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Abstract. We consider the Stieltjes moment problem for the Berg-Urbanik semigroups which form a class
of multiplicative convolution semigroups on R+ that is in bijection with the set of Bernstein functions. In
[8], Berg and Durán proved that the law of such semigroups is moment determinate (at least) up to time
t = 2, and, for the Bernstein function φ(u) = u, Berg [4] made the striking observation that for time t > 2
the law of this semigroup is moment indeterminate. We extend these works by estimating the threshold
time Tφ ∈ [2,∞] that it takes for the law of such Berg-Urbanik semigroups to transition from moment
determinacy to moment indeterminacy in terms of simple properties of the underlying Bernstein function φ,
such as its Blumenthal-Getoor index. One of the several strategies we implement to deal with the different
cases relies on a non-classical Abelian type criterion for the moment problem, recently proved by the authors
in [27]. To implement this approach we provide detailed information regarding distributional properties of
the semigroup such as existence and smoothness of a density, and, the large asymptotic behavior for all
t > 0 of this density along with its successive derivatives. In particular, these results, which are original in
the Lévy processes literature, may be of independent interests.

1. Introduction

The aim of this paper is to study the Stieltjes moment determinacy for multiplicative convolution semi-
groups (νt)t>0, that is semigroups satisfying, for n, t > 0,∫ ∞

0
xnνt(dx) =

∫ ∞
−∞

enyP(Yt ∈ dy) = etΨ(n)

where (Yt)t>0 is a one-dimensional Lévy process such that E[enYt ] <∞, for all n, t > 0. In other words, we
study the moment determinacy of the law of a process whose logarithm is a Lévy process, and we call this
problem the log-Lévy moment problem, for short.

We first point out that if Ψ(n) = 1
2n

2 then (νt)t>0 boils down to the semigroup of the geometric Brownian
motion, whose law is indeterminate by its moments for all t > 0. This is because for any t > 0 the
geometric Brownian motion is log-normally distributed, and it is well-known that a log-normal distribution
is indeterminate by its moments. More generally, in [27, Theorem 2.1] it is proved that the log-Lévy moment
problem is indeterminate for all t > 0 whenever the associated Lévy process has a Gaussian component, a
case that we exclude from our analysis.

Moreover, Urbanik, in [35], introduced the multiplicative convolution semigroup of probability densities
(et)t>0 satisfying, for n, t > 0,

(1.1)
∫ ∞

0
xnet(x)dx = (n!)t = exp

(
t

n∑
k=1

log k
)

= exp
(
t

∫ ∞
0

(e−ny − 1− n(e−y − 1)) dy

y(ey − 1)

)
,

and Berg [4, Theorem 2.5] discovered that the measure et(x)dx is moment determinate if and only if t 6 2.
This interesting fact reveals that the log-Lévy moment problem can be non-trivial, since there can exist a
threshold time T ∈ [0,∞] such that νt is moment determinate for 0 6 t 6 T and moment indeterminate for
t > T.
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In the same paper, Berg defined a family of multiplicative convolution semigroups (νt)t>0 that are in
bijection with the set of Bernstein functions B, see (2.2) below for definition. In particular, for any φ ∈ B,
the moments of νt are given, for n, t > 0, by

(1.2) Mνt(n) =
∫ ∞

0
xnνt(dx) =

(
n∏
k=1

φ(k)
)t

where Mνt is called the moment transform of νt and for n = 0 the product is assumed to be 1. We call
these the Berg-Urbanik semigroups, since (1.1) corresponds to the specific case φ(u) = u of (1.2). Note that,
for a probability measure λ, there is the notion of Urbanik decomposability semigroups D(λ), which have
also been referred to as Urbanik semigroups in the literature, see e.g. [19, 18], and are distinct from the
semigroups (νt)t>0 defined via (1.2). Furthermore in [5, Theorem 2.2] it was also shown that, Mνt admits
an analytical extension to the right-half plane, and, for Re(z) > 0 and t > 0,

Mνt(z) = etΨ(z)

where

(1.3) Ψ(z) = z log φ(1) +
∫ ∞

0
(e−zy − 1− z(e−y − 1)) κ(dy)

y(ey − 1) , and
∫ ∞

0
e−uyκ(dy) = φ′(u)

φ(u) ,

with κ(dy) =
∫ y

0 U(dy − r)(rµ(dr) + δd(dr)), where U is the potential measure, µ the Lévy measure and d
the drift of φ, see (2.3) and (2.1) below for definitions. This is the general form of the right-most equality
in (1.1), and we note that Hirsch and Yor have also derived (1.3) using different means, see [15, Theorem
3.1]. We mention that Hirsch and Yor also offer a nice exposition on the wealth of results by Urbanik in
[36], which continues the investigations started in [35].

The log-Lévy moment problem for general Berg-Urbanik semigroups is only partially understood. It
is known that any Berg-Urbanik semigroup is moment determinate for t 6 2, see [4], and that there are
Berg-Urbanik semigroups that are moment determinate for all t > 0, see [5], however much less is known
concerning moment indeterminacy. We were inspired by Berg’s results, in particular his remarkable discovery
of the threshold for the classical Urbanik semigroup (et)t>0, to further study the log-Lévy moment problem
in this setting. In particular, our aim was to understand how to estimate the threshold time T from simple
properties of the underlying Bernstein function, and our main contribution in this regard is Theorem 2.1
below, which provides several new and original results in this area.

One of our approaches stems on a recent Abelian type criterion for the moment problem, established by
the authors, that gives a necessary and sufficient condition for moment indeterminacy, see [27, Theorem 1.2].
To utilize this criterion we resort to proving the existence of densities for certain Berg-Urbanik semigroups
and study their large asymptotic behavior. To obtain such asymptotics we apply, in a novel and non-standard
way, a closure result for Gaussian tails obtained by Balkema et al. [2] combined with some recent Gaussian
tail asymptotics estimates due to Patie and Savov [24].

The remaining part of the paper is organized as follows. In Section 2 we state our main result for the
log-Lévy moment problem, as well some auxiliary results on Berg-Urbanik semigroups and Lévy processes.
In Section 3 we discuss some illustrative examples of Berg-Urbanik semigroups. Finally, Section 4 is devoted
to the proofs of the results stated in Section 2.

2. Main results

We start with some preliminaries. Let φ : [0,∞)→ [0,∞) be the function defined by

(2.1) φ(u) = k + du+
∫ ∞

0
(1− e−uy)µ(dy),

where k, d > 0 and µ is a Radon measure on (0,∞) that satisfies
∫∞

0 (1 ∧ y)µ(dy) <∞. We write B for the
set of Bernstein functions, which is defined as
(2.2) B = {φ : [0,∞)→ [0,∞); φ is of the form (2.1)} .
Note that B is a convex cone, i.e. for φ1, φ2 ∈ B and c1, c2 > 0 one has c1φ1 + c2φ2 ∈ B, and also that the
triplet (k, d, µ) in (2.1) uniquely determines any φ ∈ B. We recall that the mapping u 7→ φ′(u) is completely
monotone, i.e. φ′ ∈ C∞(R+), the space of infinitely continuously differentiable functions on R+ and for all
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n ∈ N and u > 0, (−1)nφ(n+1)(u) > 0. It is well-known that the mapping u 7→ 1
φ(u) is also completely

monotone and the corresponding Radon measure U is the so-called potential measure of (the subordinator
associated to) φ, i.e. for any u > 0,

(2.3)
∫ ∞

0
e−uyU(dy) = 1

φ(u) .

We refer to the excellent monograph [29] for further information on Bernstein functions, and also to [24,
Section 4] and [25, Section 3], in which several properties of Bernstein functions that are used in the proofs
are collected. In what follows we systematically exclude the trivial Bernstein function φ ≡ 0 since this yields
the degenerate convolution semigroup of a Dirac mass at 1 for all time.

A family of measures (νt)t>0 is said to be a multiplicative convolution semigroup if, for t, s > 0 we have
νt �νs = νt+s, where � denotes the product convolution on the multiplicative group (R+,×). Next, we define
the moment transform of an integrable function f : R+ → R, and of a probability measure ρ supported on
[0,∞), for (at least) z ∈ iR as

Mf (z) =
∫ ∞

0
xzf(x)dx, and Mρ(z) =

∫ ∞
0

xzρ(dx),

and observe that the moment transform is simply a shift of the classical Mellin transform. The moments of
ρ, if they exist, are given, for n > 0, by

Mρ(n) =
∫ ∞

0
xnρ(dx).

We say that a measure ρ supported on [0,∞) is Stieltjes moment determinate, or simply moment determinate
for short, if the sequence (Mρ(n))n>0 uniquely characterizes the measure ρ among all probability measures
supported on [0,∞) and admitting all moments. Otherwise, we say ρ is moment indeterminate. The moment
problem for probability measures supported on [0,∞) has been intensively studied for many years, going
back to the original memoir by Stieltjes [32]. For excellent references on aspects of the Stieltjes (and other)
moment problems see the classic texts [1] and [31], as well as the more recent monograph [30].

We now state the definition of Berg-Urbanik semigroups, whose validity is justified by [4, Theorem 1.8].

Definition 2.1. Let φ ∈ B. Then the Berg-Urbanik semigroup associated to φ is the unique multiplicative
convolution semigroup (νt)t>0 of probability measures characterized, for any t > 0 and Re(z) > 0, by

Mνt(z) = etΨ(z)

where Ψ was defined in (1.3). Recall that, for any n ∈ N and t > 0, etΨ(n) = (
∏n
k=1 φ(k))t.

Occasionally we write (νφt )t>0 to emphasize the dependence of the Berg-Urbanik semigroup on the Bern-
stein function, but will mostly drop this superscript for convenience. In such cases the Bernstein function
will be clear from the context.

2.1. The log-Lévy moment problem for Berg-Urbanik semigroups. To describe our first main result
we introduce the threshold index. For each φ ∈ B we let Tφ ∈ [0,∞] be defined by

Tφ = inf{t > 0; νφt is indeterminate} = sup{t > 0; νφt is determinate},
where we utilize the bijection between B and the set of Berg-Urbanik semigroups, as well as the convention
that sup ∅ = 0. It is justified to call Tφ a threshold index since (νt)t>0 is a multiplicative convolution
semigroup and according to [8, Lemma 2.2 and Remark 2.3], a measure µ�σ is moment indeterminate if µ is
indeterminate and σ 6= cδ0, c > 0. Since, for any φ ∈ B, νt is moment determinate for t 6 2, it follows that
Tφ > 2. In the case when Tφ =∞ we say the Berg-Urbanik semigroup is completely determinate, otherwise
if Tφ ∈ [2,∞) we say the semigroup is threshold determinate. We proceed by defining some subsets of B that
will be useful to state our main results. First, let

Bd = {φ ∈ B; d > 0}
denote the set of Bernstein functions with a positive drift. Next, write

BJ = {φ ∈ B; µ(dy) = v(y)dy with v non-increasing}
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and note that this is sometimes referred to as the Jurek class of Bernstein functions, due to [17], see also [29,
Chapter 10]. For a Bernstein function φ we write φ(∞) = limu→∞ φ(u) ∈ (0,∞], and define its Blumenthal-
Getoor index as

(2.4) βφ = inf
{
β > 0; lim

u→∞
u−βφ(u) <∞

}
∈ [0, 1],

noting that this definition coincides with the original one in [11] for driftless subordinators. We also define
the lower index of φ

δφ = sup
{
δ > 0; lim

u→∞
u−δφ(u) > 0

}
,

which has appeared in the study of shift-Harnack inequalities for subordinate semigroups, see [12]. From
these definitions it is clear that 0 6 δφ 6 βφ 6 1, and moreover one can construct an example for which
strict inequality is possible, see [11, Section 6]. In view of this, we set

B� = {φ ∈ B; δφ = βφ}.
We are now ready to state our main result regarding the log-Lévy moment problem for Berg-Urbanik semi-
groups.

