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Abstract. In this paper, we provide the spectral decomposition in Hilbert space of the C0-

semigroup P and its adjoint P̂ having as generator, respectively, the Caputo and the right-sided
Riemann-Liouville fractional derivatives of index 1 < α < 2. These linear operators, which
are non-local and non-self-adjoint, appear in many recent studies in applied mathematics and
also arise as the infinitesimal generators of some substantial processes such as the reflected
spectrally negative α-stable process. Our approach relies on intertwining relations that we
establish between these semigroups and the semigroup of a Bessel type process whose generator
is a self-adjoint second order differential operator. In particular, from this commutation relation,
we characterize the positive real axis as the continuous point spectrum of P and provide a power
series representation of the corresponding eigenfunctions. We also identify the positive real

axis as the residual spectrum of the adjoint operator P̂ and elucidates its role in the spectral
decomposition of these operators. By resorting to the concept of continuous frames, we proceed
by investigating the domain of the spectral operators and derive two representations for the
heat kernels of these semigroups. As a by-product, we also obtain regularity properties for
these latter and also for the solution of the associated Cauchy problem.

1. Introduction

Fractional calculus, in which derivatives and integrals of fractional order are defined and
studied, is nearly as old as the classical calculus of integer orders. Ever since the first inquisition
by L’Hopital and Leibniz in 1695, there has been an enormous amount of study on this topic for
more than three centuries, with many mathematicians having suggested their own definitions
that fit the concept of a non-integer order derivative. Among the most famous of these definitions
are the Riemann-Liouville fractional derivative and the Caputo derivative, the latter being a
reformulation of the former in order to use integer order initial conditions to solve fractional
order differential equations. In this context, it is natural to consider the following Cauchy
problem, for a smooth function f on x > 0,

(1.1)

{
d
dtu(t, x) = Dαu(t, x)

u(0, x) = f(x),
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where, for any 1 < α < 2, the linear operator Dα is either the Caputo α-fractional derivative

(1.2) Dαf(x) = CDα
+f(x) =

∫ x

0

f ([α]+1)(y)

(x− y)α−[α]

dy

Γ([α] + 1− α)
,

with, for any k = 1, 2, . . ., f (k)(x) = dk

dxk
f(x) stands for the k-th derivative of f , or, the right-

sided Riemann-Liouville (RL) derivative

(1.3) Dαf(x) = Dα
−f(x) =

(
d

dx

)[α]+1 ∫ ∞
x

f(y)(y − x)[α]−α

Γ([α] + 1− α)
dy,

with [α] representing the integral part of α. We point out that when α = 2, in both cases,

D2f(x) = 1
2f

(2)(x) is a second order differential operator.

In this paper, we aim at providing the spectral representation in L2(R+) Hilbert space and
regularities properties of the solution to the Cauchy problem (1.1).

The motivation underlying this study are several folds. On the one hand, the last three
decades have witnessed the most intriguing leaps in engineering and scientific applications of
such fractional operators, including but not limited to population dynamics, chemical technology,
biotechnology and control of dynamical systems, and, we refer to the monographs of Kilbas
et al. [20], Meerschaert and Sikorskii [26] and Sankaranarayanan [40] for excellent and recent
accounts on fractional operators. On the other hand, some recent interesting studies have
revealed that the linear operator CDα

+ is the infinitesimal generator of P = (Pt)t≥0 the Feller
semigroup corresponding to the so-called spectrally negative reflected α-stable process, see e.g. [2,
5, 36]. We will provide the formal definition of this process and semigroup in Section 2, and, we
simply point out that the reflected Brownian motion is obtained in the limiting case α = 2. The
reflected α-stable processes have been studied intensively in the stochastic processes literature.
In particular, we mention that, in a recent paper, Baeumer et. al. [2] showed the interesting fact
that the transition kernel of P allows to map the set of solutions of a Cauchy problem to its
fractional (in time) analogue. Motivated by these findings, they provide a numerical method to
approximate this transition kernel. In this perspective, in Theorem 6.2 below, we provide two
analytical and simple expressions for this transition kernel.

Although the Cauchy problem for the fractional operators associated to reflected stable pro-
cesses plays a central role in many fields of sciences, to the best of our knowledge, their spectral
representation remain unclear. This seems to be attributed to the fact that there is not a unified
theory for dealing with the spectral decomposition of non-local and non-self-adjoint operators,
two properties satisfied, as we shall see in Proposition 2.1, by the fractional operators considered
therein. For a nice account on classical and recent developments on this important topic, we
refer to the two volume treatise of Dunford and Schwartz [16, 17] and the monograph of Davies
[15], and the survey paper by Sjöstrand [43].

The purpose of this paper is to provide detailed information regarding the solution of the
Cauchy problem (1.1) along with its elementary solution which corresponds to the transition

probabilities of the Feller semigroups P and its dual P̂ . More specifically, we provide a spectral
representation of this solution in an integral form involving the absolutely continuous part of the
spectral measure, the generalized Mittag-Leffler functions as eigenfunctions and a weak Fourier
kernel, a terminology which is defined in [34] and recalled in Section 5. This kernel admits on
a dense subset an integral representation which is given in terms of a function, having a simple
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expression, that we name a residual function for the dual semigroup (or co-residual function
for P ), as it is associated to elements in its residual spectrum. We refer to Section 5 for more
precise definitions. As by-product of this spectral representation, we manage to derive regularity
properties for the solution of (1.1) and also for the transition kernel. We already mention that
we observe a cut-off phenomenon in the nature of the spectrum for the class of operators indexed
by the parameter α ∈ (1, 2]. Indeed, while the class of Bessel operators which include the limit
case D2, i.e. α = 2, has the positive axis (0,∞) as continuous spectrum, we shall show that this
axis corresponds, when α ∈ (1, 2), to the continuous point spectrum of the Caputo operator and
the residual spectrum of the right-sided RL fractional operator.

Our approach relies on an in-depth analysis of an intertwining relation that we establish
between the Caputo fractional operator and a second order differential operator of Bessel type,
which the latter turns out to be the generator of a self-adjoint semigroup in L2(R+). This
is combined with the theory of continuous frames that have been introduced recently in the
mathematical physics literature, see [1]. This work complements nicely the recent works of Patie
and Savov in [35] and [33] where such ideas are elaborated between linear operators having a
common discrete point spectrum. We also mention that recently Kuznetsov and Kwasnicki [21]
provide a representation of the transition kernel of α-stable processes killed upon entering the
negative real line, by inverting their resolvent density that they manage to compute explicitly.
In this vein but in a more general context, Patie and Savov in the work in progress [34] explore
further the idea developed in our paper to establish the spectral theory of the class of positive
self-similar semigroups.

The rest of this paper is organized as follows. In Section 2, we introduce the reflected one-
sided α-stable processes and establish substantial analytical properties of the corresponding
semigroups. In Section 3, we shall derive the intertwining relation between the spectrally nega-
tive reflected stable semigroup and the Bessel-type semigroup. From this link, we extract a set
of eigenfunctions that are described in Section 4 which also includes some of their interesting
properties such as the continuous upper frame property, completeness and large asymptotic be-
havior. In Section 5 we investigate the so-called co-residual functions. Finally, in Section 6 we
gather all previous results to provide the spectral decomposition of the two semigroups P and

P̂ including two representations for their transition kernels. The regularity properties are also
stated and proved in that Section.

1.1. Notations. Throughout, we denote by R+ = (0,∞) the positive half-line. For any −∞ ≤
a < a ≤ ∞, we denote the strip C(a,a) = {z ∈ C; a < <(z) < a}, and write simply C+ = C[0,∞).
We write C(−∞,0)c = {z ∈ C; arg(z) 6= π} for the complex plane cut along the negative real

axis. We also write L2(R+) for the Hilbert space of square integrable Lebesgue measurable
functions on R+ endowed with the inner product 〈f, g〉 =

∫∞
0 f(x)g(x)dx and the associated

norm ‖ · ‖. For any weight function ν defined on R+, i.e. a non-negative Lebesgue measur-
able function, we denote by L2(ν) the weighted Hilbert space endowed with the inner product
〈f, g〉ν =

∫∞
0 f(x)g(x)ν(x)dx and its corresponding norm ‖ · ‖ν . We use C0(R+) to denote the

space of continuous real-valued functions on R+ tending to 0 at infinity, which becomes a Banach
space when endowed with the uniform topology ‖ · ‖∞. Additionally, we denote C2

0(R+) to be
the space of twice continuously differentiable functions on R+, which vanishes at both 0 and
infinity, and C∞(R+) the space of functions with continuous derivatives on R+ of all orders, and
Bb(R+) the real-valued bounded Borel measurable functions on R+. For Banach spaces H1,H2,
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we define

B(H1,H2) = {L : H1 → H2 linear and continuous mapping}.
In the case of one Banach space H, the unital Banach algebra B(H,H) is simply denoted by
B(H). Moreover, a semigroup P = (Pt)t≥0 where Pt ∈ B(H) is called a positive C0-semigroup
on H if Pt+s = Pt ◦ Ps, Ptf ≥ 0 for f ≥ 0, and for any functions f ∈ H, ‖Ptf − f‖H → 0 as
t → 0. In the case when H = C0(R+) endowed with the uniform topology, we say P is a Feller
semigroup on R+. Furthermore, for an operator T ∈ B(H1,H2), we use the notation Ran(T )
(resp. Ker(T )) for the range (resp. the kernel) of T and Ran(T ) (resp. Ker(T )) for its closure.
For any set of functions E ⊆ H, we use Span(E) to denote the set of all linear combinations of
functions in E, and Span(E) for its closure. We now proceed to define a few further notations.

