CAUCHY PROBLEM OF THE NON-SELF-ADJOINT GAUSS-LAGUERRE
SEMIGROUPS AND UNIFORM BOUNDS FOR GENERALIZED
LAGUERRE POLYNOMIALS

P. PATIE AND M. SAVOV

ABSTRACT. We propose a new approach to construct the eigenvalue expansion in a weighted
Hilbert space of the solution to the Cauchy problem associated to Gauss-Laguerre invariant
Markov semigroups that we introduce. Their generators turn out to be natural non-self-adjoint
and non-local generalizations of the Laguerre differential operator. Our methods rely on inter-
twining relations that we establish between these semigroups and the classical Laguerre semi-
group and combine with techniques based on non-harmonic analysis. As a by-product we also
provide regularity properties for the semigroups as well as for their heat kernels. The biorthog-
onal sequences that appear in their eigenvalue expansion can be expressed in terms of sequences
of polynomials, and they generalize the Laguerre polynomials. By means of a delicate saddle
point method, we derive uniform asymptotic bounds that allow us to get an upper bound for
their norms in weighted Hilbert spaces. We believe that this work opens a way to construct
spectral expansions for more general non-self-adjoint Markov semigroups.

1. INTRODUCTION AND MAIN RESULTS

For any o € (0,1) and 8 € [1 — 1,00), we define the Gauss-Laguerre operator as the linear
integro-differential operator which takes the form, for a smooth function f on x > 0,

. 1
SN o
(1.1 Lo f(@) = (o= )10 + 0 [ 1) s o),
where d, g = % and
I'«a 1 1
12 gapls) = 5y T R (54 ) + Lot a3+ 1)+ 2i),

with o F} the Gauss hypergeometric function. The terminology is motivated by the limit case
a = 1 which will be proved to yield

Laf(z) = Ligf(z)=af"’(z)+(B+1-2)f(2),
that is the Laguerre differential operator of order 8. It is well known to be the generator

of a self-adjoint contraction semigroup (Qgﬁ ))tzg in the weighted Hilbert space L?(eg), where
e3 = e 3 is the density of the unique invariant measure and the later is defined in (1.3|) below.
This semigroup as well as its eigenfunctions, the Laguerre polynomials, have been and are
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still intensively studied as they play a central role in probability theory, functional analysis,
representation theory, quantum mechanics and mathematical physics, see e.g. [2], [22], [42] and
the references therein. The Gauss-Laguerre semigroup, whose infinitesimal generator shares
some similarities with the classical Caputo fractional derivative of order «, also appear in some
recent applications in biology, see e.g. [I3] and [4I] and the references therein. Similarly to
the classical Laguerre semigroup, we shall now prove the following fact where A stands for the
algebra of polynomials.

Theorem 1.1. For any a € (0,1) and 5 € [1 — é,oo), L. is the generator with core A
of a non-self-adjoint contraction Markov semigroup P = (P,);>o in the Hilbert space L2(e, )

endowed with the norm || f|le, s = Jo* f*(%)eq,p(zx)dz where
1
xﬁ+éfle—xa

(1.3) eqp(x)dr = W

dx, x >0,
is the unique invariant measure of P.

The aims of this paper are to provide (a) a spectral representation in the weighted Hilbert
space L?(e, g) of the semigroup (P;)¢>0, (b) regularity properties of P f for f in various spaces,
(c) an explicit representation and smoothness properties of the heat kernel (or the (density of)
transition probabilities of the underlying Feller process). Note that this study allows to obtain
an explicit representation and smoothness properties of the solution to the following Cauchy
problem