Theorem 2.1. Let (νt)t>0 be the Berg-Urbanik semigroup associated to φ ∈ B.
(1) The inequality

Tφ >
2
βφ

holds, and if βφ > 0 and limu→∞ u−βφφ(u) <∞ then νTφ is moment determinate. In particular, if
φ(∞) <∞ then βφ = 0 and (νt)t>0 is completely determinate.

Moreover, the following hold.
(2) If φ ∈ Bd then Tφ = 2, and ν2 is moment determinate.
(3) If φt ∈ BJ for all t ∈ (0, 1), then

(2.5) 2
βφ
6 Tφ 6

2
δφ
,

and hence, if additionally φ ∈ B�, then

Tφ = 2
βφ
.

(4) If there exists ϑ ∈ B such that φ
ϑ ∈ B, then Tφ 6 Tϑ. In particular, if ϑt ∈ BJ for all t ∈ (0, 1), then

Tφ 6
2
δϑ
.

Remark 2.1. Note that all complete Bernstein functions satisfy the property φt ∈ BJ for all t ∈ (0, 1).
Indeed, writing H = {z ∈ C; Im z > 0} for the upper half-plane, we recall that a Bernstein function φ is said
to be a complete if its Lévy measure µ has a completely monotone density, or equivalently if Imφ(z) > 0 for
all z ∈ H. Such functions are also sometimes called Pick or Nevanlinna functions in the complex analysis
literature. If φ is a complete Bernstein function, then for t ∈ (0, 1) and z ∈ H,

Imφt(z) = Im et(log |φ(z)|+i argφ(z)) = et log |φ(z)| Im eit argφ(z) > 0,
and hence φt is a complete Bernstein function, and in particular its Lévy measure has a non-increasing
density. In particular u 7→ (u + m)α is a complete Bernstein function, for any m > 0, α ∈ (0, 1), and thus
u 7→ (u + m)αt is also a complete Bernstein function, for any t ∈ (0, 1). We refer to [29, Chapter 16] for
abundant examples of complete Bernstein functions and to [29, Chapter 6] for further details on the theory
of complete Bernstein functions; see also [14] for some interesting mappings related to complete Bernstein
functions.

Remark 2.2. We mention that for Item (4) Patie and Savov, see [24, Proposition 4.4], have given sufficient
conditions for the ratio of Bernstein functions to remain a Bernstein function, see also Proposition 4.1 below
for another set of sufficient conditions.
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This Theorem is proved in Section 4.4 and the proof makes use of several strategies that will be detailed
throughout the rest of the paper. We proceed by offering some remarks regarding our results in relation to
what has been proved in the literature.

First, Theorem 2.1(1) provides a generalization of the example provided in [4] for which the threshold
function is infinite. Therein, the author considers the Bernstein function u 7→ u

u+1 , for which limu→∞
u
u+1 <

∞ and therefore trivially βφ = 0. However, there exist φ ∈ B such that φ(∞) =∞ but βφ = 0, for example
the function given, for u > 0 and any λ > 0, by

φ(u) = log
(

1 + u

λ

)
=
∫ ∞

0
(1− e−ux)x−1e−λxdx,

which we note is a specific instance of Example 3.2 below. This shows that a Berg-Urbanik semigroup
may have unbounded support for all t > 0, see Theorem 2.4(1) below, but is still completely determinate.
Furthermore, in Theorem 2.1(1) we provide a condition on φ that ensures that the lower bound in (2.5) is
sharp, in the sense that νTφ is moment determinate. It would be interesting to know what situations can
occur when this condition is not fulfilled, in particular if it is possible that νTφ is indeterminate.

In Theorem 2.1(2) we provide an exhaustive claim for the case when φ ∈ Bd, thereby generalizing Berg’s
result that the classical Urbanik semigroup (et)t>0 is moment determinate if and only if t 6 2, which
corresponds to the case φ(u) = u. The proof relies on an application of Theorem 2.1(4) to yield the matching
upper bound, which shows that BJ can serve as a reference class for proving more general estimates. We
borrow this idea of using reference objects from [24, Section 10] where the concept of reference semigroups was
developed in the context of spectral theory of some non-self-adjoint operators. The fact that one can construct
φ ∈ B such that 0 6 δφ < βφ < 1 shows that the inequality in (2.5) may be far from optimal. Nevertheless,
when φ ∈ B�, Theorem 2.1(3) allows one to classify the behavior of Tφ entirely by the analytical exponent
βφ. Finally, as was suggested by an anonymous referee, it is worth emphasizing that for any T ∈ (2,∞)
there exists a Bernstein function φ whose associated Berg-Urbanik semigroup has threshold index Tφ = T ,
see e.g. Example 3.1.

2.2. A related moment problem on infinitely divisible moment sequences. Before we proceed
with developing results leading to the proof of Theorem 2.1, we briefly discuss a related moment problem,
which requires us to introduce the notion of infinitely divisible moment sequences. A Stieltjes moment
sequence (m(n))n>0 is said to be infinitely divisible if, for any t > 0, the sequence (mt(n))n>0 is again a
Stieltjes moment sequence, and this notion goes back to Tyan who introduced and studied infinitely divisible
moment sequences in his thesis [34]. By definition, for each t > 0, there exists a random variable Xt with
moments (mt(n))n>0 and it is natural to ask how the moment determinacy of Xt (meaning the moment
determinacy of its law) relates to the moment determinacy of Xt

1, as a function of t. This latter random
variable Xt

1 is the tth-power of a random variable with moments (m(n))n>0, and it is straightforward that
Xt

1 has moments given by (m(tn))n>0. From Theorem 2.3 below it follows that, for any φ ∈ B, the moment
sequence (Mν1(n))n>0 is infinitely divisible and hence Berg-Urbanik semigroups provide a natural setting
in which to investigate this question. In what follows we let, for φ ∈ B, Xt(φ) denote the stochastic process
whose law at time t > 0 is given by νφt and write simply X(φ) = X1(φ), suppressing the dependency on φ
when this causes no confusion.

Theorem 2.2. Let φ ∈ B.
(1) The random variable Xt is moment determinate for t < 2

βφ
, and if βφ > 0 and limu→∞ u−βφφ(u) <

∞ then X
2
βφ is moment determinate.

Moreover, the following hold.
(2) If φ ∈ Bd then Xt is moment determinate if and only if t 6 2.
(3) If φ ∈ BJ then Xt is moment indeterminate for t > 2

δφ
. If in addition δφ = βφ and limu→∞ u−βφφ(u) <

∞ then Xt is moment indeterminate if and only if t > 2
βφ

.
(4) If there exists ϑ ∈ B such that φ

ϑ ∈ B then, for any t such that Xt(ϑ) is moment indeterminate, the
variable Xt(φ) is also moment indeterminate.
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This Theorem is proved in Section 4.5. While Theorem 2.1 concerns the t-dependent moment determinacy
of the process (Xt)t>0, Theorem 2.2 is the analogous result regarding the moment determinacy of Xt, or
equivalently of the sequence (Mν1(tn))n>0. Note that the conditions in Theorem 2.2(3) are weaker than
those in Theorem 2.1(3), which shows that the log-Lévy moment problem is the harder of the two moment
problems. In [23] Lin stated the following conjecture regarding the moment determinacy of infinitely divisible
moment sequences.

Conjecture (Conjecture 1 in [23]). Let (Xt)t>0 be a stochastic process such that (E[Xn
t ])n>0 = (mt(n))n>0,

i.e. (m(n))n>0 is an infinitely divisible moment sequence. Then Xt is moment determinate if and only if Xt
1

is moment determinate.

As a corollary of Theorems 2.1 and 2.2 we get an affirmative answer to Lin’s conjecture for a subclass of
Berg-Urbanik semigroups.

Corollary 2.1. Let φ ∈ B and suppose that any of the following conditions are satisfied:
(i) βφ = 0,

(ii) φ ∈ Bd,
(iii) φ ∈ B� with φt ∈ BJ for all t ∈ (0, 1), βφ > 0 and limu→∞ u−βφφ(u) <∞.

Then Lin’s conjecture holds.

We point out that recently Berg [6] proved a related conjecture by Lin (Conjecture 2 in [23]) concerning
the moment sequence (Γ(tn + 1))n>0, which among other things confirms Lin’s conjecture (Conjecture 1)
for this particular example. Note that the moment sequence (Γ(tn + 1))n>0 corresponds to the Bernstein
function φ(u) = u, which falls under the assumption (ii) in Corollary 2.1.

2.3. A new Mellin transform representation in terms of Bernstein-Gamma functions. The proof
of Theorem 2.1 relies on several intermediate results that are of independent interests. The first one is an
alternative representation of Mνt . For a ∈ R we let C(a,∞) = {z ∈ C; Re(z) > a} and then write A(a,∞) for
the set of analytic functions on C(a,∞). Recall that a function f : iR → C is said to be positive-definite if,
for any s1, . . . , sn ∈ iR and z1, . . . , zn ∈ C,

∑n
i,j=1 f(si − sj)zizj > 0.

Next, for any φ ∈ B we let Wφ : C(0,∞) → C denote the so-called Bernstein-Gamma function associated
to φ, which is given by

(2.6) Wφ(z) = e−γφz

φ(z)

∞∏
k=1

φ(k)
φ(k + z)e

φ′(k)
φ(k) z

where the infinite product is absolutely convergent on at least C(0,∞), and

γφ = lim
n→∞

(
n∑
k=1

φ′(k)
φ(k) − log φ(n)

)
∈
[
− log φ(1), φ

′(1)
φ(1) − log φ(1)

]
.

This function, as defined in (2.6) on R+ was introduced and studied by Webster [37], and was extended (at
least) to C(0,∞) by Patie and Savov who introduced the terminology and studied their analytical properties,
such as uniform decay along imaginary lines, in the works [24, Chapter 6] and [25]. The product in (2.6)
can be thought of as a generalized Weierstrass product, as it generalizes the classical Weierstrass product
representation for the gamma function. Indeed, this case can be recovered by setting φ(u) = u, in which case
γφ boils down to the Euler-Mascheroni constant. Furthermore, Wφ is the unique positive-definite function
that solves the functional equation

Wφ(z + 1) = φ(z)Wφ(z), Wφ(1) = 1,

valid for at least z ∈ C(0,∞), see [24, Theorem 6.1(3)]. Write Log for the branch of the complex logarithm
that is analytic on the slit plane C \ (−∞, 0] and satisfies Log 1 = 0, commonly referred to as the principal
branch. We use it to define, for t > 0 and z ∈ C(0,∞),

W t
φ(z) = etLogWφ(z),

as well as φt(z) = etLogφ(z).
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Theorem 2.3. Let φ ∈ B and let (νt)t>0 be the corresponding Berg-Urbanik semigroup. Then, for t > 0,

(2.7) Mνt(z) =
∫ ∞

0
xzνt(dx) = W t

φ(z + 1), Re(z) > −1,

where Wφ : C(0,∞) → C is the Bernstein-Gamma function associated to φ. Moreover, W t
φ ∈ A(0,∞) and Wφ

is the unique positive-definite function that solves, for all t > 0, the functional equation,
(2.8) W t

φ(z + 1) = φt(z)W t
φ(z), W t

φ(1) = 1,
valid for z ∈ C(0,∞).

Remark 2.3. Note that when t = 1, the equation (2.8) restricted to R+ was studied by Webster in [37], who
showed that Wφ|R+

is the unique log-convex solution to the restricted functional equation.

Remark 2.4. We point out that in [25, Theorem 4.1] the authors proved that Wφ ∈ A(dφ,∞), where

dφ = sup{u 6 0;φ(u) = −∞ or φ(u) = 0} ∈ [−∞, 0],
which is more than what we claim in Theorem 2.3 for t = 1. However, for t 6= 1, W t

φ is only defined on the
slit plane C \ (−∞, 0] and hence it is not possible to extend the strip of analyticity of W t

φ beyond C(0,∞).

This Theorem is proved in Section 4.1 . Our proof of (2.7) in Theorem 2.3 generalizes an argument
given by Berg [4] for the case Wφ(z) = Γ(z), i.e. φ(u) = u, which uses the (classical) Weierstrass product
representation for the gamma function. We are able to readily adapt his argument to the generalized
Weierstrass product for Wφ given by (2.6), which emphasizes the utility of such a product representation.