For two functions f, g : R+ → R, we write f
a
= O(g) (resp. f

a
= o(g)) if lim supx→a

f(x)
g(x) < ∞

(resp. limx→a
f(x)
g(x) = 0), and f � g (resp. f

a∼ g) if ∃ c > 0 such that c ≤ f(x)
g(x) ≤ c−1 for all x ∈

R+ (resp. if limx→a
f(x)
g(x) = 1 for some a ∈ R ∪ {±∞}). Finally, for any q ∈ R+, we write

dqf(x) = f(qx) and for any α, τ > 0, we set

(1.4) eα,τ (x) = d
τ

1
α
eα (x) = e−τx

α
, x > 0.

2. Fractional operators and the reflected stable semigroup

Let Z = (Zt)t≥0 be a spectrally negative α-stable Lévy process with α ∈ (1, 2), defined on
a filtered probability space (Ω,F, (Ft)t≥0,P = (Px)x∈R). It means that Z is a process with
stationary and independent increments, having no positive jumps, and its law is characterized,
for t > 0, by

(2.1) logE[ezZt ] = zαt, z ∈ C+.

Here and below zα is the main branch of the complex analytic function in the complex half-plane
<(z) ≥ 0, so that 1α = 1. Let X = (Xt)t≥0 be the process Z reflected at its infimum, that is,
for any t ≥ 0,

Xt =

{
Zt if t < TZ(−∞,0],

Zt − infs≤t Zs if t ≥ TZ(−∞,0],

with TZ(−∞,0] = inf{t > 0; Zt ≤ 0}, and we write, for any f ∈ Bb(R+), t, x ≥ 0,

Ptf(x) = Ex [f(Xt)] ,(2.2)

where Ex stands for the expectation operator associated to Px(Z0 = x) = 1. Next, let Ẑ = −Z
be the dual process of Z (with respect to the Lebesgue measure), which is a spectrally positive

α-stable process, and, let X̂ = (X̂t)t≥0 be the process defined from Ẑ by a random time-change
as follows, for any t ≥ 0,

(2.3) X̂t = Ẑτ̂t ,

where τ̂t = inf{u > 0; Âu > t} and Ât =
∫ t

0 I{Ẑs>0}ds. We also write for any f ∈ Bb(R+), t, x ≥ 0,

P̂tf(x) = Êx[f(X̂t)],

where Êx stands for the expectation operator associated to P̂x(Ẑ0 = x) = 1. We are now ready
to state our first result.
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Proposition 2.1. (1) P is a positive contractive C0-semigroup on C0(R+), i.e. a Feller
semigroup, whose infinitesimal generator is (CDα

+,Dα) where

Dα =

{
f ∈ C0(R+); f(x) =

∫ ∞
0

(
e−yJα(x)− J ′α(x− y)I{y<x}

)
g(y)dy, g ∈ C0(R+)

}
,

with

Jα(z) =
1

Γ(1 + 1
α)

∞∑
n=0

(eiπzα)n

Γ(αn+ 1)
, z ∈ C,(2.4)

which is easily seen to define a function holomorphic on C(−∞,0)c.

(2) P admits a unique extension as a contractive C0-semigroup on L2(R+), which is also
denoted by P = (Pt)t≥0 when there is no confusion (otherwise we may denote PF for
the Feller semigroup). The domain of its infinitesimal generator LX is given by

(2.5) Dα(L2(R+)) =

{
f ∈ L2(R+);

∫ ∞
−∞

∣∣∣F+
f (ξ)

∣∣∣2 |ξ|2αdξ <∞}
where F+

f (ξ) =
∫∞

0 eiξxf(x)dx is the one-sided Fourier transform of f taken in the L2

sense.
(3) X̂ is the (weak) dual of X with respect to the Lebesgue measure. Moreover, P̂ is a Feller

semigroup which admits a unique extension as a contractive C0-semigroup on L2(R+),

also denoted by P̂ , which has (Dα
−,Dα(L2(R+))) as infinitesimal generator. Clearly as

P 6= P̂ , we get that P is non-self-adjoint in L2(R+).

Remark 2.1. We point out that when α = 2, P is the 1-dimensional Bessel semigroup, see
[10, Appendix 1], which also belongs to the class of the so-called α-Bessel semigroups, which are

reviewed in more details in Appendix A. In this case, P̂ = P and P is self-adjoint in L2(R+).

Remark 2.2. Note that the function Jα(eiπz
1
α ) is the (generalized) Mittag-Leffler function of

parameters (α, 1), see e.g. [20] for a detailed account on this function.

In order to prove this Proposition, we first state and prove the following lemma, which
generalizes [6, Lemma 2] and may be of independent interests.

Lemma 2.1. Let Yt = Zτt , t ≥ 0, where τt = inf{u > 0; Au > t} and At =
∫ t

0 I{Zs>0}ds. Then
(Yt)t≥0 is a (Fτt)t≥0 strong Markov process and for any f ∈ Bb(R+), t, x ≥ 0, we have

(2.6) Ptf(x) = Ex[f(Yt)].

Moreover, (Yt)t≥0 and (X̂t)t≥0 are dual processes with respect to the Lebesgue measure.

Proof. For any f ∈ Bb(R+), q > 0, let

Uqf(x) =

∫ ∞
0

e−qtPtf(x)dt, U †q f(x) =

∫ ∞
0

e−qtEx
[
f(Xt)I{t<TX0 }

]
dt

be the resolvents of X and X† = (X†t )t≥0, the process X killed at time TX0 = inf{t > 0; Xt = 0},
respectively. It is easy to observe from the construction of X that TX0 = TZ(−∞,0]. Moreover, by

[39, Example 3], X can also be defined as the unique self-similar recurrent extension of X† and
we get, from an application of the strong Markov property, that for all x ≥ 0,

(2.7) Uqf(x) = U †q f(x) + Ex
[
e−qT

X
0

]
Uqf(0).
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Next, since Z has paths of unbounded variation, by [22, Theorem 6.5], we have Px(TZ[0,∞) = 0) =

1 for x ≥ 0 and Px(TZ[0,∞) > 0) = 1 for any x < 0, where TZ[0,∞) = inf{t > 0; Zt ≥ 0}. Thus, the

fine support of the additive functional (At)t≥0, defined as the set {x ∈ R; Px(τ0 = 0) = 1}, is
plainly [0,∞). Moreover, as the Lévy process Z is a Feller process and therefore a Hunt process
(see e.g. [12, Section 3.1]), we have from [19] that (Yt)t≥0 is a (Fτt)t≥0 strong Markov process,
whose resolvent is defined, for f ∈ Bb(R+), by

Vqf(x) =

∫ ∞
0

e−qtEx[f(Yt)]dt.

Furthermore, it is easy to observe that At = t for any t ≤ TZ(−∞,0] and thus τt = t for any

t < TZ(−∞,0]. On the other hand, since Z is a spectrally negative Lévy process with no Gaussian

component, Z does not creep below, see e.g. [22, Exercise 7.4], and therefore TZ0 = inf{t >
0; Zt = 0} > TZ(−∞,0] a.s., where a.s. throughout this proof, means Px-almost surely for all

x > 0. Moreover, observe that a.s.

ATZ0
=

∫ TZ
(−∞,0]

0
I{Zs>0}ds+

∫ TZ0

TZ
(−∞,0]

I{Zs>0}ds = ATZ
(−∞,0]

= TZ(−∞,0].

Next, recalling that TZ(−∞,0] = TX0 , we deduce from the previous identity that, with the obvious

notation, a.s.

(2.8) T Y0 = ATZ0
= TZ(−∞,0] = TX0 .

Since it is clear that Yt = Zτt = Zt = Xt for t < TX0 , we have for any f ∈ Bb(R+) and q > 0,

V †q f(x) =

∫ ∞
0

e−qtEx
[
f(Yt)I{t<TY0 }

]
dt =

∫ ∞
0

e−qtEx
[
f(Xt)I{t<TX0 }

]
dt = U †q f(x).

Hence, the strong Markov property of (Yt)t≥0 together with (2.8) yield that, for every x ≥ 0,

Vqf(x) = V †q f(x) + Ex
[
e−qT

Y
0

]
Vqf(0) = U †q f(x) + Ex

[
e−qT

X
0

]
Vqf(0).

Next, according to [6, Lemma 2] and after an obvious dual argument, (Yt)t≥0 and (Xt)t≥0 have
the same law under P0 and therefore Vqf(0) = Uqf(0). Hence

Uqf(x) = U †q f(x) + Ex
[
e−qT

X
0

]
Uqf(0) = U †q f(x) + Ex

[
e−qT

X
0

]
Vqf(0) = Vqf(x),

which proves the identity (2.6). Next, by [46, Proposition 4.4], we observe that (At)t≥0 and

(Ât)t≥0 are dual additive functionals, both of which are finite for each t and continuous. Hence

by [46, Theorem 4.5], (Yt)t≥0 and (X̂t)t≥0 are dual processes with respect to the Revuz measure
associated to A, which, by [38], is the Lebesgue measure. This completes the proof of this
lemma. �

Proof of Proposition 2.1. The Feller property of the semigroup P is given in [7, Proposition
VI.1]. Moreover, the fact that the infinitesimal generator of P is CDα

+ has been proved in
various papers, see e.g. [5] and [36], and the domain Dα is given in [36, Proposition 2.2], which
completes the proof of the first item. Next, from [39, Lemma 3] and its proof, we know that, up to
a multiplicative positive constant, the Lebesgue measure is the unique excessive measure for P ,
where with the notation of [39, Example 3], γ = 1− 1

α . Thus, since X is stochastically continuous,
see [23, Lemma 2.1], a classical result from the general theory of Markov semigroups, see e.g. [14,
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Theorem 5.8], yields that the Feller semigroup P admits a unique extension as a contractive C0-
semigroup on L2(R+). We now proceed to characterize the domain of the infinitesimal generator
of the L2(R+)-extension, denoted by DX . To this end, we first observe from [4, Theorem 12.16]
that since Z is a Lévy process, its semigroup (P t)t≥0, i.e. P tf(x) = Ex[f(Zt)], x ∈ R, is a L2(R)-
Markov semigroup, and its infinitesimal generator, denoted by LZ , has the following anisotropic
Sobolev space as its domain

