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Flame Combustion Synthesis of Nano-materials for Catalysts and Sensors 

Rishabh Jain, Ph.D. 

University of Connecticut, 2015 

Synthesis of functional nanomaterial thin films using a scalable flame combustion technique called 

Reactive Spray Deposition Technology (RSDT) was explored. Nanomaterials were used as 

sensing film for local gas monitoring and human breath analysis for medical diagnosis (different 

phases of WO3) and catalysts for water-gas shift (WGS) reaction (Pt supported on ceria). Areas of 

application include: handheld portable devices for immediate breath composition monitoring, 

medical diagnosis, and environment monitoring (workplace, residence and automobile). Two case 

studies will be explained in detail: (1) acetone sensing in human breath for blood glucose 

monitoring and (2) NO2 sensing for air quality monitoring. A study of the RSDT synthesis 

technique and control of crystal structure, porosity, and nanoparticle size will be demonstrated. 

The detailed study of acetone and NO2 sensing mechanism will be explained in detail, including 

sensor performance and stability testing. 
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Reactive Spray Deposition Technology 

 

  



 

3 
 

1.1 Introduction: 

The identification of next-generation materials with improved properties has been 

a continuing quest for the human race, resulting in fascinating discoveries that have improved the 

quality of life. Over the last century, materials used in chemical processes have attracted significant 

attention due to their potential for broader impact on process improvement. Catalysts, which 

typically increase the reaction rate without being consumed, are the workhorses of such chemical 

processes, and offer a plethora of opportunities for discovery of improved materials due to 

essentially infinite combinations of elements in various compositions. For example, less than 5% 

of the estimated 160,000 ternary systems (three elements) have been investigated experimentally 

and the number drops to less than 1% for the estimated 4 million quaternary systems (four 

elements) [1]. With such limited knowledge and the vast chemical composition space still 

unexplored, the challenging question faced by engineers, chemists, and physicists is how to 

efficiently identify a limited number of algorithms to discover improved catalysts (materials) for 

a chemical process. Production of high value materials in the form of powders and thin coatings is 

a large multibillion dollar manufacturing enterprise. Specific functional materials have been 

synthesized by different processes including spray drying and pyrolysis [2] as well as combustion 

and plasma processing [3]. Flame based materials prepared in well controlled conditions are high 

surface area materials that can have some unique properties e.g. higher activity, lower melting 

point, good thermal stability, and faster mass transfer during catalysis [4]. There are a number of 

researchers working on the flame spray pyrolysis (FSP) technology for the synthesis of ceria [5, 

6], alumina [7], titania [8], Pt [9], UO2 [10], SnO2 [11], IrO2 [12], RuO2 [12], WO3 [4] etc. either in 

the manufacturing or in the modeling and optimization phase. While some of these material 

developments are in the research phase, materials like titania, silica and carbon black are already 
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in mass production. Fig. 1.1 shows some of the powder synthesis unit operations worldwide and 

also the products available to the end user which uses one or more components made by flame 

spray pyrolysis. Some of them are: carbon black as a reinforcement agent for tires [13], printer 

toners, pigments for cosmetics such as eyeliners, mascara and other beauty products [14], fumed 

silica as a thickening agents for body lotions and creams and also as an additive for food and 

beverage industry [15] and optical fibers [16], titania for the paint and cosmetic applications [17].  

 

Fig. 1.1: Products for end users generated by flame based processes. 

It is clear that most of the elements of the periodic table can be converted into 

oxides, metals or salts in the powder as well as thin film form [18, 19]. Reactive Spray Deposition 

Technology (RSDT), which can employ a broader selection of precursors compared to 
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conventional vapor-fed flame reactors [4,6,9,12,20–31] was developed by Maric et al. for synthesis 

of nanoparticle thin films with atomic-level precision and control of properties such as phase, 

structure, shape, particle size distribution (0.5–500 nm), density and porosity. The reactive spray 

synthesis of nanoparticles relies on combustion of a solvent which also acts as a fuel and aids in 

the decomposition of a precursor to form nanoparticles. RSDT provides adjustable process 

variables such as flame temperature, stoichiometry, residence time, and downstream quenching 

rates that coupled with solvent and metal precursor concentrations, affect particle: nucleation, 

growth, annealing, and oxidation. Since the droplets produced by this process are mostly sub-

micron—due to energetic inputs of heat, pressure, and supercritical propane diluent—the precursor 

is confined to the nanoscale regime during formation. During the particle formation process the 

precursor heats up, decomposes, and then undergoes a phase transition to vapor followed by 

concurrent reduction of the metal ions to metal or metal oxides. 

A picture of RSDT is shown in Fig. 1.2. RSDT is a single-step, open atmosphere 

flame process for synthesizing nanomaterials, whereby nanoparticles are synthesized in the 

reaction zone of the flame and directly deposited on the substrate as a film [6, 9] or collected as 

nanoparticles [24, 31], thereby eliminating the intermediate steps of filtration, drying, and 

calcination. No precursor or precursor solution waste is generated because the solvent is 

combusted in the flame, yielding CO2 and H2O. Precise control of particle size and crystallinity 

can be achieved by adjusting flame conditions [4], including precursor concentration, chemistry, 

and flow rate; length of reaction zone; equivalence ratio (stoichiometric oxidant and fuel flow rate 

to actual oxidant and fuel flow rate); quench air flow rate, and the substrate temperature [23]. In 

addition to these conditions, flame dynamics is also dependent on the solvent boiling point, 

enthalpy of combustion and the combustion nozzle geometry. The RSDT process bypasses 
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traditional wet chemical routes by simultaneously nucleating the catalyst on a support and 

sequential deposition of catalyst layer via gas-phase. Results from Roller et al. [9, 30] using RSDT, 

for Pt based electro-catalysts has clearly shown that the process can be adjusted to give precise 

control (<1 nm) of metallic nanoparticle diameters and film thickness (~100 nm to 10 μm), directly 

deposited onto Nafion® membranes. Results from Roller et al. [9, 30] using RSDT, for Pt based 

electro-catalysts has clearly shown that the process can be adjusted to give precise control (<1 nm) 

of metallic nanoparticle diameters and film thickness (~100 nm to 10 μm), directly deposited onto 

Nafion® membranes. 

 

Fig. 1.2: The real time photograph of RSDT during a thin film deposition. 
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RSDT has several advantages over the traditional wet chemistry processes such as 

sol-gel, incipient wetness impregnation, co-precipitation, screen printing and drop coating 

especially for the synthesis of catalysts materials. Some of these advantages as compared to the 

traditional wet chemistry processes are as follows: (1) RSDT is a one step process in which the 

precursor solution is atomized to form a mist and decomposed in the flame to form fine sinterable 

particles and therefore it eliminates the steps of filtration, drying and calcination. (2) Better control 

on particle size and distribution and crystallinity can be achieved in RSDT by changing the flame 

conditions, precursor concentration and flow rate of gases. (3) Flame based materials are high 

surface area materials and can give some unique phases, good thermal stability and mass transfer 

during catalysis since these particles are exposed to rapid heating and cooling zones in the flame. 

(4) No solvent waste is produced in RSDT since the solvent is combusted in the flame.  

1.2 Explanation of the RSDT components: 

The fundamental design space for RSDT is given in table 1.1. A schematic of the 

RSDT is shown in with the role of its components in determining the structure and property of 

the synthesized material is shown in Fig. 1.6 and also described below: 

1.2.1 Precursor concentration, temperature and pressure: 

Precursors for the nanomaterial synthesized by RSDT are chosen 

according to their decomposition temperature and low vapor pressure [23]. Generally acetates, 

nitrates and acetylacetonates are the preferred choice because their decomposition temperature is 

less than 500°C. They are dissolved in a non-aqueous and high enthalpy solvent such as xylene 

(ΔH°
c, 298K = -4301 kJ/mol), acetone (ΔH°

c, 298K = -1658 kJ/mol), tetrahydrofuran (THF) (ΔH°
c, 

298K = -2501 kJ/mol), or diethylene glycol monobutyl ether (DEGME) (ΔH°
c, 298K = -5234 kJ/mol). 
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A concentration of 3–20 mmol/L is maintained to avoid precipitation in the capillary. Lower 

concentration, in addition to lower flow rate, favors the formation of fully dense coatings. Adding 

20–25 wt% liquefied propane (ΔH°
c, 298K = -2202 kJ/mol) in the precursor solution, in addition to 

creating a pressure drop of 130 psi by means of a reducer and temperature of 60°C by an induction 

heater, confines it in the supercritical regime. Hence, droplets of (10–20 µm) in diameter are 

formed at the point of exit of the capillary tube which is a required parameter for the formation of 

nanoparticles in the flame.   

1.2.2 Precursor solution flow rate: 

A flow rate of 4 mL/min of the precursor solution is maintained to 

obtain a pressure drop of around 130 psi at the point of exit. The flow rate of the solution is one of 

the determining factor for the morphology of the deposited film (either fully dense at low flow rate 

or porous at high flow rate). 

1.2.3 Tip O2 flow rate and equivalence ratio: 

Oxygen is directed in a co-flow pattern with respect to the precursor 

solution which results in an equivalence ratio [32] defined as follows: 

𝜑 = (
�̇�𝑜𝑥𝑖𝑑𝑎𝑛𝑡 

�̇�𝑓𝑢𝑒𝑙  
)𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 /(

�̇�𝑜𝑥𝑖𝑑𝑎𝑛𝑡 

�̇�𝑓𝑢𝑒𝑙  
)𝑟𝑒𝑎𝑙        (E1.1) 

Where �̇�𝑜𝑥𝑖𝑑𝑎𝑛𝑡  and �̇�𝑓𝑢𝑒𝑙  are the molar flow rate of oxygen and precursor solution (fuel) 

respectively. Equivalence ratio determines the oxidation or reduction condition of the flame since 

𝜑 >1 (reducing flame), 𝜑 = 1 (stoichiometric flame), 𝜑 <1 (oxidizing flame). While calculating 

the value of 𝜑, consideration for the entrainment of atmospheric O2 must be made.  
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1.2.4 Pilot O2 and CH4: 

A set of six flames comprised of a premixed CH4 and O2, surrounds 

the capillary tube concentrically. The pilot light keeps the flame burning and is also responsible 

for the control of temperature at the tip of the needle. The position of the capillary tube with respect 

to the combustion nozzle is adjusted in order to prevent overheating of the tip and formation of 

buildup which can block the capillary opening, and distort the main flame.  

1.2.5 Standoff distance:  

Standoff distance is defined as the distance between the combustion 

nozzle and the substrate. This distance is adjusted on the basis of the desired temperature of the 

substrate for denser film (high temperature), porous film (low temperature) or powder collection 

(room temperature). Standoff distance also dictates the collection efficiency of the nanoparticles 

on the substrate. 

1.2.6 Air quench flow rate and position with respect to flame: 

The air quench is a circular metallic ring with an internal annular 

chamber as shown in Fig. 1.3. The compressed air at room temperature enters the two nozzles and 

is directed towards that chamber. The chamber has a narrow ring nozzle through which the air 

adopts the coanda profile and flows along the angled surface of the air quench. This also creates a 

low pressure region behind the air quench causing the entrainment of the surrounding air into the 

primary air stream. A 360° cone of air is formed which cools the nanoparticles instantly and 

prevents growth, agglomeration, and sintering, thereby keeping the particle size small, maintaining 

high surface area. The distance between the combustion nozzle and the air quench is the reaction 

zone, and the length of the reaction zone is proportional to the residence time of the nanoparticles 

in the zone. The reaction zone is the region where all the major reactions takes place in the flame. 



 

10 
 

Here the combustion of the precursor takes place followed by the formation of the nanoparticles. 

This is possible because formation of the particles in the flame occurs through the following steps: 

(1) vapor, (2) particle nucleation, (3) surface growth, (4) coagulation, (5) nanoparticle growth, (6) 

sintering. Adjusting the length of the reaction zone and the flow rate of compressed air gives 

conditions to obtain an assortment of phases and structures of nanomaterials. One or more of the 

last steps of the combustion products formation can be prevented by reducing the length of the 

reaction zone. Position of the air quench and the air flow rate determines the point at which no 

further surface growth, coagulation, nanoparticle growth, and sintering of the particle is desirable 

and the particles are collected as it is on the substrate holder. This rapid cooling effect also causes 

a rapid decrease in the temperature of nanoparticles from about 500°C to 30°C in 7 s. This 

nanoparticle quenching effect causes the formation of some metastable phases [4]. Various 

configurations of RSDT is shown in Fig. 1.5.  
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Fig. 1.3: Schematic of air quenching mechanism and the coanada profile in RSDT. 

1.2.7 Slurry flow rate and concentration: 

In catalysis application for the synthesis of noble metal supported 

oxides, an oxide slurry is prepared and sprayed perpendicularly to the flame by means of a pair of 

spray nozzles. Nanoparticles generated from the flame are condensed on the slurry particles which 

can be collected on the substrate of choice. The flow rate and concentration of the oxide is 

maintained according to the desired loading value of noble metal. A binder such as Nafion™ or 

polyvinylidene fluoride (PVDF) can be added to the slurry for proper adhesion of the film. This 

technology enables independent control of the support, binder and metal for the synthesis of the 

catalysts [6, 30].   
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1.2.8 Substrate motion pattern: 

Substrates are mounted on a substrate holder as shown in Fig. 1.4. 

This can be placed on a platform which can be moved in the x-y-z pattern, and can be programmed 

using a MATLAB code. This allows for a large (400 sq. cm) and uniform deposition area.  

 

Fig. 1.4: Arrangement of substrates on the deposition platform in RSDT. A: no background 

quartz disc, B: conductive glassy carbon, C: glass fiber filter (GFF), D: polypropylene coupon, 

E: GFF coupon. 

Table 1.1: Synthesis parameters in RSDT with their typical values. 

 Component Function Typical range 

C
h

em
ic

a
l 

p
a
ra

m
e
te

rs
 

Precursor 

Decomposition to produce nanoparticles. 

Low decomposition temperature precursors 

(<500°C) are preferred. 

platinum acetylacetonate 

(Pt acac) :5–20 mmol/L 

tungsten hexacarbonyl 

(WO3): 5–10 mmol/L 

Solvent 

Determines flame luminosity and 

temperature. Non aqueous, high enthalpy 

solvent(s) are used.  

xylene, acetone, 

tetrahydrofuran, 

diethylene glycol 

monobutyl ether 

Propane 

content 

Maintains the pressure drop at the point of 

exit of the precursor solution to the 

atmosphere and reduces the droplet size. 

17–22 wt% 
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 Component Function Typical range 

Slurry flow 

rate and 

concentration 

Maintains concentration of support material 

vs flame sprayed (e.g. Pt supported on 

ceria)  

1.5 mL/min 

P
h

y
si

ca
l 

p
a
ra

m
et

er
s 

Precursor 

solution flow 

rate 

Determines the deposition rate, film density, 

pressure drop, flame length, and particle 

residence time in the combustion zone. 

4–6 mL/min 

Air quench 

flow rate 

Determines the preference for a particular 

phase (e.g. ε-WO3 vs γ-WO3), crystallinity 

and momentum for the flow of secondary 

spray. It also influences the mixing of the 

phases. 

0–100 L/min 

Pilot O2 and 

CH4 flow rate 

Ignition source for the flame and the 

amount of heat produced at the tip. 

O2: 0.55 L/min;  

CH4: 0.42 L/min 

Tip O2 flow 

rate 

Equivalence ratio (oxidizing, reducing or 

stoichiometric flame), flame temperature 

and flame turbulence. 

5–7 L/min 

Combustion 

nozzle to air 

quench ring 

distance 

Length of reaction zone. Particle growth 

halts at the point of air quench. It also 

determines the crystallinity of the deposited 

film 

10–14 cm 

Standoff 

distance 

Combustion nozzle to substrate distance. 

Determines substrate temperature and 

residence time of particles in flame.  

16–18 cm 

Substrate 

holder 

A variety of materials and configurations 

can be used for mounting substrates 

depending upon the desired temperature of 

deposition (e.g. water cooled or back heated 

substrate holder) 

20–1000°C 

Motion of the 

substrate 

platform 

Enables wide and uniform deposition area 

(400 sq. cm.) 
2–400 sq. cm. 

 

Based on the above parameters and, the combustion nozzle can be modified to suit a particular 

application’s need. This has been drawn in the Fig 1.4.  

1.2.9 Quartz shroud: 

This method of constraining the flame was suggested by Waser et 

al. [33]. Enclosing a quartz tube (shroud) around the flame (shrouding) significantly reduces the 
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entrainment of atmospheric oxygen towards the flame and causes the equivalence ratio to shift 

towards higher value (Ф>1). Modification in the quartz tube can also be made to enable the 

controlled supply of oxygen by which a precise control of the equivalence ratio can be achieved 

[33]. This method also increases the particle collection efficiency and sintering of the particles. 

Adding or removing the air quench mechanism at the end of the quartz shroud provides an 

additional option to obtain porous film with micron size particles or fully dense film respectively.  

1.2.10 Substrate cooling and heating: 

Substrate temperature in the RSDT can be varied from 20–1200°C 

by various methods. This provides the possibility for using a diverse set of substrates depending 

upon their melting point. Some of the lower melting point substrates used for the deposition are 

Nafion® membranes with thickness from ~100 nm to 10 μm, polypropylene, teflon, and glass 

fiber filter. The substrate cooling is achieved by using a hollow stainless steel block which is 

connected to a water chiller. By this arrangement achieving the substrate temperature as low as 

20°C is possible. Since RSDT is an open atmosphere process, the dew point for the atmosphere 

is very important to avoid any water condensation on the substrate. Lower temperature also 

enables the collection of nano-powder which is useful for the BET surface area measurements. 

Similarly, for higher temperature operation, a ceramic substrate is used. The high temperature can 

be obtained by either impinging the flame directly on the substrate or by using a substrate heater. 
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Fig. 1.5: Different configurations of RSDT: (a) for porous but micron size particles film, (b) use 

of secondary spray to deposited nanoparticles on support, (c) for dense film, (d) option to change 

the length of the reaction zone (distance between combustion nozzle and air quench, (e) 

deposition on a chilled substrate to enable the collection of nanopowder. 
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Fig. 1.6: Schematic of Reactive Spray Deposition Technology with the function of each component explained in details.
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CHAPTER 2:  

Catalysts for Water-Gas Shift Reaction 
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2.1 Water-gas shift reaction:  

Water gas was discovered by Italian physicist Felice Fontana in 1780. Water gas 

was made in England from 1828 by blowing steam through white-hot coke maintained at 1000°C. 

However the major limitation of that process was the additional processing step required (Cu liquor 

scrubbing) to remove CO. It was Mond Langer who patented [1] the WGS reaction in 1888, and 

thereafter it was commercially used for the generation of H2 as a raw material for the Haber process 

for production of ammonia. 

 Applications of water-gas shift (WGS) and reverse water-gas shift (RWGS) 

reactions are generally found in the large-scale industrial processes, such as ammonia/urea 

production (approx. 202 million tonnes/year—estimated $75 billion/year industry) and methanol 

synthesis (approx. 100 million metric tons/year—estimated $36 billion/year industry). WGS 

reaction is also a critical component in hydrocarbon reforming and Fischer-Tropsch synthesis [2-

5], automotive exhaust catalysis [6], H2 production for fuel cells [7, 8], and CO2 capture from 

power plants [9]. WGS catalysts is especially important for automotive applications because of 

various reasons. Exhaust of a vehicle equipped with an internal combustion engine, has CO2, H2O 

and N2. However there is a possibility that the combustion is fuel rich (little air) because of the 

fault in the car’s onboard computer and the oxygen sensor, which causes the formation of 

poisonous CO [10]. With the water-gas shift, CO concentration can be reduced from 10% to <0.1% 

and at the same time hydrogen (H2) can be produced which can be utilized in a wide array of 

applications including Proton exchange membrane fuel cells (PEMFC). CO can be converted using 

the water-gas shift (WGS) reaction (CO (g) + H2O (g) → CO2 (g) + H2 (g)) in the presence of a 

catalyst to yield H2 and CO2. Good catalytic systems (in terms of stability, reactivity, and 

selectivity) are known for some of these processes. Yet, the fundamental understanding of what 
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makes a good catalyst, how it acts in the catalytic process, and why one catalytic system is superior 

to another is often ill defined [11]. Interest in WGS reaction has grown exponentially in the past 

decade as a result of the advancement in fuel cell technology and the need to develop small-scale 

fuel processors [12]. Fuel cell technology has the potential to revolutionize the existing 

transportation system as well as fulfill the most rigorous exhaust gas emission requirements [13]. 

Fuel cells require H2 which is obtained by reforming synthesis gas (mixture of CO, and H2). When 

hydrogen is used in the fuel cell operation, the WGS catalyst should be both active and stable in 

cyclic operation. The presence of CO as low as 30 ppm in H2 can poison the Pt electrode of a fuel 

cell resulting in complete shutdown [14].  

Novel methods for preparation of WGS catalysts have emerged in the past few 

years due to the rapid development of fuel cell technology and a need for small scale and mobile 

PEMFC systems in vehicles [15]. 

A review paper by Ratnasamy et al. [16] describes three types of WGS catalysts 

that are currently available in the market as shown in the flow chart in Fig. 2.2. The high 

temperature shift (HTS) catalysts which employs iron-oxide catalysts with alumina and chromium 

as promoters has a reaction temperature in the range of 400–500°C. In this case the rate is 

proportional to the first order of the partial pressure of CO. The second one is the low temperature 

shift (LTS) catalyst consisting of copper-zinc oxide and is used at relatively low temperature range 

of 190–250°C. Equilibrium constant for WGS reaction increases with the decrease in temperature 

as shown in Fig. 2.1. Hence low temperature is thermodynamically favorable for WGS reaction. 

Here the rate is proportional to zeroth order of the partial pressure of CO.  

High temperature shift catalysts: 𝑟 ∝ [𝑃𝐶𝑂]1 
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Low temperature shift catalysts: catalysts, r ∝ [𝑃𝐶𝑂]0 

 

Fig. 2.1: Relationship between equilibrium constant (Kp) and temperature for the water-gas shift 

reaction. 

The obvious advantages of LTS over HTS is the low temperature of operation and 

low volume requirement. The third type of catalyst can be called medium temperature shift (MTS) 

and they operate in the temperature range from 275–350°C. These catalysts are the LTS which are 

mixed with HTS to slightly increase the temperature of reaction. In addition to these, there are 

WGS catalysts which are sulfur tolerant, such as cobalt and molybdenum sulfides based. Catalysts 

of this type can be used when the reaction gas contains sulfur especially in the exhaust of the 

vehicles burning low quality gasoline.  
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Fig. 2.2: Different types of water-gas shift catalysts and their temperature of operation. 

However commercial HTS and LTS catalysts although ideal for industrial scale H2 

production, are not suitable for on-board fuel processing because of the need of sophisticated 

activation process, activity deterioration due to temperature change and the need to isolate the 

catalyst during shutdown to prevent oxidation [17]. The most important of all the catalyst types 

for WGS are noble metal catalysts (Pt and Au based). They have application in hydrogen 

production for the fuel cell industry including possibility of onboard H2 production in fuel cell 

vehicles [18].  

Uniformly distributed nanoparticles of noble metal supported on high surface area 

oxides have been shown to be highly effective for many important catalytic reactions. Catalysts 

are complex materials where achieving the desired properties (i.e. activity, selectivity, and 

stability) depends on exploiting many degrees of freedom such as surface vs bulk composition, 

geometry, defects, interactions with the support material, and control of the reacting environment. 

Many of these factors are currently poorly understood [19–24]. Process catalysts are a $13 billion-
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per-year industry and the value of products dependent on process catalysts, which include refined 

products, chemicals and petrochemical products, and many others, is around $500–600 billion per 

year. Despite the large number of applications, WGS reaction remains one of the most difficult 

chemical processes due to kinetic limitations of commercial catalysts at low temperature and 

equilibrium limitations at high temperature [16, 25]. Moreover, the commercially used Cu and 

ZnO based WGS reaction catalysts are pyrophoric, and require pretreatment [26]. While currently 

used commercial catalysts require a two-stage operation and operate at temperature greater than 

300C, (Au) and platinum (Pt)-based catalysts supported on ceria (CeO2) offer a promising 

alternative due to their single-state operation and low temperature (<250C) activity [27–29]. The 

design of novel catalysts to potentially eliminate the two-stage operation is a challenging task.  

The majority of the reactions in catalysis take place on the surface. Hence the 

efficiency of a catalytic process is largely determined by the quality of the catalysts used, i.e. the 

exposed surface area and the stability of the active phase [30]. The importance of metal oxide 

interfaces has long been recognized [31, 32], however they have not been explored until recently 

[33]. Different kinds of metal atoms, ranging from metallic to ionic, are available at the interface 

which along with the oxide support create reaction sites for WGS reaction [34]. The synergy of 

metal and oxide at the reaction interface plays an essential role in tuning activity and selectivity. 

The recent discovery of University of Connecticut mesoporous materials (UCT-1 to UCT-53) by 

Poyraz et al. has led to a wide range of over 50 families of materials that have very high adsorption 

capacities that surpass all known materials, excellent mono-modal pore size distributions, as well 

as superior thermal stability [35]. Among these, the most interesting observation is the pore 

expansion on heat treatment which has not been reported before [35]. The low temperature WGS 

reaction occurs between 180°C and 250°C with noble metals (Pt, Au, Ru, Rh, Pd) supported on 
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ceria, alumina, zirconia, vanadium or titania. However ceria has stood out to be the most favorable 

support for noble metals based LTS reactions because of its unique properties of high oxygen 

storage capacity [36] and its ability to exist in multiple oxidation states (Ce4+/Ce3+) which results 

in an increase in oxygen vacancies [37,38]. The oxygen storage capacity (OSC) of ceria is strongly 

dependent on the microstructure that results from the selected processing technique, because the 

oxygen vacancy formation energy (Evac) decreases with grain size, resulting in greater non 

stoichiometry [39]. The presence of noble metal [40] also increases the oxygen-ion conductivity 

of ceria which provides the driving force for the transfer of oxygen from the bulk to the surface 

[41]. 

Of all the catalysts available for low temperature WGS reaction, Pt/ceria has been 

identified as the front runner because of its high activity and structural stability at low temperature 

[42]. Pt supported on ceria has been commercially utilized as a three way catalyst in the catalytic 

converter of the automobiles [43] and ceria has been established as an ideal support for WGS 

reaction catalysts in comparison with alumina (Al2O3), yttria stabilized zirconia (YSZ), and, 

vanadium oxide because of its oxygen storage capacity (OSC) and higher surface oxygen diffusion 

(280 times higher than γ-Al2O3 and 100 times than ZrO2) [44]. The ceria unit cell has been shown 

in Fig. 2.3. In a ceria (CeO2) molecule, each cerium (Ce) atom is surrounded by 8 oxygen (O) 

atoms. If the structure is extended so that O occupies the corner of the cube every alternate unit 

cell has an either empty center or is occupied by a Ce atom. Hence the formation of vacancies 

eases the movement of O atoms [45]. In this way ceria can be reduced (Ce+3) or oxidized (Ce+4) in 

fuel rich and lean conditions respectively [16, 41]. This unique property of ceria is particularly 

useful for automotive applications because the noble metal based ceria catalysts is used in the 

catalytic convertor. This allows the engine to operate at stoichiometric air to fuel ratio [41]. WGS 
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reaction activity is strongly dependent upon the structure of the ceria support as well as the nature 

of the interaction between the metal/metal oxide and the support [46]. Only strongly bound metal-

ceria is active for WGS because they are associated with the surface oxygen vacancies of ceria. 

Hence the synthesis technique of ceria is directly related to the WGS reaction activity. Many 

syntheses have been proposed for ceria including flame spray pyrolysis [47, 48], incipient wetness 

impregnation [49, 50], co-precipitation [51, 52], sol-gel [53, 54], hydrothermal [55, 56] and micro-

emulsion [57, 58].  

 

Fig. 2.3: A ceria unit cell with voids or “holes” if the Ce atom occupies the corner positions of 

the cube. 



 

30 
 

2.2 Mechanism of water-gas shift reaction on Pt/ceria:  

There is a general disagreement on the role of ceria and noble metals for the WGS 

reaction [34], and two main mechanisms: (1) a redox mechanism [59], and (2) a formate 

mechanism [60] have been proposed based upon theory and developed models [61]. 

2.2.1 Redox mechanism: 

This is the most widely accepted mechanism. Bunluesin et al. [62] 

reported the redox mechanism of WGS reaction. This mechanism is also known as a ceria 

mediated redox process. The WGS reaction takes place at the triple phase boundary (TPB) of the 

noble metal, ceria and the incoming gas [63]. In the ceria mediated redox process the incoming 

CO is adsorbed on the Pt which reduces the support (two Ce4+ ions are reduced to the Ce3+ state) 

by extracting oxygen from the Pt-ceria interface. This results in the formation of an oxygen 

vacancy in the ceria and the formation of Ce2O3 and CO2. Ce2O3 is then oxidized back to CeO2 

through the dissociation of the H2O into H+ and OH-. The oxygen vacancy is refilled and H2 is 

released in the process. This work is also supported by infra-red and kinetic studies [13, 42]. The 

mechanism has been described in detail in Fig. 2.4 and is expressed in equations E2.3–E2.5: 

CO + H2O 
catalyst
⇔     CO2 + H2     (E2.1) 

CO + Pt∗  →  COads (*represents adsorption site on Pt)     (E2.2) 

COads + 2CeO2  →  CO2 + Ce2O3     (E2.3) 

H2O + Pt
∗  →  2H+ +  OH−     (E2.4) 

H+ + OH− + Ce2O3  →  2CeO2 + H2     (E2.5) 
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 ∆H298K
o = −41.4 kJ/mol [11]                                  (E2.6) 

∆G298K
o = −32.197 + 0.03104T −

1774.7

T
 [11]                                                                       (E2.7) 

log(K) =  −2.4198 + 0.0003855T +
2180.6

T
 [11]                                                                  (E2.8) 

As shown in the equations E2.1 and E2.6–E2.8, the WGS reaction is a 

mildly exothermic and reversible reaction and the tendency of the equilibrium constant is to 

decrease with increase in temperature. 

2.2.2 Formate mechanism: 

The formate mechanism was proposed and supported by Shido and 

Iwasawa [33] as shown in equation E2.10–E2.15. Oxygen vacancies in ceria provide a site for 

platinum-catalyzed H2O dissociation, which generate atomic hydrogen and OH species. Oxygen 

vacancies in ceria provide a site for Pt-catalyzed H2O dissociation, which generate atomic 

hydrogen and OH species. Adsorbed CO on Pt reacts with OH groups (unidentates, bidentates, 

and tridentates) which act as WGS reaction intermediate groups, to generate a formate or formic 

acid (HCOOH). Formates enables the regeneration of adsorbed hydrogen atoms, which on 

reaction with ambient water, generates additional H2 and unidentate carbonate prior to CO2 

formation. This theory was also supported by the studies of the decomposition of formic acid on 

the ceria surface [37] and by density-functional theory (DFT) calculations by Kinch et al. [38]. 

CO + H2O 
catalyst
⇔     CO2 + H2    (E2.9) 

CO + Pt∗  →  COads (*represents adsorption site on Pt)   (E2.10) 

H2O + Pt
∗  →  2H+ +  OH−   (E2.11) 



 

32 
 

CeO2 + H
+ +  OH−  →  Ce(OH) +  Ce(OH)2  +  Ce(OH)3   (E2.12) 

Ce(OH) +  Ce(OH)2  +  Ce(OH)3 + COads  →  HCOO + HCOOH   (E2.13) 

HCOO + HCOOH →  OC + OCO + H+   (E2.14) 

OC + OCO + H+  →  CO2 + H2   (E2.15) 

 

Fig. 2.4: Representation of the water-gas shift reaction redox mechanism on ceria/Pt catalysts 

shown in atomic scale. 
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3.1 Gas sensor: 

The word sensor means to sense or “perceive”. A sensor is a device which detects 

the change in a physical stimulus and converts it into a signal which can be measured and decoded. 

All living objects have sensors. A traditional example of a sensor is human body which can sense 

heat, temperature, humidity, pressure, light, smell, touch, and sound to name a few. The more 

complicated sensors exists inside the human body in the form of organs which can sense the 

chemical composition of the bodily fluids. Flowers such as sunflower can sense the sunlight and 

respond by moving toward the sun. There are sensors in automobiles which prevent accidental 

injury by deploying the airbags in case of a collision. Oxygen sensors in the car engine exhaust, 

control the amount of oxygen for the combustion of gasoline to provide a rich or lean combustion. 