2.4. Existence, smoothness, and Mellin-Barnes representation of densities. In this section we
obtain the existence of densities for subclasses of Berg-Urbanik semigroups, and quantify their regularities
based on properties of the associated Bernstein function. We write C0(R+) for the set of continuous functions
on R+ whose limit at infinity is zero. Then, for each n ∈ N, we write Cn0 (R+) for the set of n-times
differentiable functions all of whose derivatives belong to C0(R+), and C∞0 (R+) for the set of infinitely
differentiable functions all of whose derivatives belong to C0(R+). Finally, for notational convenience, we
write µ ∈ Cn0 (R+) to denote that a measure µ on R+ has a density, with respect to Lebesgue measure on
R+, and that this density belongs to Cn0 (R+).

To state our next result we need to consider some further subsets of B. Following [25], we say that a Lévy
measure µ satisfies Condition-j if µ(dy) = v(y)dy with v(0+) =∞, such that v = v1+v2 for v1, v2 ∈ L1(R+),
and v1 > 0 is non-increasing, while

∫∞
0 v2(y)dy > 0 satisfies |v2(y)| 6

(∫∞
y
v1(r)dr

)
∨ C, for some C > 0.

Given this, we let
Bj = {φ ∈ B; µ satisfies Condition-j}

and note that BJ ⊂ Bj .
Write ||v||∞ = supy>0 |v(y)| for the sup-norm of a function on R+, and set

Bv = {φ ∈ B \ Bd; µ(y) = v(y)dy with ||v||∞ <∞},

so that φ ∈ Bv implies that φ(∞) <∞. We define the quantity Nφ as

Nφ =
{
v(0+)
φ(∞) if φ ∈ Bv,
∞ if φ ∈ Bj ∪ Bd,

and set
BN = {φ ∈ Bj ∪ Bv ∪ Bd; Nφ > 0}.

Next, let

BΘ =
{
φ ∈ B; Θφ = lim

b→∞

1
|b|

∫ b

0
arg φ(1 + iu)du > 0

}
,

and note that Θφ ∈ [0, π2 ] due to [25, Theorem 3.2(1)]. In fact, if φ ∈ Bd then Θφ = π
2 , while if

limu→∞ φ(u)u−α = Cα, for α ∈ (0, 1) and a constant Cα ∈ (0,∞), then Θφ = απ2 (see [25, Theorem
3.3]). Furthermore, there is nothing special about the 1 in arg φ(1 + iu) as it can be replaced by any a > 0
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without changing the value of Θφ, which follows from a combination of [24, Proposition 6.12] and [25, The-
orem 3.1(1)]; in the definition of BΘ we simply choose to evaluate arg φ along the imaginary line Re(z) = 1
for convenience. For θ ∈ (0, π] let

A(θ) = {f : C→ C; f is analytic on the sector | arg z| < θ},

that is A(π) denotes the set of functions that are analytic on the slit plane C \ (−∞, 0]. Finally, we denote
by supp(µ) the support of a measure µ.

Theorem 2.4. Let (νt)t>0 be the Berg-Urbanik semigroup associated to φ ∈ B.
(1) Assume that φ 6≡ k for k > 0. If φ(∞) <∞ then supp(νt) = [0, φ(∞)t], otherwise supp(νt) = [0,∞)

for all t > 0.
(2) If φ ∈ BN then, for any t > 1

Nφ
, νt ∈ Cn(t)

0 (R+), i.e. νt(dx) = νt(x)dx, x > 0, where n(t) = bNφtc−1 >
0. Furthermore, for each n 6 n(t), the density νt(x), and its successive derivatives, admit the
Mellin-Barnes representation

ν
(n)
t (x) = (−1)n

2πi

∫ c+i∞

c−i∞
x−z−n

Γ(z + n)
Γ(z) W t

φ(z)dz,

for any c, x > 0.
(3) If φ ∈ BΘ, then, for any 0 < t < π

Θφ , νt ∈ A(Θφt), and for any t > π
Θφ , νt ∈ A(π).

Remark 2.5. From Theorem 2.4(1) it follows that the support of νt is bounded, pointwise in t, if and only if
φ is a bounded function. Note that we exclude the case when φ ≡ k as this corresponds to a Berg-Urbanik
semigroup with degenerate support, i.e. supp(νt) = δkt .

This Theorem is proved in Section 4.2. A key ingredient in the proofs of Theorem 2.4(2) and Theo-
rem 2.4(3) are estimates for Bernstein-Gamma functions along imaginary lines provided in [25, Theorem
4.2].

The main point of Theorem 2.4(2) is to quantify the differentiability of the Berg-Urbanik semigroup as a
function of t and simple quantities associated to φ. In this sense our result complements and extends [24,
Theorem 5.2], which deals with the differentiability at time 1. Finally, in Theorem 2.4(3) we describe the
analyticity of νt both as a function of φ and t, and show that the sector of analyticity grows linearly in t.
This gives rise to another kind of threshold phenomenon, whereby for large enough t we get that the density
is analytic on C \ (−∞, 0].

2.5. Asymptotics at infinity of densities and their successive derivatives. In this section we consider
a subset of Berg-Urbanik semigroups admitting smooth densities, for all t > 0, for which we are able to obtain
the exact large asymptotic behavior of the density, as well as for all of its successive derivatives, for all time
t > 0. We write f(x) ∞∼ g(x) if limx→∞

f(x)
g(x) = 1, and f(x) ∞= o(g(x)) if limx→∞

f(x)
g(x) = 0. The following

theorem is the main result of this section, and one of the main results of this paper.

Theorem 2.5. Let φ ∈ B be such that φ(∞) = ∞ with φt ∈ BJ , for all t ∈ (0, 1), and let (νt)t>0 be the
corresponding Berg-Urbanik semigroup. For any t > 0, νt ∈ C∞0 (R+), i.e. νt(dx) = νt(x)dx, x > 0, and the
densities νt(x) satisfy the following large asymptotic behavior

(2.9) νt
(
xt
) ∞∼ Ctφ√

2πt
√
x1−tϕ′(x) exp

(
−t
∫ x

k

ϕ(r)
r

dr

)
where Cφ > 0 is a constant depending only on φ, and ϕ : [k,∞) → [0,∞) is the continuous inverse of φ.
Furthermore, for any n ∈ N and t > 0, the successive derivatives of the density satisfy

(2.10) ν
(n)
t

(
xt
) ∞∼ (−1)nx−ntϕn(x)νt

(
xt
)

which can be specified as follows.
(1) If φ ∈ Bd then

νt
(
xt
) ∞∼ C̃tφ√

2πt
x

d+t(2k−d)
2d exp

(
− txd + t

d

∫ x

k

E(r)
r

dr

)
8



where C̃φ > 0 is a constant, and E(u) > 0 satisfies E(u) ∞= o(u). Furthermore, for any n ∈ N and
t > 0,

ν
(n)
t

(
xt
) ∞∼ (−1)ndnxn(1−t)νt

(
xt
)
.

(2) If φ(u) ∞∼ Cαu
α, for a constant Cα > 0 and α ∈ (0, 1), then

νt
(
xt
) ∞∼ C

t

φ√
2πt

x
1−αt

2α exp
(
−tαC−

1
α

α x
1
α + t

∫ x

k

H(r)
r

dr

)
where Cφ > 0 is a constant, and H(uα) ∞= o(u). Furthermore, for any n ∈ N and t > 0,

ν
(n)
t

(
xt
) ∞∼ (−1)nC−

n
α

α x
n
α (1−αt)νt

(
xt
)
.

Remark 2.6. Note the asymptotic (2.9) is a key ingredient in the proof of Theorem 2.1 regarding the moment
determinacy of the Berg-Urbanik semigroups.

Remark 2.7. In the special case φ(u) = u the identity in (2.9) boils down to

(2.11) e
(n)
t (x) ∞∼ (−1)n (2π) t−1

2
√
t

x
1−t
2t xn( 1

t−1)e−tx
1
t

where we recall that (et)t>0 stands for the classical Urbanik semigroup, see (1.1). For n = 0 and t > 0
this asymptotic was proved by Berg and López in [9], see also Janson [16] for an independent proof. In
both papers the authors apply a delicate saddle point argument hinging on special properties of the gamma
function such as the Stirling’s formula with Binet remainder for the gamma function as in [9]. Furthermore,
Janson outlines how his saddle point argument can be applied to yield the asymptotics in (2.11) for arbitrary
n ∈ N, see [16, Remark 6.2]. It would be interesting to see if a saddle point approach could be applied for
general Berg-Urbanik semigroups, using the Mellin transform representation we provide in Theorem 2.3
together with further study of Bernstein-Gamma functions.

This Theorem is proved in Sections 4.3.1 and 4.3.2. There are three main steps in the proof of the
asymptotics (2.9) and (2.10). The first one hinges on a non-classical Tauberian theorem whose version we
use is due to Patie and Savov [24, Proposition 5.26] but originates from the work of Balkema [3, Theorem
4.4]. It enables us to get the large asymptotic behavior of the densities and of its successive derivatives at
time t = 1, under the less stringent conditions φ ∈ BJ . Since the conditions to invoke this non-classical
Tauberian theorem are difficult to check, one can not follow this path for other times than 1. Instead, we
combine the asymptotic at time 1 of the densities from [24, Theorem 5.5] together with assumption that
φt ∈ BJ , for all t ∈ (0, 1), to obtain the asymptotic at time t. Lastly we adapt to our context a closure
result due to Balkema et al. [2, Theorem 1.1], which states that the (additive) convolution of probabilities
density with Gaussian tails also has a Gaussian tail, to extend the asymptotic from t ∈ (0, 1) to all t > 0.
Our application of this closure result is novel, since we use it not only for the densities (as it is stated in [2])
but also for their successive derivatives.

As a by-product of Theorem 2.5 we obtain the large asymptotic behavior of the density and its successive
derivatives for the law of certain Lévy processes, which seems to be new in the Lévy literature. To state
this we briefly recall that a (one-dimensional) Lévy process (Yt)t>0 is a R-valued stochastic process with
stationary and independent increments, that is continuous in probability, and such that Y0 = 0 a.s. For
further information regarding Lévy processes we refer to the monograph [28]. Note that to each Berg-
Urbanik semigroup there exists a corresponding Lévy process whose characteristic exponent is given by
(1.3).

Corollary 2.2. Let φ ∈ B be such that φ(∞) =∞ with φt ∈ BJ , for all t ∈ (0, 1), and let (Yt)t>0 be a Lévy
process whose characteristic exponent Ψ is given by (1.3). Then, for t > 0, P(Yt ∈ dy) = ft(y)dy, y ∈ R with
ft ∈ C∞0 (R) and, for any n > 0,

f
(n)
t (ty) ∞∼ (−1)n

Ctφ√
2πt

ϕn(ey)
√
e(1+t)yϕ′(ey) exp

(
−t
∫ ey

k

ϕ(r)
r

dr

)
where Cφ > 0 is a constant depending only on φ, and ϕ : [k,∞)→ [0,∞) is the continuous inverse of φ.
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This corollary is obtained by combining (2.9) and (2.10) with the relation f
(n)
t (y) ∞∼ e(n+1)yν

(n)
t (ey), for

any n > 0, which is established in the proof of Theorem 2.5. We are not aware of such a detailed description
of the large asymptotic behavior for the law of a Lévy process, for all t > 0 as well as of its successive
derivatives, having appeared in the Lévy literature before, except in some special cases.

3. Examples

In this section we consider two examples of Berg-Urbanik semigroups that illustrate the previous results.

Example 3.1. Let Φα,a,b be the Bernstein function defined, for u > 0, by

Φα,a,b(u) = Γ(αu+ a)
Γ(αu+ b)

with α ∈ (0, 1] and 0 6 b < a < b + 1, where the fact that Φα,a,b is a Bernstein functions follows from [20,
Proposition 1 and Remark 1]. Next, let, for τ ∈ R+, G(z|τ) denote the double gamma function, and recall
that it satisfies the functional equation

(3.1) G(z + 1|τ) = Γ
( z
τ

)
G(z|τ),

for z ∈ C(0,∞), with G(1|τ) = 1. We claim that

(3.2) WΦα,a,b(z) = Cα,a,b
G(z + a

α |
1
α )

G(z + b
α |

1
α )
, where Cα,a,b =

Γ(b)G( b
α |

1
α )

Γ(a)G( a
α |

1
α )
.