(2.9) DZ =

{
f̄ ∈ L2(R);

∫ ∞
−∞

∣∣Ff̄ (ξ)
∣∣2 |ξ|2αdξ <∞} ,

where Ff̄ (ξ) =
∫∞
−∞ e

iξxf̄(x)dx is the Fourier transform of f̄ . Now for a function f on R+ we

define its extension f̄ : R → R as f̄(x) = f(x)I{x>0}. Then, for any f ∈ Dα(L2(R+)) = {f ∈
Dα(L2(R+)); f̄ ∈ C2

0(R)}, we have clearly f̄ ∈ DZ ∩ C2
0(R) and thus by combining [7, Section

I.2] and [19, Theorem 2.1] we get, that for any x > 0,

(2.10) LXf(x) = a(x)LZ f̄(x),

where a(x) = I{x>0} from [19, (3.6)]. Therefore, since LZ f̄ ∈ L2(R), it is obvious that LXf ∈
L2(R+), which implies that f ∈ DX . Next, for any τ > 0, let fτ (x) = τ3x3e−τx, x > 0, then
easy computations yield that for all τ > 0 fτ ∈ Dα(L2(R+)), hence by the Wiener’s theorem for
Mellin transform Dα(L2(R+)) is dense in L2(R+) and therefore, for any f ∈ Dα(L2(R+)), we
can take (fn)n≥0 ⊂ Dα(L2(R+)) ∩C2

0(R+) such that fn → f in L2(R+). Writing f̄n and f̄ their
corresponding extensions to L2(R) as above, we still have f̄n → f̄ in L2(R) and f̄ ∈ DZ . Also
note that for each ξ ∈ R,

(2.11) F+
LXfn

(ξ) = FLZ f̄n(ξ) = (−iξ)αFf̄n(ξ)→ (−iξ)αFf̄ (ξ) = FLZ f̄ (ξ),

where we used [4, Theorem 12.16] for the second and last identity. Therefore LXfn converges in
L2(R+) and f ∈ DX by the closedness of infinitesimal generator. This shows that Dα(L2(R+)) ⊆
DX . On the other hand, take now f ∈ DX ∩ C2

0(R+) and let f̄ be constructed as above. Then
by [19, Theorem 2.6] and recalling that the fine support of (At)t≥0 is R+, we have

(2.12) LZ f̄(x) =

{
b(x)LXf(x) for x ≥ 0,
0 for x < 0,

where, denoting I+(x) = I{x>0},

b(x) = lim
t→0

Ex[
∫ t

0 I{Zs>0}ds]

t
= lim

t→0

∫ t
0 P sI+(x)ds

t
= lim

t→0
P tI+(x) = I{x>0}

for each x ∈ R. Therefore, we have∫
R

(
LZ f̄(x)

)2
dx =

∫
R

(
(I{x<0} + I{x≥0})L

Z f̄(x)
)2
dx =

∫ ∞
0

(
LZ f̄(x)

)2
dx =

∫ ∞
0

(
LXf(x)

)2
dx,

which implies that f̄ ∈ DZ and f ∈ Dα(L2(R+)). Next, since we have proved that Dα(L2(R+)) ⊆
DX and Dα(L2(R+)) ∩ C2

0(R+) is dense in L2(R+), we have that DX ∩ C2
0(R+) is also dense in

L2(R+). Hence the same argument as above shows that (2.12) still holds for any f ∈ DX , which
further proves that DX ⊆ Dα(L2(R+)) and completes the proof for the second argument. For

the duality argument, we first observe from Lemma 2.1 that X and X̂ are dual processes with
respect to the Lebesgue measure. Moreover, note that the minimal process X† belongs to the
class of positive 1

α -self-similar Markov processes as introduced in [23], which also provides a
7



bijection between positive self-similar processes and Lévy processes stated as follows. Let us

define, for any t ≥ 0, ϑt = inf{u > 0;
∫ u

0 (X†s)−αds > t}, then the process

(2.13) ξ†t = logX†ϑt ,

is a Lévy process killed at an independent exponential time. More specifically, by [36], the
Laplace exponent of ξ† is

(2.14) ψ†(u) =
Γ(u+ 1)

Γ(u− α+ 1)
, u > −1.

Note that by writing θ for the largest non-negative root of the convex function ψ†, it is easy
to check that θ = α − 1 ∈ (0, 1). Hence by [39, Section 5], there exists a dual process of X†,

denoted by X̂†, with the Lebesgue measure serving as the reference measure. Moreover, X̂† is

also a positive 1
α -self-similar process with its corresponding Lévy process denoted by ξ̂†, which

is the dual of the Lévy process obtained from ξ† by means of Doob h-transform via the invariant

function h(x) = eθx, x ∈ R. Therefore, the Laplace exponent of ξ̂† takes the form, for u < 0,

ψ̂(u) = ψ†(−u+ θ) = ψ†(−u+ α− 1) =
Γ(α− u)

Γ(−u)
.

Note that ξ̂† drifts to −∞ a.s. and thus X̂† has a a.s. finite lifetime T X̂
†

0 = inf{t > 0; X̂†t ≤
0}. Hence by recalling that X can be viewed as the recurrent extension of X† that leaves 0

continuously a.s., we deduce from [39, Lemma 6] that X̂ can also be viewed as the recurrent

extension of X̂† which leaves 0 by a jump according to the jump-in measure Cx−α, x, C > 0. The
Feller property of the semigroup of such recurrent extension has been shown in [9, Proposition
3.1], while the existence of the L2(R+)-extension follows by the same argument than the one we

developed for P . Moreover, from [4, Theorem 12.16], we deduce easily that DẐ = DZ , hence

using the same method as above, we get that DX̂ = DX = Dα(L2(R+)). Finally, using the same
arguments as in (2.11), we see that for any f ∈ Dα(L2(R+)),

F+

LX̂f
(ξ) = F

LẐ f̄
(ξ) = (iξ)αFf̄ (ξ).

Comparing this identity with [18, Lemma 2.1 and Theorem 2.3], we conclude that LX̂f = Dα
−f

on Dα(L2(R+)). This completes the proof. �

3. Intertwining relationship

We say that a linear operator Λ is a multiplicative operator if it admits the following repre-
sentation, for any f ∈ Bb(R+),

Λf(x) =

∫ ∞
0

f(xy)λ(y)dy,

for some integrable function λ. When in addition λ is the density of the law of a random variable
X, i.e. λ(y) ≥ 0 and 〈1, λ〉 = 1, we say that Λ is a Markov multiplicative operator. Moreover,
Mλ =MΛ =MX is called a Markov multiplier where for at least <(s) = 1,

MΛ(s) =

∫ ∞
0

ys−1λ(y)dy,

8



is the Mellin transform of λ. By adapting the developments in [45, 2.1.9] based on the Fourier

transform, we also have that if
∫∞

0 y−
1
2λ(y)dy < ∞ then Λ ∈ B(L2(R+)) with, for any f ∈

L2(R+),

(3.1) MΛf (s) =MΛ(1− s)Mf (s).

Note that this latter provides that Λ is one-to-one in L2(R+) if MΛ(1− s) 6= 0. We also recall
from [31] that if s 7→ Mλ(s) is defined, absolutely integrable and uniformly decays to zero along
the lines of the strip s ∈ C(a,a) for some a < a, then the Mellin inversion theorem applies to
yield, for any x > 0,

(3.2) λ(x) =
1

2πi

∫ a+i∞

a−i∞
x−sMλ(s)ds, a < a < a.

Now we are ready to state the following.

Theorem 3.1. Let us write, for any α ∈ (1, 2),

(3.3) MΛα(s) =
Γ( s−1

α + 1)Γ( sα)

Γ( 1
α)Γ(s)

, s ∈ C+.

Then, the following holds.

(1) MΛα is a Markov multiplier and Λα ∈ B(L2(R+))∩B(C0(R+)). Moreover, it is one-to-
one on C0(R+), and, in L2(R+), Ran(Λα) = L2(R+).

(2) Moreover, for any t ≥ 0 and f ∈ L2(R+), the following intertwining relation holds

(3.4) PtΛαf = ΛαQtf,

where Q = (Qt)t≥0 is the L2(R+)-extension of the α-Bessel self-adjoint semigroup as
defined in Appendix A.

(3) Consequently, we have, for any f ∈ DL(L2(R+)),

(3.5) CDα
+Λαf = ΛαLf,

where the fractional operator CDα
+ was defined in (1.2), while the second order differ-

ential operator L and its L2(R+)-domain DL(L2(R+)) are defined in (A.1) and (A.7),
respectively.

The proof of this Theorem is split into three steps. First, we show that (3.3) is indeed
a Markov multiplier. Then, we establish the identity (3.4) in the space C0(R+). Finally, by
remarking that C0(R+) is dense in L2(R+), we can extend the intertwining identity to L2(R+)
by a continuity argument.

3.1. The Markov multiplicative operator Λα. In order to prove Theorem 3.1(1), which
provides some substantial properties of Λα, we shall need the following claims.

Lemma 3.1. Let us define

gα(z) =
∞∑
n=0

Γ
(

1
α

)
Γ(αn+ 1)

Γ(n+ 1
α)(n!)2

(eiπzα)n,(3.6)

then gα is holomorphic on C(−∞,0)c. Moreover, gα ∈ L2(R+) with Λαgα = eα where eα is defined
in (1.4).

