SPECTRAL PROJECTIONS CORRELATION STRUCTURE FOR
SHORT-TO-LONG RANGE DEPENDENT PROCESSES

P. PATIE AND A. SRAPIONYAN

ABSTRACT. Let X = (X¢);>0 be a stochastic process issued from z € R that admits a marginal
stationary measure v, i.e. vPyf = vf for all ¢ > 0, where P+ f(z) = E;[f(X¢)]. In this paper we
introduce the (resp. biorthogonal) spectral projections correlation functions which are expressed in
terms of projections into the eigenspaces of P; (resp. and of its adjoint in the weighted Hilbert space
L?(v)). We obtain closed-form expressions involving eigenvalues, the condition number and/or the
angle between the projections in the following different situations: when X = X with X = (Xy)¢>0
being a Markov process, X is the subordination of X in the sense of Bochner, and X is a non-
Markovian process which is obtained by time-changing X with an inverse of a subordinator. It turns
out that these spectral projections correlation functions have different expressions with respect to
these classes of processes which enables to identify substantial and deep properties about their
dynamics. This interesting fact can be used to design original statistical tests to make inferences,
for example, about the path properties of the process (presence of jumps), distance from symmetry
(self-adjoint or non-self-adjoint) and short-to-long-range dependence. To reveal the usefulness of
our results, we apply them to a class of non-self-adjoint Markov semigroups studied in [35], and
then time-change by subordinators and their inverses.

1. INTRODUCTION

Stochastic processes play an important role in the investigation of random phenomena depending
on time. When using a stochastic process for modeling or for statistical testing purposes, one
should take into account its special features which indicate how well the process reflects the reality.
Some of the most essential features include (but are not limited to) observing whether the process
is Markovian or not, whether its trajectories are continuous or incorporate jumps, what type of
range dependence it exhibits, and how far it is from symmetry (self-adjointness).

With the objective in mind, we introduce the concept of (biorthogonal) spectral projections cor-
relation functions, see Definition below. We proceed by computing explicitly these functions
along with their large time asymptotic behavior for three classes of processes, namely Markov pro-
cesses, Markov processes subordinated in the sense of Bochner and non-Markovian processes which
are obtained by time-changing a Markov process with an inverse of a subordinator. These findings
enable us to provide a unified and original framework for designing statistical tests that investigates
critical properties of a stochastic process including the one described above. Indeed, in these three
scenarios the (biorthogonal) spectral projections correlation functions have different expressions,
involving some quantities characterizing the process, such as their eigenvalues with their associated
condition number or the angle between the spectral projections.

We indicate that the recent years have witnessed the ubiquity of such non-Markovian dynamics in
relation to the fractional Cauchy problem, see e.g. [19] 22] 26, 27, B32] [43], and, also due to their
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central role in diverse physical applications within the field of anomalous diffusion, see e.g. [30],
as well as for neuronal models for which their long range dependence feature is attractive, see
e.g. [28]. The solution of the fractional Cauchy problem, which replaces the integer order derivative
by the Caputo derivative or even by a more general additive convolution operator, has a nice
stochastic interpretation as it is related to the time-changed of the original Markov process by the
inverse of a stable subordinator or a more general subordinator, see Toaldo [43] and, Baeumer and
Meerschaert [4], Meerschaert et al. [29] among others. In their recent work, by observing that the
fractional Caputo derivative of order o € (0,1) can also be expressed in terms of a multiplicative
convolution operator, Patie and Srapionyan [37] introduced a class of such operators which also
have the same self-similarity property as the Caputo derivative. Furthermore, they investigate the
generalized Cauchy problems, defined with these operators, and provide a stochastic representation
of its solution, expressed in terms of the right-inverse of increasing self-similar Markov processes.
We also mention that Leonenko et al. [25] and Mijena and Nane [31] investigate the orthogonal
spectral projections correlation structure in the framework of Pearson diffusions, i.e. diffusions
with polynomial coefficients. More specifically, in [25], the authors discuss the case when a Pearson
diffusion is time-changed by an inverse of an a-stable subordinator, 0 < a < 1. Whereas the
authors of [31] consider a Pearson diffusion time-changed by an inverse of a linear combination of
independent a- and [-stable subordinators, 0 < «, 8 < 1. In this work, we start with a general
Markov process that admits an invariant measure with its associated semigroup not necessarily
being self-adjoint and local, and then we perform a time-change with general subordinators and
their inverses.

Finally, we emphasize that the notion of long-range dependence, also known as long memory, of
stochastic processes has been and it is still a center of great interests in probability theory and
its applications in the last decades. We refer for thorough and historical account of this concept
to the recent monograph of Samorodnitsky [39]. The definitions of long-range dependence based
on the second-order properties of a stationary stochastic process such as asymptotic behavior of
covariances, spectral density, and variances of partial sums are among the most developed ones
appearing in literature. These second-order properties are conceptually relatively simple and easy
to estimate from the data. By far the most popular point of view on range dependence is through
the rate of decay of covariance or correlation functions. Conceptually, short memory corresponds to
a sufficiently fast rate of decay of the correlation (covariance) function as geometric decay, and long-
range dependence corresponds to a sufficiently slow rate of decay of the correlation (covariance)
function as power decay. It is also worth to mention that the relationship between long-range
dependence and non-stationarity is a delicate one. The stationary long memory processes form a
layer among the stationary processes that is "near the boundary” with non-stationary processes,
or, alternatively, as the layer separating the non-stationary processes from the ”usual” stationary
processes. The processes in the "layer” resemble non-stationary models, and they are unusual
stationary processes to such an extent that one can talk about a phase transition. Connecting the
notion of long-range dependence to certain types of phase transitions fits well with the intuition of
the term ”long memory” describing a model that is out of the ordinary, see [39].

1.1. Preliminaries. Let X = (X;);>0 be a stochastic process defined on a sample filtered prob-
ability space (2, F, (F¢)t>0,P) and state space E C R, endowed with a sigma-algebra £. Let its
associated family of linear operators P = (P;);>o defined, for any ¢ > 0 and f € By(E), the space
of bounded Borelian functions on E, by

Pif(x) = Eo[f(X4)],
2



where E, stands for the expectation operator with respect to P(Xo = =) = 1. Since z — E, is
E-measurable, for any Radon measure v, we use the notation

VP.f = E,[f(X,)] = / Ealf (X0l (dx).

E
We say that a Radon measure v on E is a marginal stationary measure, if for all ¢ > 0,

(1.1) VP f = vf.

If X is a Markov process and ([1.1]) holds, we say that v is an invariant measure. Then, since v is
non-negative on E, we define the weighted Hilbert space

L*v)={f:E—R measurable;/ fA(z)v(dr) < oo},
E

endowed with the inner product (-,-),, where (f,g), = [;° f(z)g9(z)v(dz), and norm | f||, =
V{f, f),- Next, the operators P;, ¢ > 0 being linear, positive and with total mass P;1 = 1 with
1 being the identity function on the appropriate space, we have, by Jensen’s inequality, for any
f € Cy(FE) C By(E) where Cy(FE) is the set of continuous functions on E vanishing at infinity,

!PthIEZ[E(Ptf)2($)V(dw) S[EPth(w)V(dfv) =vf%

Thus, the Hahn-Banach theorem yields that we can extend Py as a contraction of L?(v). From now
on, when there is no confusion, we denote by P; its extension to L?(v). Now, let P* = (P});>¢ be
the adjoint of P in L?(v), i.e. for any t > 0 and f,g € L?(v),

(1.2) (Pef, g)v = ([ Pig)v-
We are now ready to state the following hypothesis.

Assumption 1. Let N C N be a finite or a countable set, and for anyt > 0, (Pn)nex (resp- (Vn)nen)
be a set of eigenfunctions of Py (resp. P}) in L*(v) in the sense that there exist distinct (An)nen €
Ry such that for any n € N and t > 0, we have

(1.3) PP, = e P,
(1.4) PV, = ey,

We may also find convenient to characterize the V,’s by duality using (L.2), i.e. (P¢f, Vo) =
et (£, V), for all f € L?(v), which enables to identify the P/ and V,’s are the right and left-
eigenfunctions respectively. Note that the assumption on (Ay,)ney being of multiplicity 1 is in fact
for sake of simplicity since we mean to consider only one of the eigenfunctions in the eigenspace
associated to each eigenvalue. It is also worth pointing out that the definition of the spectral
correlation requires the existence of left and/or right-eigenfunctions which imply that the point
spectrum is not empty. Moreover, we emphasize that we suppose only that the spectrum has a
component which is real and part of the discrete point spectrum but one could readily adjust the
arguments to assume merely a complex point spectrum, continuous or discrete.