iut(x) = ch,ﬁ ut(’r)
dt

where D stands for the domain of L, g. There are several motivations underlying this work.
On the one hand, although the spectral theory for linear self-adjoint, or more generally normal,
operators is well established, see e.g. [15], the spectral properties of non-self-adjoint operators are
fragmentally understood. We refer for instance to the survey papers of Davies [10] and Sjostrand
[35] for a nice account of recent developments in this area. There are very few instances in the
literature where the spectral expansion of non-self adjoint linear operators is available. Among
the notable exceptions are the integral operators characterizing the formal inverses of Wilson
divided difference operators, studied by Ismail and Zhang [21I], and, the harmonic oscillator,
arising in quantum mechanics, and acting on L?(R ), whose study has been initiated by Davies in
[9] and further developed by Davies and Kuijlaars [11]. In the framework of Markov semigroups,
the spectral expansion of one dimensional self-adjoint diffusion was developed by McKean [25],
and extended by Getoor [19], to some non local self-adjoint operators. Although non-self-adjoint
operators seem to be generic in the class of Markov semigroups, we are not aware of any results
concerning the spectral representation in Hilbert space of a non-self-adjoint positive contraction
semigroup. On the other hand, the Gauss-Laguerre semigroup turns out to play an essential
role in the recent work by the authors [29] concerning the spectral expansion of a large class of
non-self-adjoint invariant Markov semigroups. This class can be either characterized in terms of
the generator which takes the form of a linear combination (with non negative coefficients) of L
and L, g, where for the later the function g, g can be any positive convex functions satisfying a
mild integrability condition. Another characterization could be made through a bijection that
we established between this class of semigroups and the set of Bernstein functions, which appears
in the action of the generator on monomials, as in below, with the Bernstein function ®, g.
In the aforementioned paper, the Gauss-Laguerre semigroup serves as a reference semigroup, via
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an intertwining relation, with the class of semigroups associated to regularly varying Bernstein
functions. This concept of reference semigroups allows for instance to obtain estimates for the
norms of the co-eigenfunctions of seemingly intractable operators.

Coming back to the present work, it aims at presenting a new methodology, which contains some
comprehensive idea, for developing the spectral expansion of the Markov semigroup (P;)¢>¢ thus
opening the possibility to understand better the spectral expansions of more general Markov
semigroups. Our first main idea is to derive an intertwining relation, via a Markov operator,
between the class of non-self-adjoint Gauss-Laguerre semigroups and the classical Laguerre semi-
group of order 0. We say that a linear operator Ay is a Markov operator if, for any f € By(Ry),
the set of bounded Borel functions on R,

(1.5) A flz / flay)A(y)dy,
where A is the density of a probability measure, i.e. A > 0 and fo y)dy = 1. More specifically,
defining the entire function A\, g by
1— k
(1.6)  Aas(z) = O‘B T Zr ok -+ a(l = §))sin (alk +1 - f)m) =, 2 € C,

we have the following result, with the notation Ay g = Ay e = e and where (Q¢)i>0 =

a,B?
(ng))tzo stands for the Laguerre semigroup of order 0.

Theorem 1.2. A, 5 : L?(e) — L?(en ) is a one-to-one bounded Markov operator with a dense
range, i.e. Ran(Aq g) = L?(en3). Moreover, for any t > 0, the intertwining relation

(1.7) P Aopg=2NopQy
holds on L2(e).

Remark 1.3. (1) Although, by means of the Marcinkiewicz multiplier theorem for Mellin
transform, see [31], it is an easy exercise to show, from the asymptotic behavior of its
Mellin multiplier, see below, that a Markov operator is bounded from L2(79u)7
Yu(r) = 7% x > 0, into itself, the continuity property on a weighted Hilbert spaces
is in general a difficult problem. One classical approach is to consider weights which
belong to the so-called class of Muchkenboupt, conditions which are not satisfied by
e. Instead, we identify a factorization of Markov operators which allows to derive by a
simple application of Jensen inequality the contraction property.

(2) With the aim of developing the spectral expansion of the semigroup P, we mention that
the intertwining relation goes beyond perturbation theory. Indeed, clearly L, g is
by no means a perturbation of a self-adjoint operator whereas the relation relates
it to a self-adjoint operator.

We shall exploit the intertwining relation to develop the spectral representation of (P;);>o. Al-
though the literature on intertwining relations between Markov semigroups and its applications
is very rich, see for instance Dynkin [16], Pitman and Rogers [30] and Carmona et al. [4], it
does not seem that it has served for this purpose. On the other hand, this type of commutation
relation between linear operators have been also intensively studied in the context of differen-
tial operators. This approach culminated in the work of Delsarte and Lions [12] who showed
the existence of a transmutation operator between differential operators of the same order and
acting on the space of entire functions. The transmutation operator, which plays the role of
3



the intertwining operator, is in fact an isomorphism on this space. This property is very useful
for the spectral reduction of these operators since it allows to transfer the spectral objects. We
mention that Delsarte and Lions’s development has been intensively used in scattering theory
and in the theory of special functions, see e.g. Carroll and Gilbert [5]. We shall prove that our
intertwining operator is not bounded from below, a property which makes the analysis of the
spectral expansion more delicate than in the framework of transmutation operators. To over-
come this difficulty, we resort to the concept of frames, a generalization of orthogonal sequences
that has been introduced by Duffin and Schaeffer [I4] to study some deep problems in non-
harmonic Fourier series. Next, we recall that, by means of the spectral theory for self-adjoint
operators, one obtains, for any f € L2 (eg) and t > 0, the classical spectral expansion

= _, ——2 .
(18) QP f(x) =3 e (. LP)e, By LP(x) i L¥(ep),
n=0
where BZ = %, L’%’B ) is the Laguerre polynomial of order S defined as
19 B =0 ) Y g
nen — (k;B) k! — L(k+p+1)

and, the sequence (Enﬁ,(f ))nZO is an orthonormal sequence in L%(eg). Before stating the next
result, we proceed with some further notation. For any = > 0, we set Py(x) = 1 and for any
n > 1, we introduce the polynomials

O .