There are smoke detectors and water sprinklers in households and offices which detect the 

possibility of a fire and alerts accordingly. As we progress into the 21st century, the use of sensors 

for different applications have increased many fold. The worldwide market for sensors was worth 

$56.3 billion in 2010, which increased to $62.8 billion in 2011 and is expected to rise to $91.5 

billion in 2016 [1]. A gas sensor is a device which is generally used for sensing a potentially 

hazardous gas. After a predetermined threshold for a gas is reached in the environment, the gas 

sensor responds with a previously determined signal. Some sensors are programmed to 

automatically start a preventive process to remove the cause which started the alarm. A common 

example of gas sensor is the CO sensor which detects the abnormal level of CO in an environment.  

The integration of gas sensor components into smart phones, tablets and wrist 

watches will revolutionize the environmental health and safety industry by providing individuals 

the ability to detect harmful chemicals and pollutants using always-on hand-held or wearable 

devices [2]. Gas sensors based on conductometric principle which uses a metal oxide based 
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element is one of such device which has been used since 1960. The device consists of Au or Pt 

interdigitated line electrodes on a silicon or alumina base [3]. A metal oxide semiconductor film 

with narrow band gap is deposited onto the interdigitated lines and resistance across them is 

measured externally. The resistance increases in presence of oxidizing analytes and reduces in 

presence of reducing analytes (for n-type semiconductor metal oxide film). The process of 

conversion of sensory inputs to electrical signals is utilized by many devices such as heart in-

plants, digital blood pressure monitor, blood glucose monitors, and body fat monitors. Fig. 3.1 

shows the components of a sensing device. The essential components of a gas sensing device are: 

a metal-oxide sensing layer deposited on gold or platinum interdigitated electrodes which are 

attached to, an alumina or silicon substrate, consisting of a heater and a temperature probe to 

increase and control the temperature of the sensing layer.  

 

Fig. 3.1: (a) Different parts of the gas sensing device, (b) architecture of the gold interdigitated 

electrodes, (c) optical microscopy image of the gold interdigitated electrodes.  
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3.2 Mechanism of sensing (oxidizing and reducing analytes): 

The mechanism of analyte sensing by metal oxide based sensors was described by 

Barsan and Weimar [4] and proved by temperature programmed desorption (TPD), Fourier 

transform infrared spectroscopy (FTIR), and electron spin resonance (ESR) spectroscopy [4]. The 

metal oxide film deposited on interdigitated electrodes possess both receptor and transducer 

function. Sensing of an analyte on the metal oxide surface takes place by the adsorption and 

desorption process. The reaction of the analyte species takes place on the film surface (receptor 

function) and the adsorbed analyte changes the resistance of the interdigitated electrode 

(transducer function). This change in resistance can be correlated with the concentration of the 

analyte. The resistance increases in presence of oxidizing analyte and decreases in presence of 

reducing analyte. This is because the change in resistance is related to the concentration of the 

ionosorbed oxygen. An oxidizing analyte increases the ionosorbed oxygen concentration which 

causes the formation of a large electron depletion layer or space charge layer Λoxidizing [5] between 

two individual metal oxide grains. At the junction of two particles a larger electron depletion layer 

(2 * Λoxidizing) is formed causing bending of the metal oxide conduction band and the generation of 

a surface potential barrier (height of band bending qVS, also called Schottky barrier) [6]. Since the 

electrons flow along a percolation path from grain to grain, the electron depletion layer restricts 

this movement causing an increase in the film resistance. On the other hand, the reducing analytes 

are oxidized on the metal oxide surface which causes the reduction in the ionosorbed oxygen 

concentration and reduction in the electron depletion layer (Λreducing). Hence the resistance is 

lowered. This has been explained in Fig. 3.5. Λoxidizing is always larger than Λreducing. The resistance 

of the metal oxide is related to the surface potential barrier by the following equation [6, 7]: 
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R = 
1

exp(
−qVs
kBT

)
 , where R = resistance of metal oxide film,      (E3.1) 

qVs = height of band bending 

kB = Boltzmann' s constant = 1.38 ∗ 10−23
J

K
, T = temperature 

 The response (S) for oxidizing and reducing gases are calculated according to the following 

equations:  

Soxidizing = 
Ranalyte

Rair
 ;  Sreducing = 

Rair

Ranalyte
       (E3.2) 

3.3 Sensor terminology: 

In the sensor field, there are few terms and definitions that are often used. Some of 

them are defined below: 

3.3.1 Analyte: 

Analyte is the gas or the chemical which is to be detected by the sensor. 

3.3.2 Limit of detection (LOD):  

A sensor is designed to work over a particular range. The lower limit of 

that range is called limit of detection (LOD). Below this limit, the sensor will produce inaccurate 

readings. Similarly, if the upper limit of the sensor is exceeded, the reading will be erroneous or 

it may lead to permanent damage to its instrumentation. The performance of a gas sensor is 

measured by its (LOD) [5]. 

3.3.3 Sensitivity:  

Sensitivity of a sensor is defined as the change in output of the sensor per 

unit change in the parameter being measured [6]. 
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3.3.4 Selectivity:  

Selectivity is defined as the preferential detection of the target analyte 

among a mixture of gases. Selectivity to other gases, which can lead to false alarm or incorrect gas 

concentration determination, is a major concern for a sensor to be commercially viable.  

3.3.5 Response time:  

The sensor responds to a change in the concentration of analyte in its 

surroundings. The time taken by the sensor to reach 90% of its saturation value is known as 

response time [6]. It is desirable to have the lowest possible response time for an ideal sensor.  

3.3.6 Recovery time:  

After the analyte is removed from the environment, the sensor tends to 

recover to its original baseline. The time required for the sensor to reach 90% of its original 

baseline is known as recovery time. Generally recovery time is larger than response time for metal 

oxide based gas sensors. This is because those sensors are adsorption and desorption based in 

which, the analyte molecules are adsorbed on the surface of metal oxide. The activation energy for 

adsorption is smaller than the activation energy for desorption which causes a delay in the recovery 

of the sensor [8]. 

3.3.7 Drift: 

Drift is defined as the variation in the signal for the same concentration of 

analyte. This introduces an error in the measurement. This is caused by large difference in the 

activation energy for analyte adsorption and desorption. There may be other factors responsible 

for drift such as changes of temperature, electronics instability, or aging of the electronic 

components. Drift of the metal oxides based sensors have been recognized and various suggestions 

to counter this limitation have been proposed as described in chapter 8. 
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3.3.8 Calibration: 

A sensor might need calibration from time to time to confirm that the 

concentration of the analyte detected represents the actual concentration. The calibration schedule 

must be fixed for the best possible performance.  

3.3.9 Resolution:  

Resolution is defined as the smallest change that can be detected by a 

sensor. 

3.3.10 Operating temperature or working temperature:  

A gas sensor generally operates at a temperature which is called its 

operating temperature. It is the temperature at which it responds in a most efficient manner. At low 

working temperature, the activation barrier for the generation of ionosorbed oxygen is higher while 

at high temperature, desorption of analytes exceeds adsorption resulting in lower response. Also 

at higher temperature the chemisorption of the analytes onto the surface of the metal oxide film is 

accelerated and the activation energy of the reaction is reduced. Hence an optimum temperature is 

required which is a function of the analyte and metal oxide properties. As shown in Fig. 3.1, a 

sensor has a heating element, and a resistance temperature detector (RTD) for the control of heat 

to the metal oxide film. The reactions at the heated metal oxide surface changes the concentration 

of electrons in the film depletion layer, and this in turn changes the conductance of these devices 

as a function of gas concentration. Generally speaking, lower operating temperature is desirable 

which reduces the power consumption, however the efficient micro hot plate designs significantly 

reduces the power consumption [9]. On the other hand there are applications in the industry which 

require sensing an analyte at high temperature. A review by Liu et al. has described the recent 

progress in the development of such high temperature solid-state gas sensors [10].  
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3.4 Gas sensors-from research to market: 

Like any other device, a gas sensor requires extensive research and development in 

the laboratory before it can be made available for its end use. There are various steps for this 

process as described in the Fig. 3.2. These are: (1) defining the architecture, geometry and material 

for the interdigitated electrode, (2) metal oxide film synthesis, characterization and property 

optimization, (3) performing lab trials and errors with simulated atmosphere, (4) performing lab 

trials with near real type atmosphere, (5) performing lab trials with real sample (human breaths or 

field samples), (6) arranging necessary approvals, (7) commercial production. This thesis will be 

entirely focused on the material development and testing.

 

Fig. 3.2: Different stages for the development of the gas sensing device. 

 

3.5 Materials selection for metal oxide based gas sensor films: 

A detailed review by Korotcenkov on choosing the correct metal-oxide for the 

sensing film was published in 2007 [8]. If we consider binary metal oxides for gas sensor films, 
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then there are two types: (1) transitional metal oxides having d0 - d10 symmetry and (2) non-

transitional metal oxides having s or p symmetry. Transitional metal oxides have unfilled d-orbital, 

hence they have a tendency to attract electrons. Also the energy difference between a cation dn 

configuration and, dn+1 or dn-1 configuration is small. The cation d0 configuration represents the 

highest oxidation state (can only be reduced to form defects) and d10 configuration represents the 

lowest oxidation state (can only be oxidized). Hence transition metal oxides can easily form 

different oxides with varying stoichiometry and it is easier to form defects in the transitional metal 

oxides. Non-transitional metal oxides have only one preferred oxidation state. Other states are 

inaccessible because adding or removing an electron from a cation which is coordinated with O2- 

ligand, will require significant amount of energy. They are quite inert and are difficult to oxidize 

or reduce. However, the transitional metal oxides with a partially filled d orbitals (0<d<10) are not 

preferred for sensing application, in spite of possessing a better catalytic activity [11], because of 

their structure instability at high temperatures and non-optimality of other parameters necessary 

for conductometric gas sensing such as band gap energy and electro conductivity [8]. Transition-

metal oxides with d0 or d10 electronic configurations are generally preferred for gas sensing 

applications. 

3.6 Application of gas sensors in healthcare: 

Human breath is a complex mixture of N2, CO2, O2, water vapor and traces of 200 

other organics and inorganics [12] which are the product of one or more biological phenomenon 

occurring in the human body. Deviation of the concentration of these organic and inorganic vapors 

from their normal value is caused by a slight change in the chemistry of human body and could be 

used as a biomarker for an onset of disease. Few examples of the most commonly occurring 

organics and inorganics in the human breath are provided in table 3.1. Quantifying low 
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concentration of these organics with high selectivity and cross sensitivity with other gases can 

prove challenging with the presently available conductometric sensing capabilities. The healthcare 

sector for diagnostics and patient monitoring using non-invasive breathalyzers is still in its infancy, 

but has a huge potential for growth in the next 10 years following the publication of this thesis. 

Table 3.1: Analytes in human breath and the respective disease biomarker. 

Compound in human breath Biomarker Reference 

acetone  diabetes [13–21] 

carbonyl sulfide, carbon disulphide, isoprene liver diseases [22] 

naphthalene,1-methyl-, 3-heptanone, 

methylcyclododecane, etc. 
pulmonary tuberculosis [23] 

nonane, tridecane, 5-methyl, undecane, 3-methyl, 

etc. 
breast cancer [24] 

benzene,1,1-oxybis-, 1,1-biphenyl,2,2-diethyl, 

furan,2,5-dimethyl-, etc. 
lung cancer [25] 

ammonia  renal disease [26] 

octane,4-methyl, decane, 4-methyl, hexane, etc. unstable angina [27] 

propane,2-methyl, octadecane, octane, 5-methyl, 

etc. 
heart transplant rejection [28] 

pentane, carbon disulfide  schizophrenia [29] 

pentane  acute myocardial infarction [30] 

pentane  acute asthma [31] 

pentane  rheumatoid arthritis [32] 

ethane  active ulcerative colitis [33] 

nitric oxide  asthmatic inflammation [34] 

nitric oxide  bronchiectasis [35] 

carbon monoxide bronchiectasis [36] 

nitric oxide  COPD [37] 

ethane, propane, pentane, etc.  cystic fibrosis [38] 
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3.7 Important factors for analyte sensing: 

3.7.1 Adsorption: 

Gas detection by metal-oxide based sensors is an adsorption and desorption 

process of the oxygen to the metal oxide surface as described in section 3.2. Adsorption is caused 

by the attractive force between the adsorbed species (adsorbate) and the solid surface of the metal 

oxide and must be stronger than the disordering effect of the thermal motion. Thermodynamically, 

adsorption is a spontaneous process, which means that the change in Gibb’s free energy of the 

system is negative (ΔG<0). This is because the translational freedom of the adsorbate is reduced 

when it is adsorbed causing the change in the entropy to be negative [39]. Adsorption can be of 

two types: physisorption and chemisorption which can be represented by the potential energy (PE) 

diagram (PE vs distance of adsorbate from the surface of the metal-oxide) as shown in Fig. 3.3. 

Physisorption is caused by the weak van der Waal’s force with the enthalpy of adsorption (ΔHads, 

phy) in the range -0.1 to -0.2 eV. In this case the weak forces give rise to a shallow PE well over a 

large distance from the surface (>0.3 nm), which is easily overwhelmed by the strong repulsive 

forces arising from the surface of the metal-oxide. Due to the low enthalpy change, physisorption 

does not cause a chemical reaction and this process is invariably fast [40]. Enthalpy of 

physisorption can be measured by the controlled monitoring of the rise in temperature of the 

sample of known thermal capacity [39]. Physisorption is represented by the Lennard-Jones 

potential. Chemisorption is caused by charge exchanges between the gaseous species, and the 

metal oxide and it is characterized by the dissociation of the adsorbate. Chemisorption also requires 

an activation energy. In the PE diagram, it is represented by the Morse potential and is 

characterized by the deep PE well over a short distance between the adsorbate and the metal oxide 

surface. The depth of the PE well corresponds to the enthalpy of chemisorption (ΔHads,chem), a 
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typical value of which is around -2 eV. The activation energy of for chemisorption (ΔEads,chem) 

ranges between -1 to -10 eV and it is represented by the transition from physisorption to 

chemisorption. Enthalpy of chemisorption can be measured by using single crystal adsorption 

calorimetry [41]. The equilibrium bond distance (ze) between the adsorbate and the metal oxide 

surface is at the minimum PE. In the gas sensors described in this thesis (NO2 sensing by γ-WO3 

in chapter 9 and acetone sensing by ε-WO3 in chapter 10) the dominant adsorbate is oxygen. Hence 

the discussion henceforth will focus on oxygen adsorption. The bond dissociation energy of 

oxygen (ΔEdiss, O) is 5.16 eV at 298K [42]. The oxygen is in molecular form (O2
-) below 150°C 

and ionic form (O-, O2-) between 100–500°C. Oxygen chemisorption can be represented by the 

following equation [4]: 

β

2
O2
gas
+ α ∗ e− + S ↔ OβS

−α          (E3.1)  

Where, O2
gas

 = oxygen molecule in the atmosphere 

e− = electron with enough energy to reach the surface (surface charge) 

S = surface oxygen vacancy or unoccupied chemisorption site for oxygen 

OβS
−α = chemisorbed oxygen species 

α = 1 (singly ionized form), α = 2 (doubly ionized form),  

β = 1 (atomic form), β = 2 (molecular form),  

In the beginning before the adsorption process commence, there is an 

unlimited availability of electrons on the surface. Hence there is no band bending. After the 

adsorption of oxygen on the surface of the metal oxide, the space charge layer is developed 

(Schottky barrier) which needs to be overcome by the electron to reach the surface [4].  
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Rate of adsorption can be expressed as the following equation [40]: 

Rads = kads ∗ P           (E3.2) 

Where, kads = rate constant of adsorption and P = partial pressure of the adsorbate. 

This can also be written in the Arrhenius form as: 

Rads = A ∗ exp (
−𝐸𝑎,𝑎𝑑𝑠

𝑅𝑇
) ∗ P         (E3.3) 

Where, A = pre-exponential (frequency) factor; Ea,ads = activation energy of adsorption, R = 

universal gas constant, T = temperature. 

3.7.2 Desorption: 

Desorption is controlled by both electronic and chemical parts from the 

beginning. In order for the adsorbate to desorb from the surface, a significant barrier is 

encountered. As shown in Fig. 3.3, ΔEdis >> ΔEads. It can also be seen from Fig. 3.3 that ΔEdes ~ 

ΔHads, chem. 

Rate of desorption can be expressed as the following equation [40]: 

Rdes = kdes ∗ N          (E3.4) 

Where, kads = rate constant of adsorption and N = surface concentration of the adsorbate. 

This can also be written in the Arrhenius form as: 

Rdes = A ∗ exp (
−𝐸𝑎,𝑑𝑒𝑠

𝑅𝑇
) ∗ N          (E3.5) 

Where, A = pre-exponential (frequency) factor; Ea,des = activation energy of desorption, R = 

universal gas constant, T = temperature. 
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Fig. 3.3: The potential energy diagram showing adsorption and desorption energies. 

 

3.7.3 Residence time: 

The residence time of the adsorbate on the surface of the metal-oxide is an 

important property of the gas sensors. It is defined as the average time the adsorbate molecule 

will spend on the surface of the metal-oxide before been desorbed [40]. Residence time is given 

by the following equation: 

𝑡 = 𝑡0 ∗ exp (
−𝛥𝐻𝑎𝑑𝑠

𝑅𝑇
)          (E3.6) 

Where, t = residence time in s, t0 = 1/A = period of vibration of the bond between the adsorbate 

and the metal-oxide surface. The value for t0 is ~10–13 s. 
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3.7.4 Debye length: 

Debye length (λD) is defined as the radius of the imaginary sphere beyond 

which the charges are electrically screened. It is a property which depends upon the material. In a 

metal oxide, Debye length represents the distance over which band bending exists from the surface, 

as well as the thickness of depletion layer. The Debye length is determined by the following 

equation [43]: 

λD = √
ε0εrkBT

q2nc
           (E3.7) 

where ε0 = Permittivity of free space = 8.854 ∗ 10−12
Farad

m
, 

 εr = dielectric constant of the material 

 kB = Boltzmann's constant = 1.38 ∗ 10−23
J

K
, T = temperature 

e = electron charge = 1.6 ∗ 10−19 Coulombs, nc = carrier concentration 

Assuming d represents the diameter of a crystal grain and Λ represents the 

thickness of the electron depletion layer, (Λoxidizing for oxidizing analyte, Λreducing for reducing 

analyte, Λair for air), there are three conditions which are possible, which is shown in Fig. 3.4 and 

summarized below. It is also assumed that the grains are connected by necks or grain boundaries 

[44]. 

3.7.4.1 Grain boundary control: 

When d>>2Λ, the electron depletion layer only appears at the 

surface of the grain. In this case electrical resistance of the sensor is determined by the resistance 

of the grain boundary and the bulk has no contribution to the resistance [43]. This is because at the 
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grain boundary, two grains are present back to back and the thickness of the electron depletion 

layer is doubled. 

3.7.4.2 Neck control: 

When d≥2Λ, the neck contributes mostly to the resistance of the 

sensor. The bulk of the grain is still mostly unavailable.  

3.7.4.3 Grain control: 

When d<<2Λ, both the surface and bulk of the grain contributes to 

the resistance and yields the largest gas sensor response.  

The thickness of electron depletion layer is related to the height of band bending (qVs), and the 

Debye length by the following equation: 

Λ =  λD(
2qVs

kBT
)
1
2⁄            (E3.8) 

, the symbols defined previously. 
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Fig. 3.4: Effect of grain size and necking in the electron depletion layer. 

 

3.7.5 Film morphology:  

Film morphology plays an important role in the sensitivity of the metal 

oxide film towards a particular analyte. Porous film allows an efficient diffusion of the analyte 

through the bulk of the film thereby creating a larger number of reaction sites. Three cases have 

been presented here: 
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3.7.5.1 Dense layer:  

For a dense film the diffusion of the analyte only takes place on the 

surface. The active surface area is small. Even if the metal oxide layer is polycrystalline with 

d<<2Λ, they are not accessible by the gases, and they will not change when the ambient 

atmosphere composition changes. Conductivity of an ideal single crystal dense layer can be 

determined by the following equation [4]: 

C = constant ∗  
q

zg
 ∫ n(z) ∗  μ(z) dz
zg

0
,        (E3.9) 

Where the constant depends upon the sample geometry,  

zg = film thickness, n = charge concentration, and μ = electron mobility. The other symbols are as 

defined previously. 

3.7.5.2 Porous layer:  

For porous layers, the active surface area is much larger than the 

dense layers. The charge transport can take place by the either of the cases presented in section 

3.7.4 and Fig. 3.4. Two different transport mechanism for the charge carriers was proposed for the 

porous layers by Barsan and Weimar [4]: 

3.7.5.2.1 Diffusion theory: 

According to the diffusion theory in porous layers, 

conductance is calculated by the following equation:  

𝐶𝑑𝑖𝑓𝑓 =  𝑎𝑟𝑒𝑎 ∗ (
𝑞2𝑛𝑏𝜇𝑏

𝑘𝐵𝑇
) ∗  √

𝑞𝑛𝑏𝑉𝑠 

2𝜀
∗ 𝑒𝑥𝑝 (

−𝑞𝑣𝑠

𝑘𝐵𝑇
)                            (E3.10) 
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Where “C” is the conductance and “area” has the dimensions in m2 and represents the active area 

seen by the electrons while travelling from grain to grain. The subscript “b” represents bulk. The 

other symbols are as defined previously. 

3.7.5.2.2 Thermoelectronic emission theory: 

According to this theory, only the electrons which possess 

the kinetic energy greater than the band bending height can move across the boundary. The net 

current is the difference in the charge fluxes across the boundary from left to right and right to left 

respectively.  

𝐺𝑡ℎ𝑒𝑟𝑚𝑜 =  𝑎𝑟𝑒𝑎 ∗ (
𝑞

𝑘𝐵𝑇
) ∗ 𝑞 ∗  √

8∗𝑘𝐵∗𝑇 

𝛱∗𝑚′
∗ 𝑒𝑥𝑝 (

−𝑞𝑣𝑠

𝑘𝐵𝑇
)                (E3.11) 

Where, √
8∗𝑘𝐵∗𝑇 

𝛱∗𝑚′
 = mean thermal velocity of the carriers and m’ is the effective mass. The other 

symbols are as defined previously. 
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Fig. 3.5: Various factors responsible for the analyte sensing.
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3.7.6 Metastable materials metal oxides: 

Materials which are thermodynamically metastable at the given conditions 

of temperature and pressure are called metastable materials. Some of these materials possess 

unusual electronic properties. Synthesizing metastable materials require special synthesis 

conditions, such as extreme temperature, high pressure and/or rapid quenching. There are many 

metal oxides which are very good gas sensors in their metastable states as shown in the table below. 

The classical example is the ferroelectric ε-WO3 which is metastable at room temperature and 

highly sensitive towards low concentration (<1 ppm) acetone. This is explained in more details in 

chapter 4 and chapter 10. A list of metastable metal oxides and the analytes which they sense are 

given in table 3.2. 

Table 3.2: Metastable metal oxide based sensors along with the respective analyte. 

Metal oxide Metastable form Sensing analyte Reference 

In2O3 
Corundum-type 

hexagonal structure 
Ethanol [45] 

WO3 ε-WO3 (Monoclinic) Acetone [14,46] 

MoO3 Monoclinic Ammonia 
[47] 

 

SnO2 
CaCl2-type 

orthorhombic phase 

reducing gas: CO, H2 and 

oxidizing gas: NO2 

[48] 

 

ZrO2 Tetragonal  
reducing gas: CO, H2 and 

oxidizing gas: NOx. 
[49] 

TiO2 Anatase CO [50] 
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CHAPTER 4:  

Tungsten oxide nanoparticle thin films for 

gas and chemical sensors 
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4.1 History of tungsten oxide: 

Tungsten oxide also known as tungsten trioxide or tungsten (VI) oxide or tungstic 

anhydride with a chemical formula WO3 is a semiconductor material which was discovered by 

Carl Wilhelm Scheele in late 1780’s [1]. The word tungsten comes from the Swedish language tung 

sten, which directly translates to heavy stone. In 2012 China had a production capacity of 83% of 

the world's annual tungsten supply with the total world production estimated to be 74000 tonnes. 

The total US reserves are estimated to be 140,000 tonnes. It was Robert Oxland who described the 

procedure for preparing WO3 and was granted a patent for his work in 1847 [2]. 

4.2 Structure of tungsten oxide: 

WO3 has a density of 7.16 g/cc, insoluble in water and melts at 1473°C [3]. WO3 is 

an n-type semiconductor material with an indirect band gap of 3.3 eV in the amorphous form and 

2.6 eV in the crystalline form [4]. It is known to exist in multiple polymorphs at different 

temperatures such as tetragonal (α) [5], orthorhombic (β) [6], monoclinic (ε and γ) [7, 8], triclinic 

(δ) [9, 10] and so called pseudo cubic [11] as shown in table 4.1. The structure of WO3 is shown 

in Fig. 4.1. The main differences between the phases are shifts in the position of the W atoms 

within the octahedral, and variations in W-O bond lengths. The W ions occupy the corners of a 

primitive unit cell, and O ions bisect the unit cell edges. Each W ion is surrounded by six oxygen 

ions. The stable monoclinic γ-WO3 can have a ReO3-type structure (corner sharing arrangement 

of octahedra). An infinite array of corner-sharing WO6 octahedra is formed. These octahedra are 

in planes perpendicular to the [001] hexagonal axis and they form four membered rings in the x-y 

or (001) plane. These layers are stacked in periodic arrangement and are held together by weak 

van de Waal´s forces. The stacking of such planes along the z axis leads to the formation of tunnels 
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between these octahedra as marked in Fig. 4.1. In the extended tunnel small ions can stay or move 

in response to an exterior force. This may present the possibility of ionic transport and intercalation 

in the structure, and a mechanism for the electron conducting materials [12]. 

 

Fig. 4.1: Structure of WO3 showing the existence of different layers of the octahedron and the 

formation of conduit.
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Table 4.1: The unit cell parameters and temperature dependence for the existence of different phases of WO3. 

Phase Symmetry 
Space 

group 
Z 

Temperature  

(K) 
Lattice parameters 

Unit cell 

volume 

(Å3) 

Dipole 

moment 
Reference 

α Tetragonal P4/nmm 2 1010–1170 a = 5.3031 Å; c = 3.9348 Å  - none [5,13] 

β Orthorhombic Pmnb 8 600–1170 
a = 7.341 Å; b = 7.57 Å; c = 

7.754 Å 
- none [6] 

γ Monoclinic P21/n 8 290–600 

a = 7.306 Å; b = 7.54 Å; c = 

7.692 Å; 

α = 90°; β = 90.88°; γ = 90° 

423.7 none [7,8] 

δ Triclinic P1- 8 230–290 

a = 7.3090 Å; b = 7.5165 Å; c = 

7.6811 Å; 

α = 88.811°; β = 90.949°; γ = 

90.985°  

422.5 none [9,10] 

ε Monoclinic Pc 4 0–230 

a = 7.378 Å; b = 7.378 Å; c = 

7.664 Å; 

α = 88.73°; β = 91.27°; γ = 

91.34° 

417 
2.5 ± 0.8 

Debye 
[7,8] 
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Table 4.2: The ICDD cards for ε-WO3 and γ-WO3. 

ICDD# 01-087-2386 

Structure: Monoclinic ε-WO3 

Space group: Pc 

ICDD# 01-043-1035 

Structure: Monoclinic γ-WO3 

Space group: P21/n 

2-theta 

(degrees) 

relative 

intensity 

(counts) 

miller 

indices 
d (Å) 

2-theta 

(degrees) 

relative 

intensity 

(counts) 

miller 

indices 
d (Å) 

23.20 46 002 3.83 23.12 100 002 3.84 

24.12 100 110 3.69 23.59 97 020 3.77 

29.01 10.4 012 3.08 24.38 99 200 3.65 

33.34 23 -112 2.69 26.60 19 120 3.35 

33.97 15.5 200 2.64 28.62 16 -112 3.12 

34.08 24 112 2.63 28.94 17 112 3.08 

34.76 10.8 020 2.58 33.27 39 022 2.69 

49.39 12.7 220 1.84 33.58 27 -202 2.67 

        34.16 62 220 2.62 

        34.16 62 202 2.62 

        41.44 14 -222 2.18 

        41.91 14 222 2.15 

        49.95 24 140 1.82 

        49.95 24 400 1.82 

        50.34 13 -114 1.81 

        50.74 12 114 1.80 

        53.49 12 -204 1.71 

        53.49 12 024 1.71 

        54.78 10 240 1.67 

        55.81 10 142 1.65 

        55.96 18 420 1.64 

        56.11 15 402 1.64 

 

WO3 has mixed ionic and covalent bonding. The % ionic character can be 

calculated from the following equation [14]: 

% ionic character = [1 − exp{−(0.25) ∗ (𝑋𝐴 − 𝑋𝐵)
2}] ∗ 100     (E4.1) 
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XA and XB are the Pauling’s electro negativity of the element A and B respectively, the element 

A being more electronegative than element B. By putting A as oxygen (XA = 3.5) and B as 

tungsten (XB = 1.7) we calculate that WO3 has a 55% ionic character. The structure of γ-WO3 is 

given by the ICDD# 01-043-1035 and the structure of ε-WO3 is given by the ICDD# 01-087-

2386 as shown in table 4.2. 

4.3 Properties and applications: 

Each of the WO3 crystal structure exhibits different electrical, optical and magnetic 

behaviors, which are favorable for particular applications. At room temperature, monoclinic and 

triclinic are the most common structures. In its defect free form it is transparent, however it appears 

colored because of defects in its structure [15]. The color changes at different temperatures and 

crystal structure forms. Color change can be explained by the change in band gap of WO3 at various 

temperatures. Band gaps generally decrease with increases in temperature because of a reversible 

increase in atomic vibration with temperature [8]. The color of γ and δ WO3 is light green—the 

mixture of light yellow and bluish white. The yellow component is due to the oxygen to tungsten 

charge transfer transition (valence band to conduction band transition) which is mainly in the UV 

but has a tail into the visible spectrum [8]. The bluish white component is due to the slight loss of 

oxygen which generates an additional valence state in the WO3 parent structure, either W5+ or W4+ 

[16] . Exploitation of the many properties of WO3 has evolved progressively over 3 centuries. Each 

of these properties is explained in brief with the purpose of directing the reader to the relevant 

literature. However this thesis will solely focus on the gas sensing nature of WO3.  



 

76 
 

4.3.1 Chromogenic effect: 

In 1969, SK Deb discovered the chromogenic effect of amorphous WO3 

[17]. He observed a reversible change in color of the WO3 film on application of an electrical 

potential. In his paper Deb has described the construction of a solid state imaging device utilizing 

this electrochromic property. Deb’s discovery paved the way for the development of products 

which benefit from this property such as smart windows for energy efficient infrastructures [12, 

18], electronic information display devices [19], writing-reading-erasing devices, and flat panel 

displays. The smart windows utilize the principle of thermochromism in which the window glass 

is coated with a thin film of WO3. This allows the passage of sun light but the infrared rays are 

reflected. Hence this provides heat protection. Other applications include high energy density 

microbatteries [20, 21], electro-catalysis, optoelectronics, microelectronics, and selective 

catalysis. Photo electrochemical and photo catalytic properties are enhanced when the WO3 film 

is highly crystalline and preferentially oriented in the monoclinic phase because this structure will 

have fewer defects when acting as the recombination center and should suppress mutual e--h+ 

recombination [22, 23]. Polycrystalline WO3 film has almost no photochromic sensitivity whereas 

amorphous WO3 has high photochromic and electrochromic sensitivity due to high surface area 

[24, 25]. 

4.3.2 Photocatalytic property: 

In 1976, Hodes et al. experimented with the photo catalytic property of WO3 

and its narrow optical band gap (2.8 eV) which allows for maximum absorption of the photons. 

They also argued that W is capable of reversibly changing its valence state to accommodate a hole 

without actually decomposing the semiconductor as opposed to having a single valence state in 

the semiconductor unlike Ti in TiO2, Cd in CdS and Zn in ZnO [26]. 
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4.3.3 Thermoelectric property: 

Thermoelectric property of WO3 is a recent discovery in the earlier part of 

this decade when Wang et al. [27] discovered that doping WO3 with ceria improved the Seebeck 

coefficient. Since then many researchers have doped WO3 with oxides bearing high thermopower 

and electrical conductivity such as ZnO [28], TiO2 [29] and Co2O3 [30]. 