Next, without loss of generality, we assume that for any n € N,

<Pn, Vn>y — ]..
Pn

Vlan

Y, = , for which, obviously, we have <75n, f/n> v = 1 for n € N. We also note that the condition

Vlan|

Indeed, if (P,,Vn), = a, # 0 for n € N, then we could consider the sequences P, = and
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(PnyVn)y = 1 does not constrain the norms of the sequences (Py)nex and (V,,)nen to be 1, but it
only follows from Cauchy-Schwarz inequality that, for any n € N,

L= [(Pr; Va)u| < IPullul[Vall-

In Lemma below, we shall show that (P,,V,)ney form a biorthogonal sequence in L?(v),
ie. (Pm,Vn)y = Omn, where 0, is the Kronecker symbol defined in (2.1). In particular, if P
is self-adjoint in L2(v), i.e. for all t > 0, P, = P}, we have P,, = V,, for n € N, and (P, )nen form
an orthonormal sequence in L?(v). Below we consider X to belong to one of the following three
families of stochastic processes.

1.1.1. Markov process. First, let X = X with X = (X;);>0 a Markov process, and its associated
semigroup be the family of linear operators P = P = (P;);>0, defined, for any ¢t > 0 and f € By(E),
by Pif(z) = Ez[f(X:)]. Next, we assume that for ¢ > 0 and f € By(FE) the mapping ¢t — P f
is continuous (this is equivalent to the stochastic continuity property of the process X), and the
semigroup P admits an invariant probability measure v, i.e. vP,f = vf. In such framework, a
classical result states that the semigroup P can be extended to a strongly continuous contraction
semigroup in L?(v), see e.g. Da Prato [I3], and by an abuse of notation, we still denote its extension
to L?(v) by P. Note that the adjoint of P in L?(v), P* is the semigroup of a stochastic process
which may not be necessarily a strong Markov one, but instead has the moderate Markov property,
see e.g. Chung and Walsh [I1, Chapter 13| for more details.

1.1.2. Bochner subordination. In Section 2] below, we also study the spectral projections correlation
structure of subordinated Markov processes. Bochner subordination is a transformation of a Markov
process to a new one through random time change by an independent subordinator, i.e. a real-valued
Lévy process with non-decreasing sample paths, see e.g. [8, 0, 40]. From the operator semigroup
perspective, Bochner subordination is a classical method for generating a new semigroup of linear
operators on a Banach space from an existing one. More formally, using the notation of Section[1.1.1
above, for P = (P,);>0, a strongly continuous contraction semigroup in L?(v), and (i)¢>0, a vaguely
continuous convolution semigroup of probability measures on [0, c0), the subordination of P in the
sense of Bochner is defined by

(1.5) PP f(x) = /000 Psf(z)ue(ds), t>0, feBy(E).

The superscript ¢ alludes to the Laplace exponent of (f;)¢>0, which is a Bernstein function with
the following representation, for A > 0,

(16) o(N) = oA+ /0 T (1 e )o(dy),

where ¢ > 0, and 9 is a Lévy measure concentrated on Ry satisfying [7°(1 A y)?d(dy) < co. Note
that (4¢)e>0 gives rise to a Lévy subordinator 7 = (7¢)¢>0, which is assumed to be independent of
X, and the law of T is uniquely characterized by its Laplace exponent ¢, that is, for £, A > 0,

(1.7) E [e*)‘ﬁ] = e te(,

We write X = X7 = (X7;)t>0 for the Markov process associated with the semigroup P;f(x) =
P? f(z) = E4[f(X7;)]. Moreover, one has that v is also an invariant measure for the semigroup P?.
Indeed, let f € By(F) and assume, without loss of generality, f is non-negative, then, for ¢t > 0, we
have

vPlf = (P f, 1)y = /Ooo<Psf, 1)y pe(ds) = /OOO vfp(ds) = vf,
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where we used Tonelli’s theorem, the fact that v is an invariant probability measure for P, and
©(0) =01in . Therefore, as above, P? can be extended to a contraction semigroup in L?(v). It
is easy to note that the semigroup P¥ shares the same eigenspaces and co-eigenspaces (eigenspaces
for the adjoint) as P, and, in particular, we have the following.

Proposition 1.1. Let (Pp)nen and (Vn)nen be as defined in Assumption |1| with P = P of Sec-
tion|1.1.1. Then, (Pn)nen and (Vn)nen are the eigenfunctions of the semigroup P and its adjoint
in L*(v), respectively, associated to the eigenvalues (@(A\n))nen-

Proof. First, note that for n € N, P, € L?(v), and for any ¢ > 0, we have
Pt@'Pn = / PS'PnIu,t(ds) = ’Pn/ e*)\nsut(ds) _ eftap()\n)fpm
0 0

where in the second equality we used (T.3)), and the last step follows from (1.7)). Next, for f € L?(v),
n € N and ¢ > 0, note that

Peive = [ PEF@Vi@mdn) = [ / Py f (@) ds) Vo (2)(de)
= / /Pf Y(dx)pe(ds) = /0 (Psf, Vn)uhit(ds)

- /0 (f, P{Vn)up(ds) = /O e, Vo (ds) = (f, Va)ye 19O,
where in the last two steps we used 1) and -, and we were allowed to change the order of

integration using Fubini’s theorem, since by Cauchy-Schwarz inequality, we have

/ (Pof, Vb pn(ds) < / 1P f 1l Valosze(ds) < 111Vl < oo.
0 0
[ |

1.1.3. Non-Markovian processes obtained by a time-change with an inverse of a subordinator. Let
T denote the subordinator defined in ((1.7)), and define its right inverse, for ¢ > 0, by

= inf{s > 0; T > t}.

We point out that ¢t — 7Ty is right-continuous and non-decreasing, and hence t — L; is also right-
continuous and non-decreasing. In particular, when ¢ — 7; is a.s. increasing, which is equivalent to
p(00) = o0 in , then ¢t — L; is continuous and L, =t a.s., whereas 7z, > t a.s. Next, let [;
denote the distribution of Ly, i.e. for any B Borelian set of Ry, [;(B) = P(L; € B). Then, for any
A >0 and t > 0, its Laplace transform is denoted by

(1.8) ne(A) = /000 e *1y(ds).

For sake of simplicity, we assume that P(L; < 00) = 1,(0) = [;°l¢(ds) = 1 for all ¢ > 0. However,
all of the results presented below could be easily adapted to the case when fooo l¢(ds) < 1 for some
t > 0 (and hence, all ¢t > 0). Let P = P"7 = (P/")¢>( be the family of linear operators defined, for
f € By(F) and t > 0, by

Pl f(x / P, f(2)ly(ds).

The corresponding time-changed process will be denoted by X = X = (Xp,)i>0. As mentioned
in the introduction above, this time-change with an inverse of a subordinator in specific situations
was discussed in [25] and [31]. In the following we provide some basic properties of P".
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Proposition 1.2. For any f € By(E) and t > 0, vP'f = vf, i.e. v is a marginal stationary
measure, and it is also a limiting distribution for P, i.e. limy_,oo vP'f = vf. Moreover, for all
t >0, P can be extended to a contraction in L*(v).

Proof. Let f € By(F) and non-negative, then, for any ¢ > 0, we have, as above,
o
vPf =(P'f 1), = / (Psf, 1), l:(ds) = vf,
0

where we used Tonelli’s theorem, the fact that v is an invariant measure for P and fo (ds) =
Next, for a fixed t > 0 and any f € L?(v), we note that

P12 = [ TP @) () = / N ( / TP >zt<ds>>2 (d)

< / / (P, f(x))2u(dz)ly(ds)
_ / 1P f1120(ds) < || £]12,

where we used Jensen’s inequality and Tonelli’s theorem, and in the last step we used the fact that
P is a contraction semigroup in L?(v), and that the total mass of I; is 1. [

1.2. Spectral projections correlation functions. Notions of covariance and correlation func-
tions have been intensively studied in the statistical literature. Let X be a stochastic process, and
v be a Radon measure on the state space of X. We define the covariance and correlation functions
under v in the following way. Let s,t > 0, then for any functions f,g € L?(v),

(1.9) Co(f(Xe), 9(Xs)) = Eu[f(X4)g(Xs)] — Eu[f (X)) Ey[9(Xs)],
ClfX)oXa)) - if g, (£(Xy))stdy (9(Xs)) > 0,
— ) S, (F(X0)std, (9(X))
(1.10) po(f(X1), 9(X5)) {Of if’ztdy(df&?)stdy(g(xs)):07

where std, stands for the standard deviation defined by
std,( =\/C,(f f(Xy)).

