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Abstract: Probabilistic integration is a Bayesian inference technique for numerical 

integration, and has received much attention in the community of scientific and engineering 

computations. The most appealing advantages are the ability to improve the integration 

accuracy by making full use of the spatial correlation information among the design points, 

and the treatment of discretization error as a source of epistemic uncertainty being 

explicitly propagated to the integration results. This paper aims to develop an adaptive 

algorithm for further improving the efficiency and accuracy of the probabilistic integration 

when it is applied to the time-consuming computer simulators. A learning function is first 

extracted from the posterior variance of the integration and is shown to be especially useful 

for identifying the design point, by adding which to the training data set, the most 

reduction of the posterior variance of integration can be achieved. Based on this learning 

function, an adaptive experiment design algorithm is then developed for actively producing 

optimal design points. Results of the experiment tests and engineering application show 

that, with the same number of design points, the developed design strategy always produce 

more accurate and robust integration results, than the three kinds of commonly used 

random sampling design strategies (i.e., Monte Carlo design, Latin-hypercube design and 
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1. Introduction 

The numerical integration algorithms based on, e.g., discretization and stochastic 

simulation, play a core role in almost all areas of modern scientific and engineering 

computations such as computational mechanics, uncertainty quantification and 

computational physics. However, due to the limited computational resources and the 

increasing complexity of the simulators, those well-established algorithms have reached the 

ceiling, but still cannot satisfy the needs of scientific and engineering computations, 

especially when it comes to the time-consuming computer simulators such as finite element 

analysis of multi-physics fields [1]. Pursuing numerical integrations with better efficiency 

and accuracy is always on the way.  

There are three important elements in a numerical integration algorithm, i.e., (i) the 

design points at which the values of the integrand need to be computed (the most time-

consuming part), (ii) the integration rule with which the integration is calculated, and (iii) 

the discretization errors of different forms which need to be controlled and measured. Based 

on these three elements, the available algorithms can be divided into three groups, named 

as deterministic integration, stochastic simulation, and probabilistic integration respectively.      

The deterministic integration, such as the classical Gaussian-Hermite integration and 

the sparse grid integration [2], is based on the well-designed integration points such that the 

integral errors can be limited to zero for specific orders of polynomial integrands. For 

implicit integrands with unknown behavior, it is difficult to assess the numerical errors, 

and for high-dimensional integrals, the required number of integrand calls can be extremely 

demanding. The computational cost of stochastic simulation is commonly less sensitive to 
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the dimension, and the convergence of this group of algorithms is promised by the law of 

large numbers and the central-limit theorem. This group of methods includes the crude 

Monte Carlo (MC) simulation [3], the quasi MC simulation (such as Latin Hypercube 

Sampling (LHS) [4] and Sobol sequence [5]) and the advanced MC simulation especially those 

developed for estimating the probability of rare events [6][7]. A typical character of stochastic 

simulation is that they regard the discretization errors as a kind of statistical error, and 

measure the errors by the variance of the estimator [3]. Many approaches have been 

developed for controlling the variance (thus the integration error) of the estimator such as 

control variates [8] and control functionals [9]. 

The (Bayesian) probabilistic integration is a branch of the Bayesian probabilistic 

numerical methods which aim at treating the mathematical quantities in numerical 

computations (such as the solution of partial differential equations) with the philosophy of 

uncertainty quantification and Bayesian inference [1][10]. Among the past decade, it has 

received more and more attention in statistical computation and also become a research 

frontier in many other disciplines such as computational mechanics. Compared with the 

deterministic integration and the stochastic simulation, the probabilistic integration has 

two promising characters. First, the spatial correlations among the integration points are 

integrated into the integration rule to improve the efficiency and accuracy; second, the 

discretization errors are treated as a kind of epistemic uncertainty, and are analytically 

formulated for the integration outcomes by posterior variance [11]. Recent studies have 

shown that the probabilistic integration can outperform the classical deterministic 

integration and stochastic simulation by several orders of magnitude on efficiency [12].  

The probabilistic integration methods are generally based on stochastic process 

regression models, and in most cases, the Gaussian Process Regression (GPR) is utilized. 

Under this framework, the performance of the numerical integration can be affected by the 

kernel functions of the GPR model [13], the prior information of the inference [14] and the 
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experiment design strategies for generating training points [15], while the focus of this work 

is on experiment design. The first work on this topic can be dated back to 1991 by O’Hagan 

[15], where the Gaussian-Hermite integration points were utilized. More recently, the random 

sampling design strategies, such as MC design, LHS design, importance sampling, are 

utilized, and the resulting methods are termed as Bayesian MC simulation [16], which has 

been applied for sensitivity analysis [17] and structural reliability analysis [18]. 

