
Learning and Leveraging Structured Knowledge from

User-Generated Social Media Data

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy by

Hang Dong

April 2020





Contents

List of Figures vii

List of Tables ix

Notations xi

Abbreviations xiii

Preface xv

Abstract xvii

Acknowledgements xix

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aim and Scope of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Overview of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Structured Knowledge: Introduction and Related Work 11

2.1 Definitions and Types of Structured Knowledge . . . . . . . . . . . . . . . 12

2.1.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Concept Hierarchies and Taxonomies . . . . . . . . . . . . . . . . . 15

2.1.3 Subsumption Relations . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Equivalence and Association Relations . . . . . . . . . . . . . . . . 16

2.1.5 Term Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Folksonomies: a Potential Source of Structured Knowledge . . . . . . . . . 16

2.2.1 Unstructured Characteristics of Folksonomies . . . . . . . . . . . . 17

2.3 Learning Structured Knowledge from Social Tagging Data . . . . . . . . . 18

2.3.1 Heuristics-Based Methods . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Semantic Grounding to External Resources . . . . . . . . . . . . . 19

2.3.3 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Knowledge Base Enrichment from Folksonomies . . . . . . . . . . 21

iii



2.4 Leveraging Structured Knowledge for Automated Social Annotation . . . 21

2.4.1 Automated Social Annotation as a Semantic-Based Application . . 22

2.4.2 Knowledge as Tag Co-occurrence Relations . . . . . . . . . . . . . 23

2.4.3 Knowledge in Deep Learning Approaches . . . . . . . . . . . . . . 23

2.4.4 Knowledge as Label Correlation in Multi-Label Classification . . . 24

2.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A Machine Learning System to Derive Knowledge from Tags 27

3.1 Definition, Problem Formulation and Overview of the System . . . . . . . 28

3.2 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Feature Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Topic Similarity Based Features . . . . . . . . . . . . . . . . . . . . 34

3.4.1.1 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1.2 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . 34

3.4.1.3 Generalised Jaccard Index . . . . . . . . . . . . . . . . . 35

3.4.2 Topic Distribution Based Features . . . . . . . . . . . . . . . . . . 35

3.4.2.1 Number of Overlapping Significant Topics . . . . . . . . . 35

3.4.2.2 Difference of the Number of Significant Topics . . . . . . 35

3.4.2.3 Difference of Maximum Probability in Topic Distributions 36

3.4.2.4 Difference of the Average Probability of Significant Topics 36

3.4.3 Probabilistic Association Based Features . . . . . . . . . . . . . . . 36

3.4.3.1 Probabilistic Association . . . . . . . . . . . . . . . . . . 37

3.4.3.2 Local Probabilistic Association . . . . . . . . . . . . . . . 37

3.4.3.3 Joint Probabilistic Association . . . . . . . . . . . . . . . 38

3.4.3.4 Local Joint Probabilistic Association . . . . . . . . . . . . 38

3.5 Hierarchy Generation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Experiment and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Social Tagging Data Processing . . . . . . . . . . . . . . . . . . . . 42

3.6.1.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.1.2 Probabilistic Topic Modelling from Tagging Data . . . . 43

3.6.2 Labelled Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2.1 Tag Grounding . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2.2 Instance Labelling with Knowledge Bases . . . . . . . . . 45

3.6.3 Classification Settings . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.4.1 Relation-level Evaluation . . . . . . . . . . . . . . . . . . 47

3.6.4.2 Ontology-level Evaluation . . . . . . . . . . . . . . . . . . 49

3.6.4.3 Knowledge Base Enrichment Based Evaluation . . . . . . 52

3.6.4.4 Hierarchy Visualisation . . . . . . . . . . . . . . . . . . . 54

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Knowledge-Enhanced Deep Learning for Social Annotation 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Problem Statement: Multi-Label Classification . . . . . . . . . . . . . . . 63

4.3 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



4.3.1 Semantic-based Loss Regularisers . . . . . . . . . . . . . . . . . . . 65

4.3.2 Multi-Source Hierarchical Attention Mechanisms . . . . . . . . . . 67

4.3.2.1 Embedding Layers . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2.2 Bi-GRU Layers . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2.3 Hierarchical Attention Layers . . . . . . . . . . . . . . . . 69

4.3.3 Guided Attention Mechanisms on the Sentence Level . . . . . . . . 70

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.4 Evaluation and Comparison . . . . . . . . . . . . . . . . . . . . . . 75

4.4.4.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.4.2 Results on Semantic-Based Loss Regularisers . . . . . . . 78

4.4.5 Training Time and Model Convergence . . . . . . . . . . . . . . . 80

4.4.6 Parameter Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . 81

4.4.7 Analysis of Multi-Source Components . . . . . . . . . . . . . . . . 83

4.4.8 Attention Visualisation . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Conclusions and Future Work 93

5.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Learning Various Types of Structured Knowledge . . . . . . . . . . 101

5.3.2 Efficient Approaches to Leverage Structured Knowledge . . . . . . 101

5.3.3 End-to-End Knowledge-Centred Learning . . . . . . . . . . . . . . 102

5.3.4 Extending to Other User-Generated Data . . . . . . . . . . . . . . 102

5.4 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A Visualisation of Tag Concept Hierarchies 105

B List of Open-Source Implementations 109

C Publications 111

Bibliography 113

v





List of Figures

1.1 The user interface of the Bibsonomy website (screencast in August 2019),

including resources (bookmarks, on the left column, and publications, on

the right column), tags (marked with grey background), users (marked with

@ sign). The bottom right part shows the “busy tags”, or the currently most

popular tags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 An overall, knowledge-centred view of research in the thesis, including learn-

ing and leveraging structured knowledge from user-generated social media

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 A simplified spectrum of (potential) structured knowledge (containing folk-

sonomies), adapted and re-illustrated from [194, p. 319] and [108, 159, 205] . 13

3.1 Architecture of the system to learn subsumption relations and concept hier-

archies from social tagging data . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Extracting tag concepts using the Data Cleaning module, from the Bib-

sonomy Dataset: The underlined tags with coloured lines (on the left) are

grouped to form several tag concepts (on the right), either a multiword tag

concept (in the upper right black box) or a single tag concept (in the lower

right black box); the standard tag concepts are marked in bold font. . . . . . 31

3.3 Results of ontology-level evaluation. The figures show the TF and TO values

computed with the learned hierarchies from the Bibsonomy dataset and the

“gold standard” (DBpedia and CCS). Three domains were selected for DB-

pedia, Computer Science/Information Science, Education and Economics;

and three sub-hierarchies uppermost 2, 3 and 4 layers were tested for CCS.

SVM or AdaBoost (denoted as “Ada”) were used for classification. The

x-axis represents methods with different feature sets and the y-axis repre-

sents the similarity in percentage. Higher TF and TO values indicate greater

similarity to the gold standard. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Results on Knowledge Base Enrichment based evaluation . . . . . . . . . . . 54

3.5 Excerpt of the learned hierarchy to enrich DBpedia in the domain of data

mining, trained with the proposed full feature set FSall using SVM. . . . . . 55

3.6 Excerpt of the learned hierarchy to enrich CCS in the domain of social soft-

ware, trained with the proposed full feature set FSall using AdaBoost. . . . . 56

4.1 An example of a document and its associated metadata and tags on Bibson-

omy. The metadata consist of the title and the content (i.e. the abstract of

the paper). Tags are surrounded with a red box. . . . . . . . . . . . . . . . . 61

4.2 The proposed Joint Multi-label Attention Network (JMAN) for automated

social annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Convergence plot: training loss with respect to the number of training epochs

for the Bi-GRU, HAN, JMAN-s, and JMAN models . . . . . . . . . . . . . . 81

vii



4.4 F1 score with respect to the λ1 and λ2 on Bibsonomy and CiteULike-a

datasets using the Bi-GRU, HAN, and JMAN models . . . . . . . . . . . . . 82

4.5 Attention visualisation of the proposed JMAN model for the testing doc-

uments from the Bibsonomy, CiteULike-a, and CiteULike-t datasets. Red

blocks in the leftmost two columns show the original (“ori”) and the title-

guided (“tg”) sentence-level attention weights, respectively. Purple blocks

mark the word-level attention weights for the title (the first row) and each

sentence (every two rows) in the abstract. The darker the colour, the greater

amount of attention was paid to the word or the sentence in JMAN. The

predicted labels and the actual “ground truth” labels are displayed below

each diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1 Excerpt of the learned hierarchy in the domain of data mining. . . . . . . . . 105

A.2 Excerpt of the learned hierarchy in the domain of social software. . . . . . . 106

A.3 Excerpt of the learned hierarchy in the domain of e commerce. . . . . . . . . 106

A.4 Excerpt of the learned hierarchy in the domain of information retrieval. . . . 107

A.5 Excerpt of the learned hierarchy in the domain of machine learning. . . . . . 107

A.6 Excerpt of the learned hierarchy in the domain of research methods. . . . . . 108

viii



List of Tables

2.1 Concepts related to structured knowledge . . . . . . . . . . . . . . . . . . . . 14

3.1 Feature sets corresponding to the three assumptions . . . . . . . . . . . . . . 34

3.2 Statistics for the raw and the cleaned Bibsonomy dataset . . . . . . . . . . . 43

3.3 Example latent topics related to the tag concept “web” . . . . . . . . . . . . 43

3.4 Statistics of the external Knowledge Bases (KBs) and the Bibsonomy folk-

sonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Classification testing results with comparison among feature sets . . . . . . . 48

3.6 Statistic of Knowledge Enrichment from folksonomies . . . . . . . . . . . . . 53

4.1 Multi-label datasets for social annotation . . . . . . . . . . . . . . . . . . . . 73

4.2 Comparison results of JMAN and others on the four social annotation datasets

in terms of Hamming Loss(H), Accuracy(A), Precision(P), Recall(R), and F1

score (F1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Comparison results of using the semantic-based loss regularisers on different

deep learning models for the four social annotation datasets in terms of

Hamming Loss(H), Accurary(A), Precision(P), Recall(R), and F1 score (F1) 79

4.4 Comparison of training time for the multi-label classification models in seconds 80

4.5 Comparison results of multiple sources (title, content, and title-guided con-

tent representations) in the JMAN model on the four social annotation

datasets in terms of Hamming Loss(H), Accuracy(A), Precision(P), Recall(R)

and F1 score (F1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ix





Notations

The following key notations are found throughout this thesis:

C Finite set of tag concepts

Ca A tag concept a

Cb A tag concept b

F Folksonomy

Fclean Cleaned Folksonomy

Fstr Structured Folksonomy

N Number of occurrence of all tag concepts

Nz Number of occurrence of all tag concepts assigned to topic z

R Finite set of resources

Ra,b Common root (or parent) tag concept of Ca and Cb

T Finite set of tags

U Finite set of users

V Finite set of vocabularies

|V | Vocabulary size

X The collection of instances (each as a sequence)

|X| Instance (or document) size

Y Set of all possible labels

|Y | Label size

z The set of all hidden topics

|z| Number of hidden topics

zsiga The set of all significant topics for the concept Ca

|zsiga | Number of significant topics for the concept Ca

z A hidden topic

Sim Label similarity matrix

Sub Label subsumption matrix

W∗ Weight matrices in neural networks (Subscript * matches to any characters)
−→
Yi The multi-hot vector representation of the label set for the ith instance

b∗ Bias vectors in neural networks (Subscript * matches to any characters)

xi



ca The original content representation vector

ci The document representation vector

ct The title-guided content representation vector

cta The title representation vector

de Dimensionality of neural word embeddings

h(t) The hidden state vector at the time step t

h̃(t) The candidate hidden state vector at the time step t

na Number of words in the content

ns Number of sentences in the content

nt Number of words in the title

r(t) Reset gate vector at the time step t

sij Value of the jth node in the output layer given the ith instance as input

t A time step in a Recurrent Neural Network

v(Ca) The topic distribution vector of the tag concept a

vsa The attention vector in the original sentence-level attention mechanism

vwa The attention vector in the word-level attention mechanism for the content

vwt The attention vector in the word-level attention mechanism for the title

x An instance as a sequence

xt Sequence of words in the title

xa Sequence of words in the content (or abstract)

yij Binary value indicating relevancy of the jth label to the ith instance

z(t) The update gate vector at the time step t

α(i) Attention score of the ith word in the title

α
(r)
s Attention score of the rth sentence in the content

λ1 The regularisation parameter for Lsim

λ2 The regularisation parameter for Lsub

L The whole loss function

LCE The binary cross entropy loss

Lsim Similarity loss

Lsub Subsumption loss

xii



Abbreviations

The following key abbreviations are found throughout this thesis:

AdaBoost Adaptive Boosting

AI Artificial Intelligence

Bi-GRU Bi-directional Gated Recurrent Units

CART Classification and Regression Trees

CCS ACM Computing Classification System

CNN Convolutional Neural Networks

DAG Directed Acyclic Graph

GRUs Gated Recurrent Units

HAN Hierarchical Attention Network

JMAN Joint Multi-label Attention Network

KB Knowledge Base

KG Knowledge Graph

KL Divergence Kullback-Leibler Divergence

KOSs Knowledge Organisation Systems

LDA Latent Dirichlet Allocation

LR Logistic Regression

LSTM Long-Short Term Memory

MCG Microsoft Concept Graph

Q&A Question and Answering

RBF Radial basis function

RNN Recurrent Neural Networks

SVM Support Vector Machine

TF Taxonomic F -measure

TP Taxonomic Precision

TR Taxonomic Recall

xiii





Preface

This thesis is primarily my own work. The sources of other materials are identifed.

xv





Abstract

Knowledge has long been a crucial element in Artificial Intelligence (AI), which can be

traced back to knowledge-based systems, or expert systems, in the 1960s. Knowledge

provides contexts to facilitate machine understanding and improves the explainability

and performance of many semantic-based applications. The acquisition of knowledge is,

however, a complex step, normally requiring much effort and time from domain experts.

In machine learning as one key domain of AI, the learning and leveraging of structured

knowledge, such as ontologies and knowledge graphs, have become popular in recent

years with the advent of massive user-generated social media data.

The main hypothesis in this thesis is therefore that a substantial amount of useful

knowledge can be derived from user-generated social media data. A popular, common

type of social media data is social tagging data, accumulated from users’ tagging in

social media platforms. Social tagging data exhibit unstructured characteristics, includ-

ing noisiness, flatness, sparsity, incompleteness, which prevent their efficient knowledge

discovery and usage. The aim of this thesis is thus to learn useful structured knowledge

from social media data regarding these unstructured characteristics. Several research

questions have then been formulated related to the hypothesis and the research chal-

lenges.

A knowledge-centred view has been considered throughout this thesis: knowledge

bridges the gap between massive user-generated data to semantic-based applications.

The study first reviews concepts related to structured knowledge, then focuses on two

main parts, learning structured knowledge and leveraging structured knowledge from so-

cial tagging data. To learn structured knowledge, a machine learning system is proposed

to predict subsumption relations from social tags. The main idea is to learn to pre-

dict accurate relations with features, generated with probabilistic topic modelling and

founded on a formal set of assumptions on deriving subsumption relations. Tag concept

hierarchies can then be organised to enrich existing Knowledge Bases (KBs), such as DB-

pedia and ACM Computing Classification Systems. The study presents relation-level

evaluation, ontology-level evaluation, and the novel, Knowledge Base Enrichment based

evaluation, and shows that the proposed approach can generate high quality and mean-

ingful hierarchies to enrich existing KBs. To leverage structured knowledge of tags, the

research focuses on the task of automated social annotation and propose a knowledge-

enhanced deep learning model. Semantic-based loss regularisation has been proposed

xvii



to enhance the deep learning model with the similarity and subsumption relations be-

tween tags. Besides, a novel, guided attention mechanism, has been proposed to mimic

the users’ behaviour of reading the title before digesting the content for annotation.

The integrated model, Joint Multi-label Attention Network (JMAN), significantly out-

performed the state-of-the-art, popular baseline methods, with consistent performance

gain of the semantic-based loss regularisers on several deep learning models, on four

real-world datasets.

With the careful treatment of the unstructured characteristics and with the novel

probabilistic and neural network based approaches, useful knowledge can be learned

from user-generated social media data and leveraged to support semantic-based applica-

tions. This validates the hypothesis of the research and addresses the research questions.

Future studies are considered to explore methods to efficiently learn and leverage other

various types of structured knowledge and to extend current approaches to other user-

generated data.
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Chapter 1

Introduction

Knowledge is love and light and vision. – Helen Keller [96, p. 20]

Although language is a human construct, that does not make it transparent to us. Like

the children we make, the meanings we make can have secrets from us. – Timothy

Williamson [195]

Knowledge has long been a crucial element throughout the history of Artificial In-

telligence (AI). In 1956, the first type of structured knowledge was created as an inter-

lingua (or an artificial, intermediary language) by Richard H. Richens of the Cambridge

Language Research Unit to support machine translation [106]. From the 1960s, the

prevailing knowledge-based systems or expert systems started to rely mainly on domain

knowledge to build applications in AI. An early, representative knowledge-based system

was DENDRAL [113], developed in the chemical domain and inspired later applications.

For semantic-based applications such as text mining, information retrieval, and rec-

ommendation, knowledge provides contexts to facilitate language understanding, and

thus improves the performance and the explainability of the applications. For more

than a half-century, researchers have been interested in knowledge representation [148,

p. 468-p. 473]: creating large Knowledge Bases (KBs) to represent and store knowl-

edge as relations, hierarchies, and formal ontologies, from manual creation to knowledge

extraction from data, covering specific and general domains. Some of the representa-

tive projects include Cyc1 [107] and DBpedia2 [17]. There have already been formal

and vivid discussions on leveraging structured knowledge (or “ontologies”) in machine

learning since the 2000s, especially for text mining applications [21]. A more recent,

well-known example of knowledge acquisition is the Google Knowledge Graph project

[50, 155], employed in 2012 to enhance the information retrieval of things, people, and

places on the Web.

1https://www.cyc.com
2https://wiki.dbpedia.org/

1
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Chapter 1. Introduction 2

While the acquisition of knowledge is a complex step requiring tremendous effort and

time from domain experts, the advent of Web 2.0 and recent progress in machine learning

provide new perspectives for knowledge acquisition. Web 2.0 is a social Web: users have

become producers of content, rather than just consumers. The present Web contains

a massive amount of data and content created by users by every second, especially on

social media platforms. This big volume of data enables us to explore the “wisdom

of the crowd”. Besides, recent advances in machine learning allow better learning and

leveraging of strictured knowledge. Probabilistic topic models can infer meanings from

unstructured texts in an unsupervised way [18, 19, 190]. After the resurgence of neural

networks and deep learning, the representation and reasoning of knowledge in deep

learning applications become a research frontier to explore [68, p. 482].

A popular, common type of social media data is social tagging data, accumulated

from users’ tagging in social media platforms. It is however that, just like other types

of social media data, social tagging data suffer inherent problems as human languages,

such as noisiness and ambiguity. The complex meanings of social tags are challenging

for computational processing. The set of user-generated tags is also flat and have low

semantics, which prevents efficient organisation, browsing, search and semantic-based

recommendation of online content. Sparsity is also a problem of tagging data due to

many unique tags and little contextual information. Finally, social tagging data are

incomplete and many shared resources are not associated with any tags. All these issues

prevent efficient utilisation of the collection of these user-generated social media data.

Taking into account knowledge as a crucial and central element in AI and the issues

of user-generated social media data, the thesis aims at learning structured knowledge

from social media data, especially from social tagging data. The learning process and the

learned structured knowledge will address the issues of noisiness, ambiguity, flatness of

tagging data. Moreover, structured knowledge has to be useful for downstream semantic-

based application, thus the thesis also concerns leveraging structured knowledge from

tagging data for automated social annotation. This task of automated social annotation

will further tackle the issues of incompleteness of tagging data.

The rest of this introduction chapter is organised as follows. The background and

motivation of this research is presented in Section 1.1. Then the aim and the scope of

this thesis is discussed in Section 1.2, followed by the general and the specific research

questions in Section 1.3, regarding both learning structured knowledge and leveraging

structured knowledge. Research contributions regarding the two aspects are presented in

Section 1.4. The overview of this thesis is outlined in Section 1.5 with a short summary

for each chapter.

1.1 Background and Motivation

As stated at the beginning, from the early AI systems to the recent progress in ma-

chine learning, knowledge plays key roles as contextual backgrounds to improve the
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performance and explainability of many semantic-based applications. The acquisition

of knowledge, however, requires a tremendous amount of effort by domain experts and

knowledge engineers. Since the advent of Web 2.0, many studies have been focusing on

deriving knowledge from user-generated social media data or the “collective intelligence”,

contributed by the massive number of users on the Web.

A common and popular type of data in social media platforms is crowdsourced from

social tagging. Since the creation of the social tagging system Delicious3 in 2003, and

Flickr4 in 2004, tagging has become a built-in functionality in many social media sites,

users can share and annotate resources with their own vocabularies. In academic social

bookmarking systems, such as Bibsonomy5 and CiteULike6, tags are annotated to or-

ganise academic papers; in social question & answering (Q&A) sites, such as Quora7,

StackOverFlow8 and Zhihu9, tags are associated to questions for better search and rec-

ommendation; in microblogging services like Twitter10 and Weibo11, tags are in the form

of hashtags to produce alternative access points to microblogs. There are also social me-

dia platforms supporting tagging of images, such as Flickr and Instagram12; tagging

of movies, such as MovieLens13 and Douban Movie14; and tagging of musics, such as

last.fm15 and Xiami16, etc. Figure 1.1 displays the user interface of the Bibsonomy

website, including resources (bookmarks and papers), tags, users, etc.17.

These accumulated tags form “folksonomies” (a portmanteau of “folk” and “tax-

onomies”) [184], which are perceived as valuable user-generated metadata to supple-

ment controlled vocabularies for resource organisation [116, 215], users’ browsing [126],

information retrieval and recommendation [61, 133]. It is also discovered that tags have

higher descriptive and discriminative powers compared to other textual features, such

as titles, descriptions and comments, for document classification [54].

Folksonomies represent a key technology since the age of Web 2.0, where users have

become producers rather than just consumers of content on the Web. Massive amount

of data, especially on social media platforms, are created and shared by users every sec-

ond18. These fast-accumulated data, however, due to their unstructured, noisy and am-

biguous nature, are challenging to be processed to acquire “collective intelligence”. Thus,

there has been a consensus in the research communities to derive structured knowledge

3https://del.icio.us/
4https://www.flickr.com
5https://www.bibsonomy.org
6http://www.citeulike.org
7https://www.quora.com
8https://stackoverflow.com
9https://www.zhihu.com/

10https://twitter.com
11https://weibo.com
12https://www.instagram.com
13https://movielens.org/
14https://movie.douban.com
15https://www.last.fm
16https://www.xiami.com
17For details of this interface, see https://www.bibsonomy.org/help_en/User_Interface.
18Statistics in https://www.internetlivestats.com/one-second/.

https://del.icio.us/
https://www.flickr.com
https://www.bibsonomy.org
http://www.citeulike.org
https://www.quora.com
https://stackoverflow.com
https://www.zhihu.com/
https://twitter.com
https://weibo.com
https://www.instagram.com
https://movielens.org/
https://movie.douban.com
https://www.last.fm
https://www.xiami.com
https://www.bibsonomy.org/help_en/User_Interface
https://www.internetlivestats.com/one-second/
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Figure 1.1: The user interface of the Bibsonomy website (screencast in August 2019),
including resources (bookmarks, on the left column, and publications, on the right
column), tags (marked with grey background), users (marked with @ sign). The bottom

right part shows the “busy tags”, or the currently most popular tags.

from social media data, including social tagging data, to support many semantic-based

applications.

To learn structured knowledge from social tagging data is challenging due to inherent

problems of social tagging data, similar in human language, elaborated in [135, p.218-

228]. Several key challenging issues are highlighted and addressed in this thesis. The

first problem, that hinders the usage of tagging data as a knowledge source, is the lack

of controlled vocabulary. This results in noisiness and ambiguity of tagging data. Social

tags, freely contributed by different users, have various morphological variations and

ambiguous meanings [58, 90]. This motivates the research for data cleaning and concept

extraction from noisy social tags.

Second, social tags are inherently flat and lack a structured form. Unlike the tradi-

tional classification systems, the set of tags does not define their relations [135, p. 222-

p. 223]. This prevents the use of tags to efficiently support semantic-based navigation,

information retrieval, and recommendation. Thus many studies have attempted to ex-

plore methods to infer structured knowledge, such as relations, concept hierarchies, and

lightweight ontologies, from tags [58, 124, 165]. Limitations of the current methods mo-

tivate to learn more accurate and useful structured knowledge from social tagging data

[48].

Another problem with social tagging data is sparsity. This is most common for

social tagging data in the academic domain (such as Bibsonomy and CiteULike), having
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slower acculumation of tags [51] and lower agreement between users [51] than the social

tagging data in more general domains (such as Delicious). Also, unlike other forms

of user-generated texts such as online comments and (micro-)blogs, social tags contain

little contextual information. As such, popular and effective methods, e.g., Hearst lexico-

syntactic patterns [78] for mining subsumption relations from documents and Web pages

[196] cannot be adopted directly.

The other issue is the incompleteness of tagging data. Many shared documents in

social media platform are not associated with any tags. For example, in the social

question and answering (Q&A) website Zhihu, more than 18% of questions are not

associated with any tags, as reported in [130]. In the microblogging website Twitter,

only 10% to 15% of tweets are associated with at least one hashtag [97, 191]. This

is mainly because annotating objects requires much cognitive effort and can be time-

consuming. Also as just discussed, some of the user-generated tags are noisy and of

low quality. All of these make the tags not as useful as expected. It is believed in this

thesis that these problems can be alleviated to a great extent by automated annotation,

which learns from the cleaned user-generated tagging data to suggest a set of tags for

previously unseen documents.

Thus in general, this thesis attempts to address the above challenges in user-generated

social media data, with methods in natural language processing, data mining, and ma-

chine learning. Previous studies aimed at exploring tag semantics simply based on data

co-occurrence, which is sensitive to data sparsity [80] and cannot explicitly and formally

define the relations among tag [58]. With recent advances in probabilistic topic mod-

elling [18, 19, 190], it is necessary to revisit the challenging task of learning structured

knowledge from social media data. There is also a lack of formal evaluation studies to

assess the quality of the learned knowledge, especially on the newly enriched knowledge

not contained in existing KBs.

To tackle the needs for automated annotation of socially shared documents, recent

studies adapt deep learning models and formalise the task as multi-label classification

[67, 77, 89, 110, 210]. Multi-label classification typically needs to take the relations

among labels into consideration. This is actually the structured knowledge derived from

the tagging data in the context of social text annotation. Although there are recently

many studies on representing and utilising knowledge to enhance neural network models

to improve performance and explainability [24, 25, 101], little research focused on lever-

aging structured knowledge of labels for deep learning based multi-label classification.

1.2 Aim and Scope of the Study

Based on the research motivations above, the aim of this study is thus to learn useful

structured knowledge from social media data. The study focuses on data from social

tagging, which is a common functionality across many social media platforms. More

specifically, the study mainly explores academic social tagging data, i.e., tagging data
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for academic publications (such as Bibsonomy and CiteULike), as structured knowledge

that can be derived from academic resources is of particular interest to the research

community. The task is also more challenging than learning in the general domain as

the academic domain contains sparser data [51, 80, 183].

Knowledge is crucial to AI and machine learning. The learned structured knowledge

has to be applied to support downstream semantic-based applications. As a natural

extension over the part of learning structured knowledge, the second part of the thesis

focuses on a key semantic-based application, automated social text annotation, that

requires leveraging structured knowledge from the tags. The task of automated social text

annotation predicts tags from the input documents, that mimics the user tagging process.

Recent studies mostly use deep learning approaches to model the annotation process

and formulate the task as a multi-label classification problem. Thus, the study attempts

to address the label correlation issue in deep learning based multi-label classification,

through leveraging structured knowledge.

1.3 Research Questions

The main hypothesis in this research is that a substantial amount of useful knowledge

can be learned from user-generated social media data. The study focuses on social tag-

ging data as a typical and common type of user-generated social media data. Based on

this hypothesis, the research in this thesis explores several questions. The first ques-

tion, that also reflects the research aim, is about learning structured knowledge from

social tagging data. This covers several specific questions regarding the unstructured

characteristics of social tagging data, the approaches to learn and to evaluate struc-

tured knowledge. Corresponding to the extension from learning structured knowledge

to leveraging structured knowledge, the other main question is about leveraging struc-

tured knowledge in the semantic-based, machine learning application, automated social

annotation. This question involves two aspects: (i) the use of knowledge in machine

learning for multi-label classification, and (ii) the modelling of users’ tagging process.

The two main questions are thus:

• How to learn structured knowledge from user-generated social media data?

• How to leverage structured knowledge in machine learning to support automated

social text annotation?

These questions can be split into more specific questions, corresponding to the issues

and challenges identified from the tasks:

• Q1: How to address the noisiness, ambiguity, sparsity, and incompleteness issues

of social tagging data?

• Q2: How to learn subsumption relations and concept hierarchies from social tagging

data?
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• Q3: How to formally evaluate the learned structured knowledge from social tagging

data?

• Q4: How to leverage structured knowledge to tackle the label correlation issue in

deep learning based multi-label classification?

• Q5: How to model users’ social annotation process through deep learning?

Questions 1 to 3 are relevant to the learning of structured knowledge, regarding

the inherent unstructured characteristics from the user-generated social tagging data

(Q1), the general methods to infer structured knowledge (Q2), and the evaluation of the

learned structured knowledge from social media data (Q3).

Questions 4 to 5 are relevant to leveraging structured knowledge, for the semantic-

based application, automated social annotation, which will help address the incomplete-

ness issue of social tagging data. The key question (Q4) is to explore the novel approaches

to utilise structured knowledge to address the label correlation issue in multi-label clas-

sification. Based on recent advances of deep learning methods, the last question (Q5)

asks to adapt methods and techniques in deep learning to efficiently model the users’

annotation process.

1.4 Research Contributions

To answer the research questions above, the thesis provides contributions as follows, or-

ganised in terms of learning structured knowledge and leveraging structured knowledge.