4.3.4 Sensing property: 

Gas sensing property of WO3 was discovered for the first time by Shaver, 

in 1967 when he observed a change in conductivity of Pt activated γ-WO3 thin film in presence of 

low concentration of H2. The d0 configuration and strong catalytic effect of W cations enables 

WO3 to be an excellent material for gas sensing.  

Tungsten oxide (WO3) thin films have been a subject of extensive scientific 

investigation following the discovery of WO3’s gas sensing properties in 1967 (H2 [31], H2S [32–

38], NOX [39–42], NH3 [43–48], O3 [49–52], CO [53–56]) and its suitability for use in breath 

acetone monitors as a tool for non-invasive blood glucose quantification[57–61]. For sensing 

functions, the WO3 film needs to be porous and have a large surface area to enable the analytes to 

diffuse through the film [62]. The acentric nature and spontaneous electric dipole moment of 

ferroelectric ε-WO3 leads to increased interaction with high dipole moment analytes such as 

acetone [8]. It is used for medical devices sensing the acetone level in human breath in 

concentrations of parts per billion (ppb) for non-invasive diabetes testing [59, 60]. However, some 

phases of WO3 such as ε-monoclinic are metastable at room temperature and higher temperature, 

thereby making it challenging to obtain such phases by the traditional synthesis processes. The gas 

sensing property of WO3 films strongly depends on the preparation method and the growing 
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conditions of the film itself. In order to have a high productivity, low resistance, and a low power 

consumption sensor, the current trend is to construct all sensing elements on a chip [63]. 

4.4 Gamma tungsten oxide for NO2 sensors: 

4.4.1 Requirement for NO2 sensor:  

NOx (NO2, NO) is a toxic air pollutant which is produced as a byproduct of 

gasoline combustion in an internal combustion engine [64]. Exposure to unsafe levels of NO2 (>10 

ppm) causes irritation in eyes, nose and throat, while higher exposure (>25 ppm) can cause severe 

reactions for people with underlying pulmonary diseases like Chronic Obstructive 

Pulmonary Disease (COPD) or asthma. NO2 reacts with water droplets in the trachea and lungs 

and forms droplets of nitric acid. These tiny droplets of nitric acid penetrate deeply into the lungs 

and causes various respiratory diseases. NO2 exposure has also being associated with Sudden 

Infant Death Syndrome (SIDS) [65]. A detailed report of the actual accidental release of NO2 and 

its subsequent health effect on the population is provided by Bauer et al [66]. The United States 

Occupational Safety and Health Administration (OSHA) has set a 5 ppm workplace permissible 

exposure limit (PEL) for NO2, time averaged over an 8 h. work shift. NO2 also leads to the 

formation of ozone which is hazardous to both aquatic and terrestrial ecosystems. Current methods 

of quantification of NO2 in the air includes gas chromatography equipped with mass spectroscopy 

(GC-MS) [67], chemiluminescence [68], differential optical absorption spectroscopy (DOAS) 

[69], laser induced fluorescence (LIF) [70], cavity ring down spectroscopy (CRDS) [71], and 

resonance enhanced multi photon ionization (REMPI) [72]. However, these analyses can be very 

expensive, requiring trained experts, and having complex, bulky and non-portable instrumentation. 

Metal-oxide semiconductor based gas sensors could be an effective solution to the underlying 

limitations faced by currently used methods for measuring NO2. Metal oxide materials, such as 
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yttria stabilized zirconia (YSZ) [73], natrium superionic conductor (NASICON) [74], In2O3 [75], 

and WO3 [76], have been used for NO2 gas sensing. Among metal oxides, WO3 is considered to 

be a good candidate for low concentration NO2 sensing. Many synthesis procedures have been 

proposed for producing the WO3 films for NO and NO2 sensors. These include spray pyrolysis 

[77], drop coating [78], co-precipitation [79], sol-gel synthesis [80], plasma-enhance chemical 

vapor deposition (PECVD) [81], thermal evaporation [76, 82], and glancing angle DC magnetron 

sputtering [83]. NO2 sensing by gamma tungsten oxide has been described in detail in chapter 9. 

4.4.2 Mechanism of NO2 sensing by γ-WO3:  

WO3 film deposited interdigitated electrodes possesses both receptor and 

transducer functions, where the reaction of the NO2 species takes place on the WO3 film (receptor 

function) and the adsorbed NO2 changes the resistance (transducer function) of the sensing film. 

This change in resistance can be correlated with the concentration of NO2. The response (S) for 

NO2 is calculated as the ratio of the resistance of the WO3 film on gold interdigitated electrodes at 

different gas concentration and is given by the following equation [84]: 

𝑆 =  
𝑅𝑔

𝑅𝑎
             (E4.2) 

Where, Rg is the resistance of the film in presence of NO2 and Ra is the 

resistance of the film in air. Metal-oxide gas sensors based on this principle are one of the most 

studied gas sensor types because of its low cost of production, miniature size, low power 

consumption, and large number of applications [85]. The detailed mechanism of a n-type 

semiconductor thin film sensor is explained by Franke et al. [86] which can be used as a model to 

define the interaction between n-type WO3 and NO2. Fig. 4.2 depicts the mechanism. At elevated 

temperature, oxygen from the air is adsorbed on the WO3 surface. Since a constant voltage is 
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applied externally on the WO3 film, the electrons are exchanged from the conduction band of WO3 

to the adsorbed oxygen causing them to convert to ionosorbed species. Because of the presence of 

an unpaired electron in its outermost shell, NO2 is a strong oxidizer, which supports the formation 

of ionosorbed oxygen [80] according to the following equations: 

NO2 + e
− = NO+ + Oads

2−  (<150°C)        (E4.3) 

NO2 + e
− = NO+ + Oads

−  (150–500°C)  [87]        (E4.4) 

This causes the formation of an electron depletion region around the 

individual WO3 particle, also known as space-charge layer, Λgas [88]. At the junction of two 

particles a larger electron depletion layer (2 *Λgas) is formed causing conduction band bending of 

WO3 and the generation of a surface potential barrier (height of band bending qVS). Since the 

electronic conduction occurs along a percolation path via particle to particle contact, presence of 

the large electron depletion region hampers the electron path causing an increase in overall WO3 

film resistance.  
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Fig. 4.2: Simplified model explaining the NO2 sensing phenomenon by monoclinic γ-WO3. (a) 

Band bending after ionosorption of oxygen. EC, EF and EV denotes the energy of conduction 

band, Fermi level and valence band respectively. qVS and 2Λgas denotes the band bending height 

and thickness respectively. (b) Structure of γ-WO3. (c) γ-WO3 thin film deposited on a gold 

interdigitated electrode. 
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4.5 Epsilon tungsten oxide for acetone sensing: 

4.5.1 Requirement for acetone sensor:  

Diabetes is a serious condition in which blood glucose level rises rapidly 

because of the inability of the body to produce and utilize enough insulin. There are hosts of other 

risks associated with diabetes including increased risk of heart stroke, kidney diseases, blindness 

and increased cholesterol level to name a few [89]. By the end of 2014 there were 387 million 

people world-wide suffering from diabetes and this statistic is expect to rise further to 592 Million 

by 2035 [89]. Diabetes was also responsible for 4.9 million deaths worldwide in 2014 [89]. An 

estimated $612 billion were spent worldwide on diabetes in 2014, roughly 11% of the total 

healthcare costs [90]. Presently, evaluation of blood by self-monitoring blood glucose (SMBG) 

devices is the predominant method for the detection of diabetes. SMBG is recognized by the 

American Diabetes Association as an essential part of effective diabetes self-management [91]. 

The American Diabetes Association recommends that the patients on multiple-dose insulin or 

insulin pump therapy should perform SMBG prior to meals and snacks, occasionally 

postprandially, at bedtime, prior to exercise, when they suspect low blood glucose, after treating 

low blood glucose until they are normoglycemic, and prior to critical tasks such as driving. This 

translates to SMBG device use frequency of 6–10 times per day [91]. However currently available 

SMBG devices are invasive and requires patients to prick their fingers to obtain a blood drop which 

is applied on a plastic test strip connected with a small electronic device. The test strip contains 

glucose oxidase, an enzyme which reacts with glucose in the blood. Glucose oxidase oxidizes 

glucose to gluconolactone (C6H10O6) while reducing oxygen to H2O2. As the test strip is inserted 

into the device, the change in glucose oxidase is recorded which triggers an electrical signal 

calibrated with the amount of glucose and displayed on the device [92]. However this process is 
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very painstaking and expensive and the wounds are prone to infections. Moreover, the presence of 

other components in the blood such as ascorbic acid, uric acid, acetaminophen, and salicylic acid 

can oxidize the H2O2 thereby falsifying the results [93]. As of May 2015, the world wide SMBG 

business is dominated by four players- Abbot, Riche, J&J and Bayer, and the test strips market is 

expected to be valued at $10.9 billion by 2017 [94]. In 2009, the annual cost of test strip supplies 

for such SMBG devices was reported to be $772 per patient in the United States [95]. Generation 

of millions of pounds of used test strip as well as the needles used for pricking fingers, possess an 

additional threat to the environment since they are considered a biohazards and require proper 

disposal. Improper disposal of used test strips and needles can lead to needle-stick injuries (NSIs) 

among domestic waste handlers, rag pickers and the community. NSIs could lead to epidemics of 

blood-borne infections such as HIV/AIDS, hepatitis B and hepatitis C. The lancets used for SMBG 

are often loosely recapped and are vulnerable to be broken/detached when subjected to minimal 

force. According to the Centre for Disease Control, Atlanta, outbreaks of hepatitis B have been 

reported in non-hospital settings due to improper blood glucose monitoring practices [96]. It is 

also worth noting that there is a variability in blood sugar levels in finger tips (capillary blood) and 

forearms (arterial blood) caused by the diffusion of glucose from the plasma to the interstitial fluid 

as the blood circulates through the capillary system. This might indicate falsely low or high glucose 

levels [93]. Because of increasing costs and inconvenience to the patients, an alternative non-

invasive route to detect diabetes has become indispensable. 

4.5.2 Source of acetone in human body:  

Acetone (CH3-CO-CH3) is one of the components present in trace quantity 

(0.5–10 ppm) in human breath. Acetone in breath is related to the glucose concentration in blood. 

In the human body, insulin is produced by the pancreas, which is responsible for the glucose 
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metabolism. In diabetic patients, the function of the pancreas to produce insulin is seriously 

hampered which causes an increase in blood glucose concentration. When it is unable to utilize 

glucose as an energy source, the body releases ketones to tap the body fat for energy. The partial 

oxidation of free fatty acids in the liver generates β-hydroxy- β-methylglutaryl-CoA (HMGCoA) 

and hydronium (H+). HMGCoA converts into acetoacetate (AcAc) (CH3OCH2OO-). Acetone is 

produced by decarboxylation of acetoacetate and the dehydrogenation of isopropanol in the liver 

[67, 97, 98] both of these reactions occurring because of the increased level of blood glucose. 

    (E4.5) 

   (E4.6) 

This acetone in the blood is carried towards the lungs and eventually 

excreted with the exhaled breath [99]. Measurement of this acetone level can be used as a non-

invasive tool to check the severity of type-I diabetes. Acetone concentration in human breath 

ranges from 0.5 ppm for healthy individuals and greater than 1.8 ppm for individuals with diabetes 

[100–102]. Quantifying such a low concentration of acetone with high selectivity and without 

cross sensitivity with other gases can prove challenging for available conductometric sensing 

capabilities.  
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4.5.2 Current technology for acetone and non-invasive diabetes monitoring:  

Current methods of quantification of acetone includes bulky, non-portable 

and expensive measurements such as gas chromatography equipped with mass spectroscopy (GC-

MS) [67], or proton transfer reaction-mass spectrometry (PTR-MS) [103] etc. and requires the 

patients to visit the laboratory to be tested. Since the time of writing this thesis in December 2015, 

there has been reports on the “internet” about many innovative non-invasive or minimally invasive 

routes for determining blood glucose concentration. These technologies, if successful has a high 

potential for eliminating the invasive blood glucose monitors and dramatically improve the quality 

of life for diabetes patients. Some of these technologies are: (1) Smart contact lens developed by 

Google, Inc. embedded with sensors to monitor blood glucose through tears [104], (2) 

GlucowizzardTM developed by Biorasis, Inc. which consists of an ultra-small (0.5 mm by 0.5 mm 

by 5 mm) sensor implantable under the skin for continuous glucose monitoring (CGM) [105], (3) 

Continuous glucose monitoring system developed by Dexcom, Inc. [106], (4) Sweat meters for 

measuring glucose in sweat and correlating with blood glucose [107], and (5) urine strips to 

measure glucose in urine (the extra sugar in the bloodstream is usually only removed via the 

kidneys at blood sugar concentrations of 180 mg/dL or above) [108]. 

Metal oxide based gas sensors is one such device which has been used since 

1960 for gas monitoring and can be utilized for breath acetone measurements. This device consists 

of Au or Pt interdigitated line electrodes on a silicon or alumina base [84]. A metal oxide 

semiconductor film with narrow band gap is deposited on the interdigitated lines and resistance 

across them is measured externally. The resistance increases in presence of oxidizing analytes and 

reduces in presence of reducing analytes (for n-type semiconductor metal oxide film). 
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4.5.2 Structure of acetone:  

Acetone (CH3-CO-CH3) molecule has a triangular planar or AX3 geometry 

(“A” is the cation and “X” is the anion) since the carbon atom at the center is attached with three 

other atoms as shown in Fig. 4.3. The bond angles are 120°. In the acetone molecule, there is a 

double bond between the central carbon and the oxygen. The oxygen has two unshared electron 

pairs which make that end of the molecule highly negative. The bonds between the carbon-carbon 

atoms are single which are connected with three hydrogen atoms each, having positive charges. 

The uneven distribution of charges throughout the molecule makes it polar. The dipole moment of 

an acetone molecule is around 2.9 Debye (1 Debye = 3.34*10-30 coulomb meter = 0.20819434 eÅ 

= 10-18 esu) [109,110]. Because of its polarity, it is preferentially attracted by other polar molecules 

[8] such as monoclinic ɛ-WO3.  

 

Fig. 4.3: The AX3 structure of acetone showing the bond lengths and the angles. 
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4.5.3 Structure of ɛ-WO3:  

The monoclinic ɛ-WO3 is the only structure of WO3 which is polar because 

of its acentricity [8]. The crystal structure of ɛ-WO3 is shown in Fig. 4.4 as calculated by Salje et 

al., which highlights the distortions of the WO6 octahedra caused by the displacements of the W 

atoms away from the center of the octahedra. It can be seen that there is an alternating pattern of 

long and short W-O bonds along z direction. This acentric structure causes a net electric dipole 

moment primary along the z direction which was calculated by neutron diffraction study conducted 

by Salje et al. in reference [7]. The final moment summed over the four W sites is 0:52 ± 0.16 e Å 

(2.5 ± 0.8 Debye). The alternative long and short bonds can be clearly seen in ɛ-WO3 and absent 

in γ-WO3 phase.  

 

Fig. 4.4: The comparison of the structure of monoclinic ε-WO3 and γ-WO3 showing the origin of 

polarity in ε-WO3 due to the shift of central W atom. 
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However ɛ-WO3 is stable only at temperature below -40°C [7] which is far 

below the sensor operating temperature (400–500°C), and metastable at room temperature and 

higher temperature, thereby making it challenging to obtain such phases by the traditional 

synthesis processes. There have been various reports in literature which suggests various 

formulations to obtain this phase in metastable form at room temperature and temperature up to 

735°C. Levine et al. (1956) formulated the metastable ɛ-WO3 at room temperature by adding 2–

4% Ta2O5 in WO3 [111]. Roth and Waring (1966) conducted a series of experiments by changing 

the composition of niobia (Nb2O5) in a solid solution with WO3 and found that WO3 can only 

accept a maximum of 3 mol% of Nb2O5 in the solid solution. They also determined that, by varying 

the concentration of Nb2O5, all the available polymorphs could be obtained at room temperature. 

They obtained ε-WO3 at a concentration of 2 mol% Nb2O5 and 98 mol% WO3 after rapidly 

quenching the sample in a beaker of water from 1230–1385°C to room temperature. The structure 

was stable up to 735°C after which it experienced a reversible transformation directly to tetragonal 

α-WO3 [112]. More recently, Wang et al. (2008) obtained 80% ε-WO3 after doping 10 atomic % 

Cr2O3 to WO3 and after rapidly quenching in a flame spray pyrolysis system. The structure was 

stable till 700°C after which it transformed directly to tetragonal α-WO3 [60, 61]. In a similar study, 

Righettoni et al. (2010) obtained 70% ε-WO3 by rapidly quenching the undoped WO3 particles in 

flame spray pyrolysis and 100% ε-WO3 by doping 10 mol% amorphous SiO2 to WO3. However 

the ε-WO3 structure was stable only till 400°C for undoped WO3 and till 500°C for SiO2 doped 

WO3 [113]. Gao et al. (2012) obtained ε-WO3 at room temperature by a sol-gel technique after 

rapidly cooling the sample from 700°C to room temperature [114]. Since ε-WO3 is acentric, the 

only reason for its existence at room temperature could be that the tungsten atoms are shifted from 

their thermodynamically stable positions in the WO6 octahedra, resulting in the formation of net 
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polarity in the molecule. From all the cases above it is clear that quenching plays an important role 

for obtaining ε-WO3 at room temperature. During rapid quenching, the tungsten atoms may not 

have enough time to settle in their stable positions and it also causes the formation of internal stress 

in the structure. It should be also noted that in all the above mentioned cases the WO3 particles 

were in the nano regime with grain size less than 30 nm. Nanometer size particles tends to contain 

a higher concentration of defects and deformation during the crystal growth than micron sized 

particles [115]. Doping with foreign particles like Nb2O5, Cr2O3 and SiO2 causes the preservation 

of this stress in the structure at high temperature, and reduces the driving force for this phase 

transformation. For example, Cr atoms favor attachment on the particle surface to form chromates 

which form a layer around each WO3 particle and prevent phase transformation till 400°C [60]. 

Doping with SiO2 leads to the formation of amorphous SiO2 domain around WO3 particles which 

inhibit the growth of WO3 grain boundaries due to the large difference in thermal expansion 

coefficient (α) between SiO2 (α = 0.55–0.75*10-6/°C) and WO3 (α = 12*10-6/°C). [59]. This has 

been explained in details in chapter 8.  

4.6 Mechanism of acetone sensing by ε-WO3:  

Fig. 4.5 explains the mechanism of interaction between acetone and ε-WO3 as 

supported by Barsan and Weimar [87,116,117]. Both acetone and ε-WO3 are polar (μacetone = 2.9 

Debye; με-WO3 = 2.5 ± 0.8 Debye). Hence acetone is preferentially attracted to the ε-WO3. 

Moreover, since W6+ in WO3 is a Lewis acid site, it readily adsorbs acetone which is a Lewis base 

[118]. On applying a constant electric potential across a sensing electrode coated with WO3, and 

on exposing it to air at a temperature about 350–400°C, there is a constant flow of oxygen ions 

(O2-, O-) and the oxygen is ionosorbed on the WO3 surface. This also fills the oxygen vacancies in 
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WO3. The ionosorbed oxygen removes the electron from the conduction band of WO3 as described 

in the equations below: 

O2(gas) ⇔ O2(absorbed)         (E4.7) 

O2(absorbed)  + e
− ⇔ O2

−         (E4.8) 

O2
−  +  e− ⇔ 2O−          (E4.9) 

The ionosorbed oxygen also forms a layer around individual WO3 crystallites. This 

results in the formation of an electron depletion layer, also known as space-charge layer, (Λgas) 

[88]. At the junction of two particles a larger electron depletion layer (2 *Λgas) is formed causing 

conduction band bending of WO3 and the generation of a surface potential barrier (height of band 

bending qVS). Since the electronic conduction occurs along a percolation path via particle to 

particle contact, presence of the large electron depletion region hampers the electron path causing 

an increase in overall WO3 film resistance. Acetone vapor is a strong reducing agent. When the air 

supply to the electrode is replaced with a mixture of acetone/air, and the acetone is readily 

oxidized, thereby reducing the ionosorbed oxygen concentration on the WO3 surface. This causes 

the release of the electron back to the conduction band of WO3 and a reduction in the size of the 

electron depletion layer, resulting in the reduction in the film resistance. Following equations 

describe the reaction pathways between acetone and WO3 as suggested by Khadayate et al. [119]: 

CH3COCH3(gas) +  Oadsorbed
−  →  CH3COC

+H2 +  OH−  + e−              (E4.10) 

CH3COCH3 (gas) + OH
− →  CH3CHO +  CH3O

−                (E4.11) 

CH3CHO +  Obulk →  CH3COOH +  Ovacancies                (E4.12) 

OR 
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CH3COCH3 (gas) +  O− →  CH3C
+O + e−                 (E4.13) 

CH3C
+O →  C+H3 +  CO                   (E4.14) 

CO +  O− →  CO2 +  e−                   (E4.15) 

It is clear from the above that the most important element for these reactions is the oxygen, either 

from the air or the lattice oxygen from WO3. An interesting study by Labidi et al. on replacing 

oxygen with nitrogen attests to this fact [120]. 

 

Fig. 4.5: Mechanism of the interaction between acetone and ε-WO3. 
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5.1 Highlights: 

1. 1 wt% Pt nanoparticles on ceria were synthesized using RSDT for water-gas shift reaction. 

2. Catalyst was tested with 1 vol% CO, 3 vol% H2O in the range 100–400°C. 

3. No sintering or agglomerations of Pt nanoparticles was evident from HRTEM. 

4. Complete CO conversion was obtained at 250°C at GHSV of 8622 h-1. 

5. RSDT prepared catalyst showed a 40% activity boost over conventional catalysts. 

5.2 Abstract:  

Reactive Spray Deposition Technology (RSDT) was employed to synthesize 1 wt% 

Pt of 0.5–2 nm onto ceria of 8–30 nm. The catalyst was evaluated for water-gas shift (WGS) 

reaction with 1 vol% CO & 3 vol% H2O, atmospheric pressure, temperature range (100–350°C) 

and gas hourly space velocity (GHSV) of 8622 h-1. CO conversion of 15% (150°C), 18% (200°C), 

37% (225°C) and 100% (250°C) was observed. Comparison with conventionally prepared 

catalysts (sol-gel, co-precipitation, and incipient wetness impregnation) from literature revealed 

superior activity with RSDT synthesized catalysts. Catalyst morphology was investigated with 

TGA, ICP-OES, XRD, TPR, HRTEM, and SEM with XEDS. No evidence of sintering or 

agglomeration of Pt nanoparticles was observed in HRTEM which could account for the dramatic 

improvement in activity.  

5.3 Keywords: 

Water-Gas Shift Reaction; Ceria Supported Platinum Catalyst; CO Conversion; 

Reactive Spray Deposition Technology; High resolution transmission electron microscopy  
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5.4 Introduction: 

The RSDT for Pt based electro catalyst clearly have shown that the process can be 

adjusted to give precise control (<1 nm) metallic nanoparticle diameter. The studies also showed 

that specific activity for O2 reduction varied non-monotonically with particle size showing a 

relatively sharp peak in specific Pt activity at 2.2 nm diameter [1–3]. Here we report the 

comparison of the WGS activity of nanocrystalline Pt/ceria catalyst prepared by RSDT with the 

results reported in literature by conventional wet chemistry processes: sol-gel, co-precipitation, 

and incipient wetness impregnation. Microstructure and morphology of the catalyst was 

characterized for thermogravimetric analysis (TGA), inductively coupled plasma optical emission 

spectroscopy (ICP-OES), X-ray diffraction (XRD), temperature programmed reduction (TPR) 

with hydrogen, scanning electron microscopy (SEM), and high resolution transmission electron 

microscopy (HRTEM) with X-ray energy dispersive spectroscopy (XEDS). The work presented 

in this chapter was presented at the Microscopy and Microanalysis (M&M) 2013 meeting at, 

Indianapolis, Indiana at symposium P04.P1: Deriving Fundamental Catalyst Properties from 

Electron Microscopy as a poster# 198. This work is also published in Applied Catalysis A: General 

[4].
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Fig. 5.1: Arrangement of the Reactive Spray Deposition Technology equipment for the synthesis of Pt on ceria catalysts for water-gas 

shift reaction.



 

113 
 

5.5 Experimental: 

5.5.1 Catalyst synthesis: 

The ceria was obtained from Sigma Aldrich (Catalogue (# 544841). Pt 

nanoparticles were deposited on to the ceria using RSDT. A detailed explanation of the equipment 

and the process is given in chapter 1. The schematic for RSDT is shown in Fig. 5.1.  The precursor 

used was platinum (II) 2, 4-pentanedionate [“platinum acetylacetonate” or “Pt acac”] obtained 

from Colonial Metals, Inc. (# 6039) which was dissolved in a solvent blend consisting of xylene 

and acetone (Fisher Scientific # X5-20 and A18-4 respectively) in the weight ratio of 3:1. In order 

to support the atomization, 20 wt% sulfur free liquefied propane (Airgas catalogue # PRCP350S) 

was added to the precursor solution resulting in a final concentration of 0.6 mmol/L Pt acac, 62.5 

wt% xylene, 21 wt% acetone, and 16.5 wt% propane. The flow rate of the precursor solution was 

set at 4 mL/min and the temperature at 60°C based on our previous design of experiments to create 

nano sized Pt particles of 1–3 nm [1]. The precursor solution was atomized by a gas-assisted 

external mixing nozzle (combustion nozzle) by oxygen (14 L/min). Six methane-oxygen flamelets 

(methane and oxygen at 0.5 L/min each) surrounds the capillary end which ignites the combustible 

precursor mist. Since the droplets produced by this process are mostly sub-micron due to energetic 

inputs of heat, pressure, and a supercritical propane diluent—the metal-organic precursor is 

confined to the nanoscale regime during particle formation. During the particle formation process 

the precursor heats up, decomposes, and then undergoes a phase transition to vapor followed by 

concurrent reduction of the Pt2+ to Pt metal. At around 6 inches from the flame, a circular air 

quench (Exair, Super Air WipeTM) was placed with an air flow rate of 28 L/min. The air quench 

cools the Pt nanoparticles instantly and eliminates further growth, agglomeration, and sintering, 
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thereby keeping the particle size small and increasing active surface area which is an essential 

requirement for the high catalytic activity. 

The ceria slurry was prepared by suspending 1 wt% ceria in deionized water 

and maintaining the pH at 5 by adding concentrated nitric acid. The acidity helps deaggregation of 

the ceria particles [5]. The slurry was subjected to stirring and ultra-sonication for 1 h. with an 

energy input of 200–250 kJ. The slurry was sprayed using a pair of Nordson EFD 781 spray valves 

(slurry nozzles) which were positioned at 180° to each other and perpendicularly to the flame, the 

total flow rate of which was maintained at 1.5 mL/min. The Pt nanoparticles from the flame were 

condensed on the ceria sprayed from the slurry nozzles during time of flight and the Pt/ceria 

catalyst was collected on the glass fiber filter (GFF) substrate. In addition to this, few more 

substrates were used for deposition as shown in Fig. 5.2. 

5.5.2 Characterization:  

The decomposition profile of Pt acac was obtained using TGA Q5000 IR 

thermogravimetric analyzer from TA instruments. It is a required parameter which is useful to set 

the flame conditions to ensure that no residual Pt acac remained in the prepared catalyst. To 

simulate the conditions of the reaction in the flame, TGA was performed in air from 30–550°C at 

the ramp rate of 5°C /min. Elemental analysis of the deposited catalyst film was determined by 

ICP-OES using a Perkin Elmer Optima 7300DV. XRD patterns were recorded on a Bruker D8 

advanced powder diffractometer using CuKα radiation with a zero background quartz disc on 

which the catalyst was deposited. HRTEM micrographs of Pt on ceria particles were obtained on 

a 200kV JEOL 2010 FasTEM with a LaB6 source equipped with an EDAX XEDS system. Lacey 

formvar/carbon, 200 mesh Cu grids (Ted Pella, Inc.) were mounted on a custom built multiple grid 

holder. The holder was introduced directly in front of the flame. The grids were removed after 150 
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s and introduced directly in the TEM chamber without any further sample preparation steps. SEM 

micrographs were collected on an FEI ESEM Quanta 250 with a field emission gun with an EDAX 

XEDS system. The glass fiber filter (GFF) substrate was sputter coated with gold prior to imaging. 

The catalyst film was also deposited on conductive glassy carbon for further SEM studies. TPR 

studies were performed in 1 vol% H2 and balance Ar with a flow rate of 100 sccm in the 

temperature range (30–600°C) with a ramp rate of 2°C/min. 

 

Fig. 5.2: Arrangement of the substrates for the deposition of Pt on ceria catalysts for water-gas 

shift reaction. 
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5.5.3 Catalytic Reaction: 

The catalyst was tested for WGS activity at atmospheric pressure and 

temperature range (100–350°C) with a ramp rate of 5°C/min in Altamira Instrument’s 

BenchCAT™ 1000R HP equipped with a fixed bed reactor, furnace, and mass flow controllers 

for precise gas flow. A schematic of the arrangement of the WGS test is shown in Fig. 5.3. The 

reactor was a 1 in. OD and 7 in. long quartz tube. The gas flow with a composition of 1 vol% CO 

and 99 vol% Ar was set at 100 sccm and humidified by bubbling through water maintained at 

25°C. The catalyst bed was monitored with an Omega standard k-type thermocouple. An Agilent 

Micro gas chromatography (GC) with a thermal conductivity detector (TCD) was used for the 

identification of the products from the reactor. The GC was calibrated for CO, CO2, and H2 by 

flowing known standards. The product gas stream was directed through a Peltier cooled chiller 

to remove any residual moisture before it was sent to GC. The catalyst was also tested with the 

conditions (pretreatment and reaction) similar to references [6–9] as described in table 5.1. 
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Fig. 5.3: Schematic of the BenchCAT used for testing the Pt/ceria catalysts for water-gas shift 

reaction. 

 

5.6 Results and discussion: 

5.6.1 Catalyst Characterization: 

Fig. 5.4 shows the TGA profile of Pt acac in air. The initial weight was 

22.39 mg. The weight loss process began at 173°C and leveled off at 257°C with the final weight 

loss of 59 wt%. This shows that the precursor can be easily decomposed to metallic Pt in the flame. 

A Pt doping value of 0.91 wt% was confirmed by ICP-OES.  
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Fig. 5.4: Thermogravimetric analysis (TGA) of platinum acetylacetonate in air from 30–550°C 

shows the decomposition at 257°C. 

 

Fig. 5.5 shows the XRD pattern of the ceria support and Pt on ceria catalyst. 

The ceria shows the fluorite cubic structure and is associated with the ICDD# 01-075-9470. The 

crystallite size of the support was measured to be 27.0 nm by the Debye Scherrer’s method: 

τ =
kλ

βCosθ
             (E5.1) 

Where, τ is the crystallite size, k is the shape factor which is generally 1, β is the line broadening 

at half the maximum intensity (FWHM), θ is half the Bragg angle. However, this method of 

crystallite size calculation does not take into account the distribution of sizes and only considers 

the mean size of the particles. No visible Pt peaks were observed, possibly due to the interference 
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with ceria and the low Pt loading value [10]. The crystallite size of ceria remained unchanged after 

Pt doping inferring that the cubic structure of ceria is retained and was not influenced by high 

temperature conditions which may have caused sintering. The substrate temperature in the RSDT 

was in the range of 90–110°C. There was no significant position shift of the prepared catalysts as 

compared with the bare ceria which implies that the Pt atom was not incorporated into the ceria 

structure [11]. 

 

Fig. 5.5: XRD pattern of 1 wt% Pt/ceria prepared by RSDT as compared with bare ceria. 

 

The microstructure and film morphology were characterized by SEM. The 

SEM micrographs of the non-coated GFF substrate and catalyst film are shown in Fig. 5.6 (a) and 

(b) respectively. From Fig. 5.6 (a) it can be noticed that the fibers are 0.5–2 μm in diameter. Fig. 

5.6 (b) illustrates non uniformity in the catalyst film on the GFF substrate. Three insets are shown 

in Fig. 5.6 (b). Left inset shows the edge of the catalyst coated substrate. The middle inset is the 
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image of the film on conductive glassy carbon substrate and it shows the part of the film which is 

peeling off from the substrate. This shows that the film thickness is around 12.6 μm. The right 

inset is a magnified view of the film coated on fibers and it shows that the resultant conformal film 

of Pt/ceria nanoparticles covered the individual fibers on the upper-side of the membrane 

completely, without inducing any fiber aggregation. 
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Fig. 5.6: (a) SEM micrograph of non-coated glass fiber filter. (b) Pt/ceria catalyst on glass fiber 

filter (c) HRTEM micrograph of Pt/ceria as deposited on lacey carbon grid; (d) and (e) higher 

magnification micrograph showing Pt nanoparticles on ceria. 