In this paper, we develop an adaptive experiment design for creating the optimal design 

points iteratively for probabilistic integration by starting from a small number of random 

design points. For doing this, a learning function (a concept borrowed from structural 

reliability analysis [19][20]) is firstly established, which measures the overall contribution of 

the prediction error at each site to the posterior variance of integration, with the 

consideration of its correlations with those of all the other sites. The maximum value of 

the learning function informs the site by adding which to the training data the integration 

accuracy can be improved the most. Then, based on the learning function, an adaptive 

experiment design algorithm is proposed for implementing the probabilistic integrations 

actively. Experiment tests and engineering application show that the proposed algorithm 

always outperforms the commonly used random sampling design strategies.  

The rest of this paper is organized as follows. Section 2 reviews the GPR model and the 

probabilistic integration, with some more insightful interpretations of the probabilistic 

integration outcomes. In section 3, the learning function, as well as the adaptive experiment 

design algorithm, are developed, followed by three numerical experiment test examples, and 

an engineering application for demonstrating the effectiveness of the proposed algorithm in 

section 4. Section 5 gives conclusions.   

2. Probabilistic Integration 

2.1. Problem statement 

Consider a supervised learning problem with training data set      
1
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N , where x  is a n-dimensional row-wise vector of input variables, and y  is a scalar 

output variable. We rearrange the training data of input variables as a  N n -dimensional 

sample matrix X  with its i-th row being  x i , and the training data of the output variable 

in a N-dimensional column-wise vector y . Throughout this paper, we assume that the 

functional relationship   xy g  between x  and y  is deterministic, and the training 

data   is noise-free. The above assumption is consistent with the settings in computer 

simulation such as the finite element analysis, where the model response function is 

commonly abbreviated as g-function. Then our target is to numerically estimate the n-

dimensional integral: 

      d     x x x xd g g  (1) 

, where     refers to the integral of its argument with respect to the weight density   x . 

For simplicity, we assume that each ix  follows independent standard Gaussian distribution 

with zero mean and unit variance, and its marginal density function is denoted as  i ix . 

Then we have    
1

 


x
n

i ii
x . In subsection 2.3, we will give the reason why we make 

this assumption, and will also show how to handle the problem if   x  is not standard 

Gaussian density.   

Probabilistic integration is driven by the stochastic process surrogate model learning 

from the training data  . Different types of stochastic process models, i.e., the Student-t 

process and the Gaussian process (GP), can be assumed, which reflects part of the prior 

knowledge imposed on the Bayesian probabilistic integration [11]. In this paper, we only 

consider the GPR model, but the developed method can also be extended to the other 

types of stochastic process models such as the Student-t process which shows heavier tails  

[11]. The notations and symbols in this paper are mostly inherited from Ref. [11].   

2.2. Gaussian Process Regression model 

Given a probability space  , ,   , a GP model can be defined as :  f  , 
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which means that for each  ,  ,f  is a realization of the GP, and given each x   

with   indicating a subspace of n  and defining the support of x ,  ,xf  is a 

Gaussian random variable.  

Given the above notations, the g-function can be approximated by 

   ,   x xy g f , where   is a (Gaussian) noise random variable utilized for 

characterizing noise of data and/or the part of  xg  that cannot be interpreted by the 

GP model  ,xf . In this paper, we only consider the deterministic simulation models, 

thus the training data is always noise-free, and we use the noise-free version of the GP 

model, that is:  

                                  , x xy g f . (2) 

With the noise-free setting, the GPR model degrades into a numerical interpolation method. 

Given the above assumption, the GP model  ,xf , or the GPR model  xf  if it is 

trained from the data  , is uniquely characterized by its mean function 

   ,    x xm f  and covariance function 

           , , ,        x x xx x xg m g m  , where     indicates the expectation 

taken over all  . In practical application, the mean function  xm  can be assumed 

to be made of any type of basis functions, e.g., zero, constant and linear, and this 

assumption reflects the user’s prior knowledge imposed on the mean of the GP model. For 

example, if a linear mean function is assumed, it is formulated as: 

.   0
1

 


 x
n

i i
i

m x  (3) 

, where  0 1, , ,  β  n   is a set of hyper-parameters for the mean function. Below we 

always denote the hyper-parameters for  xm  as β  no matter which kind of basis 

functions is utilized.  

The covariance function  , x x  is also called kernel function, and different forms of 

kernel function can be assumed (see Chapter 4 of Ref. [21] for more details), which reflects 
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the user’s prior knowledge on the structure of the covariance function. In this paper, the 

squared exponential kernel with different correlation length parameter for each input 

variable is utilized, and it is formulated as: 

      2 1
0

1
exp

2
,       

  
 

x x x x xx
  (4) 

, where  2 2
1diag , ,    n  with  i ( 1, , i n ) being the length scale of ix . This kernel 

function has been integrated into the Matlab GPR toolbox with training function being 

“fitrgp”, which is used in the experimental tests of this paper.  

