= 27 0 qa Hog(q?)| dg = 2_, HHagH%n = 2_1 Hg”?n = Hf”2
@ QLo «@

This proves that H, is a unitary operator. Next, for any f € L?(R,), again by change of
variable, we have

a—1
y 2 ay_ Y2 oo
Hollof () = [ Jola) [ f@)alanideds = " abog(2) = Yot20) = o)

which proves that H, is self-inverse. Next, using again a change of variable in (3.1)), we have

Mu,5(s) = My, (s)Ms(1 —s), where for 0 < R(s) < 1, My, (s) = Fi(éz) can be proved by the

Mellin-Barnes integral representation of Bessel functions, see e.g. [31, Section 3.4.3], which gives

that
et (ezwza)n
ds = —— = J.(2).
N O[nz:% n!F(n—l—é) (2)

1 %—I—ioo . F(i)

z
—ioo r(2)
This concludes the proof of the Proposition. O

2i

Next, by referring to [I0, Chapter II], we see that the speed measure of @ is (up to a
multiplicative positive constant) the Lebesgue measure, hence @) extends uniquely to a self-
adjoint contractive Co-semigroup on L2?(R,), also denoted by @ when there is no confusion
(otherwise, we may denote Q' for the Feller semigroup). The infinitesimal generator L of this
L2(R)-extension is an unbounded self-adjoint operator on L?(R.), and, by [25, Remark 3.1],
its L2(R; )-domain, denoted by D (L2(R,)), is given by

(A7) Dr(L*(Ry)) = {f € L*(Ry); Lf € L*(Ry), f(0) = 0}.

Moreover, for any t > 0, Q; € B(L2(Ry)) with S(Q:) = Sc(Q:) = (e79")4>0 and Sp(Q:) =
Sy (Q¢) = (. Finally, using the spectral expansion of the self-adjoint squared Bessel operator Ky,
see e.g. [28, Section 6] and [27], one can deduce that for any ¢t > 0 and f € L2(R), Q.f has the
following spectral expansion in L2(R,),

(AS) Qtf = Haea,tHaf-
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