 In order to identify the metal-support interaction, HRTEM micrographs 

were taken as shown in Fig. 5.6 (c), (d), and (e). The TEM micrograph shows the size distribution 

of Pt nanoparticles to be in the range of 0.5–2 nm. Nanoparticles of Pt are evenly distributed on 

the surface of ceria nanoparticles that are 10–30 nm in diameter. No evidence of agglomeration or 
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sintering of Pt nanoparticles can be seen. The bottom right inset of Fig. 5.6 (c) shows the selected 

area diffraction pattern which mainly corresponds to the ceria lattice. XEDS also confirmed the Pt 

loading to be around 1 wt% (data not shown here). Ceria has a variety of geometries including 

rectangular, polygon, and facet and has a size distribution in the range of 8–30 nm. TPR 

measurement of the catalysts was performed in H2 from 100–600°C (plot not shown here). Three 

distinct peaks were obtained at 100°C, 175°C, and 425°C which were assigned to the reduction of 

surface PtOx, PtOx interacting with ceria, and bulk ceria respectively [12].  

5.6.2 Water Gas Shift Catalytic Activity: 

The activity of the ceria supported 1 wt% Pt catalyst is shown in Fig. 5.7. 

No methanation activity was observed in the reaction as evident from the absence of methane peak 

in the micro GC. The catalyst was active at 150°C and gave a CO conversion of 15% at 150°C, 

18% at 200°C, 37% at 225°C, and 100% at 250°C. The activity is compared with the catalysts 

prepared by the conventional wet chemistry processes with similar Pt doping: sol-gel, co-

precipitation, and incipient wetness impregnation [6–9] and the comparison is shown in table 5.1. 

In order to do a fair comparison, our catalysts were also tested with the conditions of reference [6–

9] as shown in Fig. 5.7 (A–D). It can be seen that the catalyst performed better than the catalyst of 

Apanee et al., Duarte et al. and Hwang et al. and poorly with Roh et al. There can be a number of 

factors responsible for the catalyst activity. Preparation methods and catalyst pre-treatment play a 

significant role in the performance. Hwang et al. [7] and Dwarte et al. [8] subjected their catalysts 

(each with a Pt doping around 1–1.2 wt% on ceria) to 350°C for 1 h. in a reducing environment 

which could have led to sintering of Pt nanoparticles thereby reducing the active surface area. It is 

interesting to see in Fig. 5.7 that after pretreating the catalyst at 110°C with O2 for 2 h., the catalyst 

performed better than the untreated one. CO concentration in the reactor feed also had a significant 
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role. WGS rate is proportional to the CO partial pressure to the zero order observed over the Pt-

based catalysts, which implies that reducing the CO concentration from 2 vol% to 1 vol% requires 

twice as much catalyst [13]. However, increase in CO causes poisoning of Pt thereby making it 

inactive. A typical value for CO concentration for an LTS reactor is 1 vol %. Apanee et al. 

measured the highest CO conversion around 17% at 320°C by using 4% CO in the feed [6]. 

However, on reducing the CO concentration to 1%, activity improved dramatically giving 90% 

CO conversion at 300°C. Further reduction of CO to 0.5% concentration improved activity to 95% 

CO conversion at 250°C. Catalysts are also prone to sulfur poisoning which significantly hampers 

the performance. It can be seen that the amount of Pt doping has a direct influence on the activity. 

The amount of Pt doping and the synthesis method needed to be optimized for a maximum activity. 

Yeung et al. reported a Pt doping of 2 wt% and resulted in reduced CO conversion of only 16.5% 

at 450°C [14]. This could be due to the fact that higher Pt doping results in the formation of clusters 

and agglomeration leading to a reduced Pt dispersion and decreased support-metal contact area 

[15]. In order to better understand the influence of Pt doping on the activity of ceria the density 

functional theory (DFT) was employed [16–19]. It was found that the structural relaxation is the 

main factor responsible for decrease of the oxygen vacancy formation energy, i.e. the Pt doping 

makes structural distortion much more exothermic for the reduced ceria. The mechanism for the 

large reduction in vacancy formation energy can partly be explained by simple electrostatic 

arguments. The Pt2+ dopants are lower in formal charge than Ce4+, and it is easier to form an 

oxygen vacancy from next to Pt2+ than next to Ce4+. Lastly, enhancement in the WGS reaction 

activity of Pt/ceria catalysts has also been explained by the electronic perturbation of the Pt by the 

ceria support [20]. Electronic interaction between Pt and ceria greatly reduces the activation barrier 

for water splitting and stabilizes the adsorbed OH and H products as shown by DFT [21].  
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Table 5.1: Comparison of the catalysts synthesized by RSDT with conventionally prepared catalysts from literature. 

Catalyst 
Synthesis 

method 
Pretreatment Reactor feed 

Reaction  

conditions 

Crystallite 

size 

(nm) GHSV 

(h-1) 

TPR with H2  

(°C) Maximum  

CO 

conversion 

Ref. 

CeO2 Pt 
Surface  

PtOx 

Bulk  

PtOx 

Bulk  

CeO2 

1%  

Pt/Ceria 
RSDT None 

1% CO/Ar 

bubbled 

through water 

at 25°C. 

Flow rate 100 

sccm. 

100–400°C, 

atm. 

pressure 

8–30 1.5–2 8622 100 175 425 
100%  

at 250°C 
[4] 

1%  

Pt/Ceria 

Ceria-

precipitation 

process using 

Ce(NO3)3·6H2O. 

Pt doping-

incipient wetness 

impregnation 

using 

Pt(NH3)4(NO3)2. 

Reduced in 5% 

H2/N2 from 

room 

temperature to 

400°C at the 

ramp rate of 

3.3°C/min and 

the temperature 

was maintained 

for 1 h. 

6.4 vol.% CO, 

7.1 vol.% CO2, 

0.7 vol.% CH4, 

43.0 vol.% H2, 

28.4 vol.% 

H2O, and 14.4 

vol.% N2. The 

feed H2O/(CH4 

+ CO + CO2) 

ratio was fixed 

at 2. 

200–360°C, 

atm. 

pressure 

11 3 45515 70 160 600 
88%  

at 320°C 
[9] 

1% 

Pt/Ceria 

Single step sol-gel 

using Ce acetate 

and H2PtCl6.6H2O 

with NH4OH. 

Oxidized in 

pure O2 at 

110°C for 2 h. 

1% CO in He, 

saturated with 

water vapor by 

bubbler. 

120–360°C, 

atm. 

pressure 

34.8 >5 30000 NM NM NM 
90%  

at 300°C 
[6] 
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Catalyst 
Synthesis 

method 
Pretreatment Reactor feed 

Reaction  

conditions 

Crystallite 

size 

(nm) GHSV 

(h-1) 

TPR with H2  

(°C) Maximum  

CO 

conversion 

Ref. 

CeO2 Pt 
Surface  

PtOx 

Bulk  

PtOx 

Bulk  

CeO2 

1.1% 

Pt/Ceria 

Ceria-

precipitation 

process using 

Ce(NO3)3·6H2O 

and NH4OH. 

Pt doping-

incipient wetness 

impregnation 

using 

H2PtCl6·6H2O. 

Reduced in-

situ by 10% 

H2/N2 at 350°C 

for 1 h. 

7.0 % CO, 8.5 

% CO2, 22.0 % 

H2O, 37 % H2 

and 25.5 % N2. 

Flow rate 40 

sccm. 

200–360°C, 

atm. 

pressure 

15 1–1.3 14000 NM 185 230 
88%  

at 320°C 
[7] 

1.01% 

Pt/Ceria 

Ceria-

precipitation 

process using 

Ce(NO3)3·6H2O 

and NaOH.  

Pt doping-

incipient wetness 

impregnation 

using 

H2PtCl6·6H2O. 

Reduced in-

situ by 10% 

H2/N2 at 350°C 

for 1 h. 

7.0 % CO, 8.5 

% CO2, 22.0 % 

H2O, 37 % H2 

and 25.5 % N2. 

Flow rate 40 

sccm. 

220–360°C, 

atm. 

pressure 

14.2 1–1.4 14000 NM 260 310 
92%  

at 300°C 
[7] 

1.2% 

Pt/Ceria 

Ceria-

precipitation 

process using 

(NH4)Ce(NO3)6 

6H2O.  

Pt doping-

incipient wetness 

impregnation 

using 

Pt(NH3)4(NO3)2 

Reduced in H2 

(30 mL/min) 

from room 

temperature to 

350°C at the 

ramp rate of 

10°C/min and 

the temperature 

was maintained 

for 1 h. 

5.49 % CO, 

4.10 % CO2, 

9.71 % H2, 

30.75 % H2O 

(H2O:CO 

molar ratio = 

5.6:1) and N2 

(balance).  

Flow rate 90 

sccm. 

300°C, 

atm. 

pressure 

7.7 NM NM NM NM NM 

45%  

at 300°C 

 (Initial 

conversion. 

Max not 

measured.) 

[8] 
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Catalyst 
Synthesis 

method 
Pretreatment Reactor feed 

Reaction  

conditions 

Crystallite 

size 

(nm) GHSV 

(h-1) 

TPR with H2  

(°C) Maximum  

CO 

conversion 

Ref. 

CeO2 Pt 
Surface  

PtOx 

Bulk  

PtOx 

Bulk  

CeO2 

Afterwards, the 

atmosphere 

was purged 

with N2 (30 

mL/min) while 

the temperature 

was 

lowered to 

300°C. 

NM: Not measured  
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Fig. 5.7: Water-gas shift reaction activity of RSDT made catalysts as compared with literature 

(conventional wet chemistry based catalysts). A, B, C and D: WGS reaction activity tested with 

similar conditions as references [9], [6], [7] and [8] respectively. 
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5.7 Conclusions: 

1 wt% Pt on ceria catalyst was synthesized using RSDT where solid nanoparticles 

were grown from the vapor phase and collected on glass fiber filter substrates. The catalyst was 

tested for WGS reaction at various pretreatment and operating conditions. The activity was 

compared with the literature for the catalysts prepared by conventional processes. It was found 

that the RSDT produced catalyst performed better than most of the other catalysts. This is due to 

uniform distribution of Pt nanoparticles on the ceria surface and no agglomeration between 

particles. The catalyst activity depends strongly on the particle size of Pt, CO feed concentration, 

GHSV, water/CO ratio, ceria-Pt interaction, availability of surface oxygen vacancies in ceria, and 

catalyst poisoning by excess CO or sulfur. Chapter 6 will elaborate further the influence of the 

ceria size, synthesis technique, morphology and surface activation in the Pt/ceria catalyst for WGS 

reaction. 
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CHAPTER 6:  

Comparative study for low temperature 

water-gas shift reaction on Pt/ceria catalysts: 

Role of different ceria supports 
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6.1 Highlights: 

1. Processing-structure-property relationship of Pt/ceria catalysts were evaluated for the water-

gas shift reaction using three different ceria nanopowder synthesized with different techniques. 

2. Physical and microstructural properties of the ceria and Pt/ceria catalysts were compared.  

3. The structural properties of the support were correlated with the activity for the water-gas shift 

reaction. 

4. Tests data suggest that performance improvements that approach 100% CO conversion can be 

achieved. 

6.2 Abstract: 

Pt on ceria catalysts for water-gas shift (WGS) reaction were prepared by 

employing three ceria nanopowder synthesized with different processing techniques and having 

different surface area and porosities. Pt nanoparticles (~0.5–2 nm) were deposited in the vapor 

phase onto each of the three ceria supports by Reactive Spray Deposition Technology (RSDT). 

The catalysts were performance tested for the WGS reaction in the temperature range of 150–

450°C at a gas hourly space velocity (GHSV) of 13,360 h-1. The structure-activity relationship for 

the ceria-based materials was studied. The most promising catalyst was Pt supported on 

mesoporous ceria with crystallite size of 5.8 nm and Brunauer-Emmett-Teller (BET) surface area 

of 187 m2/g. This configuration demonstrated complete CO conversion at 225°C. The CO 

adsorption strength and the ability to dissociate H2O are the two main factors that determine the 

activity of a particular catalyst site for the water-gas shift (WGS) reaction. This study leads to the 

conclusion that the highest water-gas shift reaction activity was obtained with Pt supported on the 
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mesoporous ceria, with low crystallite size and high surface area, with well dispersed Pt, leading 

to enhanced Pt-ceria interaction. 

6.3 Keywords: 

Water-gas shift reaction; Flame spray pyrolysis; Pt-ceria interface; Mesoporous 

ceria; Processing-structure-property relationship. 

6.4 Introduction: 

In chapter 5, Reactive Spray Deposition Technology (RSDT) has been evaluated 

as a single step option for the synthesis of ceria supported Pt catalysts [1]. In this study, RSDT 

has been evaluated for Pt nanoparticles applied on three different ceria supports to determine the 

ceria morphology that is the most suitable as a Pt support material for the for low temperature 

WGS reaction. The ceria supports differ by their syntheses: sol-gel, combustion chemical vapor 

deposition, and the one obtained by a commercial process of firing high purity cerium carbonate 

to ceria. Each process gave unique properties: mesoporosity, particle size and surface area. The 

syntheses of each of these ceria support materials were compared, and the processing-structure-

properties relationship of the catalysts were established by the following tests: the microstructural 

properties of the ceria supported Pt catalysts were investigated by X-ray diffraction (XRD), small 

angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, 

N2 sorption experiments using Brunauer-Emmett-Teller (BET) method, transmission electron 

microscopy (TEM), and scanning electron microscopy (SEM). The catalysts were performance 

tested for the WGS reaction. In this work, our objective was to determine the influence of the 

crystallite size, surface area, and mesoporosity of the ceria support on the WGS reaction rate. We 

have also determined, the reaction mechanism and the possible reaction pathways for each of 
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these Pt/ceria catalysts using in-situ diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS). This work was presented at the 2013 Materials Research Society (MRS) fall meeting 

and exhibit, Boston, MA, symposium AA: Catalytic Nanomaterials for Energy and Environment, 

December 1–6 (2013). This work was published in Applied Catalysis A: General [2]. 

6.5 Experimental: 

6.5.1 Syntheses of ceria: 

The ceria supports used in this study were chosen based on their individual 

synthesis processes: sol-gel method, combustion chemical vapor deposition, and commercially 

obtained ceria from Sigma Aldrich (catalogue# 202975). These materials are denoted by C1, C2 

and C3 respectively in this text. Corresponding ceria supported Pt catalysts are denoted by C1/Pt, 

C2/Pt and C3/Pt. C1 was the mesoporous ceria (UCT-16) prepared at University of Connecticut 

by Poyraz et al. using a sol-gel based inverse micelle method [3]. C2 was prepared by combustion 

chemical vapor deposition (CCVD) using cerium (III) 2-ethylhexanoate, 49% in 2-ethylhexanoic 

acid (Alfa Aesar product# 40451) as the ceria precursor. The precursor concentration was 

maintained at 0.1 (M) in a solvent blend of toluene and liquefied propane. The description of the 

setup is explained elsewhere [4, 5]. C3 is the commercial ceria obtained from Sigma Aldrich (lot 

# 202975) which was mass produced by a proprietary process of firing high purity cerium 

carbonate. For the three ceria supports, Pt nanoparticles were deposited under the same deposition 

conditions by RSDT. 

6.5.2 Syntheses of ceria supported Pt: 

The detailed explanation of RSDT equipment is given in chapter 1. Fig. 6.1 

shows the schematic of RSDT. The platinum precursor was platinum (II) 2, 4-pentanedionate 

[“platinum acetylacetonate” or “Pt acac”] obtained from Colonial Metals, Inc. (# 6039) which has 
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a Pt content of 49.6%. The precursor was chosen based on its low decomposition temperature of 

257°C which was determined by thermogravimetric analysis (TGA) [1]. The precursor was 

dissolved in a solvent mixture consisting of xylene (ΔH°
c, 298K = -4309 kJ/mol) and acetone (ΔH°

c, 

298K = -1658 kJ/mol) (Fisher Scientific # X5-20 and A18-4 respectively) in the weight ratio of 3:1. 

Xylene and acetone has a dual role of solvent and fuel for the combustion of Pt acac. Xylene helps 

in maintaining the solubility of Pt acac and also aids in the decomposition of Pt acac to Pt. 

Although acetone has a relatively low enthalpy (ΔH°
c, 298K = -1658 kJ/mol), it is added to further 

enhance the solubility and prevent the settling of any undissolved Pt acac. This mixture was filled 

in a sealed high pressure stainless steel chamber (120 psi) and sulfur free liquefied propane (ΔH°
c, 

298K = -2202 kJ/mol) (Airgas catalogue # PRCP350S) was added to the precursor solution resulting 

in a final concentration of 0.6 mmol/L Pt acac, 62 wt% xylene, 21 wt% acetone, and 17 wt% 

propane. Propane helps in atomization by increasing the pressure drop between the needle and the 

point of exit of the solution, thereby splitting the solution into tiny droplets approximately 15 μm 

in diameter as measured by Malvern Instrument’s Spraytec laser diffraction system [6]. The 

increase in surface area of the overall droplets helps in efficient combustion of the precursor. This 

solution was filled in a syringe pump (Teledyne Isco 500D, Lincoln NE) and directed to a series 

of stainless steel tubes of varying diameters: 0.025 cm inner diameter 316 stainless steel tube which 

is brazed to a capillary of diameter 100 μm (Vita Needle company) to assist in the pressure drop. 

The flow rate of the precursor was set at 4 mL/min. An Omega k type thermocouple was placed at 

the junction of the tube and capillary, the temperature of which is maintained at 190°C by means 

of an induction coil wrapped upstream of the flow of precursor solution based on our previous 

design of experiments to create nanometer sized Pt particles of 1–3 nm [7]. This caused the 

temperature of the precursor solution at the exit point to be 60°C and a pressure drop of 110–120 
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psi. The combined effect of liquefied propane, temperature, and reduction of diameter of the tube, 

causes the solution to shift into the supercritical regime and formation of sub-micron size droplets 

[6]. The precursor solution was atomized by a gas-assisted external mixing nozzle (combustion 

nozzle) by oxygen (14 L/min). The ratio of fuel/oxygen for stoichiometric conditions (ήOxygen/ 

ήFuel)stoic and the actual value (ήOxygen/ ήFuel)actual is also known as the equivalence ratio [8] defined 

as follows: 

φ = (
ṅoxidant 

ṅfuel  
)stoichiometric /(

ṅoxidant 

ṅfuel  
)real    (E6.1) 

Where ṅoxidant  and ṅfuel   are the molar flow rate of oxygen and precursor solution (fuel) 

respectively. Equivalence ratio can be utilized to determine the oxidation or reduction condition 

of the flame since 𝜑 >1 (reducing flame), 𝜑 = 1 (stoichiometric flame), 𝜑 <1 (oxidizing flame). 

For the synthesis of Pt/ceria catalysts, Ф was set below 1 or oxidizing combustion. Six methane-

oxygen flamelets at 1 L/min (4:5 methane to oxygen volumetric ratio) surround the capillary end 

which ignites the combustible precursor mist. During the particle formation process the precursor 

heats up, decomposes, and then undergoes a phase transition to vapor followed by concurrent 

reduction of the Pt2+ to Pt metal. At about 10 cm from the flame, a circular air quench (Exair, Super 

Air WipeTM) was placed with an air flow rate of 70 L/min. The distance between the combustion 

nozzle and the air quench is the reaction zone and the length of the reaction zone is proportional 

to the residence time of the nanoparticles in the zone. Independent adjustment of the length of the 

reaction zone and the flow rate of compressed air through the air quench provides unique 

conditions for obtaining an assortment of phases and structures of nanoparticles synthesized by 

RSDT [9]. The air quench rapidly cools the Pt nanoparticles and prevents growth, agglomeration, 

and sintering, thereby keeping the particle size small maintaining high active surface area which 

is an essential requirement for the high catalytic activity.  
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The ceria slurry was prepared by suspending 1 wt% ceria in deionized water 

and maintaining the pH at 5 by adding concentrated nitric acid. The acidity helps the deaggregation 

of the ceria particles [10]. The slurry was subjected to stirring and ultra-sonication for 1 h. with an 

energy input of 200–250 kJ. In order to test any precipitation of ceria, a small slurry sample was 

allowed to stand undisturbed for 72 h. and no significant ceria precipitate was observed. The slurry 

was introduced onto a pair of stainless steel syringe pumps (Harvard apparatus catalogue# 702259) 

with the capacity of 100 mL each which were connected with a pair of Nordson EFD 781 spray 

valves (slurry nozzles) used for spraying the slurry. The slurry nozzle was connected with an air 

supply line of pressure 70 psi and it operating by the principle of pressure drop and the atomization 

of the slurry by air. The slurry nozzle end is shown in Fig. 6.1 has three main parts: needle, needle 

seat and annulus. As the air is turned on, the air pressure retracts the needle from its nozzle seat 

allowing the liquid to flow around the annulus. This creates a pressure drop around the annulus 

and causes the liquid to atomize into fine droplets. The slurry nozzles were positioned at 180° to 

each other and perpendicularly to the flame, the total flow rate of which was maintained at 1.5 

mL/min. The Pt nanoparticles from the flame were condensed on the ceria sprayed from the slurry 

nozzles during time of flight. Pt/ceria catalyst was directly deposited as a film on glass fiber filter 

coupon (Proweigh filters catalogue # F93476mm) which was mounted on a stainless steel block 

placed on an x-y-z motion system as shown in Fig. 6.2. The substrates were placed 15 cm from 

the flame. The deposition area on the glass fiber filter was 25 cm2. The substrate temperature was 

measured using an Omega standard k-type thermocouple and was in the 110–120°C range. 
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Fig. 6.1: Schematic of RSDT for the synthesis of Pt/ceria catalysts. 
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6.5.3 Characterization:  

XRD patterns were obtained on a Bruker D8 advanced powder 

diffractometer using Cu Kα radiation. Small angle X-ray scattering (SAXS) was performed on a 

Rigaku Ultima IV diffractometer with CuKα radiation in the 2θ range of (0.6–5) with a step size 

of 0.05. Raman spectroscopy measurements were obtained with a Renishaw Ramascope micro-

Raman spectrometer fitted with a reflected light microscope using a 50 mW laser (514.5 nm) and 

exposure time of 10 s at ambient conditions. Instrument alignment was optimized using a 520 

cm-1 signal of a silicon wafer. Raman spectroscopy measurements were performed since this 

technique is well known to provide the concentration of active oxygen species and non-

stoichiometry of the oxide supports [11, 12]. The spectra were obtained at room temperature in 

ambient atmosphere in the spectral range between 200 and 1200 cm−1. XPS measurements were 

obtained on a PHI 595 Multiprobe system. The X-ray source was Al Kα (1486.6 eV) with 170 

W power. The pass energy, step size and time per step was set at (100 eV/1 eV per step/50 ms) 

and (50 eV/0.1 eV per step/50 ms) for the survey scan and high resolution multiplex scan 

respectively. A pressure of 4 X 10-8 torr was maintained in the ultra-high vacuum (UHV) 

chamber. Data analysis and deconvolution of peaks were done using the CasaXPS software 

package. Nitrogen sorption experiments were performed on a Quantachrome Autosorb-1-1C 

automated adsorption system. The surface area was calculated by the BET method. SEM 

micrographs were obtained at 10 kV accelerating voltage and 10 mm working distance on an FEI 

ESEM Quanta 250. TEM micrographs of Pt on ceria particles were taken on a 200 kV JEOL 

2010 FasTEM and also on a 120 kV FEI Tecnai T12 S/TEM, both fitted with LaB6 source. To 

obtain the composition of the catalytic films, elemental analysis of the deposited films was 

determined by X-ray energy dispersive spectroscopy (XEDS) on an EDAX system and 
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inductively coupled plasma optical emission spectroscopy (ICP-OES) using a Perkin Elmer 

Optima 7300DV ICP-OES. In-situ diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) was used to monitor adsorption and reaction of CO and water on the Pt/ceria catalysts. 

DRIFTS spectra were recorded using a Thermo Nicolet 6700 FTIR (MCT detector) with a 

Harrick Praying Mantis DRIFTS accessory and reaction chamber fitted with a ZnSe window. 64 

scans at 4 cm-1 resolution and 6.33 cm/s velocity were taken for each measurement, and fresh 

supported catalyst was used as the background. All experiments were performed using 1 vol% 

CO and 99 vol% Ar which was bubbled through a water bubbler maintained at 25°C for 

humidifying the reactant gases. This gave a final reactant gas composition of 0.94 vol% CO, 93 

vol% Ar and 6 vol% water vapor at 25°C. Each catalyst was equilibrated under an inert Ar 

atmosphere at 100°C. The reactant gas stream was then introduced to the cell, and was exposed 

to the catalyst at 100°C for at least 20 min. The temperature was then ramped in 25°C increments 

followed by equilibration for at least 20 min, until no difference was observed in consecutive 

spectra. All data were analyzed using Thermo OMNIC software.  
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Fig. 6.2: Various substrates used during the deposition of Pt/ceria catalysts. 

 

6.5.4 Catalytic testing: 

Catalysts were tested for WGS activity, CO2 & H2 selectivity, in the 

temperature range of (150–450°C) with a ramp rate of 5°C/min. in Altamira Instrument’s 

BenchCAT™ 1000R HP equipped with a fixed bed reactor, furnace and mass flow controllers 

for precise gas flow. The glass fiber filter substrates deposited with Pt/ceria catalysts were 
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crushed to a powder using a mortar and pestle and packed in the center of a quartz tube (18 cm 

long, and 3.9 mm ID) to a packing length of 4 cm. The packed bed reactor volume was 

approximately 0.48 cm3 and length/diameter (L/D) ratio was 10.3. The gas flow with a 

composition of 1 vol% CO and 99 vol% Ar was set at 100 sccm and bubbled through a water 

bubbler maintained at 25°C for humidifying the reactant gases. This gave a final reactant gas 

composition of 0.94 vol% CO, 93 vol% Ar and 6 vol% water vapor at 25°C. The water bubbler 

was previously calibrated by bubbling Ar for a set period of time and collecting the water at the 

outlet using an ethanol cold trap to capture all the moisture picked up by Ar. Gas hourly space 

velocity (GHSV) of 13360 h-1 was used for the tests. An Agilent Micro gas chromatography (GC) 

with a thermal conductivity detector (TCD) was used for the identification of the products from 

the reactor. The GC was calibrated for CO, CO2 and H2 in the range (0.1–1 vol% in Ar) by 

flowing known standards. The concentration of the reactants and products were determined by 

comparing the GC peak area with the calibrated values. Complete CO conversion was concluded 

when the CO peak disappeared in the chromatogram. Glass fiber filter substrate was separately 

tested for WGS reaction to confirm that it does not participate in the reaction. In order to obtain 

a fair comparison between the catalysts, all the conditions of testing and characterization were 

kept exactly the same.  

6.6 Results: 

6.6.1 Structural properties: 

6.6.1.1 X-ray diffraction (XRD): 

Fig. 6.3 shows the XRD pattern of the ceria supported Pt catalysts. 

All three ceria materials show the fluorite cubic structure and were indexed with ICDD# 01-075-
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9470. The difference in crystallite size is clearly evident from the peak width of the three 

catalysts. The mean crystallite size was calculated from X-ray line broadening by Debye 

Scherrer’s method and was 5.6 nm (C1/Pt), 5.7 nm (C2/Pt) and 27.0 nm (C3/Pt). Lower crystallite 

size tends to have a higher Pt dispersion which may lead to better catalyst activity [13]. No 

significant Pt peaks were observed in the XRD possibly due to the small size of Pt (0.5–2 nm) 

[67] in spite of having a high Pt loading of 5 wt% [66] as measured by XEDS and ICP–OES. 

However, for C2/Pt a very small peak from Pt (111) was observed around the 2θ value of 40°. 

No significant peak shift of the prepared catalysts as compared with the non-doped ceria was 

observed which implied that the Pt was not incorporated into the ceria structure [14]. SAXS 

measurement for the catalysts revealed mesoporosity for C1/Pt catalysts.  
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Fig. 6.3: X-ray diffraction (XRD) pattern of ceria (C1, C2, C3) support and of Pt/ceria (Pt/C1, 

Pt/C2, Pt/C3) catalysts before and after testing for water-gas shift (WGS) reaction showing the 

difference in crystallite size and small angle XRD (SAXS) showing the difference in crystallite 

size and small angle XRD (SAXS) showing the mesoporosity in ceria (C1) support. 

6.6.1.2 Raman Spectroscopy: 

Since the defect formation in nanocrystalline materials is controlled 

by the microstructure, Raman spectroscopy was used to obtain information about the interaction 
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between the ions and was very useful in studying the microscopic nature of the nanocrystalline 

ceria [15]. Fig. 6.4 shows the Raman spectroscopy results of the as prepared Pt/ceria samples 

before the WGS reaction tests. The strongest intensity mode at around 457 cm-1 as seen in C1/Pt 

and C2/Pt represents the first order Raman F2g mode, which originates from Ce-8O stretching 

vibrations. However this peak is shifted to 464 cm-1 for C3/Pt. The full width at half maximum 

(FWHM) of the ceria peak is of the order C1/Pt>C2/Pt>C3/Pt. High FWHM and lower energy for 

this first order Raman peak is associated with smaller crystallite size [16, 17], consistent with the 

crystallite size calculation from XRD data. Several second order peaks can be seen. A peak is seen 

in C1/Pt near 260 cm-1 which can be assigned to the 2TA or doubly degenerated TO mode [18, 19] 

which is present only in ceria lattice with high defect concentration. A weak and broad peak at 

about 600 cm-1 can be seen in C1/Pt and C3/Pt which can be assigned to the intrinsic oxygen 

vacancies due to the non-stoichiometry of the sample [11]. Non-stoichiometric ceria (CeO2-x where 

x0.28 [20]) possesses a high concentration of defects, reduced grain boundary impedance, and 

heat of reduction around 2.4 eV lower per oxygen vacancy compared to stoichiometric ceria [21]. 

In C1/Pt, mesoporous ceria, additional secondary peaks were seen near 841 cm-1 and 1055 cm-1 

which can be denoted by peroxides (O2
2-) and superoxide (O2

-) respectively, caused by adsorbed 

surface oxygen [22]. No such peaks can be observed in C2/Pt, and only the superoxide peak is 

observed in C3/Pt. These active oxygen species are formed at one-electron defect sites at the metal-

support interface which oxidize adsorbed CO to CO2 and increase catalytic activity [22]. Similar 

results were also witnessed by Hua et al. on mesoporous ceria nanotubes [23]. 
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Fig. 6.4: Raman spectroscopy of Pt/ceria catalysts showing the presence of active oxygen 

species and non-stoichiometry in ceria for C1/Pt and C3/Pt. 

 

6.6.1.3 BET surface area: 

N2 sorption measurements were performed for the fresh catalysts as 

well as spent catalyst after 100 h. of operation, and surface area was calculated by the BET method 

which is shown in table 6.1. The surface area of the catalysts reduced by 38% (C1/Pt), 75% (C2/Pt) 

and 44% (C3/Pt) after 100 h. of operation. This reduction in surface area can be attributed to the 

catalyst sintering at high temperature. 
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Table 6.1: Comparison of the catalyst properties and performance. 