   With the above definitions, the GP model  ,xf  is uniquely defined by the hyper-

parameters β , 0  and  . The values of the hyper-parameters are estimated numerically 

by, e.g., maximizing the likelihood, and one can refer to Chapter 5 of Ref. [21] for details.  

Once the hyper-parameters being determined from the training data  , the posterior 

prediction of the GPR model at a new site x  is a Gaussian random variable with mean 

and variance being 

         1,
     x x κ x y mf m X K X


  (5) 

, and 

        1, , ,      x x x κ x κ xf X K X


  (6) 

, respectively, where  ,κ x X  indicates a N-dimensional column-wise vector with the i-th 

component being   , x x i , and K  is a  N N -dimensional matrix with the  ,i j -th 

element being     , x xi j .  

From Eq. (5), the GPR prediction can be regarded as the prior mean  xm  plus a 

linear combination of the kernel function  ,κ x X  over all training data. Eq. (6) indicates 

that the posterior variance     xf  is equal to the difference between the prior 

variance  , x x  and the term    1, ,κ x κ xX K X


 which represents the information 

being learned from the training data [21]. The (subjective) posterior Gaussian probability 
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distribution defined by Eqs. (5) and (6) reflects the epistemic uncertainty on the value of 

 xg , and the probabilistic integration rule can propagate this epistemic uncertainty to 

the estimation of the integral, and thus provides a measure of the error of the probabilistic 

integration.  

2.3. Probabilistic integration rule 

Based on the well-trained GPR model  f x , the induced integration   f  is also 

a Gaussian random variable with posterior mean and variance formulated as [11]: 

         1ˆ ,
               

x κ x y md f m X K X


  (7) 

, and 

          1ˆvar , , ,                    
x x κ x κ xd f X K X


  (8) 

, respectively, where  ,    x x  refers to the integral of  , x x  with respect to both 

arguments under the weight density   x  and   x .  

Eq. (7) indicates that the posterior mean of the probabilistic integration equals the 

integral     xm  of the prior mean function plus the improvement part (either positive 

or negative)     1,     
κ x y mX K X

  learned from the training data; while Eq. (8) 

reveals that the posterior variance of the probabilistic integration equals the prior variance 

of the probabilistic integration minus    1, ,        
κ x κ xX K X

  (positive), which is a 

measure of the reduction of the integration variance learned from the training data. 

Therefore, the posterior variance of the integration in Eq. (8) can be interpreted as the 

residual epistemic uncertainty on the integral after learning some information from the 

training data.  

   To generate the analytical expressions for the posterior mean and variance of the 

integrations in Eqs. (7) and (8), we need first to generate the closed-form expressions for 

the integral     xm  of the prior mean, the integral  ,    x x  of the prior kernel 

and the integral  ,   κ x X  of the data-based kernel. Derivation of     xm  is trivial 
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for the commonly used (zero, constant, linear and polynomial) basis functions. However, to 

generate closed-form expressions for  ,    x x  and  ,   κ x X , some specific 

properties are required for the forms of the kernel   and the density  . Table 1 of Ref. 

[11] provides a non-exhaustive list of distribution   and kernel   pairs that result in 

closed-form expressions for both  ,    x x  and  ,   κ x X . Fortunately, the pair of 

the Gaussian distribution and the squared exponential kernel given by Eq. (4) is listed in 

this Table, and this is why we assume each ix follows standard Gaussian distribution. 

For non-Gaussian weight density, there are two ways to break the obstacle. The first way 

is to find the corresponding form of the kernel function, and one can refer to Ref. [11] for 

more details. The second way is to perform a preprocessing for the integral to transform 

the input variables into standard Gaussian random variables by using e.g., Nataf 

transformation and Rosenblatt transformation [22], and we show how to do this with the 

second test example in Section 4. 

.   Given the standard Gaussian distribution and the squared exponential kernel, the 

closed-form expressions for  ,   κ x X  and  ,    x x  are given as [16]: 

     1/2 12 1
0

1
, exp vec diag

2


                 
κ x X I X I X   (9) 

, and 

  
1/22 1

0, 2
     x x I  (10) 

, where   vec diag   means formulating a column-wise vector with the diagonal elements 

of the argument. 