Indeed, from (3.1) it follows that
G(z + 1 + a

α |
1
α )

G(z + 1 + b
α |

1
α )

= Γ(αz + a)
Γ(αz + b)

G(z + a
α |

1
α )

G(z + b
α |

1
α )
,

for z ∈ C(0,∞), and the choice of Cα,a,b ensures the required normalization. Hence it remains to prove the
uniqueness. To this end we note that, by a Malmsten-type representation for G(z|τ) due to [21], we have

(3.3) log
(
G(z + a

α |
1
α )

G(z + b
α |

1
α )

)
= −c− κz +

∫ ∞
0

(e−zy − 1 + zy)fα,a,b(y)dy,

where c, κ are real-constants depending only on the underlying parameters, and

fα,a,b(y) = (e− b
αy − e− a

αy)
y(1− e−y)(1− e− y

α )
,

see for instance [22, (2.15)]. Differentiating the right-hand side of (3.3) twice, which is justified by dominated
convergence, shows that the ratio of double-gamma functions is log-convex. However, WΦα,a,b is the unique
log-convex function on R+ solution to the functional equation, and thus the claim is proved.

Next, we note that Φα,a,b is a complete Bernstein function. Indeed, Φα,a,b is obtained by the dilation and
translation of the argument of the function Φα,m below, whose Lévy measure is easily seen via direct calcu-
lation to be completely monotone, and these operations preserve the property of being a complete Bernstein
function, which can be seen by using the upper half-plane criterion as outlined in Remark 2.1. Moreover,
the density of the Lévy measure of Φα,a,b is necessarily infinite at 0, which follows from Φα,a,b(∞) = ∞,
and so Φα,a,b ∈ Bj , which gives by definition that NΦα,a,b =∞. Thus, invoking Theorem 2.4(2) yields that,
for all t > 0, νt ∈ C∞0 (R+) and since, by Stirling formula, recalled in (4.17) below, Φα,a,b(u) ∞∼ Cua−b, for
a constant C > 0 and with a − b ∈ (0, 1), these densities satisfy the large asymptotic behavior specified
by Theorem 2.5(2). From [25, Theorem 3.3(2)] we get that ΘΦα,a,b = (a−b)π

2 , see the discussion prior to
Theorem 2.4 for the definition, where we may apply this result since Φα,a,b ∈ Bα with ` ≡ 1 in the no-
tation therein. Hence invoking Theorem 2.4(3) gives that νt ∈ A( (a−b)πt

2 ) for t < 2
a−b and νt ∈ A(π) for

t > 2
a−b . Finally, the property Φα,a,b(u) ∞∼ Cua−b gives, by Theorem 2.1(3), that TΦα,a,b = 2

a−b and, by
Theorem 2.1(1), we also have that the semigroup is moment determinate at the threshold. As remarked
earlier, this example reveals that for any T ∈ (2,∞) there exists a Bernstein function, namely Φα,a,b with
a− b = 2

T and any α ∈ (0, 1], whose associated Berg-Urbanik semigroup has threshold index TΦα,a,b = T .
10



Now let us now mention that for the special case when a = αm+1 and b = αm+1−α, where m ∈ [1− 1
α ,∞),

so that a − b = α, some expressions above simplify. Indeed, in this case, the Bernstein function takes the
form

Φα,m(u) = Γ(αu+ αm + 1)
Γ(αu+ αm + 1− α) = Γ(αm + 1)

Γ(αm + 1− α) +
∫ ∞

0
(1− e−uy)e−(m+ 1

α )y(1− e−
y
α )−α−1dy,

and was studied in the context of the so-called Gauss-Laguerre semigroup in [26], see the computations on
p.808 therein for the above equality. For z ∈ C(0,∞), the ratio of double gamma functions in (3.2) boils down
to

WΦα,m(z) = Γ(αz + αm + 1− α)
Γ(αm + 1) ,

see e.g. [26, Lemma 3.1], and we also have

ν1(x) = xm+ 1
α−1e−x

1
α

Γ(αm + 1) , x > 0,

see [24, Equation (3.10)] and more generally Section 3.3 of the aforementioned paper.

Example 3.2. Let φ ∈ B and consider the function defined, on R+, by

φ`(u) = log
(
φ(u+ 1)
φ(1)

)
.

Observe that,

φ′`(u) = log
(
φ(u+ 1)
φ(1)

)′
= φ′(u+ 1)

φ(u+ 1) =
∫ ∞

0
e−uye−yκ(dy) =

∫ ∞
0

e−uyκe(dy),

where we used the last identity in (1.3) and the last equality serves as a definition for the positive measure
κe. It means that φ′` is completely monotone and since φ` is plainly positive on R+, we deduce that φ` ∈ B.
Next, as a general result on Bernstein functions gives limu→∞ u−1φ(u) <∞, see for instance [24, Proposition
4.1(3)], it follows readily that for any β > 0, limu→∞ u−βφ`(u) = 0 and thus βφ` = 0, see (2.4) for definition.
Hence, the Berg-Urbanik semigroup associated to the Bernstein function φ` is completely determinate.

As an illustration, we choose, for λ > 0, φ(u) = 1 + u
λ ∈ B and we have, writing φ` = φλ, that

(3.4) φλ(u) = log
(

1 + u

λ

)
=
∫ ∞

0
(1− e−uy)e

−λy

y
dy.

It follows plainly from the right-hand side of the equality (3.4) that the Lévy measure of φλ is completely
monotone, and thus φλ is a complete Bernstein function. Furthermore, we have that Nφλ = ∞, since φλ
satisfies Condition-j and φλ(∞) = ∞. Hence we get from Theorem 2.4(1) that supp(νt) = [0,∞) for all
t > 0, and from Theorem 2.4(2) we conclude that for all t > 0, νt(dx) = νt(x)dx with νt ∈ C∞0 (R+). A
straightforward computation yields that the continuous inverse of φλ is given by u 7→ λ(eu − 1). Hence, by
Theorem 2.5, we have, for all t > 0, that

νt
(
xt
) ∞∼ Ct√

2πt
x

1−t(1+2λ)
2 exp

(
−λtEi(x) + x

2

)
,

where C > 0 is a constant and Ei(x) = −
∫∞
−x

e−t

t dt is the exponential integral, and we also used the
well-known relation Ei(x) = γ + log x+

∫ x
0
er−1
r dr, where γ is the Euler-Mascheroni constant.

4. Proofs of main results

Throughout the proofs we write f(x) ∞= O(g(x)) to denote that lim
x→∞

∣∣∣ f(x)
g(x)

∣∣∣ < ∞, and recall that f(x) ∞∼

g(x) if limx→∞
f(x)
g(x) = 1, and f(x) ∞= o(g(x)) if limx→∞

f(x)
g(x) = 0.
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4.1. Proof of Theorem 2.3. We begin with the proof of (2.7) and start by showing that the function
b 7→ −LogWφ(1 + ib) is a continuous negative-definite function, i.e. a continuous function f such that
f(0) > 0 and u 7→ e−tf(u) is positive-definite for all t > 0, see [29, Proposition 4.4]. As mention in the
introduction, this fact has already been established by Berg [5] and independently by Hirsch and Yor [15]
and we shall provide yet another proof utilizing the Weierstrass product representation for Wφ. We follow
closely the arguments given by Berg for the proof of [4, Lemma 2.1]. First, from (2.6) we have, for Re(z) > 0,

Wφ(z) = e−γφz

φ(z)

∞∏
k=1

φ(k)
φ(k + z)e

φ′(k)
φ(k) z,

where γφ = limn→∞

(∑n
k=1

φ′(k)
φ(k) − log φ(n)

)
∈
[
− log φ(1), φ

′(1)
φ(1) − log φ(1)

]
. Hence,

−LogWφ(1 + ib) = γφ(1 + ib) + Log φ(1 + ib)−
∞∑
k=1

(
Log

(
φ(k)

φ(k + 1 + ib)

)
+ (1 + ib)φ

′(k)
φ(k)

)
.

Next, for n > 1, consider the truncated functions Lφ,n defined by

Lφ,n(1 + ib) = γφ(1 + ib) + Log φ(1 + ib)−
n∑
k=1

(
Log

(
φ(k)

φ(k + 1 + ib)

)
+ (1 + ib)φ

′(k)
φ(k)

)

= Lφ,n(1) + ib

(
γφ −

n∑
k=1

φ′(k)
φ(k)

)
+
n+1∑
k=1

Log φ(k + ib)
φ(k) ,

where

Lφ,n(1) = γφ −
n∑
k=1

φ′(k)
φ(k) + log φ(n+ 1) = γφ − g(n),

and the last equality serves to define g(n). We claim that n 7→ g(n) is non-decreasing with limn→∞ g(n) = γφ.
Indeed, we have from [24, Proposition 4.1(4)] that 1

φ is completely monotone so that φ′

φ is completely
monotone, as the product of two completely monotone functions. Thus u 7→ φ′(u)

φ(u) is non-increasing, and we
get that

log φ(n+ 2)
φ(n+ 1) =

∫ n+2

n+1

φ′(u)
φ(u) du 6

φ′(n+ 1)
φ(n+ 1) ,

which yields

g(n+ 1)− g(n) = φ′(n+ 1)
φ(n+ 1) − log φ(n+ 2)

φ(n+ 1) > 0.

Additionally, by [24, Proposition 4.1(6)]

lim
n→∞

φ(n+ 1)
φ(n) = 1,

so that

lim
n→∞

g(n) = lim
n→∞

(
n∑
k=1

φ′(k)
φ(k) − log φ(n) + log φ(n)− log φ(n+ 1)

)
= γφ − lim

n→∞
log φ(n+ 1)

φ(n) = γφ.

Putting all of these observations together, we conclude that Lφ,n(1) > 0. Furthermore, for any a ∈ R the
function b 7→ iab is continuous negative-definite, and for any 1 6 k 6 n + 1, b 7→ Log φ(k+ib)

φ(k) is continuous
negative-definite since u 7→ log φ(k+u)

φ(k) is a Bernstein function, as the composition of two Bernstein functions,
see [29, Corollary 3.8(iii)]. This shows that Lφ,n(1 + ib) is a continuous negative-definite function, and since
limn→∞ Lφ,n(1 + ib) = −LogWφ(1 + ib) pointwise it follows that b 7→ −LogWφ(1 + ib) is a continuous
negative-definite function.

Consequently, using the homeomorphism x 7→ ex between R and (0,∞), we find that there exists a unique
multiplicative convolution semigroup (Vt)t>0 such that

(4.1)
∫ ∞

0
yibVt(dy) = W t

φ(1 + ib).
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From [24, Theorem 6.1] we know that Wφ ∈ A(0,∞) and hence W t
φ ∈ A(0,∞) for any t > 0. Thus the identity

in (4.1) extends to ∫ ∞
0

yz−1Vt(dy) = W t
φ(z),

for z ∈ C(0,∞). However, again from [24, Theorem 6.1], we have thatMν1(z−1) = Wφ(z) and thus V1 = ν1,
since the Mellin transform uniquely characterizes a probability measure. By uniqueness of convolution
semigroups it then follows that Vt = νt for all t > 0, and thus (2.7) is established. Finally, from [24, Theorem
6.1] we have that Wφ : C(0,∞) → C is the unique positive-definite function, i.e. the Mellin transform of a
probability measure, that satisfies the functional equation

Wφ(z + 1) = φ(z)Wφ(z), Wφ(1) = 1,
for z ∈ C(0,∞), from which the last claim follows.