(ozk—l—oz,é’—l—l)x

(1.10) Pu(z) =T(af +1) Z(_l)kf
k=0

Note that for @« = 1, P,(z) = BZE%B)(JU) =TpB+1) ZZZO(—I)’“%% is the classical

Laguerre polynomial of order 8 > 0. Moreover, for any x > 0 and n € N, we write

(1.11) Rn(z) = Re, s€a,8(7) = m(%‘ ea (@)™,
where Rg;{ﬂ is the weighted Rodrigues operator and f (n) — d% f. From the Rodrigues repre-

sentation of the Laguerre polynomials, we also get that for a« = 1, R,,(z) = E,(f ) (). Finally, we
define, for any 0 < v < « and 77, > 0 fixed,

1
(1.12) €, 3.a(r) = xﬁJri*le"aN, x>0,
where we recall that a € (0,1) and 3 € [1 — 1, 00), and set
To=—In(2*-1).
We are now ready to state the main result of the paper.

Theorem 1.4. (a) For any f € L?(eq ) (resp. f € Ran(A, 3) UL%(e, 3,)) we have
(1.13) Pif(x) = Z e " (f, Ri)e, , Pul(@),
n=0

where, for any t > T, (resp. t > 0), the identity holds in L*(en). P; is holomorphic in t
on Ci, 00) = {2 € C; R(2) > T}
4



() For any | € L?(eq5) (resp. f € Ran(Aas)UL2(6y,5,0)): () — Pof () € O ((Ta, 00) x Ry
(resp. € C*(R2)), and for any integers k,p,

k 00
%<Ptf)(p)($) - Z(_n)ke—nt<fv Rn>ea,,3 PT(LP) (z)
n=p

where, for any t > T, (resp. t > 0), the series converges locally uniformly on Ry.

(c) The heat kernel is absolutely continuous with a density (t,x,y) — Py(z,y) € C®(R3), given
for any t,y > 0, x > 0, and for any integers k,p,q, by

dk > B
(1.14) ﬁpr"” (7,y) = Z(—n)’“e "W (y) PP (),
n=p

where the series is locally uniformly convergent on RS, and, forn >0, W, (y) = Rn(y)eas(y).

(d) (Pi)e>0 is a strong Feller semigroup, i.e. for any t > 0 and f € By(Ry), Pif € Cp(Ry),
where Cy(R4.) is the space of bounded continuous functions on Ry.

Remark 1.5. 1) The phenomenon that the expansion in the full Hilbert space holds only for ¢
bigger than a constant has been observed in the framework of Schrédinger operator, see [9)]
and is natural for operators non similar to normal ones. Indeed, in such a case, the spectral
projections P, f = (f, Rn)e,. 5 Pn are not uniformly bounded as a sequence of operators. The
projections are not orthogonal anymore and the sequence of eigenfunctions does not form
a basis of the Hilbert space. These two facts illustrate a fundamental difference with self-
adjoint Markov semigroups, for which the spectral projections are orthogonal and uniformly
bounded.

2) In order to provide the convergence of the expansion in the Hilbert space topology, we
rely on the so-called synthesis operator as defined in below which requires to characterize
those f and ¢ for which the sequence (e7™(f, Rp)e, ;) € ¢*(N). This is a difficult problem
in general. A natural approach to verify this property is to resort to the Cauchy-Schwarz
inequality which yields, thanks to the first bound stated in Proposition [2.3] to the description
of T,, the smallest ¢ for which the expansion holds. From this perspective, we also manage
to identify the Hilbert space LQ(E%B,O[) for which the expansion is valid for all ¢ > 0, an
approach which seems to be original in this context.

3) Moreover, it is worth pointing out that the intertwining approach enables to identify Ran(A, g)
as another linear space for which the corresponding sequence is in £2(N) for all ¢+ > 0, a prop-
erty which follows directly without using any bounds. In fact, we shall have the stronger
statement that for any f € Ran(Aqg), f = > oy (f, Rn>ea7 5 Pn. Finally, as we shall prove

that A C Ran(A,,g) whereas for any n > 0, P, & L?(€, 5.4), we are lead to think that either
our optimal Hilbert space may be improved or the Cauchy-Schwarz inequality provides a
weak estimate in our scenario. However, from the biorthogonality property , we believe
that the latter explanation is in force in this context.