   It is obvious that the performance of the probabilistic integration rule in Eqs. (7) and 

(8) depends on the design of the training data  . One of the common ways to generate 

  is by random sampling design such as MC, LHS, and Sobol sequence. In the next section, 

we present the adaptive experiment design for creating   based on the information we 

learn from the pre-trained GRP model.   
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3. Adaptive Experiment Design 

As has been interpreted, the variance     f  in Eq. (8) summarizes the epistemic 

uncertainty of the probabilistic integration   f  by integrating the epistemic 

uncertainty of the GPR posterior prediction  xf  at all points x  . Thus, for reducing 

the epistemic uncertainty of the probabilistic integration the most, initially, we need to find 

the point x  , at which the epistemic uncertainty of prediction contributes the most to 

the posterior variance     f . For determining this point, we define the following 

learning function: 

        + 1, , ,           x x x x xκ κh X K X


 (11) 

, where    denotes the integral of its argument with respect to x  under the weight 

density   x . Then, it is easy to prove that: 

    +
        xf h . (12) 

Obviously,  + xh  measures the contribution of the epistemic uncertainty of the posterior 

prediction, at the site x , to the posterior variance     f , with the consideration of 

its correlations with all the other sites in  . Thus if we add the point with the maximum 

value of  + xh  into the training set, it is expected that a great reduction of the posterior 

variance     f  can be achieved. This is why we name it as learning function.  

   Further, if all x   have the same value of  + xh , it is reasonable to take the point 

with the highest weight density value as the most important site, thus we define another 

learning function as: 

      + x x xh h . (13) 

With this definition, the variance     f  equals the integration of  xh  with 

uniform weight. Thus, by sequentially adding the point with the maximum value of  xh  

to the training data set  , the posterior variance     f  is expected to decrease 

most efficiently.  
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Given the Gaussian distribution and squared exponential kernel function, the closed-

form expression for the learning function  xh  can be analytically derived. In Eq. (11), 

 ,    κ xX  is nothing but the transposition of  ,   κ x X  in Eq. (9), and we only need 

to derive the closed-form expression for  ,    x x , which is formulated as: 

    
1/2 12 1

0
1

, exp
2

 
               

x x x xI I  . (14) 

Besides the leaning function, we need also to present a stopping criteria for the 

algorithm. Let denote the posterior coefficient of variation (C.O.V.) of the integration as 

     ˆcov          d f f   , then the stopping criterion can be defined as 

 ˆcov d  , where   is a user-specified threshold, and can be set to be a small value, e.g., 

1 5% . However, it is found that, when the initial sample size is very small, there is a 

possibility that this stopping criterion is satisfied although the integration results do not 

converge. This can be easily avoided by a delayed judgment, which means finishing the 

algorithm only when the stopping criteria is satisfied for several (e.g., three) times in 

succession. Then, based on the learning function  xh  and the stopping criteria, an 

adaptive probabilistic integration algorithm is developed with the flowchart shown in Figure 

1. In the initialization of the algorithm, the user need also to specify the initial size 0N  of 

the training data set   so as to initiate the algorithm. Depending on our experience, the 

value of this parameter is problem-dependent. Commonly, the smaller the better, but 0N  

should also be large enough such that these points do not (approximately) lie on one 

hyperplane (unless the integrand is approximately linear), in case the algorithm may finish 

before the estimation converges, due to small posterior covariance of integration. If no prior 

information is available on the behavior of the g-function, then the 0N  training points can 

be obtained by any random sampling scheme such as LHS design, but the sampling density 

should not necessarily set to be   x . For example, one can generate 0N  uniform LHS 

samples in the support of   x .  
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Figure 1 Flowchart of the adaptive experiment design algorithm 

 

One of the key steps of the algorithm is solving the optimization problem which aims 

at finding the point * x   maximizing the learning function. For doing this efficiently 

and accurately, it is better to provide the closed-form gradients of the learning function, 

which are given in the Appendix. It is obvious that the learning function is a smooth 

function that has continuous gradients up to infinite order over  , thus the Hessian matrix 

can also be provided if necessary. For high dimensional problem (e.g., 20n ), solving the 

optimization problem numerically can be time-consuming, and in this case, one can also 

firstly produce a candidate training data set cand  of large size (say 1e4), and then in each 

iteration, add the point in cand , with the maximum value of learning function, to the 

training data set  . However, this procedure generally needs more training samples (thus 

g-function calls) since the selected training data in each iteration is sub-optimal.  

4. Numerical tests and engineering application 

We first introduce a one-dimensional integration problem to illustrate the details of the 

adaptive training process of the proposed algorithm, and then the Ishigami function and a 

polynomial integrand with two different settings to test the performance of the algorithm 
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in the multivariate cases. At last, the proposed algorithm is applied to a dam seepage model 

to estimate the expected seepage. The performance of the algorithm is compared with three 

random sampling design strategies (including MC design, LHS design, and Sobol sequence) 

without adaptive learning.  

4.1. One-dimensional integration 

For illustrating the adaptive learning process, consider the estimation of the expectation 

of the g-function    2 sin 2 1 g x x x  with respect to the scalar standard Gaussian random 

variable x . The true value of the integration is 1.  