9



Proof. First, from the Stirling approximation

(3.7) Γ(a)
∞∼
√

2πaa−
1
2 e−a,

see [24, (1.4.25)], we get that
Γ(αn+α+1)Γ(n+ 1

α
)

Γ(αn+1)Γ(n+1+ 1
α

)(n+1)2

∞
= O(nα−3), hence, as α ∈ (1, 2), gα is

holomorphic on C(−∞,0)c . We now proceed to show that gα ∈ L2(R+). To this end, let us define,
for 0 < <(s) < 1,

Mα (s) =
Γ(1 + 1

α)Γ( sα)Γ(1− s)
Γ(1− s

α)Γ(1−s
α )

and we first aim at proving that Mα = Mgα the Mellin transform of gα. For this purpose,
observe that s 7→ Mα(s) is holomorphic on C(0,1) and then consider the contour integral IN,B =

1
2πi

∫
CN,B

z−sMα (s) ds where CN,B is the rectangle with vertices at 1
2 ± iB and −αN − α

2 ± iB
for some large N ∈ N and B > 0. Then we can obviously split IN,B into four parts, namely
IN,B = I1 + I2 + I3 + I4 where

I1 =
1

2πi

∫ −αN−α
2

+iB

1
2

+iB
z−sMα(s)ds, I2 =

1

2πi

∫ −αN−α
2
−iB

−αN−α
2

+iB
z−sMα(s)ds,

I3 =
1

2πi

∫ 1
2
−iB

−αN−α
2
−iB

z−sMα(s)ds, I4 =
1

2πi

∫ 1
2

+iB

1
2
−iB

z−sMα(s)ds.

Next, observing from the Stirling approximation, see e.g. [31, (2.1.8)], that for fixed a ∈ R,

(3.8) |Γ(a+ ib)|±∞∼ C|b|a−
1
2 e−

π
2
|b|,

with C = C(a) > 0, we deduce, for some Cα > 0, that

(3.9) |Mα (a+ ib)| ±∞∼ Cα|b|
3
α
a−a− 1

α e−
π
2

(1− 1
α

)|b|,

and, hence

(3.10)
∣∣∣z−(a+ib)Mα (a+ ib)

∣∣∣ ±∞∼ Cα|z|−a|b|
3
α
a−a− 1

α e−
π
2

(1− 1
α

)|b|+arg(z)b.

Therefore, if | arg(z)| < π
2 (1− 1

α) and N is kept fixed, we have both

(3.11) lim
B→∞

|I1| = lim
B→∞

|I3| = 0.

For the integral I2, we have

|I2| ≤
1

2π
|z|αN+α

2

∫ ∞
−∞

earg(z)b

∣∣∣∣∣Γ(1 + 1
α)Γ(−N − 1

2 + i bα)Γ(1 + αN + α
2 + ib)

Γ(N + 3
2 − i

b
α)Γ(N + 1

2 + 1
α − i

b
α)

∣∣∣∣∣ db
=

1

2
|z|αN+α

2

∫ ∞
−∞

earg(z)b

∣∣∣∣∣ Γ(1 + 1
α)Γ(1 + αN + α

2 + ib)

Γ(N + 3
2 − i

b
α)2Γ(N + 1

2 + 1
α − i

b
α) cosh(πbα )

∣∣∣∣∣ db
where we have used the reflection formula for the gamma function. Using the Stirling approxi-
mation again, it is easy to derive, for large N , the upper bound∣∣∣∣∣Γ(1 + αN + α

2 + ib)

Γ(N + 3
2 − i

b
α)2

∣∣∣∣∣ ≤ CeN(α logα−α−2)N (α−2)N+α−1
2
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which is uniform in b ∈ R and where C > 0. Moreover, recalling, from [31, (5.1.3)], that, for

N ≥ 1 and b ∈ R,
∣∣Γ(N + 1

2 + 1
α − i

b
α)
∣∣ ≥ Γ(N+ 1

2
+ 1
α

)

cosh
1
2 (πb

α
)

, we find

|I2| ≤ C
eN(α logα−α−2)N (α−2)N+α−1

2

Γ(N + 1
2 + 1

α)

∫ ∞
−∞

earg(z)b

cosh
1
2 (πbα )

db

where the last integral converges absolutely whenever | arg(z)| < π
2α . For such z, since 1 < α < 2,

we get that limN→∞ |I2| = 0. Therefore, combining this with (3.11), we have, for | arg(z)| <
π
2α ∧

π
2 (1− 1

α) = π
2α ,

lim
N,B→∞

IN,B = lim
B→∞

I4 =
1

2πi

∫ 1
2

+i∞

1
2
−i∞

z−sMα (s) ds.

Hence an application of Cauchy’s integral theorem yields

(3.12)
1

2πi

∫ 1
2

+i∞

1
2
−i∞

z−sMα (s) ds =
∞∑
n=0

Γ( 1
α)Γ(αn+ 1)

Γ(n+ 1
α)(n!)2

(−1)nzαn = gα(z)

where we sum over the poles s = −αn, n = 0, 1 . . . of Γ
(
s
α

)
with residues α(−1)n

n! . This shows

that Mgα = Mα. Since α ∈ (1, 2), we have, from (3.9), that b 7→ Mα(1
2 + ib) ∈ L2(R) and by

the Parseval identity for the Mellin transform we conclude that gα ∈ L2(R+). Finally, by means
of a standard application of Fubini theorem, see e.g. [44, Section 1.77]), one shows that, for any
x > 0,

Λαgα(x) =
∞∑
n=0

Γ( 1
α)Γ(αn+ 1)

Γ(n+ 1
α)(n!)2

MΛα(αn+ 1)(−1)nxαn =
∞∑
n=0

(−1)n
xαn

n!
= eα(x),

where we used the expression (3.3). This completes the proof of the lemma. �

Next, let us show that MΛα is the Mellin transform of a random variable that we denote by
Iα. To this end, we write, for any u > 0,

φα(u) =
Γ(αu+ 1)

Γ(αu+ 1− α)

1

u− 1 + 1
α

=
α

Γ(2− α)
+

∫ ∞
0

(1− e−uy)α(α− 1)

Γ(2− α)

e−
y
α

(1− e−
y
α )α

dy,

where the second identity follows after some standard computation, see e.g. [32, (4.2)]. As

plainly
∫∞

0 (y ∧ 1) e−
y
α

(1−e−
y
α )α

dy < ∞, we get, from [41, Theorem 3.2], that φα is a Bernstein

function, whose definition is given in [41, Definition 3.2]. Moreover, by [41, Section 5], φα
is the Laplace exponent of a subordinator, that is an increasing process with stationary and
independent increments, which we denote by (ξt)t≥0. Next, observing that for any n ∈ N,

(3.13) MΛα(αn+ 1) =
n!Γ(n+ 1

α)

Γ( 1
α)Γ(αn+ 1)

=
n!∏n

k=1 φα(k)
,

we deduce, from [11, Proposition 3.3], that (MΛα(αn+ 1))n≥0 is the Stieltjes moment sequence
of the random variable

∫∞
0 e−ξtdt. Moreover, observe from its definition (3.3) and applications

of the recurrence relation of the gamma function thatMΛα satisfies the functional equation, on
s ∈ C+,

MΛα(αs+ 1) =
s

φα(s)
MΛα(α(s− 1) + 1), MΛα(1) = 1,
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hence, by a uniqueness argument developed in [33, Section 7], we have

(3.14) MΛα(s+ 1) = E

[(∫ ∞
0

e−ξtdt

) s
α

]
= E [Isα] .

ConsequentlyMΛα(s) is the Mellin transform of the variable Iα =
(∫∞

0 e−ξsds
) 1
α . Finally, since

the law of
∫∞

0 e−ξtdt is known to be absolutely continuous, see e.g. [33, Proposition 7.7], so is
the one of Iα, therefore we conclude that MΛα is indeed a Markov multiplier, which provides
the first claim of Theorem 3.1(1). Next, the one-to-one property of Λα follows from the fact
that the mapping s 7→ MΛα(s) is clearly zero-free on the line 1 + iR. Moreover, writing λα
the density of Iα, we have by dominated convergence that for any f ∈ C0(R+), Λαf ∈ C0(R+)
with ‖Λαf‖∞ ≤ ‖f‖∞, that is, Λα ∈ B(C0(R+)). On the other hand, for f ∈ L2(R+), Jensen’s
inequality and a change of variable yield

‖Λαf‖2 =

∫ ∞
0

E [f(xIα)]2 dx ≤
∫ ∞

0
E
[
f2(xIα)

]
dx = E[I−1

α ] ‖f‖2

where E[I−1
α ] =MΛα(0) =

Γ(1− 1
α

)

Γ(1+ 1
α

)
< ∞. Hence Λα ∈ B(L2(R+)). Moreover, from Lemma 3.1,

it is easy to conclude that Λαdqgα = dqeα for all q > 0, where dqgα ∈ L2(R+) since qdq is a

unitary operator in L2(R+). Hence, by the well-known result that Span(dqeα)q>0 = L2(R+), we
have that Λα has a dense range in L2(R+), which completes the proof of Theorem 3.1(1).

3.2. Proofs of Theorem 3.1(2) and (3). We recall that a collection of σ-finite measures (ηt)t>0

is called an entrance law for the semigroup P if for any t, s > 0 and any f ∈ C0(R+), ηtPsf =
ηt+sf where ηtf =

∫∞
0 f(x)ηt(dx). We also recall from Appendix A that Gα is the 1

α power of

a gamma variable with parameter 1
α > 0, that is P(Gα ∈ dy) = e−y

α

Γ(1+ 1
α

)
dy, y > 0. Now we are

ready to state the following Lemma.

Lemma 3.2. P admits an entrance law (ηt)t>0 defined for any t > 0 by ηtf = η1dtf =∫∞
0 f(ty)η1(dy) where η1(dy) = λXα(y)dy, with λXα ∈ L2(R+), is the probability measure of

a variable Xα. Its Mellin transform takes the form

(3.15) MXα(s) =
Γ(s)

Γ( sα + 1− 1
α)
, s ∈ C+.