The thesis, first, reviewed the relevant concepts of structured knowledge and identified

the key aspects from the literature related to both learning and leveraging structured

knowledge from social tagging data. Then, in terms of learning structured knowledge,

• A supervised machine learning system is designed to learn subsumption relations

from academic social tagging data. The machine learning system takes a novel

perspective of the semantics of user-generated tags, where a tag is viewed as a

complex entity that potentially has different meanings under different contexts

or subject areas. After a data cleaning module to address the noisiness and a

part of sparsity issues of tagging data, the systems resorts to probabilistic topic

modelling to represent each tag concept as a distribution of latent topics. With

this representation, a set of domain-independent features are extracted to predict

subsumption relations. The features are founded on three assumptions (topic simi-

larity, topic distribution, and probabilistic association) based on the understanding

of subsumption relations between tags.

• A Hierarchy Generation Algorithm is then proposed on top of the supervised learn-

ing model to recursively produce a hierarchy with a predefined concept. The

ontology-level evaluation shows that it is particularly useful in enriching Knowl-

edge Bases (KBs).
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• A comprehensive evaluation is conducted with the large, publicly available, aca-

demic social tagging dataset Bibsonomy and three data-driven or human-engineered

KBs, DBpedia, Microsoft Concept Graph (MCG), and the ACM Computing Clas-

sification System (CCS); and with three evaluation strategies, namely, the relation-

level evaluation, ontology-level evaluation, and Knowledge Base Enrichment based

evaluation. To our best knowledge, this is one of the largest and most systematic

evaluation studies for relation learning from academic social data (cf. [165]); this

is also the first study that evaluates the learned knowledge from tags on enriching

large-scale KBs. The proposed method outperforms the state of the art in terms of

F1 score and taxonomic similarity measures when evaluated against gold standard

KBs. The result is further validated through manual evaluation for Knowledge

Base Enrichment.

In terms of leveraging structured knowledge,

• Two semantic-based loss regularisers are proposed to enforce the output of neural

network models to conform to label similarity and subsumption relations. The

semantic-based loss regularisers are independent of and can be applied to various

deep learning models. Dynamic updating of the label semantic matrices adds fur-

ther constraints to the semantic-based loss regularisers and allows more compatible

label semantics to be learned during training.

• A Joint Multi-label Attention Network (JMAN) is proposed to model users’ reading

and annotation behaviour through a sentence-level, title-guided attention mecha-

nism in the encoder. The guided attention is distinct from the original attention

mechanism in the Hierarchical Attention Network (HAN) [200], through explicit

modeling of the guiding source as the title instead of implicit learnable weights.

This also provides insights on sentence-level attention mechanisms, which were less

explored compared to word-level attention mechanisms to model social texts in re-

cent studies [111, 192]. The title-guided attention mechanism provides a further

“view” to the original attention mechanism, demonstrated through visualisation

and empirical analysis.

• Extensive experiments on four datasets from real-world applications have been

carried out to validate this approach. Experiments show a significant improve-

ment of the JMAN model on the evaluation metrics with a substantial reduction

of training time. A consistent performance gain was also observed when applying

the semantic-based loss regularisers on Bi-GRU (Bidirectional Gated Recurrent

Unit), HAN and the proposed JMAN model. Dynamic updating of the label se-

mantics in the semantic-based loss regularisers further improved the annotation

performance. The models are then analysed through the convergence analysis, pa-

rameter sensitivity analysis, multi-source components, and attention visualisation.
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The above contributions in this thesis have been published or are currently under

review in peer-reviewed conferences and journals, as listed in Appendix C. Implementa-

tions of the algorithms, experiments, and the datasets and results have also been openly

available, as listed in Appendix B.

1.5 Overview of the Study

The overall picture of this study is illustrated in Figure 1.2. The whole thesis is centred

around structured knowledge and contains two parts, learning structured knowledge and

leveraging structured knowledge. Another line, driving the motivations in this thesis,

focuses on tackling the unstructured characteristics of social tagging data, including

noisiness, flatness, sparsity, and incompleteness, as already described in Section 1.1.

Chapter 2 introduces the concept of structured knowledge (illustrated in the centre

of Figure 1.2), its originality, related concepts, and its different formalities from low

semantics to high semantics. Folksonomies, or social tagging data, are considered as a

potential source of structured knowledge. Then the chapter reviews the methods and

techniques to learn structured knowledge from social tagging data, followed by leverag-

ing structured knowledge in semantic-based, machine learning applications, especially,

automated social annotation. The material in this chapter forms the basis for the studies

in Chapters 3 and 4.

Chapter 3 proposes a machine learning system to learn structured knowledge from

social tagging data (left side of Figure 1.2) for Knowledge Base Enrichment. The machine

learning system contains five modules, Data Cleaning, Data Representation, Feature

Generation, Classification and Testing, and Knowledge Enrichment. The core part of the

system utilises a binary classification approach with features generated from probabilistic

topic modelling. External KBs (on the bottom of Figure 1.2 are utilised for semantic

grounding and instance labelling, i.e. to create labelled data for supervised learning. The

key issues of noisy, ambiguity, flatness and sparsity of social tagging data are mitigated

in the system. Finally, concept hierarchies and subsumption relations are created to

enrich the external KBs.

Chapter 4 proposes a knowledge-enhanced and attention-based deep learning model

to annotate socially shared documents with tags (see the right side of Figure 1.2). The

structured knowledge of both tag similarity and subsumption relations are leveraged to

improve the performance. This is mainly realised using two semantic-based loss regu-

larisers that constrain the network output with the structured knowledge of the tags

(or labels in this multi-label classification formulation). The users’ reading and annota-

tion behaviour is further modelled with guided attention mechanisms. Altogether, this

chapter proposes a Joint Multi-label Attention Network for automated social annotation.

Chapter 5 concludes the thesis by addressing the research hypothesis and ques-

tions. Future studies are also discussed, mainly on the efficient learning and leveraging

structured knowledge from social media data and other forms of user-generated data.
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Chapter 2

Structured Knowledge:

Introduction and Related Work

[Concept] structures are normally interrelated in patterns and paths so complex and so

enormous no one person can understand more than a small part of them in his lifetime.

– Robert Pirsig [137, p. 87]

Every ontology is a treaty - a social agreement - among people with some common motive

in sharing. – Tom Gruber [74]

Structured knowledge, originally created by domain experts and potentially acquired

through massive user-generated data from social media platforms, is crucial to many

semantic-based applications. This chapter starts off by reviewing the relevant concepts

of structured knowledge, its different types or formalities in Section 2.1. The formalities

of structured knowledge are illustrated as a spectrum ranging from low semantics to

high semantics. The spectrum carries the notion that Folksonomies, i.e. social tags, are

most unstructured, but can be used as a source to learn structured knowledge. Based

on this idea, we present the studies on learning structured knowledge from social tag-

ging data in Section 2.3, including the heuristics-based, semantic grounding to external

resources, unsupervised, and supervised approaches. Then we identified the studies and

the research gap on enriching KBs through social tagging data. After the learning of

structured knowledge, Section 2.4 provides a review on leveraging structured knowledge

for automated social annotation as a semantic-based application. The role of structured

knowledge in machine learning and semantic-based applications, especially regarding

the task of automated social annotation, were discussed. In traditional approaches, the

basic, tag co-occurrence relations were mostly leveraged; while for deep learning based

multi-label classification, the structured knowledge is pertinent to the issue of label cor-

relation. Section 2.5 summarises this chapter and with a discussion on the issues of

current approaches for learning and leveraging structured knowledge.

11
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2.1 Definitions and Types of Structured Knowledge

The idea of structured knowledge has its roots in AI, information science and semantic-

based applications. There are several related concepts to structured knowledge in the

thesis, Knowledge Bases (KBs), Knowledge Organisation Systems (KOSs), (web) on-

tologies, and Knowledge Graph (KG). From the perspective of knowledge engineering in

AI, a Knowledge Base (KB) is a set of assertion about the world, which is the central

component for a knowledge-based agent [148, p. 235]; the task of ontological engineer-

ing aims at representing everything in the world to facilitate knowledge-based reasoning

[148, p. 437]. In the field of Library and Information Science, the concept of Knowl-

edge Organisation Systems (KOSs) is used as a general term for all types of schemes for

organizing information and managing knowledge [84, 205].

Ontologies are defined as a formal explicit specification of a shared conceptualization

of a domain of interest [26, 72, 73, 166]. In the artificial intelligence and semantic Web

community, ontologies vary from unstructured to structured types and form a spectrum

from weak semantics to strong semantics of different formality, elaborated and illustrated

in numerous occasions [15, 41, 108, 122, 156]. In the Semantic Web research, ontologies

have received a lot of attention, as an enabling technology that acts as the backbone

of the semantic Web, for example, ontology representation using the Simple Knowledge

Organization System (SKOS). Many of the recent studies in the Semantic Web domain

use ontologies of different formality (lightweight and heavyweight) to express different

types of KOSs that facilitate knowledge representation and automated reasoning [15, 72,

156]. From the perspective of KOSs, ontology is regarded as the most recent or “newest”

type of Knowledge Organisation Systems [84].

Another related concept is Knowledge Graph (KG), which is generally equivalent

to large scale KBs, but focusing on the notion of “graphs”, which are multi-relational,

formed by entities and relations commonly represented as RDF (Resource Description

Framework) triples [189]. KG, in its original, narrower sense, is a KB used by Google and

its services to facilitate search discovery with knowledge from users’ collective intelligence

from the Web [155], which relies both on crowdsourced information and on automatic

extraction of entities and facts from the Web. The project related to the automatic

extraction of entities and facts is Knowledge Vault [50]. The idea of KG has been

gradually developed to a more general term to represent large scale KB to support

many semantic-based applications [189].

In this thesis, we use the term, structured knowledge, as a more abstract term to

encompass the different concepts above. This term highlights the idea of “structured”

being opposite to the “unstructured” characteristics of the real-world user-generated tex-

tual data and human language. We introduce different types or formalities of structured

knowledge, including term lists, semantic relations, concept hierarchies, taxonomies, and

ontologies (in their most formal sense), and consider folksonomies as a potential source

of structured knowledge. Just as ontology and KOSs, structured knowledge can be

organised from low semantic to high semantics in a spectrum, as in Figure 2.1.
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Figure 2.1: A simplified spectrum of (potential) structured knowledge (containing
folksonomies), adapted and re-illustrated from [194, p. 319] and [108, 159, 205]

The relevant concepts of structured knowledge, covering its various types or for-

malities, are included in Table 2.1. The structured knowledge varies from more formal

ontologies, knowledge bases, knowledge graphs, with higher semantics, to concept hierar-

chies, taxonomies, and various types of relations (subsumption, equivalence, association,

co-occurrence), and term lists, which lower semantics. The idea of folksonomies is also

included in the table, as a potential source of structured knowledge.

2.1.1 Ontologies

In its philosophical sense, ontology refers to a discipline that deals with the nature and

structure of reality. In the context of knowledge representation in computer science,

ontology is defined as “a formal explicit specification of a shared conceptualization of a

domain of interest” in [72], originated from [73], [26] (focusing on the idea of a “shared”

conceptualisation) and [166] (merging the definition of [73] and [26]). This definition

captures the characteristics of “formality, explicitness, consensus, conceptuality and do-

main specificity” for knowledge specification [72]. According to [72], the five essential

elements in a formal ontology are interrelation (relation between concepts), instantiation

(assigning individual objects to classes), subsumption (is-a relationship), exclusion (is-

different-from relationship) and axiomatization (complex statement about a domain). In

the spectrum of formality of ontologies, similar to the spectrum in Figure 2.1, lightweight

ontologies are less formal and process no or few axioms [72], but are more flexible and

easier to maintain and use compare to heavyweight ontologies [180]. We denote ontology

as its highest formality in this thesis.



Chapter 2. Structured Knowledge 14

Table 2.1: Concepts related to structured knowledge

Concepts Definitions Citation
Knowledge Base
(KB)

A set of formal sentences or assertion about
the world, which is the central component for a
knowledge-based agent.

[148,
p. 235]

Knowledge Organ-
isation Systems
(KOSs)

A general term to encompass all types of schemes
for organising information and managing knowl-
edge.

[84, 205]

Knowledge Graph Large scale KBs, focusing on the notion of “graph”,
which are multi-relational, formed by entities and
relations.

[50, 189]

Ontology A formal explicit specification of a shared concep-
tualization of a domain of interest. Ontologies
can have different formalities (from lightweight to
heavyweight).

[26, 72,
73, 166]

Taxonomy The type of controlled vocabulary where all the
terms are connected by means of any structural
model (hierarchical, tree, faceted,...) and spe-
cially oriented to browsing, organisation systems
and search of contents of the web sites.

[29]

Concept Hierarchy A set of concepts that are organised in a hierarchi-
cal fashion, typically with a subsumption relation.
They are used as the backbone of ontologies.

[72]

Subsumption Rela-
tions

Also called taxonomic, “is-a”, or hypernym-
hyponym relations, expressing the abstraction of
concepts. Subsumption relations are a type of
paradigmatic relation and can be defined logically
(extensionally and intensionally), collocationally,
and componentially.

[40, 72,
94, 164]

Equivalence and As-
sociation Relations

Relation of words denoting the same concept
(equivalence), similar or related concepts (associa-
tion). These aspects of word meaning can be com-
putationally captured through word similarity and
word relatedness measures.

[27, 94,
164]

Co-occurrence Rela-
tions

Relation of words occurring nearby in a document,
forming typical syntagmatic relations (compared
to paradigmatic relations). Tag co-occurrence is
a common relation in folksonomies.

[164]

Term List Accepted terms with clear definitions of their
senses.

[84]

Folksonomy The result of personal free tagging of information
and objects (anything with a URL) for one’s own
retrieval, which provides empirical material to elicit
semantics and to learn structured knowledge.

[58, 124,
135, 164,
165, 184]
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2.1.2 Concept Hierarchies and Taxonomies

Concept hierarchies represent a set of concepts that are organised in a hierarchical

fashion, typically with a subsumption relation. They are frequently used as the back-

bone of ontologies [72]. Taxonomy is the type of “controlled vocabulary where all the

terms are connected by means of any structural model (hierarchical, tree, faceted,...)

and specially oriented to browsing, organisation systems and search of contents of the

web sites” [29]. Taxonomies are well-structured, hierarchical and sometimes exclusive

schemes to organise knowledge, such as the Dewey Decimal classification, and the per-

sonal or organizational file systems [66]. They can be transformed or “re-engineered”

into formal lightweight, terminological ontologies [63, 182]. Building a taxonomy is

resource-demanding and often needs constant manual maintenance, for example in the

organisational context [36].

2.1.3 Subsumption Relations

Both concept hierarchies and taxonomies are essentially formed by subsumption rela-

tions. Subsumption relations, or is-a, hypernym-hyponym relations, express the ab-

straction of concepts [72, 164]. Subsumption relations are a specific type of hierarchical

relation, which also includes part-of relations (or meronym-holonym) relations and in-

stance relations [164]. A subsumption relation is a paradigmatic relation, meaning that

the two words should fit into the same grammatical slot or be of the same semantic type,

different from syntagmatic relations thar exist between concepts in specific documents

or other contexts like windows (such as co-occurrence relations).

Subsumption relations can be defined logically (extensionally and intensionally), col-

locationally and conponentially [40]. In his first definition, hyponymy was conceptualised

in a logical way both extensionally and intensionally. If X is a hyponym of Y, exten-

sionally, iff ∀x[X ′(x) → Y ′(x)], but none of the form ∀x[Y ′(x) → X ′(x)], where X ′

and Y ′ are the logical constants corresponding to the concepts X and Y, and x can be

understood as an instance object; intensionally, iff F(X) entails, but is not entailed by

F(Y), where F(-) is a sentential function satisfied by X or Y. The second approach to

define hyponyms utilises the collocational property. The more collocated a word, the

more restricted it is through the collocational normality, then the more specific it is.

“X is a hyponym of Y iff the normal context of X is a subset of the normal context of

Y”. The third idea for defining hyponymy is componential. “X is a hyponym of Y

iff the features defining Y are a proper subset of features defining X”. Based on this

idea, analysing the degree inclusion between X and Y, “prototypes” of characterisation

of hyponymy were proposed [40, 76]. Stock [164] pointed out a case that holds in most

cases: there is reciprocity between the extension and intension of concepts in a hierar-

chical chain, in other words, specific terms, with further restrictive properties, tend to

have less number of objects than general terms. The study in [49] associates the above
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definitions of subsumption relations to computational rules to derive subsumption rela-

tions; meaningful hierarchies can be generated, however, further improvement could be

achieved through combining the rules or features to learn subsumption relations.

2.1.4 Equivalence and Association Relations

Besides subsumption relations, the other two types of paradigmatic relations are equiv-

alence and association relations [164]. Equivalence relations between words denote the

same concept, for example, different variants of words, autumn and fall, and abbrevi-

ations, information retrieval and IR. Association relations denotes a wealth of specific

semantic relations between words that are not simply equivalence or subsumption rela-

tions [164], for example, “is useful for”, “located in”, “derives from”, etc.

The equivalence and association relations can be loosely captured through word

similarity and word relatedness in natural language processing [94]. Word similarity

measures how similar or equivalent two words are, or to what degree the words can

substitute each other in context [94]. Word relatedness characterises a larger set of

potential relations and defines how associated two words are [94]. The similarity and

relatedness between words can be computed based on vector semantics and thesaurus

such as WordNet1 [27, 94].

2.1.5 Term Lists

Term lists, such as for example, glossaries and gazetteers, are distinct from folksonomies,

and they include widely accepted terms with clear definitions of their senses [84], rather

than undefined terms with ambiguous meanings. Therefore, term lists are considered

more structured than folksonomies, although less structured than concept hierarchies

and taxonomies.

2.2 Folksonomies: a Potential Source of Structured Knowl-

edge

Folksonomies are defined as the result of personal free tagging of information and objects

(anything with a URL) for one’s own retrieval [184]. Formally, folksonomies can be

described as a collection of tuples, F := 〈U, T,R, Y 〉, where U , T and R are finite sets

representing users, tags and resources, respectively; Y is a ternary relation among them,

Y ⊆ U × T ×R [154].

While some studies also categorise folksonomies as a type of structured knowledge,

in fact, they are highly unstructured and uncontrolled, as users can freely add tags to

annotate resources without constraints in most social tagging systems [6, 184]. There-

fore, folksonomies inherit many of the problems in human natural language. Compared

to ontologies, folksonomies lack a uniform representation to facilitate their sharing and

1https://wordnet.princeton.edu

https://wordnet.princeton.edu


Chapter 2. Structured Knowledge 17

reuse [58]. Without special processing and treatment, social tagging systems are not

able to discriminate different noisiness, for example, semantic and syntactic variations

of tags.

The advantage of folksonomies is that they are contributed by communities, rep-

resenting a social dimension with a free form tagging functionality, and thus contain

many emerging terms or neologisms that can potentially complement the controlled

vocabularies [105, 116]. Folksonomies can support resource classification [215] and rec-

ommendation [22]. Folksonomies provide rich tag co-occurrence relations, which are

empirical sources to exploit paradigmatic relations such as subsumption, equivalence

and association relations from tags, as elaborated in [133, p. 222-p. 224] and [164].

Studies have thus identified folksonomies as a source for eliciting semantic relations and

developing structured knowledge [58, 165], or even as a lightweight ontology [124]. The

rich metadata in folksonomies, however, are accompanied by some inherent issues as

other user-generated social media data.

2.2.1 Unstructured Characteristics of Folksonomies

From the spectrum of (potential) structured knowledge in Figure 2.1, we can observe that

folksonomies are the most unstructured type of sources, having the lowest semantics,

compared to the presented structured knowledge.

As described in Section 1.1 and reviewed in the literature [6, 90], the unstructured

characteristics of folksonomies includes noisiness, flatness, sparsity, and incompleteness.

Noisiness The noisiness of tagging data is an inherent characteristic of human language

[135, p.218-228]. Without the controlling of vocabularies and the definitions of

meanings, tags have various morphological forms and ambiguous meanings. Mul-

tiple words in a tag (“speechanalysis”, “Time-series analysis”), tags with special

characters (“Autoantibodies/*analysis/drug”), polysemous tags (“apple”), multi-

lingual tags (“Datenanalyse”), variations and misspelled tags (“analysis”, “anal-

yses”, “analysed”, “analys”), nonsense tags (“28A75”), and other forms of noisy

tags can occur, as summarised in [90] and [6].

Flatness The unstructured characteristics of folksonomies are also related to their flat

form. No explicit relations among tags are defined in folksonomies, different from

more structured forms of knowledge such as concept hierarchies and ontologies

[134, p. 222-223]. This prevents efficient usage of tags to support navigation,

browsing, retrieval and recommendation of resources.

Sparsity Due to a large number of tags, users and resources in social tagging data, the

interaction among them is sparse. This is typically for academic social tagging

data (annotating academic resources, such as Bibsonomy, CiteULike, and Con-

notea), which has more unique tags and slow accumulation of tags than general

social tagging data (annotating general websites, such as Delicious) [51]; the agree-

ment between users is also less in academic social tagging data, which is a critical
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shared context to induce relations among tags [80]. The high sparsity of tagging

data is also related to the lack of contextual or sentential information in tag sets,

which is very different from any other types of user-generated texts in social media

platforms, such as (micro-)blogs and online comments [192].

Incompleteness The incompleteness issue is related to sparsity, which highlights the

phenomenon that many resources are not associated with tags. For example,

in the social question and answering (Q&A) website Zhihu, more than 18% of

questions are not associated with any tags, as reported in [130]. In the micro-

blogging website Twitter, only 10% to 15% of tweets are associated with at least

one hashtag [97, 191]. The incompleteness issue of tagging data may be due to the

fact that annotating content requires cognitive effort and can be time-consuming.

On the other hand, folksonomies are valuable metadata collaboratively created from

users, thus are highly potential to enrich the existing structured knowledge. This mo-

tivates a research direction to learn structured knowledge from folksonomies, i.e. social

tagging data.

2.3 Learning Structured Knowledge from Social Tagging

Data

Deriving structured knowledge from a data-driven perspective has been a vivid research

area named ontology learning. Ontology learning is a necessary part of ontological

engineering (or ontology engineering) that represents entities and relations from the

real world, as massive data are available and learning from them can indeed reduce the

cost to create and maintain structured knowledge [37]. While some research focused on

ontology engineering from source with higher semantics, including taxonomies, thesaurus

(i.e. controlled term list with subsumption, equivalent and associative relations) and

lexica (i.e. hierarchically organised controlled vocabularies with meaning and linguistic

behavioural information, such as WordNet) [182], a substantial part of studies explored

learning structured knowledge from social tagging data, or folksonomies.

Learning structured knowledge from folksonomies suffers from the unstructured char-

acteristics associated with social tagging data, as described above. The study [48] cate-

gorises research in this area to learn term lists (or concept lists) and to learn relations

from tags. To learn term lists or concept lists, studies applied some unsupervised [6] and

supervised approaches [92] leveraging external KBs or heuristics, see the review in [48].

We will focus on presenting the studies regarding the latter, learning relations from tags,

which is inherently more complex and share a similar category of methods as learning

term lists from tags. Existing methods for learning structured knowledge from social

tagging data can be broadly categorised into four classes: heuristic-based, semantic

grounding to external resources, unsupervised learning and supervised learning.
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2.3.1 Heuristics-Based Methods

Heuristics-based methods mostly make use of heuristics to infer relations with respect to

pre-defined rules. A common heuristic is the generality measure based on set inclusion.

The work in [124] detected subsumption relations between tags using the inclusion of user

sets, within a dataset crawled from the general domain social tagging system Delicious2.

The study in [123] further defined a metric called inclusion degree and generalisation

degree and automatically generates hierarchies using graph-pruning algorithms. Graph

centrality is another well-known heuristic in the literature [14, 80]. The research in

[80] induced a taxonomy using a greedy search algorithm with the degree centrality of

tag nodes in a tag similarity graph. The study in [14] extended this approach with

sense disambiguation and applied betweenness centrality on a tag-tag co-occurrence

network. The work in [165] evaluated both methods proposed in [14, 80] and validated

the usefulness of graph centrality in creating taxonomies from tags. Later research

extended the graph centrality by either combining semantic grounding to external lexical

resource to increase accuracy [3] or using new centrality measures on a weighted tag-

tag graph [32]. This class of method heavily relies on co-occurrence information and

may not derive accurate subsumption relations [58]. The co-occurrence-based heuristics

are sensitive to data sparsity; with the graph-centrality measure, it is more difficult to

generate a hierarchy from the academic social tagging data such as CiteULike3 than from

the general domains like Delicious, as the data in the former has lower agreement among

users, and lower data density and overlap [80]. This problem has also been statistically

analysed in [51] and discussed in [183]. Thus for the sparse social tagging data, especially

in the academic domain, such as Bibsonomy, CiteULike and other narrow folksonomies,

the co-occurrence-based heuristics are unsuitable.

2.3.2 Semantic Grounding to External Resources

Methods of semantic grounding to external resources based methods attempt to match

tags to entities in external KBs in order to find semantic relations. The work in [47]

mapped social tags to concepts in WordNet to extract relations. However, WordNet is

a relatively static resource and only less than half (48.7%) of the tags could be directly

matched according to the study in [7]. The work in [59] used DBpedia and its inter-

connected datasets in the Linked Open Data Cloud4 to ground tags and populate an

ontology. In general, it is however difficult to choose the one with the right sense due

to the lack of tagging context. This is because users’ collective tagging process is very

different from that of lexicographers or domain experts. This tag sense disambiguation

problem has been discussed in [7, 47, 59]. Even if a tag can be lexically matched to a

concept in external resources, it is uncertain that its intended meanings coincide with

each other [33]. A potential solution for tag sense disambiguation is to use intelligent

2https://del.icio.us
3http://www.citeulike.org/
4https://lod-cloud.net

https://del.icio.us
http://www.citeulike.org/
https://lod-cloud.net
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tools and contextual sources for semantic grounding, for example, the work in [4] utilises

Google search5 and Wikipedia articles6 to disambiguate tag senses and establish tag-tag

relations.

2.3.3 Unsupervised Learning

Unsupervised learning based methods mostly use various clustering or dimensionality

reduction techniques. The research in [211] proposed a hierarchical clustering model

based on Deterministic Annealing to generate subsumption structures from social tag-

ging data in Delicious and Flickr. However, the model could not clearly discriminate

subsumption, related and equivalent relations. Another clustering based method using

k-means [165] showed that it did not perform better than the graph-based methods

[14, 80]. Other unsupervised methods attempt to find low dimensional representations

of data items to discover semantic patterns. Probabilistic topic models [18, 19], such

as Latent Dirichlet Allocation (LDA), are a type of generative model used to discover

themes from a large collection of documents. The study reported in [103] proposed a

hybrid approach utilising graph-based heuristics with contextual information inferred,

using LDA, from a web corpus to learn domain ontologies from tags. The study in [190]

applied LDA to a collection of abstracts of scientific publications and represented con-

cepts through a “fold-in” process. It proposed a metric, Information Theory Principle

for Concept Relationship, to determine subsumption relations based on the asymmetric

difference of the Kullback-Leibler Divergence of topic distributions. The work in [174]

also defined similar metrics using a Tag-Topic model. A common issue of these methods

is whether using the divergence measure is precise enough to determine relations for

tagging data.

2.3.4 Supervised Learning

Supervised learning methods have also been proposed. The study reported in [212] used

a binary classifier to generate a taxonomy from Stack Overflow tags. Both co-occurrence-

based features and topic-based features were considered. The feature generation process

has leveraged the textual information of resources (such as questions and wiki descrip-

tions of tags on Stack Overflow), which may be unavailable in other types of social

tagging data. Moreover, the proposed topic-based features may not be fine-grained

enough to represent the topic information in social tags to quantify the subsumption

relations. Work reported in [144] combined several popular co-occurrence-based feature

extraction mechanisms to develop a binary classifier. The mechanisms considered in-

cluded support and confidence [150], cosine similarity, set inclusion and generalisation

degree [123], mutual overlapping [28] and graph-based taxonomy search adapted from

[80]. It is reported that combining these heuristics in a classifier significantly increased

the F1 score in relation-level evaluation. However, the method has the same drawbacks

5https://www.google.com/
6https://www.wikipedia.org/

https://www.google.com/
https://www.wikipedia.org/
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as other co-occurrence-based methods in that it does not take into consideration the

complex meanings of tags and suffers from the data sparsity problem.

2.3.5 Knowledge Base Enrichment from Folksonomies

One key aspect of learning structured knowledge from tags is to elicit new semantics

to enhance existing structured knowledge, such as KBs or ontologies like DBpedia and

thesaurus like Medical Subject Headings7. While many studies have used KBs or on-

tologies to enrich folksonomies [8, 57, 59], less research has explored the opposite case:

using folksonomies to enrich KBs. However, it is generally agreed that folksonomies rep-

resent users’ terminologies and can be extracted to enrich KBs. This has been validated

through comparison studies between folksonomies and controlled vocabularies. The work

in [105] compared the academic tags in CiteULike with Medical Subject Headings and

shows they have a highly distinct lexicon and viewpoints. The study from [116] com-

pared the Librarything8 tags with the Library of Congress Subject Headings9 and shows

little overlap between ordinary users’ and experts’ vocabularies.

The work in [5] proposed the idea of “Folksonomised Ontology”, which is a fused ter-

minological ontology based on folksonomies and existing KBs. It suggests the so-called

“3E” techniques (Extraction, Enrichment, Evolution): (1) preprocessing the social tag-

ging data to obtain a cleaned tag set (Extraction); (2) matching the tag concepts to

KBs and enrich the relations in KB with co-occurrence weights (Enrichment); and (3)

using tag-tag subgraphs (or “tagsets”) to enrich relations in existing KBs (Evolution).

Co-occurrence information was primarily used to discover the relations between tags.

The enrichment and evolution processes in [5] require much human intervention with

visualisation techniques. Similarly, another work on Knowledge Base Enrichment from

tags in an e-learning environment [60] focused on designing a visual interface for ed-

ucators to view and manually edit learning ontologies and used a similarity metric to

suggest new concepts as learners’ tags to be enriched.