Definition 1.1. When v is a margz’nal stationary measure for X and Assumption [1| holds, for
m,n € N andt,s >0, we call p,(Pm(X¢), Pn(Xs)) (resp. pu(Pm(Xt), Vn(Xs))) (resp. biorthogonal)
spectral projections correlation functions.

The rest of the paper is organized as follows. In Section [2] we present the main results which in-
clude explicit expressions for the spectral projections correlation structure of non-reversible Markov
processes, of their subordinated counterparts, as well as of non-Markovian processes, obtained by
time-changing a Markov process with an inverse of a subordinator. In Section [3] we illustrate our
results for the class of generalized Laguerre processes, which are associated with non-self-adjoint
and non-local semigroups. The proofs of the main results are presented in Section

2. MAIN RESULTS

Let us start with X = X a Markov process admitting an invariant probability measure v, i.e. vP, f =
vf for all t > 0 and f € L?(v) where P is the L?(v)-semigroup. Recall from Assumption [1| that
6



N C N is a finite or a countable set, and for any ¢t > 0, (Pp)ney and (Vy)nen denote the sets of
eigenfunctions of P, and Pj, respectively. Next, for m,n € N, let d,,,, be the Kronecker symbol, i.e.

2.1) 5o~ {O, if m #n,

1, ifm=n.

Then, we have the following characterization of the (biorthogonal) spectral projections correlation
functions.

Theorem 2.1. Let m,n € N. Then, for anyt > s > 0, we have
o (Pn(X1), Va (X)) = € M)k (m) Gy,

and
pV(Pm(Xt)a Pn(Xs)) = eiAm(tis)Cu(na m),

where k,(Mm) = ||Pmllu|Vimlly and =1 < ¢, (n,m) = % < 1. Consequently, c,(n,n) =1 for

any n € N.

The proof of Theorem is presented in Section 4.1

Remark 2.1. We shall show in Lemma below that (Pp, Vi)nexn form a biorthogonal sequence
in L2(v) in the sense that (Ppm, Vi)y = 6mn for any m,n € N. Then, each (non-orthogonal) spectral
projection is given by

Pt = (f, Pu)sVm, for [ € L*(v).

Moreover, in this context, the number
kv (m) = [Pl [V v

is called the condition number of the eigenvalue A\, and corresponds to the norm of the operator Py,
see e.g. Davies [14]. The condition number measures how unstable the eigenvalues are under small
perturbations of the operator P;. We note that when (Py, Vy)nen form an orthonormal sequence,
then k,(m) = 1.

Remark 2.2. Recall that a biorthogonal system (Pp, Vy)nex is called tame in L?(v) if N =N, it is
complete (i.e. Span(Pp)ney = L*(v)) and

Ky(m) = O(mﬁ),

for all m € N and some B, i.e. there exists b € Ry and mg € N such that |k, (m)| = k,(m) < bm”
for all m > myg, see Davies [14]. Otherwise, we say that the system is wild. Note that if (Pp)nen
is a basis in L?(v), then k,(m) is uniformly bounded, so the system is tame with B = 0, see again
[14].

Remark 2.3. When P = (P;)i>0 is a self-adjoint compact semigroup, then N =N and (Pp)nen =
(Vi)nen form an orthonormal basis of L?(v). However, when P is non-self-adjoint, then (Pp, Vi )nen
do not form, in general, a basis of L>(v). A necessary condition for (Ppn,Va)nen to form a basis is
that the condition number k,(m) is uniformly bounded. In this sense, the rate of growth of K, (m)
also can be seen as a measure of departure of these sequences from the basis property.

Remark 2.4. From the definition of the inner product, we note that ¢, (n, m) = cos £(Pp, Pp) and
arccos ¢, (n, m) measures the angle between the polynomials P, and P, denoted by £(Pp, Pm). In
particular, the sequence (Py)n>0 is orthogonal if and only if c,(n,m) =0 for n # m.
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Lemma 2.1. For any f,g € L*(v) and t > 0,

_ (frg)v —vf-vg
pv(f(X1), 9(Xe)) = \/I/f2 —wf)2- \/V92 _ (I/g)2'
In particular, for any m,n € N and t > 0,
pu(Pm(Xt), Pn(X1)) = cu(n,m),

pv(Pm(Xt), Vn(Xy)) = N;l(m)émn.

The proof of Lemma [2.1]is presented in Section
Remark 2.5. Note that if f,g € L?(v) are such that vf = vg =0, then for anyt >0

I (X)) = }H;H

We now proceed by studying the effect of the stochastic time-change in the analysis of the spectral
projections correlation function. First, we start with Bochner subordination. To this end, recall
that 7 = (T¢)¢>0 is a subordinator with Laplace exponent ¢ and transition kernel p(ds), i.e.

o
E [6_)\7;} = / e Muy(ds) =e N X>0,t>0,
0

where p(A) = oA + [;°(1 — e7*)d(dy) with ¢ > 0, and ¥ being a Lévy measure satisfying [;~(1 A
y)U(dy) < oo. Denote the semigroup of the subordinated process by P¥ = (Pf);>¢, i.e. for
f €By(E)and t >0,

PP f(z) = Eo[f(X7)]-
We recall from Section that P? defines an L?(v)-Markov semigroup with v as an invariant
measure. By combining Proposition [I.I]and Theorem [2.1], we obtain the following characterization
of the spectral projections correlation structure of the subordinated process.

Corollary 2.1. Moreover, for m,n € N and t > s > 0, we have

(2‘2) pu(Pm(Xﬁ)a Vn(XTs)) = eiw()\m)(tis)ﬂ;l(m)(smny
and
(2.3) Pv(Pm(X7), Pn(XT)) = e—so(Am)(t—s)cy(njm)_

Remark 2.6. Since (Pp, Vp)nen form a biorthogonal sequence in L?(v), and are, respectively, the
eigenfunctions of P? and its adjoint in L?(v), the correlation function p,(Pm(X7,), Pn(XT.)) (resp.
Pv (P (X7), Vn(XT,))) is the (resp. biorthogonal) spectral projections correlation function of the
process (X1:)e>0-

We continue with another stochastic time-change given by an inverse of a subordinator, which,
as explained in Section [1.1] gives rise to a non-Markovian process. Recall that the inverse of the
subordinator 7 is defined for t > 0 by L; = inf{s > 0; 75 > t}, its distribution is denoted by I;, and
its Laplace transform by 7, that is for any A > 0,

() = /000 e 1 (ds).

Also recall that we assume 7;(0) = [;~ l;(ds) = 1 for all ¢ > 0. Then, P" = (F");0, defined, for
t>0and f € L?(v), by

B f(x) = /0 " Pf(@)l(ds),
8



is a linear operator, and the corresponding time-changed process will be denoted by X, = (X1, )t>0-
Note that Leonenko et al. [25], Mijena and Nane [31] and Aletti et al. [3] characterize the correlation
structure of so-called Pearson diffusions when they are time-changed by an inverse of a linear com-
bination of independent stable subordinators. We extend their methodology by first considering a
general Markov process with biorthogonal spectral projections, and then time-changing it with an
inverse of any independent subordinator. We also point out that by following a line of reasoning
similar to the proof of Proposition it can be shown that the biorthogonal sequence (P, Vi )nen
represents a set of eigenfunctions of the linear operator P/, ¢t > 0 and its adjoint in L?(v), re-
spectively. Thus, p, (Pm(XL,), Pn(XL,)) (resp. pu(Pm(XL,), Va(XL,))) is the (resp. biorthogonal)
spectral projections correlation function of the process X. Finally, we set the following notation.

(a) We write f ~ g for a € [0, 00] if lim f() = 1. We may write f(z) “~" g(z) to emphasize

z—a g(x)
dependency on the variable x.
T—r00

(al) f is called a long-tailed function if 7,f(z) “~ f(x) for any fixed y > 0, where
Ty f(x) = f(x +y) is the shift operator.
(a2) f is called slowly varying at 0 if d, f(z) o~ f(z) for any fixed a > 0, where d, f(z) =
f(ax) is the dilation operator.
(a3) We say that f is strongly regularly varying at a with index 0 < o < 1 if f ~ pa, where
pa(x) = Cx® for some constant C' > 0.
(b) We write f < g if there exists a constant C' > 0 such that Sg(z) < f(z) < Cy(z) for z > a.