4.2. Proofs for Section 2.4.

4.2.1. Proof of Theorem 2.4(1). It is immediate from [8, Theorem 1.5] that φ(∞) = ∞ implies supp(νt) is
unbounded, and we also get from [24, Theorem 5.2(1)] that supp(ν1) = [0,∞). By the homeomorphism
x 7→ ex between R and (0,∞) mentioned above, together with the fact that the boundedness from below
of the support of the law of a Lévy process is time-independent, see [28, Theorem 24.7], we then conclude
that supp(νt) = [0,∞) for all t > 0. Hence, we suppose that φ(∞) ∈ (0,∞). To prove the claim we will
rely on the following auxiliary result: for any measure µ on R+, supp(µ) ⊆ [0, c], for c > 0, if and only if∫∞

0 xnµ(dx) ∞= O(cn), see [8, Lemma 2.9]. Since for any φ ∈ B we have, by definition, that φ′ is completely
monotone it follows that all Bernstein functions are non-decreasing on R+. Thus we have, for any n > 0,

Mνt(n) =
(

n∏
k=1

φ(k)
)t
6 φ(∞)nt.

By the quoted result, the above estimate implies that supp(νt) ⊆ [0, φ(∞)t]. For the reverse inclusion, let
ε > 0 be small and choose Nε,φ large enough (depending on ε and φ) such that for k > Nε,φ − 1 we have
φ(k) > φ(∞)− ε > 0. Then, for n > Nε,φ and again since φ is non-decreasing,

Mνt(n) =

Nε,φ−1∏
k=1

φ(k)

t n∏
k=Nε,φ

φ(k)

t

> Cε,φ,t(φ(∞)− ε)nt,

where
Cε,φ,t = φ(1)(Nε,φ−1)t

(φ(∞)− ε)Nε,φt
is a constant, which depends only on ε, φ, and t. Since ε > 0 is arbitrary this estimate shows that supp(νt)
cannot be contained in any sub-interval of [0, φ(∞)t]. Thus we must either have that supp(νt) = [0, φ(∞)t]
or supp(νt) = δφ(∞)t , a Dirac mass at the point φ(∞)t. In the latter case,

Mνt(n) = φ(∞)nt =
(

n∏
k=1

φ(k)
)t

,

for all n > 0 and t > 0, from which it follows that φ must be constant.

4.2.2. Proof of Theorem 2.4(2). We split the proof into two cases. First, suppose that Nφ =∞, which implies
that φ ∈ Bd ∪ Bj . Then one may invoke [25, Theorem 4.2(3)] to get that, for any p > 0 and a > 0,

lim
|b|→∞

|b|p|Wφ(a+ ib)| = 0,

where Wφ : C(0,∞) → C is the Bernstein-Gamma function associated to φ. Hence, for any q > 0 and t > 0
fixed,

lim
|b|→∞

|b|q|Wφ(a+ ib)|t = 0,

which yields the estimate
|W t

φ(a+ ib)| ∞= O(|b|−q),
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uniformly on bounded a-intervals, i.e. uniformly on bounded intervals of a ∈ (0,∞). Indeed, the functions
Eφ and Rφ in [25, Theorem 4.2] are uniformly bounded for all a > 0 and all φ ∈ B, while the function Gφ
in [25, Theorem 4.2] depends only on a and Gφ(a) 6 a log φ(1 + a), so that Gφ is uniformly bounded on
bounded a-intervals, see also [25, Remark 4.3]. By Theorem 2.3 we know that Mνt(z − 1) = W t

φ(z), for
Re(z) > 0, so the estimate for W t

φ established above, together with the fact that W t
φ ∈ A(0,∞), justifies the

use of Mellin inversion, see e.g. [33], to conclude that, for any c > 0,

(4.2) νt(x) = 1
2πi

∫ c+i∞

c−i∞
x−zW t

φ(z)dz.

Note that the integrand in (4.2) is absolutely integrable for any x > 0, since |x−(c+ib)||W t
φ(c + ib)| =

x−c|W t
φ(c+ ib)| and |W t

φ(c+ ib)| ∞= O(|b|−1), for |b| large enough. Taking limx→∞ νt(x) in (4.2) and using the
dominated convergence theorem to interchange the limit and the integral gives that νt ∈ C0(R+). However,
since for any q > 0 and a > 0, |W t

φ(a+ib)| ∞= O(|b|−q), we deduce that, for any n = 0, 1, 2, . . ., z 7→ zn|W t
φ(z)|

is absolutely integrable and uniformly decaying on a complex strip containing c+n+ iR, see e.g. [24, Section
1.7.4], and thus we get

ν
(n)
t (x) = (−1)n

2πi

∫ c+n+i∞

c+n−i∞
x−z

Γ(z)
Γ(z − n)W

t
φ(z − n)dz.

By the change of variables z 7→ z + n then yields the claimed Mellin-Barnes representation,

ν
(n)
t (x) = (−1)n

2πi

∫ c+i∞

c−i∞
x−z−n

Γ(z + n)
Γ(z) W t

φ(z)dz,

where we note that the integrand is absolutely integrable by Stirling’s formula for the gamma function, see
(4.17) below. Using the dominated convergence theorem once more to evaluate the limit at infinity yields
that νt ∈ C∞0 (R+).

Next, suppose that φ ∈ Bv, i.e. Nφ = v(0+)
φ(∞) ∈ (0,∞). Another application of [25, Theorem 4.2] yields that,

for a > 0 fixed and any ε > 0,
lim
|b|→∞

|b|Nφ−ε|Wφ(a+ ib)| = 0,

while
lim
|b|→∞

|b|Nφ+ε|Wφ(a+ ib)| =∞.

The first equality thus guarantees that, for t > 0 and any ε > 0,

(4.3) lim
|b|→∞

|b|Nφt−ε|Wφ(a+ ib)|t = 0.

Now let t > 1
Nφ

and observe that n(t) = bNφtc− 1 > 0 and is the largest integer less than or equal to Nφt− 1.
Choose ε such that Nφt− 1− n(t) > ε > 0. Then, by (4.3), it follows that, uniformly on bounded a-intervals,
and for |b| large enough

|Wφ(a+ ib)|t 6 C|b|−1−n(t)−ε,

for C > 0 a constant. Since the right-hand side is uniformly integrable and W t
φ is analytic on C(0,∞),

another application of the Mellin inversion formula and dominated convergence allows us to conclude that
νt ∈ Cn(t)

0 (R+). The Mellin-Barnes representation follows as in the previous case.

4.2.3. Proof of Theorem 2.4(3). Since φ ∈ BΘ we have, for any ε > 0 and |b| large enough,

(4.4) Aφ(a+ ib) > (Θφ − ε)|b|,

where Aφ(a+ ib) =
∫ b

0 arg φ(a+ iu)du. Invoking [25, Theorem 4.2(1)] gives, for any a > 0,

|Wφ(a+ ib)|t = Cφ,a,t

(
φ(a)

|φ(a+ ib)|

) t
2

e−tAφ(a+ib),

14



where Cφ,a,t > 0 is a constant depending only on φ, a and t. Since [25, Proposition 3.1(9)] gives that
|φ(a+ ib)| > φ(a), it follows from the estimate for Aφ in (4.4) that, for ε small enough such that Θφt−ε > 0,

(4.5) |Wφ(a+ ib)|t ∞= O
(
e−(Θφt−ε)|b|

)
,

where the big-O estimate holds pointwise in a, and thus uniformly on bounded a-intervals. By similar
arguments as given in the proof of Theorem 2.4(2) above, it follows that νt ∈ C∞0 (R+), and hence we have
the Mellin-Barnes representation for νt

(4.6) νt(x) = 1
2πi

∫ c+i∞

c−i∞
x−zW t

φ(z)dz,

for any c > 0. To show that νt is analytic on the claimed sector it suffices to analytically extend the right-
hand side of (4.6), which amounts to replacing x by a suitable complex number. Let ε > 0 be fixed and
consider w ∈ C such that | argw| < Θφt−ε. From the estimate (4.5) it follows that, for any c > 0 and b ∈ R,

|w−(c+ib)W t
φ(c+ ib)| 6 e|b|| argw||Wφ(c+ ib)|t ∞= O

(
e−(Θφt−ε−| argw|)|b|

)
,

and by choice of w the right-hand side is integrable in b. Thus the integrand on the right-hand side of (4.6) is
well-defined for | argw| < Θφt− ε, which by uniqueness of the analytic extension gives that νt ∈ A(Θφt− ε).
Since ε > 0 is arbitrary we get νt ∈ A(Θφt), and thus for t > π

Θφ we have νt ∈ A(π).

4.3. Proofs for Section 2.5. The proof of Theorem 2.5 combines ideas from several different areas. Hence
we first state some definitions, and detail some lemmas and propositions that will be useful in the proof. We
say that a function s : (a,∞)→ (0,∞), for some a > −∞, is self-neglecting if

lim
u→∞

s(u+ ws(u))
s(u) = 1, locally uniformly in w ∈ R.

Furthermore, we say a function G : (a,∞) → R is asymptotically parabolic if it is twice differentiable
with G′′ > 0 on (a,∞), and if its scale function sG(u) = (G′′(u))− 1

2 is self-neglecting. Denote the set of
asymptotically parabolic functions by AP and note that it is a convex cone. A function h : (a,∞)→ (0,∞)
is said to be flat with respect to G if

(4.7) lim
u→∞

h(u+ wsG(u))
h(u) = 1, locally uniformly in w ∈ R,

where sG is the scale function of G. In the following lemma we collect some properties of flat and asymp-
totically parabolic functions.

Lemma 4.1. Let G ∈ AP and h be flat with respect to G.
(1) The function u 7→ 1/h(u) is flat with respect to G.
(2) For any c > 0, the function u 7→ h(cu) is flat with respect to G.
(3) The identity function is flat with respect to G and, for any α > 0, the function u 7→ hα(u) is flat

with respect to G. In particular, for any n > 0, the function u 7→ un is flat with respect to G.
(4) The function h satisfies

lim
u→∞

log h(u)
G(u) = 0.

(5) For any c > 0, the function u 7→ cG
(
u
c

)
∈ AP.

Proof. The first claim is obvious from the definition in (4.7). Let c > 0 and consider the function hc defined
by hc(u) = h(cu). Then, writing v = cu,

lim
u→∞

hc(u+ wsG(u))
hc(u) = lim

u→∞

h(cu+ cwsG(cu))
h(cu) = lim

v→∞

h(v + cwsG(v))
h(v) = 1,

where the last limit follows from fact that (4.7) holds locally uniformly for w ∈ R. For the third claim, note
that sG(u) ∞= o(u), see e.g. [27, Lemma 3.1] so that, locally uniformly in w ∈ R,

lim
u→∞

u+ wsG(u)
u

= 1 + w lim
u→∞

sG(u)
u

= 1.
15



The fact that, for α > 0, u 7→ hα(u) is flat follows trivially from the definition, and the proof of the fourth
item is essentially known in the literature, see again [27, Lemma 3.1]. Finally, for the proof of the last claim,
write G̃(u) = cGc

(
u
c

)
and s

G̃
for the corresponding scale function. Then s

G̃
(u) =

√
csG

(
u
c

)
so that, for

w ∈ R,
s
G̃

(u+ ws
G̃

(u))
s
G̃

(u) =
sG
(
u
c +
√
cwsG

(
u
c

))
sG
(
u
c

)
and the self-neglecting property of sG carries over readily to s

G̃
. �

In the next lemma we collect some properties about the specific asymptotically parabolic functions that
will play a role in the proof of Theorem 2.5. To state it we recall that the Legendre transform of a convex
function ψ : R→ R, which we denote as Lψ, is given by

Lψ(y) = sup
u∈R
{uy − ψ(u)}.

If in addition ψ ∈ C1(R) then the above supremum is achieved at the unique point u = ψ′−1(y), and hence
Lψ(y) = yψ′−1(y)− ψ(ψ′−1(y)).

The variables u and y obeying the relations y = ψ′(u) and u = ψ′−1(y) are called conjugate variables.

Lemma 4.2. Let φ ∈ BJ be such that φ(∞) =∞. Then the function sG : R+ → R+ defined by

sG(u) =

√
φ(u)
φ′(u)

is self-neglecting, and consequently G ∈ AP, where G : (1,∞)→ R is the function defined by

(4.8) G(u) =
∫ u

1
log φ(r)dr + log φ(1).