2.4 Leveraging Structured Knowledge for Automated So-

cial Annotation

Structured knowledge provides contextual background for machine learning and semantic-

based applications (or applications that require knowledge or semantic information) [21].

In this section, we briefly review the semantic-based applications and some representa-

tive work on leveraging structured knowledge in these applications. This section focuses

on automated social annotation as a representative semantic-based application that re-

quires knowledge from social tags. Studies have leveraged co-occurrence relations of

labels as knowledge for automated social annotation, more recent studies apply deep

7https://www.nlm.nih.gov/mesh/meshhome.html
8https://www.librarything.com/
9http://www.loc.gov/aba/cataloging/subject/

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.librarything.com/
http://www.loc.gov/aba/cataloging/subject/
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learning approaches which commonly formulate the task as a multi-label classification

problem. We will first present the task, automated social annotation, especially regard-

ing the perspective of leveraging structured knowledge in traditional and deep learning

methods. Then we introduce the role of structured knowledge in multi-label classification

to tackle the issue of label correlation.

2.4.1 Automated Social Annotation as a Semantic-Based Application

The study [21] is one early review summarising studies on leveraging structured knowl-

edge to support machine learning and semantic-based applications such as text mining

(including text clustering, classification, and visualisation), ontology-based similarity

measuring, information retrieval, etc. Most approaches in [21] aim at enhancing the tra-

ditional bag-of-words representation with ontology-based representations. As this type

of approach relies on matching concepts to enhance word representation, the results are

largely affected by the accuracy of concept matching and the disambiguation [86]. An

early integrated and knowledge-centred framework for text classification was proposed

in [20]. The study applies several unsupervised and supervised methods to learn struc-

tured knowledge from texts, and then, utilises the learned knowledge to support text

categorisation through enhancing the bag-of-words representation [20]. The review of

[61] summarised the studies on semantic-based recommender systems that leverage social

tags to enhance the performance; most studies simply applied the tag set as a list of flat

terms, or perform clustering on the tags without explicitly inferring the relation among

them, to represent items for representation. Structured knowledge of higher semantics,

such as concept hierarchies and ontologies were not much leveraged in studies review in

[61]. A recent trend is to utilise large scale KBs or KGs with end-to-end deep learn-

ing approaches to support semantic-based applications, such as item recommendation

[188, 206], sentiment analysis [101] and task-oriented dialog systems [118].

Among many semantic-based applications, automated social annotation can support

users’ tagging process, reduce their cognitive overhead, address the incompleteness is-

sue of tagging data and help produce more stable, higher quality folksonomies in social

media platforms [11, 90, 130]. While tags are originally created by users, it is natural to

consider, with a collection of documents and their associated tags, whether it is possi-

ble to automatically annotate new documents and the previously nontagged documents.

This task becomes especially important when a substantial amount of socially shared

documents online are not annotated with any (hash-)tags, e.g. over 18% of the ques-

tions in Zhihu [130] and at least 85% of the microblogs (or tweets) on Twitter [97, 191].

The task is closely related to tag recommendation, which aims at suggesting tags for

existing or previously unseen resources to facilitate users’ tagging [11]. The study in [11]

classifies tag recommendation as either object-centred or personalised. Object-centred

recommendation predicts a set of tags that are related to or can describe an object re-

gardless of the target user. This type of recommendation aims at enhancing the quality
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of tagging and thus can benefit information retrieval in general. Another type of rec-

ommendation, personalised recommendation takes the users’ interest into consideration.

Automated social annotation can thus be considered as an object-centred type of tag

recommendation. The sections below review the methods and techniques for automated

social annotation and tag recommendation, with a focus on how structured knowledge

was leveraged in these applications.

2.4.2 Knowledge as Tag Co-occurrence Relations

In social tagging systems, various methods and techniques have been proposed for

tag recommendation, as reviewed in [11], including tag co-occurrence-based, content-

based, matrix factorisation based, clustering-based, graph-based, learning to rank based

approaches. In social Q&A sites, existing research explores the annotation of descriptive

tags for a question by the tags of its similar questions through probabilistic hypergraph

construction, adaptive probabilistic hypergraph learning and heuristics-based tag selec-

tion [130]. In microblogging services such as Twitter, various models have been proposed

for content-based hashtag recommendation [46, 67, 89, 110, 203, 210], that is, to suggest

tags according to the textual features from the documents (or tweets). Previous research

extracted term frequency based lexical features [203] and applied probabilistic graphical

models [46] to suggest hashtags for tweets and recent studies are mostly focused on deep

learning approaches [67, 89, 110, 210].

Among the studies presented above, knowledge mainly takes the form of co-occurrence

relations between tags, especially regarding the co-occurrence-based approach for tag

recommendation in [11], which exploits co-occurrence patterns, or association rules, of

the tags of the shared resources [12, 81]. Tag co-occurrence is also used to enhance

the performance of content-based approaches [12]. Tag co-occurrence patterns have also

been encoded as weights between the last hidden layer and the output layer of neu-

ral networks to predict multiple labels for a document [102]. As discussed in Section

2.1.3, co-occurrence relation is a syntagmatic relation, which exists between words that

appear together or nearby each other; while the subsumption relations in concept hier-

archies are a type of paradigmatic relation [152, 164] which carries “tight” [164, p. 1958]

and explicit semantics. Studies on automated social annotation mostly rely on the co-

occurrence relations of tags, but did not leverage more explicit structured knowledge,

such as similarity and subsumption relations that can be learned from social tagging

data as reviewed in Section 2.3.

2.4.3 Knowledge in Deep Learning Approaches

Structured knowledge is also to be applied in deep learning approaches for automated

social annotation. Recent studies adapted deep learning approaches that encode the

input, with layers and nodes of non-linear activations, to a continuous representation

and approximate the matching from the input representation to the label space, for

microblog annotation [67, 89, 110, 210] and paper annotation [77]. Most studies with
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deep learning approach formulate the automated annotation task as a multi-label classi-

fication problem. Under this formulation, the relations among the labels in the output

space should be considered [62, 176]. This is actually the structured knowledge of the

tags for automated social annotation. While many studies propose methods to incor-

porate knowledge in deep learning, such as continuous representations of structured

knowledge (e.g. Knowledge Graph Embedding, represented by the work in [25] and

reviewed in [189]) and to input structured knowledge as contextual information or as

memory through attention mechanisms [24, 101], fewer studies have been on leveraging

structured knowledge for deep learning based multi-label classification. This key issue

of label correlation in multi-label classification, also pertinent to the idea of structured

knowledge, is reviewed as follows.

2.4.4 Knowledge as Label Correlation in Multi-Label Classification

In multi-label classification, each instance is associated with a set of labels and the

labels are correlated to each other [62, 176]. This is different from traditional single-

label classification where classes (labels) are disjoint. This multi-label characteristic

corresponds to the scenario of document annotation with tags, as an object is most

likely annotated with several user-generated tags instead of one single tag.

Structured knowledge of the labels, i.e. their relationships or label correlation, can

be exploited to improve the performance of multi-label classification algorithm [62].

In real-world data, normally with a large label size, the correlation among labels is

common. In social tagging, users tend to collectively annotate tags with various semantic

forms and granularities [80, 133]. According to the Bibsonomy data, many documents

tagged with machine learning are also tagged with text mining, svm or optimization10,

which are either the related terms (text mining being a related application domain), or

more specifically the narrower terms (the specific algorithm svm and the sub-domain

optimization).

A traditional approach for multi-label classification is to construct many binary clas-

sifiers, one for each label. This approach, called binary relevance or one-vs-rest, however

completely ignores the correlations among labels [128, 209]. One main strategy to ad-

dress this issue was to re-generate a feature space incorporating information on label

correlation. An example was adapting discriminative classifier like Support Vector Ma-

chine (SVM) [65]. The Classifier Chain method extends this idea above one-vs-rest

through incorporating the binary classification results of previous labels in a chain as

features to predict the next label [141]; classifier chains can be randomised and embedded

into an ensemble learning architecture [142] or mined using clustering and graph-based

methods [31]. Instead of organising classifiers as a chain, the HOMER (Hierarchy Of

Multilabel classifiER) approach [177] creates a tree of classifiers, based on the hierar-

chical structure of labels pre-learned in an unsupervised manner. Probabilistic graphical

10https://www.bibsonomy.org/search/machine_learning

https://www.bibsonomy.org/search/machine_learning
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models were also used to encode the correlation among labels, including Gibbs Random

Fields [138] and Bayesian Networks [207].

For deep learning approaches, which report superior performance over other methods

[208, 209], there are still inadequate studies considering the issue of label correlation.

Neural network models adapted for multi-label classification usually represent each label

with a one-hot representation, as an orthogonal vector in the label space, and each label

set with a multi-hot representation, e.g. [0 1 0 1 1] in a 5-dimensional label space, as

in [77, 89, 110, 128, 210] (see also Section 4.2). This, however, assumes independence

among labels, i.e. not leveraging any structured knowledge regarding the labels.

One approach to leverage structured knowledge of the labels in neural networks is

through weight initialisation [102]: initialising higher weights for some dedicated neu-

rons, that each represents a co-occurring pattern among labels, between the last hidden

layer and the output layer. This idea is extended in [10] to include subsumption relations

among labels. It is, however, difficult to interpret how the randomly chosen “dedicated”

neurons really work in neural networks to leverage relations between labels. Compu-

tationally, it is also ineffective (if not infeasible) to place many neurons, equal to the

large number of co-occurring patterns, in the last hidden layer for weight initialisation.

Another approach is through architecture adaptation for hierarchical multi-label classi-

fication as in [193]. The study [193] explored tree-like architectures to organise neural

networks as a chain for hierarchical label prediction: assigning a chained feed-forward

neural network for each layer in a label hierarchy. Similar to the idea of assigning

dedicated neurons, this cannot be easily scaled to a massive number of label similarity

and subsumption relations. More generalisable methods that can leverage structured

knowledge of large scale for multi-label classification are expected.

2.5 Summary and Discussion

In this chapter, we have introduced the concept, formalities and the spectrum of struc-

tured knowledge. Based on the idea that folksonomies are highly unstructured but

a rich source to learn structured knowledge, we reviewed the studies and methods to

learn structured knowledge from social tagging data. The current approaches can be

categorised as heuristics-based, semantic grounding to external sources, unsupervised

learning, and supervised learning based methods. While heuristics-based methods are

efficient, they heavily rely on co-occurrence information to infer the subsumption rela-

tions, which are not explicit and accurate enough and are not suitable for sparse tagging

datasets. The semantic grounding based approaches can infer explicit relations, but

suffer low coverage and low accuracy when matching the tags to concepts from external

KBs. The machine learning based approach so far, both unsupervised and supervised,

either cannot infer clear semantic relations or the features are not fine-grained enough

to infer the relations. The most challenging and unsolved issues to learn structured

knowledge from tags are, therefore, the representation of the highly ambiguous meaning
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of tags and the quantification of their semantic relations to yield more accurate machine

learning models. Besides, few studies explored the enrichment of KBs from the learned

tag structures. In the next Chapter (Chapter 3), we will present a supervised machine

learning system, that articulates the meaning of tags using a set of features on top of

tag representation with probabilistic topic models, to learn structured knowledge for

Knowledge Base Enrichment.

Studies have also explored how to leverage structured knowledge to support and im-

prove the performance of various semantic-based applications. One typical application is

automated social annotation that can greatly address the incompleteness issue of current

tagging data and can maintain tagging quality. Knowledge regarding the labels (tags)

plays a key role in the task of automated social annotation. Most approaches rely on

using co-occurrence relations of the tags. For the recent, deep learning approaches, re-

search formulates the task as a multi-label classification problem. Structured knowledge

in this context is pertinent to the label correlation issue in multi-label classification.

However, although many studies have attempted to incorporate knowledge into deep

learning in general, few have explored the use of structured knowledge to address the

label correlation issue. In Chapter 4, a novel deep learning model will be introduced

to leverage both similarity and subsumption relations in multi-label classification for

automated social annotation.



Chapter 3

A Machine Learning System to

Derive Knowledge from Tags

The acquisition of any knowledge is always of use to the intellect, because it may thus

drive out useless things and retain the good. For nothing can be loved or hated unless it

is first known. – Leonardo da Vinci [131, p. 293]

An experiment is never a failure solely because it fails to achieve predicted results. An

experiment is a failure only when it also fails adequately to test the hypothesis in question,

when the data it produces don’t prove anything one way or another. – Robert Pirsig [137,

p. 95]

Deriving the “collective intelligence” from user-generated social media data is a chal-

lenging and complex process, due to unstructured characteristics of data and the inherent

difficulties in learning structured knowledge. In this chapter, we present a novel machine

learning system to learn structured knowledge from social tags, based on assumptions

founded on probabilistic topic modelling of tags. We introduce the overall system ar-

chitecture in Section 3.1. The machine learning system has five modules, namely, Data

Cleaning, Data Representation, Feature Generation, Classification and Testing, and

Knowledge Enrichment. To deal with the noisiness and the sparsity of social tags, as

the first part of the system, a data cleaning module is proposed to extract tag concepts

from the raw tags, in Section 3.2. To predict accurate subsumption relations between

tags, the system takes a supervised learning approach, with features regarding a pair

of tag concepts and a context tag concept. To capture the ambiguity of meanings of

tag concepts, the unsupervised, probabilistic topic modelling approach is adapted for

data representation in Section 3.3, which also further mitigates the data sparsity issue.

Then the proposed features, to quantify subsumption relations between tag concepts

under a context concept, are presented in Section 3.4, based on a formal set of assump-

tions on deriving subsumption relations. The instance labelling, data collection and

27
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creation process for the Classification and Testing module are presented in Section 3.6.

Once the machine learning models are trained and tested, tag concept hierarchies can

be formed through a Hierarchy Generation Algorithm which predicts and organises tag

concepts progressively from top to down into hierarchies, in Section 3.5, as a part and a

prerequisite of Knowledge Enrichment.

Evaluation is a crucial scientific process for studies in the area of machine learning,

data mining, and natural language processing. The other contribution in this chapter

is the formal assessment of the quality of the learned structured knowledge from user-

generated data. The proposed evaluation strategies contain three parts, relation-level

evaluation, ontology-level evaluation, and Knowledge Base Enrichment based evalua-

tion. The first two evaluation strategies assess the accuracy of the learned relations

and hierarchies; and the Knowledge Base Enrichment based evaluation, as a part of the

Knowledge Enrichment module, focuses on a manual assessment of the new concepts and

relations, not included in the existing KBs. The evaluation strategies, results, discus-

sions, and visualisation of the learned structured knowledge, i.e. subsumption relations

and concept hierarchies, are presented in Section 3.6.

Summary and further discussions of the methods and limitations are in Section 3.8.

3.1 Definition, Problem Formulation and Overview of the

System

The proposed system focuses on learning relations, especially subsumption relations

(introduced in Section 2.1.3 as a type of structured knowledge), from social tagging

data. The task can be formulated as a supervised learning problem. Before presenting

the learning framework, we first introduce some formal definitions used in this study.

We formally review the definition of folksonomies again and extend to the ideas of

cleaned and structured folksonomies. Folksonomies can be described as a collection of

tuples, F := 〈U, T,R, Y 〉, where U , T and R are finite sets representing users, tags and

resources, respectively; Y is a ternary relation among them, Y ⊆ U × T × R [154].

As folksonomies are noisy, they need to be cleaned and variants of tags need to be

identified. A cleaned folksonomy is denoted as Fclean := 〈U,C,R, Y 〉, where the original

T is transformed to a new finite set C representing tag concepts. Each element in C

is a group of tags considered equivalent. The task is to learn subsumption relations

from the cleaned folksonomies and finally transform these to structured folksonomies,

Fstr := 〈U,C,R, Y,≺〉, where ≺ represents the set of learned subsumption relations,

≺ ⊆ C × C.

As a simple example, suppose that the raw folksonomy F contains four tuples regard-

ing two users (u1 and u2) and two resources (r1 and r2), F = {<u1,semanticweb,r1>,

<u1,socialsoftware,r1>, <u2,ontologies,r2>, <u2,semantic-web,r2>}. To create Fclean,

the tag variants ‘semanticweb’ and ‘semantic-web’ will be unified to a standard form

of ‘Semantic Web’, and ‘socialsoftware’ to ‘Social Software’ (see the examples in Figure
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3.2). To form Fstr, the subsumption relation <ontology → Semantic Web> should be

specified.

The subsumption relation learning process can be formalised as a binary classification

problem, which is a type of supervised learning in machine learning, where labels belong

to two categories [127, p. 3-6]. Based on [127, p. 7] and adapted from [144], the problem

can be defined as follows: Let X be the set of instances or triples < Ca, Cb, Cr > in the in-

put space and Y = {0, 1} be the set of positive and negative labels for the instances. Each

instance is represented as a vector, ~xi = (f1(Ca, Cb, Cr), ..., fm(Ca, Cb, Cr)), (Ca 6= Cb),

where Ca and Cb are two concepts whose relation is to be determined, and Cr denotes

the context of the instance. Cr can be either the direct or indirect parent concept of Cb.

The identifiers f1 to fm represent a set of different feature extraction functions (which,

in this research, are founded on assumptions based on probabilistic topic modelling).

The objective is to learn a function h : X → Y to predict the subsumption relations

between tags.

Figure 3.1 provides an overview of the proposed learning framework, which consists

of five blocks:

1. Data Cleaning: transforming F to Fclean by unifying tag variants and removing

infrequent tags;

2. Data Representation: using probabilistic topic models to represent each tag con-

cept as a distribution of latent topics in a lower dimensional semantic space;

3. Feature Generation: generating features founded on assumptions of topic simi-

larity, topic distribution and probabilistic association to measure the degree of

subsumption between tag concepts given a context tag concept;

4. Classification and Testing: automatic creation of training and testing data through

semantic grounding to external KBs, followed by training and testing of the clas-

sification models;

5. Knowledge Enrichment: using a Hierarchy Generation Algorithm to transform

Fclean to Fstr, followed by discovering new concepts and relations through com-

paring to existing KBs. At the end, the results are presented to human domain

experts for verification.

It should be noted that, the input to the Feature Generation module contains triples

of tag concepts. A triple is labelled as true if given the context tag concept Cr, the tag

concept Ca is a direct hyponym (narrower concept) of Cb, or in other words, Cb is a direct

hypernym (broader concept) of Ca. In this case, there is an established subsumption

relation in this triple; in other cases, the triple is labelled as false. The same rules apply

to the prediction of subsumption relations.
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3.2 Data Cleaning

The Data Cleaning module aims at reducing the different types of noisiness and ad-

dressing the sparsity in social tagging data (see Section 2.2.1). The module cleaned

social tags using simple morphological and statistical methods in four steps: (i) specific

character handling, (ii) multiword and single tag group extraction, (iii) tag selection

using metrics. Specific character handling will remove nonsense characters and sepa-

rate individual tags from a compounded tag. Tag selection will ensure meaningful and

high quality tags being selected. We mainly introduce the steps (ii) here regarding the

extraction of tag concepts and explain more details in Section 3.6.

Figure 3.2: Extracting tag concepts using the Data Cleaning module, from the Bib-
sonomy Dataset: The underlined tags with coloured lines (on the left) are grouped to
form several tag concepts (on the right), either a multiword tag concept (in the upper
right black box) or a single tag concept (in the lower right black box); the standard tag

concepts are marked in bold font.

As shown in Figure 3.2, a tag concept in C is regarded as either a multiword tag group

(on the upper right) or a single tag group (on the lower right), extracted from the raw

tag sets. Multiword expressions, for example “Semantic Web” and “Social Software”,

are words commonly used as composition of multiple lexemes, and should be treated

as a whole for computation [139, p. 31]. After the handing of special characters, a

multiword tag can be recognised by whether there is an underscore ( ) within the tag.

Different forms (tags surrounded with coloured boxes) of a multiword tag can be grouped

together (including those tags which do not have an underscore inside) according to the

minimum edit distances, Levenshtein distances, between tags [93, 109]. A standard form

(marked in bold) of each multiword tag group is selected based on the user frequency

or inter-subjectivity [90], i.e. the tag form with highest frequency annotated by users.

The remaining tags are single word tags, which are then lemmatized and grouped based

on their lemma. To filter out insignificant tags, empirical results show that user-based

metrics tend to produce the best tag quality selection result [153]; we set a threshold on

user frequency of tag concepts to filter them. More details are in Section 3.6.
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3.3 Data Representation

Social tagging data, if projected along the dimensions of the resources (R) or the tags (T),

have very high dimensionality and are extremely sparse. To address the sparsity problem

as well as the ambiguity of meaning in tags, it is necessary to reduce the dimensionality of

the tagging data. Each resource, r ∈ R in Fclean, is initially represented as a set of “bag

of tags” (here tags mean tag concepts in Fclean), analogous to the bag of words model in

Information Retrieval [120, p. 107]. We wish to infer a low dimensional topic structure

from the large collection of resources and tags. With Latent Dirichlet Allocation [19],

we can obtain the topic assignment for each tag in all the resources, and consequently,

two probabilistic distributions: the tag-topic distributions p(C|z) (the set of all p(C|z),
z ∈ z) which represent each latent topic as a distribution of tag concepts; and the topic-

resource distributions p(z|R) (the set of all p(z|R), z ∈ z) which represent each resource

as a distribution of latent topics.

More specifically, Latent Dirichlet Allocation [19] can be adapted to model the gen-

eration process of the whole bag-of-tags, as depicted as following, where the hyperpa-

rameters α and β are the concentration parameters for the two symmetric Dirichlet

distributions; p(C|z), p(z|R) can be approximated by Gibbs sampling [70, 79].

1. For each topic z, draw a multinomial distribution p(C|z) from a Dirichlet prior β.

2. For each bag-of-tags used to annotate a resource R, draw a multinomial distribution

over topics p(z|R) from a Dirichlet prior α.

3. For each tag concept in a bag-of-tags used to annotate a resource, there are two

steps: (i) draw a topic z from the multinomial distribution over topics p(z|R) in

2); (ii) draw a tag concept Ca from the corresponding distribution p(C|z) in 1)

over all tag concepts C.

However, the entities of interest in our work are tag concepts and we need to represent

a tag concept in terms of the distribution of latent topics. This can be calculated by using

the Bayes’ rule with p(C|z) and p(z) as shown in Equation 3.1. The prior probability p(z)

has been mainly assumed as a uniform distribution in the previous literature [69, 71].

However, this often does not hold in real-world data. Therefore, we propose to use a

non-uniform prior probability p(z), computed as the ratio of the number of times that

a particular topic z is assigned to any tokens in the Gibbs Sampling process, Nz, to

the number of tokens in the whole resource collection, N , as shown in Equation 3.2.

Finally, each tag concept can be represented as a |z|-dimensional vector and the sum of

the elements (probabilities) in the vector equal to 1 (see Equation 3.3, where v(C) is the

representation of a tag concept in terms of probabilistic distributions of latent topics).

p(z|Ca) ∝ p(Ca|z) ∗ p(z) (3.1)

p(z) =
Nz

N
(3.2)
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v(Ca) = {p(zi|Ca)}|z|i=1 (3.3)

It was noted earlier that a tag concept is assumed to be potentially ambiguous and

might have complex meanings. This proposed representation intuitively captures the

different meanings of a tag concept implied by the latent topics. Since a tag concept is

usually only related to several topics, we introduce the notion of a significant topic set,

zsiga , which includes the latent topics whose value is above p, for tag concept Ca (see

Equation 3.4). We set |z| as 1000 based on model perplexity (see Section 3.6.1.2) and p

as 0.1 in this study1.

zsiga = {z | z ∈ z and p(z|Ca) > p} (3.4)

3.4 Feature Generation

This section presents the feature generation process used quantify the degree that a

concept is a hyponym of another given a context concept. The generated features form

the input to the Classification and Testing module with respect to the experiments pre-

sented in Section 3.6.3. We believe that subsumption relations can be better established

if we model the way how humans understand and interpret the meaning of tags. Three

assumptions are proposed based on how humans determine subsumption relations. For

two tag concepts Ca and Cb to have a subsumption relation:

Assumption 1. Topic similarity - they must be similar to each other to some extent.

The topic similarity (or dissimilarity) is calculated in the low dimensional semantic

space.

Assumption 2. Topic distribution - they should have topic distributions satisfying con-

ditions on both topic coverage and focus.

Intuitively, a hypernym and its hyponym should have overlapping topics. In terms

of topic coverage, a hypernym should have a distribution spanning over more significant

topics or dimensions than the hyponym. In terms of focus, the hyponym tends to have

a high probability on one or few of the significant topics covered by the hypernym.

Assumption 3. Probabilistic association - they should have a strong association to each

other.

Probabilistic association has its root in cognitive science and psychology [163]. It

measures the degree of association between two concepts with a given context (e.g.,

parent of both concepts). In other words, it measures how likely that one is able to

associate one concept given another and some background information. In our work,

1The value of p (= 0.1) is set empirically according to the distribution of p(z|Ca) and the number
of topics |z|. For |z| = 1000, the average p(z|Ca) is 0.001, a very high p might produce no significant
topics, while a very low p might include many irrelevant topics.
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we quantify this likelihood using the conditional and joint probabilities of the two tag

concepts.

Based on the above assumptions, we generate three corresponding categories of fea-

tures that together characterise the degree of subsumption between pairs of tag concepts,

as shown in Table 3.1 below.

Table 3.1: Feature sets corresponding to the three assumptions

Features Description
Topic Similarity Based Features

Cos sim Cosine similarity of two topic distribution vectors
KL Div1 Kullback-Leibler Divergence from Ca to Cb
KL Div2 Kullback-Leibler Divergence from Cb to Ca
Gen Jaccard Generalised Jaccard Index of two topic distribution vectors

Topic Distribution Based Features
overlapping Number of overlapping significant topics
diff num sig Difference of the number of significant topics
diff max Difference of the maximum elements in two tag vectors
diff aver sig Difference of the average probability of significant topics

Probabilistic Association Features
p(Ca|Cb) Probabilistic association of Ca given Cb
p(Cb|Ca) Probabilistic association of Cb given Ca
p(Ca|Cb, Ra,b) Local probabilistic association of Ca given Cb and Ra,b
p(Cb|Ca, Ra,b) Local probabilistic association of Cb given Ca and Ra,b
p(Ca, Cb) Joint probabilistic association of Ca and Cb
p(Ca, Cb|Ra,b) Local joint probabilistic association of Ca and Cb given Ra,b

3.4.1 Topic Similarity Based Features

Assumption 1 is translated into several topic-based similarity and dissimilarity features.

We use three distinct similarity measures, Cosine similarity, Kullback-Leibler Divergence

and Generalised Jaccard Index.

3.4.1.1 Cosine Similarity

Cosine similarity, denoted as Cos sim, is one of the most common similarity measures

used in Information Retrieval [120, p. 110-p. 113] and Natural Language Processing [94].

The cosine similarity length-normalises the topic distribution vectors of two tag concepts

to unit vectors, and computes their dot product, which is the cosine of the angle between

the unit vectors.

Cos Sim(Ca, Cb) =
v(Ca) · v(Cb)

|v(Ca)||v(Cb)|
(3.5)

3.4.1.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) Divergence [100], or called relative entropy, expresses the

difference between two probability distributions. Different from many other similarity
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measures, KL Divergence is asymmetric, i.e. DKL(P ||Q) is different from DKL(Q||P )

for two distributions P and Q. In information theory and machine learning, DKL(P ||Q)

measures the additional amount of information required when approximating P using

Q instead of using the distribution P [16, p. 55]. When each concept is represented as a

topic distribution, as elaborated in [190], it is the “surprise” received from one concept

to another concept and this asymmetric “surprise” can imply the degree of subsumption

between concepts: compared to DKL(Cb||Ca), a higher value of DKL(Ca||Cb) may imply

much “surprise” received when we approximate the concept Ca with Cb, thus Ca is

likely to be a hypernym of Cb. We thus generated two features, denoted as KL Div1 (or

DKL(Ca||Cb)) and KL Div2 (or DKL(Cb||Ca)), respectively, defined in Equation 3.6.

DKL(Ca||Cb) =

T∑
i=1

v(Ca)i log
v(Ca)i
v(Cb)i

(3.6)

3.4.1.3 Generalised Jaccard Index

Different from the other features in this category, the generalised Jaccard index, or

the fuzzy sets similarity defined in the work [175], is based on the intersection and

union of the topic sets between concepts, taking into consideration the magnitude of

probability distributions. The metric can be regarded as a generalised version of the

Jaccard Coefficient [171, p. 74] for real-valued vectors or probability distributions. The

notion of sets from the (generalised) Jaccard Index matches well to the idea of measuring

the concept similarity by their set of topics. The feature, denoted as Gen Jaccard, is

defined in Equation 3.7.

Gen Jaccard(Ca, Cb) =

∑
i min(v(Ca)i, v(Cb)i)∑
i max(v(Ca)i, v(Cb)i))

(3.7)

3.4.2 Topic Distribution Based Features

The Assumption 2 is translated into the following features as shown in the second part

of Table 3.1.

3.4.2.1 Number of Overlapping Significant Topics

Having overlapping significant topics is a simple while important indication of a sub-

sumption relation. It is denoted as overlapping in Equation 3.8, where zsig
a and zsig

b can

be obtained from Equation 3.4.

overlapping(Ca, Cb) = |zsig
a ∩ zsig

b | (3.8)

3.4.2.2 Difference of the Number of Significant Topics

The number of significant topics is an indicator of how broad a tag concept is in terms

of meanings. It is natural that general concepts tend to have more significant topics
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than specific ones. The difference of the number of significant topics between Ca and Cb

is used as a feature and is denoted as diff num sig, defined in Equation 3.9.

diff num sig(Ca, Cb) = |zsiga | − |z
sig
b | (3.9)

3.4.2.3 Difference of Maximum Probability in Topic Distributions

The difference of the maximum probabilities given the two topic distributions is defined

in Equation 3.10. This feature works jointly with overlapping and the topic similarity

based features: If Ca and Cb are similar and share some overlapping topics, a positive

value of this feature, diff max(Ca, Cb), may imply that Ca is more specific than Cb. The

intuition is that the maximum probability of a hyponym on a topic should be higher

than that of the hypernym. We denote this feature as diff max in the equation below,

where max(v(C)) returns the maximum entry in the probability distribution.

diff max(Ca, Cb) = max(v(Ca))−max(v(Cb)) (3.10)

3.4.2.4 Difference of the Average Probability of Significant Topics

The feature diff max only captures the difference of maximum probabilities and is not

enough for concepts which have multiple significant topics. We add another feature,

the difference of the average probability of significant topics between Ca and Cb. It is

calculated using Equation 3.11 and denoted as diff aver sig.

diff aver sig(Ca, Cb) = Aver(zsiga )−Aver(zsigb )

=

∑
(zsiga )

|zsiga |
−

∑
(zsigb )

|zsigb |

(3.11)

If |zsiga | or |zsigb | is zero, we set its corresponding average probability Aver(zsiga ) or

Aver(zsigb ) as zero.