(c) We write f = O(g) if lim; 00 ‘% < oo

We are now ready to state our last main result.

Theorem 2.2. Let m,n € N. Then, fort > s > 0,

(2.4) PP (X1, PalX1) = o) (v [ e OV ) + m0)),
and
(2.5) Pv(Pm(XL,): Va(XL,)) = “;1(m)5mn ()‘m /08 Ne—r (A )U (dr) + Ut()\m)>a

where U(dr) = [(“P(T; € dr)dt is the renewal measure of the subordinator T. Moreover, for any
fized s > 0,

cu(n, m)ne(Am) (AmE[Ls] + 1) < ) v (ns m)N—s(Am) AmE[Ls] + 1),
“;l(m)‘smnnt(km)(AmE[LS] +1) < pu(Pm(XL,), Vn(XL,)) “;1(m)dmnnth()\m)()‘mE[LS] +1).

Furthermore, if for a fized s > 0, limy_oo nt:s(km) = C for some constant C' = C(s, A\y) (A E[Ls] +
1), then there exists to > 0 such that

<
<

Pv(Pm(X1L,), Pn(XL,)) = v (M)t (Am) AmE[Ls] + 1),
pv(Pm(XL,), Va(XL,)) Ky, (1)t (A ) A B[ Ls] + 1),

In particular, if t — n(Am) is a long-tailed function, we have

s

(2.6) oo (Pm(XL,), Pu(XL)) 2% co(n,m)in(Am) AmE[L] + 1),

(2.7) Pv(Prm(XL,), Vn(XL,)) e H;l(m)émnnt()‘m)()\mE{Ls} +1).
9



The proof of this theorem is presented in Section We complete this part with the following
result which provides a sufficient condition for 7; to be a long-tailed function.

Proposition 2.1. For any A > 0, there exists a positive random variable Xy such that n.(\) is the
tail of its distribution, i.e. ny(\) = P(X\ > t), t > 0. Moreover, ni(\) is a long-tailed distribution
if  is strongly reqularly varying at 0.

The proof of this proposition is presented in Section

2.1. Interpretation of the (biorthogonal) spectral projections correlation functions for
statistical properties. The results presented above regarding the (biorthogonal) spectral pro-
jections correlation functions and their asymptotic behavior provide an interesting approach for
designing statistical tests in order to identify substantlal propertles of a stochastic process. More
formally, we start by assuming that the sample X = (Xl, XT) with T € N large, is com-
ing from a stochastic process X which belongs to some family Wlth a marginal stationary measure
( (1) (@

(vi)ier and associated biorthogonal sequence ( "y Vn )neN)‘ , as defined in Assumption (1}, where
1€

I is the index set of the family. For example, in the case when X belongs to the family of general-
ized Laguerre processes presented in Section below, we can consider one element from each of
the following sub-families: a pure diffusion, a diffusion component and jumps with finite activity,
a diffusion component and jumps with infinite activity, and a pure jump process. Now, based on
the (biorthogonal) spectral projections correlation structure, one can identify

(a) how far from symmetry (self-adjointness) the process is,
(b) what type of range dependence (short-to-long) it displays, and
(c) the path properties of the process (cddlag or continuous paths).

For designing statistical tests, one can rely on the estimates of ,, (m) and/or ¢,,(n,m), i € I, n,m €
N. Since (ky,(m)),,cy contain information about both of the sequences (777(1 Jnen and ( T(f))neN,
below we describe some statistical tests involving the condition number. However, the estimates
of ¢,,(n,m) can be useful to further refine the search of the process. More precisely, based on the

main results presented in Section [2] one can make the following implications.

(a) To study the possible departure from symmetry of )A(, see Remark following the results
provided by Lemma we first take ¢ = s = k for some k € {1,--- ,T} and m = n € N.
Then, since the marginal stationary measure guarantees that the statistical properties of
the process do not change over time, for each i € I, we compute the empirical estimates of
the condition number k,,(m) for some m € N, by

Rl (m) = P (PR (Xp), VI (Xk)

Vi

~

S (PR PR X)) (VX)) -7 (X))
VL (PR PR (&) - VR)

where ff:l)(f() = %Zle P (ﬁj) and V&? (X) = + Zle 129 ()2]) are the sample means.
Next, we compute the theoretical condition number by

g (m) = [Pl [V -
10




(2.9)

(2.10)

Finally, to identify the couple ( éi), q(f))neN, we choose €g > 0, and check if

| (m) = Ry, (m)] < es.

For the next step, for sake of simplicity, we suppose that there is only one ¢ € I such that
the condition is satisfied.

To asses the range dependence of the sample, we study the asymptotic behavior of the em-
pirical correlation p,, ( T(rzl)(ik), ,S?L)(Xj)), k,je{l,---,T} k> j, m € N. More formally,
we first compute &,.(m) by , fix some j € {1,---,T} (one can simply set j = 1 or
j = 2), and we proceed by studying

I (k) = R (m) - iy (PR (X), VI (X))
Now, if k — gy, (k), j < k € {1,--- , T} exhibits exponential decay with respect to A, then
we have short-range dependence. In contrast, if it exhibits a polynomial decay, then the
process has long-range dependence, and, in particular, it is not a (subordinated) Markov
process. We remark that although these two cases are the most popular ones discussed
in the literature, depending on the rate of decay of the correlation function, the process
can exhibit short-to-long-range dependence. The concept of long-range dependence has
been repeatedly used to describe properties of financial time series such as stock prices,
foreign exchange rates, market indices and commodity prices. In this context, based on
the behavior of (biortogonal) spectral projections correlation functions, in their working
paper [20], the authors provide a more detailed empirical study to detect the (short-to-
long-) range dependence in volatility in financial markets.
Finally, to study the path properties of the process, i.e. the presence of jumps and their
activity, we study the behavior of %,.(m) for large m. To illustrate this with a specific
example, let us consider the class of generalized Laguerre processes introduced in Section|3.1
Note that this class encompasses a range of symmetries and jumps. Then, one can identify
the following cases.
(i) If K,.(m) = 1, m € N, then the process is a pure diffusion, see Section
(i) If B, (m) = O(mP) for some B, then the process has both a diffusion component and
a jump component with finite activity, see Section [3.3
(iii) If Ky, (m) = O(e“™) for any e > 0, then, similarly, the process has both diffusion and
jump components while in this case jumps have infinite activity, see Section [3.4
(iv) If Ky.(m) = O (emﬁ) for some (3, then the process is a pure jump process.
The problem of deciding whether the continuous-time process which models an economic
or financial time series has continuous paths or exhibits jumps is an important issue. For
example, Ait-Sahalia and Jacod [1] design a test to identify the presence of jumps in a dis-
cretely observed semimartingale, based on power variations sampled at different frequencies.
Furthermore, in this setting, the authors of [2] propose statistical tests to discriminate be-
tween the finite and infinite activity of jumps in a semimartingale. We emphasize that our
approach allows one to design a statistical test in order to identify both the presence and
the types of jumps.

3. EXAMPLES

In this section, we illustrate the results of Section [2] for the class of generalized Laguerre semigroups
which have been studied in depth by Patie and Savov in [35]. To investigate the behavior of
(biorthogonal) spectral projections correlation structure in various scenarios, we first discuss two
important examples of subordinators and their inverses.
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Example 1. Let 7 be an a-stable subordinator, i.e. in (L1.7)), p(A) = A%, 0 < a < 1. We recall
from [25] that for any A > 0 and ¢ > 0, the Laplace transform of its inverse is given by

M(A) = Ea(=At%),
where E, is the Mittag-Lefler function defined by Eo(2) = > pe, #ﬁl) for z € C. On the other

hand, since U(ds) = %ds, s > 0, we have that E[L,] = U(0,s) = [jU = ﬁ Now,
Corollary [2.1] yields that for any m,n € N and ¢t > s > 0,

pv (Pm (X73) , Vo (X77)) = ei)\?n(tis)’izjl(m)‘smm
pv (P (X7), Pa (X7,)) = e 07%)e, (n,m).
Next, it follows from Theorem [2.2] that

o (P (X2,) Pu(X1)) = co(mm) (Am [ e mvan + nt<Am>)

= ¢ (n,m) <)\m/osEa(—>\m )¢ );a(;l)dr—kE( Amta)>

cu(n,m) Apt® [t Ey(=Amt®(1 — 2)?)
= oL AmP o (1, 10) Ba(—Amt®).
(o) ; o dz + ¢y (n, m)Eq(—Apt®)

Note that since ¢ is strongly regularly varying at 0, we have, by Proposition that ¢t — 7 is a
long-tailed function. Furthermore, it is well known, see e.g. [25], that when ¢ — oo,

1
A) = FEo(—MtY) ~ ———.
Hence, from Theorem we deduce that for a fixed s > 0, when t — 0o, we have
cy(n,m) 1 s¢
1 v (P (X1,), Pn(X ~ o — =]
(3.1) pPuX0) PalX1)) g (L )

and, similarly,
K, H(m)é 1 s¢
P X)), Vn(Xp)) ~ 220 — 4~ ),
pr(Pm(X1), Va(XL,)) T(I—a)* \ & T +a)
When X is a Pearson diffusion, we note that (3.1]) boils down to the case discussed in [25]. Finally,

since the correlation functions decay in a polynomial rate of « € (0, 1), here the process X, exhibits
long-range dependence.