4) Finally, we shall prove in Lemmathat there exists (K¢):>0 a 1-selfsimilar Feller semigroup
on Ry, i.e. forany c > 0, K. f(cx) = K fod.(x) with d.f(x) = f(cz), such that, for any ¢t > 0,
P f(z) = Kq_1fod,—(x). Note that (K;)¢>0 belongs to the class of semigroups introduced
by Lamperti [24] which play a central role in limit theorems of stochastic processes, see
[23]. In particular, one obtains from that (K¢):>0 has an absolutely continuous kernel,
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K(x,y) given, for any t,y > 0, x > 0, by

Kife.g) = Y1407, (145) Pato)
n=0

The remaining part of the paper is organized as follows. In the next Section, we state several
substantial results regarding properties of the sequence of (co)-eigenfunctions which some of
them may have independent interest. Section [3| gathered some useful preliminaries results and
sections [4] to [7] contain the proof of the main results. Note that Section [6] which includes the
proof of Proposition below presents several uniform asymptotic estimates of |[W,,(z)| which
might also be of independent interests.

2. SUBSTANTIAL AUXILIARY RESULTS

We start by stating several interesting properties that the sequences (P,) and (R,) satisfy.
For this purpose, we introduce some concepts borrowed from non-harmonic analysis which are
nicely exposed in the monographs [40] and [7]. Two sequences (P,) and (R,) are said to be
biorthogonal in L?(e, g) if for any n,m € N,

(2.1) (Po Runde, , = O

Moreover, a sequence that admits a biorthogonal sequence will be called minimal and a sequence
that is both minimal and complete, in the sense that its linear span is dense in L2(ea75), will
be called ezact. It is easy to show that a sequence (P,) is minimal if and only if none of its
elements can be approximated by linear combinations of the others. If this is the case, then a
biorthogonal sequence will be uniquely determined if and only if (P,) is complete. We also say
that (P,) is a Riesz basis in L%(e, ) if there exists an isomorphism A from L?(e) onto L?(e, 3)
such that AL, = P, for all n.

Proposition 2.1. 1) For anyn € N, P,, € L?(e,5) and R, € L%(eq ).
2) The sequences (Py) and (Ry) are biorthogonal and ezact in L%(eq g).
3) Finally the sequence (Py,) is not a Riesz basis but it satisfies the following Bessel inequality

(2.2) Y Pde 1P < flleass  Vf €L (eap)-
n=0

An interesting consequence of the item @ is the fact that the synthesis operator S defined by
(2.3) S(ln) = 1nPn
n>0

is bounded from ¢?(N) into L?(e, ) with HS(ln)HZaﬂ < Ynsolas and, for such a sequence,
the series converges unconditionally. Although this information is very helpful for our purpose,
one still needs estimates for large n of [|Rn|le, 5: [Rn(2)| and [Py(z)| in order to derive the
convergence properties of the eigenvalue expansions in the appropriate topology. We state the
following bounds for the two latter quantities.

Proposition 2.2. (1) Writing to, = (o + l)a_a%l, we have for any x € R, any integer p,
and, n large

(2.4 PP =0 (et )
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_ 1
(2) Writing t, = t, (O‘T‘H—I—e) atl = for some small € > 0, we have, for any 0 < = <
«

e 2o (ﬁ) n®, any integer q, and large n

Next, we recall that when a = 1, i.e. R, is simply the sequence of classical Laguerre polynomials,
one uses the following simple observation to compute their norms, see e.g. [37],

1 00 —1)" 00
16213, =ty [ EP@Pe e = S [T e aneste) s
I T B _I'n+B8+1)
ol )y z"eg(zr)dx = ENCETE

Unfortunately, it is easy to check that for o € (0,1), this integration by parts device does not
apply. Instead, we must develop a two-steps optimization analysis to derive the estimates of
the norms. First, we carry out delicate saddle point approximations to obtain several uniform
bounds for |R,(x)| depending on the range of xn~%, and, refer to Proposition for their
statements. In this vein, we mention that the study of uniform asymptotic expansions of the
Laguerre polynomials has quite a long history, see e.g. [18], [27] and also [37] and [3§] for a
complete description of this study. Then, combining these bounds with additional estimates, we
must implement a suboptimal procedure in order to get an explicit representation of the bound
of their L2(ea’5)—norm. Moreover, although for most of the ranges one may obtain bounds of
the form O (e) for any e > 0, for larger Hilbert spaces than L%(€, ), it turns out that on
the range x € (en®, Con®) for some constant C, defined in Proposition L2(e, 5,4) is the
optimal Hilbert space. From our analysis, we obtain the following estimates.