3.4.3 Probabilistic Association Based Features

The idea of probabilistic association among words is firstly proposed in [69, 71] and

has its root in cognitive psychology [129]. It is believed that, in human memory, words

have pre-existing associative structures constantly created from experiences [129]. With

a probabilistic generative model, we can extract the gist of words and predict other

associated ones based on bayesian inference [71]. We extend this idea and define new

methods to quantify probabilistic associations among social tags under a given context.

The associative relations between words can be computed as a conditional probability

of a response word given a cue word, marginalising over the hidden topics. While

the conditional probability measures how likely one tag concept can be generated given

another, the joint probability measures how likely two tag concepts can be generated
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together. In addition, we introduce a third tag as the context for the computation,

which can be the root concept of the domain or sub-domain under consideration, or the

direct parent concept of the hypernym in the tag pair. This allows us to learn a concept

hierarchy from top to bottom (see Section 3.5). As these features are extracted with a

local context, they are referred to as local probabilistic associations. The six features in

this category are summarised in the third part of Table 3.1 and described below.

3.4.3.1 Probabilistic Association

The probabilistic association between two tag concepts is defined as a conditional prob-

ability of one tag concept given another. The association is asymmetric and analogous

to how we cognitively associate words [71]. The conditional probability p(Ca|Cb) and

p(Cb|Ca) are computed by marginalising the inferred topics as shown in Equation 3.12.

p(Ca|Cb) =
∑
z∈z

p(Ca|z, Cb)p(z|Cb)

=
∑
z∈z

p(Ca|z)p(z|Cb)
(3.12)

The p(Ca|z) can be obtained from the LDA analysis in Section 3.3, and p(z|Cb) can

be obtained using Equation 3.1. We adopt the assumption made in [71] that Ca and

Cb are conditionally independent given the latent topic z. Similarly, we can compute

p(Cb|Ca).

3.4.3.2 Local Probabilistic Association

When constructing a hierarchy using a top down approach, a potential subsumption

relation between two tag concepts should be considered with respect to their common

parent. The parent tag concept represents the local context under consideration, which

would facilitate disambiguating the meanings of the two tag concepts. To capture this

idea, we propose the concept of local probabilistic association, which is computed con-

ditioned on a context tag Ra,b. It is asymmetric and we define two feature extraction

functions, p(Ca|Cb, Ra,b) and p(Cb|Ca, Ra,b), as shown in Equation 3.13.

p(Ca|Cb, Ra,b) =
∑
z∈z

p(Ca|z, Cb, Ra,b)p(z|Cb, Ra,b)

=
∑
z∈z

p(Ca|z)p(z|Cb, Ra,b)

=
∑
z∈z

p(Ca|z) ·
p(Cb, Ra,b|z)p(z)
p(Cb, Ra,b)

=
∑
z∈z

p(Ca|z)p(Cb|z)p(Ra,b|z)p(z)
p(Cb, Ra,b)

(3.13)
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Here we extend the assumption in [71] and assume that Ca, Cb and Ra,b are condi-

tionally independent given the latent topic z. The p(Ca|z), p(Cb|z), and p(Ra,b|z) can

be obtained from the LDA analysis; p(z) is computed using Equation 3.2 and p(Cb, Ra,b)

is computed by using Equation 3.14 (see Section 3.4.3.3).

3.4.3.3 Joint Probabilistic Association

Tag concepts that have a direct subsumption relation fall into similar areas and should

have a high likelihood of being jointly generated. Therefore, we define the joint proba-

bilistic association, p(Ca, Cb). It is symmetric and computed using Equation 3.14, where

p(Ca|Cb) can be obtained by using Equation 3.12.

p(Ca, Cb) = p(Ca|Cb)p(Cb)

= p(Ca|Cb)
∑
z∈z

p(Cb|z)p(z) (3.14)

3.4.3.4 Local Joint Probabilistic Association

Similar to local probabilistic association, the local joint probabilistic association is fur-

ther conditioned using a context tag Ra,b. It measures the likelihood of two tags

being jointly generated with a particular context. It is also symmetric, denoted as

p(Ca, Cb|Ra,b), where the p(Ca|Cb, Ra,b) and p(Cb|Ra,b) can be computed using Equa-

tions 3.12 and 3.13, respectively.

p(Ca, Cb|Ra,b) = p(Ca|Cb, Ra,b)p(Cb|Ra,b)

=
∑
z∈z

p(Ca|z, Cb, Ra,b)p(z|Cb, Ra,b)p(Cb|Ra,b)

=
∑
z∈z

p(Ca|z) ·
p(Cb, Ra,b|z)p(z)
p(Cb, Ra,b)

· p(Cb|Ra,b)

(3.15)

Once the three groups of features (14 features in total) are defined (see Table 3.1 for

a summary), in the Classification and Testing module, we generate positive and negative

instances, through tag grounding and instance labelling as described in Sections 3.6.2.1

and 3.6.2.2. Each instance is represented as a 14-dimensional feature vector. We create

training, validation and testing datasets and feed the data into a classifier, which aims

at learning a decision boundary in the feature space for binary prediction, i.e. whether

subsumption relation holds between a new ordered pair of tag concepts given a context

tag concept. The selection of classifiers is independent from our approach. We will test

and evaluate several mainstream of-the-shelf classifiers in Section 3.6.3.
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3.5 Hierarchy Generation Algorithm

Concept hierarchies, which can represent structured knowledge of a (sub-)domain, carry

higher semantics than subsumption relations, according to the spectrum of structured

knowledge in Figure 2.1. This section proposes a Hierarchy Generation Algorithm, in the

Knowledge Enrichment module of the proposed machine learning system, to construct

concept hierarchies, which are later used to enrich external KBs.

A hierarchy can be generated with an algorithm that organises tag concepts with

valid subsumption relations from top to bottom, in an iterative manner. The algorithm

starts with a specified “root” concept (a specific concept in a KB, which is designated by

the users) and learns the layer below it. Then it learns the next layer from the current

layer, and so on. The learned hierarchy is a Direct Acyclic Graph (DAG), where the

nodes are tag concepts and edges represent subsumption relations among them. More

specifically, it is a monohierarchy, where each concept can have at most one hypernym

[194, p.140]. Such a hierarchy can be transformed to a formal lightweight, terminological

ontology [63]. Usage of a monohierarchy is a common recommendation to construct

ontologies and a strict requirement for classification systems [194, p.169, p.207], although

in real world applications, one concept may have more than one hypernym, resulting in

a polyhierarchy. We only aim to generate monohierarchies as a standard hierarchy; and

polyhierarchies can be generated by relaxing the constraints on the number of parent

concepts.

A key step in this algorithm is to select candidate hyponyms for a concept under

consideration and then pass them to the trained classifiers for prediction. To enhance

the consistency of the hierarchy generation, during the candidate hyponym selection, the

algorithm makes use of the context of a concept, which is defined as the direct hypernym

of that concept if available, otherwise, it is defined as the specified root concept. The

candidate hyponyms of a concept should be associated to the concept, the root, as well

as the context. The candidate selection condition is therefore calculated by using the

global and local probabilistic association, according to Equations 3.12 and 3.13. Let cand

be a candidate hyponym, root be the user-specified root concept, concept be the concept

under consideration for which the candidate hyponyms are to be selected, context be

the direct hypernym of concept, and TH be a pre-defined threshold. If the following

two conditions are met then cand is chosen as a candidate hyponym of concept : (1)

p(cand|root) > TH, this means that all candidates should be associated to the specified

root; and (2) p(cand|concept, context) > TH, this means that all candidates should be

associated to the concept under consideration given the context2. The two probabilities

can be calculated based on the Equations 3.12 and 3.13, respectively.

The notations used in Algorithm 1 are explained as follows.

• Glayer represents a layer in the learned hierarchy; it is initialised as the root layer.

2TH is empirically set within [ 1
|C| ,

10
|C| ] for both conditions, where |C| is the number of tag concepts.

This is to ensure that TH is higher than the average probability while retaining a considerable number
of candidates.
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• H is the hierarchy to be generated; it is initialised as ∅.

• h(xi,Θ) is the classification function to predict if a subsumption relation holds

between two tag concepts (see Section 3.6.3). Θ represents the learned weights in

training the classifier; xi = f(Ii) is an instance which is represented as a vector of

the extracted features; and f represents the feature extraction function defined in

Section 3.4.

• L is the list of associated tag concepts to the user specified root, i.e., L ←
{cand | p(cand|root) > TH}. All the candidate hyponyms will be selected from

this list.

When selecting the candidate hyponyms for the root, as context is not available,

only the condition (1) is used (see line 2-4 in Algorithm 1). From line 5 to line 14, the

algorithm learns the layer below the root. If the layer is not the root layer, then there are

possibly multiple concepts on that layer. From line 16 to line 27, for each of the concepts,

the algorithm selects a number of candidates from the list L. Then the pairs of each

of the candidates and the concept under consideration are passed to the classification

function h for prediction. If a subsumption relation can be established, then the pair is

added into the temporary layer G′next. The layer may need to be pruned and then added

into the hierarchy H (lines 28-30, detail of the pruning process is presented in Algorithm

2). Then the algorithm learns the next layers with recursive calls (lines 31-33).

To create a monohierarchy, it is necessary to prune edges to ensure that each node

(except the root) has only one hypernym. Algorithm 2 prunes a weighted directed graph

with possible cycles. The input is an intermediate layer, G′next, in Algorithm 1 and the

output is Gnext. The idea is to select the hypernym with the highest confidence score

from the classification. In line 2, the algorithm first sorts the edges by their weights (i.e.,

classification scores) in descending order. In lines 3-8, for each edge Ei, it retrieves the

hyponym hypo, which is then inserted if there is no parent for hypo in the Gnext layer

(function hasParent(hypo, Gnext) returns a boolean value).

The time-complexity of Algorithm 1 is O(d · (l · m · c + m′ logm′ + m′)), where l

is the number of possible candidate hyponyms; m and m′ are the number of possible

edges at the Glayer and G′next respectively; d is the depth of the hierarchy H; and c

is the time-complexity of the classifier function h(xi,Θ). The graph pruning algorithm

(Algorithm 2), as a part of Algorithm 1, has time complexity O(m′ logm′ + m′)3. For

most academic domains, the values of l, m, m′, and d are limited; the time-complexity

of the algorithm is dependent on the time-complexity c of the underlying classifier.

Therefore, the algorithm is reasonably efficient. We further evaluate the algorithms and

the quality of the learned structured knowledge in the experiment and evaluation.

3The sorting part (line 2 in Algorithm 2 uses Quicksort [82], adapted in the built-in function sort()
in MATLAB for the implementation, having average time-complexity O(m′ logm′).
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Algorithm 1: generateHierarchy(Glayer)

Require: Glayer, H, L, and h.
Ensure: H, hierarchy to be learned.

1 Initialise Gnext ← ∅;
2 if Glayer is the root layer then
3 Add root to H;
4 L← {cand | p(cand|root) > TH};
5 for each cand in L do
6 context ← root ;
7 Ii ← <cand, root, context>;
8 xi ← f(Ii) = [f1(Ii), f2(Ii), ..., f14(Ii)];
9 Predict subsumption relation using h(xi,Θ);

10 if subsumption relation holds then
11 Gnext ← Gnext ∪ < cand, root >;
12 Remove cand from L;

13 end

14 end

15 else
16 for each edge < concept, context > in Glayer do
17 Lsub ← {cand | p(cand|concept, context) > TH, cand ∈ L};
18 for each cand in Lsub do
19 Ii ← <cand, concept, context>;
20 xi ← f(Ii) = [f1(Ii), f2(Ii), ..., f14(Ii)];
21 Predict subsumption relation using h(xi,Θ);
22 if subsumption relation holds then
23 Gnext ← Gnext ∪ < cand, concept >;
24 Remove cand from L;

25 end

26 end

27 end
28 Gnext ← prune(G′next);

29 end
30 Add Gnext to H;
31 while not finished do
32 generateHierarchy(Gnext)
33 end

3.6 Experiment and Evaluation

We conducted experiments using three large-scale, publicly available KBs, DBpedia,

Microsoft Concept Graph (MCG), and ACM Computing Classification System (CCS).

The training and testing data were automatically created by grounding the tag concepts

in these KBs. The results were compared to those produced by the state-of-the-art

mechanisms and evaluated using three strategies, i.e., relation-level, ontology-level and

Knowledge Base Enrichment based evaluation. The implementation of the system and
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Algorithm 2: prune(G′next)

Require: G′next
Ensure: Gnext, a pruned graph as a DAG.

1 Initialise Gnext;
2 Sort all edges (E < hypo, hyper >) in G′next in descendant order by classification

score;
3 for i← 1 to |E| do
4 Retrieve the hypo from Ei;
5 if NOT hasParent(hypo, Gnext) then
6 Gnext ← Gnext ∪ Ei < hypo, hyper >;
7 end

8 end

experiments are available on GitHub4.

3.6.1 Social Tagging Data Processing

We extracted a social tagging dataset from Bibsonomy, which is a well-known social

bookmarking system for academic publications and Web links, maintained by the Knowl-

edge and Data Engineering Group at the University of Kassel [13]. We used the whole

dump of the Bibsonomy data (version “2015-07-01”), which can be downloaded after

request5. The whole dataset contains 3,794,882 annotations, 868,015 distinct resources

and 283,858 distinct tags contributed by 11,103 users, accumulated from 2005 to July

2015.

3.6.1.1 Data Cleaning

To create a cleaned folksonomy Fclean, we performed data cleaning steps as described in

Section 3.2, including: (1) special character handling, based on the assumed meaning of

special characters, we deleted the parts before “:” in a tag, separated a tag to multiple

individual tags if it contained a comma (,), semicolon (;), slash (/) or brackets, and

treated tags containing underscores ( ) as a multiword tags; (2) multiword and single-

word tag concept extraction (for single tags, a WordNet-based lemmatiser6 was used);

(3) tag filtering by metrics and languages; for example, we filtered out insignificant

tags and only kept multi-word and single-word tag groups which have been used by no

less than four distinct users. Also we only kept English tags based on the automatic

detection results obtained using the Google Translation API7. Some examples of the

data cleaning results are presented in Figure 3.2. We made openly available the cleaned

multiword and single tag groups (or tag concepts) as a supplementary material of the

4https://github.com/acadTags/tag-relation-learning/
5https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
6https://github.com/qingxiang-jia/lee-lemmatizer
7https://cloud.google.com/translate/

https://github.com/acadTags/tag-relation-learning/
https://www .kde.cs.uni-kassel.de/bibsonomy/dumps/
https://github.com/qingxiang-jia/lee-lemmatizer
https://cloud.google.com/translate/
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paper [48]8. For learning subsumption relations from tagging data, we further selected

the resources as academic papers rather than websites in Bibsonomy (this cut almost half

of the resources), and removed resources that have less than three tag concepts. Finally,

we obtained a cleaned folksonomy of higher quality, Fclean, with 7,458 tag concepts and

128,782 publications. Table 3.2 presents some statistics concerning both the raw and

the cleaned Bibsonomy datasets.

Table 3.2: Statistics for the raw and the cleaned Bibsonomy dataset

Tags/TCs MTCs STCs Users Res

Raw data 283,858 - - 11,103 868,015
Cleaned data in [48] 17,379 2,502 14,877 - 663,148
Cleaned data (Res, as papers, ≥ 3 TCs) 7,458 2,293 5,165 - 128,782

Notes: TCs, Tag Concepts; MTCs, Multiword Tag Concepts; STCs, Single-word Tag Concepts; Res,
Resources set R.

3.6.1.2 Probabilistic Topic Modelling from Tagging Data

Each resource was treated as a “bag of tags”. For data representation and feature gen-

eration, Probabilistic Topic Modelling was performed with LDA and Gibbs Sampling by

using the MALLET Machine Learning Library [121]9. The two concentration param-

eters for the Dirichlet distribution in LDA [19, 185] were set empirically, according to

[70] and the default settings in MALLET [121]: topic-word hyperparameter α = 50/|z|
[70]; and the document-topic hyperparameter β = 0.01 [121]. We held out 10% of the

data to optimise the number of topics |z| with minimum perplexity and set |z| as 1000.

We then used this probabilistic representation to extract features for learning.

Table 3.3: Example latent topics related to the tag concept “web”

Topic ID Most probable 5 tag concepts
14 web accessibility centre mobility human
17 web mining web mining data mining data web
126 web social social web science web science
247 semantic web web semantic ontology rdf
333 application web web application ajax web interfaces
466 service web service web composition service composition
576 search web web search social search social web
577 web archive crawl alexandria l3s

Table 3.3 provides an example on the learned topics, each of which is represented

as a probabilistic distribution of tags. Only the five tag concepts with the highest

probabilities in the distribution p(C|z) are shown. It can be seen that collectively the

tag concepts provide an intuitive definition on the meanings of the hidden topics. From

a different perspective, probabilistic topic modelling is also an effective dimensionality

8The cleaned tag concepts and the detailed preprocessing steps can be acquired from https://

github.com/acadTags/tag-data-cleaning
9http://mallet.cs.umass.edu/

https://github.com/acadTags/tag-data-cleaning
https://github.com/acadTags/tag-data-cleaning
http://mallet.cs.umass.edu/
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reduction technique which transforms the original resource representation from a “bag of

tags” to a vector of latent topics in a lower semantic space. A tag concept may relate to

multiple topics, for example, the tag “web” is related to topics 14 (human accessibility),

17 (data mining), 126 (social Web) and 247 (semantic Web), 333 (Web applications),

466 (Web service), 576 (Web search), 577 (Web archiving and crawling). Tag concepts

such as “web” contribute to multiple topics and are potentially general concepts. Then,

we represent each tag as a distribution of the topics from p(C|z) and p(z), according to

the Equations 3.1-3.3.

3.6.2 Labelled Dataset Creation

To learn subsumption relations, we need to generate labelled training and testing data.

Selected tag pairs from the Bibsonomy dataset were automatically grounded to those in

KBs and then labelled as either positive (subsumption) or negative.

3.6.2.1 Tag Grounding

Three external KBs were leveraged: (1) DBpedia contains structured information of

Wikipedia, described in RDF (Resource Description Framework). We used the DBpedia

“2015-10” version10, to be consistent with the Bibsonomy dataset (2015 version). Ac-

cording to the ontological structure of DBpedia11, we extracted concepts with subsump-

tion relations using the skos:broader predicate and we used the dbo:wikiPageRedirects

predicate to extract equivalent concepts to increase the recall of string matching; (2)

Microsoft Concept Graph (MCG)12 is a data-driven KB mined from billions of

Web pages, released in September 2016, consisting of 85 million “is-a” relations and 18

million concepts. Each “is-a” relation is associated with a strength value. We selected

the strength no less than 5, which resulted in 2.8 million relations; and (3) ACM Com-

puting Classification System (CCS)13 is an academic classification system that has

been used to organise and retrieve publications by subjects in the ACM Digital Library.

The lastest version (version 2012) was adopted in the experiments. From the RDF ver-

sion of CCS, we treated skos:broader relations as subsumption relations and skos:altLabel

as equivalent relations.

Table 3.4 provides some statistics concerning the concept overlap between external

KBs and Bibsonomy. DBpedia had 2,191 common concepts with Bibsonomy and CCS

had 691. The number is not excessive compared to the total number of tag concepts

7,458, suggesting that social tags can be potentially used to enrich human-engineered

KBs. The number of overlapped concepts between MCG and Bibsonomy is 6,030, sug-

gesting that there is still room to enrich the KB even though MCG is created from

billions of Web pages.

10http://downloads.dbpedia.org/2015-10/
11For an example see the DBpedia Category, Machine Learning, http://dbpedia.org/page/

Category:Machine_learning.
12https://concept.research.microsoft.com/Home/Download
13https://www.acm.org/publications/class-2012

http://downloads.dbpedia.org/2015-10/
http://dbpedia.org/page/Category:Machine_learning
http://dbpedia.org/page/Category:Machine_learning
https://concept.research.microsoft.com/Home/Download
https://www.acm.org/publications/class-2012
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Table 3.4: Statistics of the external Knowledge Bases (KBs) and the Bibsonomy
folksonomy

Concepts
Subsumption
relations

Concept overlap
with Bibsonomy

Release Date

DBpedia 1,316,674 2,706,685 2,191 2015-10
MCG 1,483,135 2,844,951 6,030 2016-09
CCS 9,060 2,390 691 2012 (latest version)
Bibsonomy 7,458 - - 2015-07

3.6.2.2 Instance Labelling with Knowledge Bases

Supervised learning requires labelled data to train a model as complex function for

prediction. We largely adapted and extended the approach in [144] to produce more

balanced labelled data. We generated directed pairs of the overlapped tags concepts

< Ca, Cb >, and labelled them with each KB. We used simple string matching, based

on Levenshtein distance [109], to map a cleaned tag to a concept in the external KB.

Then, a tag pair instance can be labelled as positive if there is an asserted, direct

subsumption relation between the two tags in the external KB, and the probabilistic

association between them, p(Ca|Cb) > TH, computed using Equation 3.12. This is to

ensure the labelled instances are consistent with both the external KBs and Bibsonomy

dataset. We created the negative instances by using the following methods: (i) reversed

negative, for each positive pair < Ca, Cb >, we created a negative pair < Cb, Ca >; and

(ii) random negative, if both randomly generated tag concepts appear in one of the KBs,

but a subsumption relation between them cannot be found in any of the three KBs, we

label the instance as negative. We also extracted the context tags for these instances

to generate probabilistic association based features. Finally, we obtained 4,965 positive

instances and 9,570 negative instances (including 4,785 reversed negative instances and

4,785 random negative instances). In total there are 14,535 instances and the ratio of

positive to negative instances is around 1 : 1.93.

It should be noted that the instance labelling process is based on the assumption

that all relations in KBs are correct. In reality, the positive instances may suffer the

quality issues of the KBs, as reported in [204] for DBpedia, due to the nature of the

collaboratively generated data. Similarly, the random negative instances, according to

the open-world assumption, may not necessarily be negative if they are not contained

in any of the KBs. Nevertheless, the quality of these KBs is improving over time with

the efforts of millions of individuals.

3.6.3 Classification Settings

Using the data created above, we generated features for each instance with the method

proposed in Section 3.4 and fed them into different classifiers. We held out 20% of all

instances for testing and used the remaining 80% for training. 10-fold cross-validation

was used to tune the parameters and validate the generalisation of the trained models.
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We used the standard precision, recall and F -measure to evaluate the performance of the

classifiers. To test the effectiveness of the methods, we adopted four popular classifica-

tion algorithms, namely, Support Vector Machine (SVM), AdaBoost, Logistic Regression

and the CART algorithm (Classification And Regression Trees) [172, Chapter 3-4]. As

each of the classification algorithms has its own characteristics and constraints, the eval-

uation was based on results from a group of classifiers, instead of any single classifier.

Support Vector Machine (SVM) is a maximum-margin classifier: it searches for a

hyperplane which separates two classes with the maximum margin, where the margin is

the perpendicular distance between two hyperplanes which touches the the closest data

items in each class. With a kernel trick that transforms the original coordinate space of

the data, SVM can be used to create nonlinear decision boundaries. Using a soft-margin

approach, SVM can tolerate small number of training errors to form decision boundaries

with better generalisability. SVM also has strong regularisation capabilities with its

hyper-parameters, being able to control the complexity of the model to achieve good

generalisation performance and thus to prevent from overfitting. AdaBoost (short for

Adaptive Boosting) is a typical boosting algorithm for ensemble learning, which provides

a structure to improve performance by aggregating the prediction of multiple normal

weak classifiers. The weak classifiers are selected by re-sampling the training data based

on the weight for each data item, and the weights are iteratively updated. Data items

which are wrongly classified will have higher weights in the next iteration, thus AdaBoost

is insusceptible to overfitting. Logistic Regression is a generalised regression model for

categorical values (two categories in our case) adapted from linear regression. Finally,

CART is a decision tree learning algorithm that aims that searching for a hierarchical

structure where non-terminal nodes represent features, leaf nodes as class labels and

edges as logical paths to generalise the data items; an impurity measure or split criteria is

used to determine the goodness of partition. Detailed introduction of these classification

algorithms can be founded in the book [172, Chapter 3-4].

We used the LibSVM 3.2214 [30] Matlab version for SVM training. We used the

radial basis function (RBF) kernel for SVM, and tuned the two parameters c and γ

with grid-search to optimise the F1 score, as suggested in [87]. The remaining three

algorithms (CART, Logistic Regression and AdaBoost) were implemented in the Clas-

sification Learner App15 in Matlab. We set the number of weaker learners as 30 and

each of them used the same settings as the CART algorithm, and a shrinkage learning

rate was set to 0.1 to prevent overfitting. All models were trained and validated using

10-fold cross-validation.

3.6.4 Evaluation

Three strategies were used for the evaluation: (i) relation-level evaluation using the test-

ing set; (ii) ontology-level evaluation using external KBs as the gold standard; and (iii)

14https://www.csie.ntu.edu.tw/~cjlin/libsvm/
15https://cn.mathworks.com/help/stats/classification-learner-app.html

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://cn.mathworks.com/help/stats/classification-learner-app.html
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Knowledge Base Enrichment based evaluation through human assessment. The results

allowed us to see to what extent social media data can be exploited to learn structured

knowledge to enrich existing KBs. Finally, we visualise some learned hierarchies for

analysis.

3.6.4.1 Relation-level Evaluation

We compared the performance of the proposed method to several representative studies

as explained in the following. The feature set proposed in this work is denoted as FSall,

which consists of features related to topic similarity (FStopicSim), topic distribution

(FStopicDist) and probabilistic association (FSprobAsso) (see the whole three feature sets

in Table 3.1).

1. Binary classification using co-occurrence related features [144]: Combining several

heuristics as features in previous studies, i.e., support and confidence [150], cosine

similarity of tag-tag vector in [95, p. 56-59] and [160], set inclusion and generalisa-

tion degrees [123], mutual overlapping [28] and graph-based taxonomy search [80].

In total there are 8 features and the feature set is denoted as FSco.

2. The method in [190] based on Information Theory Principle for Concept Rela-

tionship: This proposed two conditions to measure the degree of subsumption

between two concepts. The first condition is the similarity condition, measur-

ing the similarity between two concepts; the second condition is the divergence

difference condition, which calculates the difference between the Kullback-Leibler

divergence of two tag concepts. This is generally equivalent to the topic similarity

based feature set in our method. It contains 4 features, denoted as FStopicSim.

3. The topic distribution related features, FStopicDist: To allow performance compar-

ison with using only the topic distribution.

4. The probabilistic association features, FSprobAsso: To allow performance compar-

ison with using only the probabilistic association.

5. Combining both the co-occurrence related features [144] and the feature sets pro-

posed in this study: To determine if the performance of the proposed method can

be further improved by combining the co-occurrence based features. In total there

are 22 features, denoted as FSall+FSco.

The results are presented in Table 3.5. In general, using the feature sets FSall

achieved higher F1 scores with a large margin than using any others, and the best

ranking (ranked first with SVM and Adaboost and second with LR and CART). The

performance was stable and consistent with different classification techniques, showing

the robustness of the proposed feature set in characterising subsumption relations. Co-

occurrence based features (FSco), which have achieved impressive results for supervised

learning, as reported in the study presented in [144], did not perform well for with
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Table 3.5: Classification testing results with comparison among feature sets

Feature set Classifier Recall Precision F1 score

Full feature sets, FSall

SVM RBF(210.5,24.5) 51.56 (1) 52.95 (3) 52.25 (1)
AdaBoost 50.15 (1) 63.52 (3) 56.05 (1)
LR 34.04 (2) 65.00 (2) 44.68 (2)
CART 45.02 (3) 62.87 (2) 52.46 (2)

Rêgo et al. [144]
(co-occurrence features
FSco, including [95, 150],
[28, 80, 123, 160])

SVM RBF(210,27) 36.96 (5) 58.81 (2) 45.39 (4)
AdaBoost 27.49 (4) 61.07 (4) 37.92 (4)
LR 19.64 (3) 56.20 (4) 29.10 (3)
CART 27.19 (4) 58.95 (4) 37.22 (4)

Wang et al. [190]
(based on FStopicSim)

SVM RBF(210.5,29) 46.02 (3) 47.02 (5) 46.51 (3)
AdaBoost 17.52 (5) 59.59 (5) 27.08 (5)
LR 15.01 (4) 54.78 (6) 23.56 (4)
CART 11.78 (5) 66.10 (1) 20.00 (5)

Topic distribution,
FStopicDist

SVM RBF(210,211) 40.28 (4) 46.14 (6) 43.01 (5)
AdaBoost 11.48 (6) 59.07 (6) 19.22 (6)
LR 10.27 (6) 55.14 (5) 17.32 (6)
CART 3.02 (6) 47.62 (6) 5.68 (6)

Probabilistic association,
FSprobAsso

SVM RBF(212,28.5) 27.80 (6) 60.53 (1) 38.10 (6)
AdaBoost 44.51 (3) 63.60 (2) 52.37 (3)
LR 14.20 (5) 68.12 (1) 23.50 (5)
CART 53.07 (1) 60.09 (3) 56.36 (1)

Combining full features
with co-occurrence
features in [144],
FSall+FSco

SVM RBF(29.5,24) 49.25 (2) 52.41 (4) 50.78 (2)
AdaBoost 46.32 (2) 65.25 (1) 54.18 (2)
LR 36.56 (1) 62.69 (3) 46.18 (1)
CART 46.73 (2) 57.35 (5) 51.50 (3)

The values (2a,2b) after SVM RBF are the parameters c and γ tuned to optimise F1 score. The highest
F1 score for each feature set is bolded. The number in all brackets shows ranking of the feature set under
the same classifier.

our large labelled dataset in the academic domain. F1 scores obtained using the co-

occurrence based features (FSco) [144] were much lower compared to FSall (absolutely

lower by 6.86% with SVM and by 18.13% with AdaBoost). This is probably because the

Bibsonomy data is sparse, thus, many subsumption relations between low frequent tags

are fail to be captured by data co-occurrences. Adding the co-occurrence based features

(FSco) to the proposed features sets, FSall+FSco, did not improve performance, showing

that data co-occurrence does not provide further information to the proposed feature

sets based on probabilistic topic modelling.