Example 2. Let 7 be a Poisson subordinator with mean %, ie. in (I.7), ¢(\) = 0(1—e™?). Then,
for the inverse Poisson subordinator, we have that L; follows Gam ([t + 1],1/0), see Leonenko et al.

[24]. Using the moment generating function of a Gamma random variable, we get

(3.2) ne(A) = /Ooo e ly(ds) = (1 + 2>[t+”,

and thus U(0,s) = E[L] = [SZI]. Then, it follows from Corollary that for any m,n € N and
t>s>0,

Pv (Pm (XTt) »Vn (XTS)) = 6_0(1_67/\771)(15_5)’%;1(m)(smm

Pv (Pm (XTt) s Pn (XTs)) = 6_0(1_67Am)(t_8)cu(na m)
12



Now, when ¢ — oo, note that 7:(\) ~ (1 + %)_t . Consequently lim; ";;(S)(\;\n")‘) # 1, and therefore

(2.6) and (2.7) do not hold. However, we are able to compute the exact formulas for the (biorthog-
onal) spectral projections correlation functions of X, as follows. First, noting that for any £ € N
such that k < t, —[t — k + 1] = k — [t 4+ 1], we have

s A\ [s] A\ Ltk A\ L
o [ @) w0 = S (142) T (14 5)
0

0

- () e (),

Thus, it follows from Theorem [2.2] that
A —[t+1] A [s+1]
PalXe) PuXe) = ) (1450) (2= (165) ),

PP XL ValX2)) = 3 () <1+A;”)[HH (2— (1+?)[S+H).

Since the spectral projections correlation functions decay in an exponential rate, the time-changed
process X exhibits short-range dependence although it is non-Markovian.

3.1. A short review of the generalized Laguerre semigroups. In this section, we provide a
short description of the so-called generalized Laguerre processes introduced and studied by Patie
and Savov [35], see also Patie et al. [36]. We point out that these processes have been recently
used to model asset price dynamics in Jarrow et al. [2I]. To this end, let A be the infinitesimal
generator of classical Laguerre process which in financial literature was introduced in 1985 by John
C. Cox, Jonathan E. Ingersoll and Stephen A. Ross [12], and is known as a Cox-Ingersoll-Ross (for
short CIR) process, i.e. for at least f € CZ(R.), we have

(3-4) Af(x) = f"(z) + (B +0® —2)f'(x),

where 5,0 > 0. We say that a semigroup P = (P;):>0 is a generalized Laguerre (gL) semigroup if
its infinitesimal generator is given, for a smooth function f on z > 0, by

(3.5) Af(z) = Af(x)+ /OOO (f(e™2) = f(2) +yaf'(2)) L(z, dy),

where TI(x, dy) = H(jy), with II being a Lévy measure concentrated on (0,00) and satisfying the
integrability condition fooo(y2 A y)II(dy) < co. We call the corresponding process X = (X¢)i>0 a
generalized Laguerre process. Note that when II(0,00) = 0, then P boils down to the semigroup
of a classical Laguerre process. Moreover, from [35, Theorem 1.6] we have that the semigroup P
admits a unique invariant measure, which in this case is absolutely continuous with a density that
we denote by v, and write the Hilbert space L?(v) as in Section [ Recall that P can be extended
to a contraction semigroup in L?(v), and by an abuse of notation, we still denote it by P. Now, [35]
Theorem 1.11] yields that if TI(y) = fyoo II(dr) is strongly regularly varying at 0 with some index
a € (0,1), then, for any f € L?(v) and t > Tiy for some explicit 71 (with Ti; = 0 when o2 > 0), we
have the following spectral expansion,

Pf=> e ™{f,Vu)Pn in L*(v),
n=0

13



where (P, Vy,)n>0 form a biorthogonal sequence of L?(v), and are expressed as follows:

N (&)
Pn(z) = Z(—l)km

k=0 ¢

* e L2 (v),

and,
_ RMy(x) B (z"v(z))™

viz)  nlu(z)

€ L*(v),

Vi(x

with the last equation serving as a definition of the Rodrigues operator. Here, Wy (1) =1 and, for
neN, Wy(n+1) =1[,_, ¢(k), where ¢ is the Bernstein function, see (I.6]), which takes the form

d(N) =B+ N+ /000 (1 — e”‘y> TI(y)dy,

with II, 3, 02 as in (3.5). Furthermore, by [35, Theorem 7.3 and Proposition 8.4] we have, that for
any n > 0and t > 0, P, (resp. V,,) is an eigenfunction for P; (resp. P;") associated to the eigenvalue
e ™, ie. Pp,V, € L?(v) and

PPu(z) = e ™Py(x) and P}V, (z) = e "V, (2),

with (P})¢>0 being the adjoint of (P);>¢ in L?(v). Therefore, in this case, we have A\, = n, n € N.

Next, we describe the eigenvalue expansions of specific instances of the generalized Laguerre semi-
groups which illustrate the different situations that are ranging from the self-adjoint case to pertur-
bation of a self-adjoint differential operator through non-local operators without diffusion compo-
nent. We study their spectral projections correlation structure, and discuss some of their important
properties as are range dependence and symmetry (self-adjointness), among others.

3.2. The self-adjoint diffusion case. For any 5 > 0, the infinitesimal generator of the classical
Laguerre process takes the form

Apf(z) =af"(x) + (B+1—a)f (z).
Note that this is the infinitesimal generator of a one-dimensional diffusion often referred in the
literature as the CIR process. The eigenfunctions are given by

L9(@) = Veu (BILP (),

where ¢, (5) = % and £ (x) = X:Z:()(—l)k(f:g)%C is the associated Laguerre polyno-

mial of order 5. Denote by
B,—x
x’e
. dr) = ———d
(36) lde) = 5 e >0
the law of a Gamma random variable with parameter (8 + 1). Then, the semigroup is self-adjoint

>0 forms an orthonormal basis of L?(y3). In particular, this
means that, for n,m € N, we have that

in L?(v5) and the sequence (Z(ﬁ)

Kyg(m) =1 and cy,(n,m) = Opim.
Hence, it follows from Theorem [2.1] that for m,n € N and ¢t > s > 0,

s ED (1), L (X)) = 07906,

m

Now, from Corollary Theorem and Examples [I] and 2] we have the following additional
results.
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e Let 7 be an a-stable subordinator, i.e. p(A) = A%, 0 < a < 1, see Example|l| Then, for

any t > s> 0,
prs (L8 (X7), 2 (X)) = €905,

m n

e Let 7 be a Poisson subordinator with parameter 0, i.e. p(\) = 0(1—e™), see Example
Then, for any t > s > 0,

s (D (X72), L0 (X7,)) = e 00=e =95,

e Let L be the inverse of an a-stable subordinator, see Example[I] Then,

—(B) —(8) o Opm, ME* s/t Eo(—mt*(1 — 2)%) -
Prg (‘Cm (XLt) aEn (XL5)> - F(Oé) /0 Sl—a dz + 6nmEOl( mt )
Furthermore, for a fixed s > 0, when t — oo,
—(8) —(8) 5nm 1 5%
L(X,), L, (X ~—— | — 4+ —].
@) TP ) ~ 1 (o )
e Let L be the inverse of a Poisson subordinator with parameter 6, see Example[2] Then,
for any t > s > 0,

7 - m\ —[t+1] m [s+1]
p’YB (ﬁgf)(XLt)?ﬁfzﬁ)(XLs)) = 5nm (1 —+ y) <2 —_ (1 + g) > )