Proposition 2.3. We have for large n,

(2.6) 1Rnllen s = O (€77),

and

(2.7) Hnﬁ o <nl+ﬁ+;+a€w¢1> |
e’YnB:a é’y,ﬂ,a

3. SOME PRELIMINARY RESULTS

3.1. Some useful facts around the gamma function. Let us write, for any o € (0,1] and
ﬂzl—é,and%(s)>—6—é,

MNas+ap +1)
(as+af+1—a)

In the following we collect some basic results which will be useful throughout the rest of the
paper.

Lemma 3.1. (1) For any o € (0,1] and B > 1 — é, and k > 1, we have

(3.1) (I)Oé”g(s) = T

(3.2) singrom)

1
k(k— 1) /0 V200 5(y)dy = ko g (k) — k des.
7



(2) For any R(s) > —B — =, the functional equation

M(as+af+1) _ % (S)F(ozs—l—ozﬁ—i—l—a)
Plap+1)  — 7 KB +1)

holds.

(8) Finally, we have, for large |b| and |arg(a + ib)| < 7, the following well-known classical
asymptotic estimates

(3.3) D(a+ib)| = Ce %ermlatiblg=baralatib)q o ip|=3(1 4 o(1)),
ID(a+ib)| ~ Culb|* ze 50,
where C, Cy > 0.

Proof. First, observe, from the binomial formula, that, for any 0 < y < 1,

Y p+1 T 1 Yy
[ = Y et [Pt
0 (1_74;)01-{-1 P F(OL—Fl)k’ 0

. 8 1 1 F(k+a+1) yf
= oyt Z_:(k+a(5+1)+1)r(a+1) k!

k
a

_ 6++4§: T(k+a(B+1)+ DIk +a+ 1)y«
Nk+a(B+1)+2)T(a+1) K

B+i+1 L
(3.5) R (a(B+ 1) + Lat La(B+1) + 27 ).
B+1+1
Then, by integration by parts and using the reflection formula of the gamma function, we get
1
sin(a) b oe 1 /1 k—1 yota
3.6 — (k-1 dy = ——— 1-— ———d
(3:6) — )/Oy gopW)dy = gy [ (1= )(1_yé)a+1y

Next, from the integral representation of the Beta function, we get, for any a € (0,1) and u > 0,

1
[lou+a) 1 ] /0 (1—y")(1— yl/a)_a_ldy.

I'(au) TI'(l-a

By shifting u to u + 5 + é, we get, after some easy algebra, that

Plau+to(B+1)+1) T@B+D+1) 1 /%1u) yPra .
T(au+ af + 1) T(aB+1)  T(-a)ly " V0= ytayert™
Thus choosing v = k — 1, with & > 1, in this latter identity, from (3.6)), we deduce that
k—1 v [(ak +af +1 F(a(B+1)+1
/ yk ZQa,ﬁ(y)dy — ( ) _ ( ( ) )
I'l—-a) ./ MNak+af+1—a) Iap+1)
which completes the proof of the first statement. The second one is obvious from (3.1). The
last estimates are readily deduced from the Stirling’s formula, see e.g. [28], (2.1.8)],

OO |
IT(2)] = Cle™*[[z%|z["2 (1 + o(1))
which is valid for large |z| and |arg(z)| < . O



3.2. The Markov operator A, g. We recall, from ([1.5), that a linear operator A is a Markov
operator if it admits the representation, for any f € By(Ry), Af(z) = [;° f(zy)A(y)dy,z > 0,

with A the density of a probability measure. We say that M, = M, is a Markov multiplier if
for R(s) =0,

Ma(s) = /0 Yy A(y)dy,
that is, the shifted Mellin transform of the density A.
Proposition 3.2. Let a € (0,1) and B € [1 — é, o0) and define for any R(s) =0,

0 —y_ 1)1 — B3 E _ 1)1
(3.7) IOgMAa,@ (5) = —7(1 — a)s _|_/ (e — 1 — sy) (e 1) €‘y| (e 1)

dy.

Then the following holds.

(1) My, 5 is a Markov multiplier which is analytical on C(_y o). Aap € L%(R,) and extends
to an entire function which admits the representation (1.6)).