We also compared the proposed method to [190], which applied probabilistic topic

modelling on a collection of scientific publication abstracts and then detected subsump-

tion relations with the Information Theory Principle for Concept Relationship. The

approach can be adapted into the supervised learning setting that uses the topic simi-

larity features FStopicSim. The proposed features FSall performed better in terms of all

metrics (in terms of F1, an absolute increase by 5.74% with SVM and by 28.97% with

AdaBoost). One of the main reasons is that the dataset used in [190] contains texts and

rich contextual information, which is not the case for social tagging data.
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When using the single feature set we found that probabilistic association (FSprobAsso)

generated higher precision (overall best ranking), while the recall was lower than others.

The best performance was achieved by using the full feature sets. This confirms the

hypothesis that we can better characterise subsumption relations through all the feature

sets founded on the three assumptions. We noticed that classification with FSprobAsso

and CART obtained a slightly higher F1 score (+0.3%) than FSall and Adaboost (56.34%

vs. 56.05%), with the former having higher recall (+2.92%) but lower precision (-3.43%).

The performance with CART was, however, not consistent with other classifiers and

the overall ranking of the FSprobAsso was worse than FSall. This is probably because

the individual features in FSprobAsso can better satisfy the impurity criteria and are

suitable for the rectilinear decision boundaries of the CART algorithm [172, p. 143-

p. 147], while the other features which have strong interactions among them, especially

those in FStopicDist (only 5.68% F1 with CART but 43.01% with SVM), are more suitable

for models with nonlinear boundaries and better generalisation capabilities. SVM and

AdaBoost performed generally better than Logistic Regression (LR) and CART within

each feature set. It is also noticed that, compared to the other 3 classifiers, training the

SVM models with grid search to find the best parameters is computationally expensive,

e.g., with best c values varying from 29.5 to 212 and γ values from 24 to 211 as shown in

Table 3.5.

The relation-level evaluation above shows that the proposed feature sets best char-

acterise the subsumption relations between tags and achieved overall best prediction

with the classifiers. It is also necessary to test the quality of the concept hierarchies,

which captures knowledge in a domain or a sub-domain, with higher semantics than

subsumption relations, generated by the proposed algorithm.

3.6.4.2 Ontology-level Evaluation

The ontology-level evaluation was designed to measure the quality of the hierarchies

(or lightweight ontologies) derived using the hierarchy generation algorithm. We used a

reference-based strategy adopted from the study in [165]. The prerequisite of this strat-

egy is the existence of a “gold-standard” ontology to be compared against. The quality

of the learned hierarchies is thus measured as the similarity to the “gold standard”.

This automated evaluation can ensure reproducibility, compared to manual assessment

of concept hierarchies. We chose the popular KBs, DBpedia and CCS as the “gold stan-

dard” and aimed to test the capabilities of classifiers and the algorithm for generating

hierarchies, although we are aware of the fact that both KBs are not perfect and the CCS

has been relatively static (last updated 7 years ago at the time of writing this thesis).

The data-driven KB, MCG, is not chosen as a “gold standard”, because the transitivity

of subsumption relations in MCG (which is an acyclic graph and suffers from semantic

drift) is low [112].

We adopted the standard metrics for reference-based evaluation, taxonomic precision

(TP), taxonomic recall (TR), taxonomic F -measure (TF) [43] and taxonomic overlapping
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(TO) [119], also applied in [165]. The idea is to find a common concept Cc between a

learned hierarchy L and a referenced hierarchy G, and to extract a characteristic extract

from each of them, ce(Cc, L) and ce(Cc, G). The characteristic extract is defined as the

common semantic cotopy, i.e., starting from the concept Cc to traverse the hierarchy L

(or G) to find all the super- and sub-concepts of Cc in this hierarchy (except Cc itself)

which are also presented in the other hierarchy G (or L), introduced in [43] and [42,

p. 18]. The partial similarity of the two characteristic extracts regarding the common

concept Cc is then calculated. The local taxonomic precision and recall regarding the

common concept Cc can be calculated using Equations 3.16 and 3.17.

tp(Cc, L,G) =
|ce(Cc, L) ∩ ce(Cc, G)|

|ce(Cc, L)|
(3.16)

tr(Cc, L,G) =
|ce(Cc, L) ∩ ce(Cc, G)|

|ce(Cc, G)|
(3.17)

The global taxonomic precision TP (L,G) and recall TR(L,G) are computed by

averaging all local tp and tr with respect to all common concepts. The taxonomic

F-measure is the harmonic mean of both taxonomic precision and recall.

TP (L,G) =
1

|L ∩G|
∑

Cc∈L∩G
tp(Cc, L,G) (3.18)

Taxonomic overlapping is symmetric and can be used independently. The local

version is defined as follows and the global version TO(L,G) is computed by averaging

all the local ones.

toce(c, L,G) =
|ce(c, L,G) ∩ ce(c,G, L)|
|ce(c, L,G)| ∪ ce(c,G, L)|

(3.19)

TO(L,G) =
1

|L ∩G|
∑

c∈L∩G
toce(c, L,G) (3.20)

We used several domains in external KBs for ontology-level evaluation. For DB-

pedia, concepts matched to those within the top 5 layers under the categories “Ar-

eas of computer science” and “Information science” were selected (the domain is de-

noted as “CS/IS”). For the domains of “Education” and “Economics”, concepts within

the top 3 layers were selected. For CCS, all tag concepts matched to the uppermost

2, 3 or 4 layers were selected. We finally obtained 217 tag concepts in CS/IS, 226 in

Education and 152 in Economics in DBpedia, and 43, 113, 133 tag concepts matched to

the uppermost 2, 3, 4 layers of CCS, respectively. For each tag concept in the selected

domain, we generated a sub-hierarchy using the hierarchy generation algorithm and cal-

culated TP, TR, TF and TO (averaged results over the sub-hierarchies for each domain

are reported). This novel evaluation process on multiple hierarchies is more rational

than on only one global hierarchy against the KBs. The latter approach may be biased

as it does not test the similarity of the branches between two hierarchies [165].
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Figure 3.3: Results of ontology-level evaluation. The figures show the TF and TO
values computed with the learned hierarchies from the Bibsonomy dataset and the “gold
standard” (DBpedia and CCS). Three domains were selected for DBpedia, Computer
Science/Information Science, Education and Economics; and three sub-hierarchies up-
permost 2, 3 and 4 layers were tested for CCS. SVM or AdaBoost (denoted as “Ada”)
were used for classification. The x-axis represents methods with different feature sets
and the y-axis represents the similarity in percentage. Higher TF and TO values indi-

cate greater similarity to the gold standard.

Figure 3.3 shows the results obtained with different combinations of KBs, features

sets and classifiers. The results demonstrate satisfying description ability of the proposed

feature sets with the hierarchy generation algorithm, with generally better and more con-

sistent results compare to other feature sets. The TF and TO values are also consistent

with those reported in the previous study [14]. In all three domains of DBpedia, the

TF and TO scores generated with the proposed features FSall were generally higher

than those generated with other features sets based on co-occurrence, topic similarity,

topic distribution and probabilistic association. There were few exceptions, however,

their performance was highly inconsistent between classifiers, e.g. the topic similarity
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features FStopicSim had higher TF than FSall for CS/IS using SVM, but much lower TF

using Adaboost. For CCS with 2 uppermost layers, the highest TF and TO scores were

obtained with the co-occurrence-based features, but the proposed feature set performed

generally better with concepts matched to 3 and 4 uppermost layers, especially using

Adaboost. This shows the advantage of the proposed feature set on generating hierar-

chies with more specific concepts than the co-occurrence-based features. Furthermore,

results of the proposed feature set with CCS were also consistent between classifiers.

Similar to the results in the relation-level evaluation, the performance of using only the

topic similarity or topic distribution based features varied significantly with different

classification techniques in all settings.

The ontology-level evaluation above shows that proposed feature sets with SVM and

Adaboost can produce comparable and more consistent results based on similarity to

existing KBs. This evaluation strategy, however, cannot judge the new concepts and

relations, i.e. those not captured in existing KBs; we thus introduce Knowledge Base

Enrichment based Evaluation.

3.6.4.3 Knowledge Base Enrichment Based Evaluation

One particularly interesting part of this research is to discover previously unseen knowl-

edge or emerging semantics from social tagging data. The enrichment-based evaluation

is to assess to what extent the method can enrich external KBs with new and mean-

ingful concepts and relations. For this purpose domain experts were used for manual

assessment.

We selected a number of concepts from DBpedia (the “CS/IS“ domain) and CCS

(the 2 uppermost layers) and used the trained classification models to predict their

direct hyponyms. Then we identified new hyponyms which do not appear in the “gold-

standard” KBs and let the human experts make judgement about their validity. To

identify new relations, we controlled the release date as a factor, both external KBs,

DBpedia and CCS are released or adopted slightly later than the social tagging data

Bibsonomy, see Table 3.2: we used the “2015-10” version of DBpedia is about the same

time (3 months later) to the Bibsonomy version (2015-07); for CCS, the release date is

in 2012, but it is the lastest version, and still using as the backbone of the ACM digital

library during this study. The Knowledge Base, MCG, is not used for this evaluation,

as it has a low transitivity among the concepts and thus we were not able to select a

specific domain concept hierarchy from MCG. A large number of direct subsumption

relations was generated and around 99% of them were not present in the two existing

KBs, DBpedia or CCS; in total, there were 3,846 distinct new relations for DBpedia, and

1,302 for CCS, based on the predictions from the SVM and AdaBoost models, as shown

in Table 3.6. The overlapped relations between the learned structured knowledge and

DBpedia or CCS are very few, which can be partly explained by earlier conclusions as

(i) different annotation process between social tagging and the KBs [105]; (ii) different

domain coverage and semantic granularity of concepts between the social tags and the
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Table 3.6: Statistic of Knowledge Enrichment from folksonomies

DBpedia CCS
Enriched Overlapped Enriched Overlapped

SVM 2876 34 890 3
AdaBoost 2079 17 944 3
Distinct Total 3846 36 1302 5

KBs [7, 33], and is also due to (iii) the various forms of concepts or terminologies from

social media users and knowledge engineering experts.

As the number of enriched relations is large, we selected a subset (298 out of 5,148)

for manual assessment based on the classifiers’ confidence score of the learned relations

from the prediction: we set the confidence threshold THc as 6 for SVM and as 0.6 for

AdaBoost to narrow the list of relations to be manually assessed. Thirteen domain

experts, including four academic staff members and nine senior PhD candidates, from

universities in the UK and the US, were invited to participate the evaluation. They

work in different areas of computer or information sciences. In the evaluation sheet, we

asked them to mark the predicted relations with one of the four options:

• (subsumption) Ca is a narrower concept of Cb given Cr.

• (related) Ca is not a narrower concept of Cb, but they are related concepts.

• (unrelated) Nor the subsumption or related relation holds for the two concepts.

• (unsure) The participant is not sure about the answer.

Using the proposed method with SVM and AdaBoost, we generated two sets of

subsumption relations for DBpedia and CCS respectively. We merged the results in

the evaluation sheet and ended up with 298 distinct relations after filtering out those

with low confidence scores. The multi-rater Fless Kappa [55] was 0.15 and free-marginal

kappa [140] was 0.22 among the domain experts, showing a “slight” agreement. This is

also consistent with the results reported in previous studies, e.g., Fless Kappa 0.137 in

[59] and free-marginal kappa 0.139 in [168]. This “slight” agreement is because that the

learned relations and concepts concern the very specific sub-areas and rare topics, thus

some of them (especially abbreviations) may not be familiar to all participants.

Among the 3,874 ratings (298× 13) presented to the judges, 1,489 of them (38.44%)

were marked as “subsumption”, and 1,131 (29.20%) were “related”. We further com-

pared the enrichment accuracy in terms of KBs. The ground truth was determined by

assuming no less than a certain number of votes were for “subsumption” and the accu-

racy was computed with respect to the ground truth. As shown in Figure 3.4, the x-axis

represents settings for the classifiers and KBs, and the y-axis represents the accuracy of

the enriched relations. If we define a predicted relation as a true subsumption when at

least five domain experts have the agreement, then the overall accuracy of the enriched

relations was 53.36%. The accuracy increased to 66.44% and 74.50% if we only need
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Figure 3.4: Results on Knowledge Base Enrichment based evaluation

agreement from four and three domain experts respectively; the accuracy decreased to

28.52% when we need agreement from seven of them. Higher accuracy was seen in most

cases when enriching CCS than DBpedia. The reason might be that the concepts in CCS

(2 uppermost layers) are more general and the hierarchy is more shallow than those of

DBpedia. Therefore, there is much room for new relations and concepts in the selected

layers of CCS. The results clearly show that the proposed method can help discover

meaningful knowledge from noisy tagging data16.

3.6.4.4 Hierarchy Visualisation

Finally, we present some of the learned hierarchies in Figure 3.5 and 3.6, to enrich the

“data mining” hierarchy in DBpedia and the “social software” hierarchy in CCS us-

ing the proposed whole feature set, predicted with SVM and AdaBoost respectively.

More learned hierarchies, also including “research methods”, “machine learning”, “in-

formation retrieval” hierarchies to enrich CCS and an “e commerce” hierarchy to enrich

DBpedia, are presented in the Appendix A. Due to the size limitation, we used the

“force-directed” layout17 [56] to visualise the learned hierarchies as DAGs. The right

arrow → points from a hypernym (broad concept) to a hyponym (narrow concept). It

can be seen from the hierarchies that the concepts and relations from user-generated

data present distinct terminology from structured knowledge created by domain experts

and knowledge engineers. Also, many learned relations are reasonable, for example,

“data mining → association rules”, and “social software → second life”. There are also

“strange” relations, which still can reflect users’ perspective or the bias and noise in the

tagging data, for example, “data mining → tobuy”, which may indicate an application

16The evaluation sheet and the ratings from the domain experts are available on https://github.

com/acadTags/tag-relation-learning
17The layout settings are available as a built-in parameter in MATLAB since version 2015B,

see https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.graphplot.

layout.html#buxdj61-method

https://github.com/acadTags/tag-relation-learning
https://github.com/acadTags/tag-relation-learning
https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.graphplot.layout.html#buxdj61-method
https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.graphplot.layout.html#buxdj61-method
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Figure 3.5: Excerpt of the learned hierarchy to enrich DBpedia in the domain of data
mining, trained with the proposed full feature set FSall using SVM.

area of data mining; some relation may not be strictly subsumption relations, but asso-

ciation relations, such as “social software → web 2.0”, consistent with the results from

Knowledge Base Enrichment based evaluation that around 30% are marked as “related”.

The learned hierarchies have mostly no more than 3 layers, controlled by the Hierar-

chical Generation Algorithm to keep the consistency of concepts in the hierarchy. One

limitation of the learned hierarchies is that the concepts on the same layer (or siblings)

are not consistent to each other in terms of semantics, i.e. “kdd”, “linked data” and

“subgroup”. This consistency may be improved through an algorithm to find a global

optimal hierarchy, instead of the greedy-based algorithm for hierarchy generation.

3.7 Related Work

In this section, we relate the proposed system to previous work on learning structured

knowledge from social tagging data, mainly presented in Section 2.3. Current approaches

in the literature can be categorised into several types: heuristics-based methods [80, 124],

semantic grounding to external resources based methods [47, 59], unsupervised learning

based methods [190, 211], and supervised learning based methods [144]. The proposed

machine learning system is related to all the categories, but focuses on binary classifica-

tion in supervised learning as in [144]. Distinct to [144], our approach utilises features

extracted using an unsupervised learning method, Probabilistic Topic Modelling, in-

spired by the study in [190]; also the semantic grounding process for instance labelling

is further extended based on three large human-engineered or data-driven KBs. The

proposed feature set, founded on three assumptions to characterise the subsumption

relations, can better quantify the relations from sparse tagging data than co-occurrence-

based heuristics, especially for narrow folksonomies [183] in the academic domain. The
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Figure 3.6: Excerpt of the learned hierarchy to enrich CCS in the domain of social
software, trained with the proposed full feature set FSall using AdaBoost.

method of the machine learning system finds an equilibrium among the methods, taking

advantage of all the categories of approach. The proposed feature sets and the Hierarchy

Generation Algorithm have been thoroughly evaluated in the experiment.

In terms of evaluation of knowledge derived from folksonomies, the most com-

prehensive evaluation study prior to our work is in [165]. The study [165] applied

reference-based evaluation (similar to ontology-level evaluation), manual evaluation (on

the relation-level) and pragmatic evaluation (to simulate navigation based on the hierar-

chy) to compare the unsupervised, clustering-based approaches to heuristic, graph-based

approaches to learn hierarchies from tags. The study in this thesis evaluated supervised

learning approaches, through automated relation-level and ontology-level evaluation,

which were not evaluated in [165]. Besides, the proposed evaluation strategies further

focused on Knowledge Base Enrichment based Evaluation, which explores how user-

generated social media data can enrich existing KBs; this aspect of evaluation has not

been considered in previous studies.

Regarding the Knowledge Base Enrichment, reviewed in 2.3.5, few prior studies have

explored this direction despite the rich semantics from folksonomies over professional

taxonomies and thesaurus [105, 116]. The most representative work for Knowledge Base

Enrichment from folksonomies is [5], which proposed a system pipeline, “3E” techniques

(Extraction, Enrichment, Evolution), to process and enrich the knowledge from tags

to KBs. This is generally related to the modules in the proposed machine learning

system: “Extraction” can correspond to Data Cleaning module, “Enrichment” to se-

mantic grounding, and “Evolution” to the Knowledge Enrichment module. However,

the study most focuses on extracting tag concepts and co-occurrence relations, instead

of on learning subsumption relations or concept hierarchies, to enrich KBs. Much human
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intervention with visualisation techniques was required for Knowledge Enrichment in [5];

this is also the case for Knowledge Base Enrichment from learners’ tags in an e-learning

environment in [60]. Our approach focuses on enriching KBs with structured knowledge

of higher semantics, e.g. concept hierarchies, with reduced human intervention.

3.8 Summary and Discussion

In this chapter, we have introduced a novel machine learning system to learn structured

knowledge from social tagging data. The system inputs raw social tagging data and

external KBs, and outputs subsumption relations and concept hierarchies derived from

the noisy, ambiguous, and flat tagging data. From the evaluation results and the visu-

alised hierarchies, we can conclude that new structured knowledge of sufficient quality

can be derived to enrich KBs. Many relations in the learned concept hierarchies from

tags are previously unseen in the existing KBs. This validates the main hypothesis of

this research regarding the user-generated social media data as “collective intelligence”,

i.e. a viable source to derive structured knowledge.

The novelty of the method lies in a supervised learning framework with training data

automatically extracted based on probabilistic topic modelling, and a subsequent Hier-

archy Generation Algorithm utilising the machine learning model. The system includes

five connected modules. The Data Cleaning module extracts tag concepts from the raw,

noisy and sparse tag sets. The Data Representation module, based on probabilistic topic

modelling, represents the ambiguous meaning of each tag concept as a distribution of

topics and reduces the dimensionality of tag concepts. The Feature Generation module

further quantifies subsumption relations, founded on three assumptions based on topic

similarity, topic distribution, and probabilistic association to form the features. The

Classification and Testing module generates labelled data with external KBs and learns

classifier models to predict new relations. The final Knowledge Enrichment module gen-

erates tag concept hierarchies with the learned classifier models and enriches existing

KBs. In the system, the issues of noisiness, ambiguity, and sparsity of tagging data are

addressed and the flat, unstructured tags are transformed into structured forms.

There is a lack of studies to formally evaluate the learned structured knowledge from

social tagging data, especially in terms of Knowledge Base Enrichment. Thus a compre-

hensive evaluation was carried out towards the quality of the discovery knowledge using

three different strategies, relation-level evaluation, ontology-level evaluation, and Knowl-

edge Base Enrichment based manual evaluation, using the publicly available Bibsonomy

dataset and three popular, human-engineered or data-driven KBs. The relation-level

evaluation shows the proposed feature set based on probabilistic topic modelling better

characterises subsumption relation between tags over co-occurrence-based features [144]

and topic similarity-based features in [190]. The ontology-level evaluation demonstrates

the competitive and consistent description ability of the feature set and the usefulness of

the Hierarchy Generation Algorithm. The Knowledge Base Enrichment based evaluation
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clearly shows that existing KBs created by domain experts and knowledge engineers can

be supplemented by knowledge learned from the user-generated social media data. Hi-

erarchy visualisation further shows that the learned concept hierarchies are meaningful

and distinct from the existing knowledge sources.

The overall machine learning system is not without its conditions and limitations.

The probabilistic topic modelling based representation requires sufficient amount of tex-

tual data to infer the hidden topic structure. The instance labelling with KBs requires

sufficient coverage of the tags in the KBs, and assumes that the concepts and relations in

the KBs are correct and fairly comprehensive. The system requires certain data quality

of the input, that is, the texts are expected to not be overly sparse and noisy to derive

useful structured knowledge. The system also does not take time into consideration, so

that a fixed, compact structured knowledge is derived without capturing the evolving

patterns of knowledge. The Hierarchy Generation Algorithm requires a minimum human

intervention, i.e., a user-specified root tag concept. The algorithm also uses a greedy,

layer-by-layer, approach to form the hierarchies. The siblings, or concepts having the

same parent, were not consistently modelled in the hierarchy. This may be further ad-

dressed through a globally optimised process to generate hierarchies. Some presented

relations in the hierarchies were “related”, but not strict subsumption relations. Due

to the noisiness of social tagging data, while the discovered new knowledge can be used

to enrich KBs, it needs scrutiny of domain experts. The evaluation process, especially

the ontology-level evaluation, also assumes the existence of gold-standard structured

knowledge, which may not be the case in all the knowledge domains.

Despite the conditions and limitations described above, the proposed machine learn-

ing system can be potentially adapted to other types of social media data. It is worth

to apply and adapt the Data Representation and Feature Generation modules to other

socially shared texts, such as microblogs, comments, and questions created by users in

various types of social media platforms.

With the recent arise of deep learning for language processing, one of the future works

is to apply deep learning models to improve the quality of the discovered knowledge.

Another future work is to adapt the current supervised learning method to an online

learning framework in order to build evolving structured knowledge. In this way, the

learned hierarchy can update itself with the availability of new tagging data taking

into consideration temporal factors. The design would also help capture the emerging

semantics in a timely manner.

One key purpose of learning high quality structured knowledge is to support down-

stream semantic-based applications. In the next chapter, we will present a deep learning

model that leverages structured knowledge for automated social annotation, which also

addresses the incompleteness issue of users’ tagging in many social media platforms.



Chapter 4

Knowledge-Enhanced Deep

Learning for Social Annotation

...a birder sees a “robin” when a normal person only sees a “bird”. – Paul Heymann

and Hector Garcia-Molina [80], based on the work by James W. Tanaka and Marjorie

Taylor [173]

One reason why titles and prefaces are ignored by many readers is that they do not think

it important to classify the book they are reading. They do not follow this first rule of

analytical reading. If they tried to follow it, they would be grateful to the author for

helping them. Obviously, the author thinks it is important for the reader to know the

kind of book he is being given. – Mortimer J. Adler and Charles Van Doren [2, p. 63]

Knowledge plays a key role in many semantic-based, machine learning applications

by providing contextual information, enhancing explainability and improving perfor-

mance. Among the many applications, automated social annotation can alleviate the

incompleteness issue of social tagging data and help maintain data quality. In this

chapter, we focus on leveraging structured knowledge to support the task of automated

social annotation. The task is recently and more commonly formulated as a multi-label

classification problem and modelled using deep learning approaches. We first intro-

duce the task in 4.1 and then provide a problem formulation of the task as multi-label

classification in 4.2.

The main challenge then is to leverage structured knowledge in deep learning models

for multi-label classification. Multi-label classification needs to take into consideration

the label correlation, i.e. relation among labels. For automated social annotation, the

relation among labels is a type of structured knowledge of the user-generated tags. In

Section 4.3, semantic-based loss regularisation is proposed to enhance the deep learning

model with the similarity and subsumption relations between tags. Besides, to mimic the

users’ reading and annotation behaviour, a new form of attention mechanisms, guided

59
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attention mechanisms, is further introduced to learn to guide the reading of sentences

through the title metadata. The overall proposed deep learning model, Joint Multi-label

Attention Networks (JMAN), can leverage the relations between tags, and separately

models the title and the content of each document and injects an explicit, title-guided

attention mechanism into each sentence. The approach has been evaluated with four

real-world datasets from paper annotation and question annotation in social media plat-

forms. Experiments are presented in Section 4.4 with analysis on model convergence,

parameter tuning, multi-source components, and attention visualisation. The related

work, mostly regarding the deep learning methods for automated social annotation and

the attention mechanisms, is then reviewed in 4.5 with comparison to the proposed

approach. The summary and discussion are in Section 4.6.

4.1 Introduction

The idea of automated social annotation was briefly introduced in Section 2.4.1 as an

important semantic-based application. We recap the concept here with further intro-

duction. As stated earlier, user-generated tags, or folksonomies, are collaboratively

contributed by many users in social media platforms, beneficial for retrieval and recom-

mendation of resources [184]. While tags are originally created by users, it is natural to

consider, with a collection of documents and their associated tags, whether it is possible

to automatically annotate new documents. The task of automated social annotation

thus aims at predicting a set of tags based on the input metadata of a document shared

in a social media platform. Figure 4.1 displays an example of a published paper and its

associated user-generated tags on Bibsonomy.

The task can tackle the incompleteness and improve the overall quality of social

tagging data. In reality, social tagging data face a serious issue of data incompleteness,

as reviewed in Section 2.2.1. A substantial amount of socially shared documents online

are not annotated with any (hash-)tags, e.g. around 20% of question in Zhihu [130] and

at least 85% of microblogs (or tweets) on Twitter [97, 191]. Automatic annotation can

support users’ tagging process, reduce their cognitive load in tagging, enrich tag sets for

the resources and result in a more stable quality of resource organisation in social media

platforms [11, 90, 130]. These together constitute the motivations of automatic annota-

tion of social texts. The task is relevant to indexing information resources, i.e. allocating

of terms to describe resources after content analyses [134, p. 120]. The task can also be

considered as a type of object-centred tag recommendation, which aims at enhancing the

quality of tagging and benefit information retrieval in social media platforms in general.

An example of the social annotation task is the recent data science competition, “Zhihu

Machine Learning Challenge 2017”1, to automatically annotate questions in Zhihu, one

of the leading social question and answering sites in China.

1https://biendata.com/competition/zhihu/
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Figure 4.1: An example of a document and its associated metadata and tags on
Bibsonomy. The metadata consist of the title and the content (i.e. the abstract of the

paper). Tags are surrounded with a red box.

The structured knowledge of tags provides contextual information to improve the

performance of automated social text annotation. In the “Zhihu Machine Learning

Challenge 2017”, the hierarchy of tags, as a DAG, were provided as additional structured

knowledge to be leverage to enhance the annotation. However, as far as we concern,

none of the winning teams in the competition leveraged the structured knowledge in their

modelling process, instead, most teams used ensemble learning over many deep learning

architectures to match the input document space to the label space2 [162]. The lack

of knowledge-enhanced approach in the competition calls for further exploration in this

area. This corresponds to the original research question on how to leverage structured

knowledge for semantic-based applications, especially for automated social annotation.

To accurately annotate documents with user-generated tags, another key challenge

is to model the users’ reading and annotation process. The user-generated tags may

not appear in the document (e.g. papers or questions) and the number of tags is large.

In the Bibsonomy dataset, after a thorough data cleaning, there were still above 5,000

cleaned tag concepts. Also, a document can be associated with many tags, for exam-

ple in the cleaned Bibsonomy dataset described in Section 3.6.1.1, the average number

of tag concepts per document was about 12. Recent advances in deep learning have

demonstrated its superior performance in multi-label classification and text classification

2There were 1068 teams participated (4185 participants), and 211 teams in the final leaderboard3.
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[104, 128, 208, 209]. Recent studies explored the use of deep learning based approaches

with attention mechanisms [67, 77, 89, 110, 210], which encode the input texts as contin-

uous vector representations and approximate the matching from the input to the label

space, where labels are often assumed to be orthogonal or independent to each other.

Attention mechanisms, initially applied in neural machine translation [9] to form distinct

context vector with respect to the target word to decode, are able to select important

words and sentences in a document to improve text classification. An example of using

attention mechanisms is in Hierarchical Attention Network (HAN) [200]. We will further

introduce deep learning architectures, especially architectures of Recurrent Neural Net-

works (RNN) [52], [68, Chapter 10] with attention mechanisms in the proposed method

Section 4.3 and the related work Section 4.5.

The existing deep learning methods for this task, however, at least suffer two issues:

the modelling of reading and annotation behaviour (encoding) and the semantics in the

labels (label correlation):

• In prediction, the most common multi-hot (as opposed to one-hot) representation

for each label set [128] (see Section 2.4.4, and Section 4.2 below) assumes orthog-

onality among labels and does not consider their correlation. Label correlation

is, however, a key issue in multi-label classification especially when the label size

is large [62, 209], as reviewed in Section 2.4.4. In automated social annotation,

the label correlation is based on the semantic relations among tags; and the co-

occurring tags often exhibit similarity or subsumption relations [133, 164]. It is

necessary to incorporate the knowledge of tag relations to model the annotation

process.