3.3. Small perturbation of the Laguerre semigroup. Let b > 1, and take 02 = 1, 8 = bZT_l

and II(y) = e, y > 0 in (3.5), i.e. we consider, for f smooth,

2 e
A0S =af" )+ (gt 1= a) P+ [T ) - @)+ s e

b

The associated semigroup is ergodic with a unique invariant measure v,

1+
vp(dz) = (b n 1)%1((11:), x>0,

with 75_1(dx) as in (3.6). Then, the eigenfunctions and co-eigenfunctions (P}lb), Vy(lb))nzo are ex-

pressed in terms of Laguerre polynomials (ﬁ%b)> 0 as follows, n > 0,
n(b+1
PO@) = el DLP (@) - 20D p 0D )
1 T
(b) - = pb-1 _T e

where ¢, () and <£$lb)>n>0 are defined as in Section see [35, Example 3.2]. Next, it follows from
[35, Theorem 2.2 and (3.9)] that
[P, = 0Q), [V, = O(n+D72).
Then, for any m € N, we have
fy,(m) = O(m+D/2),
and therefore, the biorthogonal sequence (737(117), T(Lb))neN is tame, see Remark for definition.
Thus, it follows from Theorem [2.1] that
Py (PR (Xe), VO (X)) = €™k L (m) S

Now, from Corollary Theorem [2.2] and Examples [I] and 2] we have the following results.
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e Let 7 be an a-stable subordinator, i.e. p(A) = A%, 0 < a < 1, see Example|l| Then, for
any t > s > 0,

Py (PR (X7), VP (X7.)) = €™ =k, L (im) .

Vb

e Let 7 be a Poisson subordinator with parameter 6, i.e. p(A\) = 6(1—e™), see Example
Then, for any ¢t > s > 0

Puy (737(711)) (XTt)v Vr(zb) (XTq)) = 6_0(1_67M)(t_8)’€_1(m)5nm-

Vp
e Let L be the inverse of an a-stable subordinator, see Example Then, for a fixed
s > 0, when t — o0,

O x, ) YO (x, ) T WO (1 s
pVb(Pm ( Lt)>vn ( Ls)) F(l _ Ol)ta m + F(l i C¥)
e Let L be the inverse of a Poisson subordinator with parameter 0, see Example[2] Then,
for any t > s > 0,

(b) (b) _ -1 my 1 m [s+1]
Py (P (X1,), Vi (X1,)) = Ky (M)6mn <1 + 9) 2 (1 T 9) .

3.4. The Gauss-Laguerre semigroup. We next consider the Gauss-Laguerre semigroup P =
(Pta’b)tzo which has been introduced and extensively studied in [34], and which is an instance of the
generalized Laguerre semigroups, see [35, Example 3.3]. In particular, its infinitesimal generator,
for any a € (0,1) and b € [1 — é, oo|, and for any given smooth function f, takes the form

. 1
SN\ o7
A 1) = o = ) @)+ s [ ) gasl)dy >0,
where b, = % d
'« 1 1
Jap(y) = (H_(li_lyb+i+12F1(a(b +1)+La+Lab+1)+ 2;93“)7

with oF; the Gauss hypergeometric function. The associated semigroup P’ = (Pto"b)tzo is a
non-self-adjoint contraction in L?(e, ;), where

1 1
xb+afle—xa

Cap(dr) = Ty

dx, x >0,

is its unique invariant measure. For any x > 0, we set Péa’b) () =1 and for any n > 1,

@B(3) — Il ~ W
Pa) I( b+1)kzzo( l)kr(ak —|—kab+ 1) "

VeV = e

which are the eigenfunctions and co-eigenfunctions of P*®. It is worth mentioning that in [34]

Proposition 3.3] the authors show that the V,(la’b)’s can be expressed in terms of sequences of
polynomials as well. Then, it follows from [34, Proposition 2.3] and [35, Theorem 2.2] that

1P en = O, VI le,, = O (™),
where T,, = —In(2% — 1). Then, we have that for any m € N,

/ﬁea’b(m) =0 (eTam) ,
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hence, in this case, the biorthogonal sequence (PT(La’b), V,(La’b))neN is a wild system in L?(e, ;). Now,

it follows from Theorem 2.1 that
Pew, VD (X,), PP (X)) = e ™9kt (m)Srm.

€ b

Next, from Corollary Theorem and Examples [I] and 2| we have the following additional
results.

e Let 7 be an a-stable subordinator, i.e. p(A\) = A%, 0 < o < 1, see Example|l| Then, for
any t > s > 0,

Peq s (’Pr()?yb) (X"/?)v V?SO"b) (XTS)) = eima(tis)’%il (m)5nm

€a b
e Let 7 be a Poisson subordinator with parameter 6, i.e. p(\) = 6(1—e™?), see Example
Then, for any t > s > 0

P, (PP (X7), VP (X7,)) = e 00k L () G-

€a,b
e Let L be the inverse of an a-stable subordinator, see Example Then, for a fixed
s > 0, when t — o0,

5_1 (m)(smn 1 s%
Po (P (X1,), VD) (X)) ~ Lo T0mn ( ) .

T(L—a)* \m  T+a)
e Let L be the inverse of a Poisson subordinator with parameter #, see Example[2l Then,
for any t > s > 0,

(0,) (a,b) _ -1 my -~ m [s+1]
Peas (P (X1,), Vi (XL,)) Rea (m)0mn (1 + 0 ) 2 <1 + 6 ) .

4. PROOFS OF THE MAIN RESULTS

4.1. Proof of Theorem We split the proof of Theorem 2.1]into several intermediary lemmas.

Lemma 4.1. The sequence (Pp, Vi )nen, defined in Assumption |1, forms a biorthogonal sequence
in L?(v), i.e. for any n,m € N,

(41) <Pnavm>u = Onm.-

Proof. First, recall that, given Assumption [T} in Section we assumed, without loss of generality,
that for any n € N, (P, V,), = 1. Therefore, we need to show that (P, V,), = 0 when n # m.
Then, note that for all £ > 0 and m,n € N,

<7Dn7 Vm)u = e/\nt<PtPna Vm>u = e)\nt<lpn7 Pt*vm>u = e()\n_)\m)t<7)na Vm>y
where in the first and last equality we used (|1.3]) and ([1.4) respectively. Therefore,
(1= @) (P, Vi) = 0,

Hence, since we assumed that the eigenvalues are of multiplicity 1, A\, # Ay, if n # m. Thus,
(PnyVim)v = 0, which concludes the proof. [ |

Lemma 4.2. Let f € L?(v). Then, for any t > 0,

(4.2) stdy (f(X1)) = Vv f? = (vf)?

In particular, if f is such that vf =0, then

(4.3) stdy(f(X0) = Vvf2 = If |-
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Proof. The first claim immediately follows, for any ¢ > 0, from the sequence of equalities

std, (f(X1)) = VP f? — (WPf)? = /v f? — (vf)?.
Finally, if vf = 0, then we have

(4.4) stdy(f(X0) = Vv 2 = If]l-

Lemma 4.3. Let f € L?*(v). Then, for any m €N and t > s > 0,
Co (P (X1), f(X5)) = e Am(t=s) (Prns £

Proof. First, Lemma yields that (P, Vi)y = 0mn, m,n € N. In particular, since v is invariant,
for any m € N, vP,Pp, = vPy = (P, 1)y, = dom = 0, where we used the fact that the constant
function 1 is an eigenfunction for P; since P41 = 1 for all ¢ > 0. Similarly, since Py = By = 1,
then vP,, = vV, = dom = 0. Then, from the definition of the covariance function given in ,
we obtain, for any t > s > 0,

Co(P(Xe), f(Xs)) = Eu[Prn(Xe) f(Xs)] — B[P (Xe)|Ey [f (X))
= Ey[Pun(X0)f(Xs)] — v P v P f
= Ey[Pr(X0) f(Xs)]-
Next, using the Markov property and , we get
By [P (Xe) f(Xs)] = Eu[Ex, [P (Xi—s)]f(X5)]
= E,[P—sPm(Xs) f(X)]
= MR, [P (X,) F(X)]
= e nl=9yp P, f=e m=)yp, f
e—Am(t—s) <Pm, f)y,

where in the second last equality we used the fact that v is an invariant measure for P. |

We are now ready to prove Theorem First, recall from the proof of Lemma [£.3] that for any
m € N, vPy, = vV, = 0. Next, it follows from Lemma [4.2] that for any ¢ > 0 and m € N,

stdy, (Pm(Xt)) = |Pmlly and  std, (Vi (X)) = [|[Vinllo-

Then, using Lemma with f =V, and f = P, respectively, we get, for any ¢ > s > 0 and
n,m € N, that

e*)\’m(tis) <Pn, Pm>l/ . —)\nL(t_S)

pl/(Pm(Xt)vpn(XS» = HP H HP H Cl/(n>m)7
nl|\v milv
6—)\'m(t—5)5mn 7)\m(t78) _1
Pv(Pm(Xt), Vn(Xs)) = er Ky (M)0mn,
where we recall that for m,n € N, k,(m) = ||Pnllu||Vinll, and ¢, (n,m) = % Then, by

symmetry, it is easy to note that for any ¢,s > 0, we have
pu(Pn(X2), Pu( X)) = € 7722060 e, ().