(2) €Yo p(€Y) is the density of a real-valued infinitely divisible random variable.

(3) Ao is a contraction from L%(e) into L?(eq,5) with Ran(Aa5) = L%(eap)-

Y

Proof. Writing h(y) = ((e‘y 1)t - e“”é)y(efa - 1)_1) I{y<oy, one easily checks that h(y) >

0 on R_ with ffoo(l A yQ)%dy < o0, that is %dy is a Lévy measure and the right-hand side
of is the Lévy-Khintchine exponent of an infinitely divisible random variable on the real
line, see e.g. [32]. After performing a change of variables and with the absolute continuity of
its distribution which will be proved below, the second statement follows. Next, since from [17,

1.9(1) p.21}, we have, for any (s) > 0,

0 s (e_y — 1)_1
logI'(s + 1) = —y¢s + (e —1—sy) ——dy
—oo [yl
we get, after some easy manipulations, that
T(a(s+ 8+ 1)) 0 BT (e=& — 1)1
log XL = —ary s+/ e —1— sy dy.
D(af+1) SR ) 0

The last two expressions easily lead to

I'(s+1)I'(af+1)
Tla(s+B+1))

(3.8) My, 5(5) =

Hence since by assumption § + é > 1, we have that s — M, ;(s) is analytical on C(_; ).
Moreover, for any € > 0 and |b| large and a > —1, we deduce from (3.4)), that

Mo, ,(a+ib)| < Coe 172792,

with Cp > 0. Thus, on the one hand, since \M,\aﬁ(—% +ib)| € L?(Ry), we deduce from the
discussion above combined with the Parseval identity for Mellin transform that M, (s — 1)

is the Mellin transform of a positive random variable whose law is absolutely continuous with
9



a density in L?(Ry). On the other hand, by Mellin inversion, we get that, for any |arg(z)| <

(1-a)3,

1 ot T(s)['(aB +1)
A N s
@,6(2) 270 Jg—ioo : MNas+a(f—1)+1) §
e 1 P

= TeB-1+1) £ T(—ak+a(f—1)+1) &’

where the last line follows from a classical application of the Cauchy residue theorem and we

refer to [28] for more details on Mellin-Barnes integrals. An application of the reflection formula

provides the expression of A, g, i.e. , whereas the Stirling approximation gives that the

series is absolutely convergent on C. Next, observe that for any $(z) > 0, we have

s+ 1)I'(af+1)T(as+af+1)
I'as+af+1) F(aB+1)

which, by Mellin inversion, translates into the following factorization of Markov operators

Aag Ao, , = Ac.

(3.9) Mo, 5(8)Me, 4(5) = Me(s),

€a,8

This together with an application of the Jensen inequality yields, for any f € 1.2 (e), that
2 > 2
HAO‘?B f”eaﬁ = /0 Aa’ﬂf(l')ea7ﬁ(x)dx

< /0 " s Fw)enp(@)ds — /0 " P@)e@)ds = |IfI2

which proves the contraction property. Finally, with p,(z) = 2™, n € N, observing that

F'n+ 1)I'(aB+1)

(3.10) Aap Pnl) = Mi, 5 (n)pn(w) = L(an+af +1)

pn(x)a

the completeness of the range of A, s follows from Lemma since the polynomials are dense
in L2(eq ). O

3.3. Several analytical extensions of R,. Our next result provides several representations
of the functions R,,, which we recall to be defined, for any n € N, and = > 0, by

(3.11) Rou(z) = m(ﬂeaﬁ(m))w

Proposition 3.3. For any n € N, the following analytical extensions of the co-eigenfunctions
R, holds.

(1) For any z € C, = {z € C; |arg(2)| < 7},

" \T(k+D0(n+ B+ 1) k
3.12 Rn(z) = 22 h(k)za,
(3.12) @ = () g e
1 1 _sa1—1
where b(k) = Z?Zl By (Fr((l:f)), ?f_f)),...,r(krgji) “)) and the By ;s are the Bell

polynomials.
10



(2) For any z € C,,
—1)» 1 l’ 1_ 1 .
(3.13) Ro(x) = TV g ((a 1"+641ra );e”zi)

where W1 <( n;ftifl) ) Z?o%% 1s the Wright hypergeometric

function.

(8) For any z € C,,

(_1)n zé > et T 1 n—i—B—}—l—l
(3.14) Rn(z) = e e "Jap(e(rz)e)r o dr,
: 0

where Jo 5(2) = Zr s an entire function.