Moreover, we have the following factorization of the variable Gα

Gα
d
=Xα × Iα,

where
d
= stands for the identity in distribution and Xα is considered independent of Iα, which

we recall was characterized in (3.14).

Proof. First, let us observe from (3.15) that for any n ≥ 0,

(3.16) MXα(αn+ 1) =
Γ(αn+ 1)

n!
=

∏n
k=1

Γ(αk+1)
Γ(α(k−1)+1)

n!
=

n∏
k=1

ψ†(αk)

k
,

where we recall from the proof of Proposition 2.1 that ψ†(u) = Γ(u+1)
Γ(u−α+1) , u > α − 1, is the

Laplace exponent of the killed Lévy process ξ† defined in (2.13). Then by [3, Theorem 1],
we deduce that (MXα(αn + 1))n≥0 is the moment sequence of the variable Xα

1 under P0, for
12



which we used the fact that since X is a 1
α -self-similar process, Xα is a 1-self-similar process

whose minimal process is associated, through the Lamperti mapping, to a Lévy process with
Laplace exponent ψα(u) = ψ†(αu). Moreover, note from (3.15) thatMXα satisfies the functional

equation MXα(αs + 1) = ψα(s)
s MXα(α(s − 1) + 1) with MXα(1) = 1, hence by a uniqueness

argument, see again [33, Section 7], we conclude that MXα(s + 1) = E0[Xs
1 ] is indeed the

Mellin transform of X1 under P0. Using again the Stirling approximation (3.8), we see that

|MXα(1
2 + ib)|±∞= O

(
|b|

1
2α
− 1

2 e−
π
2

(1− 1
α

)|b|
)

, and thus b 7→ MXα(1
2 + ib) ∈ L2(R). Hence by

Mellin inversion and Parseval identity, we get that the law of Xα is absolutely continuous with a
density λXα ∈ L2(R+). Now, recalling that η1(dy) = λXα(y)dy and for any t > 0, ηtf = η1dtf ,
we get, from (3.16) augmented by a moment identification that (ηt)t>0 is an entrance law for
the semigroup P . Finally, from the expression of MΛα in (3.3), we conclude that for s ∈ C+,

MXα(s)MΛα(s) =
Γ(s)

Γ( sα + 1− 1
α)

Γ( s−1
α + 1)Γ( sα)

Γ( 1
α)Γ(s)

=
Γ( sα)

Γ( 1
α)

=MGα(s)

where we used for the last identity the expression (A.3). We complete the proof by invoking the
injectivity of the Mellin transform. �

We are now ready to prove the intertwining relation stated in Theorem 3.1(2). First, since
s 7→ MXα(s) is zero-free on the line 1 + iR, we again conclude that the Markov operator
ΛXα associated to the positive variable Xα, i.e. ΛXαf(x) =

∫∞
0 f(xy)λXα(y)dy, is injective on

C0(R+). This combined with the fact that the law of Gα is the entrance law at time 1 of the
semigroup Q and with the factorization of this latter stated in Lemma 3.2 provide all conditions
for the application of [11, Proposition 3.2], which gives that for any t ≥ 0 and f ∈ C0(R+), the
following intertwining relationship between the Feller semigroups (PFt )t≥0 and (QFt )t≥0,

(3.17) PFt Λαf = ΛαQ
F
t f.

in C0(R+). Futhermore, since C0(R+) ∩ L2(R+) is dense in L2(R+), we can extend the inter-
twining identity into L2(R+) by continuity of the involved operators and complete the proof of
Theorem 3.1(2). Finally, Theorem 3.1(3) follows directly from (3.4) by recalling that CDα

+ and
L are the infinitesimal generators of P and Q, respectively, where the L2(R+)-domain of L is
given in (A.7). This concludes the proof of Theorem 3.1.

4. Eigenfunctions and upper frames

We start by recalling a few definitions concerning the spectrum of linear operators and we
refer to [17, XV.8] for a thorough account on these objects. Let P ∈ B(L2(R+)). We say that
a complex number z ∈ S(P), the spectrum of P, if P − zI does not have an inverse in L2(R+)
with the following three distinctions:

• z ∈ Sp(P), the point spectrum, if Ker(P − zI) 6= {0}. In this case, we say a function fz
is an eigenfunction for P, associated to the eigenvalue z, if fz ∈ Ker(P− zI).

• z ∈ Sc(P), the continuous spectrum, if Ker(P − zI) = {0} and Ran(P − zI) = L2(R+)
but Ran(P− zI) ( L2(R+).
• z ∈ Sr(P), the residual spectrum, if Ker(P− zI) = {0} and Ran(P− zI) ( L2(R+).
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Moreover, we also recall from [1] that a collection of functions (gq)q>0 is a frame for L2(R+) if
for all q > 0 gq ∈ L2(R+) and there exists constants A,B > 0, called the frame bounds, such
that, for all f ∈ L2(R+),

A‖f‖2 ≤
∫ ∞

0
〈f, gq〉2 dq ≤ B‖f‖2.

Moreover, we say (gq)q>0 is upper frame if it only satisfies the second inequality. Finally, recalling
that Jα was defined in (2.4), we are ready to state the following claims which include the
expression along with substantial properties of the set of eigenfunctions of Pt.

Theorem 4.1. (1) For any q, t > 0, dqJα is an eigenfunction for Pt associated to the
eigenvalue e−q

αt. Consequently, we have (e−q
αt)q>0 ⊆ Sp(Pt).

(2) Let the linear operator Hα be defined for any f ∈ L2(R+) by

(4.1) Hαf(q) =

∫ ∞
0

f(x)Jα(qx)dx, q > 0,

then Hα ∈ B(L2(R+)) with |||Hα||| = sup‖f‖=1 ‖Hαf‖ ≤
Γ(1− 1

α
)

Γ(1+ 1
α

)
. Consequently, the

collection of functions (dqJα)q≥0 is a dense upper frame for L2(R+), with upper frame

bound
Γ(1− 1

α
)

Γ(1+ 1
α

)
.

(3) For any k ∈ N, J (k)
α admits the following asymptotic expansion for large x > 0,

J (k)
α (x) ≈ x−k−α

πΓ(1 + 1
α)

∞∑
n=0

an,k x
−αn(4.2)

where an,k = (−1)n+kΓ(αn + α + k) sin(πα(n + 1)) and ≈ means that for any N ∈ N,

J (k)
α (x)− x−k−α

πΓ(1+ 1
α

)

∑N
n=0 an,k x

−αn ∞= o
(
x−k−α−α(N+1)

)
.

Remark 4.1. Note that there is a cut-off in the nature of the spectrum when one considers the
family of operators P indexed by α ∈ (1, 2). Indeed, when α = 2, then J2 = J2 /∈ L2(R+) (see

(A.4) for the definition of the Bessel-type function J2) and hence, for all q, t > 0, e−q
2t /∈ Sp(Pt)

but instead e−q
2t ∈ Sc(Pt).

Proof. First, we recall that Jα, the Bessel-type function, is defined in (A.4) as an holomorphic

function on C(−∞,0)c . As α ∈ (1, 2) and Jα(x)
∞
= O

(
x
α−2

4

)
, see e.g. [42], we get that Jα ∈ C0(R+).

Hence, as above, applying Fubini’s theorem, we obtain, for x > 0, that

(4.3) ΛαJα(x) = α

∞∑
n=0

(eiπxα)n

n!Γ(n+ 1
α)
MΛα(αn+ 1) =

1

Γ(1 + 1
α)

∞∑
n=0

(eiπxα)n

Γ(αn+ 1)
= Jα(x),

which shows, since Λα ∈ B(C0(R+)), that both Jα ∈ C0(R+) and dqJα ∈ C0(R+) for all q > 0.
Thus, we can use the relation (3.17) to get, for all q > 0 and x ≥ 0,

(4.4) PFt dqJα(x) = PFt ΛαdqJα(x) = ΛαQ
F
t dqJα(x) = e−q

αtΛαdqJα(x) = e−q
αtdqJα(x).

Next, proceeding as in the proof of Lemma 3.1, we get, for | arg(z)| <
(

1
α −

1
2

)
π, that

Jα(z) =
1

2πi

∫ 1
2

+i∞

1
2
−i∞

z−sMJα(s)ds,
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where, for 0 < <(s) < α,

(4.5) MJα(s) =
Γ(1− s

α)Γ( sα)

Γ(1− s)Γ( 1
α)
.

Since from (3.8),
∣∣MJα (1

2 + ib
)∣∣ ±∞= O

(
|b|αa−

α
2 e−

π
2

( 2
α
−1)|b|

)
, we get, by the Parseval identity,

that Jα ∈ L2(R+). Moreover, since PF coincides with its extension P on C0(R+) ∩ L2(R+), we
conclude from (4.4) that, for all q, t > 0, dqJα is an eigenfunction of Pt with eigenvalue e−q

αt.

This completes the proof of the first item. Next, with Λ̂α ∈ B(L2(R+)) as the L2(R+)-adjoint
of Λα ∈ B(L2(R+)), we have, for any f ∈ L2(R+),

‖Hαf‖2 =

∫ ∞
0
〈f,ΛαdqJα〉2 dq = ‖HαΛ̂αf‖2 = ‖Λ̂αf‖2 ≤

Γ2(1− 1
α)

Γ2(1 + 1
α)
‖f‖2

where we used successively the identity (4.3), the definition as well as the unitary property of

Hα, see Proposition A.1, and the identity |||Λ̂α||| = |||Λα||| ≤
Γ(1− 1

α
)

Γ(1+ 1
α

)
, giving the second claim.

Furthermore, for any k ∈ N, by a classical argument since the first series below is easily checked
to be uniformly convergent in z ∈ C(−∞,0)c , we get

zkΓ(1 +
1

α
)J (k)

α (z) =
∞∑
n=0

(eiπzα)n

Γ(αn− k + 1)
= 1Ψ1(eiπzα) ≈ z−α

∞∑
n=0

(−1)n

n!