   By setting 0 3N  and 1% , the proposed algorithm adaptively produces six more 

training points, and the training process is schematically shown in Figure 2, where the first 

row shows the comparison of the 95% prediction intervals when the training data size N   

equals to 3, 5 and 9, respectively, together with the training points and the true g-function; 

the second row presents the learning function  xh  as well as the maximum point to be 

added in the next iteration; and the last row shows the induced posterior density function 

of the integration, together with the true value of integration. As can be seen, at each 

iteration, by adding the point specified by the maximum value of  xh  to the training 

data, both the GPR prediction and the induced probabilistic integration can be improved 

largely. With totally nine training points, both the GPR model and the induced 

probabilistic integration are accurate enough. 

For illustrating the improvement of the adaptive experiment design with respect to the 

random sampling design, we also implement the probabilistic integration by MC design, 

LHS design and Sobol sequence with the same number of training points, and the results 

are compared in Figure 3 and Table 1. As can be seen from Table 1, among the four design 

strategies, only the adaptive design and Sobol sequence produce posterior 95% confidence 

intervals with the true value being included, and the confidence interval produced by the 

adaptive experiment design is much narrow than all the three random sampling design 
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strategies. From Figure 3, it can also be seen that the adaptive experiment design produces 

much better results for both regression and probabilistic integration than all the other three 

kinds of random sampling design strategies. The reason is that, with the adaptive 

experiment design, the behavior of the g-function reflected by the GPR model is taken into 

consideration, while the random sampling design strategies do not consider this kind of 

information. This indicates that the GPR model itself contains valuable information for 

improving its performance as well as that of the induced probabilistic integration.  

 

Figure 2 Adaptive training details of the one-dimensional integral, where the first column 

refers to the initial GPR model generated with three random training samples, the second 

column shows the details with two more training samples adaptively added, and the last 

column gives the final results with totally nine training points. 
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Figure 3 Comparison of the one-dimensional probabilistic integration driven by adaptive 

experiment design with those driven by crude MC design (first column), LHS design (second 

column) and Sobol sequence design (third column). 

 

Table 1 Probabilistic integration results for the one-dimensional integrand 

Design strategies Means C.O.V. (%) 95% Confidence intervals N 

Adaptive Design 0.9900 0.7459 [0.9755, 1.0045] 

9 
MC 0.8165 9.4500 [0.6653, 0.9677] 

LHS 0.9152 3.5619 [0.8513, 0.9791] 

Sobol 0.9752 3.1885 [0.9143, 1.0361] 

True Value 1 

 

4.2. Ishigami function 

The Ishigami function is a highly nonlinear closed-form model response function widely 

used in the sensitivity analysis community for testing the performance of different 

sensitivity indices and related numerical methods [23]. The response function is formulated 

as: 

   2 4
1 2 3 1sin sin sin  xy x a x bx x  (15) 

, where a  and b  are both constants, and set to be 7 and 0.25 respectively, 1x , 2x  and 
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3x  are three random input variables, all of which follow a uniform distribution  , U . 

Our aim is to estimate the expectation of the model response y , and the analytical value 

is 0.5 3.5a . 

Since the input variables follow a uniform distribution, it may be better to use one of 

the first three kernel functions listed in Table 1 of Ref. [11] so that both the posterior 

expectation and variance of the integration can be analytically derived. However, as above-

stated, in this paper, we only use the squared exponential kernel function given in Eq.(4), 

thus it is necessary to transform each input variable into a standard Gaussian variable. Let 

 | ,  P  denote the cumulative distribution function (CDF) of  , U , and     

indicate the CDF of standard Gaussian distribution. Then, the transformation is given as 

    1 | ,    i i i ix T z P z . Let         1 1 2 2 3 3, , T z T z T zT z , the expectation of y  can 

be equivalently formulated as       d y T z . With the above nonlinear transformation, 

the nonlinearity of the integrand may increase, making the problem more challenging for 

probabilistic integration. The g-function against z  with one variable integrated out is 

shown in Figure 4, which indicates the nonlinearity.   

 

Figure 4 Plot of the Ishigami function again standard Gaussian variables  with one variable 

being integrated out. 

 

   For this example, we use the linear basis functions for training the GPR model due to 

the high nonlinearity. We start the adaptive experiment design by setting 0 10N  and 
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4% . With this setting, the adaptive experiment design produces totally 77 training 

points before reaching the stopping criteria. Then we implement the probabilistic 

integration by MC design, LHS design and Sobol sequence with the same data size, and 

the results are compared with those generated by adaptive design in Table 2 and Figure 5. 

Both the posterior confidence intervals listed in Table 2 and the posterior density shown in 

Figure 5 demonstrate that, although the same number of g-function calls are consumed, 

the adaptive experiment design produces much accurate and robust estimation of the 

integral than all the three random sampling design strategies. 