00 1
2 k=0 Tkt 57 2)

(4) Finally, for any z € (C%, and, anya>1—p— 1

o’

1 (71)71 a+100 B F(S)
3.15 R = f———T — 1)d
(3.15) n(2) € 3(2) 2min! /aioo : I'(s—n) (as —ataf+1)ds
Remark 3.4. (1) It is worth mentioning that each of the representation above plays a sub-

stantial role in the proof of the results. Indeed, for instance, the polynomial type rep-
resentation allows to derive easily that for each n € N, R,, € L?(e, ) as well as
the completeness property of this sequence. The other representations are used to derive
different uniform asymptotic bounds of the norm ||Ry|le, ,-

(2) It is also interesting to note that the several representations of R, (z%) lead to a poly-
nomial.

Proof. Let us denote, for any n € N and = > 0,

(="
n!l(af + 1)

where we have set 8, = 8 + é — 1. On the one hand, we have

1 n 1
ntBa ,—za\(n) _ .Ba M\T(n+Ba+1) p0 ok )
(z e ) x kzo<k>r(k‘+5a+1)x(e )

n+Ba e—acé )(n)

(3.16) Wi () = Rn(r)eq,s(r) = (z

Next, we recall that the Bell polynomials By, ; are defined by

k! ar\Jt [ag\iz ap—jr1 O\
Byj(ai,az,. .. ap—j41) = Z . (1|> (j) <(;€_jj+1)| ’

I
. ~ ]1~]2 Jk— 1
T=kilp=l A

where [}, = Zf:_f g and I, = Zf;f“ ji» Then an application of Faa di Bruno’s formula
yields

1 ok 1 1, T(k—j+1— Lypati—k-1
zay(k) _ -z _nknp X o\ Xe _1\k—j+1 ( J+ )T
(6 ) = e E ( 1) Bk,] ( o ,(Oé 1) o 7-"7( 1) / F(_é)

1 , — _ 1
=z he N (-1 By, (— e v o ey ri _+11) a>),

«



which provides the first representation as the analytical extension is obvious in this case. On the
other hand, by expanding the exponential function in (3.16|) and differentiating term by term,
which is allowed as the series defines an analytical function on the right-half plane, we obtain

o (_1)71 n+Ba —ré (n)
Wa@) = Trar D@ e

(="
n!I'(af + 1) p

(3.17) _ i(_l)kf(k‘/wnmaﬂ) pE+Pe

from where we easily get the third representation. From the latter expression we get, by an
application of Fubini’s theorem for analytical function, see [39), p.44],

—1)nghe oo . ;
(31) Wale) = it [ e st ) e

Finally, the Mellin-Barnes integral representation (3.15]) is obtained from the expression (4.7)),
by the Mellin inversion theorem which is justified, together with the analytical domain, from the

estimates [Myy, (a +ib—1)| < Cn|b|“_"_%e_a%|b‘, valid for any n € N, a > —f,, and b large,
see [28] for more details. O

We end this part with the useful lemma.

Lemma 3.5. The set of polynomials is dense in L'(eq ), L?(eq,5) and L*(e).

Proof. Since for any o € (0,1}, 8 > 1 — é and 0 < a < 1, fooo e“eq g(r)dr < oo, we deduce
that e, g is moment determinate and hence by the Hahn-Banach theorem, one gets the first
assertion. The last ones follow also by the moment determinacy of the measures combined with
the so-called Nevanlinna parametrization, see [I].

O

4. PROOF OF THEOREMS [I.1], AND PROPOSITION [2.7]

The proof of these theorems will be split into several intermediate results. We start with the
following, where Cy(R;), the space of continuous function on Ry vanishing at infinity is en-
dowed with the uniform topology ||.||.c and C?(R,) stands for the space of twice continuously
differentiable functions on R with compact supports.

Lemma 4.1. There ezists Dy a dense subset of Co(R.) such that C2(R;) C Dy and (L g, Do)
is the generator of a Feller semigroup which is also denoted by (P;)i>0.