Γ (n+ 1) z−αn

Γ(−αn− α− k + 1)
,

where, for | arg(z)| < π
2 (2−α), we used [30, Theorem 1], with the notation therein, that is, 1Ψ1

stands for the Wright function and we made the choice of parameters p = q = 1, α1 = 1, a1 =
1, β1 = α, b1 = −k + 1, κ = 1 + β1 − α1 = α ∈ (1, 2). The proof is completed by an application
of the reflection formula for the gamma function. �

5. Co-residual functions

In this section, we focus on characterizing the spectrum of the L2(R+)-adjoint operator

P̂ = (P̂t)t≥0. We point out that the non-self-adjointness of Pt does not ensure the existence of

eigenfunctions for P̂t. In fact, we shall show in the following Lemma that the point spectrum of

P̂t is empty and Sp(Pt) = Sr(P̂t), the residual spectrum of P̂t.

Lemma 5.1. For each t ≥ 0, Sp(P̂t) = ∅ and (e−q
αt)q>0 ⊆ Sr(P̂t) = Sp(Pt).

Proof. Assume that there exists z ∈ Sp(P̂t), then there exists a non-zero function fz ∈ L2(R+)

such that P̂tfz = zfz. Moreover, since Λα has a dense range in L2(R+), we see that Ker(Λ̂α) = {0}
and therefore gz = Λ̂αfz 6= 0 with gz ∈ L2(R+) as Λ̂α ∈ B(L2(R+)). Now by the adjoint
intertwining relation of (3.4), we have

Qtgz = QtΛ̂αfz = Λ̂αP̂tfz = zΛ̂αfz = zgz,

which implies that z ∈ Sp(Qt), a contradiction to the fact that Sp(Qt) = ∅. Therefore we have

Sp(P̂t) = ∅ and moreover, from the known fact that Sr(P̂t) ∪ Sp(P̂t) = Sp(Pt), we conclude that

(e−q
αt)q>0 ⊆ Sr(P̂t). �
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Next, we will characterize a sequence of the so-called residual functions associated to Sr(P̂t),
by means of (weak) Fourier kernels. To this end, we first recall from [34] that a linear operator

Ĥ is called a weak Fourier kernel if there exists a linear space D(Ĥ) dense in L2(R+) and

MĤ : 1
2 + iR→ C such that, for any f ∈ D(Ĥ),

(5.1) b 7→ MĤf

(
1

2
+ ib

)
=MĤ

(
1

2
+ ib

)
Mf

(
1

2
− ib

)
∈ L2(R).

Theorem 5.1. Let us write, for s ∈ C(0,1),

MĤα(s) =
Γ
(

1
α

)
Γ(s)

Γ
(

1−s
α

)
Γ
(
1− 1

α + s
α

) .(5.2)

Then the following statements hold.

(1) Ĥα is a weak Fourier kernel and D ⊆ D(Ĥα), where the linear space D is defined by

(5.3) D =

{
f ∈ L2(R+);

∣∣∣∣Mf

(
1

2
+ ib

)∣∣∣∣ ±∞= O
(
|b|−

1
2
−εe

−(2−α)π
2α

|b|
)

for some ε > 0

}
.

Moreover, we have ĤαHαf = f on L2(R+) and HαĤαg = g on D(Ĥα). Consequently,

Ĥα is a self-adjoint operator on D(Ĥα).

(2) We have Ran(Λα) ⊆ D(Ĥα), and, on L2(R+), ĤαΛα = Hα and Hα = ΛαHα.

(3) For any f ∈ L2(R+) and t, q > 0, we have ĤαPtΛαf(q) = e−q
αtĤαΛαf(q). Moreover,

for any 1 < κ < α
2−α , Eκ = Span(eκ,τ )τ>0 is a dense subset of L2(R+), and, for all

f ∈ Eκ, we have the integral representation, for almost every (a.e.) q > 0,

(5.4) Ĥαf(q) =

∫ ∞
0

f(x)Ĵα(qx)dx

where, for | arg(z)| < π, we set, with πα = π
α ,

Ĵα(z) =
Γ
(

1
α

)
π

sin (πα − z sin (πα)) e−z cos(πα).(5.5)

We say that dqĴα is a residual function for P̂t (or co-residual function for Pt) associated
to residual spectrum value e−q

αt.

Proof. First, since from (3.8) and 0 < a < 1 fixed,
∣∣∣MĤα (a+ ib)

∣∣∣ ±∞= O
(
|b|a−

1
2 e

(2−α)π
2α

|b|
)

, we

deduce from (5.3) and the fact that, for all b ∈ R,
∣∣Mf

(
1
2 − ib

)∣∣ =
∣∣Mf

(
1
2 + ib

)∣∣, that

b 7→
∣∣∣∣MĤα

(
1

2
+ ib

)
Mf

(
1

2
− ib

)∣∣∣∣ ±∞= O
(
|b|−

1
2
−ε
)
∈ L2(R).

Therefore D ⊆ D(Ĥα). Next, observing that for any 1 < κ < α
2−α , τ > 0 and s ∈ C(0,∞),

(5.6) Meκ,τ (s) =

∫ ∞
0

xs−1e−τx
κ
dx = τ−

s
κκ−1Γ

( s
κ

)
,

we get
∣∣Meκ,τ

(
1
2 − ib

)∣∣ ±∞= O
(
|b|

1
2κ
− 1

2 e−
π
2κ
|b|
)

, and thus, for any 1 < κ < α
2−α , (eκ,τ )τ>0 ⊆ D.

Moreover, since (eκ,τ )τ>0 is dense in L2(R+), we obtain that D(Ĥα) is dense in L2(R+) and
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therefore Ĥα is a weak Fourier kernel. Next, using the definition of Hαf in (4.1), we get, by
performing a change of variable in (3.1), that for any f ∈ L2(R+) and s ∈ 1

2 + iR,

(5.7) MHαf (s) =MJα(s)Mf (1− s) =
Γ
(
1− s

α

)
Γ
(
s
α

)
Γ
(

1
α

)
Γ(1− s)

Mf (1− s).

Thus, for such s, we have

MĤα(s)MHαf (1− s) =
Γ
(

1
α

)
Γ(s)

Γ
(

1−s
α

)
Γ
(
1− 1

α + s
α

)MHαf (1− s) =Mf (s).

Therefore, an application of the Parseval identity yields that Hαf ∈ D(Ĥα) and ĤαHαf = f

for all f ∈ L2(R+). Similarly, one gets that HαĤαg = g for all g ∈ D(Ĥα). Next, from (4.1)

one gets readily that Hα is self-adjoint in L2(R+), hence Ĥα is also self-adjoint as the inverse
operator of Hα, which concludes the proof of Theorem 5.1(1). Next, from (3.1), we have, for
any f ∈ L2(R+), MΛαf (s) =Mf (s)MΛα(1− s), therefore for at least s ∈ 1

2 + iR,

MĤα(s)MΛαf (1− s) =
Γ
(

1
α

)
Γ(s)

Γ
(

1−s
α

)
Γ
(
1− 1

α + s
α

)MΛα(s)Mf (1− s)

=
Γ( sα)

Γ(1−s
α )
Mf (1− s) =MHαf (s)

where the Mellin transform of Hαf is given in (A.6). Since from Proposition A.1, Hαf ∈ L2(R+),

we get, by the Parseval identity, that Λαf ∈ D(Ĥα) and ĤαΛαf = Hαf for any f ∈ L2(R+).
Combine this relation with the self-inverse property of Hα from Proposition A.1, we have, for any

f ∈ L2(R+), that ĤαΛαHαf = HαHαf = f , which implies Hα = ΛαHα and finishes the proof
of Theorem 5.1(2). Next, combining the intertwining relation (3.4) and the spectral expansion
(A.8) for Qt, we get that, for any f ∈ L2(R+), t > 0,

PtΛαf = ΛαQtf = ΛαHαeα,tHαf = Hαeα,tHαf.(5.8)

Hence, by observing that PtΛαf ∈ Ran(Hα) and by means of Theorem 5.1(1), we get

ĤαPtΛαf = ĤαHαeα,tHαf = eα,tHαf = eα,tĤαΛαf.

Finally, since, from above, we have, for any 1 < κ < α
2−α , (eκ,τ )τ>0 ⊆ D, we get that Ĥαeκ,τ ∈

L2(R+) and by combining (5.2) with (5.6), that, for at least s ∈ 1
2 + iR,

MĤαeκ,τ (s) =
τ
s−1
κ Γ( 1

α)Γ(s)Γ(1−s
κ )

κΓ(1− 1
α + s

α)Γ(1−s
α )

.

By following a line of reasoning similar to the one used in the proof of Lemma 3.1, we obtain

Ĥαeκ,τ (q) =
Γ( 1

α)

κ

∞∑
n=0

(−1)nτ−
n+1
κ Γ(n+1

κ )

n!Γ(1− 1
α −

n
α)Γ(n+1

α )
qn =

Γ
(

1
α

)
κπ

∞∑
n=0

(−1)nΓ
(
n+1
κ

)
sin ((n+ 1)πα)

τ
n+1
κ n!

qn,

which defines an entire function since, by the Stirling approximation (3.7),
Γ(n+1

κ
)

nΓ(n
κ

)

∞
= O

(
n

1
κ
−1
)

and κ > 1. On the other hand, since for any x > 0,

π

Γ
(

1
α

) Ĵα(x) = cos (πα)=
(
e−xe

iπα
)

+ sin (πα)<
(
e−xe

iπα
)

=
∞∑
n=0

(−1)n

n!
sin ((n+ 1)πα)xn,
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a standard application of Fubini’s theorem, see again [44, Section 1.77], yields∫ ∞
0

eκ,τ (x)Ĵα(qx)dx =
Γ
(

1
α

)
π

∞∑
n=0

(−1)n

n!
sin ((n+ 1)πα) qn

∫ ∞
0

e−τx
κ
xndx

=
Γ
(

1
α

)
κπ

∞∑
n=0

(−1)nΓ
(
n+1
κ

)
sin ((n+ 1)πα)

τ
n+1
κ n!

qn = Ĥαeκ,τ (q),

from which we conclude that Ĥαf(q) =
∫∞

0 f(x)Ĵα(qx)dx for all f ∈ Eκ. This completes the
proof. �

6. Spectral representation, heat kernel and smoothness properties

We have now all the ingredients for stating and proving the spectral representation of the

semigroups P and P̂ along with the representation of the heat kernel.