The active learning process of the adaptive design is illustrated by Figure 6, where the 

maximum value of the learning function against each training step is shown. It is seen that 

the general trend is descending, but not always the case in each adjacent steps. This is fair 

since the GPR model may give biased predictions with small variation in some important 

local regions where there is no training data. It is also seen that a very small value of maxh  

does not necessarily mean small variation of the posterior estimation of the integration.  

 

Table 2 Probabilistic integration results for Ishigami function 

Experiment Design strategies Means C.O.V. (%) 95% Confidence intervals N 

Adaptive Design 3.4516  3.9940 [3.1814, 3.7218] 

77 
MC 4.1169 10.4361 [3.2748, 4.9590] 

LHS 3.2681  9.2764 [2.6739, 3.8623] 

Sobol 3.6077 10.6419 [2.8552, 4.3602] 

True Value 3.5 
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Figure 5 comparison of the probabilistic integration results of Ishigami function with training 

data generated by adaptive experiment design and three random sampling design strategies. 

 

 

Figure 6 Logarithmic plot of the maximum value of the learning function against the training 

data size. 

 

4.3. Polynomial integrand 

We develop a polynomial integrand formulated as: 

D
en
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, where each input variable ix  follows standard Gaussian distribution, n  is the input 

dimension, and a  is a constant, which equals the expectation of y , i.e.,     d y ax . 

Our target is to estimate this expectation, and we set the value of a  to be one. We consider 

two cases for this example. In case one, n  is set to be ten, while in case two, it is set to 

be twenty.  

For both cases, we set 0 30N  and 4% , and the constant basis function is utilized 

for GPR model. For case one, the adaptive experiment design algorithm produces 58 more 

training points before meeting the stopping criteria, thus the total number of g-function 

calls is 88. We then use the three kinds of random sampling design with the same data size 

to do the probabilistic integration, and the results for case one are compared in Table 3 

and Figure 7. From Table 3 it is also seen that the posterior 95% confidence interval 

produced by adaptive design contains the true value 1, and the interval length is much 

smaller than those generated by the three random sampling design strategies. It can also 

be found that the 95% confidence interval produced by LHS design even excludes the true 

value. These results indicate that, 88 training points are far from being enough for all the 

three random sampling design strategies to produce the same quality of posterior 

probabilistic integration results as the adaptive experiment design, thus further reveal that 

the adaptive experiment design outperforms all the three kinds of random sampling design 

for the probabilistic integration. 

   For illustrating the adaptive design process, we also plot the maximum value of learning 

function  xh  at each iteration in Figure 8. It is seen that the maximum value of h  does 

not always reduce at each iteration step, but its total varying trend is descending, indicating 

that the reduction of the posterior variance of the probabilistic integration.  
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Table 3 Probabilistic integration results for case 1 of the polynomial integrand  

Experiment design strategies Means C.O.V. (%) 95% Confidence Intervals N 

Adaptive design 0.9746  3.9225 [0.8997, 1.0495] 

88 
MC 0.9439  9.0633 [0.7762,1.1116] 

LHS 1.1731  7.3033 [1.0052,1.3410] 

Sobol 0.8930 11.0325 [0.6999,1.0861] 

True Value 1 

 

 

Figure 7 Comparison of the integration results for case one of the polynomial integrand 

generated by adaptive design and random sampling design with the same size of training data.  
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Figure 8 Logarithmic plot of the maximum value of the learning function at each iteration 

step for case one of the polynomial examples. 

 

For case two, the results are compared in Table 4 and Figure 9. Compared with case 

one, the adaptive experiment design requires more g-function calls to achieve the same level 

of accuracy, which is fair due to the higher dimension. Generally, the number of required 

g-function calls increases with respect to the nonlinearity of g-function and the dimension 

of the integral. It is shown that, in this case, the adaptive design still produces much more 

accurate and robust results than the other three kinds of design strategies. This 

demonstrates that the adaptive experiment design also outperforms the random sampling 

design for higher-dimensional problems.  

Table 4 Results of probabilistic integration for case two of the polynomial example 

Experiment design strategies Means C.O.V. (%) 95% Confidence Intervals N 

Adaptive design 0.9627  3.9771 [0.8876, 1.0377] 

226 
MC 0.8761 13.7542 [0.6399, 1.1123] 

LHS 0.9142 11.9235 [0.7005, 1.1278] 

Sobol 1.2803  9.4102 [1.0442, 1.5165] 

True Value 1 
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Figure 9 Probabilistic integration results for case two of the polynomial test example. 