• In encoding, mainstream methods simply scan the texts in the document and do

not fully model the way how users read and annotate it. Recurrent Neural Net-

works (RNN) typically encode a sequence of text one word by another into a fixed

length vector, while not considering the internal structure of documents. Hier-

archical Attention Network (HAN) [200] models the hierarchical (word-sentence)

structure of a document, however, it does consider how a document is annotated

by a human user with the presence of different metadata, e.g. a user may digest

the title before reading the document. Studies have explored the impact and im-

portance of title on users’ annotation choice [114], document categorisation and

tag recommendation [54].

Further to add regarding the first issue, in the social context, users tend to an-

notate documents collectively with tags of various semantic forms and granularities

[80, 133]. Current studies mostly considered the symmetric relation (similarity) among

labels (tags) [65, 102, 213]. The asymmetric relation (such as subsumption) among la-

bels needs further exploration, as suggested in [213]. To incorporate both types of label

semantics in one deep neural network, we propose two semantic-based loss regularisers
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in Section 4.3.1, along with the binary cross-entropy loss, to constrain the network out-

put to satisfy the similarity and subsumption relations among labels. The regularisers

allow the model to leverage semantic relations matched to existing KBs and inferred

from datasets. We further explore the dynamic update of the semantic relations when

optimising the loss regularisers.

We finally present a novel knowledge-enhanced and attention-based deep learning

framework in Section 4.3 to seamlessly integrate users’ reading and annotation behaviour

in the encoding and prediction for automated annotation, leveraging the guided atten-

tion mechanisms and the label correlation encoded in external knowledge sources. We

propose a new form of attention mechanisms to simulate users’ reading behaviour. To

annotate a document, a user attempts to digest the meaning of the title first; then, based

on her or his understanding, proceeds to the content (e.g. abstract of the document).

The key is the use of a title-guided attention mechanism that allows the meaning of

the title to govern the “reading” of each sentences to form a final representation of the

document. The idea is different from the attention mechanism used in the HAN model

which is implemented through an implicit vector. In our approach, the guided attention

mechanism is realised through a dynamic alignment of the title and sentences, which

also enables better explainability in the modelling and visualisation.

4.2 Problem Statement: Multi-Label Classification

The task of automated social annotation can be formally transformed into a multi-label

classification problem [128, 209], where each instance is associated with a set of labels

instead of a single label in multi-class classification. In the scenario of social annotation,

an object is most likely annotated with several user-generated tags instead of one single

tag, thus multi-label classification is a suitable formulation for this task.

SupposeX denoting the collection of textual sequences or instances (e.g. documents),

and Y = {y1, y2, ..., yn} denotes the label space with n possible labels (i.e. user-generated

tags). Each instance in X, x ∈ Rde , is a word sequence, in which each word is represented

as a d-dimensional vector. Each x is associated with a label set Yi ⊆ Y . Each
−→
Yi is an

n-dimensional multi-hot vector,
−→
Yi = [yi1, yi2, ..., yin] and yij ∈ {0, 1}, where a value of 1

indicates that the jth label yj has been used to annotate (is relevant to) the ith instance,

whereas a value of 0 indicates irrelevance of the label to the instance [128]. The task is

to learn a complex function h : X → Y based on a training set D = {xi,
−→
Yi |i ∈ [1,m]},

where m is the number of instances in the training set [209].

4.3 The Proposed Approach

Following the problem formulation above, we propose a deep learning model, a paral-

lelled, two-layered attention network (Joint Multi-label Attention Network, JMAN) to

model the users’ reading and annotation process. The JMAN model is illustrated in
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Figure 4.2 below. Instead of feeding the whole text sequence X into the neural network

as in Hierarchical Attention Network (HAN) [200], the proposed model JMAN takes

as inputs the title, xt, and the content, xa, separately, where x = {xt, xa}. Each tar-

get is a multi-hot vector,
−→
Yi ∈ {0, 1}|Y |. There are four attention mechanism modules,

shown as dotted edges in Figure 4.2: two word-level attention mechanisms for the words

in the title and in each sentence in the content, respectively; and two sentence-level

attention mechanisms, one guided by the title representation (“title-guided”) and the

other guided by an “informative” vector (“original”). JMAN’s key distinctions from the

previous models are:

• The semantic-based loss regularisers aim to enhance the learning process by enforc-

ing the output of the network to conform to the label correlation, i.e. leveraging

the structured knowledge represented as similarity and subsumption relations, as

specified in KBs (Section 4.3.1).

• The architecture of multi-source hierarchical attention mechanisms adapts the Hi-

erarchical Attention Network (HAN) [200] to allow multiple input sources to spec-

ify different metadata or textual features of a document in different ways in parallel

(Section 4.3.2).

• The guided attention mechanisms, specifically, title-guided, sentence-level atten-

tion mechanisms, that explicitly model the reading behaviour of users during an-

notation (Section 4.3.3).

Figure 4.2: The proposed Joint Multi-label Attention Network (JMAN) for auto-
mated social annotation
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4.3.1 Semantic-based Loss Regularisers

Studies show that tags have hidden semantic structures (e.g similarity and subsumption)

and users collectively annotate documents with semantically related tags of various

forms and granularities [80, 90, 133, 164]. If we treat each tag (here tag means tag

concepts) as a label, then we have to take the label correlation into account for multi-label

classification. Leveraging the label correlation is particularly challenging as the number

of relation pairs might be enormously large when there are many labels [209]. In this

case, it is computationally inefficient (if not infeasible) to apply the weight initialisation

approach [10, 102] (as we introduced in Section 2.4.4) that assigns a neuron in the

penultimate layer of the neural network to “memorise” just one of the numerous label

relations.

We take a different strategy by using the semantic-based loss regularisation to lever-

age the structured knowledge of the labels. Two loss regularisers are proposed to deal

with the similarity and subsumption relations, respectively, jointly optimised with the

binary cross-entropy loss. The idea is to enforce the output values of the neural network

si ∈ (0, 1)|Y |, of the same dimensionality as the label space, to satisfy the semantic

constraints from the label relations. Such relations can be inferred from the label sets

in the data and through grounding the labels to external KBs. The whole joint loss is

defined as in Equation 4.1 below:

L = LCE + λ1Lsim + λ2Lsub (4.1)

where LCE is the binary cross entropy loss [128], which obtained superior results with

faster convergence over the pairwise ranking loss proposed in [208] for multi-label text

classification with a feed-forward neural network. In Equation 4.2 below, yij ∈ {0, 1}
indicates the true value whether a label yj ∈ Y has been used to annotate the ith

document, and sij is the actual output value after the sigmoid layer.

LCE = −
∑
i

∑
j

(yij log(sij) + (1− yij) log(1− sij)) (4.2)

While the binary cross-entropy loss defines the matching between the output values

and the target label set, the proposed Lsim and Lsub shown in Equation 4.3 define how

the output values internally conform to the label relations defined in external KBs and

induced from the dataset.

Lsim =
1

2

∑
i

∑
j,k|yj ,yk∈Yi

Simjk|sij − sik|2

Lsub =
1

2

∑
i

∑
j,k|yj ,yk∈Yi

SubjkR(sij)(1−R(sik))

(4.3)
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where Yi is the set of all labels for the ith document; j and k are the indices of a

co-occurring pair of labels, yj and yk, in the label set Yi, corresponding to the indices

of nodes sij and sik in the output layer si in Figure 4.2. R() represents the rounding

function for binary prediction, R(sij) = 0 if sij < 0.5, otherwise R(sij) = 1.

The label similarity matrix, Sim ∈ (0, 1)|Y |∗|Y |, stores pairwise label similarity, the

larger the value of Simjk, the more similar the labels yj and yk are to each other. Each

element Subjk in the label subsumption matrix, Sub ∈ {0, 1}|Y |∗|Y |, indicates whether

the label yj is a child label of yk. Both the Sim and Sub matrix can be inferred from

the data and from external KBs before the training. In the implementation, Sim (if a

threshold is used for all entries) and Sub can be treated as sparse matrices in matrix

multiplication to reduce computational complexity.

The idea for Lsim is that, in collective tagging, besides the same labels, users tend to

collectively annotate documents with different labels that have very similar meanings. In

multi-label learning, labels with high semantic similarity tend to be predicted together

with similar values. The Lsim is a multiplication between two terms, Simjk and |sij −
sik|2. To minimise Lsim, intuitively, for very similar co-occurring labels yj and yk,

i.e. with high Simjk close to 1, their corresponding nodes in the output layer should

have minimal difference so that |sij − sik|2 is low; for labels having low similarity with

Simjk close to 0, there is almost no strict requirement on their corresponding nodes

in the output layer, since, in multiplication, the squared difference |sj − sk|2 will be

scaled down with a low similarity value. Thus, the lower the similarity of the labels,

the less enforcement on their corresponding nodes is required in the output layer to

minimise the loss. Lsim has a similar but distinct form to the label manifold regulariser

in [213]: the latter considers minimising differences of vector representations for low-rank

approximation, while Lsim minimises node differences in the output layer of a neural

network.

The idea for Lsub is that, in collective tagging, besides the same labels, users often

annotate documents using different labels with different levels of specificity based on

their knowledge and understanding. An analogy for this “basic level difference” across

individuals [173] is that “a birder sees a ‘robin’ when a normal person only sees a

‘bird’ ” [80, p. 4]. In the case of social annotation, for example, a researcher from the

machine learning area would share and annotate using “LSTM”, but researchers from

other areas may annotate the same paper using more general labels such as “Neural

Networks” or “Machine Learning”. Distinct from similarity relations, the subsumption

relations between labels are asymmetric. For two tags having a subsumption relation,

if the child tag is associated with the document, there is a relatively higher likelihood

that the parent tag is also related to the same document. In Lsub, if two labels having a

subsumption relation < yj → yk > are both present in the label set Yi, the case that the

parent label yk is predicted as false (i.e. R(sik) = 0), when its child label yj is predicted

as true (i.e. R(sij) = 1), will be penalised. Such a case will result in a positive penalty,

while the penalty will be 0 in all other cases.
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Thus, along with the well-established binary cross-entropy loss, the Lsim enforces

semantically similar labels to have similar output values, while Lsub reinforces each co-

occurring subsumption pair to according to the dependency of the parent label on the

child label. We finally optimise the joint loss function in Equation 4.1 with the L2

regularisation using the Adam optimiser [99].

In practice, one potential adaptation of the semantic-based loss regularisers is to

dynamically update the Sim and Sub matrices, as the pre-defined relations between

labels may not be compatible with the semantics of the labels in the dataset. In do-

ing this, both Sim and Sub become continuous representations and can have negative

entries. This adds a further, “negative” constraint to the last layer si (see Figure 4.2)

of the neural network. Taking Lsim as the example: the more negative the value of

Simjk, the less similar the labels yj and yk, then according to Equation 4.3, the case of

|sij − sik|2 being large (i.e., label yj and yk having very different predicted probability)

will be favoured. A similar constraint is added with LSub: the more negative the value

of Subjk, the less strong the subsumption relation is from yj to yk, then the case that

R(sij)(1 − R(sik)) being 1 (i.e., label yj predicted as true and label yk predicted as

false) will be favoured. Dynamic updating of Sim and Sub, however, requires further

substantial memory, especially for a large number of labels. We first focus on the fixed

Sim and Sub and compare the results between dynamic and fixed Sim and Sub in the

main experiments.

This novel joint loss function can be broadly used in many deep learning architec-

tures to support multi-label classification. We will describe the multi-source hierarchical

attention mechanisms, along with the state-of-the-art architectures, Bi-GRU and HAN,

adapted to this joint multi-label learning approach in the following section.

4.3.2 Multi-Source Hierarchical Attention Mechanisms

To better capture the different types of metadata that users’ read for annotation, we

model the title and the content separately, distinct to the original HAN architecture

[200] and the recent work on socially paper annotation [77], as titles are the key textual

features which greatly influence the choice of tagging [114] and the performance of

classification and annotation [54]. This multi-source hierarchical attention architecture

constitutes the backbone of the JMAN model, as described below.

4.3.2.1 Embedding Layers

Each input title or content (usually multiple sentences) is an ordered set of words, rep-

resented as xt = (v
(1)
t , v

(2)
t , ..., v

(nt)
t ) and xa = (v

(1)
a , v

(2)
a , ..., v

(na)
a ), respectively, where nt

or na denotes the number of words in the title or content, respectively. The embedding

layer transforms the input vocabularies v into low-dimensional vectors, which are for-

mally defined as et = Wevt, ea = Weva, where We ∈ Rde×|V | is the embedding weights

that are usually pre-trained via neural word embedding algorithms, e.g., Word2Vec [125]

or Glove [132]. The embedding dimensionality is far less than the vocabulary size |V |,
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i.e. de � |V |. The more recent contextualised word embeddings, ELMo [136], can also

be applied to this layer.

4.3.2.2 Bi-GRU Layers

We adapt Recurrent Neural Networks (RNN) to encode the documents and establish the

matching to the labels. The theoretical foundation is that RNN is also a universal ap-

proximator as multi-layer feed-forward neural networks [85], with a mathematical prove

provided in [149]. A problem in the vanilla RNN is the vanishing gradient, e.g., when

reading a lengthy sequence, the RNN “reader” may forget the previous words before it

completes processing the whole sequence. Long Short-Term Memory (LSTM) [83] and

Gated Recurrent Units (GRUs) [35] have been proposed to address this problem. GRUs

have been applied to the original HAN model [200] and to neural machine translation [9],

which are efficient in training and can achieve a similar level of performance to LSTM.

We follow this setting and use GRUs as the basic recurrent unit. The Bi-GRU layer

processes text sequences in both directions.

GRUs introduce two gates, a reset gate r(t) and an update gate z(t), to control

and generate a new hidden state h(t) from the previous hidden state h(t−1). RNN

with GRUs can be formally defined in Equations 4.4, where σ refers to a non-linear

activation function (here we use the logistic sigmoid function), and Wer,Wez,Weh̃ ∈
Rdh×de , Whr,Whz,Whh̃ ∈ Rdh×dh are weights, where dh is the number of hidden units.

We use the GRU model with bias terms br, bz ∈ Rdh as in [200], shown in the Equations

4.4 below, where the ◦ denotes the Hadamard product or the element-wise product.

r(t) = σ(Were
(t) +Whrh

(t−1) + br)

z(t) = σ(Weze
(t) +Whzh

(t−1) + bz)

h̃(t) = tanh(Weh̃e
(t) +Whh̃(r(t) ◦ h(t−1)))

h(t) = (1− z(t)) ◦ h(t−1) + z(t) ◦ h̃(t)

(4.4)

The idea of Bidirectional-RNN [151] with GRUs [35], denoted as Bi-GRU, is proposed

to capture the fact that a word in a sequence is not only related to its previous words,

but also to its following words. Bi-GRU consists of forward GRUs and backward GRUs.

The forward GRUs read the embedding of each word in the input sequentially from left

to right, e.g. from e(1) to e(n), to produce forward hidden states (
−−→
h(1),...,

−−→
h(n)); whereas

the backward GRUs read the sequence reversely from e(n) to e(1) to calculate backward

hidden states (
←−−
h(n),...,

←−−
h(1)). Both hidden states are concatenated to construct a new

fixed-length vector as the output hidden state, h(i) = [
−→
h(i);
←−
h(i)]. In the proposed network

(see Figure 4.2), after the reading in both directions is completed, the title and content

are represented as context vectors ct or ca, respectively. These vectors are normally set

as the last concatenated hidden states h(n); however, doing so tends to emphasise the
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words towards the end of the sequence. Therefore, the attention mechanisms [9, 200]

need to be applied to re-calculate the vectors ct or ca.

4.3.2.3 Hierarchical Attention Layers

Attention mechanisms have been widely used in natural language processing tasks, since

the study [9] on machine translation in 2014. Instead of encoding a long sequence (such

as sentences and paragraphs) into a single vector representation for all times, they allow

the neural networks to learn to focus on part of the input sentence each time aligned

with a different context, e.g. the next target word in the translation [9]. More recently,

attention mechanisms have been applied to encode documents for classification, taking

into consideration the hierarchical structure of documents, as proposed in the HAN

model [200].

The idea of Hierarchical Attention is closely related to how users read and com-

prehend documents. The HAN model [200] generally assumes that, to understand a

document, users read the document word by word in each sentence, then sentence by

sentence. During reading and annotation, users would pay special attention to the most

informative words or sentences, which might be considered to annotate that document

later. There are three Bi-GRU layers in JMAN as shown in Figure 4.2, each accompanied

by its attention layer(s): two word-level attention layers, for title and sentences in the

content, respectively; and two sentence-level attention layers, one is original sentence-

level attention layer proposed in [200] and the other is the title-guided sentence-level

attention mechanism (see Section 4.3.3).

To model the different amount of attention a user paid on each word or sentence,

a weighted average of hidden representations is applied as suggested in [9, 200]. The

attention scores are based on an alignment of each hidden representation in a sequence

of words or sentences to a non-static and learnable, “informative” vector representation,

which is supposed to encode “what is the informative word or sentence” in the sequence

[200] and commonly used in document classification tasks [77, 101]. We apply the

dot product as the alignment measure [117, 200]. The word-level attention mechanism

models the different importance of each word in the title or in a sentence, while the

sentence-level attention mechanism makes a distinction for each of the sentences. The

word-level attention mechanism in the title (and similarly in sentences) is described in

Equations 4.5 below.

v(i) = tanh(Wth
(i) + bt)

α(i) =
exp(vwt • v(i))∑

i∈[1,nt]
exp(vwt • v(i))

ca =
∑

i∈[1,nt]

α(i)h(i)

(4.5)
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where a fully connected layer is added to transform the hidden state h(i) to a vector

representation v(i), followed by an alignment to the attention vector vwt with the dot

product operation (denoted as •). A softmax function is then applied to obtain the

attention weights α(i). The context vector ca, which is the representation of the sequence,

is computed as the weighted average of all hidden state vectors h(i). In a similar way,

we can compute the word-level attention mechanism for each sentences as well as the

original sentence-level attention mechanism (for details refer to the HAN model in [200]).

The attention vectors vwt, as well as vwa and vsa in Figure 4.2, represent “what is the

informative word or sentence” during the reading process [200]. They are randomly

initialised and jointly learned during the training.

4.3.3 Guided Attention Mechanisms on the Sentence Level

The attention mechanisms above are not considered enough to make a clear distinction

among sentences. Firstly, the impact of the title metadata on the document annotation

is not modelled, which is however particularly important during the user tagging process

[54, 114]. Secondly, in the attention mechanisms described in Equation (4.5) above, the

“informative” vector vwt, commonly treated as weights to be learned in the model, as

in other recent studies [77, 101], does not reflect any explicit object in humans’ reading

and understanding.

We find that the implicit “informative” attention weight vectors, such as vwt, can

be made clearer through conjecturing the reading order. Selection of the important

sentences in the content should ideally conform to the main theme of the document,

of which, a reasonable source is the title. Title is a short, abstractive summarisation

and a good starting point to understand a document. This title-guided sentence-level

attention mechanism, as shown in Figure 4.2, can be modelled as in Equations (4.6):

v(r)
s = tanh(Wsh

(r)
s + bs)

α(r)
s =

exp(ct • v(r)
s )∑

k∈[1,ns]
exp(ct • v(k)

s )

cta =
∑

r∈[1,ns]

α(r)
s h(r)

s

(4.6)

where h
(r)
s is the hidden state of the rth sentence; ct is the title representation obtained

from Equation (4.5); ns denotes the total number of sentences in the content; α
(r)
s is

the sentence-level attention score; Ws, bs are learnable weights in the network. This

title-guided attention mechanism is distinct from the recent, concurrent work in [34],

which uses title information on the word level to enhance the annotation for keyphrase

generation. The “title-guided encoding” in the study [34] calculates, for each word in

the document, a different title representation, to be later concatenated with the word;
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the approach has shown to improve the performance on keyphrase generation, but is not

based on the assumption on human’s reading and annotation in this chapter.

Guiding the sentences solely with the title may cause the final content representation

to be overly dependent on the title. The actually content of a document usually contains

(far) more detailed information not described in the title, which can help suggest more

related tags during annotation [54]. For example, some sentences in the content (or

abstract) can highlight an innovative and important evaluation study which may not be

presented in the title. To avoid an overemphasis on the effect of the title for annota-

tion, we concatenate the representation generated from the title-guided sentence-level

attention mechanism with the original one; thus we can form a more comprehensive

content representation. The final document representation is the concatenation of the

title representation with the content representation, ci = [ct, cta, ca], as illustrated in

Figure 4.2. We will show the effectiveness of this design, in terms of both performance

and convergence speed, by comparing against its baselines and variations.

4.4 Experiments

In this section, we describe our experiments using four real-world datasets from two types

of social annotation applications: paper annotation in academic social tagging systems,

Bibsonomy and CiteULike (two variations), and question annotation in a social question

& answering site, Zhihu. Performance comparison shows the significant performance gain

of JMAN over the current state-of-the-art models in terms of the evaluation metrics, with

a substantial improvement of convergence speed. We will also discuss the impact of the

regularisation parameters and analyse the attention mechanisms through visualisation.

The code for the work, implementation details, and all the cleaned datasets are openly

available at GitHub4.

4.4.1 Datasets

We chose the benchmark social tagging datasets in the academic domain, Bibsonomy and

CiteUlike, and the social Q&A site in the general domain, Zhihu, for our experiments.

On Bibsonomy and CiteUlike, users can share publications and annotate them with tags.

Metadata of the documents such as title and abstract (or content) are also available.

We directly used the cleaned Bibsonomy dataset, preprocessed with the Data Cleaning

module described in Section 3.2 and Section 3.6.1.1, and then selected the documents

containing both the title and the abstract. For better qualitative analysis, we further

selected the documents having at least one tag matched to the concepts in the ACM

Computing Classification System5.

4https://github.com/acadTags/Automated-Social-Annotation
5https://www.acm.org/publications/class-2012

https://github.com/acadTags/Automated-Social-Annotation
https://www.acm.org/publications/class-2012
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For CiteUlike, we used the benchmark datasets, CiteULike-a and CiteULike-t, re-

leased in [187]. We applied similar preprocessing steps as the Bibsonomy dataset6 and

further removed the tags occurring less than 10 times. If a tag has insufficient usage

(low frequency), then it is difficult to learn to annotate it to other documents due to

scarcity in the data. This ensures enough training data for each tag and significantly

reduced the dimensionality of the label space.

Zhihu is a leading Chinese social Q&A site in all domains. Tags are used on Zhihu to

describe the topics of questions, and to support searching and recommending questions

and answers for users. Each question has a title and/or a detailed description (or

content). We downloaded the official benchmark open data from the Zhihu Machine

Learning Challenge 20177, containing more than 3 million questions, together annotated

with 1,999 unique labels. The Zhihu dataset had been preprocessed before its release:

all the Chinese words had been segmented and replaced with an unknown codebook due

to privacy issues. We randomly sampled around 100,000 questions having both the title

and the content; this ensured a sufficient amount of data with a reasonable training time

per fold, compared to the other three datasets (see Table 4.4).

To extract the subsumption relations for all tags in each of the datasets (except

Zhihu), we grounded the tags to concepts and instances in the external KB, Microsoft

Concept Graph (MCG)8. MCG is a data-driven KB which has around 1.8M concepts

and instances, and 8.5M subsumption relations. Zhihu released its crowdsourced tag

hierarchies which can be directly used to as subsumption relations between labels. It

is also possible to ground the tags to other KBs, such as DBpedia, or use the struc-

tured knowledge induced from the tagging data. We did not directly use the learned

knowledge from Chapter 3 due to (i) the relative smaller size of learned subsumption

relations compared to those grounded to MCG, (ii) the learned knowledge still needs

scrutiny from domain experts, considering the precision, recall and F1 score and analysis

through hierarchy visualisation. This warrant further exploration on exploiting various

knowledge sources and end-to-end approaches to jointly learn and leverage structured

knowledge.

Statistics of the cleaned datasets are shown in Table 4.1, including number of docu-

ments |X|, number of labels |Y |, vocabulary size in documents |V |, average number of

labels per document Ave and the number of label subsumption pairs for each dataset

ΣSub. The average number of labels per document in the social Q&A dataset (Zhihu)

is much less than the paper annotation datasets (Bibsonomy and CiteULike), but the

former has a larger number of documents and vocabulary size. The number of labels

in all datasets is large, from around 2.0K to around 5.2K. The number of subsumption

relations grounded to MCG is also large, all above 100K except Zhihu. There are over

2.5K crowdsourced subsumption relations in Zhihu.

6Processing script implemented in Python for the CiteULike datasets is available on https://github.

com/acadTags/Tag-Data-Cleaning.
7https://biendata.com/competition/zhihu/
8https://concept.research.microsoft.com/Home

https://github.com/acadTags/Tag-Data-Cleaning
https://github.com/acadTags/Tag-Data-Cleaning
https://biendata.com/competition/zhihu/
https://concept.research.microsoft.com/Home
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Table 4.1: Multi-label datasets for social annotation

Dataset |X| |Y | |V | Ave ΣSub

Bibsonomy (clean) 12,101 5,196 17,619 11.59 101,084
CiteULike-a (clean) 13,319 3,201 17,489 11.60 107,273
CiteULike-t (clean) 24,042 3,528 23,408 7.68 141,093
Zhihu (sample) 108,168 1,999 62,519 2.45 2,655

4.4.2 Experiment Settings

To calculate the label similarity matrix Sim for the semantic-based loss regularisers in

Equations 4.3, we used cosine similarity (further normalised to between 0 and 1) of the

pre-trained skip-gram embeddings [125] on all label sets in each dataset. To construct

the label subsumption matrix Sub, we used the obtained label subsumption pairs from

MCG and Zhihu. The values of λ1 and λ2 in L were tuned based on results from 10-fold

cross-validation.

We implemented the proposed JMAN model and several popular and state-of-the-

art baseline approaches on Tensorflow [1] and other Python packages. Seven baselines,

including some downgraded models of JMAN, were chosen,

1. SVM-ovr: an one-versus-rest multi-label Support Vector Machine with word em-

bedding features, implemented using the scikit-learn Python package9. We used

the RBF kernel and tuned the C and γ according to [88] to achieve the best F1

score on the validation sets. We used the same word embeddings as for JMAN,

then the input is a document embedding as the average of word embeddings in

the padded input document. We chose SVM as it usually performed better than

many other classifiers used in document classification [39]. This baseline was also

used in [110].

2. LDA: the probabilistic topic modelling approach, Latent Dirichlet Allocation (LDA)

[19], was applied to represent each document as a probability distribution over hid-

den topics, implemented with the wrapper in the Python Gensim package [145] for

the JAVA-based MALLET toolkit [121]. The algorithm was adapted to multi-label

classification by assigning each new document the tags of its k most similar docu-

ments based on the document-topic distributions p(topic|document). We trained

the LDA model for 1,000 iterations and tuned the number of topics T as 200 and k

as 1 for all datasets based on the performance on the validation sets. The baseline

was also used in [157].

3. Bi-GRU: the Bidirectional-RNN [151] with Gated Recurrent Units (GRUs) [35] for

multi-label classification. The algorithm treats the title and the content together as

the input sequence. The document representation ci is set as the last concatenated

hidden state.

9https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.

OneVsRestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
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4. HAN: the Hierarchical Attention Network in [200] and also applied in [77] for tag

recommendation. We combined the title and the content, and fed into the HAN

model as in [77]. This is a state-of-the-art model for document classification.

5. JMAN-s: the proposed model without semantic-based loss regularisers.

6. JMAN-s-tg: the proposed model without semantic-based loss regularisers and the

title-guided sentence-level attention, i.e. ci = [ct, ca].

7. JMAN-s-att: the proposed model without semantic-based loss regularisers and the

original sentence-level attention, i.e. ci = [ct, cta].

8. JMANd: the proposed model with the dynamic update of Sim and Sub during

training.

We trained all the models using 10-fold cross-validation and then tested on a separate,

fixed 10% randomly held-out dataset. The number of hidden units, learning rate, and

dropout rate [161] were set as 100, 0.01 and 0.5, respectively, for all models. The batch

size for the Bibsonomy and CiteULike-a/t dataset was set to 128, and the batch size for

the Zhihu dataset was set to 1,024. The sequence lengths of the title (also the length of

each sentence) and the content were padded to 30 and 300 for Bibsonomy, CiteULike-a,

and CiteULike/t; 25 and 100 for Zhihu. We parsed the sentences of Bibsonomy and

CiteULike-a/t based on punctuation and padded the sentences to a fixed length. For

Zhihu, as the data had been masked, we simply set a fixed length to split the content into

“sentences”. Non-static input embedding for the title and the sentences were initialised

as a 100-dimension pre-trained skip-gram embedding [125] from the documents. We

decayed the learning rate by half when the loss on the validation set increased and set

an early stopping point when the learning rate was below a threshold (2e-5 for Bibsonomy

and Zhihu; 1e-3 for CiteULike-a and CiteULike-t). Experiments on all neural network

models were run on a GPU server, NVIDIA GeForce GTX 1080 Ti (11G GPU RAM),

except for the dynamic update of Sim and Sub on Intel R© Xeon R© Processor E5-2630 v3

or v4 with 60G RAM; experiments on SVM-ovr and LDA were run on an Intel R© Xeon R©

CPU E5-1620 v2 3.70GHz.

We also implemented three problem transformation algorithms, i.e. transforming the

features or label space for multi-label classification with a base classifier, Classification

Chain (CC) [141, 142], Hierarchy Of Multilabel classifiER (HOMER) [177], and Prin-

cipal Label Space Transformation (PLST) [170], adapting the Python scikit-multilearn

[169] wrapper of MEKA [143] (based on WEKA [75] and MULAN [179]). The base

classifier was chosen as SVM with RBF kernel for the methods. Due to large numbers

of documents and labels considered, the program took much longer than the SVM-ovr

implementation in Table 4.4 and required substantial memory. With the default param-

eters in MEKA, the results of the three methods were not better than the results of the

SVM-ovr classifier. We thus do not report their results in this chapter, but provide an

open implementation for reproducibility.
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4.4.3 Evaluation Metrics

Five widely used example-based metrics for multi-label classification were applied to

evaluate the models, including Hamming loss, Accuracy, Precision, Recall, F -measure,

to assess the performance of the algorithms [65, 158, 178, 209]. For the metrics below,

Dt denotes instances in the testing data, f(xi) and yi denote the predicted and actual

labels for the ith instance respectively.