6.1. Spectral expansions of P and P̂ in Hilbert spaces and the heat kernel.

Theorem 6.1. (1) For any g ∈ L2(R+) and t > 0, we have in L2(R+)

(6.1) P̂tg = Ĥαeα,tHαg.

(2) The heat kernel of P admits the representation

(6.2) Pt(x, y) =

∫ ∞
0

e−q
αtJα(qx)Ĵα(qy)dq,

where the integral is locally uniformly convergent in (t, x, y) ∈ R3
+.

(3) For any t > Tα, we have in L2(R+),

(6.3) Ptf = Hαeα,tĤαf

where
(a) if f ∈ D(Ĥα) then Tα = 0,
(b) otherwise if f ∈ L2 (eκ,η) for some κ ≥ α

α−1 and η > 0, where we set eκ,η(x) =

eηx
κ
, x > 0, then Tα = η

α−1

(
2α−1
αη cos((α+ 1)πα)

)α
I{κ(α−1)=α} and Ĥαf(q) =∫∞

0 f(y)Ĵα(qy)dy.

Remark 6.1. We mention that D(Ĥα)\L2 (eκ,η) 6= ∅ meaning that the two conditions (3a) and

(3b) are applicable under different situations. For instance, for 0 < β < min
(

α
2−α ,

α
α−1

)
, eβ ∈

Ran(Λα)\L2 (eκ,η), as one can show that ΛαBβ = eβ with x 7→ Bβ(x) =
∑∞

n=0
(−1)n

MΛα (βn+1)n!x
βn ∈

L2(R+).

Proof. First, since for any f ∈ L2(R+), P̂tf ∈ L2(R+), we get, for all q > 0,

HαP̂tf(q) =
〈
P̂tf, dqJα

〉
= 〈f, PtdqJα〉 = e−q

αt 〈f,dqJα〉 = e−q
αtHαf(q)
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where we used Theorem 4.1(1) for dqJα ∈ L2(R+) and for the third identity. Therefore, we can
apply Theorem 5.1(1) to get that for any g ∈ L2(R+),

P̂tg = ĤαHαP̂tg = Ĥαeα,tHαg,

which proves (6.1). On the other hand, for any f ∈ D(Ĥα), g ∈ L2(R+), we have, using the

self-adjoint property of Ĥα and Hα, see Theorem 5.1(1),

〈Ptf, g〉 =
〈
f, P̂tg

〉
=
〈
f, Ĥαeα,tHαg

〉
=
〈
Hαeα,tĤαf, g

〉
,

which proves (6.3) for f ∈ D(Ĥα) and Tα = 0, that is, the claim (3a). Next, let us consider
the density function λXα ∈ L2(R+) of the random variable Xα, which we recall was studied

in Lemma 3.2. Then using (5.7) again, it is easy to deduce that MHαλXα (s) =
Γ( s
α

)

Γ( 1
α

)
, which

coincides with the Mellin transform of Gα (see (A.3)). Hence we have, for all q > 0, that

HαλXα(q) = λGα(q) = e−q
α

Γ(1+ 1
α

)
. Therefore, we see that for any τ > 0, q 7→ eα,tHαdτλXα(q) =

e−(τ−α+t)qα

τΓ(1+ 1
α

)
∈ Eα. Hence, using Theorem 5.1(3), we can write

(6.4) P̂tdτλXα(y) = Ĥαeα,tHαdτλXα(y) =

∫ ∞
0

e−q
αtĴα(qy)

∫ ∞
0

λXα(τx)Jα(qx)dxdq.

Next, from (4.2) we deduce that |Jα(x)| 0
= O(1) and |Jα(x)|∞= O(x−α) and thus, since λXα is a

probability density function,
∫∞

0 λXα(τx)|Jα(qx)|dx ≤ C(1 + q−α) for some C = C(τ) > 0. On

the other hand, from (5.5), we get that there exists Ĉ > 0 such that for all y > 0, |Ĵα(y)| ≤ Ĉey,
which justifies an application of Fubini theorem to obtain

(6.5)

∫ ∞
0

e−q
αtĴα(qy)

∫ ∞
0

λXα(τx)Jα(qx)dxdq =

∫ ∞
0

λXα(τx)

∫ ∞
0

e−q
αtJα(qx)Ĵα(qy)dqdx.

Now let us define the Mellin convolution operator X by Xf(τ) =
∫∞

0 f(y)λXα(τy)dy and, since

λXα ∈ L2(R+), X ∈ B(L2(R+)) and by performing a change of variable in (3.1) we get, from

(3.15), MX (s) = MXα(s) = Γ(s)

Γ( s
α

+1− 1
α

)
which is clearly zero-free on <(s) = 1 entailing that X

is one-to-one in L2(R+). Moreover, by means of the same upper bounds used above, we deduce
that for any y fixed,

x 7→
∫ ∞

0
e−q

αtJα(qx)Ĵα(qy)dq ∈ L2(R+)

and thus the right-hand side of (6.5) is in L2(R+) and hence from (6.4), we get that, for any
τ > 0,

P̂tdτλXα(y) =

∫ ∞
0

λXα(τx)

∫ ∞
0

e−q
αtJα(qx)Ĵα(qy)dqdx.

The one-to-one property of X implies that the transition kernel of P̂t, denoted by P̂t(y, x), can

be represented, for a.e. y > 0, as P̂t(y, x) =
∫∞

0 e−q
αtJα(qx)Ĵα(qy)dq. Since the last integral

is also locally uniformly convergent for any (t, x, y) ∈ R3
+, and Ĵα is continuous, the identity

holds everywhere. This last fact combined with the duality stated in Proposition 2.1(3) yield the
expression (6.2) by recalling, from Proposition 2.1(3), that since the Lebesgue measure serves as

reference measure we get that Pt(x, y) = P̂t(y, x), t, x, y > 0. While (3a) has been proved above,
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we now proceed to the justification of (3b). First, by the Cauchy-Schwarz inequality, observe

that for any f ∈ L2 (eκ,η), writing Ĵe(qy) = Ĵα(qy)
eκ,η(y) , we have∫ ∞

0
f(y)Ĵα(qy)dy =

∫ ∞
0

f(y)Ĵe(qy)eκ,η(y)dy ≤ ||f ||eκ,η
∣∣∣∣∣∣dqĴe∣∣∣∣∣∣

eκ,η
.

Moreover, since for all y > 0,
∣∣∣Ĵα(y)

∣∣∣ ≤ Ce−y cos(πα), C > 0, we have by an application of the

Laplace method, see e.g. [29, Ex.7.3 p.84], that for large q,∣∣∣∣∣∣dqĴe∣∣∣∣∣∣2
eκ,η
≤ C2

∫ ∞
0

e−ηy
κ
e−2q cos(πα)ydy

∞
= O

(
qaecκq

κ
κ−1

)
,

where a > 0 and we set cκ = (κ − 1)η
1

1−κ
(

2 cos((α+1)πα)
κ

) κ
κ−1

> 0 since κ > α > 1. Note that

c α
α−1

= Tα and for any t > Tα, since α ≥ κ
κ−1 , q 7→ Fκ(q) = eα,t(q)

(
C + qaecκq

κ
κ−1
)

is integrable

on R+. This justifies an application of Fubini Theorem which gives that, for such f, t and x > 0,

(6.6) Ptf(x) =

∫ ∞
0

f(y)

∫ ∞
0

e−q
αyJα(qx)Ĵα(qy)dqdy.

Finally, as Fκ ∈ L2(R+) and from Theorem 6.1, the sequence (dqJα)q>0 is an upper frame,

we obtain that in fact Ptf ∈ L2(R+) and, in L2(R+), Ptf = Hαeα,tĤαf with Ĥαf(q) =∫∞
0 f(y)Ĵα(qy)dy. This completes the proof. �

6.2. Regularity properties. Finally, we extract from the spectral decomposition stated in
Theorem 6.1 the following regularity properties as well as an alternative representation of the
heat kernel.

Theorem 6.2. (1) For any f ∈ L2 (eκ,η) ∪ D(Ĥα), (t, x) 7→ Ptf(x) ∈ C∞((Tα,∞) × R+)
and Tα was defined in Theorem 6.1.

(2) We have (t, x, y) 7→ Pt(x, y) ∈ C∞(R3
+) and, for any non-negative integers k, p, q,

(6.7)
dk

dtk
P

(p,q)
t (x, y) = (−1)k

∫ ∞
0

qαke−q
αt (dqJα)(p) (x)

(
dqĴα

)(q)
(y)dq

where the integral is locally uniformly convergent in (t, x, y) ∈ R3
+.

(3) Moreover, the heat kernel can be written in a series form as

(6.8) Pt(x, y) =

∞∑
n=0

(1 + t)−n−
1
αPn(xα)Vn

(
y(1 + t)−

1
α

)
,

where Pn(x) = 1
Γ(1+ 1

α
)

∑n
k=0(−1)k

(nk)k!

Γ(αk+1)x
k and Vn(y) = 1

n!

∫∞
0 qαne−q

αĴα(qy)dq and

the series is locally uniformly convergent in (t, x, y) ∈ R3
+.