 

4.4. Application to a dam seepage model 

We then apply the adaptive experiment design to a dam seepage model adapted from 

Ref. [24]. This model was established to predict the confined seepage below a dam, with 

elevation shown in Figure 10. One can refer to Ref. [24] for the detailed description of the 

model. The dam rests over a soil made of two permeable layers and one impermeable layer, 

where the vertical and horizontal permeability of silty sand layer are denoted as ,1yyk  and 

,1xxk  respectively, and those of the silty gravel layer are indicated by ,2yyk  and ,2xxk  

respectively. The depth of the water is denoted as Dh . All these five input variables are 

random variables with distribution information shown in Table 5.  

The governing PDE of this model is formulated as: 

 
2 2

,1 ,2 2
0, 1, 2

 
  

 
W W

xx yy i
h h

k k i
x y

 (17) 

, where Wh  is the hydraulic head over segment AB in Figure 10, with boundary conditions 

D
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described in [24]. A finite element model with 3413 nodes and 1628 quadratic triangular 

elements is established to solve the above PDE numerically. Once Wh  being solved, the 

seepage q  can be computed. For example, along the CD segment, the seepage q  can be 

estimated by: 

 ,2
CD

d


 
 W

yy
h

q k x
y

. (18) 

The unit of q  is [L/h/m], where “L” is the volume, “h” means hour and “m” indicates 

meter. This application aims to estimate the expected seepage which can be formulated as: 

  ,1 ,1 ,2 ,2, , , ,   xx yy xx yy Dd q k k k k h . (19) 

As shown in Table 5, all the five input variables do not follow Gaussian distribution, thus 

a nonlinear transformation needs to be carried out for each variable before implementing 

the probabilistic integration. 

 

Figure 10 Elevation of a dam 

 

Table 5 Distribution information of the input variables of the dam seepage model 

Input variables 
,1xxk  ,1yyk  ,2xxk  ,2yyk  Dh  

Distribution type Lognormal Lognormal Lognormal Lognormal Uniform 

Distribution Parameters 75 10      72 10      65 10      62 10      
[7, 10] 
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Units [m/s] [m/s] [m/s] [m/s] [m] 

 

For implementing the adaptive experiment design, we set 0 8N  and 0.5% . The 

adaptive design automatically produces eight more training points, thus the total number 

of g-function calls is sixteen. The results of the probabilistic integration driven by adaptive 

design and the three kinds of random sampling design strategies are compared in Table 6 

and Figure 11. For this example, the true value of d  cannot be derived analytically, thus 

we use the stochastic simulation driven by LHS design with 51 10  samples to calculate the 

reference solutions, and they are reported in both Table 6 and Figure 11. As can be seen, 

with the same number of g-function calls, the adaptive experiment design produces much 

better results than all the other three kinds of design, demonstrating the effectiveness of 

the adaptive design.  

For illustrating the learning process of the adaptive experiment design, the posterior 

variance of the integration at each iteration step is schematically shown in Figure 12. As 

can be seen, based on the eight initial training points, with only one more training point 

being added to the training data set, the posterior variance is largely reduced.   

 

Table 6 Results of probabilistic integration for the dam seepage model, where the reference 

results are estimated by stochastic simulation with 1×105 LHS random samples 

Experiment design 

strategies 
Means (×10-6) C.O.V. (%) 

95% Confidence Intervals 

(×10-6) 
N 

Adaptive design 2.1836 0.3697 [2.1677, 2.1994] 

16 
MC 2.0508 1.8704 [1.9756, 2.1260] 

LHS 2.1643 3.3202 [2.0235, 2.3052] 

Sobol 2.2009 2.0711 [2.1116, 2.2902] 

Ref. results 2.1965 0.1673 [2.1893, 2.2036]  105 
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Figure 11 Schematic comparison of results for the dam seepage model. 

 

 

Figure 12 Plot of the posterior variance of the probabilistic integration driven by the adaptive 

experiment design against the iteration steps.  

 

4.5. Final remarks 

The results of the above four test examples have comprehensively proved the 

effectiveness of the developed adaptive experiment design strategy for improving 
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probabilistic integration. The success of the strategy is attributed to the spatial correlation 

information revealed by the GPR model. For totally non-smooth integrands, the strategy 

may lose its advantage. Fortunately, in most real-world applications, the integrands are 

smooth or at least piecewisely smooth, indicating that the proposed strategy is of wide 

applicability.   

It’s worth mentioning that, in the specific area of reliability analysis, represented by 

Active learning combining Kriging and MC Simulation (AK-MCS) [19], tremendous active 

learning strategies have been developed for efficiently estimating the failure probability 

[20][25]. We denote these methods as AK-MCS class methods, and next, we discuss the 

differences and links between the adaptive probabilistic integration and those AK-MCS 

class methods.   