The Legendre transform of G is given by

LG(y) =
∫ ey

k

ϕ(r)
r

dr −
∫ φ(1)

k

ϕ(r)
r

dr

where ϕ : [k,∞) → [0,∞) is the continuous inverse of φ, and y and u are conjugate variables related by
y = log φ(u) and u = ϕ(ey). Furthermore, LG ∈ AP.

Proof. The fact that sG is self-neglecting was proved in [24, Proposition 5.40] under the additional condition
that k = φ(0) > 0. However, an inspection of the proof reveals that this property is not crucial for the
self-neglecting property of sG. Differentiating G twice shows that sG is indeed the scale function of G, and
hence G ∈ AP.

Taking derivatives in (4.8) we get G′(u) = log φ(u) so that the conjugate variables are y = log φ(u) and
u = ϕ(ey). Also, by integration by parts we can rewrite G as

G(u) = u log φ(u)−
∫ u

1

rφ′(r)
φ(r) dr.

Hence,

LG(y) = yϕ(ey)−G(ϕ(ey)) =
∫ ϕ(ey)

1

rφ′(r)
φ(r) dr =

∫ ey

φ(1)

ϕ(r)
r

dr =
∫ ey

k

ϕ(r)
r

dr −
∫ φ(1)

k

ϕ(r)
r

dr

where the third equality follows by the change of variables r = ϕ(w). Finally, the fact that LG ∈ AP follows
from a closure property of AP with respect to the Legendre transform, see [2, Theorem 5.3].

�

In the final lemma before the proof we collect some properties concerning additive convolution, especially
a stability property for Gaussian tails under additive convolution. We write ∗ for the additive convolution
of suitable functions f, g : R→ R, that is

(f ∗ g)(x) =
∫ ∞
−∞

f(x− y)g(y)dy =
∫ ∞
−∞

f(y)g(x− y)dy,
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with the additive convolution of measures being defined similarly. A probability density f is said to have a
Gaussian tail if f(y) ∞∼ η(y)e−ψ(y) for some ψ ∈ AP and some η flat with respect to ψ.

Lemma 4.3.
(1) Let (νt)t>0 be a multiplicative convolution semigroup and let, for each t > 0, ft be the pushforward

measure under the map x 7→ log x. Then (ft)t>0 is an additive convolution semigroup, i.e. for
t, s > 0, ft ∗ fs = ft+s.

(2) Let f, g ∈ L1(R) be such that f(y) ∞∼ e−ψ1(y) and g(y) ∞∼ e−ψ2(y), for some ψ1, ψ2 with limy→∞ ψ′1(y) =
limy→∞ ψ′2(y) =∞. Then (f ∗ g)(y) ∞∼ (e−ψ1 ∗ e−ψ2)(y).

(3) Let f and g be probability densities with Gaussian tails, that is f(y) ∞∼ η1(y)e−ψ1(y) and g(y) ∞∼
η2(y)e−ψ2(y), and suppose that we have limy→∞ ψ′1(y) = limy→∞ ψ′2(y) = ∞. Then f ∗ g has a
Gaussian tail, i.e. (f ∗ g)(y) ∞∼ η0(y)e−ψ0(y) for some ψ0 ∈ AP and some η0 flat with respect to ψ0.
Specifically, writing y(u) = q1 + q2 = ψ′−1

1 (u) + ψ′−1
2 (u), we have

ψ0(y) = ψ1(q1) + ψ2(q2)

η0(y) =
√

2πsψ1(q1)η1(q1)sψ2(q2)η2(q2)√
s2
ψ1

(q1) + s2
ψ2

(q2)
.

In particular, for d > 1, the d-fold convolution of f with itself f∗d satisfies

f∗d(y) ∞∼ 1√
d

(
2π

ψ′′1
(
y
d

)) d−1
2

f
(y
d

)d
.

Before giving the proof, we note that Item (2) of Lemma 4.3 gives conditions under which the asymptotics
of the convolution of integrable functions can be identified from the asymptotics of the functions themselves.
On the other hand, Item (3) states that Gaussian tails are closed under additive convolution and allows
one to identify the asymptotic explicitly, this latter feature being particularly useful. The statement of
Lemma 4.3(3) is the content of [2, Theorem 1.1 and (1.11)], and our aim, in incorporating it as an item of a
lemma, is merely to improve the clarity and presentation of the proof of Theorem 2.5.

Proof. The first claim is straightforward. The proof of Item (2) is in the spirit of the proof of [2, Proposition
2.2]. Since f and g are asymptotic to positive functions it follows that they are themselves eventually positive.
This, and the other properties of ψ1 and ψ2, allows us to choose a > 0 large enough such that: (1) both ψ1
and ψ2 are well-defined on (a,∞), (2) ψ′1, ψ′2 > 0 on (a,∞), (3)

∫ a
−∞ |g(y)|dy 6= 0 and

∫ a
−∞ |f(y)|dy 6= 0, and

(4) cg =
∫ a+2
a+1 g(x)dx > 0 and cf =

∫ a+2
a+1 f(x)dx > 0. For x > 2a,

(f ∗ g)(x) =
∫ x−a

a

f(x− y)g(y)dy +
∫ a

−∞
f(x− y)g(y)dy +

∫ a

−∞
f(y)g(x− y)dy,

so by symmetry it suffices to show that
∫ a
−∞ e−ψ1(x−y)g(y)dy is of order o

(∫ x−a
a

f(x− y)g(y)dy
)

at infinity.
Since ψ′1 > 0 on (a,∞) ∣∣∣∣∫ a

−∞
e−ψ1(x−y)g(y)dy

∣∣∣∣ 6 Ce−ψ1(x−a)

with C =
∫ a
−∞ |g(y)|dy 6= 0 a constant. By the mean value theorem,∫ a+2

a+1
e−ψ1(x−y)g(y)dy > cge−ψ1(x−a−1) = cge

−ψ1(x−a)eψ
′
1(x−z)

>
cg
C
eψ
′
1(x−z)

∣∣∣∣∫ a

−∞
e−ψ1(x−y)g(y)dy

∣∣∣∣ ,
with |z| 6 a+ 1, and letting x→∞ finishes the proof of the second claim. Finally, Item (3) is the content
of [2, Theorem 1.1 and (1.11)]. �
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4.3.1. Proof of Theorem 2.5(1). For convenience we write α in place of t and thus our assumption is that
φ is a Bernstein function such that φ(∞) = ∞ and φα ∈ BJ , for all α ∈ (0, 1). We write (νt)t>0 for
the Berg-Urbanik semigroup associated to φ and, for any α ∈ (0, 1), let (νt)t>0 denote the Berg-Urbanik
semigroup associated to φα. Then, for n > 0 and any α ∈ (0, 1), we have by the moment determinacy of any
Berg-Urbanik semigroup up to time 2 that

Mν1(n) =
n∏
k=1

φα(k) =
(

n∏
k=1

φ(k)
)α

=Mνα(n),

and applying [5, Theorem 2.2] then gives that (νt)t>0 = (ναt)t>0. Since φα ∈ BJ , for any α ∈ (0, 1), and
plainly φ(∞) =∞ implies φα(∞) =∞, we conclude that Nφα =∞. Invoking Theorem 2.4(2) then yields, for
any t > 0 and α ∈ (0, 1), νt ∈ C∞0 (R+), from which we deduce that νt ∈ C∞0 (R+), where νt(dx) = νt(x)dx,
x, t > 0. Since φα ∈ BJ with φα(∞) = ∞ we may apply [24, Theorem 5.5] to obtain, for any n > 0, the
asymptotic relation

ν
(n)
1 (x) = ν(n)

α (x) ∞∼ (−1)nCφ,α√
2π
x−nϕnα(x)

√
ϕ′α(x)e−

∫ x
kα

ϕα(y)
y dy

where Cφ,α > 0 is a constant depending only on φ and α, ϕα : [kα,∞)→ [0,∞) is the continuous inverse of
the function u 7→ φα(u) and k = φ(0). The constant Cφ,α may be identified as Cαφ , where Cφ > 0 is a constant
depending only on φ, cf. [24, Theorem 5.1(2)], and plainly ϕα(u) = ϕ(u 1

α ), where ϕ : [k,∞)→ [0,∞) is the
continuous inverse of φ. Thus, by some routine calculations, we conclude that

(4.9) ν(n)
α (x) ∞∼ (−1)n

Cαφ√
2πα

x−n−
1
2ϕn(x 1

α )
√
x

1
αϕ′(x 1

α )e−α
∫ x 1

α

k
ϕ(r)
r dr

.

Since α ∈ (0, 1) is arbitrary this proves the claimed asymptotic for any n > 0 and t ∈ (0, 1).
We proceed by showing that for n = 0, i.e. for the density νt(x) itself, the claimed asymptotic holds

for all t > 0, and then extend this to the case when n > 1. To this end we define, for y ∈ R and t > 0,
ft(y) = eyνt(ey) and set f0 = δ0. Then by Lemma 4.3(1) (ft)t>0 is an additive convolution semigroup of
probability densities, and from (4.9) together with some simple algebra we get, for α ∈ (0, 1),

(4.10) fα(y) ∞∼
Cαφ√
2πα

e
y
2

√
e
y
αϕ′(e yα )e−α

∫ e yα
k

ϕ(r)
r dr

.

Let us write

ψ(y) =
∫ ey

k

ϕ(r)
r

dr = LG(y) +
∫ φ(1)

k

ϕ(r)
r

dr

where LG is the Legendre transform of the function G is defined in (4.8). From Lemma 4.2 we get that
ψ ∈ AP, and writing ψ for the function

(4.11) ψ(y) = α

∫ e
y
α

k

ϕ(r)
r

dr = αψ
( y
α

)
,

we get from Lemma 4.1(5) that ψ ∈ AP. A straightforward calculation gives that its scale function sψ takes
the form

sψ(y) =
√

α

e
y
αϕ′(e yα )

,

so combining Items (1) and (2) of Lemma 4.1 we get that
√
e
y
αϕ′(e yα ) is flat with respect to ψ. Furthermore,

as φ′ is non-increasing positive, limu→∞ φ′(u) <∞ and thus we have

lim
y→∞

sψ(y) =
√
α lim
y→∞

1√
e
y
αϕ′(e yα )

=
√
α lim
y→∞

e−
y

2α

√
φ′(ϕ(e yα )) = 0.

Hence
lim
y→∞

exp
(
wsψ(y)

2

)
= 1, locally uniformly in w ∈ R,
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which shows that e
y
2 is flat with respect to ψ. Constants are trivially flat with respect to ψ, so that putting

all of these observations together we get that all the terms in front of the exponential in (4.10) are flat with
respect to ψ. Hence, for each α ∈ (0, 1), fα has a Gaussian tail.

Now we may invoke the second part of Lemma 4.3(3), which states that the property of having a Gaussian
tail is stable under additive convolution, to obtain for any d ∈ N

fdα(y) ∞∼ 1√
d

(
2π

ψ′′
(
y
d

)) d−1
2

fα

(y
d

)d
= 1√

d

(
2πα

e
y
αdϕ′(e y

αd )

) d−1
2

fα

(y
d

)d
.