Proof. We actually prove only the item (2) as the first item follows by developing similar argu-

ments. First, from Theorem 4.1 and Theorem 5.1, we have that Jα, Ĵα ∈ C∞(R+) and for any
x, y > 0 fixed and non-negative integers k, p, q,∣∣∣∣ dkdtk e−qαt(dqJα)(p)(x)(dqĴα)(q)(y)

∣∣∣∣ ∞= O
(
qα(k−1)+qe−q

αt+qy
)
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and ∣∣∣∣ dkdtk e−qαt(dqJα)(p)(x)(dqĴα)(q)(y)

∣∣∣∣ 0
= O

(
qαk+p+q

)
.

Hence (6.2) yields

dk

dtk
P

(p,q)
t (x, y) = (−1)k

∫ ∞
0

qαke−q
αt(dqJα)(p)(x)(dqĴα)(q)(y)dq

where the integral is locally uniformly convergent in (t, x, y) ∈ R3
+. Hence (t, x, y) 7→ Pt(x, y) ∈

C∞(R3
+). To prove (6.8), we first observe, from [13, Proposition 2.1(ii)], that for any x, q ∈ R+,

(6.9) eq
αJα (qx) =

∞∑
n=0

Pn(xα)
qαn

n!
,

which by substitution in (6.2) gives, assuming, for a moment, that one may interchange the sum
and integral,

Pt(x, y) =

∫ ∞
0

e−q
α(t+1)Ĵα(qy)

∞∑
n=0

Pn(xα)

n!
qαndq =

∞∑
n=0

(1 + t)−n−
1
αPn(xα)Vn

(
y(1 + t)−

1
α

)
.

In order to justify the interchange we provide some uniform bounds for large n of Pn and Vn.

First, since z 7→ Jα(z
1
α ) is an entire function of order limn→∞

n lnn
Γ(αn+1) = 1

α and type 1, by

following a line of reasoning similar to the proof of [33, Theorem 8.4(5)], we obtain the following
sequence of inequalities, valid for all x > 0 and n large,

|Pn(x)| ≤ Pn(−x) =
n!

2πi
xn
∮
nx
e
z
xJα

(
−z

1
α

) dz

zn+1

≤ en
1
α x

1
α n!e−n lnn

2π

∫ 2π

0
en cos θdθ = O

(
n

1
2 e(xn)

1
α

)
where the contour is a circle centered at 0 with radius nx > 0 and for the last inequality we

used the bound n! ≤ e1−nnn−
1
2 . Hence, we have, for all fixed x > 0 and n large,

(6.10) |Pn(xα)| = O

(
n

1
2 exn

1
α

)
.

Next, since for any q > 0, |Ĵα(q)| ≤ Ĵα(−q) ≤ Ceq, for some constant C = C(α) > 0, we get,
for all y > 0 and n ∈ N,

|Vn(y)| ≤ C

n!

∫ ∞
0

e−q
α
qαn

∞∑
k=0

(yq)k

k!
dq = C

∞∑
k=0

Γ(n+ 1 + k
α)

n!k!
yk

where for the equality we use the integral representation of the gamma function. Now, by
performing the same computations that in the proof of [35, Proposition 2.2], we get, for all
y > 0 and n large,

(6.11) |Vn(y)| = O

(
nec̄αyn

1
α

)
where c̄αα = α

α−1 . Hence combining the bounds (6.10) and (6.11), we obtain, for any fixed
x, y, t > 0 and large n,

(6.12) (1 + t)−n−
1
α

∣∣∣Pn(xα)Vn
(
y(1 + t)−

1
α

)∣∣∣ = O

(
n

3
2 e(c̄αy(1+t)−

1
α+x)n

1
α−ln(1+t)n

)
,

which justifies the interchange and completes the proof. �
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Appendix A. The α-Bessel semigroup and the operator Hα

We say Q = (Qt)t≥0 is an α-Bessel semigroup with index 1 < α < 2 if it is a Feller semigroup
whose infinitesimal generator is given by

(A.1) Lf(x) =
2

α2
x2−αf (2)(x) +

2

α

(
2

α
− 1

)
x1−αf (1)(x), x > 0,

where f ∈ DL = {f ∈ C0(R+); Lf ∈ C0(R+), f+(0) = 0}, the domain of L, with f+(x) =

limh↓0
f(x+h)−f(x)
s(x+h)−s(x) is the right-derivative of f with respect to the scale function s(x) = xα−1

α−1 . We

point out that

(A.2) Qtf(x) = Ktp 1
α
f(xα), x > 0,

whereK = (Kt)t≥0 is the semigroup of a squared Bessel process of dimension 2
α , or equivalently of

order 1
α−1 and p 1

α
f(x) = f(x

1
α ). We refer in this part to [10, Appendix 1] for concise information

on squared Bessel processes that can be easily transferred to Q by means of the identity (A.2).
Furthermore, writing (ϑt)t>0 for the entrance law of Q, we have ϑtf =

∫∞
0 f(ty)λGα(y)dy where

λGα(y) = e−y
α

Γ(1+ 1
α

)
, y > 0, is the density of the variable Gα. Note that Gαα is simply a gamma

variable of parameter 1
α , the law of this latter being the entrance law at time 1 of K. The Mellin

transform of Gα is given by

(A.3) MGα(s) =
Γ( sα)

Γ( 1
α)
, <(s) > 0.

Next, defining the function Jα, for z ∈ C(−∞,0)c , by

(A.4) Jα(z) = α
∞∑
n=0

(eiπzα)n

n!Γ(n+ 1
α)
,

we can deduce from [10, Appendix 1] that for any q, t, x ≥ 0,

QtdqJα(x) = e−q
αtdqJα(x).

Next, we introduce the linear operator defined, for a smooth function f on q > 0, by

(A.5) Hαf(q) =

∫ ∞
0

Jα(qx)f(x)dx.

Then, Hα has the following properties reminiscent of the classical Hankel transform.

Proposition A.1. Hα is a unitary and self-inverse operator on L2(R+), i.e. ‖Hαf‖ = ‖f‖ and
HαHαf = f for all f ∈ L2(R+). Moreover, for any f ∈ L2(R+), the Mellin transform of Hαf
is given by

(A.6) MHαf (s) =MJα(s)Mf (1− s) =
Γ( sα)

Γ(1−s
α )
Mf (1− s), s ∈ C(0,1).

Proof. First, note that Jα(x) = αx
α−1

2 J 1
α
−1

(
2x

α
2

)
where J 1

α
−1 denotes the standard Bessel

function of the first kind of order 1
α − 1, see e.g. [24, Section 5.3]. Then recall that the standard

Hankel transform is defined, for any g ∈ L2(m) where m(dx) = xdx, as

Hαg(r) =

∫ ∞
0

J 1
α
−1(rx)g(x)xdx, r > 0.
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Then by [37, Chapter 9], Hα is unitary and self-inverse on L2(m), i.e. for any g ∈ L2(m), we

have ‖Hαg‖m = ‖g‖m and HαHαg = g. Now for any f ∈ L2(R+), we set g(x) = x
1
α
−1f

(
(x2 )

2
α

)
.

Then it can be easily checked, through a standard change of variable, that g ∈ L2(m) and

‖g‖2m = α2
2
α
−1‖f‖2. Therefore, by applying a change of variable, one gets

‖Hαf‖2 =

∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)Jα(qx)dx

∣∣∣∣2 dq =
1

2
2
α

∫ ∞
0

∣∣∣∣∫ ∞
0

J 1
α
−1(q

α
2 y)g(y)ydy

∣∣∣∣2 dq

q1−α

=
1

2
2
α

∫ ∞
0

qα−1
∣∣∣Hαg(q

α
2 )
∣∣∣2 dq =

1

α2
2
α
−1
‖Hαg‖2m =

1

α2
2
α
−1
‖g‖2m = ‖f‖2.

This proves that Hα is a unitary operator. Next, for any f ∈ L2(R+), again by change of
variable, we have

HαHαf(y) =

∫ ∞
0

Jα(qy)

∫ ∞
0

f(x)Jα(qx)dxdq =
y
α−1

2

2
1
α
−1

HαHαg(2y
α
2 ) =

y
α−1

2

2
1
α
−1
g(2y

α
2 ) = f(y),

which proves that Hα is self-inverse. Next, using again a change of variable in (3.1), we have

MHαf (s) =MJα(s)Mf (1− s), where for 0 < <(s) < 1, MJα(s) =
Γ( s
α

)

Γ( 1−s
α

)
can be proved by the

Mellin-Barnes integral representation of Bessel functions, see e.g. [31, Section 3.4.3], which gives
that

1

2πi

∫ 1
2

+i∞

1
2
−i∞

z−s
Γ( sα)

Γ(1−s
α )

ds = α
∞∑
n=0

(eiπzα)n

n!Γ(n+ 1
α)

= Jα(z).

This concludes the proof of the Proposition. �

Next, by referring to [10, Chapter II], we see that the speed measure of Q is (up to a
multiplicative positive constant) the Lebesgue measure, hence Q extends uniquely to a self-
adjoint contractive C0-semigroup on L2(R+), also denoted by Q when there is no confusion
(otherwise, we may denote QF for the Feller semigroup). The infinitesimal generator L of this
L2(R+)-extension is an unbounded self-adjoint operator on L2(R+), and, by [25, Remark 3.1],
its L2(R+)-domain, denoted by DL(L2(R+)), is given by

(A.7) DL(L2(R+)) = {f ∈ L2(R+); Lf ∈ L2(R+), f+(0) = 0}.
Moreover, for any t ≥ 0, Qt ∈ B(L2(R+)) with S(Qt) = Sc(Qt) = (e−q

αt)q≥0 and Sp(Qt) =
Sr(Qt) = ∅. Finally, using the spectral expansion of the self-adjoint squared Bessel operator Kt,
see e.g. [28, Section 6] and [27], one can deduce that for any t > 0 and f ∈ L2(R+), Qtf has the
following spectral expansion in L2(R+),

Qtf = Hαeα,tHαf.(A.8)
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