For reliability analysis, the target is to estimate the failure probability which is also 

defined by an integral: 

    df Fp I   x x x  (20) 

, where  xFI  is the indicator function of the failure domain   : 0 x xF g , which 

equals to one if   0xg  or zero if   0xg  . The AK-MCS method is then based on 

creating a sample pool       1 2, , , x x x NS  following   x , then adaptively selecting 

training points from S , one by one, with the target to correctly predict the signs for all 

the points in S  by the trained GPR model, and this way to estimate the failure probability 

with the predicted signs by: 

   
1

1 ˆˆ


  x
N

i
f F

i

p I
N

 (21) 

, where   ˆ x i
FI  is the indicator function value predicted by the trained GPR model for 

 xg . 

   The difference between AK-MCS and adaptive experiment design is obvious. For failure 
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probability estimation, the integrand is the (non-smooth) indicator function. The target of 

the adaptive design process in AK-MCS is to correctly predict the sign for each point in 

the sample pool S  instead of the corresponding g-function values. Since the posterior 

probability of misjudging the signs of the g-function around this surface is high, the 

resultant training points are mostly located around the failure surface   0xg . Thus, the 

AK-MCS class methods provide a high-quality local approximation for the g-function 

around the failure surface, but for the area far from the failure surface, the accuracy of the 

g-function approximation is not promised. However, for the integration problem concerned 

in this work, the integrand is the (commonly smooth) g-function itself, and lack of 

approximation of the g-function value at any point may contribute significantly to the 

integration error (posterior variance). Thus the induced training points may spread over 

the full space of x . Another difference lies in the estimators. As shown by Eq. (21), the 

AK-MCS class methods provide a numerical estimation of the failure probability based on 

the MCS estimator. Although the variance of the estimator can be easily generated, this 

variance only accounts for the discretize error caused by the limited sample size in the 

sample pool, but does not count the error caused by the lack of GPR approximation. 

Whereas, in the probabilistic integration, given the closed-form expressions for both 

posterior mean and posterior variance, the error due to the limited sample size does not 

exist, and that caused by the lack of GPR approximation is explicitly indicated by the 

posterior variance. 

There are also links between these two groups of methods. Based on the rationale of 

the probabilistic integration, we can further get an in-depth understanding of the AK-MCS 

class methods from the perspective of Bayesian inference. For failure probability estimation, 

the integrand is the indicator function  xFI . Given the GPR approximation of the g-

function, the induced surrogate model for the indicator function is a Bernoulli process, but 

the closed-form expressions of the posterior mean and posterior variance of the integration 
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are not available. However, with the sample pool S , it is possible to derive numerical 

approximations (e.g., MC estimators) for the posterior mean and posterior variance for the 

failure probability. For example, the posterior mean can be approximated by  
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1
ˆ
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x

i
N

f
ii

f
p

N
f









 (22) 

, where       
             

x xi if f    is the posterior probability that the g-

function value at  x i  being less than zero. One can also derive the MCS estimator for the 

posterior variance of the failure probability. One note that, in real-world applications, once 

the AK-MCS algorithms converged, Eq. (22) provides quite similar results as Eq. (21). 

The above understanding may provide a basis for further improving the AK-MCS class 

methods by making full use of spatial correlation information, and we will investigate this 

in our future work.  

5. Conclusions 

Probabilistic integration, as a kind of Bayesian inference technique based on the 

stochastic process regression model, has achieved great attention around these years in the 

community of statistical computation, but may still be unfamiliar to the community of 

deterministic computer simulation. Compared with the classical deterministic integration 

and stochastic simulation, the probabilistic integration, on the one hand, makes the best 

use of the spatial correlation information among integration points to largely improve the 

integration accuracy, and on the other hand, treats the discretization error as a kind of 

epistemic uncertainty which allows the analytical propagation to the integration results. 

The above two characters make probabilistic integration appealing to also deterministic 

computer simulation due to the large potential improvement on both efficiency and 

accuracy. 
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Based on the two appealing characters, we developed an adaptive experiment design 

strategy for further reducing the required number of g-function calls, each of which can be 

time-consuming for computer simulation. The key component of this design strategy is the 

learning function  xh , which is effective for finding the unknown point by adding which 

the posterior variance of the integration can be reduced the most. As has been interpreted, 

this is due to the fact the  xh  measures the contribution of the prediction error (epistemic 

uncertainty) at each non-training site x  with the consideration of its correlation with all 

the other sites.  

The results of the several experimental tests show that the proposed adaptive 

experiment design always outperforms the commonly used three kinds of random sampling 

design strategies (MC design, LHS design, and Sobol sequence) since, with the same number 

of g-function calls, the adaptive experiment design always produces more accurate and 

robust results. The application to higher dimensional problems needs to be further 

investigated, by utilizing e.g., dimension reduction techniques, and this will be carried out 

in future work.  
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Appendix: Gradients of Learning Function 

Given the definition of the learning function  in Eq. (13), its gradient with respect 

to each  can be derived as: 
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with ,iX  being the i-th column of X  and   means outer product.  
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