Since for any t > 0 we can find α ∈ (0, 1) and d ∈ N such that t = αd we get from the above relation the
asymptotic of ft for all t > 0. Hence, after performing some straightforward computations and changing
variables again, we get that for any t > 0,

(4.12) νt(x) ∞∼
Ctφ√
2πt

√
x

1−t
t ϕ′(x 1

t )e−t
∫ x 1

t

k
ϕ(r)
r dr

,

which proves the claim for n = 0.
Next, suppose that n > 1. A straightforward application of the chain rule gives that f (n)

α (y) = (eyνα(ey))(n)

is a linear combination of terms of the form e(k+1)yν
(k)
α (ey), for 0 6 k 6 n. However, from (4.9) we deduce

that, for large y, the term e(n+1)yν
(n)
α (ey) grows faster than all terms of lower order. Therefore,

(4.13) f (n)
α (y) ∞∼ e(n+1)yν(n)

α (ey) ∞∼ (−1)n
Cαφ√
2πα

e
y
2ϕn(e

y
α )
√
e
y
αϕ′(e yα )e−α

∫ e yα
k

ϕ(r)
r dr

and the asymptotic on the right-hand side is obtained from the one in (4.9) after changing variables. From
the right-hand side of (4.13) it is apparent that the mapping y 7→ (−1)nf (n)

α (y) is eventually positive, so
that there exists an ∈ R (depending on n) such that fα,n(y) = (−1)nf (n)

α (y)I{y>an} is a positive function.
Since y 7→ ϕ(e

y
α ) is the derivative of ψ, which we recall from earlier denotes the function appearing within

the exponential in (4.13), we have from [2, Proposition 5.8] that y 7→ ϕ(e
y
α ) is flat with respect to ψ, and

combined with Lemma 4.1(3) this gives that y 7→ ϕn(e
y
α ) is flat with respect to ψ. Thus, once again all terms

in front of the exponential in (4.13) are flat with respect to ψ. Let ε ∈ (0, α) so that, from Lemma 4.1(4)
applied to (4.10), we deduce the estimate

(4.14) fα,n(y) ∞= O
(
e
−(α−ε)

∫ e yα
k

ϕ(r)
r dr

)
.

Then (4.10) allows us to identify the right-hand side of (4.14) as the dominant term in the asymptotic for
the probability density fα−ε(y) = eyνα−ε(ey), see (4.10). Indeed, the fact the function inside the big-O
estimate of (4.14) term dominates all others in (4.10) is immediate, as the term in front of the exponential is
increasing at infinity. Noting that dilating a function does not affect its integrability, we conclude that, for
any α ∈ (0, 1) and n > 1, the function fα,n is integrable. In particular, for each α ∈ (0, 1) and n > 1 there
exists a constant cα,n > 0 such that cα,nfα,n is a probability density.

Now, let us write t = α+ τ , where α ∈ (0, 1) and τ > 0. If, for any n > 0, f (n)
α ∈ L2(R), and fτ ∈ L2(R),

then a standard result (see [13, Chapter 8, Ex. 8 & 9]) allows us to interchange differentiation and convolution
to write that

(4.15) f
(n)
t (y) = (f (n)

α ∗ fτ )(y), y ∈ R.

To this end, let t > 0 and observe that

(4.16)
∫ ∞
−∞

(
e(n+1)yν

(n)
t (ey)

)2
dy =

∫ ∞
0

(
xn+ 1

2 ν
(n)
t (x)

)2
dx = 1

2π

∫ ∞
−∞

|Γ(1 + n+ ib)|2

|Γ(1 + ib)|2
∣∣W t

φ (1 + ib)
∣∣2 db

where the first equality follows from a change of variables, and the second is a combination of the Parseval
formula for the Mellin transform applied to the function x 7→ xn+ 1

2 ν
(n)
t (x) combined with Theorem 2.3. By

[25, Theorem 4.2(3)(c)], the fact that φ(∞) =∞ with φα ∈ BJ implies that b 7→ |W t
φ(1 + ib)| decays faster
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than any polynomial along the real line. Next, we recall Stirling’s formula for the gamma function, for any
a+ ib with a > 0 fixed

(4.17) |Γ(a+ ib)| ∞∼ Ca|b|a−
1
2 e−

π
2 |b|

for some constant Ca > 0. Hence, the term in (4.16) involving the ratio of gamma functions grows like
|b|2n+2, which by the aforementioned decay properties of W t

φ gives that the integral in (4.16) is finite. Since
f

(n)
τ (y) = (eyνα(ey))(n) is a linear combination of functions of the form e(k+1)yν

(k)
α (ey), for k 6 n, we get

that f (n)
α ∈ L2(R) for any n > 0, and that fτ ∈ L2(R). Hence the equality in (4.15) is justified.

Next we aim to use a combination of Lemma 4.3(2) together with (4.15) in order to show that f (n)
t has a

Gaussian tail. From (4.13) we have
(−1)nf (n)

α (y) ∞∼ h(y)e−ψ(y)

where the function ψ is defined in (4.11), and h denotes the function consisting of all terms in front of
the exponential of (4.13). Since h is flat with respect to ψ we know, by [2, Proposition 3.2], that there
exists χ ∈ C∞(R) such that χ(y) ∞∼ h(y) and sψ(y)χ′(y) ∞= o(χ(y)). Further, from Proposition 5.8 in the
aforementioned paper limy→∞ sψ(y)ψ′(y) =∞. Using these facts we get

lim
y→∞

(logχ(y))′

ψ′(y) = lim
y→∞

χ′(y)
χ(y)ψ′(y) = lim

y→∞

sψ(y)χ′(y)
χ(y)

1
sψ(y)ψ′(y) = 0,

which is enough to show that f (n)
α satisfies the assumptions of Lemma 4.3(2). Since the arguments for fτ

are similar we have, invoking Lemma 4.3(2), that

(−1)ncα,nf (n)
t (y) ∞∼ (cα,nfα,n ∗ fτ )(y),

with both cα,nfα,n and fτ having Gaussian tails. Applying Lemma 4.3(3) again we conclude that cα,nfα,n∗fτ
has a Gaussian tail, and hence f (n)

t (y) ∞∼ (−1)nη0(y)e−ψ0(y), where ψ0 ∈ AP and η0 is flat with respect to
ψ0.

To conclude the proof it remains to identify η0 and ψ0, which may be computed as described in Lemma 4.3(3),
using a combination of (4.13) and, after changing variables, (4.12). As in the lemma, we write y(u) =
q1(u) + q2(u) = α log φ(u) + τ log φ(u) = t log φ(u), where the second equality serves as definition of q1 and
q2, and the last equality defines the conjugate variables y and u. Using this notation it is straightforward to
conclude that

ψ0(y) = α

∫ e
q1
α

k

ϕ(r)
r

dr + τ

∫ e
q2
τ

k

ϕ(r)
r

dr = (α+ τ)
∫ φ(u)

k

ϕ(r)
r

dr = t

∫ e
y
t

k

ϕ(r)
r

dr.

The associated scale function sψ0 is then

sψ0(y) =
√

t

e
y
t ϕ′(e yt )

.

Let η1 and η2 denote the flat terms, while ψ1 and ψ2 denote the asymptotically parabolic terms, in the
Gaussian tails of cα,nfα,n and fτ respectively. Then,

η1(q1(u)) =
Cαφ√
2πα

(φ(u))α2 un
√
φ(u)ϕ′(φ(u)),

and

η2(q2(u)) =
Cτφ√
2πτ

(φ(u)) τ2
√
φ(u)ϕ′(φ(u)).

Furthermore,

sψ1(q1(u)) =
√

α

φ(u)ϕ′(φ(u)) and sψ2(q2(u)) =
√

τ

φ(u)ϕ′(φ(u))
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where sψ1 and sψ2 are the scale functions of ψ1 and ψ2, respectively. Putting all of these observations
together we get that η0 can be written, after canceling like terms, as

η0(y) =
C

(α+τ)
φ

√
2π

√
2πα
√

2πτ
e
y
2
√
α
√
τ

√
e
y
t ϕ′(e yt )
√
t

ϕn(e
y
t ) =

Ctφ√
2πt

e
y
2ϕn(e

y
t )
√
e
y
t ϕ′(e yt ).

This gives us f (n)
t (y) ∞∼ (−1)nη0(y)e−ψ0(y) ∞∼ e(n+1)yν

(n)
t (ey), and changing variables again, we finally obtain

the claimed asymptotic

ν
(n)
t (x) ∞∼ (−1)n

Ctφ√
2πt

x−nϕn(x 1
t )
√
x

1−t
t ϕ′(x 1

t )e−t
∫ x 1

t

k
ϕ(r)
r dr

,

for any n > 0 and t > 0, which completes the proof.

4.3.2. Proof of Theorem 2.5(1) and Theorem 2.5(2). The proof is the same for [24, Theorem 5.5(1)] and [24,
Theorem 5.5(2)], but we give the arguments for sake of completeness. Suppose that d > 0, so that

φ(u) = k + du+ u

∫ ∞
0

e−uyµ(y)dy.

Then, invoking [24, Proposition 4.1(3)] we have φ(u) ∞∼ du and hence ϕ(u) ∞∼ d−1u. Furthermore, differenti-
ating the identity u = φ(ϕ(u)) gives ϕ′(u) = 1

φ′(ϕ(u)) and since, by the monotone density theorem, see [10,
Theorem 1.7.2], φ′(u) ∞∼ d, we get that ϕ′(u) ∞∼ d−1. Next, as u = φ(ϕ(u)) we have, on [k,∞),

u = k + dϕ(u) + ϕ(u)
∫ ∞

0
e−ϕ(u)yµ(y)dy = k + dϕ(u) + E(u)

where the last equality serves to define the function E. By dominated convergence we have that
limu→∞

∫∞
0 e−ϕ(u)yµ(y)dy = 0 which, together with ϕ(u) ∞∼ d−1u, shows that E(u) = o(u). Re-arranging,

we obtain ϕ(y) = d−1(u− k−E(u)), so that substituting all of these quantities into the identities (2.9) and
(2.10) proves Item (1).

Next, assume that φ(u) ∞∼ Cαu
α, with Cα > 0 a constant and α ∈ (0, 1). A standard result from

regular variation theory gives that ϕ(u) ∞∼ C
− 1
α

α u
1
α , see e.g. [10, Theorem 1.5.12]. This allows us to define

H(u) = C
− 1
α

α u
1
α − ϕ(u), so that H(u) = o(u 1

α ). Next, the monotonicity of φ′ allows us to again invoke the
monotone density theorem to conclude that φ′(u) ∞∼ Cααu

α−1, see again [10, Theorem 1.7.2]. Combining
these two statements with the identity ϕ′(u) = 1

φ′(ϕ(u)) yields the asymptotic ϕ′(u) ∞∼ α−1C
− 1
α

α u
1
α−1. Finally,

substituting these asymptotics proves the claim.

4.4. Proofs for Section 2.1. Before beginning with the proofs we state some preliminary results that will
be used in the proof of Theorem 2.1(2) and Theorem 2.1(3).

Proposition 4.1. For α ∈ (0, 1) and m > 0, let φα,m : [0,∞)→ [0,∞) be defined by φα,m(u) = (u+ m)α.
(1) For any α ∈ (0, 1) and m > 0, φα,m is a complete Bernstein function.
(2) The potential measure of φα,m admits a density, denoted by Uα,m, given by

Uα,m(y) = 1
Γ(α)e

−myyα−1.

Furthermore, Uα,m is non-increasing, convex and solves, on R+, the differential equation

U ′α,m = −Uα,m(y)
(
m + 1− α

y

)
.

(3) Let φ ∈ Bd, i.e. d > 0. Then, for any α ∈ (0, 1),

yα = inf{y > 0; yµ(y) > d(1− α)} ∈ (0,∞],

and, for any m such that dm > µ(yα2 ) + k, we have that φ
φα,m

∈ B.
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Proof. Let α ∈ (0, 1) and m > 0. The fact that φα,m is a complete Bernstein function is straightforward
and was also mentioned in Remark 2.1. To show that Uα,m defined as above is the density of the potential
measure of φα,m we observe that

1
uα

= 1
Γ(α)

∫ ∞
0

e−uyyα−1dy,

and then substitute u + m for u. The claimed properties of Uα,m can then be verified by straightforward
calculations. The proof of the last claim is, mutatis mutandis, the same as the one given for [24, Proposition
4.4(2)], so we omit it here. The interested reader will find the details outlined in the PhD thesis of the
second author, which is forthcoming. Note that the proof of [24, Proposition 4.4] does not explicitly use the
fact that the Lévy measure of φ has a non-increasing density, and hence this restriction can be removed.
Furthermore, we have modified yα and the condition on m to suit our potential measure Uα,m. �

We write, for two functions f and g, f(x) ∞� g(x) if f(x) ∞= O(g(x)) and g(x) ∞= O(f(x)). In the following
theorem we rephrase, in the context of Berg-Urbanik semigroups, an Abelian type criterion for moment
indeterminacy that was given in [27], which we use in the proof of Theorem 2.1(3).