Finally, the Cauchy-Schwarz inequality entails that [(Py, Pm)v| < [|Pnllv||Pmll, and hence —1 <
¢y (n,m) < 1. Moreover, when n = m, we have that for any n € N,

(Pu Pl _ IPall2 _

c(n,n) = =
) = Pl ~ 1Pll2
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and this concludes the proof of Theorem [ |

4.2. Proof of Lemma The definitions of the covariance and correlation functions in (|1.9))
and ((1.10) give that for any ¢ > 0,

po(f(X2), 9(X3)) By [f(Xe)g(Xe)] — By [f (X0)]Ey [9(Xo)]

stdy, (f(Xt))stdy(9(Xt))
vP,fg—vP,f-vPyg

VVE—(vf)? - \vg? — (vg)?

_ vig—vf-vg
VvIE—(vf)? - \vg? — (vg)?
(fr9)v —vf-vg

(4.5) -

VU= (vf)?-\/vg® - (vg)?
where in the third equality we used the fact that v is an invariant measure for P;. Next, for
n,m € N, taking f = P,, with ¢ = P,, and g = V,, in (4.5)), and using Lemma and Lemma
we get, for any ¢ > 0,
<7)ma Pn>1/
pV(Pm(Xt)7Pn(Xt)) = T 1 -0 cy(n,m),
HPmHV ’ HPnHu
<Pma Vn)u —1
pl/(’Pm(Xt)aVn(Xt)) = 5 1 v = Ry (m)(smn
HPmHV ’ HVnHu

where we recall that for any n € N, vP, =vV, =0. R

4.3. Proof of Proposition For a function f, we write L¢(q) = fooo e~ % f(z)dz and we use
the same notation for the Laplace transform of a measure. Then, for any A > 0, denoting

(4.6) Ux(dw) = / P(T; € dw)e dz, w >0,
0
the A-potential measure of T, we have, for any ¢ > 0,

Ly, (q) = /0 e_qw/o P(T; € dw)e *dz

= / e_)‘z/ e P(T, € dw)dz
0 0
ee 1

4.7 = / e Mo Dy — _ —
4.7) 0 A+ p(q)

Next, as (0) = 0, see (L.6)), [;° Ux(dw) = ;. Thus, writing, for any t > 0, Ux(t) = A [ U (dw)
and changing the order of integration justified by an application of Tonelli’s theorem, we get that
for any ¢ > 0,

1o 1 __ ¢lg)
¢ aA+el@) aA+e(e)

On the other hand, it is well known that the Laplace transform of ¢ — n:(\), where we recall that
ne(A) = [y~ e *ly(ds), takes the form, for any ¢ > 0,

(48) EUA (q) =

(4.9) Lo = (ﬂ)\(j—(?p)(q))’
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see e.g. Mijena and Nane [31]. Therefore, the injectivity of the Laplace transform implies that for
any t > 0,

(4.10) () = A / U (dw).
t
Here, writing ﬁ,\(dw) = AU, (dw), w > 0, we have

(4.11) ) = [ Ouan).

Since n(A) is decreasing in ¢, no(A) = 1 and lim;_oo () = 0, we deduce that n(\) is a tail
of a probability measure, i.e. there exists a random variable X such that n,(\) = P(X) > t) =
ftoo ﬁA(dr), t > 0. Next, assuming that ¢ is strongly regularly varying at 0, i.e. ¢(q) L Cq“,
0 < a < 1 for some constant C' > 0, using (4.7)), we obtain

OO_T~ Y OCa
1_5@((]):1—/0 e qUA(dr):A—i—(go)(q)N)\q'

Then, it follows from a Tauberian theorem, see e.g. [7, Corollary 8.1.7], that equivalently we have
t—o00 C =«
A~ ————.
Thus, for any a > 0, we get that

by —«
lim Tog(at) (N) ~ lim (loga + logt)

=1.
t—»00 mogt()\) t—00 (logt)=@

Therefore, t = Niog(1)(A) is slowly varying at infinity, and thus ¢+ n,()) is long-tailed, see e.g. [16)
Lemma 2.15], which completes the proof of the proposition. B

4.4. Proof of Theorem Writing for t,s > 0, Hy s(u,v) = P(L; < u,Ls < v), we have that
the independence of X and L entails that for any m,n € N,

oy (Pu(X1), Pu(X1,) = / h / T o (Pur(X), Pa(X0)) Hy (s, dv),

Po(Pr(X1). Va( X)) = / / oo (Pon(Xa), Vi (X)) Hoo (s, dv).

Next, recalling that ¢, is symmetric, i.e. ¢,(n,m) = ¢,(m,n) for any m,n € N, Theorem 2 - 2.1| gives
that for any u,v > 0,

pu(Pn(X), Pal(X0)) = ey, m) (6701 g e MO0 1)

and hence

pv(Pm(Xr,) Pn(XL,)) = /0 /0 cy(n, m) (e_)\m(u_v)l{u>v} + 6_>\H(U_U)1{u§7)}> Ht,s(du’ dv)

(4.12) — o n,m) /0 /0 (e sy + €001 ) Hy(du,do).

Now, let (u,v) — F(u,v) be a function of bounded variation such that v — F'(u,v) and v — F'(u,v)

are also of bounded variation. Then, writing F'(du,v), F(u,dv) and F(du,dv), we mean the one

dimensional measures generated by the sections v +— F'(u,v), v — F(u,v) and the two dimensional
20



measure generated by (u,v) — F(u,v) respectively. For such a function F, recall the bivariate
integration by parts formula

/ / (u,v) Hy o (du, dv) = /Ooo /OmHt,s([u,oo] % [v, 00]) F (du, dv)

+ /0 H; ([u, 00] x (0, 00])F(du,0)

+ /00 H; 5((0, 00] x [v,00])F(0, dv)
(4.13) + FO(O,O)H,:,S((O,OO] x (0, 00]),
see e.g. Gill et al. [I8, Lemma 2.2]. Let us apply this formula to
F(u,v) = e*Am(“*“)l{uM} + ef)‘”(”fu)l{ugv}, (u,v) € R%,

which is clearly of bounded variation. Then, writing Hy s(u,v) = P(Ly > u, Ly > v) and Hy(u) =
]P(Lt Z U),

/ / F(u,v)H s(du,dv) = / / Hy s(u,v)F(du, dv) / Hy(u)F(du,0)
(4.14) + / H,(v)F(0, dv) +
where we used that as P(L; = 0) = 0, P(Ly > 0) = 1 for all ¢ > 0, F(0,0) = 1 and H is a

distribution function. Note that F(du,v) = (—)\me*/\m(“*”)l{uw} + )\ne*)‘”(“*“)l{ugv}) du for all
v > 0. Thus, an integration by parts yields that

/ Hy(u)F(du,0) = /000(1 —P(L < w))(=Ame %) du
= E |+ [T e = ) - 1
and similarly,
(4.15) /O CHL(0)F (0, dv) = () — 1.
Hence, reduces to
(n,m / / (10,0) Hio(duty dv) = ¢ (mym) (I (2, 5) + 1 (An) + 75 (n) — 1),

where we have set

(4.16) I(t,s) = /000 /000 Hi s(u,v)F(du, dv).

Then, observing that I(s,t)
write I(t,s) = I1(t, s) + Ig(t

Li(t,s) = / F(du,dv), Ig(t,s):/ooo /u:th,S(u,v)F(du,dv),

J, 7
Is(t,s) = / / F(du, dv).