• Hamming loss (H) measures the number of misclassified labels. It is defined as

H(f) = 1
|Dt|

∑
i∈Dt

1
Q |f(xi)∆yi|, where ∆ is the symmetric difference between two

sets and Q is a normalisation constant. We set Q as the average number of labels

per document, Ave, in the data (see Table 4.1). The lower the value, the better

the performance.

• Accuracy (A), defined as the fraction of the correctly predicted labels to the total

number of labels presented (union of predicted and actual ones), computed as

A(f) = 1
|Dt|

∑
i∈Dt

|f(xi)∩yi|
|f(xi)∪yi| .

• Precision (P), defined as the fraction of the correctly predicted labels to all the

predicted labels, P(f) = 1
|Dt|

∑
i∈Dt

|f(xi)∩yi|
|f(xi)| .

• Recall (R), defined as the fraction of the correctly predicted labels to all the actual

labels, R(f) = 1
|Dt|

∑
i∈Dt

|f(xi)∩yi|
|yi| .

• F -measure (F1), defined as the harmonic mean between precision and recall,

F1(f) = 2P (f)R(f)
P (f)+R(f) .

4.4.4 Evaluation and Comparison

We presented the evaluation results using the metrics and compared the performance of

JMAN to the popular, state-of-the-art classification models, and the downgraded vari-

ants of the model. In particular, we highlighted the performance of using the semantic-

based loss regularisers.

4.4.4.1 Main Results

Table 4.2 shows the evaluation and comparison results using JMAN and the other base-

line approaches on the four datasets10. The proposed model JMAN and JMANd per-

formed the best in terms of accuracy and F1 score, and among the top or comparably

well in terms of precision, recall, and Hamming Loss, on all datasets. Most results of

JMANd were better than JMAN on the Bibsonomy and CiteULike-a/t datasets, together

showing a further absolute increase of F1 from 0.2% to 1.2% over JMAN, indicating the

10We were not able to obtain the results of SVM-ovr on the Zhihu dataset as the training time was
extremely long. Training time per each fold (in 10-fold cross-validation) could take over 1 day in some
parameter settings, which prevented efficient training and parameter tuning. JMANd also required
substantial memory and we failed to obtain results with the specified settings on the Zhihu datasets.
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usefulness of the dynamic update of the label semantic matrices Sim and Sub. The

results of JMAN were significantly better (denoted in italics) than HAN and Bi-GRU

in terms of accuracy, precision, recall and F1 score, with few exceptions on the Zhihu

dataset for HAN.

Comparing to other deep learning models, in terms of F1, JMAN provided an ab-

solute increase up to 11.0% (by 78.6%) and 4.8% (by 23.7%) over Bi-GRU, and HAN

for the CiteULike-a dataset; and 5.9% (by 31.2%) and 4.5% (by 22.2%) over Bi-GRU

and HAN for the CiteULike-t dataset. A similar performance gain was achieved using

the Bibsonomy dataset, with an absolute increase of 7.9% (by 25.8%) over Bi-GRU and

4.1% over HAN (by 11.9%); and a relatively smaller increase using the Zhihu datasets of

2.4% (by 13.4%) over Bi-GRU, and 0.8% over (by 3.4%) HAN. This overall improvement

showed that the separate modelling of the metadata, and the title-guided attention on

the sentences, clearly boosted the performance on automated annotation. The results of

HAN were better than Bi-GRU in most settings, which showed the effectiveness of mod-

elling the hierarchical pattern of a document with attention mechanisms, and validated

the results in [200].

JMAN also outperforms its several downgraded models. Effectiveness of the semantic-

based loss regularisers was observed by comparing the results produced by JMAN and

JMAN-s (without semantic-based loss regularisers). The regularisers helped improve

the recall and F1, although with a relatively low margin. The results of JMAN are sig-

nificantly better than JMAN-s-tg and JMAN-s-att, where either the title-guided or the

original sentence-level attention mechanism is removed, in terms of accuracy, precision

and F1 score in most evaluation settings.

Only little improvement was observed with the Zhihu dataset, largely due to its dis-

tinct characteristics compared to other datasets: Zhihu has much shorter texts (around

1/3 of the texts in other datasets), larger vocabularies (about 3-4 folds), fewer number

of labels (around 40%-60%) and fewer average number of labels per document (around

20%-30%), as shown in Table 4.1. We also noticed that the result of Hamming Loss was

not always consistent with the other four metrics. Hamming Loss measures the symmet-

ric difference between two sets, which treats every label equally; while the example-based

metrics, Accuracy, Precision, Recall and F1 score, are scaled by the length of the actual

label set and/or the predicted label set. From the results, we observed that the relative

difference of Hamming loss among HAN, JMAN and its downgraded variants, JMAN-s,

JMAN-s-tg and JMAN-s-att, were all marginal.

Comparing to the models SVM-ovr and LDA, the JMAN model and its variations

performed significantly better in terms of all metrics for all the datasets, except a few

cases where the LDA resulted in higher recall but lower precision and F1 score. Although

SVM-ovr and LDA can achieve a better F1 score than Bi-GRU with high recall on the

Bibsonomy and CiteULike-a datasets, they performed poorly in terms of Hamming Loss.

The result of LDA for the Zhihu dataset was rather worse, which may be because the

users’ annotation process could not be well modelled through topic-based similarity
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among questions, or the data statistics as stated above that made it difficult to learn

better topic representations for the questions. The results, in overall, have demonstrated

the significant improvement of JMAN over the popular and state-of-the-art baselines.

4.4.4.2 Results on Semantic-Based Loss Regularisers

To test the effectiveness of the semantic-based loss regularisers Lsim and Lsub, that

leverage label relations by constraining the output of neural networks, we applied them

(either separately or collectively) with the fixed Sim and Sub setting11 on Bi-GRU,

HAN and JMAN-s, and reported the results on the testing data using models trained

with 10-fold cross-validation.

From Table 4.3, it can be seen that models with the semantic-based loss regularisers

(either one or both), consistently performed better than the original models. 0.9% to

1.6% absolute gain of F1 from the four datasets was observed for Bi-GRU, and 0.6%

to 1.6% for HAN. For the JMAN-s model, the improvement with semantic-based loss

regularisers is less obvious; there was only 0.1% to 0.5% absolute increase of F1. It

is hard to draw a clear conclusion on which of the Lsim and Lsub was more effective

further improving the model performance in multi-label social text annotation. This

may depend on the hidden label structure from the data, i.e., which of the semantic

relations, similarity or subsumption, is more prominent in the label sets. From the

results, we can see that Lsim and Lsub complement to each other and achieved the best

results in half (6 out of 12) of the experimental settings, for the other cases, using either

one Lsim or Lsub performed better than using them together. It was also noticed that

results of Hamming Loss are not consistent with the other metrics and differences among

the models’ Hamming Losses are marginal, as in Table 4.2.

The results produced by adding the semantic-based loss regularisers indeed coincided

with our initial perception and expectation that model performance could be further im-

proved by leveraging structured knowledge as label correlation with the help of external

KBs. However, most of the differences in the evaluation settings were not statistically

significant. The evaluation result was generally in line with the one produced in the

existing research that also leveraged label correlation in multi-label classification. The

work using a weight initialisation approach in [10] reported performance gain of less

than 1% in F1 in most experimental settings. The proposed approach is more feasible

than the weight initialisation approach [10] for data with large label sizes, typically in

the context of automated social annotation, as explained in Section 2.4.4.

The marginal improvement from the experiments was probably due to the fact that

the shared weights in the layers prior to the output layer in the neural networks may

already and indirectly model some of the correlations among the output nodes, through

solely approximating the matching from documents to labels. This might also explain

11The “dynamic” version was not fully tested due to the substantial memory required, although
our preliminary experiments on the “dynamic” version show further improved results (see comparison
between JMANd and JMAN in Table 4.2).
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why JMAN-s is less boosted by the regularisers than Bi-GRU and HAN: JMAN-s bet-

ter models the document encoding part, and could thus, compared to Bi-GRU and

HAN, indirectly alleviate the label correlation issue to a greater extent. We also no-

ticed that the work in [128] reported somehow different results, i.e. that the binary

cross-entropy loss, LCE , achieved better performance than the pairwise ranking loss

[208] which implicitly considers label correlation. We believe that leveraging structured

knowledge as label correlation for a wide array of multi-label classification tasks is neces-

sary; while the semantic-based loss regularisers provide a useful approach to incorporate

such knowledge, the problem remains challenging and needs further studies. As a poten-

tial approach towards this direction, we also found that the dynamic update of the label

semantic matrices Sim and Sub (as in JMANd) can further improve the fixed setting

of label semantics (as in JMAN), see the two rightmost columns of the Table 4.2, but

at the cost of substantial memory. This dynamic update adds further constraints to

the nodes in the output layer (with negative values in Sim and Sub) and allows the

label semantics to be more compatible to the knowledge embedded in the dataset, as

discussed in Section 4.3.1. This provides insights to leverage the dynamic structured

knowledge of the labels and warrants further studies.

4.4.5 Training Time and Model Convergence

Table 4.4: Comparison of training time for the multi-label classification models in
seconds

Bib C-a C-t Zhi
SVM 1107 ± 12 1660 ± 31 4796 ± 50 over 1 day
LDA 110 ± 2(1) 113 ± 3(1) 210 ± 7(1) 903 ± 31(1)
Bi-GRU 1480 ± 92 869 ± 288 1635 ± 1034 1455 ± 69
Bi-GRU+s 1683 ± 78 877 ± 57 1469 ± 276 2459 ± 151
HAN 1164 ± 52 462 ± 63 858 ± 100 1387 ± 78
HAN+s 1434 ± 74 554 ± 45 947 ± 115 2388 ± 275
JMAN-s-tg 1075 ± 87 434 ± 49 752 ± 52(3) 1220 ± 81(3)
JMAN-s-att 1024 ± 100(3) 429 ± 41(3) 780 ± 69 1275 ± 99
JMAN-s 894 ± 55(2) 394 ± 33(2) 744 ± 62(2) 1147 ± 44(2)
JMAN 1138 ± 86 468 ± 38 839 ± 49 1712 ± 105

Training time of the three most efficient models are in bold and marked with a ranking
index in brackets “()”. BiGRU+s and HAN+s denote the models with semantic-based loss
regularisers.

In Table 4.4, we reported the mean and standard deviation of training time spent per

fold for each model in the 10-fold cross-validation. With the efficient and highly scal-

able implementation of Gibbs sampling for approximation in MALLET [121], the LDA

model took the least time for training. Among the other models, JMAN-s was the most

efficient in training despite its relatively more complex architecture, by around 21.2%-

54.7% faster than Bi-GRU and around 13.3%-23.2% faster than HAN on all datasets.
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The training time increased when the semantic-based loss regularisers were used; the in-

creased time was related to the document size |X|, label size |Y | and the average length

of the label sets Ave of the dataset (see Equations (4.3) and Table 4.1). The SVM-ovr

model was the least efficient as it trained one SVM RBF classifier for every single label

and the number of unique labels was large.

(a) Bibsonomy (b) CiteUlike-a

(c) CiteUlike-t (d) Zhihu

Figure 4.3: Convergence plot: training loss with respect to the number of training
epochs for the Bi-GRU, HAN, JMAN-s, and JMAN models

The difference in training time among the neural network based models, Bi-GRU,

HAN, JMAN-s, and JMAN, can also be explained by the convergence plots in Figure

4.3. The total number of epochs for each model was determined by early stopping based

on a validation set. It can be observed that on all four datasets, JMAN and JMAN-s

converged much faster than Bi-GRU and HAN, with fewer training epochs and steeper

convergence plots. HAN also converges faster than Bi-GRU. It should be noted that the

lower training loss does not necessarily imply better performance on the testing data

(see testing results in Table 4.2). The convergence plots show that JMAN and JMAN-s

can “understand” (or learn to represent) the input documents within fewer epochs than

HAN and further than Bi-GRU.

4.4.6 Parameter Sensitivity Analysis

In the joint loss function in Equation 4.1, there are two regularisation parameters, λ1

and λ2, controlling the influence of the similarity and subsumption loss regularisers



Chapter 4. Knowledge-Enhanced Deep Learning for Social Annotation 82

(a) Bibsonomy-λ1 (when λ2 = 0) (b) Bibsonomy-λ2 (when λ1 fixed)

(c) CiteULike-a-λ1 (when λ2 = 0) (d) CiteULike-a-λ2 (when λ1 fixed)

Figure 4.4: F1 score with respect to the λ1 and λ2 on Bibsonomy and CiteULike-a
datasets using the Bi-GRU, HAN, and JMAN models

on training. A larger λ1 means to exert more constraint on the output layer of the

neural network to enforce similarity relations among labels, and a larger λ2 means more

constraints to enforce subsumption relations. We selected empirically reasonable sets

of values for λ1 and λ2, and took a two-step parameter tuning process: first, varying

λ1 ∈ {1E-1, 1E-2, ..., 1E-6} and setting λ2 as 0 to find the best λ1, and second, varying

λ2 ∈ {1E+1, 1E+0, ..., 1E-4} while fixing the tuned λ1.

We reported here F1 scores with the changing values for λ1 and λ2 on the Bibsonomy

and the CiteULike-a datasets with the three models, Bi-GRU, HAN, and JMAN. Similar

patterns of parameter sensitivity were observed for the CiteULike-t and Zhihu datasets.

As showed in Figure 4.4, Bi-GRU was the most susceptible model to the semantic-

based loss regularisers with different weights, indicated by large fluctuations of the F1

score and standard deviation. In contrast, JMAN’s performance was not affected much

by the changing parameter values, and HAN’s was affected moderately. This was also

in accordance with the analysis in Section 4.4.4.2 that the performance of Bi-GRU and

HAN was improved to a larger extent than JMAN.

When λ1 and λ2 are both set to 0 (see Figure 4.4), the models are equivalent to

the original ones without using the semantic-based loss regularisers. When given large

values to λ1 (e.g. 1E-1) and λ2 (e.g. 1E+1) the models overly emphasised on the label

relations instead of document-label matching, and their performance degraded. While

the performance of the models could be boosted with proper settings of the parameter

values, the improvement was not significant and the parameter tuning process was not
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trivial, as analysed in Section 4.4.4.2. This warrants further studies on leveraging the

knowledge of label correlation in deep learning to enhance model performance in multi-

label classification.

4.4.7 Analysis of Multi-Source Components

The architecture described in Section 4.3.2 combines the title representation ct, con-

tent ca, and title-guided content cta. It is worth analysing how different source of the

representations contributes to the performance of annotation. Table 4.5 presents the

results with ct, ca, cta, and different combinations of them on the four datasets, without

the use of semantic regularisers. The JMAN-s model concatenates all three represen-

tations, while JMAN-s-tg and JMAN-s-att are combinations of title representation and

one of the content representations. It is clear that the JMAN-s model, with the full

representation of [ct, ca, cta], performed the best among all models. A similar level of

performance was observed in using JMAN-s-tg and JMAN-s-att, where either the title-

guided content representation (“-tg”) or the original content representation (“-att”) was

excluded. When only one type of the representation was used, the title-guided content

representation performed the best. Although the title representation alone performed

the worst, it boosts the annotation performance through guiding the representation of

the content. While a single user may tend to provide annotations based on the title or

the abstract only and browse the content selectively, their collective annotations tend to

reflect the whole document. The results confirmed the advantage of using multi-source

information for document representation.

4.4.8 Attention Visualisation

We can further understand how the hierarchical attention mechanisms work, especially

the proposed guided attention mechanism, by visualising the attention weights (in Figure

4.5 on the next page). Four attention weights in JMAN were illustrated for sample doc-

uments from Bibsonomy, CiteULike-a and CiteULike-t: (1) word-level attention weights

for title, i.e. the α in Equations 4.5, (2) word-level attention for each sentences in the

abstract, (3) original sentence-level attention for the abstract, and finally (4) title-guided

sentence-level attention weights for the abstract, i.e. the αs in Equations 4.6. Docu-

ments and labels in the Zhihu dataset were not interpretable as all words had been

officially masked with an unknown codebook.

In Figure 4.5, every two rows under the title is a sentence in the content (abstract).

The red blocks in the two leftmost columns denote the sentence-level attention weights,

where the left one (“ori”) displays the original sentence-level attention weights and the

right one (“tg”) displays the title-guided sentence-level attention weights. The purple

blocks denote the attention weights of each word in the title (the first row) or a sentence.

The darker the colour, the greater the amount of attention was paid to a word or sentence

in the model for annotation. The predicted labels by the JMAN model and the ground

truth labels are shown below each diagram.
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(a) Bibsonomy Example

(b) CiteULike-a Example

(c) CiteULike-t Example

Figure 4.5: Attention visualisation of the proposed JMAN model for the testing doc-
uments from the Bibsonomy, CiteULike-a, and CiteULike-t datasets. Red blocks in the
leftmost two columns show the original (“ori”) and the title-guided (“tg”) sentence-level
attention weights, respectively. Purple blocks mark the word-level attention weights for
the title (the first row) and each sentence (every two rows) in the abstract. The darker
the colour, the greater amount of attention was paid to the word or the sentence in
JMAN. The predicted labels and the actual “ground truth” labels are displayed below

each diagram.

It can be observed that the title-guided sentence-level attention (“tg”) assigned dif-

ferent weights and provided a distinct “view” from the original sentence-level attention

(“ori”). In the Bibsonomy example, the “ori” weights highlighted mostly the second

sentence (a general statement that identifies the gap in the literature), while the “tg”

weights highlighted more the fourth (a statement of a tool that allows integrating per-

sonal knowledge into exploration of a document collection) and fifth sentences (contin-

uation of the previous statement on the tool’s usability). These two sentences are well

aligned to the title and intuitive for users to determine the main themes of the document

for annotation. This difference was also present in the other two examples. As discussed

in Section 4.3.3, concatenating the output from both attention mechanisms would help

gain a more comprehensive understanding of the documents and provide more accurate
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annotation (as indicated by the comparison results with JMAN-s-tg, JMAN-s-att, and

JMAN-s in Table 4.2). This is because that the abstract of a document may contain

more useful and important information that is not present in the title. For example, in

the CiteULike-a example, the “tg” weights highlighted only the second and third sen-

tences which aligned well to the title; while the “ori” weights also emphasised the fourth

and fifth sentences which talked about the “simulation”, “evaluation” and two specific

models. Although they were not well aligned to the title, they represented important

information for document understanding. There was also certain degree of agreement

between the two attention weights, for instance, in the CiteULike-a example, both at-

tention weights were low for the first sentence (a general introduction) and high for

the second (more detail about the topic) and the third sentences (more on the authors’

work). The degree of agreement was even higher in the CiteULike-t example.

Besides, the word-level attention indeed highlighted many of the most informative

words (from either the title or sentences). These informative words were either the

same as or highly related to the true labels or the topics of the document, for example,

“information”, “user”, “personalised” and “visualisation” in the Bibsonomy example;

“implicit”, “feedback”, “ir”, “models”, and “searcher” in the CiteULike-a example; and

“machine”, “virtualising”, “platform”, “virtual”, and “operating” in the CiteULike-t

example. Words that conveyed no meanings regarding the topics of the document,

such as the stop words and many uninformative ones, such as articles (“the”, “a”), be

verbs (“is”, “are”), prepositions (“in”) and conjunctions (“and”, “or”, “for”, “to”), were

assigned nearly zero weight (e.g. white colour in the blocks).

We also noticed some potential limitations of visualising such attention weights,

regarding their explainability and stability. While the attention weights seem to provide

insights on selecting the important parts of the data and have been applied in many

previous studies [9, 200], it is suggested in the recent study [91] that the weights are not

easily interpretable as “explanations” for RNN-based text classification models. We also

observe that the sentence-level attention weights are not stable among different runs of

the algorithm. This would warrant further studies on the interpretation and analysis of

the attention visualisation results.

Last but not least, from the predicted results, we can see that the JMAN model

suggested meaningful labels12. The predicted labels had a substantial overlap with

the “ground truth” labels (cleaned user-generated tags), but still have the potential

for improvement, especially in terms of recall. We also noticed that the true labels

also contained some that were useless or not related to the topics of the document,

for example, “book” and “text book” (expressing the type of the document) in the

CiteULike-t example, which are probably difficult to be predicted solely from the title

and the abstract. It was also very interesting to see that the predicted labels not included

in the “ground truth” were indeed highly relevant to the themes of the documents,

which should have been used for annotation, e.g. “information retrieval”, “retrieval”,

12More prediction results on the testing examples are available on https://github.com/acadTags/

Automated-Social-Annotation.

https://github.com/acadTags/Automated-Social-Annotation
https://github.com/acadTags/Automated-Social-Annotation
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“modelling” and “relevance” in the CiteULike-a example, and “virtual machine” in the

CiteULike-t example. This shows that the proposed approach also has the potential to

enhance the quality of existing annotations.

4.5 Related Work

In Section 2.4 previously, we organised some related work regarding the role of struc-

tured knowledge for automated social annotation. In this section, we further relate the

proposed approach in this chapter to the literature, focusing on deep learning approaches

for multi-label classification, and then review the recent, relevant studies on attention

mechanisms.

Automated social annotation can be viewed as objected-oriented tag recommenda-

tion [11], which suggests tags to annotate objects (e.g. documents) to enhance the

downstream information retrieval services in general. Previous studies on automated

social annotation applied various methods and techniques for the tag recommendation

task and modelling users’ tagging process. A survey of approaches on tag recommenda-

tion was in [11], including tag co-occurrence-based, content-based, matrix factorisation

based, clustering-based, graph-based, learning to rank based methods. Studies also have

modelled the users’ tagging process on social Q&A sites and microblogging services

through term frequency based lexical features [203], adaptive hypergraph learning [130]

and probabilistic graphical models [46, 187].

Recent studies mostly apply deep learning for automated social annotation and com-

monly formulate the task as a multi-label classification problem. The advantage of multi-

label deep learning models lies in their relatively straightforward problem formulation

with strong approximation power on large datasets, resulting in better performance

over traditional approaches [208]. For multi-label classification in general, neural net-

works have achieved superior performance than previous well-established algorithms,

e.g. adapted SVM, decision tree and boosting-based approaches, as reviewed in [209]

and compared in [208]. The study [208] proposed BP-MLL, which is the first adaptation

of the backpropagation algorithm in a feed-forward neural network for multi-label classi-

fication. BP-MLL has a new error function that optimise the difference within any pairs

of outputs where one corresponding to correct labels and the other corresponding to

incorrect labels. Later, the study [128] showed that cross-entropy loss function outper-

forms this error function in large-scale multi-label text classification. Recent studies on

automated social annotation mostly adapt deep learning approaches, as in annotation

of microblogs [67, 89, 110, 210] and academic papers [77]. Some of the notable neural

network models adapted for multi-label classification are variations of Recurrent Neural

Networks (RNN) [77, 89, 110] and Convolutional Neural Networks (CNN) [67, 210] with

attention or memory mechanisms. The chapter above has been following this line of

research on deep learning, and proposed a novel model for automated social annotation
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based on several variants of Recurrent Neural Networks, such as Bidirectional Gated

Recurrent Units (Bi-GRU) [35, 151] and Hierarchical Attention Networks (HAN) [200].

The use, representation and reasoning of knowledge has been a research frontier for

deep learning based applications [68, p. 482-485]. Recent studies include Knowledge

Graph Embedding approaches that represent concepts and relations in KBs [25] (as re-

viewed in [189]) and (attention-based) memory networks [24, 167] that help leveraging

explicit facts in to deep learning models. The studies, however, mainly focused on lever-

aging knowledge as the input rather than the output. The important case in multi-label

classification problems is that, knowledge particularly takes the form of label correlation

in the output space. Few studies explored the leveraging of knowledge for deep learning

adapted to multi-label classification problems. The work in [102] and [10] proposed a

weight initialisation approach, which assigns a neuron in the penultimate layer of the

neural network to “memorise” each pattern of label correlation. This can be inefficient

(if not impossible) for huge amount of labels (user-generated tags) and their relation

patterns in social annotation. The proposed model in the thesis provides a more feasible

method, semantic-based loss regularisation, to leverage the structured knowledge for

deep learning based multi-label classification.

Attention mechanisms have in recent years been a building block in deep learning

models for natural language processing and also for social annotation [67, 77, 89, 110,

210]. Essentially, the original attention mechanisms in [9] are a soft alignment of each

part (e.g. a word) in the data instance (e.g. a sentence) to a context so as to form

an average-weighted representation to focus on the most important part in the data

instance. The idea that attention mechanisms can learn to select the important parts in

a sentence is applied to text classification, where the most representative work is Hier-

archical Attention Network [200] which captures the hierarchical pattern of a document

and treats each word or sentence distinctively for classification. Unlike in neural machine

translation, there is no target representation that it can be aligned to (cf. [9, 117] and

[200]), thus, a learnable vector was added and attended to each word or sentence. The

idea of aligning each word or sentence to learnable vectors, although being used in later

studies for sentiment classification [101] and document annotation [77], does not yet fully

mimic the behavioural patterns of reading. Words and sentences can be alternatively

guided by explicit metadata in the document, such as the title. Besides, while sentences

are key elements for document understanding, recent studies in [111, 192] mainly model

socially shared documents (answers in [111] and conversations in [192]) with word-level

attention mechanisms. The sentence-level, guided attention mechanisms have been one

key focus throughout this chapter.

Besides natural language processing, attention mechanisms have also been applied to

computer vision, including image captioning [198] and multimodal image and text anno-

tation [210]. The work in [198] models the presence of attention in human visual system

for image captioning. The work in [210] models the mutual and external alignment
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between texts and images in a microblog with a co-attention network for hashtag anno-

tation. Distinct from [210], the proposed guided attention mechanisms in this chapter

focus internally on the relations between metadata within a document, which naturally

simulates users’ reading behaviour for document annotation.

4.6 Summary and Discussion

Automated social annotation aims at predicting a set of tags from objects (e.g. docu-

ments) shared by users on social media platforms. The task can alleviate the incom-

pleteness issue of social tagging data, and can then benefit the organisation, search and

recommendation in many social media platforms. In this chapter, we have formulated

the task as a multi-label classification problem and adapted a deep learning approach.

We mainly tackled two problems: (i) how to leverage both similarity and subsumption

relations among labels in neural networks to improve the performance of multi-label

classification; and (ii) how to model users’ reading and annotation behaviour, especially

regarding the impact of the title metadata.

To leverage the structured knowledge of label correlation, which is a crucial issue for

a high-dimensional label space (i.e. with large number of labels) [62, 209], we proposed

two semantic-based loss regularisers which can enforce nodes in the output layer of a

neural network to conform to the semantic relations, i.e., similarity and subsumption,

among labels. The relations are acquired through inducing from the label sets and

from grounding to external KBs, such as Microsoft Concept Graph (MCG). We applied

this novel joint loss with the regularisers as a part of JMAN, and also on the Bi-GRU

and HAN models. The results demonstrate consistent performance gain on the neural

network models with the semantic-based loss regularisers.

To model the users’ reading and annotation process, we designed a novel deep learn-

ing model, Joint Multi-label Attention Network (JMAN). Distinct from the previous

Hierarchical Attention Network (HAN) [77, 200], JMAN separately encodes the title

and the content and introduces a title-guided attention mechanism to align the title to

each sentence. This design is according to previous studies on statistical analyses of

users’ annotation behaviour and the impact of the title metadata [54, 114]. Extensive

experiments on four real-world datasets for social paper and question annotation show

significant improvement of JMAN, in terms of accuracy, F1 score and other metrics,

over the popular, state-of-the-art baselines and model variations. In terms of F1, JMAN

significantly outperformed Bi-GRU (Bidirectional Gated Recurrent Unit) by relatively

around 12.8% to 78.6%, and the Hierarchical Attention Network (HAN) by around 3.9%

to 23.8%. A substantial reduction of training time was also achieved with the JMAN-s

model, not applying the semantic-based loss regularisers. Analysis of the multi-source

components showed the advantage of using the title-guided content representation and

the proposed multiple sources in the document representation. The proposed title-guided

sentence-level attention mechanism further improved the explainability over the HAN
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model, by providing a new “view” on the sentence-level understanding, as analysed with

the attention visualisation.

The overall approach has its assumptions and conditions. Theoretically, the approach

is founded on the universal approximation theorem of neural networks [85, 149], so that

a complex, non-linear function can be learned to match the document to labels. This

assumption, however, is potentially compromised by real-world, noisy, high-dimensional

datasets, especially when the size of the data is relatively low compared to a large

number of labels for multi-label classification. This explains the overall low F1 score

in the performance (best F1 score of 38.7% achieved for Bibsonomy and 26.0% for the

CiteULike datasets). The semantic-based loss regularisers also assume the existence

of label semantic relations to influence document multi-label classification. Also, the

title-guided attention mechanism assumes that the title contains the essential, salient

information of the document, which usually holds but may not always be the case in

social media platforms. The title metadata may not be available in many social media

platforms, thus more flexible, or generic, guided attention mechanisms can be considered

in different scenarios. The multi-source architecture also assumes a particular (title-

and-content) document structure that may not be directly applicable to other types

of socially shared document. Understanding these assumptions and conditions can help

better adapt the approach to other scenarios, for example, multi-modal social data which

contains both texts and images [210], and socially shared questions and answers with

code on Stack Overflow.