Theorem 4.1 (Theorem 1.2(2) in [27]). Let (νt)t>0 be a Berg-Urbanik semigroup and suppose that, for some
t > 0, νt(dx) = νt(x)dx, x > 0, and

νt(x) ∞� e−G(log x),

with G ∈ AP satisfying limy→∞G′(y)e−
y
2 <∞. Then, writing γ for the inverse of the continuous, increasing

function G′,
∞∑

n=n0

e−
γ(n)

2 <∞, for some n0 > 1 ⇐⇒ νt is moment indeterminate.

4.4.1. Proof of Theorem 2.1(1). First, invoking [24, Theorem 5.1(2)] we get

Mν(n) = Wφ(n+ 1) ∞∼ Cφ
√
φ(n)eG(n)

where G(n) =
∫ n

1 log φ(r)dr and Cφ > 0 is a constant depending only on φ. Integrating G by parts, for any
t > 0 and n > 1, gives us

t

2nG(n) = t

2 log φ(n)− t

2n

(
log φ(1) +

∫ n

1
u
φ′(u)
φ(u) du

)
.

Consequently, for some C1 > 0 a constant, we have
(4.18)

∞∑
n=1

W
− t

2n
φ (n+ 1) > C1

∞∑
n=1

exp
[
− t2

(
log φ(n) + 1

2n log φ(n)
)]

exp
[
t

2n

(
log φ(1) +

∫ n

1
u
φ′(u)
φ(u) du

)]
.

The estimate φ(n) ∞= O(n), see e.g. [24, Proposition 4.1(3)], gives log φ(n) ∞= o(n), which together with the
positivity of the terms within the second exponential in (4.18) allows us to obtain, for C2 > 0 a constant,
the bound

∞∑
n=1

W
− t

2n
φ (n+ 1) > C1e

−C2t
∞∑
n=1

φ−
t
2 (n),

so to prove moment determinacy it suffices to show the divergence of this latter series. Let β > βφ. By
definition of βφ, φ(u) ∞= O(uβ), so that for some constant C3 > 0

∞∑
n=1

φ−
t
2 (n) > C3

∞∑
n=1

n−
tβ
2 .

The latter series diverges if and only if tβ 6 2, whence the moment determinacy of νt for any t 6 2
β <

2
βφ

.
Since β > βφ is arbitrary we conclude that Tφ > 2

βφ
if βφ > 0 and Tφ = ∞ for βφ = 0. Finally, if

limu→∞ u−βφφ(u) <∞ then we may choose β = βφ and apply the above argument to conclude that νTφ is
moment determinate.
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4.4.2. Proof of Theorem 2.1(3). It suffices to treat the case when δφ ∈ (0, 1], since otherwise the claimed
right-hand inequality in (2.5) is trivial. Therefore we assume also that 0 < δφ 6 βφ 6 1, and δφ > 0 is easily
seen to imply that φ(∞) =∞. Invoking Theorem 2.5 we get that, for any t > 0,

νt(x) ∞∼
Ctφ√
2πt

x
1−t
2t

√
ϕ′(x 1

t )e−t
∫ x 1

t

k
ϕ(r)
r dr

.

Let b(log x) denote all the terms in front of the exponential and set G(log x) for the function within the
exponential on the right-hand of the above asymptotic relation. It was shown in the proof of Theorem 2.5
that b is flat with respect to G, and thus, by Lemma 4.1(4) we have that b(log x) ∞= o(G(log x)). Hence, for
any c ∈ (0, t) fixed we get that

νt(x) ∞� e−G(log x)

where

G(log x) = (t− c)
∫ x

1
t

k

ϕ(r)
r

dr.

From Lemma 4.2 it follows that G ∈ AP and a simple calculation, after substituting y = log x, gives that

G′(y) = (t− c)
t

ϕ(e
y
t ) = tϕ(e

y
t )

where we write t = (t−c)
t ∈ (0, 1) for ease of notation. Observe that, for any δ ∈ (0, δφ), the property

limu→∞ u−δφ(u) > 0 is equivalent to limu→∞ u−
1
δϕ(u) <∞. Hence, for any δ > δφ and t > 2

δ we have

lim
y→∞

G′(y)e−
y
2 = t lim

y→∞
ϕ(e

y
t )e−

y
2 = t lim

y→∞
e−

y
δtϕ(e

y
t )e(

1
δt−

1
2 )y <∞,

and thus all the assumptions of Theorem 4.1 are fulfilled for any t > 2
δφ

. The inverse of G′ is easily identified
as γ(u) = t log φ(tu) so that,

(4.19)
∞∑
n=1

e−
γ(n)

2 =
∞∑
n=1

φ−
t
2 (tn).

Now, for any δ ∈ (0, δφ), there exists a constant C > 0 (depending only on t) such that, for n large enough,

φ−
t
2 (tn) 6 Cn− δt2 .

Thus for any t > 2
δ the series in (4.19) converges, so that νt is indeterminate. Since δ can be taken arbitrarily

close to δφ this gives the indeterminacy of νt for any t > 2
δφ

.

4.4.3. Proof of Theorem 2.1(4). Let φ
ϑ ∈ B and write (ρt)t>0 for the Berg-Urbanik semigroup associated to

ϑ. Since φ
ϑ ∈ B we may invoke [25, Theorem 4.7(3)] to get that, for any t > 0 and n > 0,

W t
φ(n+ 1) = W t

φ
ϑ

(n+ 1)W t
ϑ(n+ 1)

where each of the terms is a moment sequence. Applying [8, Lemma 2.2 and Remark 2.3] we conclude that
whenever ρt is indeterminate then νt is indeterminate, i.e.

{t > 0; ρt is indeterminate} ⊆ {t > 0; νt is indeterminate},
which implies that Tφ 6 Tϑ. If ϑt ∈ BJ for all t ∈ (0, 1), then invoking Theorem 2.1(3) yields Tφ 6 2

δϑ
,

which completes the proof.

4.4.4. Proof of Theorem 2.1(2). First, by Proposition 4.1 and using the notation therein, we have for any
α ∈ (0, 1) and m >

µ( yα2 )+k
d that φ

φα,m
∈ B. Hence, by Theorem 2.1(4) it follows that Tφ 6 Tφα,m .

Proposition 4.1(1) gives that φα,m is a complete Bernstein function so that φtα,m ∈ BJ for all t ∈ (0, 1),
see e.g. Remark 2.1. Plainly φα,m

∞∼ uα, which implies that δφα,m = βφα,m = α. Invoking Theorem 2.1(3)
we get that Tφ 6 2

α . Since this inequality holds for any α ∈ (0, 1) we get Tφ 6 2, whence Tφ = 2. The
claim that ν2 is moment determinate follows from Theorem 2.1(1), since d > 0 implies βφ = 1 and that
limu→∞ u−1φ(u) = limu→∞ u−1φ(u) = d.
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4.5. Proofs for Section 2.2. In the proofs below we write, for any φ ∈ B, X(φ) = X for the positive
random variable whose law is νφ1 , and, for any x, t > 0, σt(dx) = P(Xt ∈ dx).

4.5.1. Proof of Theorem 2.2(1). From [24, Theorem 5.1(2)] it follows that, for t > 0,

E
[(
Xt
)n] = Wφ(tn+ 1) ∞∼ Cφ

√
φ(tn)eG(tn)

where G(tn) =
∫ tn

1 log φ(r)dr and Cφ > 0 is a constant depending only on φ. By following similar arguments
than the ones developed for the proof of Theorem 2.1(1) we obtain the estimate

∞∑
n=1

W
− 1

2n
φ (tn+ 1) > C

∞∑
n=1

φ−
t
2 (tn),

for some constant C > 0. Now, for any β > βφ, φ(n) ∞= O(nβ) so that, for a constant C1 > 0 depending on
t and β,

∞∑
n=1

φ−
t
2 (tn) > C1

∞∑
n=1

n−
βt
2 .

This latter series diverges if and only if t 6 2
β <

2
βφ

, so that by Carleman’s criterionXt is moment determinate
whenever t < 2

βφ
. When limu→∞ u−βφφ(u) <∞ we may take β = βφ and apply the above argument, which

finishes the proof.

4.5.2. Proof of Theorem 2.2(3). Observe that, for z ∈ 1 + iR and t > 0, we have

Mσt(z − 1) = E[
(
Xt

1(φ)
)z−1] = E[Xt(z−1)] = Wφ(tz − t+ 1).

Since Wφ ∈ A(0,∞) it follows that Mσt(z − 1) can be analytically extended to Re(z) > 1− 1
t , and we write

Mσt for this analytical extension. Next, we may assume that δφ > 0, since the claim is trivial otherwise,
from which it follows that φ(∞) = ∞. Combining this with the fact that φ ∈ BJ gives Nφ = ∞, where we
refer to Section 2.4 for the definition of Nφ, and invoking [25, Theorem 4.2(3)] allows us to conclude that,
for any q > 0 and a > 0,

|Wφ(a+ ib)| ∞= O(|b|−q)
uniformly on bounded a-intervals, so that for any q > 0 and a > − 1

t

|Mσt(a+ ib)| ∞= O(|b|−q)
uniformly on bounded a-intervals. By Mellin inversion we get σ(dx) = σt(x)dx for each t > 0 and, from
similar arguments as given in the proof of Theorem 2.4(2), we get the Mellin-Barnes representation

σt(x) = 1
2πi

∫ c+i∞

c−i∞
x−zWφ(tz − t+ 1)dz,

valid for any c > 1− 1
t . The change of variables z 7→ (z−1)

t + 1 reveals that

(4.20) σt(x) = 1
2πit

∫ c+i∞

c−i∞
x−

(z−1)
t −1Wφ(z)dz,

for any c > 0, and using Theorem 2.4(2) to identify the right-hand side of (4.20) we establish, for all t > 0,
the equality

σt(x) = 1
t
x

1−t
t ν1(x 1

t )

where ν1(dx) = ν1(x)dx. This identity allows us to use the asymptotic behavior of ν1 described in [24,
Theorem 5.5] to get that

σt(x) ∞∼ Cφ

t
√

2π
x

1−t
t

√
ϕ′(x 1

t ) exp

−∫ x
1
t

k

ϕ(r)
r

dr


where Cφ > 0 is a constant depending on φ and ϕ : [k,∞)→ [0,∞) is the continuous inverse of φ. Repeating,
mutatis mutandis, the arguments from Theorem 2.1(3) we conclude that Xt is moment indeterminate for
t > 2

δ , and the last claim is straightforward.
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4.5.3. Proof of Theorem 2.2(4). The proof is the same as the one of Theorem 2.1(4) after observing that the
assumptions imply the factorization of moment sequences

Wφ(tn+ 1) = Wφ
ϑ

(tn+ 1)Wϑ(tn+ 1)

valid for any t > 0 and n > 0.

4.5.4. Proof of Theorem 2.2(2). When φ ∈ Bd Proposition 4.1 guarantees, for any α ∈ (0, 1) and suitable
m, that φ

φα,m
∈ B. Applying Theorem 2.2(4) it follows that Xt(φ) is indeterminate for any t such that

Xt(φα,m) is indeterminate. However, φα,m(u) = (u+ m)α, so by a combination of Proposition 4.1 and some
straightforward asymptotic analysis one gets that φα,m ∈ B� with βφα,m = α > 0 and limu→∞ u−αφα,m(u) <
∞. From Proposition 4.1(1) we get that φα,m is a complete Bernstein function and hence, in particular,
φα,m ∈ BJ . Thus Theorem 2.2(3) gives that Xt(φα,m) is moment indeterminate if and only if t > 2

α , from
which we conclude that Xt(φ) is indeterminate for t > 2

α . Since α ∈ (0, 1) is arbitrary we get that Xt(φ)
is moment indeterminate if t > 2, and from Theorem 2.2(1) we get moment determinacy for t 6 2, which
finishes the proof.

References

[1] N. I. Akhiezer. The classical moment problem and some related questions in analysis. Translated by N.
Kemmer. Hafner Publishing Co., New York, 1965.
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