21

= I(t,s), we assume, without loss of generality, that s < ¢ and we
s) + I3(t, s), where



Then, as the inverse of the subordinator 7" is non-decreasing, Hys(u,v) =P(Ly > u, Ly > v) =
P(Ls > v) = Hy(v) for u < v and F(du,dv) = =A% e =" dudy for u < v. Thus,

hts) = [ [ PG )

0
= —ME[Ls] = ns(An) + 1,

where in the last identity we have performed an integration by parts. We also note that
o o o
(4.17) E[L,] / H(v)dv = / P(Ly > v)dv = U(0, 5).
0 0

Next, writing simply f,(u)du = F(du,v) = (—)\m e_)‘m(“_”)l{wv} + An e_)‘"(”_“)l{ugv}) du, we
remark that the mapping u — f,(u) has a jump of size (A, + A,,) at the point u = v. Then,

2(t, ) / / H(v)F(du,dv) = (A + Ap) / H(v)dv = (A + An)E[Lg).
Finally, as F(du, dv) = —\2 e (=) dudy for u > v, we deduce that

I3(t,s) = —)\zn/ ths(u,v)/ e =) dudy,
0 v

and we proceed by computing the joint tail distribution of the pair (L¢, Ls), that is Hys(u,v) =
P(Ly > u,Ls > v). Note that since L is the inverse of 7, then {L; > u} = {7, < t}, and thus
P(Ly > u,Ls > v) = P(Ty, < t,Ty, < s). Now, since as a Lévy process T has stationary and
independent increments, it follows, recalling that s < ¢,

His(u,0)=P(T, <t, Ty <s) = P(Tu—To) +To <t, Ty <)
S t—r
= / P(T, € dr)/ P(Ty—y € dw).
0 0

Using Fubini’s theorem and performing the change of variable z = u — v, we get

0o s t—r o)
Is(t,s) = —)\%1/0 /0 P(T, Edr)/o P(Tu—v Edw)/ e (=) dudy

s t—r 00 00
= —)\%1/ / / e AmEP(T, e dw)dz/ P(T, € dr)dv
o Jo 0 0
s t—r 00
(4.18) = —)\%1/ / / e A P(T, € dw)dzU (dr)

where in the last step, from the deﬁmtlon of the renewal measure, we have used that f P(7, €

dr)dv = U(dr). Now, taking A = A\, in ) and ( in the proof of Proposition we have
Uy, (dw) = [[°P(T: € dw)e  m*dz, w > 0 and nt()\m) = A [ Uy, (dw). Hence, using (4.17),
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the expression of I3(t, s) in (4.18) reduces to
s t—r
Bts) = <X, [ [0, @
0o Jo
. / o O U (dr) — A / U (dr)
0 0

. / nhr Oun)U(dr) — AE[Ly].
0
Finally, putting all pieces together, we obtain that for t > s > 0,
Pv(Pm(X1,) Pn(XL,)) = c(n,m)(li(t,s) + L2(t, s) + I3(t, s) + m(Am) +1s(An) — 1)
= ¢y(n,m) (—)\nE[LS] s Ow) £ 14 A+ An)E[L]
S
A [ e U () = AmBIL] )+ 1, (0) ~ 1)
0

s

(4.19) = mm)(A /O Her )V () + (M)

which provides the claim (2.4). We proceed by studying the spectral projections correlation struc-
ture of p, (P (Xr,), Vn(X1,)) for t > s > 0 and m,n € N. Note that, for any u,v > 0,

(4.20) Pv (P (Xu), Vn(Xy)) = Fi(u,v) + Fa(u,v),
where we have written, see Theorem [2.1

Fi(u,v) = po(Pm(Xu), Va(Xo)lusep = £, (m)mne " s,
FZ(“»”) = PV(Pm(XU)aVn(XU))l{u<v}-

Then, for any t > s > 0 and m,n € N, we have
(A21)  po(Pon(XL,), Va(X1.)) = /O - /0 " Py, 0) Hy o (du, dv) + /0 b /O " Fo(u, ) Hy.o(du, do).
Now, recalling the bivariate integration by parts formula , one has

/Ooo /OOO Fy(u,v)Hy s(du, dv) = /000 /000 Hy s(u,v)Fy(du, dv) + /000 Hy(u)Fy(du,0)

+ "i;l (m)6mns

where we used that [ Hy(v)F1(0,dv) = 0 and F1(0,0) = £, (m)dmn. Now, following the same
pattern as in the proof of the first part of Theorern above, and since on {u < v}, Fi(du,dv) =0,
one gets

/0 /0 Fi(u,v)H; s(du, dv) = /0 L:th7s(u,v)F1(du,dv)+/0 /v Hy s(u,v)Fy(du, dv)
+ /OOO Hi(u)Fy(du,0) + £, (m)mn

Ky, (M) mn AmE[Ls]

5 08 (A [ U r) — AnELL

() O A) — 1)

08 (A [ AU 410 ).
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Next, we turn to the computation of the second integral on the right-hand side of (4.21)). As
the functions (u,v) — Fy(u,v), u — Fa(u,v) and v — Fs(u,v) are of bounded variation since by
(4.20]), Fo(u,v) is a difference of two functions of bounded variation, then, by means of the bivariate

integration by parts formula (4.13)), we get
(4.22) / / F>(u,v)Hy s(du, dv) = / / Hy s(u,v)Fa(du, dv) +/ H(v)F2(0, dv),
o Jo o Jo 0

where we used that [,° Hy(u)F2(du,0) = 0 and F5(0,0) = 0. Now, since on {u > v}, Fb(du, dv) =0,
then, for ¢t > s, (4.22) reduces to

/ / Fo(u,v)H; s(du, dv) = / / Hy s(u,v)Fy(du, dv)

0 0
+ / / Hi s(u,v)Fy(du, dv) / v)F5(0, dv)
= / / H(v)Fy(du, dv) + / / v) Fy(du, dv)

+ /0 H(v)F»(0, dv).

Thus, fooo fooo F>(u,v)Hy s(du, dv) does not depend on ¢. On the other hand, taking ¢ = s in (4.21)),
we get, for any s > 0,

oo o0
ko, (M) 0mn = K, (M) 0n +/ / Fo(u,v)Hs s(du, dv),
o Jo
where we used that by taking ¢ = s in (4.19)), Lemma yields that for any ¢ > 0,
t
A / s U (dr) + 1) = 1.
0
This can also be independently proven as in Remark [£.1] Hence, for any s > 0,

/ / Fy(u,v)Hs s(du, dv) =0,
o Jo

and we deduce that for any t > s > 0,

/ / F>(u,v)Hy s(du, dv) :/ / Fs(u,v)Hs s(du, dv) = 0.
o Jo o Jo

Therefore, putting pieces together, (4.21)) reduces to

oo (Pon(X1,), Va(X2)) = 5 () (Am [ e Omvan + nt<Am>) |

Now we are ready to study the right-hand side of (2.4) and (2.5)) for large ¢t when s > 0 is fixed

under the assumption that lim; 77;};(37/8:)1) = 1. Since t > n(Ay,) is decreasing on R, we have

/0 s ) U (dr) = 1)U (0, 8) = 7 (A ELL]

and

Consequently,

o (n, m)n (M) AmE[Ls] + 1) < < ey (n, m)N—s(Am) AmE[Ls] + 1),
%Zl(m)%nm()\m)()\mE[Ls] +1) < pu(Pn(XL,), Vn(XL,)) < “;1(m)émnnth()\m)()‘mE[LS] +1).



Now, if for a fixed s > 0, there exists a constant C' = C(s, Ay,) > 0 such that mt%m%m =C,
A

then there exists tg > 0 such that for ¢ > ¢, 77’;7%)(\”)1) < C, and thus

Pv(Prm(XL,), Pn(XL,)) é/g cv(n, m)ne(Am) AmE[Ls] + 1),

0

(P X2), Va(X12,) 2 5 (1)t M) AmE[L] + 1).

In particular, if for a fixed s > 0, limy_, %ﬁ:’)’) =1, we have

t—o0

Pv(Pm(XL,), Pn(XL,)) ~~ cu(n,m)ne(Am)(AnE[Ls] + 1),
Pv(Pm(XL,), Va(XL,)) e ”;l(m)émnnt()‘m)(AmE{LS] +1),
and this concludes the proof of Theorem [

Remark 4.1. One can easily check that for any n,m € N, when ¢ = s in (2.4), we have for any
t>0,

pV(Pm(XLt)v PH(XLz)) - CV(”? m)?
ie.

. /O e o) U () + 1 () = 1.

Indeed, let us plug in t = s in (2.4). Then, noting that the convolution, we get that, for any g > 0,
Lpo omu@an(@ = Lyow)(@Lo(q)

©(q)
(A + ©(0)) ¢(q)
1

q(Am +0(q))

Next, using (4.9)), one has
Am pla) 1

Ly q) = + = —.
e LA o Wt () et ) R
Thus, by the injectivity of the Laplace transform we conclude that

. /0 e o) U (@) + 1 () = 1.
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