Sample 

(powder) 
Syntheses method 

BET 

surface 

area 

(m2/g) 

Crystallite size from XRD  

(nm) 

As 

synthesized 

After Pt 

deposition 

by RSDT 

After 

WGS tests 

C1 
Sol-gel-based inverse 

micelle method 
187 5.8 5.4 6.0 

C2 
Combustion chemical vapor 

deposition 
78 15.5 15.8 15.8 

C3 

Commercially obtained 

(firing high purity cerium 

oxalate) 

183 24.6 27.5 29.0 

     

Sample 

(on glass 

fiber 

filter) 

Syntheses method 

BET surface area  

(m2/g) 
100%CO 

conversion 

temperature 

(°C) 

Before 

testing 

After 100 h. 

testing 

C1/Pt RSDT 56 35 225 

C2/Pt RSDT 40 10 450 

C3/Pt RSDT 36 20 250 

 

6.6.1.4 X-ray photoelectron spectroscopy (XPS): 

A high resolution spectra for Pt(4f), O(1s), and Ce(3d) is shown in 

Fig. 6.5 for the as prepared samples before WGS reaction tests. For the Pt(4f) spectra in the binding 

energy range 65–85 eV, the peaks were deconvoluted into two sets of photoemission doublets- 

Pt(4f7/2) and Pt(4f5/2). The reference binding energy for Pt(4f7/2) and Pt(4f5/2) is 70.9 eV and 74.25 

eV respectively with a spin-orbital splitting energy of 3.35 eV [24]. This data show, that the 

doublets for Pt(4f7/2) and Pt(4f5/2) represents a Pt2+ & Pt4+ on the ceria surface, which are the most 
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stable oxidation states of Pt. The corresponding coverage area of Pt2+ & Pt4+ on the ceria surface 

for as prepared C1/Pt, C2/Pt and C3/Pt were (80% & 20%), (75% & 25%) and (91% & 9%) 

respectively. Ce(3d5/2,3/2) spectra was shown at 882.9 eV and 901.3 eV respectively along with the 

characteristic satellite peaks at 917.3 eV, 907.8 eV, 899 eV, and 890 eV. Both Ce3+ and Ce4+ 

oxidation states can be seen in C1/Pt and C3/Pt which demonstrates that the corresponding ceria 

are non-stoichiometric, and the ceria lattice has oxygen vacancies [25]. Only a minor Ce3+ peak 

can be seen at 907.8 eV binding energy for C2/Pt. O(1s) spectra in the binding energy range 525–

540 eV, were deconvoluted into 4–5 peaks to determine the surface concentration of oxygen ions 

and were compared with the reference binding energy of peroxides [O2
2- (530.5 eV)], superoxides 

[O2- (529.5 eV)], PtO2 (531.4–531.9 eV), CeO2 (528.7 eV), Ce2O3 (529 eV), C=O (533 eV), and 

C-O (531.5–532 eV)] [26]. It is difficult to determine the exact concentration of each species due 

to relatively close binding energy value between the species, however the presence of peroxides 

and superoxides cannot be ruled out for C1/Pt in conjunction with the Raman spectroscopy 

measurements. 

 

Fig. 6.5: XPS of core level region of Pt(4f), Ce(3d) and O(1s) for Pt/ceria catalysts. 
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6.6.1.5 Electron microscopy (SEM and TEM): 

The SEM micrographs of the as prepared catalyst films are shown 

in Fig. 6.6 (a), (b) and (c) for C1/Pt, C2/Pt and C3/Pt respectively. From Fig. 6.6 (a) and (b) the 

surfaces of the catalyst films are very rough, and show the formation of some agglomerated 

particles around 5–10 μm wide. Fig. 6.6 (a) shows that the glass fiber filter is evenly coated and 

the Pt/ceria particles have coated the fibers uniformly on the front as well as the back. Fig. 6.6 (c) 

for shows a smooth and uniform film for C3/Pt catalysts. Fig. 6.6 (d)–(i) shows the TEM 

micrographs of the as prepared catalysts. Mesoporosity is evident from the TEM micrograph of 

C1/Pt catalyst in Fig. 6.6 (g). The spherical agglomerates for the mesoporous ceria (C1) as shown 

in Fig. 6.6 (d) are formed during their synthesis by the sol-gel based inverse micelle method, inside 

the inverse spherical surfactant micelles. The initial size is controlled by the size of the inverse 

micelle, it can expand later based on the heat treatment. The monodispersed nanoparticles 

aggregate to form the porous network as shown in Fig. S12 of reference [3]. These materials, in 

general, produce these types of aggregates and the behavior is typical for the materials synthesized 

using the inverse micelle method. The diameter of spherical agglomerates do not change after 

deposition of Pt onto them. C1/Pt sample range from 60–180 nm. However the individual 

crystallites in the agglomerates are always in the range 4–5 nm. HRTEM micrographs in Fig. 6.6 

(g), (h) and (i) clearly shows 0.5–2 nm size Pt particles on ceria. No evidence of Pt sintering is 

observed during its formation in RSDT which could be due to the use of air quench in RSDT. 

Selected area diffraction patterns (SADP) are shown in the insets in Fig. 6.6 (g), (h) and (i). The 

diffraction rings corresponds to cubic fluorite ceria. Reflection from the Pt (111) plane could not 

be seen from the SADP possibly due to strong interference from ceria. 
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Fig. 6.6: Electron microscopy study for Pt/ceria catalysts after water-gas shift reaction testing: 

(a), (d), (g): C1/Pt, (b), (e), (h): C2/Pt, (c), (f), (i): C3/Pt. (a), (b) and (c): SEM on glass fiber 

filter with catalyst coating. (d), (e) and (f): TEM micrographs using 120 kV FEI Tecnai T12. (g), 

(h) and (i): HRTEM micrographs using 200 kV JEOL 2010 FasTEM. (j), (k) and (l) SADP taken 

for the area shown in (g), (h) and (i). 
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6.6.1.6 Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS): 

In order to confirm the mechanism involved in the WGS reaction, 

in-situ-DRIFTS studies were performed at 100–300°C (C1/Pt), 100–450°C (C2/Pt), and 100–

350°C (C3/Pt). The species obtained are monitored as shown in Fig. 6.7. The peak assignments 

for various species are provided in detail in table 6.2, as confirmed from literature [27]. The 

DRIFTS spectra can be divided into three main groups based on the position of the IR bands: OH 

groups (3800–3600 cm-1), formate groups (3000–2800 cm-1), and carbonate groups (1700–1000 

cm-1). There are very distinct differences in the three catalysts based on the evolution of various 

groups at different temperatures and band intensity. OH groups started evolving at 200°C for 

C1/Pt, 250°C for C2/Pt, and 250°C for C3/Pt and is much lower in intensity for C3/Pt than C1/Pt 

and C2/Pt. Formate bands at 2951–2947 cm-1 (bridged C-H) and 2858–2845 cm-1 (bidentate C-H) 

were seen in all the catalysts due to the C-H stretching vibrations and the reaction of CO with 

hydroxyl groups [28]. The CO2 bands at 2359 and 2349 cm-1 produced from CO oxidation in the 

WGS reaction [29] can be seen starting at 100°C for C1/Pt and C3/Pt, however not until 225°C for 

C2/Pt. Bands around 2170 cm-1 for CO-Ce4+ interaction were not detected for C2/Pt. An interesting 

observation was seen in C3/Pt between 2100 cm-1 and 2050 cm-1, the region where the interaction 

between CO and Pt can be observed. A band started evolving at 150°C which continued to shift 

towards lower wavelengths: 2090 cm-1 (150–175°C), 2077 cm-1 (175–225°C), 2073 cm-1 (250°C), 

2070 cm-1 (275–300°C), 2067 cm-1 (325°C), and 2063 cm-1 (350°C). This could indicate the 

interaction between CO and oxidized Pt at low temperature (150–175°C) which ultimately ended 

up with the interaction between CO and Pt nanoclusters [30]. Such a peak shift was not noticeable 

in C1/Pt. A very weak CO-Pt band can be observed in C2/Pt. This could be because the CO 

adsorption on Pt is not significant for C2/Pt. A weak band was observed at 1963 cm-1 (275–350°C) 
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in C3/Pt which could be due to electronic effects, surface energetics or formation of Pt-carbonyls. 

From the DRIFTS studies of the three catalysts it can be concluded that the formate mechanisms 

dominate the WGS reaction for C1/Pt and C3/Pt. However, the ceria mediated redox mechanisms 

cannot be ruled out based on these studies. The presence of only weak formate bands for C2/Pt 

strongly indicate the ceria mediated redox mechanism for this material. There is a strong bias and 

disagreement in literature on the formate and redox mechanism and it is imperative that a suitable 

agreement is reached to enable better design and development of WGS reaction catalysts [31]. The 

role of the Pt is the extraction of oxygen from the ceria and water splitting to form OH groups. 

These OH groups are the basis of the WGS reaction. The reaction steps for the redox and formate 

mechanisms are explained in details in Fig. 6.8.  
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Fig. 6.7: Comparison of the DRIFTS spectra of Pt/ceria catalysts conducted in-situ in presence 

of 0.94 vol% CO, 93 vol% Ar and 6 vol% water vapor at various temperatures. 
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Table 6.2: DRIFTS bands assignment for the Pt/ceria catalysts. 

Species 

Wavelength (cm-1) 

C1/Pt C2/Pt C3/Pt 

OH 

unidentate 3710 3716 3716 

bidentate 3660 3635 3635 

tridentate 3508 3508 3508 

Formates 

bidentate C−H 2845 2858 2858 

bridged C−H 2947 2951 2951 

asymmetric OCO 1585 1579 1572 

symmetric OCO 1379 1381 1383 

Carbonates 

unidentate, bidentate, and 

bridged 
1000−1400 1000−1400 1000−1400 

carboxylic acid 1635 1635 1659 

CO2 
asymmetric stretching 

vibrations 

2359 2359 2359 

2349 2349 2349 

CO−Pt  2070 2073−2060 2090−2063 

Ce−CO 
Ce4+ 2173 not detected 2170−2158 

Ce3+ 2143 2143 2123 
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Fig. 6.8: Redox and formate mechanisms for the water-gas shift (WGS) reaction on Pt/ceria 

catalysts shown in atomic scale. 

 

6.6.2 Water gas shift (WGS) reaction activity: 

The activity of the three ceria supported Pt catalysts is shown in Fig. 6.9 as 

tested from 150–450°C with a feed flow rate of 100 sccm (composition of 0.94 vol% CO, 93 vol% 

Ar and 6 vol% water vapor). CO concentration in the products of the WGS reaction was checked 

in GC by comparing the area under the curve for the output, and calibrated CO. Complete CO 
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conversion was concluded if no peak was obtained for CO. The C1/Pt performed best in this range 

with a complete CO conversion to CO2 at 225°C followed very closely by C3/Pt at 250°C and 

C2/Pt at 450°C. No methanation activity was observed in the reaction. All the three catalysts were 

active at 175°C. 

 

Fig. 6.9: Water-gas shift reaction activity comparison for Pt/ceria catalysts. 

 

6.7 Discussion: 

On the basis of the WGS reaction testing of the three ceria supported Pt catalysts, 

it was found that the catalyst with sol-gel produced ceria (C1/Pt) had performance superior to the 

catalyst employing commercial ceria (C3/Pt). Both C1/Pt and C3/Pt performed better than the 

catalyst employing CCVD produced ceria (C2/Pt). Our previous work [1] and a review of the 

literature has shown that the characteristics of the catalysts support that are most important for 
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good performance are: (1) high surface area of the ceria and Pt [32], (2) higher Pt dispersion [33], 

(3) presence of ionic Pt rather than metallic Pt [33], (4) CO adsorption strength at Pt-ceria interface 

[34], (5) smaller crystallite size of ceria and Pt [21, 32, 35], (6) non-stoichiometry of ceria [21], 

(7) presence of active oxygen species on the surface of the catalysts [12, 22], (8) better resistance 

to deactivation [36], and (9) mesoporosity in the ceria support [37]. In this discussion we will 

identify the reasons for the importance of these characteristics for catalyst performance and show 

that the WGS reaction test data presented in this work explains the related catalyst activity as a 

function of these supports.  

WGS kinetics is strongly dependent upon the morphology of ceria support. 

Bunluesin et al. measured the steady-state, WGS kinetics on Pd supported low temperature sintered 

(570K) ceria and high temperature sintered (1670K) ceria. They found that with similar Pd 

dispersions, the low temperature sintered ceria catalysts had a 50 times higher reaction rate and 

50% lower activation energy than high temperature sintered ceria catalyst [32]. This could be due 

to the decrease in the surface area of the ceria support at high temperature sintering. The larger 

crystallite size of ceria produced by high-temperature calcination prior to noble metal addition (as 

in commercial ceria, C3) decreases its reducibility and eliminates the ceria mediated process step 

for CO oxidation [32, 38]. The defect site concentration in ceria is strongly dependent on the 

surface area. High surface area may correspond to smaller crystallite size which causes an increase 

in strain at the edges of the particles as reported by Schimming et al. [39]. Similarly, low energy 

grain boundary formed in smaller ceria particles also facilitates the formation of defects [21]. 

Higher concentration of defects corresponds to greater non-stoichiometry in ceria which has lower 

oxygen vacancy formation energy (Evac) than ordered ceria. Hence non-stoichiometric ceria can 

be easily reduced at low temperature [21]. This results in reduced activation energy. On the basis 
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of the WGS reactions results in this study and the findings in literature [32, 39, 40] we can presume 

that, there can be an indirect relationship between the activation energy and the BET surface area 

of the ceria support and the lower BET surface area C2 (78 m2/g) required higher activation energy 

than C1 (187 m2/g) and C3 (183 m2/g).  

In regards to Pt loading comparison with our previous work on WGS reaction 

activity with 1% nanoparticles Pt loading onto ceria support [1], we see a remarkable similarity in 

the results. This showed that increasing the Pt metal loading did not improve the WGS reaction 

activity of catalysts. This can be explained as follows: The role of Pt is to catalyze the partial 

reduction of ceria and the generation of active OH groups. Relatively few Pt atoms at the Pt-ceria-

CO triple phase boundary are available for catalysis in Pt/ceria catalyst [34]. After a threshold 

loading, no further improvement in catalytic activity can be observed [30, 33, 41]. At low Pt 

loading (<1%), highly dispersed Pt can be present on the surface in the ionic state and metallic 

state. However at high loading, only a small fraction is present in ionic state and most of it is in 

metallic state. Fu et al. has proposed that the key catalytic sites for the WGS reaction is highly 

dispersed Pt-O and the metallic Pt does not participate in the WGS reaction and most of it remains 

unutilized. Preferential diffusion of ionic Pt in the subsurface of ceria has been considered as an 

explanation [33]. Similar studies have also been confirmed, both experimentally and by using DFT 

modelling by Zhai et al. [42]. These observations in literature are consistent with our XPS study 

that at 5% Pt loading, Pt is available in mostly metallic form consistent with the findings in 

literature [43].  

From the comparison of the DRIFTS band for the CO-Pt at around 2070 cm-1, it 

can be concluded that the CO adsorption strength was highest in C3/Pt followed by C1/Pt and 

C2/Pt. DFT and micro kinetic modelling has shown that strongly adsorbed CO molecules on Pt-
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ceria interface could enhance the WGS reaction at the neighboring sites by reducing the CO 

adsorption strength at those sites [34]. Another reason for the better activity can be attributed to 

the CO uptake of ceria which is linearly dependent on the surface area [27]. High surface/grain-

boundary area enhances the electron-transport properties between the ceria and Pt. This leads to 

faster CO2 conversion.  

Enhanced activity of C1/Pt could also be explained by the small crystallite size of 

C1 (5.8 nm). Ceria particles with crystallite size <10 nm shows remarkable catalytic properties 

and lower heat of reduction per oxygen vacancy as compared to coarser ceria [21] which could be 

due to the presence of low energy grain boundary, which facilitates the formation of defects. Size 

dependency of ceria has also been elaborated by Cargnello et al. [35]. Bunluesin et al. has 

suggested that the activation energy of the WGS reaction is strongly dependent upon the crystal 

structure of ceria and tends to decrease with the decrease in its crystallite size [44]. This is because 

the larger crystallite size of ceria produced by high-temperature calcination prior to noble metal 

addition (as in commercial ceria, C3) decreases its reducibility and eliminates the ceria mediated 

process step for CO oxidation [32, 38]. The surface areas for C1 and C3 (before Pt was deposited) 

are nearly identical (table 6.1), but the crystallite sizes are very different. We believe that this 

difference occurred because the BET surface area takes into account the particle size. Fig. 6.10 

shows a hypothetical case when this situation (similar BET surface area but different crystallite 

size) is possible. It should be also noted that the crystallite size determination from XRD (Debye 

Scherrer’s equation) and BET surface area determination from N2 sorption does not take into 

account the distribution. It only considers the average throughout the sample in consideration. 

HRTEM micrographs of C1 [Fig. 6.6 (g)] and C2 [Fig. 6.6 (i)] do show the crystallites of size 

around 5 nm for C1 and around (10–100 nm) for C3. 
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Fig. 6.10: A hypothetical situation when similar surface area particles can have varying 

crystallite sizes. 

 

The WGS reaction rate is directly dependent on the synthesis conditions of ceria 

[30, 31]. From DFT modelling, two types of interactions between Pt and ceria have been defined: 

transfer of electrons from the Pt nanoparticle to ceria, which is independent of the morphology of 

ceria, and the oxygen transfer from ceria to Pt, which is strongly dependent on the ceria support 

and occurs only when the ceria is nanostructured, oxygen deficient, and non-stoichiometric (CeO2-

x) [45]. Non-stoichiometric “ceria” has lower oxygen vacancy formation energy (Evac) than ordered 

“ceria”. Hence non-stoichiometric ceria can be easily reduced at low temperature [21]. XPS results 

indicate the non-stoichiometric characteristics of C1/Pt and C3/Pt due to the presence of Ce3+ and 

Ce4+ peaks [25]. Raman spectroscopy results in this work also indicate that the ceria in C1/Pt and 

C3/Pt is non-stoichiometric as evident from the weak and broad peaks at the Raman shift at 600 
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cm−1 [11]. The 600 cm-1 peak intensity is greater in C1/Pt than C3/Pt and C2/Pt. This means that 

C1/Pt has a higher concentration of defects than C3/Pt and C2/Pt. These results are consistent with 

the performance of WGS reaction tests in Fig. 6.9. 

Raman spectroscopy also showed the existence of dioxygen such as peroxides and 

superoxides subspecies at the surface of the catalyst with mesoporous ceria (C1/Pt) and catalyst 

with commercial ceria (C3/Pt). Formation of these species could also be explained by the 

following: peroxides are diamagnetic and could be formed as a result of the interaction of O2 with 

the oxygen vacancies at the ceria surface because these are two-electron-donor centers. It was 

shown by DFT calculations that superoxides are formed by direct interaction of O2 with low-

coordinated Ce3+ ions on reduced ceria surface [46]. These active oxygen species are formed at 

one-electron defect sites at the metal-support interface and are preferentially stabilized by ceria 

which oxidize adsorbed CO to CO2 and increase catalytic activity [12]. Superoxides are also 

responsible for the re-oxidation of the partially reduced ceria.  

Deactivation of the catalysts are a major issue in WGS reactions. Deactivation of 

the catalysts can also be a cause of different reaction rates which can be caused by: (1) Pt 

deactivation due to CO poisoning caused by excess CO in the feed which blocks the sites for H2O 

dissociation [43,47], (2) sintering of Pt to form large clusters [48], (3) formation of highly stable 

carbonates over the Pt-ceria active sites on the catalyst [49], thereby rendering them unavailable, 

(4) growth in the crystallite size of ceria under extended operation at high temperature which 

compromises its reducibility [50], (5) loss of faceted surface of ceria [51] and (6) reduction of the 

Pt dispersion on ceria [52]. From the BET surface area analysis we found that the surface area of 

the catalysts reduced by 38% (C1/Pt), 75% (C2/Pt) and 44% (C3/Pt) after 100 hours of operation. 

It was also found that the surface area of C2/Pt reduced by 55% at 225°C (13% CO conversion).  
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Mesoporosity of ceria also plays a major role in improving the WGS activity. In 

addition to the high surface area, the activation energy of WGS reaction is lower in mesoporous 

ceria supported Pt catalysts as compared with microporous ceria because mesoporous ceria 

provides more accessible and higher number of active sites for the reaction intermediates. This 

also delays the catalysts deactivation by coke formation [36]. 

Another reason for enhanced catalytic activity by mesoporous ceria could be 

derived from the pore geometry. The internal concave surface of the pores of the mesoporous ceria 

possess higher concentration of oxygen vacancies than the surface. This is attributed to the low 

adsorption energy of OH groups in the pores due to the enhanced inter adsorbate repulsion in the 

curved walls of the pores, formed during the WGS reaction [37]. The meso-pore expansion on heat 

treatment of mesoporous ceria as shown by Poyraz et al. certainly contributes to the enhanced 

activity of the WGS catalyst [3]. 

Strong metal-support interaction (SMSI) has been recently proposed to describe the 

chemisorption properties of nanometer sized Pt clusters as they are dispersed on the ceria support. 

The support has a strong influence on the catalysts because WGS activity is greatly effected in 

spite of having the same size and dispersion of Pt as also proved in this work. Bruix et al. has 

demonstrated, on the basis of theory and experimentation, that the chemical bonding and charge 

transfer at the metal-support interface could be used to tune the electronic and chemical properties 

of the WGS active sites. Electronic perturbation of the Pt by the ceria support has been shown to 

enhance the water splitting at the Pt surface causing upto 20 fold increase in WGS activity [53, 

54].  
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Addition of catalyst promotors and dopants can prevent the sintering of noble 

metals and support. Thermodynamically stable Cu/Pt near surface alloy (NSA) with Cu monolayer 

preferentially deposited on Pt (111) the has shown to be tolerant for CO poisoning than pure Pt 

[55]. Addition of zirconium in varying concentration in Pt/ceria catalysts has shown to inhibit the 

sintering of ceria as well as Pt crystallites by the formation of Zr-Ce metastable phases [56]. It has 

been shown that the incorporation of basic oxides such as MgO in the catalyst could prevent the 

formation of carbonates and boost the formic acid dehydrogenation [28]. Similarly, sintering of 

ceria can be prevented at a temperature as high as 800°C by doping it with La. This results in the 

formation of several intermediate Ce-La-O phases [57] which inhibit sintering. With the recent 

advances in techniques such as in-situ environmental transmission electron microscopy (ETEM), 

it will be easier to design catalysts with better thermal stability [58].  

6.8 Conclusions: 

We investigated the role of three different ceria materials for water-gas shift 

reaction studies for Pt/ceria catalysts. Reasons for the better catalytic activity of mesoporous 

Pt/ceria catalysts could be attributed to many factors such as noble metal loading, particle size of 

support and metal, porosity, pore size, concentration of defects, and presence of active species. 

Here our main objective was to correlate the influence of the synthesis process, and the resultant 

structural properties of the ceria support with the performance of the Pt/ceria catalyst for the 

activity of low temperature water-gas shift reaction. We highlighted these properties and their 

influence on the WGS reaction which will provide a platform for generating catalyst with 

improved performance compared to the currently used catalysts. Three different ceria supports 

were chosen based on various syntheses techniques and 5 wt% Pt nanoparticles were applied onto 

them in the vapor phase using RSDT. The structure and crystallite size were determined using 
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various characterization techniques. The catalysts were tested for WGS reaction in the temperature 

range of 150–450°C. Following conclusions can be made from this work: 

1. C1/Pt mesoporous ceria had superior activity with complete CO conversion seen at 175°C 

followed by C2/Pt (225°C) and C3/Pt (450°C). 

2. Increasing the Pt metal loading from 1% to 5% did not improve the WGS reaction activity 

of catalysts. 

3. Catalytically active oxygen species [peroxides (O2
2−) and superoxide (O2

−)] exist on the one-

electron defect sites at the metal-support interface as observed from Raman spectroscopy. 

4. Formation of OH, surface formate, surface carbonates, CO-Ce4+ and CO-Ce3+ species were 

seen by in-situ DRIFTS studies, which infers the occurrence of both ceria mediated redox 

and formate mechanism in the WGS reaction. 

5. Weak CO-Pt interaction was observed in C2/Pt by in-situ DRIFTS studies which could 

explain the poor WGS reaction activity. 

6. Non-stoichiometry of ceria was noticed by Raman spectroscopy in C1/Pt and C3/Pt. 

7. Crystallite size of <10 nm attributes to higher surface areas and lower activation rates for the 

WGS reaction. 
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CHAPTER 7:  
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Deposition Technology 

 

 

 



 

177 
 

7.1 Abstract: 

WO3 nanoparticle thin films were synthesized by Reactive Spray Deposition 

Technology (RSDT) by varying the length of the reaction zone (9–14 cm), flow rate of quench air 

(0–57 L/min) and substrate temperature (80–400°C). The resulting samples were subjected to 

different annealing conditions (no annealing–500°C). Distinct metastable phases of WO3 such as 

ferroelectric ε-WO3 and the preferential orientation of the three major lattice planes (002), (020) and 

(200) can be obtained using this synthesis technique and the morphology. The microstructure of the 

films are a decisive function of the synthesis process. RSDT has a strong potential to allow the 

properties of WO3 to be tailored to its desired structure and application. The morphology, structure, 

and size of WO3 nanoparticles were probed using, X-ray diffraction (XRD), Raman spectroscopy, 

transmission electron microscopy (TEM) with selected area diffraction pattern (SADP), and 

scanning electron microscopy (SEM) with X-ray energy dispersive spectroscopy (XEDS). 

7.2 Keywords: 

WO3 thin film; X-ray diffraction; Phase transformation; Preferential orientation; 

Reactive Spray Deposition Technology 

7.3 Introduction: 

In this chapter we have demonstrated a one-step flame-based direct deposition 

technique to engineer a particular required phase by changing the length of the reaction zone in the 

flame, flow rate of quench air, and the substrate temperature. RSDT is a type of flame spray pyrolysis 

system which is a one-step open atmosphere process for synthesizing nanometer scale materials with 

high efficiency and reduced solvent waste. Here we will give a brief description of the RSDT process 
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and, the conditions required to achieve a particular phase, and we will provide characterization 

results obtained by Raman spectroscopy, SEM, TEM, and XRD that prove the existence of these 

phases. The motivation of this research was to study the particle size, crystallinity, and crystal 

structure of the WO3 films grown by RSDT by varying the conditions of the experiments. It is 

assumed that the results from this study can be used to obtain the configuration of WO3 film 

demanded by its application. This work was published in the Journal of Nanotechnology and Smart 

Materials [1]. 

7.4 Experimental: 

7.4.1 Synthesis of WO3: 

An explanation of the RSDT equipment and process is described in detail in 

chapter 1. Tungsten hexacarbonyl (W(CO)6) was obtained from Sigma Aldrich (Catalogue 

#AC221040100) and was dissolved in a tetrahydrofuran (THF) (ΔH°
c, 298K = -2501 kJ/mol) (Fisher 

Scientific # SHBD3901V). 20 wt% sulfur free liquefied propane (ΔH°
c, 298K = -2202 kJ/mol) (Airgas 

catalogue # PRCP350S) was added to the above to form a precursor solution resulting in a final 

concentration of 5 mmol/L W(CO)6, and 16.5 wt% propane. Propane assists in the atomization of 

the precursors by increasing the enthalpy of the solution mixture and reducing the droplet size due 

to supercritical expansion. The flow rate of 4 mL/min was maintained by using a syringe pump. The 

precursor solution was atomized by a gas-assisted external mixing nozzle (combustion nozzle) using 

oxygen (5 L/min). Six methane-oxygen flamelets (methane and oxygen at 0.5 L/min each) which 

ignites the combustible precursor mist, surround the capillary end. Prior to atomization, the precursor 

solution was heated to approximately 50–60°C by enclosing the capillary by a heating coil. The 

precursor mist was ignited with a propane torch to obtain a bluish-white flame. At approximately 9–

14 cm from the flame, a circular air quench (Exair, Super Air Wipe®) with a compressed air flow 
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rate of 28–56 L/min at room temperature was positioned. A stainless steel substrate holder mounted 

on an x-y-z platform and having the option of water cooling was used for collection of WO3 particles. 

On the substrate holder was mounted a zero diffraction background quartz plate (MTI®) on which 

the film was grown. Quartz was selected for various reasons: it can withstand the high temperature 

required during in-situ XRD, it can be imaged in a SEM, it does not have an interfering background 

in a Raman spectrometer, and the film can be scraped off for TEM analysis.  

7.4.2 Characterization:  

In-situ X-ray diffraction patterns of WO3 film were recorded in air at 30°C, 

150°C, 250°C, 300°C, 350°C, 400°C and 500°C on a Bruker D8 advanced powder diffractometer 

using CuKα radiation. Heating rate of 5°C /min was used with a hold time of 1 h. at the temperature 

of the scan. Crystallite size was measured by using the Debye Scherrer method. Raman spectra were 

obtained with a Renishaw Ramascope micro-Raman spectrometer fitted with a reflected light 

microscope using a 50 mW laser (514.5 nm) and exposure time of 30 s at ambient conditions. 

Instrument alignment was optimized using a 519 cm-1 signal of a silicon wafer. Raman 

measurements were performed since this technique is well known to give the “fingerprint” of WO3 

material [2, 3]. The spectra were obtained at room temperature in ambient atmosphere in the spectral 

range between 100 and 1000 cm-1. SEM micrographs were collected on an FEI ESEM Quanta 250 

with a field emission gun with an EDAX XEDS system. TEM micrographs and selected area 

diffraction pattern (SADP) of WO3 particles were obtained on a 120 kV FEI Technai T12 S/TEM 

with a LaB6 source equipped with an EDAX XEDS system. 300 mesh Cu grids coated with 

holey/thin carbon films (Pacific Grid Tech Cu-300HD) were used. A small portion of the film was 

scraped off of the quartz plate and was sonicated with ethanol. Few drops of the resulting solution 

were dropped on the grids and air dried before they were placed in the UHV chamber of the TEM.  
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7.5 Results and discussion: 

7.5.1 X-ray diffraction: 

γ and ε WO3 with different phase ratios were synthesized in four different sets 

of conditions in the RSDT as described in table 7.1 by altering the length of the reaction zone, flow 

rate of quench air, and the temperature of substrate. Fig. 7.1 shows the X-ray diffraction spectra for 

the samples A, B, C and D. It can be clearly interpreted that very different structures of WO3 were 

obtained by changing the conditions of the flame. All four samples were monoclinic, the most 

dominant structure of WO3 and which can be indexed to ICDD#00-043-1035 (space group P21/n). 

Sample A is the as prepared sample with no post annealing, and it shows a well crystalline structure 

with (002) preferential plane oriented at 2θ = 23.1°. This could be due to the high temperature of the 

particles in the absence of quench air which can cause the migration of WO3 atoms towards the lower 

energy nucleation sites [4]. All the other samples were found to be amorphous in nature because the 

quench was close to the nucleation site. This amorphous structure could arise because the particles 

are air quenched as soon as they are produced from the flame and the residence time of the particles 

in the hot zone is too short. The amorphous samples were thermally annealed in the high temperature 

stage of the XRD—the crystallization steps and the corresponding XRD patterns can be found in the 

supplementary figures (Fig. 7.5–7.8) at the end of this chapter. Thermal annealing of amorphous 

WO3 causes the particles to become crystalline, and it also changes the phase ration, grain size, 

porosity, density of adsorption sites and pore volume [5]. It is clear from in-situ XRD that the 

crystallization of the WO3 particles started at 350°C. Sample B was prepared with no air quench; 

however the substrate temperature was maintained at 200°C by the water cooled substrate holder 

and the sample thereby retained an amorphous structure. By comparing the XRD spectra of sample 

B with that of Wang et al. [6] and Righettoni et al. [7] it can be concluded that the sample is mostly 
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ε-WO3, the metastable phase at room temperature. Sample C is oriented preferentially along the 

(200) direction. This preferentially-oriented crystallization was also observed by Sun et al. [8] and 

Zhifu et al. [5] who prepared their films by physical vapor deposition (PVD). Sun et al. suggested 

that preferential orientation along the (200) direction happened to reduce the lattice mismatch with 

the sapphire lattice on which the film was grown. According to Zhifu et al. the cause of this behavior 

was the column-like accumulation of the WO3 species during the sputtering process at the operating 

pressure (20 Pa). The (200) orientation could also form in-situ during the annealing process. Sample 

D is oriented along the (020) plane direction, and sample A is oriented along the (002) direction, as 

was also reported by Garavand et al. [9], Guo et al. [10] and Jing et al. [11]. Guo et al. evaluated the 

photoelectrochemical activity and photoconversion efficiency of self-assembled nanoporous WO3 

and WO3 film with preferential orientations at (002) and (020), respectively. They found that the 

photocurrent of the (002) plane-oriented nanoporous WO3 was nine times the value of that of the 

WO3 film and the photoconversion efficiency was 4.57 times higher than those of (020) plane-

oriented WO3. Furthermore, (002) WO3 was more favorable in absorption and redox of pollutants 

than (020) WO3. Jing et al. found that the (002) preferential orientation of WO3 resulted in higher 

photocatalytic degradation of NO [11]. 

Table 7.1. Synthesis conditions of WO3 in Reactive Spray Deposition Technology 

Sample 

Substrate 

temperature 

(°C) 

Quench air 

flow rate 

(L/min) 

Length of 

reaction zone 

(nozzle to 

substrate) 

(cm) 

Preferential 

plane 

orientation  

Crystallite size 

(nm) 

A 350–400 0 17.1 002 33.1 

B 200 0 13.3 NONE 61.6 

C 100–130 28.3 20.6 200 29.0 

D 80 56.6 12.6 020 42.3 
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Fig. 7.1: X-ray diffraction of samples A, B, C, and D showing different crystallographic 

orientations and phase ratio. 