The proposed approach is also not without limitations. The improvement with the

semantic-based loss regularisers on the deep learning models is still marginal, although

consistent in all experimental settings. This may be explained by the process that the

encoder and the document-label matching can indirectly model some of the label cor-

relation. As a potential remedy, we showed a performance improvement (an absolute

increase of F1 score by 0.2%-1.2% over JMAN) through a dynamic update of the label

semantic matrices, Sim and Sub. This “dynamic” version adds further, negative con-

straints on the output layer of the neural network and allows the label semantics to be

more compatible to the dataset, with the cost of substantially increased memory require-

ment. Another potential direction to leverage structured knowledge in labels is using

continuous representations of knowledge entities such as Knowledge Graph Embeddings

[25, 189] with other types of deep learning architectures for multi-label classification,

such as sequence-to-sequence (or sequence generation) models [192, 199] and autoen-

coders [186, 202]. Another limitation of the work in this chapter is related to the label

quality issues. Although we applied a systematic tag cleaning process for the datasets,

the label sets (cleaned tag sets) still suffer from missing, incomplete issues and some

“noisy” labels in the data not expressing the topic of the document. A more robust

multi-label document annotation, which can mitigate the missing and noisy label issues,

would warrant further studies.

Despite the conditions and limitations of the proposed approach described above,



Chapter 4. Knowledge-Enhanced Deep Learning for Social Annotation 91

both the guided attention mechanisms and the semantic-based loss regularisers are gen-

eralisable to other tasks and models. For future studies, it is worth exploring other

types of guided attention mechanisms where the title is not available, for example, in

microblog annotation, the tweets may be guided with historical information such as past

microblogs of the same user, or guided by external sources of different modalities, such as

sensor data to annotate events. The usage of semantic-based loss regularisers is also to

be validated with other types of semantic relations grounded to various KBs or induced

from the datasets. The proposed model could also shed light on the open problem of

extreme multi-label text classification [115], where there are hundreds of thousands or

millions of possible labels and thus further requires scalability. Another important di-

rection is to extend the current approach to deal with emerging new labels as discussed

in [214]. Although we mainly focused on RNN-based models, which have been very

commonly used especially for text understanding, it is also interesting to integrates the

semantic-based loss regularisers and the guided attention mechanism with other neural

network encoders, including Convolutional Neural Networks [98], the attention-based

network Transformer [181] and transfer learning approaches, the Bidirectional Encoder

Representations from Transformers (BERT) [45].

After the exploration of both the learning and leveraging of structured knowledge

from social media data, in the next chapter, we will conclude the research, review the

original research hypothesis and questions, and discuss potential topics for future stud-

ies.





Chapter 5

Conclusions and Future Work

Information becomes knowledge when you use an argument to draw conclusions from it.

... Knowledge becomes wisdom when it is integrated into your whole way of looking at

things. – David Evans, Paul Gruba and Justin Zobel [53, p. 104]

The discovery, representation, and use of knowledge are fundamental to many ap-

plications in machine learning, and more broadly, for AI in general. More recently,

the power of knowledge has attracted further interests of research communities, with

the presence of massive user-generated data and the development of new approaches in

machine learning. In the current Web, where massive data are created by users, it is

time to explore the transformation of such unstructured, noisy user-generated data into

more structured forms of knowledge, to support many semantic-based applications such

as text classification, information retrieval, and recommendation. The probabilistic and

neural network-based machine learning approaches provide further opportunities and

challenges to learn and leverage structured knowledge from user-generated social media

data.

In the previous chapters, we have explored from reviewing the idea of structured

knowledge (in Chapter 2) to both learning and leveraging structured knowledge from

social tagging data (in Chapter 3-4). This conclusion chapter summarises the thesis in

Section 5.1, then reviews the aim of the study and addresses the formulated research

questions from the introduction chapter in detail in Section 5.2. Furthermore, future

studies regarding learning various types of dynamic structured knowledge, efficient ways

of leveraging structured knowledge, end-to-end knowledge-centred learning, and extend-

ing to other types of user-generated data, have been discussed in Section 5.3.

5.1 Research Summary

We presented the main research contributions in Section 1.4 at the start of this thesis,

and now after a view of the whole research, we come back again to the original point of

this thesis for a more comprehensive and compact summarisation.

93
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The thesis has aimed to learn useful structured knowledge from user-generated social

media data. A knowledge-centred view has been considered, as illustrated in Chapter

1: knowledge bridges the gap between massive user-generated data to semantic-based

applications. Without structured knowledge, user-generated data would have been dor-

mant and less useful due to their unstructured characteristics. In this thesis, we mainly

focused on a popular type of data across many social media platforms, social tagging

data. The challenges to process social tagging data are their issues of noisiness, flatness,

sparsity, incompleteness, which prevent their knowledge discovery and usage.

We reviewed the different types of structured knowledge and the relevant concepts

in Chapter 2. In the first part of Chapter 2, we listed several key relevant con-

cepts from the literature, including Knowledge Bases, Knowledge Graph, ontologies,

concept hierarchies, semantic relations, etc., then we defined “structured knowledge”

as an abstract term encompassing all types of the concepts above, highlighting the

structuredness in organising and representing knowledge. We can observe a spectrum of

structured knowledge from low semantics to high semantics. On the bottom of this spec-

trum, folksonomies were included as a potential source to form structured knowledge, as

they provide low-semantics, but rich tag co-occurrence relations to learn more explicit,

paradigmatic relations and more formal structured knowledge. Then we reviewed the

different approaches to learn structured knowledge from folksonomies or social tagging

data, with their limitations. The most challenging and unsolved issues to learn struc-

tured knowledge from tags are, therefore, the representation of the highly ambiguous

meaning of tags and the quantification of their semantic relations to yield more accurate

machine learning models. We further discovered that there were few studies on Knowl-

edge Base Enrichment through social tagging data. Another, more empirical, aspect

of structured knowledge is leveraging it to support semantic-based, machine learning

applications. In the second part of Chapter 2, we reviewed studies on leveraging struc-

tured knowledge, mainly for automated social annotation, as a representative type of

machine learning application. After a summarisation of the application, we identified

three facets regarding the roles of structured knowledge in the studies on automated

social annotation, knowledge as tag co-occurrence relations, knowledge in deep learn-

ing applications, and as label correlation in multi-label classification. Although many

studies have attempted to incorporate knowledge into deep learning in general, few have

explored the use of structured knowledge to address the label correlation issue.

Then, the thesis shifted to proposing a new machine learning system to learn struc-

tured knowledge from social tagging data in Chapter 3. The main idea was to learn

to predict accurate relations with features generated from probabilistic topic modelling,

founded on a formal set of assumptions. Once the machine learning models are trained

and tested, tag concept hierarchies can be formed through a Hierarchy Generation Al-

gorithm which predicts and organises tag concepts progressively from top to down into

hierarchies for Knowledge Enrichment. Comprehensive evaluation studies were con-

ducted on the large, academic social tagging dataset Bibsonomy and three data-driven or
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human-engineered KBs, DBpedia, Microsoft Concept Graph, and the ACM Computing

Classification System. We performed three evaluation strategies, namely, relation-level

evaluation, ontology-level evaluation, and the novel, Knowledge Base Enrichment based

evaluation. Evaluation results show that the proposed approach can generate high qual-

ity and meaningful hierarchies to enrich existing Knowledge Bases. The study provides

empirical results on Knowledge Base Enrichment from user-generated social media data.

Regarding the leveraging of structured knowledge, the next part of the thesis ex-

plored and proposed a knowledge-enhanced deep learning model for automated social

annotation, in Chapter 4. Semantic-based loss regularisation has been proposed to

enhance the deep learning model with the similarity and subsumption relations between

tags. Besides, to mimic the users’ reading and annotation behaviour, a new form of

attention mechanisms, guided attention mechanisms, have been proposed to guide the

reading of sentences through the representation of the title metadata. The overall pro-

posed deep learning model, Joint Multi-label Attention Networks (JMAN), can leverage

the relations between tags, and separately models the title and the content of each

document and injects an explicit, title-guided attention mechanism into each sentence.

Extensive experiments on four datasets from real-world applications show a significant

improvement of the JMAN model over state-of-the-art, popular baseline methods, with

consistent performance gain of the semantic-based loss regularisers on deep learning

models.

To recap the overall contribution, the study starts from a systematic, knowledge-

centred view and then provides contributions on two aspects, learning structured knowl-

edge and leveraging structured knowledge. To learn structured knowledge, the the-

sis proposed a machine learning systems founded on a set of assumptions based on

probabilistic topic modelling, with comprehensive evaluation especially on the novel,

Knowledge Based Enrichment based Evaluation. To leverage structured knowledge,

semantic-based loss regularisers were proposed to constrain neural network models for

multi-label classification, with a novel neural network model, JMAN, which incorpo-

rates a title-guided sentence-level attention mechanism to mimic the users’ collective

annotation behaviour. The research can shed light on both theoretical and empirical

studies using probabilistic and deep learning based approach for knowledge engineering

and computing with user-generated texts.

5.2 Research Findings

After the brief summary above, this section presents research findings in detail, regarding

the investigation of the original hypothesis and the research questions formulated in

Section 1.3.

The original hypothesis of this research was substantial part of knowledge can be
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learned from user-generated social media data. We chose social tagging data as a repre-

sentative type of social media data for their popularity and typical unstructured char-

acteristics. According to the results of Knowledge Base Enrichment based evaluation in

Section 3.6.4.3, it is clear most of the learned relations can enrich existing KBs. A large

number of direct subsumption relations were generated and almost all of them (around

99%) were not present in the two existing KBs, DBpedia or CCS; in total, there were

3,846 distinct new relations for DBpedia and 1,302 for CCS. From the manual evaluation

of a sample of the learned subsumption relations by domain experts, 67.64% of the rat-

ings were either “subsumption” (38.44%) or “related” (29.20%), from four rating options

(the other two options were “unrelated” and “unsure”). These results together show

the novelty and correctness of the learned relations. The quality of the learned hierar-

chies was further validated through relation-level evaluation in Section 3.6.4.1, achieving

56.05% F1 score, much better than previous approaches based on co-occurrence features

(45.39%) and probabilistic topic modelling features (46.51%). Also, in ontology-level

evaluation in Section 3.6.4.2, the learned hierarchies in different domains showed com-

parably and consistently better similarity to gold standard hierarchies than with previous

approaches. Visualisation of learned hierarchies further validated the hypothesis. The

hypothesis was further tested in terms of leveraging structured knowledge from tags to

support automated social annotation. The structured knowledge of tag similarity and

subsumption relations (integrated through semantic-based loss regularisation) provides

consistent improvement of performance in automated social annotation, modelled with

deep neural networks as a multi-label classification problem, as shown in the Section

4.4.4.2.

Based on this research hypothesis, five research questions were formulated in 1.3.

We list the research questions below and provides research findings regarding each of

them.

Research Question 1. How to address the noisiness, ambiguity, sparsity, and incom-

pleteness issues of social tagging data?

This question is regarding the unstructured characteristics of all types of user-

generated social media data. We identified these unstructured characteristics in Section

1.1 and reviewed them more clearly in Section 2.2.1. To address the noisiness issue

and a part of ambiguity and sparsity issues, we proposed the Data Cleaning module in

3.2 to transform noisy tags into tag concepts. The effectiveness of this Data Cleaning

module has been validated on three social tagging datasets, Bibsonomy, CiteULike-a,

and CiteULike-t.

The ambiguity and sparsity issues of social tagging data were further addressed

through data representation based on probabilistic topic modelling in Section 3.3. With

probabilistic topic modelling, such as LDA, the ambiguous meaning of tag concepts

can be softly and densely represented as an interpretable, low-dimensional vector. This

probabilistic-based tag representation allows to further quantify the degree of subsump-

tion between two tag concepts for the machine learning system.



Chapter 5. Conclusions and Future Work 97

The incompleteness issues of social tagging data were proposed to be addressed

through automated social annotation, which is a typical semantic-based application to

automatically suggest tags to newly shared or previously nontagged documents (i.e.

micro-blogs, questions, papers, images, etc.) on social media platforms. We focused

on textual documents such as papers (abstracts) shared in Bibsonomy and CiteULike,

and questions asked in Zhihu. The proposed deep learning model, Joint Multi-label

Attention Networks (JMAN), performs significantly better than the popular and state-

of-the-art approaches in terms of the evaluation metrics, as shown in Section 4.4.4.1. The

automated annotation results and the attention mechanisms were further qualitatively

visualised in Section 4.4.8.

Thus, these unstructured issues were considered during the research process from

learning structured knowledge to leveraging structured knowledge from social tagging

data. The other issue, the flatness of tagging data, was addressed through learning

relations and hierarchies, related to the next question.

Research Question 2. How to learn subsumption relations and concept hierarchies

from social tagging data?

Subsumption relations and concept hierarchies are two major types of structured

knowledge, defined in Section 2.1. Subsumption relations express the abstraction of

concepts. Concept hierarchies represent hierarchies of a domain formed by subsumption

relations.

The approaches to learning subsumption relations include heuristics-based, semantic

grounding, unsupervised, and supervised approaches, as reviewed in Section 2.3. Based

on the discussion of their limitations to learning useful hierarchies with explicit relations,

a machine learning system was proposed and evaluated in Chapter 3. This binary

classification model takes two ordered tag concepts with a context concept as input, and

output whether a subsumption relation holds between them. Feature generation is the

core part of this system, founded on three assumptions, namely, topic similarity, topic

distribution, and probabilistic association. The main idea behind the assumptions is that

subsumption relations can be quantified through latent topic information inferred with

probabilistic topic models: topic similarity based features aim to ensure that certain

similarity between concepts in terms of their topics; topic distribution features can

quantify subsumption relations based on topic coverage and focus; and probabilistic

association features are proposed to measure the association between concepts with

conditional and joint probabilities. The combined three feature sets can be applied to

detect subsumption relations between tag concepts.

Concept hierarchies can then be formed by organising the learned subsumption re-

lations in a hierarchical manner. This was achieved through a Hierarchical Generation

Algorithm in Section 3.5, which progressively predicts subsumption relations with the

trained classification model from top to down and generates a concept hierarchy, starting

from a user-specified root concept.
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Research Question 3. How to formally evaluate the learned structured knowledge from

social tagging data?

There have been few studies to formally evaluate the learned structured knowledge

from social tagging data, as reviewed in Section 3.7. This thesis proposed a new set of

evaluation strategies, relation-level evaluation, ontology-level evaluation, and Knowledge

Base Enrichment based evaluation. Relation-level evaluation measures the performance

on predicting (subsumption) relations; ontology-level evaluation measures the quality

of the learned hierarchies through their resemblance to gold standard hierarchies, and

Knowledge Base Enrichment based evaluation focuses on the qualitative and manual

evaluation of the learned relations and hierarchies. Especially, as far as the author

concerns, the Knowledge Base Enrichment based evaluation regarding the knowledge

learned from folksonomies was not applied in previous literature. The three evaluation

strategies together can assess more comprehensively the quality of the learned structured

knowledge.

In the experiments, the academic social tagging data Bibsonomy was tested, with

three KBs, DBpedia, Microsoft Concept Graph, and ACM Computing Classification

System (CCS). Relation-level evaluation results demonstrated that the feature extraction

mechanism based on probabilistic topic modeling outperforms, with a large margin of

F1, the mechanisms based on co-occurrence, and the proposed single feature sets to

quality subsumption relations. The learned hierarchies with the proposed approach

show the overall highest resemblance to the gold standard hierarchies, in the ontology-

level evaluation. Further, the Knowledge Base Enrichment based evaluation show that

the generated concept hierarchies can largely enrich the existing KBs, DBpedia and

CCS.

Another aspect of evaluation is pragmatic or task-oriented evaluation, which as-

sesses the learned knowledge through downstream applications, such as navigation as

simulated in [165]. The thesis did not carry out a formal pragmatic evaluation of the

learned structured knowledge, however, results from the automated social annotation in

Chapter 4 showed that similarity and subsumption relations of tags can help improve

the performance of deep learning based multi-label classification. This provides a new

perspective to assess structured knowledge from social media data.

Research Question 4. How to leverage structured knowledge to tackle the label corre-

lation issue in deep learning based multi-label classification?

Leveraging structured knowledge for machine learning applications has been long

studied since the 2000s and earlier [21] (see Section 2.4), and can be traced back to

knowledge-based systems in AI from the 1960s (as reviewed at the start of Chapter 1).

However, recent advances in deep learning provide further challenges and opportunities

to enhance machine learning models with knowledge. While most recent studies focus on

embedding knowledge into vector spaces and as memories, input to the neural networks,

much fewer studies explored knowledge in deep learning based multi-label classification.
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In the latter case, structured knowledge is required in the output of neural networks, as

reviewed in Section 2.4.3, 2.4.4, and also in 4.5.

In this thesis, we have shown that semantic-based loss regularisation is a viable ap-

proach to constrain the output of neural networks to the semantic relations of labels.

For automated social annotation as a typical application, the labels are tag concepts

cleaned from user-generated tags. The idea is to enforce the value of nodes (correspond-

ing to the labels or tag concepts) in the layer after the sigmoid layer to conform to

the semantic relations of labels. The similarity loss Lsim was designed to penalise the

case of semantically similar and co-occurring labels in a label set with largely different

predictions; the subsumption loss Lsub can further penalise the case that a child label is

predicted as true, while the parent label is predicted as false, when they have a subsump-

tion relation and co-occur in the label set of a document. This approach is extensible

to many neural network models, including recurrent and convolutional neural networks

with attention mechanisms, and is suitable for the case of high-dimensional label space.

Experiments on attention-based neural network models, Bi-GRU, HAN, and the pro-

posed JMAN show consistent improvement with the semantic-based loss regularisers, on

four real-world datasets in socially paper and question annotation.

We also noted that the improvement, while consistent among the models and datasets,

is mostly not significant. The absolute increase of F1 score was higher with Bi-GRU (from

0.9% to 1.6%) and HAN (from 0.6% to 1.6%), and relatively lower with JMAN (from

0.1% to 0.5%), on the four datasets. This marginal improvement may be explained by

the shared weights in the label-document matching process, which may already model

much of the correlation among labels. While leveraging structured knowledge can lead

to consistent improvement, it is worth to explore more efficient approaches to enhance

neural networks with structured knowledge for multi-label classification. One potential

approach towards this direction is the dynamic update of the matrices Sim and Sub,

which allows the label semantics to be updated during training and to be more com-

patible to the dataset. The dynamic setting also adds further, negative constraints on

the output layer through the negative values in Sim and Sub. The dynamic update of

the label semantics (the JMANd model) improved the performance over JMAN, i.e., the

setting with fixed label semantics, absolutely by 0.2% to 1.2% in terms of F1 on three

of the four datasets, with the cost of substantial computational memory.

Research Question 5. How to model users’ social annotation process through deep

learning?

The last question focuses on modelling users’ behaviour to improve the performance

of automated social annotation. Previous studies modelled annotation behaviour based

on features from tag co-occurrence and content, or applied matrix factorisation, graph-

based approaches, and probabilistic graphical models, while recent studies applied deep

learning models with attention mechanisms to model this process, and achieved superior

performance, as reviewed in Sections 2.4.1 and 4.5. Deep learning models encode the
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input texts as continuous vector representations, with recurrent or convolutional layers,

and approximate the matching from the input to the label space.

It is important to identify the patterns of user behaviour before modelling. In this

thesis, to enhance the current deep learning models, we focused on the reading behaviour

regarding the impact of the title for annotation. Previous statistical analyses show that

the title has a great impact on users’ word choice in tagging [114] and also on document

categorisation and tag recommendation [54]. This inspired the creation of title-guided

attention mechanisms in the model. The proposed JMAN model separately inputs the

title and sentences in the content and then uses the title to “guide” the reading of

sentences, i.e. align to sentence representations. This explicit attention with the title

representation is different from HAN, which aligns a learnable vector to the sentence

representations. Compared to the word level in guided attention mechanisms, this focus

on the sentence level was less explored in previous studies on modelling user-generated

social texts [111, 192]. Experiments show that the title-guided sentence-level attention

mechanism can further improve the performance of the model. In most evaluation

settings, JMAN (with the “dynamic” version JMANd) and JMAN-s (the model without

semantic-based loss regularisers) significantly outperformed the state-of-the-art, deep

learning models, HAN and Bi-GRU, the downgraded models, JMAN-s-tg and JMAN-s-

att (not using either the title-guided or the original sentence-level attention mechanisms),

and the traditional approaches, SVM and LDA, in terms of the evaluation metrics. In

terms of F1, JMAN significantly outperformed Bi-GRU by relatively around 12.8% to

78.6%, and HAN by around 3.9% to 23.8%, on four real-world datasets. The training

speed was substantially accelerated with the JMAN-s model, around 21.2%-54.7% faster

than Bi-GRU and around 13.3%-23.2% faster than HAN on all datasets. Analysis on

multi-source components further shows the effectiveness of the combined sources to

model the annotation process. The efficiency of JMAN and its model variations can

shed light on attention-based deep learning approaches to model users’ reading and

annotation behaviour.

Besides, users’ collaborative tagging behaviour also inspired the design of the semantic-

based loss regularisers (summarised in Research Question 4). Since different users may

annotate the same shared document with tags (or labels) of different form and granu-

larity, for automated social annotation, the structured knowledge of labels needs to be

considered.

5.3 Future Studies

We previously discussed the assumptions, conditions, limitations, and directions war-

ranting further studies in Section 3.8 and 4.6 (at the end of Chapters 3-4) regarding

the proposed methods to learn and to leverage structured knowledge. This section
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focuses on summarising broader areas for future studies, including various forms of dy-

namic structured knowledge, efficient ways of learning structured knowledge, end-to-end

knowledge-centred learning, and extending to other types of user-generated data.

5.3.1 Learning Various Types of Structured Knowledge

Although the thesis has focused on learning the essential forms of structured knowledge,

subsumption relations and concept hierarchies, user-generated social media data would

convey knowledge of other types. Future studies could explore learning various forms of

structured knowledge. A range of much wider, and more specific association relations

[164], such as “is useful for”, “located in”, “derives from”, etc., could be learned from

social tags and other social media data. Formal ontologies, KGs, poly-hierarchies (where

concepts can have multiple hypernym concepts) [194, p.140] may also be interested.

Besides, the dynamic or temporal aspect of structured knowledge worth being high-

lighted for future work, as most current studies have been mainly focusing on learning

static knowledge. Structured knowledge needs evolving to respond to the change in

real-world scenarios. One potential direction of future study is to adapt the current

supervised learning method to an online learning framework to build evolving struc-

tured knowledge. The learned hierarchies could update itself with the availability of

newly generated social media data. Also, the pattern of evolution of structured knowl-

edge could be identified; this may be realised with recent approaches of dynamic word

representation through deep learning [201] and probabilistic graphical models [147].

5.3.2 Efficient Approaches to Leverage Structured Knowledge

Although experiments show that the proposed semantic-based loss regularisers can lever-

age semantic relations of large sizes and can consistently boost various neural network

models, the improvement so far is still marginal. One direction for future study is to

explore more efficient approaches to leverage structured knowledge as label correlation

for deep learning based multi-label classification. Recent studies proposed alternative

neural network approaches for multi-label classification, for example, the work in the

studies [186, 202] proposed novel auto-encoder architectures to input both instances

and label sets to reconstruct label sets; the research in [192, 199] adapted sequence-

to-sequence networks to generate each label set as a sequence. One of the advantages

of these methods is that the label embedding or label representation could be jointly

learned in the model to capture label correlation. So far, the studies modelled label

correlation in an implicit manner, through a ranking loss between positive and negative

labels [186, 202] or through the sequential dependence among output hidden states in

sequence generation [199]. It is worth to further study the role of structured knowledge

to improve deep learning approaches.
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5.3.3 End-to-End Knowledge-Centred Learning

Deep learning approaches allow to use a single learning system to process complex tasks,

without modular design and task-specific feature engineering; this approach of modeling

is called “end-to-end” learning [64]. Although end-to-end learning is not with its limita-

tions, it is shown in complex applications, such as natural language processing [38] and

autonomous driving tasks [23], that this new learning paradigm leads to significantly

better performance and smaller systems.

In this thesis, while a knowledge-centred framework was illustrated in Chapter 1,

we separately modelled the learning and leveraging of structured knowledge for better

explainability and easy adaptation to other related tasks. On the contrary, can we learn

and leverage knowledge jointly using an end-to-end network? This would allow better

optimisation of the learned knowledge for its usage in the final task. Recent advances

in deep learning, especially attention mechanisms, transfer learning [146], knowledge

graph embedding [25, 189], and graph neural networks [197], provide further means to

represent and utilise structured knowledge. Future studies could explore end-to-end,

knowledge-centred learning systems based on these advances.

5.3.4 Extending to Other User-Generated Data

While we mainly explored social tagging data, the proposed approach on learning and

leveraging structured knowledge could be adapted to other types of user-generated data,

such as microblogs, comments in e-business websites, and texts in Electrical Health

Records (EHR). All these types of data share some common unstructured characteristics,

and learning structured knowledge from them could be benefitted from the proposed

methods in this thesis. On the other hand, the particularities of each type of data

should be noted, for example the sentential and relatively richer contexts in microblogs

and comments than social tags, and the variably structured, fragmented EHR data

requiring domain specific knowledge [44]. Further studies need to test the proposed

methods to learn and leverage structured knowledge from these types of data, taking

into consideration of those data-specific factors.

5.4 Epilogue

The work reported in this thesis focused on two aspects of structured knowledge re-

lated to the massive amount of user-generated social media data: learning structured

knowledge and leveraging structured knowledge. After a review of the background of

structured knowledge, the “learning” part proposed a supervised learning system based

on feature sets founded on probabilistic topic modelling to generate concept hierarchies

from social tags; and the “leveraging” part modelled the users’ social annotation with a

knowledge-enhanced, attention-based deep learning model. The unstructured character-

istics of noisiness, flatness, sparsity, and incompleteness of social tagging data had been

considered during the design of the probabilistic-based and the neural network based
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machine learning systems. Most relations in the learned hierarchies have shown to be

able to enrich existing KBs. Structured knowledge such as similarity and subsumption

relations consistently boost the performance of deep learning based multi-label classi-

fication. While the studies mainly focused on social tags, the proposed methods could

be applied to various types of user-generated data. The results together demonstrated

that a substantial amount of useful knowledge can be acquired through user-generated

social media data. To recap, the work in this thesis provides a knowledge-centred view,

bridging the gap between social media data and semantic-based applications with novel

probabilistic-based and neural network based machine learning approaches, and shed

lights on methods to efficiently learn and leverage various types of structured knowledge

from user-generated data.





Appendix A

Visualisation of Tag Concept

Hierarchies

The following figures present some selected tag concept hierarchies learned using the

machine learning system proposed in Chapter 3 from the academic social tagging dataset,

Bibsonomy. The domain of each concept hierarchy was specified by the author as an

input to the Hierarchy Generation Algorithm.

Figure A.1: Excerpt of the learned hierarchy in the domain of data mining.
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Figure A.2: Excerpt of the learned hierarchy in the domain of social software.

Figure A.3: Excerpt of the learned hierarchy in the domain of e commerce.
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Figure A.4: Excerpt of the learned hierarchy in the domain of information retrieval.

Figure A.5: Excerpt of the learned hierarchy in the domain of machine learning.
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Appendix B

List of Open-Source

Implementations

The implementation related to the research in this thesis has been documented in the

following open-source projects on GitHub.

Tag-Data-Cleaning The project contains code and explanation of the steps in the

Data Cleaning module in Section 3.2, and the preprocessed multiword and single

tag groups (or tag concepts). https://github.com/acadTags/Tag-Data-Cleaning.

Tag-Relation-Learning The project contains implementation of Data Representation,

Feature Generation, Classification and Testing, and Knowledge Enrichment mod-

ules of the machine learning system described in Chapter 3. The preprocessed

datasets, Knowledge Bases, experimental results, and visualised hierarchies are

also included. https://github.com/acadTags/Tag-Relation-Learning.

Automated-Social-Annotation The project contains implementation of the Joint

Multi-label Attention Network (JMAN) and the baseline approaches, SVM, LDA,

Bi-GRU, HAN, JMAN-s-att, JMAN-s-tg, JMAN-s, described in Chapter 4, with

preprocessed datasets, Knowledge Bases, experimental results, and attention visu-

alisation. https://github.com/acadTags/Automated-Social-Annotation.
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Appendix C

Publications

Part of this thesis have been published or are currently under review:

• H. Dong, W. Wang, K. Huang, F. Coenen, Automated Social Text Annotation with

Joint Multi-Label Attention Networks, Submitted to IEEE Transactions on Neural

Networks and Learning Systems, 2020.

• H. Dong, W. Wang, F. Coenen, K. Huang, Knowledge Base Enrichment by Rela-

tion Learning from Social Tagging Data, Information Sciences, Volume 528, 2020,

pp. 203-220.

• H. Dong, W. Wang, K. Huang, F. Coenen, Joint Multi-Label Attention Networks

for Social Text Annotation. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies (NAACL-HLT 2019), Volume 1 (Long and Short Papers), pp.

1348-1354.

• H. Dong, W. Wang, and F. Coenen, Learning Relations from Social Tagging Data,

PRICAI 2018: Trends in Artificial Intelligence, 15th Pacific Rim International

Conference on Artificial Intelligence, Nanjing, China, August 28-31, Proceedings,

Part I. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence,

vol 11012. Springer, Cham, 2018, pp. 29-41.

• H. Dong, W. Wang, F. Coenen. Rule for Inducing Hierarchies from Social Tag-

ging Data, in Chowdhury G., McLeod J., Gillet V., Willett P. (eds) Transforming

Digital Worlds. iConference 2018, Sheffield, UK, 25-28 March. Lecture Notes in

Computer Science, vol 10766. Springer, Cham, 2018, pp. 345-355.

• H. Dong, W. Wang, F. Coenen. Deriving Dynamic Knowledge from Academic So-

cial Tagging Data: A Novel Research Direction, in iConference 2017 Proceedings,

Wuhan, China, 22-25 March, 2017, pp. 661-666.

• H. Dong, W. Wang, and H.-N. Liang, Learning Structured Knowledge from Social

Tagging Data: A Critical Review of Methods and Techniques, in 2015 IEEE In-

ternational Conference on Smart City/SocialCom/SustainCom (SmartCity), 8th
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IEEE International Conference on Social Computing and Networking (IEEE So-

cialCom 2015), Chengdu, China, 19-21 December, 2015, pp. 307-314.
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Fürnkranz, Large-scale multi-label text classification — revisiting neural networks,

Machine Learning and Knowledge Discovery in Databases (Toon Calders, Floriana
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