 

7.5.2 Raman Spectroscopy: 

Fig. 7.2 shows the Raman scattering measurements of untreated sample A and 

the post-annealed samples B, C and D (since the Raman signal of WO3 cannot be obtained for 

amorphous structure). 
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Fig. 7.2: Raman spectroscopy for samples A, B, C, and D showing mostly monoclinic structure. 

 

The spectra are similar to those of the monoclinic WO3 as apparent from the 

strong peaks at 808 and 715 cm-1. The peak at 450 cm-1 can be assigned to the quartz substrate. The 

intensity of the substrate peak is different for the samples because of the difference in the thickness 

of the film. A relatively strong peak is obtained at below 150 cm-1 for all the samples which can 

indicate the O-O deformation mode [12]. Salje et al. has obtained the Raman spectra of the 

monoclinic (γ and ε) WO3 and is reported in reference [13-15]. After comparing with Salje et al. it 

can be assumed that the peaks at 205, 310, 372, 394, 427, 645, 680, 697cm-1 can be assigned to 
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ferroelectric ε-WO3 while peaks at 327, and 716 cm-1 are for γ-WO3 only. There is clearly an overlap 

between γ and ε WO3 as evident from the spectra.  

7.5.3 Electron Microscopy: 

Fig. 7.3 shows the SEM micrographs of the WO3 film as deposited (top) and 

after annealing at 500°C. Films A and D are very homogeneous while B and C shows particle 

agglomeration. As is clear from the Fig. 7.3, the size of the grains are in the order B>D>A>C. Pores 

and cracks can be seen in samples A and D while samples B and C show uniform morphology. It is 

interesting to see that in samples A and D, the pores and cracks have grown in size after annealing 

at 500°C. This same phenomenon was observed by Santato et al. and could be due to the elimination 

of organics from the film surface after heat treatment [16]. The increase in porosity of the films is 

advantageous to the sensing function of WO3 since this favors diffusion of analytes into the bulk of 

the film. The images indicate high quality of WO3 films deposited by RSDT.  

 

Fig. 7.3: Scanning Electron Microscopy micrographs of WO3 films deposited by RSDT under 

condition A, B, C and D. (Top: as deposited, Bottom: after annealing at 500°C). 
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Fig. 7.4 shows the bright field TEM micrographs along with the SADP of 

samples A-D after post annealing. All samples were polycrystalline, as evident from the SADP and 

were indexed to monoclinic WO3. As measured from the micrographs the size of the WO3 particles 

were 15–40 nm for sample A, 30–50 nm for sample B, 20–25 nm for sample C, and 20–30 nm for 

sample D. Different shapes and sizes of particles were seen from the micrographs, as labelled. 

Sample A shows faceted particles with edges and corners. Samples B and D show circular particles, 

whereas circular, oval, elliptical, and dumb bell shaped particles can be seen in sample D. Only 

sample B depicts the formation of necks between individual WO3 particles. 

 

Fig. 7.4: Transmission Electron Microscopy micrographs of WO3 films deposited by RSDT under 

conditions A, B, C, and D along with their selected area diffraction pattern (SADP). 
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7.6 Conclusions 

Reactive Spray Deposition Technology was employed to synthesize WO3 (γ and ε 

phase) thin films of from the vapor phase. The morphology, structure and preferential lattice plane 

orientation was tuned by changing the parameters of the flame setup including substrate temperature, 

quench air flow rate, and length of reaction zone. It was determined that the particular structure and 

properties of WO3 are a function of the synthesis process. By employing the RSDT, the properties 

of WO3 can be tuned to be favorable towards a particular application. Chapter 9 and 10 will elaborate 

upon this technique for exploring the sensing function of WO3 by changing the synthesis conditions.  

 

Fig. 7.5: XRD spectra of sample A during annealing from 30–500°C. No change in crystallinity 

is evident.  
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Fig. 7.6: XRD spectra of sample B during annealing from 30–500°C.  
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Fig. 7.7: XRD spectra of sample C during annealing from 30–500°C.  
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Fig. 7.8: XRD spectra of sample D during annealing from 30–500°C.  
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CHAPTER 8:  

Phase transformation study for WO3 and Si 

doped WO3 under various heat treatment 
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8.1 Highlights: 

1. Non-doped and SiO2 doped WO3 films were synthesized by a single step flame based process. 

2. The films were subjected to different annealing treatment. 

3. The structural properties of the WO3 was determined by various characterization techniques. 

4. Presence of amorphous SiO2 domains around the WO3 grains were confirmed by HRTEM. 

5. Data presented in this work shows that metastable ε-WO3 phase can be obtained from 30–

600°C. 

8.2 Abstract: 

SiO2 doped WO3 nanoparticle thin films were synthesized directly on silicon 

substrate by Reactive Spray Deposition Technology (RSDT). The doping concentration was set at 

0, 3, 4, 5, and 7 wt% by adjusting the concentration of the SiO2 precursor. The air quench rate was 

10 L/min, tip oxygen was 7 L/min and the substrate temperature was 400°C. Four samples were 

prepared for each deposition with the deposition time set at 30, 60, 90 and 120 mins. The resulting 

samples were subjected to different annealing conditions (no annealing–600°C). The purpose of this 

work was to adjust the SiO2 doping to obtain metastable monoclinic ferroelectric ε-WO3 and 

preserving it from 30–600°C. The morphology, structure and size of WO3 nanoparticles were probed 

using, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) with 

selected area diffraction pattern (SADP), and scanning electron microscopy (SEM) with X-ray 

energy dispersive spectroscopy (XEDS). 
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8.3 Keywords: 

WO3 thin film; Metastable phase; Phase transformation; SiO2 doping; Reactive Spray 

Deposition Technology 

8.4 Introduction: 

This chapter is focused on the synthesis by non-doped and SiO2 doped WO3 by 

Reactive Spray Deposition Technology (RSDT). Here we will give a brief description of the 

experimental method, and the characterization techniques utilized. The purpose here is to show that 

by varying the concentration of the dopants in the WO3 film and by employing the RSDT, metastable 

monoclinic ε-WO3 can be obtained which can be preserved at temperatures up to 600°C. In order to 

support this claim we will provide characterization results obtained by Raman spectroscopy, SEM, 

HRTEM, and XRD that prove the existence of the ε-WO3 phase. We will also report the effect of 

the WO3 particle size on annealing. It is assumed that the results from this study can be used to 

obtain ε-WO3 film for human breath acetone sensing. This work was presented as a talk at the 2014 

Materials Research Society (MRS) fall meeting and exhibit in the symposium HH titled “Flame and 

High-Temperature Synthesis of Functional Nanomaterials-Fundamentals and Applications” as a 

paper #HH3.05 on tuesday, December 02, 2014. 

8.5 Experimental: 

8.5.1 Synthesis of WO3: 

An explanation of the RSDT equipment and process is described in detail in 

chapter 1. Tungsten hexacarbonyl [W(CO)6] was obtained from Sigma Aldrich (Catalogue 

#AC221040100) and was dissolved in a solvent blend consisting of tetrahydrofuran (THF) (ΔH°
c, 
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298K = -2501 kJ/mol) (Fisher Scientific # SHBD3901V) and diethylene glycol monobutyl ether 

(DEGME) (ΔH°
c, 298K = -5234 kJ/mol) (Fisher Scientific # E182-4) mixed in equal volume. For 

doping SiO2 in WO3, various RSDT depositions were performed with the SiO2 doping ranging from 

0–7 wt% by adding hexamethyene disiloxane (HMDSO) (Fisher Scientific #A0326266) to the above 

precursor solution. This mixture was filled in a sealed high pressure stainless steel chamber (120 

psi) and sulfur free liquefied propane (ΔH°
c, 298K = -2202 kJ/mol) (Airgas catalogue # PRCP350S) 

was added to the precursor solution resulting in a final concentration of 8 mmol/L W(CO)6, and 18.3 

wt% propane. The precursor solution was filled in a syringe pump (Teledyne Isco 500D, Lincoln 

NE) and directed to a series of stainless steel tubes of varying diameters: 0.025 cm inner diameter 

316 stainless steel tube which is brazed to a capillary of diameter 100 μm (Vita Needle Company). 

The flow rate of the precursor was set at 4 mL/min. The combined effect of liquefied propane, and 

reduction of diameter of the tube, caused the solution to shift into the supercritical regime with the 

formation of tiny droplets approximately 15 μm in diameter as measured by Malvern Instrument’s 

Spraytec laser diffraction system [1].The precursor solution was atomized by a gas-assisted external 

mixing nozzle (combustion nozzle) by oxygen (7 L/min). Six methane-oxygen flamelets (methane 

0.42 L/min and oxygen at 0.55 L/min each) surround the capillary end, which ignites the combustible 

precursor mist. The precursor mist was ignited with a propane torch to obtain a bluish-white flame. 

At approximately 10 cm from the flame, a circular air quench (Exair, Super Air Wipe®) with a 

compressed air flow rate of 10 L/min at room temperature was positioned. A round silicon plate (2” 

diameter, p-type, cut to (100) orientation, 280 μm thickness) (Nova electronic materials item#8289) 

was used as substrate. The silicon plate was cut into 4 equal size quadrants and affixed on a stainless 

steel block by means of a high temperature kapton tape as shown in Fig. 8.1. The stainless steel 

holder with the silicon substrates was placed approximately 19.6 cm from the combustion nozzle 
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(standoff distance) to obtain a substrate temperature of 400°C as measured with an Omega k-type 

thermocouple. The deposition time was set at 30 min, 60 min, 90 min and 120 min for the silicon 

plates. After the WO3 deposition, the four silicon plates were annealed separately for 5 h. in an 

electric oven. The temperature of annealing was at 400°C, 450°C, 500°C and 600°C for the 30 min, 

60 min, 90 min and 120 min deposition sample respectively The heating and cooling rate was set at 

5°C/min. 

 

Fig. 8.1: Arrangement of the substrates for the RSDT deposition of WO3 films. 

 

8.5.2 Xylene flame impingement: 

A desirable property for the ceramic films such as WO3 synthesized by 

RSDT is the adhesion of such a film on smooth surfaces such as silicon. These complementary 

metal oxide semiconductor (CMOS) films when deposited on microelectromechanical systems 

(MEMS) substrates undergo rigorous post treatment such as setting, dicing, patterning, 

micromachining etc. Hence it is necessary that the deposited films are adhesive enough to 
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withstand the shock and stress during such processes [2]. In order to improve the adhesion of the 

films, the prepared samples were impinged with a blank particle free xylene flame for 60 s as 

shown in Fig. 8.2. This method has been shown to effectivity increase the adhesiveness of the 

CMOS films deposited by flame spray pyrolysis [3].  

 

Fig. 8.2: Improvement of the CMOS films by xylene flame impingement method [3].  

 8.5.3 Characterization:  

X-ray diffraction patterns of WO3 film were recorded in air on a Bruker D8 

advanced powder diffractometer using CuKα radiation. The scans were taken in the 2θ range of 20–

55° with a step size of 0.02° and time per step of 5 s. Raman spectra were obtained in air in the 

spectral range between 100 and 1200 cm-1 with a Renishaw Ramascope micro-Raman spectrometer 

fitted with a reflected light microscope using a 50 mW laser (514.5 nm) and exposure time of 10 s. 

Laser power delivered to the sample was set at 20% (10 mW) to avoid sample damage. Instrument 

alignment was optimized using a 521 cm-1 signal of a silicon wafer. Raman measurements for WO3 

is well known to provide structural and phase information of WO3 material [4, 5]. SEM micrographs 

were obtained at 5 kV accelerating voltage and 10 mm working distance on an FEI ESEM Quanta 

250. For determining the cross-sectional thickness of the film, the silicon substrate with WO3 film 

was fractured, and mounted on a 90° aluminum stub. The sample was gold sputter coated prior to 
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imaging under SEM. To obtain the composition of the films, elemental analysis of the deposited 

films was determined by X-ray energy dispersive spectroscopy (XEDS) on an EDAX system. TEM 

micrographs and selected area diffraction pattern (SADP) of WO3 particles were obtained on a 120 

kV FEI Tecnai T12 S/TEM with a LaB6 source equipped with an EDAX XEDS system. HRTEM 

micrographs were obtained on a 200 kV FEI Metrios TEM with an X-FEG source and SuperX-EDS. 

XEDS elemental maps of the films were acquired using the SuperX silicon drift detector (SDD). The 

TEM grids used were 300 mesh Cu, which were coated with holey/thin carbon films (Pacific Grid 

Tech Cu-300HD). A small portion of the film was scraped off from silicon plate and was sonicated 

with ethanol. Few drops of the resulting solution was dropped on the grids and air dried before it 

was placed in the UHV chamber of the TEM.  

8.5.4 N2 jet impingement test: 

In order to test the adhesiveness of the films, a N2 jet impingement test was 

performed as suggested by Russ and Talbot [6]. This test is the most suitable for the nanopowder 

films. A comparison of the adhesion tests available for different kinds of coatings is given in table 

8.1. The schematic of this test is shown in Fig. 8.3. In this test, pure N2 was directed at 10 L/min at 

a pressure of 40 psia to a stainless steel tube of 0.1 cm inner diameter. The silicon substrate with 

WO3 film was placed at a distance of 0.5 cm from N2 jet. The N2 was allowed to flow for 10 s. 

Photographs of the WO3 film were taken before and after the test and inspected visually to determine 

any damage to the film.  
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Fig. 8.3: Schematic of the arrangement for the N2 gas jet impingement method suggested by 

Russ and Talbot [6].  

Table 8.1. Different adhesion tests available in literature. 

Test name 
Adhesion 

force 
Description Comments Ref. 

Pull-off the 

thin film 
107 Pa 

The film is pulled directly from the 

substrate. The force required to pull 

the film from the substrate is the 

adhesion strength. 

adhesion force 

too strong for 

powder coatings 

[6,7] 

Ultra-

centrifugal 

10-8–10-5 

N ~ 3 µm 

particles 

The coating is placed in an 

ultracentrifuge in air facing away from 

the center. 

adhesion force 

too weak for 

powder coatings 

[8] 

Ultrasonic 10-7 N 
The film is placed in front of an 

ultrasonic horn. 

adhesion force 

too weak for 

powder coatings 

[8] 

Adhesive 

Tape 
50 N 

A piece of adhesive tape is attached to 

top side of the film and then pulled, 

perpendicularly away from the 

substrate 

adhesion force 

too strong for 

powder coatings 

[6,7] 

Tangential 

Shear 
10 N 

In this method a tangential shear is 

applied to the film either by passing a 

fluid over the film or attaching a grip 

adhesion force 

too strong for 

powder coatings 

[6,7] 
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Test name 
Adhesion 

force 
Description Comments Ref. 

to the top of the film and mechanically 

shearing the deposit. 

Tension Test 10–100 N 

The film is pulled apart until it 

fractures. The force applied at the 

fracture point is a measure of 

adhesion. 

adhesion force 

too strong for 

powder coatings 

[6,7] 

Knife or 

Scribe Test 

107–109 

Pa 

A knife or other sharp device is placed 

on the 

substrate. The force required to scrape 

away the film is a measure of 

adhesion. 

adhesion force 

too strong for 

powder coatings 

[6,7] 

N2 gas jet 

impingement 

method 

100 Pa 

A N2 jet is applied on a film for 10 s 

through a 1 mm inner diameter tube at 

a pressure of 40 psi. The jet should be 

placed perpendicularly and 0.5 cm 

above the film. 

designed 

specifically for 

powder coatings 

as described by 

Russ and Talbot. 

[6,9] 

 

8.6 Results and discussions: 

8.6.1 X-ray diffraction (XRD): 

Fig. 8.4 and Fig. 8.5 shows the XRD pattern of the non-doped and SiO2 doped 

WO3 film coated on silicon substrates. Fig. 8.4 (a)-(e) shows the XRD of the post annealed WO3 

film with 0%, 3%, 4%, 5%, and 7% SiO2 respectively. Fig 8.5 (a)-(e) shows the XRD of the post 

annealed WO3 film arranged according to the post annealing temperature. The WO3 film showed the 

monoclinic structure and was indexed to ICDD#01-043-1035 for the γ-WO3 and to ICDD#01-043-

1035 for the ε-WO3. The characteristic main peaks for ε-WO3 were seen at the 2θ value of 23.2°, 

24.1°, 29°, 33.3°, 34°, and 49.4° and can be associated with the (002), (110), (012), (-112), (200) 

and (220) reflections respectively while the characteristic main peaks for γ-WO3 were seen at the 2θ 
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value of 23.1°, 23.6°, 24.4°,26.6°,and 42° and can be associated with the (002), (020), (200), (120), 

and (222) reflections respectively. From Fig. 8.4 (a) it can be seen that the as prepared non-doped 

WO3 without annealing is mostly ferroelectric ε-WO3. The phase is maintained till 400°C after which 

it transforms back to the thermodynamically stable γ-WO3. Fig. 8.4 (b)-(c) shows the structural 

behavior of the 3 wt% and 4 wt% SiO2 doped WO3 respectively, and it can be seen that the ε-WO3 

is stable till 500°C. From Fig. 8.4 (d)-(e) for the 5 wt% and 7 wt% SiO2 doped WO3 respectively, it 

is clear that the ε-WO3 is stable till 600°C. From these studies it can be clearly interpreted that, 

increasing the SiO2 doping increased the ε-WO3 content of the films. To better understand the phase 

transformation, the XRD data for also presented by keeping the annealing and deposition time 

constant and varying the SiO2 doping. This is shown in Fig 8.5 (a)-(e).  
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Fig. 8.4: (a)-(e) The X-ray diffraction of the post annealed WO3 film with 0%, 3%, 4%, 5%, and 

7% SiO2 respectively.  
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Fig. 8.5: (a)-(e) The X-ray diffraction of the post annealed WO3 film arranged according to the 

post annealing temperature. 
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8.6.2 Raman spectroscopy: 

Raman spectroscopy technique was used for identifying the phases in the 

WO3 film since this technique is well known to give the “fingerprint “of WO3 material [4, 5]. 

Raman spectroscopy along with the XRD can be effectively used to determine the phase 

composition of WO3. Fig. 8.6 and Fig. 8.7 shows the Raman spectroscopy of the non-doped and 

SiO2 doped WO3 film coated on silicon substrates. Fig. 8.6 (a)-(e) shows the Raman spectroscopy 

of the post annealed WO3 film with 0%, 3%, 4%, 5%, and 7% SiO2 respectively. Fig. 8.7 (a)-(e) 

shows the Raman spectroscopy of the post annealed WO3 film arranged according to the post 

annealing temperature. The strongest peaks were seen at 808 and 715 cm-1 which are similar to 

those of the monoclinic γ-WO3. A relatively strong peak was observed below 150 cm-1 for all the 

samples which indicates the O-O deformation mode [10]. The peaks were matched with the 

standards in references [4, 10]. The peaks for γ-WO3 are at the Raman shift value of 808, 716, 328 

and 275 cm-1 while the peaks for ε-WO3 are at 808, 686, 646, 423, 373, 275 and 208 cm-1
. Raman 

spectroscopy results justifies the conclusions which were made on the basis of the XRD. 
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Fig. 8.6: (a)-(e) The Raman spectroscopy of the post annealed WO3 film with 0%, 3%, 4%, 5%, 

and 7% SiO2 respectively. 
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Fig. 8.7: (a)-(e) The Raman spectroscopy of the post annealed WO3 film arranged according to 

the post annealing temperature. 
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8.6.3 Transmission electron microscopy: 

Fig. 8.8 shows the bright field TEM micrographs and the SADP of the non-

doped and SiO2 doped WO3, both pre annealing and post annealing (600°C). All samples were 

polycrystalline, as evident from the SADP and were indexed to monoclinic WO3. Grain size was 

measured by TEM point analysis. The initial grain size was in the range of 10–15 nm for non-doped 

doped WO3, 7–16 nm for 3 wt% SiO2 doped WO3, 7–16 nm for 4 wt% SiO2 doped WO3, 7–13 nm 

for 5 wt% SiO2 doped WO3, 5–13 nm for 7 wt% SiO2 doped WO3, and 10-15 nm for non-doped 

doped WO3. The grain size for the post annealed samples was in the range of 30-50 nm for the non-

doped WO3, 15–35 nm for 3 wt% SiO2 doped WO3, 10–20 nm for 4 wt% SiO2 doped WO3, 7–17 

nm for 5 wt% SiO2 doped WO3, and 10–20 nm for 7 wt% SiO2 doped WO3. Different shapes and 

sizes of particles were seen from the images. None of the samples shows necking, a property which 

is desirable for the sensing applications [11, 12]. Fig. 8.9 (a)-(f) shows the high resolution TEM 

images of the post annealed (600°C) WO3. Fig. 8.9 (a-b) shows the non-doped WO3 while Fig. 8.9 

(c-f) shows the 5 wt% SiO2 doped WO3. Amorphous domains can be clearly seen around the 

individual grains. It is interesting to observe the amorphous domains in the non-doped WO3. This 

could be due to the presence of amorphous WO3 which did not crystallized even after post annealing 

process. Lattice fringes can be clearly seen in the WO3 grains. Fig. 8.10 shows the XEDS elemental 

map for the 5 wt% SiO2 doped WO3 proving that the amorphous domains in the doped WO3 are 

SiO2. 
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Fig. 8.8: (a)-(e) Transmission electron microscopy of the pre annealed and post annealed WO3 film and the corresponding selected 

area diffraction pattern (SADP). 
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Fig. 8.9: High resolution transmission electron microscopy of the post annealed WO3 film. (a)- 

(b) non-doped WO3, (c)-(f) 5 wt% SiO2 doped WO3. 
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Fig. 8.10: X-ray energy dispersive spectroscopy (XEDS) elemental maps for 5 wt% SiO2 doped 

WO3 along with the scanning transmission electron microscopy (STEM) image.  

 

8.6.3 Scanning electron microscopy: 

 

Fig. 8.11 (a)- (c) shows the scanning electron microscopy images of the cross 

-section of the post annealed 5 wt% SiO2 doped WO3 films directly deposited in silicon substrates 

for (a) 30 min deposition and annealed at 400°C, (b) 90 min deposition and annealed at 500°C, and 

(c) 120 min deposition and annealed at 600°C. The film thickness was measured to be 4 μm, 5.6 μm 

and 6.4 μm respectively. Columnar growth (tree like) of the particle agglomerates can be seen. It 

can be inferred that the film is highly porous. The non-linearity of the deposition time and the film 

growth rate could be because of various reasons. Firstly the annealing temperature was different 
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which could cause the change in the porosity and overall structure of the film. Secondly, it is possible 

that after reaching a threshold thickness, it will become difficult for the particles to contribute to the 

growth of the columns. 

  

Fig. 8.11: Scanning electron microscopy (SEM) of the cross-section of post annealed 5 wt% 

SiO2 doped WO3 on a silicon substrate (a) 30 min deposition and annealed at 400°C, (b) 90 min 

deposition and annealed at 500°C, and (c) 120 min deposition and annealed at 600°C. 
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Fig. 8.12: 4 wt% SiO2 doped WO3 on a silicon substrate after annealing at 600°C. (a) initial 

film-(b) after impinging xylene based particle free frame for 60 s in RSDT, (c) after N2 gas jet 

impingement test. 

 

8.6.4 N2 gas jet impingement test: 

Fig. 8.12 (a)- (c) shows the 4 wt% SiO2 doped WO3 films directly deposited 

in silicon substrates where (a) is the initial film, (b) after impinging xylene based particle free 

frame for 60 s in RSDT, and (c) after N2 gas jet impingement test. There is a marked difference 

between the three images. However from Fig. 8.12 (c) it can be interpreted that a large amount of 

the film was blown away by the N2 jet. The adhesiveness of the films are large compromised 

because of the presence of the amorphous SiO2.  

8.7 Conclusions: 

Reactive Spray Deposition Technology was employed to synthesize ε-WO3 thin films 

from the vapor phase. The morphology, and structure was tuned by varying the SiO2 doping from 

0–7 wt%. This work was performed with the motivation to preserve the metastable ε-WO3 over an 

extended temperature range desirable for acetone sensors. As discussed in Chapter 4, ε-WO3 phase 

is polar and preferentially attracts acetone molecules. It was found that the 5 wt% SiO2 doped WO3 

performed best in this class with the formation of ε-WO3 in the temperature range 30–600°C. It was 
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determined that the particular structure and properties of WO3 are a function of the synthesis process 

and doping concentration. However in spite of obtaining the WO3 phase favorable towards acetone 

sensing, there was no acetone sensitivity. This could be caused due to the absence of necking 

between the individual WO3 grains and also due to the possibility that the active sites were blocked 

by amorphous SiO2 domains. Chapter 9 and 10 will elaborate upon exploring the sensing function 

of WO3 by changing the synthesis conditions.  
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CHAPTER 9: 

Ultra-low NO2 detection by gamma WO3 

synthesized by Reactive Spray Deposition 

Technology 
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9.1 Highlights: 

1. Monoclinic gamma WO3 thin film was synthesized by a single step flame based process. 

2. The WO3 film was tested for 0.17–5 ppm NO2 in air at 300°C and 100% relative humidity. 

3. The structural properties of the WO3 was correlated with the gas sensing data. 

4. The WO3 film showed quicker response time than the similar films synthesized by traditional 

processes. 

5. Test and stability data shows that performance improvements that approach 100% efficiency 

can be made. 

9.2 Abstract: 

A porous tungsten oxide (WO3) film based NO2 sensor was developed by a one-

step flame based process called Reactive Spray Deposition Technology (RSDT). This nano-

crystalline WO3 film was deposited directly on gold interdigitated electrodes. The sensitivity of 

this NO2 sensor was measured at the parts per million (ppm) level, (0.17–5 ppm in air) at 300°C 

and 100% relative humidity. The sensors showed a relatively fast response time (∼7s) and recovery 

time (∼5 min), respectively. The stability of the sensor was evaluated for 300 h. in 0.5 ppm NO2 

in air at 100% relative humidity (2000 response-recovery cycles). The sensor was stable up to 6 

days (~150 h.) of continuous operation and degraded between 150 to 300 h. The morphology and 

surface properties of the WO3 film were investigated with XRD, Raman spectroscopy, BET, SEM, 

TEM, and HRTEM. 
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9.3 Keywords: 

Gas sensor; Combustion; NO2 sensing; Flame spray pyrolysis; Tungsten oxide 

nanoparticles; Reactive Spray Deposition Technology  

9.4 Introduction: 

In this chapter we have proposed Reactive Spray Deposition Technology (RSDT) 

for the synthesis of γ-WO3 films directly on gold interdigitated electrodes. The RSDT process 

allows the flexibility to create γ-WO3 with control of the particle size, porosity and thickness of 

the film. The sensitivity of porous WO3 increases when the particle size is below its Debye length 

(λD) which is 25 nm [1]. In chapter 7, it had been shown that RSDT can be employed for the 

synthesis of WO3 films with precise control of particle size, film morphology, and crystal structure 

[2]. In this study, we have employed RSDT for the deposition of nano crystalline WO3 thin films 

directly on a gold interdigitated electrode which is to be assembled into an NO2 sensing device. 

Here we provide a brief description of the synthesis, fabrication and testing procedure of the NO2 

sensor. The microstructure of the tungsten oxide films, and the effect of the film structure, grain 

size, and the sensor response to the ppm level concentration of NO2 will be described. NO2 

response behavior on the tungsten oxide surface at various operating temperatures will also be 

presented. The properties of the WO3 film was investigated by X-ray diffraction (XRD), Raman 

spectroscopy, the Brunauer-Emmett-Teller (BET) method, high resolution transmission electron 

microscopy (HRTEM), and scanning electron microscopy (SEM). The sensor response was tested 

from 0.17–5 ppm at different operating temperatures (250–350°C) to determine the optimum 

working temperature. The sensor film was ultimately performance tested for NO2 sensitivity in the 

0.17–5 ppm range at 300°C. The sensor was further tested for stability for 300 h. in 0.5 ppm NO2 
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in the air which is 10 times lower than the workplace permissible exposure limit (PEL) as per the 

Occupational Safety and Health Administration (OSHA) specification. The sensor was tested 

below the PEL because it is desirable for the workplace atmosphere to remain below the PEL of 

NO2. In order to check the selectivity, the sensor was also tested for 10 ppm acetone, 100 ppm 

ethanol, 10-100 ppm H2, and 10 ppm isoprene. We have also compared the test data of WO3 based 

NO2 sensors prepared by RSDT with the results reported in the literature. This work was presented 

at the 225th Electrochemical Society (ECS) meeting, Orlando, Florida at symposium: B1: Sensors, 

Actuators, and Microsystems General Session (Chemical and Biological Sensors), May 11-16 

(2014). This work was submitted for publication in Sensors and Actuators B: Chemical on October 

28th, 2015.  

9.5 Experimental: 

9.5.1 Synthesis of WO3: 

An explanation of the RSDT equipment and process has been described in 

detail by Jain and Roller et al. [3, 4]. Fig. 9.1 shows the schematic of RSDT along with the cross- 

sectional view of the combustion nozzle. Tungsten hexacarbonyl [W(CO)6] was obtained from 

Sigma Aldrich (Catalogue #AC221040100) and was dissolved in a tetrahydrofuran (THF) 

(enthalpy of combustion: 2501 kJ/mol) (Fisher Scientific # SHBD3901V). The precursor was 

chosen based on its low decomposition temperature of 170°C. 20 wt% sulfur free liquefied propane 

(Airgas catalogue # PRCP350S) was added to the above to form a precursor solution resulting in 

a final concentration of 5 mmol/L W(CO)6, and 18 wt% propane. THF has a dual role of an 

inexpensive solvent and fuel for the combustion of the [W(CO)6]. The precursor solution was filled 

in a syringe pump (Teledyne Isco 500D) and after heating to 50–60°C it was directed at 4 mL/min 

through a stainless steel capillary tube of 100 μm inner diameter to the combustion nozzle. Six 
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methane-oxygen flamelets (methane and oxygen at 0.5 L/min each) surround the capillary end, 

which ignites the combustible precursor mist. The precursor solution was atomized by oxygen (5 

L/min) and a pressure drop of 125 psi was maintained at the exit point of the nozzle. A circular air 

quench ring (Exair, Super Air Wipe®) with a compressed air flow rate of 70 L/min was positioned 

at 10 cm from the combustion nozzle. The distance between the combustion nozzle and the air 

quench is considered the reaction zone and the length of the reaction zone is proportional to the 

residence time of the nano-particles in that zone. Adjusting the length of the reaction zone and the 

flow rate of compressed air gives unique conditions to obtain an assortment of crystalline 

structures and phases of the material [5]. This also enables “nano quenching” thereby limiting the 

particle size growth in the flame. Two silicon plates (Nova electronic materials item#8289) and 

two gold interdigitated electrodes on alumina base (Electronic design center-Case Western 

Reserve University item#102) were used as substrates. Silicon plates were used only to evaluate 

the film thickness since they can be easily fractured and can be mounted at 90° on a SEM stub. 

Gold interdigitated electrodes on alumina base (Electronic design center-Case Western Reserve 

University item#102) were used as substrates for the gas sensing. This thick film printed electrode 

consists of interdigitated gold deposits on a 0.6 mm thick alumina substrate. The dimensions of 

the alumina base is 15 mm by 15 mm. The gold thick film screen printed electrode digits are 250 

μm wide with 250 μm spacing between them. The gold digits are connected with a pair of gold 

bonding pads which allow wires to be threaded through them as an aid for electrical connection. 

Prior to WO3 deposition, the electrode was cleaned with acetone, methanol and deionized water, 

in order and dried in an air oven operating at 80°C for 1 h. The four substrates were mounted on a 

stainless steel substrate holder, which was placed on an x-y-z platform. This enabled the substrates 

to move along a serpentine path in front of the flame to ensure even coating of WO3 on the 
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substrates. The total deposition area was 25 cm2
. All the samples were annealed in the air at 500°C 

for 5 h. in an oven to stabilize the WO3 film. The characterization and gas sensing measurements 

were performed on the post annealed samples.
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Fig. 9.1: Arrangement of the Reactive Spray Deposition Technology for direct deposition of WO3 on gold interdigitated electrodes.
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9.5.2 Characterization:  

XRD patterns of WO3 films directly deposited on gold interdigitated 

electrodes were recorded in the air at 25°C on a Bruker D8 advanced powder diffractometer using 

CuKα radiation. The scans were taken in the 2θ range of 20–55° with a step size of 0.02° and time 

per step of 5 s. Raman spectra were obtained in air at 25°C in the spectral range between 100 and 

1200 cm-1 with a Renishaw Ramascope micro-Raman spectrometer fitted with a reflected light 

microscope using a 50 mW laser (514.5 nm) and exposure time of 10 s. Laser power delivered to 

the sample was set at 20% (10 mW) to avoid sample damage. Instrument alignment was optimized 

using a 521 cm-1 signal of a silicon wafer. Raman measurements for WO3 is well known to provide 

structural and phase information of WO3 material [6]. The surface area of WO3 particles was 

calculated by the Brunauer-Emmett-Teller (BET) method using N2 sorption experiments on a 

Micromeritics ASAP 2020 BET system. Samples were degassed for 12 h. prior to N2 sorption 

measurements. For obtaining the samples for BET, a separate experiment was performed in which, 

WO3 nanoparticles powder was directly collected on a stainless steel substrate holder. The deposit 

was scrapped off using a plastic spatula and analyzed for N2 sorption experiments. SEM 

micrographs were collected on an FEI ESEM Quanta 250 with a field emission gun at 5 kV 

accelerating voltage and 8 mm working distance. For determining the cross-sectional thickness of 

the film, the silicon substrate with WO3 film was fractured, and mounted on a 90° aluminum stub. 

The sample was gold sputter coated prior to imaging under SEM. TEM micrographs and selected 

area diffraction pattern (SADP) of WO3 particles were obtained on a 120kV FEI Tecnai T12 

S/TEM with a LaB6 source. HRTEM micrographs were obtained on a 200kV FEI Metrios TEM 

with an X-FEG source. 300 mesh Cu grids coated with holey/thin carbon films (Pacific Grid Tech 

Cu-300HD) were used. A small portion of the film was scraped off from the gold interdigitated 
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electrodes and was sonicated with ethanol. Few drops of the resulting solution were dropped on 

the grids and air dried before they were placed in the ultra-high vacuum (UHV) chamber of the 

TEM. 

9.5.3 Gas sensing test:  

Gas sensing tests were performed in a dynamic flow system, implemented 

in the laboratory as shown in Fig. 9.2. Prior to gas sensing, the electrode was annealed in the air 

at 500°C for 5 h. in an electric oven to stabilize the WO3 film. A WO3 coated gold interdigitated 

electrode was introduced in a quartz cylindrical test chamber (10 cm length and 3.2 cm inner 

diameter) which was wrapped by a high temperature nozzle band heater (McMaster Carr item# 

3594K981). The ends of the test chamber were sealed by stainless steel fittings. Several ports 

were introduced in the test chamber for (1) gas inlet, (2) 2 gas outlets, and (3) standard k-type 

thermocouple to monitor temperature. Gas flow to the furnace was controlled by Environics 

Series 4040 Computerized Gas Dilution System with an option for precise humidification control 

(0-100% relative humidity). Presence of 2 gas outlets in the test chamber allows a precisely 

controlled change in the atmosphere of the test chamber, as soon as the gas concentration is 

changed from NO2 to pure air and vice versa. Dry synthetic air (Airgas #AI UZ300) was used as 

a diluent gas and 10 ppm NO2 in the air (Airgas #X02AI99C15A2520) was used for adjusting 

the NO2 concentration. Relative humidity level of 100% was maintained throughout the tests as 

measured by a calibrated hygrometer (Vaisala HMT 337). Flow rate of 1.5 L/min was maintained 

in the test chamber, because it is same as the human expiratory flow rate [7] and it is expected 

that the results of this study could lead us to develop a sensor for human breath analysis. For the 

two probe amperiometric measurements, the WO3 coated electrode was connected with two Pt 

wires (99.9% metals basis) (0.127 mm diameter) (Alfa Aesar#F20X038) and connected with a 
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CHI instrument’s electrochemical analyzer (CHI6116E). Current (I) was measured as a function 

of time and gas flow concentration at a constant 1 V DC power supply. Resistance (R) was 

calculated by applying Ohm’s law (R = V/I). The data was collected every 100 ms. 

 

Fig. 9.2: Schematic of the gas sensing test setup. 

 

9.6 Results: 

9.6.1 X-ray diffraction (XRD): 

Fig. 9.3 shows the XRD pattern of the WO3 film coated on gold 

interdigitated electrodes pre and post NO2 tests. The WO3 film showed the monoclinic structure 

and was indexed to ICDD#01-043-1035. The characteristic main peaks for γ-WO3 were seen at 

the 2θ value of 23.2°, 23.6° and 24.4° and can be associated with the (002), (020) and (200) 

reflections respectively. Average crystallite size of WO3 was calculated from X-ray line 

broadening by Debye Scherrer’s method and was 21 nm on the as prepared sample, and 27 nm on 

the post NO2 test samples. As seen from the XRD pattern, there was an increase in the intensity of 
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the WO3 film post NO2 tests. This could be due to the increase in crystallinity of the WO3 particles 

under the high temperature of testing. However no change in the overall structure of the film was 

observed verifying that the film was stable under the NO2 test conditions.    

 

Fig. 9.3: X-ray diffraction of WO3 film directly deposited on gold interdigitated electrodes, both 

pre and post NO2 test showing that there is no change in the structure of the film. 

 

9.6.2 Raman spectroscopy: 

Raman spectroscopy technique was used for identifying the phases in the 

WO3 film since this technique is well known to give the “fingerprint “of WO3 material [6]. Fig. 

9.4 shows the Raman spectroscopy results of the WO3 film directly deposited on gold interdigitated 

electrodes, both pre and post NO2 tests. The strongest peaks were seen at 808 and 715 cm-1 which 
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are similar to those of the monoclinic γ-WO3. A relatively strong peak was observed below 150 

cm-1 for all the samples which indicates the O-O deformation mode [8]. Intensity of the WO3 film 

after NO2 sensing has increased, consistent with the XRD results. On the basis of XRD and Raman 

spectroscopy results, it can be safely concluded that the structure of the WO3 film in this study is 

monoclinic γ phase.   

 

Fig. 9.4: Raman spectroscopy of WO3 film directly deposited on gold interdigitated electrodes, 

both pre and post NO2 test showing that there is no change in the structure of the film. 
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9.6.3 X-ray photoelectron spectroscopy (XPS): 

Fig. 9.5 shows the high resolution spectra for W(4f) and O(1s). The W(4f) 

spectra was obtained in the binding energy range 30–45 eV, and the peaks were deconvoluted into 

two sets of photoemission doublets—W(4f7/2) and W(4f5/2). The reference binding energy for 

W(4f7/2) and W(4f5/2) is 31 eV and 33.15 eV respectively with a spin-orbital splitting energy of 

2.15 eV [9]. The O(1s) spectra was obtained in the binding energy range 520–540 eV, which was 

deconvoluted into 4 peaks to determine the surface concentration of oxygen ions and were 

compared with the reference binding energy of peroxides [O2
2- (530.5 eV)], superoxides [O2- 

(529.5 eV)], [O- ( eV)], WO3 (529.9–530.8 eV), WO2 (530.4–531 eV), C=O (533 eV) and C-O 

(531.5–532 eV)] [10]. It is difficult to determine the exact concentration of each species due to 

relatively close binding energy value between the species.  
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Fig. 9.5: XPS of core level region of O(1s), and W(4f) for WO3 film. 
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9.6.4 Electron microscopy (SEM and TEM): 

Fig. 9.6 (a), (b) and (c) shows the SEM micrographs of the WO3 film as 

deposited on a Si wafer and gold electrode. The Si wafer was the chosen as a substrate because it 

can be easily fractured which enables the examination of the WO3 film cross-section. From Fig. 

9.6 (a) the film thickness was measured to be 2.5 μm. Fig. 9.6 (b) shows the WO3 film directly 

deposited on the gold interdigitated electrode. Uniformly coated gold lines with WO3 can be seen 

and it can be inferred that the film formation is conformal in nature. From Fig. 9.6 (c) it can be 

inferred that the WO3 film surface is rough and porous with the formation of some agglomerates 

around 5–10 μm wide. Various open pores could be seen which is advantageous for the diffusion 

of gases in the bulk of the film [11]. The total WO3 deposition area on the gold electrodes was 97.5 

mm2. The surface to volume ratio of the WO3 film was 400 mm-1. The images indicate high quality 

porous WO3 films deposited by RSDT without any cracks, voids, dense regions or surface 

abnormalities. Fig. 9.6 (d) and (e) shows the bright field TEM and HRTEM micrographs of the 

WO3 particles. Various oval shaped particles can be seen. From TEM point analysis, a particle size 

(dTEM) distribution ranging between 20-30 nm was observed. No evidence of sintering of the 

nanoparticles was found which is attributed to the use of air quench in RSDT. The selected area 

diffraction patterns (SADP) of WO3 is shown in the inset of Fig. 9.6 (d). The brightest diffraction 

ring corresponds to the (002), (220) and (114) planes. Fig. 9.6 (e) shows the HRTEM micrograph 

of one of the particle with the lattice fringes clearly visible. The lattice fringe spacing corresponds 

to the (002) plane of γ-WO3. 
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Fig. 9.6: Microscopy images of WO3 deposited by RSDT: (a) Cross-section of the WO3 film on 

a Si substrate showing a thickness of 2.5 μm, (b) WO3 film deposited on gold interdigitated 

electrodes, (c) higher magnification view of the WO3 film on a gold line. Transmission electron 

microscopy (TEM) images of WO3 films deposited by RSDT: (d) WO3 primary particle size in 

the range 20–30 nm. Selected area diffraction pattern (SADP) is shown in the inset (e) high 

resolution image of a WO3 particle showing lattice fringes corresponding to the (002) plane. 
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9.6.5 BET surface area: 

N2 sorption measurements were performed for the WO3 powder and the 

surface area was calculated by the BET method. The BET surface area was calculated as 46 m2/g. 

An average particle diameter was estimated using the BET surface area and the density of WO3 

(7.16 g/cc) by making the assumption that the particles are uniformly sized spheres. Particle 

diameter (dBET) was calculated to be 18 nm. 

9.6.6 Response dependence on temperature: 

The WO3 film was tested for NO2 response in the range of 0.17–5 ppm 

between 275–350°C to establish the relationship between NO2 concentration and temperature, and 

to determine the working temperature at which the best response can be obtained. Fig. 9.7 (a) 

shows this relationship. It can be seen that as the temperature is increased, the response increases 

till it reaches the maximum value at 300°C. If the temperature is further increased, the response is 

reduced. This could be due to increased desorption of NO2 at high temperature which reduces the 

concentration of ionosorbed oxygen at the WO3 surface.    
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Fig. 9.7: (a) Relation between sensor response (Ra = resistance of WO3 film in pure air, Rg = 

resistance of WO3 film in NO2) and NO2 concentration at different temperatures. (b) NO2 

sensing tests conducted at 0.17-5 ppm NO2 in the air conducted at 300°C at 100%. 
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9.6.7 Gas sensing results: 

Fig. 9.7 (b) shows the normalized response-recovery curve vs time for the 

NO2 concentration ranging from 0.17–5 ppm in the air at 300°C and 100% relative humidity. The 

measurable limit for our tests was 0.17 ppm. The response increases as the concentration of NO2 

is increased. This is because of the increased adsorption of NO2 molecules at higher NO2 

concentration. The adsorption and desorption of the NO2 molecules on the WO3 film takes place 

simultaneously and is a reversible process. During the response stage, adsorption is higher than 

desorption and the resistance of the film increases. This is because NO2 diffuses through the porous 

WO3 film and oxidizes the WO3 surface thereby increasing the ionosorbed oxygen concentration 

of the film. This causes an increase in electron scattering sites. NO2 also captures electrons from 

the conduction band of WO3 causing the formation of an electron depletion region, triggering an 

increase in its resistance. It was seen that the sensor response was spontaneous as the gas 

concentration in the test chamber was changed from pure air to NO2 in the air. The response time 

was calculated to be 7.2 s. The sensor stabilized at the maximum value of resistance, very quickly. 

At this point, the adsorption rate is equal to the desorption rate. Maximum adsorption had taken 

place at that particular analyte concentration and the WO3 film was in equilibrium with the NO2 

molecules. Recovery of the sensor started when pure air was switched back to the test chamber. 

At this point, adsorption was nil and desorption was the only process which was taking place. 

Presence of two vents in the test chamber expedited the exchange of the gas atmosphere. However 

it was seen that desorption was still slower than adsorption. A drift can be seen when the resistance 

of the film is measured in air after exposure to NO2 at different concentrations. This is caused 

because of incomplete recovery during the 5 min. of recovery phase. 
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9.6.8 Stability tests: 

Stability tests of the WO3 films were conducted for 300 h. at 0.5 ppm NO2 

in the air at 300°C and 100% relative humidity which is 10 times lower than the workplace 

permissible exposure limit (PEL) as per the Occupational Safety and Health Administration 

(OSHA) specification. The sensor was tested below the PEL because it is desirable for the 

workplace atmosphere to remain below the PEL of NO2. 0.5 ppm NO2 was switched on every 5 

min. (response) followed by 5 min. of pure air (recovery). Resistance of the film was measured 

every 100 ms to record the response and recovery cycle (response + recovery time = 10 min). A 

total of 2000 response-recovery cycles were recorded. Fig. 9.8 shows the resistance over time for 

WO3 film in pure air (Ra) and 0.5 ppm NO2 in air (Rg) respectively. The resistance is calculated as 

the moving average for the data collected every 24 h. It can be seen that the sensor is stable till day 

6 (~150 h.). From day 6–14 (150–300 h.) the sensor began to degrade possibly due to the growth 

of the WO3 nanoparticles. This shows that maximum degradation of the sensor occurred after day 

8 (~200 h.) as evident from the fluctuation of resistance.        
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Fig. 9.8: Stability tests for WO3 sensor conducted for 300 h. at 0.5 ppm NO2 in the air at 300°C 

and 100% relative humidity. 

 

9.6.9 Selectivity: 

The response of 1 ppm NO2 was compared with 10 ppm acetone, 100 ppm 

ethanol, 10–100 ppm H2 and 10 ppm isoprene at 0.5 ppm NO2 in air at 300°C and 100% relative 

humidity. This is shown in Fig. 9.9. It can be seen that the sensor had negligible response for 

acetone, ethanol and 10 ppm H2. However the response is significant for 100 ppm H2 and 10 ppm 

isoprene. Isoprene and H2 are some of the major component exhaled from the human breath [12]. 

Typical values of isoprene in the breath of a healthy human range from 0.012–0.58 ppm [13] while 

H2 range from 10–20 ppm [14].  
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Fig. 9.9: NO2 response as compared to other reducing analytes. 

 

9.7 Discussions: 

On the basis of the characterization and gas sensing results, we can conclude that 

RSDT can be used for the synthesis of NO2 sensing films directly on gold interdigitated electrodes. 

Based on our previous work on WO3 [2] and a review of the literature, it can be shown that the 

characteristics of the sensing device that are most important for good performance are: (1) high 
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porosity of the sensing film, (2) particle size of the sensing film smaller than the Debye length 

(λD), a characteristic of the semiconductor material, which is 25 nm for WO3, (3) film thickness, 

(4) absence of impurities in the test atmosphere, (5) test chamber volume, and (6) time required 

for the exchange of gases in the test chamber. In this discussion we will identify the importance of 

these factors and show that the gas sensing test data presented in this work adheres to these 

requirements. We have also shown the comparison between the RSDT synthesized sensors and the 

sensors synthesized by other techniques as shown in table 9.1.
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Table 9.1: Comparison of the WO3 based NO2 sensors prepared by different synthesis techniques. 

Synthesis method 

Limit of 

detection  

(ppm) 

Working 

temperature 

(°C) 

Response 

(Rg/Ra) 

Response 

(used formula) 

Response 

time 
Reference 

RSDT 0.17–5 300 

4.44 (0.17 ppm) 

6.58 (0.5 ppm) 

7.37 (1 ppm) 

8.07 (5 ppm) 

Rg/Ra 7.2 s Present study 

Evaporation 

condensation 
1–200 250 2 (1 ppm) (Rg-Ra)/Ra 70 min [15] 

Drop coating 0.5–5 100 and 200 19.2 (1 ppm) Rg/Ra 15 min [16] 

Glancing angle DC 

magnetron sputtering 
0.1–2 250 4.4 (0.5 ppm) Rg/Ra 15 min [17] 

Induction-heating 

oxidation of tungsten 
1–8 110 5.5 (1 ppm) Rg/Ra 10 min [18] 

PECVD 10–100 200 45 (10 ppm) Vg/Va (same as Rg/Ra) 50 s [19] 

Spray pyrolysis 10–100 200 1.5 (20 ppm) [(Rg-Ra)/Ra]*100 3 s [20] 
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Since the sensing is an adsorption-desorption process, gas diffusion through the 

film plays a major role in the sensor performance. The sensing film must be porous to effectively 

allow the diffusion process and extend the reaction between NO2 and oxygen from the surface to 

the bulk. By assuming steady state conditions, it can be interpreted that the NO2 concentration 

decreases with the film depth which causes the formation of various degree of reactions at different 

depths of the film. The resistance change data recorded by the electrochemical analyzer averages 

the resistances by providing the overall resistance change of the film. Ideally it would be beneficial 

to eliminate this variation. Film porosity, thickness, microstructure, and the electrode pattern are 

the factors which govern this variation [21, 22]. From the SEM micrographs in Fig. 9.6 (c) it can 

be seen that the WO3 film synthesized by RSDT is highly porous and uniform.    

Gas sensing response is dependent on the particle size of the sensing film. Smaller 

particles and increased surface area (higher surface to volume ratio) provides larger number of 

sites for the surface reaction to occur. At the same time, reducing the particle radius below Λgas, 

will converge the electron depletion layer (2Λgas) and the electrical conduction will be dominated 

by the presence of adsorbed NO2
-. Λgas depends on the Debye length (λD) of the material which is 

25 nm for WO3. Sharma et al. has described the relationship between gas sensitivity and particle 

size with respect to the Debye length (λD). When the particle size is smaller than λD, the ionosorbed 

oxygen will extract all the electrons from the WO3 particle causing an increase in film resistance 

[23]. It was also shown by Tamaki et al. that the sensitivity of 10 ppm NO2 towards WO3 particles 

were three fold higher when the particle size was smaller than 25 nm as compared to particles 

larger than 33 nm [1]. In this work, the WO3 particle size were in the range 20–30 nm as determined 

by the TEM point analysis in Fig. 9.6 (d). BET surface area measurements revealed the average 

particle diameter (dBET) to be 18 nm. 
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Working temperature is an important factor responsible for the performance of the 

sensor since sensing is an adsorption desorption process which is also influenced by kinetics [24]. 

At low working temperature, the activation barrier for the generation of ionosorbed oxygen is 

higher, while at high temperature, desorption of NO2 exceeds adsorption resulting in lower 

response. Hence the optimum temperature at with balance kinetics and desorption is essential. In 

this work, the highest response was obtained at 300°C.    

Selectivity with other gases is a major concern for a sensor to be commercially 

viable, which can lead to false alarm or incorrect gas concentration determination. In this study, it 

was found that the WO3 film was responsive towards 10 ppm isoprene and 100 ppm H2, while the 

response towards 10 ppm acetone, 100 ppm ethanol and 10 ppm H2 was negligible. All the tests 

were performed in 100% relative humidity and sensitivity towards H2O was not observed. There 

are various methods suggested in the literature to discriminate the interference towards these gases. 

The most common approach is to utilize a sensor array described by Albert et al. with various 

sensor electrodes to filter out the response from the interfering analytes [25]. The other method is 

to use filters upstream of the electrode to filter out the gases. One such activated charcoal filter is 

used by Figaro Inc. in their commercial CO sensor - TGS5042. Since the sensor response is a 

diffusion driven process, it can be easily applied to improve the selectivity. Porous layers in which 

gases may have different diffusion coefficient can be directly deposited on the sensing layer. These 

layers acts as molecular sieves to reject the interfering gases. Description of these porous layer 

filters have been provided in details in this reference [26]. Pre-calibration of the sensor for known 

cross contaminants has also been suggested [27]. 

The long recovery time and the drift of the metal oxides based sensors have been 

long recognized and various suggestions to counter this limitation have been proposed. From the 
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gas sensing tests in Fig. 9.7 (b), a drift can be seen when the resistance of the film is measured in 

the air after exposure to NO2 at different concentrations. This is caused because of incomplete 

recovery during the 5 min. of recovery phase. As a gas molecule is chemically adsorbed on the 

surface of WO3, it is in thermal equilibrium and resides at the bottom of the potential well 

(minimum potential energy). In order to desorb from the surface, the only driving force it 

experiences is the diffusion caused by the change in the concentration of gases in the test chamber 

on switching to pure air. However this energy is not sufficient and causes a long delay to achieve 

complete desorption. Further thermal or electrical energy is required to expedite this adsorption 

process. Different ways are suggested in literature to eliminate sensor drift. These include, using 

high-speed gas-switching system and smaller volume test chamber for enabling quicker gas 

exchange [28] pre exposing the sensing film to the analyte for a set period of time [29], use of 

mathematical function and modelling [30] to pre-estimate the steady state conditions and remove 

the time lag [31], use of multiple sensing electrodes in different test chamber to alter between 

response and recovery [32], use of neural network algorithm for the sensor to “self-learn” [33] use 

of strong negative field to electro-desorb the residual analyte molecules to “refresh” the sensor 

[34] and by illuminating the sensor with ultra-violet (UV) light [35]. Here we have used a two vent 

test chamber to expedite the atmosphere change. The test chamber volume was 85 cc. We are 

currently developing a prototype sensing device with a volume of 0.5 cc which will further 

eliminate this issue. 

9.8 Conclusions: 

In this study we have evaluated RSDT as a direct deposition technique for the 

synthesis of γ-WO3 film for ultra-low NO2 sensing. Air quenching was used to optimize the particle 

size and film morphology to tailor the film towards superior NO2 sensing performance. Here our 
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main objective was to correlate the influence of the synthesis process, and the resultant structural 

properties of the γ-WO3 film with the NO2 gas sensing performance. We have highlighted these 

properties and their influence on the NO2 sensing which will provide a platform for developing 

better sensors with improved performance compared to the currently used sensors. The reasons for 

the high response can be attributed to a number of factors, such particle size, porosity and pore 

size, and film thickness, all precisely controlled by the RSDT. Following conclusions can be made 

from this work: 

1. RSDT synthesized WO3 film based NO2 sensor was responsive in the 0.17–5 ppm range, 

when tested at 300°C. 

2. Response time was 7.2 s and recovery time was greater than 5 min. The response time was 

better than the WO3 sensors synthesized by the traditional wet chemistry processes from 

literature.  

3. The response was highest at the working temperature of 300°C.   

4. The NO2 sensors gave a steady response till 150 h. of continuous performance and started to 

degrade after 200 h. possibly due to increase in particle size. 

5. Interference was negligible with 10 ppm acetone, 100 ppm ethanol, 10 ppm H2 and humidity; 

however, it was significant with 10 ppm isoprene and 100 ppm H2.  

6. Response and recovery of the sensor is caused by adsorption and desorption respectively. 

Hence recovery time can be improved by expediting the desorption step.  

7. WO3 particle size of <25 nm attributes to better charge transfer which translates to superior 

NO2 sensitivity. 
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CHAPTER 10: 

Ultra-low acetone detection by epsilon WO3 

synthesized by Reactive Spray Deposition 

Technology 
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10.1 Highlights: 

1. Monoclinic epsilon WO3 thin film was synthesized by a single step flame based process. 

2. The WO3 film was tested with 0.2–5 ppm acetone in air at 400°C.   

3. The structural properties of the WO3 was correlated with the gas sensing data. 

4. The WO3 film showed quicker response time than similar films synthesized by traditional 

processes. 

5. Test and stability data shows that performance improvements that approach 100% efficiency 

can be made.   

10.2 Abstract: 

A metastable monoclinic epsilon tungsten oxide (WO3) film based acetone sensor 

was developed by the flame based process called Reactive Spray Deposition Technology (RSDT) 

depositing directly on gold interdigitated electrodes. The sensitivity of this acetone sensor was 

measured at the parts per million (ppm) level, (0.2–5 ppm in air) at 400°C. The sensors showed a 

relatively fast response time (∼7 s) to acetone vapor. The stability of the sensor was evaluated for 

450 h. in 0.5 ppm NO2 in air (2700 response-recovery cycles). The sensor was stable up to 10 days 

(~250 h.) of continuous operation and degraded between 250 to 450 h. The selectivity of the sensor 

was tested in 90% relative humidity, 10 ppm H2, 8 ppm CO, and 0.2 ppm ethanol. The morphology 

and surface properties of the WO3 film were investigated with XRD, Raman spectroscopy, SEM, 

and TEM. In addition, operando XRD experiments were performed at the condition of the acetone 

tests to confirm the stability of the structure. We have also compared the test data of WO3 based 

acetone sensors prepared by RSDT with the results reported in the literature. 



 

252 

 

10.3 Keywords:   

Acetone sensor; diabetes; reactive spray deposition technology; flame combustion 

synthesis; tungsten oxide 

10.4 Introduction: 

In this chapter we have proposed an open atmosphere flame based process also 

known as Reactive Spray Deposition Technology (RSDT) for the synthesis of ε-WO3 films directly 

on gold interdigitated electrodes. The RSDT process allows the flexibility to create ε-WO3 with 

control of the particle size, porosity and thickness of the film. The sensitivity of porous WO3 

increases when the particle size is below its Debye length (λD) which is 25 nm [1]. In chapter 8, it 

had been shown that RSDT can be employed for the synthesis of γ-WO3 films with precise control 

of particle size, film morphology, and crystal structure [2]. In this study, we have employed RSDT 

for the deposition of nano crystalline WO3 thin films directly on a gold interdigitated electrode 

which is to be assembled into an acetone sensing device. Here we provide a brief description of 

the synthesis, fabrication and testing procedure of the acetone sensor. The microstructure of the 

tungsten oxide films, and the effect of the film structure, grain size, and the sensor response to the 

ppm level concentration of acetone will be described. Acetone response behavior on the tungsten 

oxide surface at various operating temperatures will also be presented. The properties of the WO3 

film was investigated by X-ray diffraction (XRD), Raman spectroscopy, transmission electron 

microscopy (HRTEM), and scanning electron microscopy (SEM). The structure of the WO3 film 

was also probed by operando XRD studies at the condition of testing. The sensor film was 

ultimately performance tested for acetone sensitivity in the 0.17-5 ppm range at 400°C. The sensor 

was further tested for stability for 500 h. in 0.5 ppm acetone in air which is same as the breath 
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acetone concentration of a healthy individual [3,4]. The sensor was tested at this concentration 

because it is desirable that the breath acetone concentration remain below 0.5 ppm which is the 

diabetes threshold limit. In order to check the selectivity, the sensor was also tested for humidity, 

10 ppm H2, 0.2 ppm ethanol, and 8 ppm CO. We have also compared the test data of WO3 based 

acetone sensors prepared by RSDT with the results reported in the literature. 

10.5 Experimental: 

10.5.1 Synthesis of WO3: 

An explanation of the RSDT equipment and process has been described in 

detail by Jain and Roller et al. [5, 6]. Tungsten hexacarbonyl [W(CO)6] was obtained from Sigma 

Aldrich (Catalogue #AC221040100) and was dissolved in a tetrahydrofuran (THF) (enthalpy of 

combustion: 2501 kJ/mol) (Fisher Scientific # SHBD3901V). The precursor was chosen based on 

its low decomposition temperature of 170°C. Sulfur free liquefied propane (enthalpy of 

combustion: 2202 kJ/mol) (Airgas catalogue # PRCP350S) was added to the above to form a 

precursor solution resulting in a final concentration of 4.9 mmol/L W(CO)6, and 18 wt% propane. 

THF has a dual role of an inexpensive solvent and fuel for the combustion of the [W(CO)6]. 

Propane helps in atomization by increasing the pressure drop between the needle and the point of 

exit of the solution, thereby splitting the solution in tiny droplets approximately 15 μm in diameter 

as measured by Malvern Instrument’s Spraytec laser diffraction system [7]. The increase in surface 

area of the overall droplets helps in efficient combustion of the precursor. The precursor solution 

was filled in a syringe pump (Teledyne Isco 500D, Lincoln NE) and directed at 4 mL/min to a 

series of stainless steel tubes of varying diameters: 0.025 cm inner diameter 316 stainless steel 

tube which is brazed to a capillary of 100 μm inner diameter (Vita Needle company). An Omega 

k-type thermocouple was placed at the junction of the tube and capillary, the temperature of which 
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is maintained at 170°C by means of an induction coil wrapped upstream of the flow of precursor 

solution based on our previous design of experiments to create nanometer sized Pt particles of 1–

3 nm [8]. This caused the temperature of the precursor solution at the exit point to be 50–60°C and 

a pressure drop of 90–110 psi. The combined effect of liquefied propane, temperature, and 

reduction of diameter of the tube, causes the solution to shift into the supercritical regime and 

formation of sub-micron size droplets [7]. Six methane-oxygen flamelets (methane at 0.42 L/min 

and oxygen at 0.55 L/min) surround the capillary end, and ignites the combustible precursor mist. 

The precursor solution was atomized by oxygen (5 L/min). A circular air quench ring (Exair, Super 

Air Wipe®) with a compressed air flow rate of 76.8 L/min was positioned at 10 cm from the 

combustion nozzle. The distance between the combustion nozzle and the air quench is considered 

the reaction zone and the length of the reaction zone is proportional to the residence time of the 

nano-particles in that zone. Adjusting the length of the reaction zone and the flow rate of 

compressed air gives unique conditions to obtain different phases and crystalline structures of the 

material [9]. This also enables “nano quenching” thereby limiting the particle size growth in the 

flame. A gold interdigitated electrode on alumina base (Electronic design center-Case Western 

Reserve University item#102) was used as a substrate. This thick film printed electrode consists 

of interdigitated gold deposits on a 0.6 mm thick alumina substrate. The dimensions of the alumina 

base is 15 mm by 15 mm. The gold thick film screen printed electrode digits are 250 μm wide with 

250 μm spacing between them. The gold digits are connected with a pair of gold bonding pads 

which allow wires to be threaded through them as an aid for electrical connection. Prior to WO3 

deposition, the electrode was cleaned with acetone, methanol and deionized water, in order and 

dried in an air oven operating at 80°C for 1 h. The substrate was mounted on a stainless steel block 

and, placed on an x-y-z platform. This substrate platform can be moved along a serpentine path in 
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front of the flame to deposit on a larger area if required, however because of the small area of 

deposition, this motion was not required. The total deposition area was only 2.25 cm2
. Post 

deposition, the sample was annealed in the air at 500°C for 5 h. in an oven to stabilize the WO3 

film. In a separate experiment, blank silicon plates (Nova Wafers, catalogue # 8289) were used as 

substrates, only for the evaluation of the film thickness since they can be easily fractured and can 

be mounted at 90° on an aluminum SEM stub. The characterization and gas sensing measurements 

were performed on the post annealed samples.  

10.5.1.1 Role of air quench: 

 As discussed previously, quenching plays a very important role in 

obtaining the metastable monoclinic ε phase of WO3. This was achieved by using the air quench 

in RSDT. By using air quench, the WO3 particles were cooled from 500°C to 30°C in 7 ms. With 

this rapid cooling, the WO3 particles did not get enough time to freeze in their stable state, and it 

also caused the formation of stresses in the WO3 structure. Detailed description of the air quench 

has been provided in chapter 1 which will be briefly revisited here. The air quench is a circular 

ring with an internal annular chamber. Compressed air at room temperature enters two 

diametrically opposite nozzles and is directed into that chamber. The chamber has a narrow 

opening through which the air adopts the coanda profile and flows along the angled surface of 

the air quench. This also creates a low pressure region behind the air quench causing the 

entrainment of the surrounding air into the primary air stream. A 360° cone of cold air is formed 

which cools the nanoparticles instantly and prevents growth, agglomeration, and sintering, 

thereby keeping the particle size small and increasing the active surface area. The distance 

between the combustion nozzle and the air quench is considered the reaction zone and the length 

of the reaction zone is proportional to the residence time of the nanoparticles in that zone. 
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Adjusting the length of the reaction zone and the flow rate of compressed air gives unique 

conditions to obtain an assortment of phases and structures of WO3. In this study the reaction 

zone was set at 10 cm. A schematic of the air quench is shown in Fig. 10.1.  

 

Fig. 10.1: Schematic of the air quench in RSDT. 

 

10.5.2 Characterization:  

XRD patterns of WO3 films directly deposited on gold interdigitated 

electrodes were recorded in the air at 25°C on a Bruker D8 advanced powder diffractometer using 

CuKα radiation. The scans were taken in the 2θ range of 20–55° with a step size of 0.02° and 

time per step of 5 s. Operando XRD was also performed at the conditions of the acetone tests, 

from room temperature till 500°C both in air and air/acetone mixture to evaluate the phase 

transformation during the sensing process. For this purpose, a fresh sample was prepared with 
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the identical experimental conditions of the test sample. The sample was placed in a high 

temperature Anton Paar HTK1200 heating stage in the XRD. Heating rate of 5°C /min was used. 

Raman spectra were obtained in air at 25°C in the spectral range between 100 and 1200 cm-1 with 

a Renishaw Ramascope micro-Raman spectrometer fitted with a reflected light microscope using 

a 50 mW laser (514.5 nm) and exposure time of 10 s. Laser power delivered to the sample was 

set at 20% (10 mW) to avoid sample damage. Instrument alignment was optimized using a 521 

cm-1 signal of a silicon wafer. Raman measurements for WO3 is well known to provide structural 

and phase information of WO3 material [10, 11]. The surface area of WO3 particles was 

calculated by the Brunauer-Emmett-Teller (BET) method using N2 sorption experiments on a 

Micromeritics ASAP 2020 BET system. Samples were degassed for 12 h. prior to N2 sorption 

measurements. For obtaining the samples for BET, a separate experiment was performed in 

which, WO3 nanoparticles powder was directly collected on a stainless steel substrate holder. 

The deposit was scrapped off using a plastic spatula and analyzed for N2 sorption experiments. 

SEM micrographs were collected on an FEI ESEM Quanta 250 with a field emission gun at 5 kV 

accelerating voltage and 8 mm working distance. For determining the cross-sectional thickness 

of the film, the silicon substrate with WO3 film was fractured, and mounted on a 90° aluminum 

stub. TEM micrographs and selected area diffraction pattern (SADP) of WO3 particles were 

obtained on a 120 kV FEI Tecnai T12 S/TEM with a LaB6 source. 300 mesh Cu grids coated 

with holey/thin carbon films (Pacific Grid Tech Cu-300HD) were used. A small portion of the 

film was scraped off from the gold interdigitated electrodes and was sonicated with ethanol. Few 

drops of the resulting solution were dropped on the grids and air dried before they were placed 

in the ultra-high vacuum (UHV) chamber of the TEM. 
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10.5.3 Gas sensing test:  

Gas sensing tests were performed in a dynamic flow system, implemented 

in the laboratory as shown in Fig. 10.2. Prior to gas sensing, the electrode was annealed in the air 

at 500°C for 5 h. in an electric oven to stabilize the WO3 film. A WO3 coated gold interdigitated 

electrode was introduced in a quartz cylindrical test chamber (10 cm length, 3.2 cm inner 

diameter, volume of 80 cc) which was wrapped by a high temperature nozzle band heater 

(McMaster Carr item# 3594K981). The ends of the test chamber were sealed by stainless steel 

fittings. Several ports were introduced in the test chamber for (1) gas inlet, (2) two gas outlets, 

and (3) standard k-type thermocouple to monitor temperature. Gas flow to the furnace was 

controlled by Environics Series 4040 Computerized Gas Dilution System. Presence of two gas 

outlets in the test chamber allows a precisely controlled change in the atmosphere of the test 

chamber, as soon as the supply gas concentration is changed from acetone to pure air and vice 

versa. Dry synthetic air (Airgas #AI UZ300) was used as a diluent gas and 10 ppm acetone in air 

(Airgas # X02AI99C15A38K3) was used for adjusting the acetone concentration. Flow rate of 

1.5 L/min was maintained in the test chamber, because it is same as the human expiratory flow 

rate [12] and it is expected that the results of this study could lead us to develop a sensor for 

human breath analysis. For the two probe amperiometric measurements, the ε-WO3 coated 

electrode was connected with two Pt wires (99.9% metals basis) (0.127 mm diameter) (Alfa 

Aesar#F20X038) and connected to a CHI instrument’s electrochemical analyzer (CHI6116E). 

Current (I) was measured as a function of time and gas flow concentration at a constant 1 V DC 

power supply. Resistance (R) was calculated by applying Ohm’s law (R = V/I). The data was 

collected every 100 ms. 
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Fig. 10.2: Schematic of the gas sensing test setup. 

 

10.6 Results: 

10.6.1 X-ray diffraction (XRD): 

Fig. 10.3 shows the XRD pattern of the WO3 film coated on gold 

interdigitated electrodes pre acetone test and after 450 h stability test. The characteristic peaks of 

ε-WO3 (ICDD# 01-087-2386), and γ-WO3 (ICDD#01-043-1035) are shown. The characteristic 

main peaks for ε-WO3 were seen at the 2θ value of 23.1°, 24.1°, 29°, 33.3°, 34°, and 49.4° and can 

be associated with the (002), (110), (012), (-112), (200) and (220) reflections respectively. 

However no change in the overall structure of the film was observed verifying that the film was 

stable under the acetone test conditions. Fig. 10.4 shows the XRD of sample at the conditions of 

the acetone test (operando XRD). It can be seen that the structure of the film has remained 

unchanged during the operando XRD confirming that the structure is stable during the acetone 

sensing experiments. 
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Fig. 10.3: X-ray diffraction of the WO3 film before and after the acetone sensing stability test.    
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Fig. 10.4: Operando X-ray diffraction of the WO3 film during 0.2–1 ppm acetone tests. 

 

10.6.2 Raman Spectroscopy: 

Raman spectroscopy technique was used for identifying the phases in the 

WO3 film since this technique is well known to give the “fingerprint “of WO3 material [10]. Fig. 

10.5 shows the Raman spectroscopy results of the WO3 film directly deposited on gold 

interdigitated electrodes, both pre and post acetone stability tests. The peaks were matched with 

the standards in references [10, 13]. The peaks for γ-WO3 are at the Raman shift value of 808, 716, 

328 and 275 cm-1 while the peaks for ε-WO3 are at 808, 686, 646, 423, 373, 275 and 208 cm-1
. A 

relatively strong peak was observed below 150 cm-1 for all the samples which indicates the O-O 

deformation mode [13]. The strong γ-WO3 peak at 715 cm-1 is weak in the as prepared sample 
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while the characteristic ε-WO3 only peaks at 686, 646, 423, 373 cm-1 are stronger. On the basis of 

XRD and Raman spectroscopy results, it can be safely concluded that the structure of the WO3 

film in this study is monoclinic ε phase. Phase transformation from ε to γ is also evident after 450 

h. of stability tests.  

 

Fig. 10.5: Raman spectroscopy of the WO3 film before and after the acetone sensing stability 

test. 

 

10.6.3 Electron Microscopy: 

10.6.3.1 Scanning Electron Microscopy:  

Fig. 10.6 (a), (b), (c) and (d) shows the SEM micrographs of the 

WO3 film as deposited on the gold electrode. Fig. 10.6 (a) and (c) shows the image after 8.5 h. 

acetone tests and it can be inferred from the images that the WO3 film surface is rough and porous 



 

263 

 

with the formation of some agglomerates around 5–10 μm wide. Various pores could be seen 

which is advantageous for the diffusion of gases in the bulk of the film [14]. Fig. 10.6 (b) and (d) 

shows the image after 300 h. acetone tests. It can be clearly seen that there is a remarkable change 

in the morphology of the films after acetone stability tests. From Fig. 10.6 (a) and (b), uniformly 

coated gold lines with WO3 can be seen and it can be inferred that the film formation is conformal 

in nature. The total WO3 deposition area on the gold electrodes was 97.5 mm2. The images indicate 

high quality porous WO3 films deposited by RSDT without any cracks, voids, dense regions or 

surface abnormalities.   
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Fig. 10.6: SEM micrographs of the WO3 film before and after the acetone sensing stability test. 

 

10.6.3.2 Transmission Electron Microscopy:  

Fig. 10.7 shows the bright field TEM micrograph of the WO3 

particles. Necking of the grains can be clearly observed which is advantageous for the enhanced 

electron transport through the percolation path (grain to grain contact) as described by Xu et al. 

[15]. Various oval shaped particles can be seen. From TEM point analysis, a crystallite size (dTEM) 

distribution ranging between 12–25 nm was observed. It has been shown by Tamaki et al. that the 
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gas sensitivity is significantly enhanced when the crystallite size is smaller than the Debye length 

(λD). This is because both the surface and bulk of the grain contributes to the resistance and yields 

the largest gas sensor response. The Debye length for WO3 is 25 nm [1]. No evidence of sintering 

of the nanoparticles was found which is attributed to the use of air quench in RSDT.  

 

Fig. 10.7: TEM micrographs of the WO3 crystallites showing necking and a crystallite size 

(dTEM) distribution ranging between 12–25 nm. 

 

10.6.4 Gas sensing results: 

Fig. 10.8 shows the resistance vs time curve for the acetone concentration 

ranging from 0.2–1 ppm in the air at 400°C. The limit of detection for our tests was 0.2 ppm. The 

film resistance decreases as the concentration of acetone is increased. This is because of the 

increased adsorption of acetone molecules at higher acetone concentration. The adsorption and 

desorption of the acetone molecules on the WO3 film takes place simultaneously and is a reversible 

process. During the response stage, adsorption is higher than desorption and the resistance of the 
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film increases. This is because acetone diffuses through the porous WO3 film and reduces the WO3 

surface thereby depleting the ionosorbed oxygen concentration on the film. Acetone also captures 

electrons from the conduction band of WO3 causing the formation of an electron depletion region, 

triggering an increase in its resistance. It was seen that the sensor response was spontaneous as the 

gas concentration in the test chamber was changed from pure air to acetone in the air. The response 

time was calculated to be 10 s. The sensor very quickly stabilized at the maximum value of 

resistance. At this point, the adsorption rate is equal to the desorption rate. Maximum adsorption 

had taken place at that particular analyte concentration, and the WO3 film was in equilibrium with 

the acetone molecules. Recovery of the sensor started when pure air was switched back to the test 

chamber. At this point, adsorption was nil and desorption was the only process which was taking 

place. Presence of two vents in the test chamber expedited the exchange of the gas atmosphere. 

However it was seen that desorption was still slower than adsorption. A drift can be seen when the 

resistance of the film is measured in air after exposure to acetone at different concentrations. This 

is caused by incomplete recovery during the 15 min. of recovery phase. The test data was also 

compared with the data from other acetone sensors as given in literature. This is shown in table 

10.1.  
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Fig. 10.8: Resistance vs time curve for acetone tests conducted at 400°C from 0.2–5 ppm 

acetone. 

 

10.6.5 Stability tests: 

Stability tests of the WO3 films were conducted for 450 h. at 0.5 ppm acetone in 

the air at 400°C and which is same as the breath acetone concentration of a healthy individual [3, 

4]. The sensor was tested at this concentration because it is desirable that the breath acetone 

concentration remain below the diabetes threshold limit. 0.5 ppm acetone was switched on every 

5 min. (response) followed by 5 min. of pure air (recovery). Resistance of the film was measured 

every 100 ms to record the response and recovery cycle (response + recovery time = 10 min). A 

total of 2700 response-recovery cycles were recorded. Fig. 10.9 shows the resistance over time for 

WO3 film in pure air (Ra) and 0.5 ppm acetone in air (Rg) respectively. It can be seen that the 

sensor is stable till day 10 (~250 h.). From day 10–21 (250–450 h.) the sensor began to degrade 
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possibly due to the growth of the WO3 nanoparticles and the phase transformation to the γ phase 

as confirmed by XRD and Raman spectroscopy. This shows that maximum degradation of the 

sensor occurred after day 10 (~250 h.) as evident from the fluctuation of resistance.         

 

Fig. 10.9: Stability tests for WO3 sensor conducted for 450 h. at 0.5 ppm acetone in the air at 

400°C. 

 

10.6.6 Selectivity: 

The response of 0.5 ppm acetone was compared with 10 ppm H2, 0.2 ppm 

ethanol, 8 ppm CO and 90% relative humidity in air at 400°C (data not shown here). It was seen 

that the sensor had negligible response for ethanol, CO and humidity, but significant response for 
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10 ppm H2. H2 is a major component exhaled from the human breath [16]. Typical values of H2 

in the breath range from 10–20 ppm [17]. 

10.7 Discussions: 

On the basis of the characterization and gas sensing results, we can conclude that 

RSDT can be used for the synthesis of acetone sensing films directly on gold interdigitated 

electrodes. Based on our previous work on WO3 [2] and a review of the literature, it can be shown 

that the characteristics of the sensing device that are most important for good performance are: (1) 

high porosity of the sensing film, (2) particle size of the sensing film smaller than the Debye length 

(λD), a characteristic of the semiconductor material, which is 25 nm for WO3, (3) film thickness, 

(4) absence of impurities in the test atmosphere, (5) test chamber volume, and (6) time required 

for the exchange of gases in the test chamber. In this discussion we will identify the importance of 

these factors and show that the gas sensing test data presented in this work adheres to these 

requirements.  

Since the sensing is an adsorption-desorption process, gas diffusion through the 

film plays a major role in the sensor performance. The sensing film must be porous to effectively 

allow the diffusion process and extend the reaction between acetone and oxygen from the surface 

to the bulk. By assuming steady state conditions, it can be interpreted that the acetone 

concentration decreases with the film depth which causes the formation of various degree of 

reactions at different depths of the film. The resistance change data recorded by the 

electrochemical analyzer averages the resistances by providing the overall resistance change of the 

film. Ideally it would be beneficial to eliminate this variation. Film porosity, thickness, 

microstructure, and the electrode pattern are the factors which govern this variation [18, 19]. From 
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the SEM micrographs in Fig. 10.6 it can be seen that the WO3 film synthesized by RSDT is highly 

porous and uniform. For porous layers, the active surface area is much larger than the dense layers. 

Two different transport mechanism for the charge carriers were proposed for the porous layers by 

Barsan and Weimar [20]:  

Diffusion theory: 

According to the diffusion theory in porous layers, the conductance is calculated by the following 

equation:  

𝐶𝑑𝑖𝑓𝑓 =  𝑎𝑟𝑒𝑎 ∗ (
𝑞2𝑛𝑏𝜇𝑏

𝑘𝐵𝑇
) ∗  √

𝑞𝑛𝑏𝑉𝑠 

2𝜀
∗ 𝑒𝑥𝑝 (

−𝑞𝑣𝑠

𝑘𝐵𝑇
)                          (E10.1) 

Where “C” is the conductance and “area” has the dimensions in m2 and represents the active area 

seen by the electrons while travelling from grain to grain. The subscript “b” represents bulk. The 

other symbols are as defined previously. 

Thermoelectronic emission theory: 

According to this theory, only the electrons which possess the kinetic energy greater than the band 

bending height can move across the boundary. The net current is the difference in the charge fluxes 

across the boundary from left to right and right to left respectively.  

𝐶𝑡ℎ𝑒𝑟𝑚𝑜 =  𝑎𝑟𝑒𝑎 ∗ (
𝑞

𝑘𝐵𝑇
) ∗ 𝑞 ∗ √

8∗𝑘𝐵∗𝑇 

𝛱∗𝑚′
∗ 𝑒𝑥𝑝 (

−𝑞𝑣𝑠

𝑘𝐵𝑇
)                      (E10.2) 

Where, √
8∗𝑘𝐵∗𝑇 

𝛱∗𝑚′
 = mean thermal velocity of the carriers and m’ is the effective mass. The other 

symbols are as defined previously. 
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Gas sensing response is dependent on the particle size of the sensing film. Smaller particles and 

increased surface area (higher surface to volume ratio) provides larger number of sites for the 

surface reaction to occur. At the same time, reducing the particle radius below Λ, will converge 

the electron depletion layer (2Λ), and the electrical conduction will be dominated by the presence 

of adsorbed acetone species. Λ depends on the Debye length (λD) of the material by the following 

equation: 

Debye length by the following equation: 

Λ =  λD(
2qVs

kBT
)
1
2⁄                      (E10.3) 

qVs = height of band bending, λD = Debye length 

kB = Boltzmann’s constant = 1.38 ∗ 10−23
J

K
, T = temperature 

 Debye length of WO3 is 25 nm. Sharma et al. has described the relationship 

between gas sensitivity and particle size with respect to the Debye length (λD). When the particle 

size is smaller than λD, the ionosorbed oxygen will extract all the electrons from the WO3 particle 

causing an increase in film resistance [21]. In this work, the WO3 particle size were in the range 

12–25 nm as determined by the TEM point analysis.  

Selectivity is a major concern for a sensor to be commercially viable, which may 

lead to false alarm or incorrect gas concentration determination. In this study, it was found that the 

WO3 film was responsive to 10 ppm H2, while the response to humidity, 0.2 ppm ethanol and 8 

ppm CO was negligible. There are various methods to discriminate the interference to these gases 

that are suggested in the literature. The most common approach is to utilize a sensor array 

described by Albert et al. with various sensor electrodes to filter out the response from the 
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interfering analytes [22]. The other method is to use filters upstream of the electrode to filter out 

the gases. One such activated charcoal filter is used by Figaro Inc. in their commercial CO sensor 

- TGS5042. Since the sensor response is a diffusion driven process, filters can easily be applied to 

improve the selectivity. Porous layers in which gases may have different diffusion coefficients can 

be directly deposited on the sensing layer. These layers acts as molecular sieves to reject the 

interfering gases. Description of these porous layer filters have been provided in detail in this 

reference [23]. Pre-calibration of the sensor for known cross contaminants has also been suggested 

[24]. 

The long recovery time and the drift of the metal oxides based sensors have been 

long recognized and various suggestions to counter this limitation have been proposed. From the 

gas sensing tests in Fig. 10.8, a drift can be seen when the resistance of the film is measured in air 

after exposure to acetone at different concentrations. This is caused because of incomplete 

recovery during the 15 min. of recovery phase. As a gas molecule is chemically adsorbed on the 

surface of WO3, it is in thermal equilibrium and resides at the bottom of the potential well 

(minimum potential energy). In order to desorb from the surface, the only driving force it 

experiences is the diffusion caused by the change in the concentration of gases in the test chamber 

on switching to pure air. However this energy is not sufficient and causes a long delay to achieve 

complete desorption. Further thermal or electrical energy is required to expedite this adsorption 

process. Different ways are suggested in literature to eliminate sensor drift. These include, using 

high-speed gas-switching system and smaller volume test chamber for enabling quicker gas 

exchange [25] pre exposing the sensing film to the analyte for a set period of time [26], use of 

mathematical function and modelling [27] to pre-estimate the steady state conditions and remove 

the time lag [28], use of multiple sensing electrodes in different test chamber to alter between 
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response and recovery [29], use of neural network algorithm for the sensor to “self-learn” [30] use 

of strong negative field to electro-desorb the residual analyte molecules to “refresh” the sensor 

[31] and by illuminating the sensor with ultra-violet (UV) light [32]. Here we have used a two vent 

test chamber to expedite the atmosphere change. The test chamber volume was 85 cc. We are 

currently developing a prototype sensing device with a volume of 0.5 cc which will further reduce 

this issue.
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Table 10.1: Comparison of the metal oxide based acetone sensors prepared by different synthesis techniques. 

Sensing 

film 

Synthesis  

method 

Limit of detection 

(LOD)  

(ppm) 

Working 

temperature 

(°C) 

Sensitivity 

(Ra/Rg) 

Sensitivity 

(used 

formula) 

Response 

time (s) 
Reference 

Pure WO3 RSDT 0.2 400 
1.3 (0.2 ppm) 

2.1 (0.5 ppm) 
Ra/Rg 10 

Present 

study 

Cr2O3-WO3 
Flame spray 

pyrolysis 
0.2 400 1.5 (0.2 ppm) Ra/Rg 333 [33] 

5 mol% 

Cr2O3-WO3 
Sol-gel 0.5 320 1.2 (0.5 ppm) Ra/Rg 182 [34] 

SiO2-WO3 
Flame spray 

pyrolysis 
0.02 400 

1.3 (0.02 ppm) 

5.2 (0.5 ppm) 
(Ra/Rg)-1 172 [35] 

Pure SnO2 Dip-coating 2 
room 

temperature 
4 (2 ppm) Ra/Rg 30 s [36] 

Ce-SnO2 
Sol-gel and 

dip coating 
100 210 79 (100 ppm) Ra/Rg 

not 

mentioned 
[37] 

SnO2-ZnO Wet method 200 300 2.3 (200 ppm) Ra/Rg 233 [38] 

ZnO 
RF reactive 

sputtering 
15 400 1.006 (15 ppm) (Ra/Rg)-1 324 [39] 

TiO2 
Flame spray 

pyrolysis 
1 500 4 (1 ppm) (Ra/Rg)-1 3 [40] 

Fe2O3/Pt Wet method 10 300 5.2 (10 ppm) Ra/Rg NM [41] 

Fe2O3/RuO2 Wet method 10 300 2.5 (10 ppm) Ra/Rg NM [41] 

In2O3/Au 
co-

precipitation 
0.1 250 2.8 (1 ppm) Ra/Rg 72 s [42] 
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10.8 Conclusions: 

In this study we have evaluated RSDT as a direct deposition technique for the 

synthesis of ε-WO3 film for ultra-low acetone sensing. Air quenching was used to optimize the 

particle size and film morphology to tailor the film towards superior acetone sensing performance. 

Here our main objective was to correlate the influence of the synthesis process, and the resultant 

structural properties of the ε-WO3 film with the acetone gas sensing performance. We have 

highlighted these properties and their influence on the acetone sensing which will provide a 

platform for developing better sensors with improved performance compared to the currently used 

sensors. The reasons for the high response can be attributed to a number of factors, such particle 

size, porosity and pore size, and film thickness, all precisely controlled by the RSDT. Following 

conclusions can be made from this work: 

1. RSDT synthesized WO3 film based acetone sensor was responsive in the 0.2–1 ppm range, 

when tested at 400°C. 

2. XRD and Raman spectroscopy confirmed the presence of ε-WO3. 

3. Operando XRD at the same conditions of acetone tests confirmed that the structure was 

unaltered during the tests. 

4. Response time was 10 s and recovery time was greater than 15 min.  

5. The acetone sensors gave a steady response till 450 h. of continuous performance and started 

to degrade after 450 h. possibly due to phase transformation to the thermodynamically stable 

γ-WO3. 
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6. Interference was negligible with humidity, 0.2 ppm ethanol, and 8 ppm CO; however, it was 

significant with 10 ppm H2.  

7. Response and recovery of the sensor is caused by adsorption and desorption respectively. 

Hence recovery time can be improved by expediting the desorption step.  

8. WO3 particle size of <25 nm attributes to better charge transfer which translates to superior 

acetone sensitivity. 
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This thesis was produced as a result of two different research topics: catalysts and 

sensors. RSDT was explored as a single step approach to synthesize nanomaterials thin films for 

the catalyst and sensor. Pt/ceria catalysts was synthesized for the water-gas shift reaction while 

two distinct phases of WO3 (γ and ε phase) were synthesized for the NO2 and acetone sensing 

respectively. The work presented in this thesis opened up the avenue for further development of 

novel functional nanomaterials films for catalysts and sensors. It is clear from the work presented 

here that there is a large design space in RSDT to manipulate the nanomaterial structure, phase, 

chemistry, composition, porosity, density and particle size. Independent control of all the 

parameters provide additional flexibility to obtain the desired nanomaterial property. Based on 

various chapters presented in this thesis following conclusions can be made: 

Pt was deposited on ceria support using RSDT. Composition of Pt on ceria was 

adjusted by adjusting the precursor composition. 1 wt% Pt on ceria catalyst was synthesized where 

solid nanoparticles were grown from the vapor phase and collected on glass fiber filter substrates. 

The catalyst was tested for water-gas shift reaction at various pretreatment and operating 

conditions. The activity was compared with the literature for the catalysts prepared by 

conventional processes. It was found that the RSDT synthesized catalyst performed better than 

most of the other catalysts. This is due to uniform distribution of Pt nanoparticles on the ceria 

surface and no agglomeration between particles. The catalyst activity depends strongly on the 

particle size of Pt, CO feed concentration, GHSV, water/CO ratio, ceria-Pt interaction, availability 

of surface oxygen vacancies in ceria, and catalyst poisoning by excess CO or sulfur. 
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Study on the effect of different ceria supports with similar Pt loading by RSDT resulted in the 

following conclusions: 

Three different ceria support materials for were investigated for water-gas shift 

reaction studies on Pt/ceria catalysts. Reasons for the better catalytic activity of mesoporous 

Pt/ceria catalysts could be attributed to many factors such as noble metal loading, particle size of 

support and metal, porosity, pore size, concentration of defects, presence of active species etc. 

Here our main objective was to correlate the influence of the synthesis process, and the resultant 

structural properties of the ceria support with the performance of the Pt/ceria catalyst for the 

activity of low temperature water-gas shift reaction. We highlighted these properties and their 

influence on the WGS reaction which will provide a platform for generating catalyst with 

improved performance compared to the currently used catalysts. Three different ceria supports 

were chosen based on various syntheses techniques and 5 wt% Pt nanoparticles were applied onto 

them in the vapor phase using RSDT. The structure and crystallite size were determined using 

various characterization techniques. The catalysts were tested for WGS reaction in the temperature 

range of 150–450°C. Following conclusions can be made from this work: 

1. C1/Pt mesoporous ceria had superior activity with complete CO conversion seen at 175°C 

followed by C2/Pt (225°C) and C3/Pt (450°C). 

2. Increasing the Pt metal loading from 1% to 5% did not improve the WGS reaction activity 

of catalysts. 

3. Catalytically active oxygen species [peroxides (O2
2−) and superoxide (O2

−)] exist on the one-

electron defect sites at the metal-support interface as observed from Raman spectroscopy. 
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4. Formation of OH, surface formate, surface carbonates, CO–Ce4+ and CO–Ce3+ species were 

seen by in-situ DRIFTS studies which prove the occurrence of both ceria mediated redox and 

formate mechanism in the WGS reaction. 

5. Weak CO-Pt interaction was observed in C2/Pt by in-situ DRIFTS studies which could 

explain the poor WGS reaction activity. 

6. Non-stoichiometry of ceria was noticed by Raman spectroscopy in C1/Pt and C3/Pt. 

7. Crystallite size of <10 nm attributes to higher surface areas and lower activation rates for the 

WGS reaction. 

 

Study on the synthesis of γ-WO3 film for NO2 sensing resulted in the following conclusions: 

In this study we have evaluated RSDT as a direct deposition technique for the 

synthesis of γ-WO3 film for ultra-low NO2 sensing. Nano quenching was used to optimize the 

particle size and film morphology to tailor the film towards superior NO2 sensing performance. 

Here our main objective was to correlate the influence of the synthesis process, and the resultant 

structural properties of the γ-WO3 film with the NO2 gas sensing performance. We have 

highlighted these properties and their influence on the NO2 sensing which will provide a platform 

for developing better sensors with improved performance compared to the currently used sensors. 

The reasons for the high response can be attributed to a number of factors, such particle size, 

porosity and pore size, and film thickness, all precisely controlled by the RSDT. Following 

conclusions can be made from this work: 

1. RSDT synthesized WO3 film based NO2 sensor was responsive in the 0.17–5 ppm range, 

when tested at 300°C. 



 

286 

 

2. Response time was 7.2 s and recovery time was greater than 5 min. The response time was 

better than the WO3 sensors synthesized by the traditional wet chemistry processes from 

literature.  

3. The response was highest at the working temperature of 300°C. 

4. The NO2 sensors gave a steady response till 150 h of continuous performance and started to 

degrade after 200 h possibly due to increase in particle size. 

5. Interference was negligible with 10 ppm acetone, 100 ppm ethanol, 10 ppm H2 and humidity; 

however, it was significant with 10 ppm isoprene and 100 ppm H2.  

6. Response and recovery of the sensor is caused by adsorption and desorption respectively. 

Hence recovery time can be improved by expediting the desorption step.  

7. WO3 particle size of <25 nm attributes to better charge transfer which translates to superior 

NO2 sensitivity. 

Study on the synthesis of ε-WO3 film for acetone sensing resulted in the following conclusions: 

In this study we have evaluated RSDT as a direct deposition technique for the 

synthesis of ε-WO3 film for ultra-low acetone sensing. Nano quenching was used to optimize the 

particle size and film morphology to tailor the film towards superior acetone sensing performance. 

Here our main objective was to correlate the influence of the synthesis process, and the resultant 

structural properties of the ε-WO3 film with the acetone gas sensing performance. We have 

highlighted these properties and their influence on the acetone sensing which will provide a 

platform for developing better sensors with improved performance compared to the currently used 

sensors. The reasons for the high response can be attributed to a number of factors, such particle 
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size, porosity and pore size, and film thickness, all precisely controlled by the RSDT. Following 

conclusions can be made from this work: 

1. RSDT synthesized WO3 film based acetone sensor was responsive in the 0.2-1 ppm range, 

when tested at 400°C. 

2. XRD and Raman spectroscopy confirmed the presence of ε-WO3. 

3. Operando XRD at the same conditions of acetone tests confirmed that the structure was 

unaltered during the tests. 

4. Response time was 180 s and recovery time was greater than 15 min.  

5. The acetone sensors gave a steady response till 450 h. of continuous performance and started 

to degrade after 450 h possibly due to phase transformation to the thermodynamically stable 

γ-WO3. 

6. Interference was negligible with humidity, 0.2 ppm ethanol, and 8 ppm CO; however, it was 

significant with 10 ppm H2.  

7. Response and recovery of the sensor is caused by adsorption and desorption respectively. 

Hence recovery time can be improved by expediting the desorption step.  

8. WO3 particle size of <25 nm attributes to better charge transfer which translates to superior 

acetone sensitivity. 
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SECTION V:  

RECOMMENDATIONS FOR FUTURE 

WORK  
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Results from this thesis opens up a whole new opportunity for the research which 

can be performed. Especially the research on the acetone sensors can be moved to the next level. 

Following are the recommendations for the future work for the acetone sensors: 

1. Further study is required for the removal of the H2 signal from the acetone. This is because the 

H2 content of human breath is around 10 ppm which interferes with the acetone signal. This can 

be achieved by a number of ways as described in chapter 9 and 10.  

2. The limit of detection (LOD) for the existing acetone sensors test was 0.17 ppm. With the 

addition of extra mass flow controllers, the LOD can be reduced to as low as 10 ppb.  

3. The temperature control to the test chamber should be within ±0.01°C. This will significantly 

reduce the drift in the measurements. 

4. The test chamber volume should be lowered to 1 cc to enable faster exchange of gas atmosphere. 

5. It is essential to perform the tests in the real time conditions. This should be approached in the 

following steps: 

a. Testing the sensors with simulated breath. This can be achieved by mixing CO2, O2, N2, 

H2O, H2, ethanol and acetone in correct proportion. 

b. Testing the sensors with actual breath from a patient. 

6. Based on the results of the above it is essential to develop a prototype sensor. A description and 

schematic of such kind of sensor is given below: 

The electrode chip with dimensions as given in the schematic was obtained for 

$28/piece from the Electronic Design Center of the Case Western Reserve University on January 

2015. This chip has an onboard heater, resistance temperature detector to monitor the temperature 
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and Pt interdigitated lines to measure the sensor response under varying conditions. The chip can 

be heated to a temperature of up to 400°C in 15 s by supplying low dc voltage (<12V) to the heater. 

WO3 film will be deposited on this chip using RSDT.  

The chip can be placed in a small metal box (such as altoids mint box) and placed 

on the printed circuit board (PCB) as shown in the schematic shown below. The leads from the 

chip will be micro-bonded with the PCB at the clean room of IMS using gold wires. The reaction 

between WO3 film and the sensing analytes will take place in the small metal box, the volume of 

which can be as low as 0.5 cc. The PCB will be connected with the electrochemical analyzer and 

multimeter using banana plugs. PCB will be placed inside a plastic housing which can be either 

3D printed at C2E2 or machined. The size of the device will be half the size of an Apple iPhone 

5S. 
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In-situ characterization of nanoparticles is essential in the RSDT for quick control 

of the nanomaterial properties and to maintain a state of the art quality control in the manufacturing 

of thin films. RSDT II is almost ready to be commissioned in the Maric group and following 

diagnostics and testing will be feasible: 

1. Decreasing the deposition time by 30X by using multiple precursor flow capillary tubes. 

2. 2D or 3D thermal profile of an oxy-THF-propane or flame (flame length ~15 cm and width 3-4 

cm). 

3. Velocity distribution and liquid droplet size exiting the atomizing portion of the nozzle prior to 

ignition. 

 4. Velocity distribution of ionized and non-ionized gases in the combustion zone up to the 

substrate. 

5. Spatially resolved concentration map of pertinent active species in the flame. 
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