Proof. First, note, from (3.5), that for any f € C%(R, ), we have

La,,B f(l‘)

sin(am)z !
(o = ) ')+ 2D [ g )y

_ (T(ap+a+1) , T . v opBs
= (MR ) 1@ g [ e [ 0D
12



rPt

1
—F—+>— is positive and non-increasing on (0,1) and
(1,7.E)a+1

Then, since the mapping 7 — g, (1) =

satisfies fol(l A[logr|)g, g(r)dr < oo as

—a—1
(1 —(1- y)é) ~ a7ty and log (1 —y) ~ —y,
according to [3], there exists (Kt):>0 a 1-selfsimilar Feller semigroup on R, i.e. for any ¢ > 0,
Ko f(cx) = Ky fod.(z) with d.f(x) = f(cz), such that (L, g f, Do), with Lo g f(2) = Lag f(x) +
xf'(x), is its infinitesimal generator. Next, let us define, for any t > 0, P, f(x) = Kot_1 fod.—«(z),
then for each ¢ > 0, P; is plainly linear, with P.Co(Ry) C Co(R4). Moreover, since by self-
similarity K1 f od,—:(z) = K _—¢ f(e'x), we get that ||P;f|l < ||f|lc and limyyo P f = f.
Next, for any t,s > 0,
PtPsf(x) = Kl—e—t esflf 0 de—s(xet) = Kes—e—tf 0 de—s($6t)
= Kets_1fod—@+s(x) = Prysf().
Thus (F;)¢>0 is also a Feller semigroup. Next, for f a smooth function, we have
_ _ _ _ =t} _ _
PE@) - f@) L Kief) — f@) Ky S ) ~ Kyt (@)
t—0 t t—0 1—et
= Lagf(z) —af'(z) = Lag f(2),

which completes the proof. O

Denoting by P, the set of polynomials of order n, we have the following.

Lemma 4.2. For anyn € N, L, g : P, — Py. Moreover, ey g(x)dx,x > 0, is an invariant mea-
sure for the Feller semigroup (P;)¢>0. Consequently, (P;)i>o extends to a contraction semigroup
in LP(eqp), 1 <p < oo.

Proof. First, observe that for any k > 1 (the case k = 0 is obvious), writing py(z) = z¥, we
have

sin(ar)

1
Lojpe(@) = (dap—2)kppr(z) + k(k — Dpi_s () /0 V" 2g0 5(y)dy

(4.1) = k®op(k)pr—1(z) — kpi(z),
where we used the relation (3.2). By linearity, this proves the first claim. As, for all n > 0,
P, C Ll(eaﬁ), we get, from Lemma that L, g may be extended to a linear operator acting

on Span(Py), a dense subset of L!(e, 5). Next, for any k > 1 (the case k = 0 is again obvious),
we deduce, from (4.1)), the following

[e.9]

/ T Lappr(0)eas(@)de = ko sk) / " P (2)eq 5 (2)dz — k / D) 5 () dz
0 0 0
I'a(k—1)+ap+1) Fak+ap+1)

= kap(k) T(aB+1) —k T(afB+1)
ek +aB+1)  T(ak+aB+1)

N C(ap+1) C(aB+1)

= 0.

Then, by linearity and the discussion above, we get that fooo L. g f(x)eqp(x)dr = 0, for any
f € Span(P,) a dense subset of Ll(eaﬁ), which completes the statement about the existence

of an invariant measure. A classical argument shows that the Feller semigroup (P;);>0 extends
13



to a contraction semigroup in L!(e, 3) and L(e4,5), and, by Marcinkiewickz’s interpolation

Theorem to LP(e,3), 1 < p < oo, see [36]. O
Lemma 4.3. Letn € N. Then, P, € L?(en ) and for any x > 0 we have

(4.2) Lo g Pn(x) = —nPy(z).

Consequently, for any n € N and x > 0, we have

(4.3) Aop Ln(x) = Pn(z),

and, the intertwining relation (1.7)) holds.

Remark 4.4. We note that when o = 1, then P, (x) = clf )(33) yielding easily to the characteri-
zation of Lg = Ly g as the Laguerre differential operator.

Proof. The first statement is obvious. Next observe, from (4.1)), that for any n € N, writing

[(aB + 1)Py(z) = Pp(z), with P,, defined in (L.10),
3 (1)

LanB fn(x) - kzz(](_l)kr(ak‘i‘aﬂ‘i‘ 1)La,ﬁpk(l‘)
n—1 n
_ (k1) (b + 1) @0 p(k + 1) (D) k
- ( kzzo(l)k +( (k+1)+af+1) xk;(l)kr(ak +ka5+1)xk
n—1

_ —n k) B+ 1) + (D)k (=1)™n "
= Tas+D) (_ ;(_1) +(oz/€+oz,8+1) o - T(an+aB+1)"
= —nP,(x),

where we used (3.1)) for the third equality, and, for the last one the identity ( kil) (k+1)+ (Z)k =

n(}). This proves (4.2)). The identity (4.3) follows easily from the definition of the polynomials
and the relation (3.10). We deduce from (4.2)) and the Cauchy problem (1.4}, that, for all ¢ > 0,

(4.4) BiPy(x) = ¢ " Py().
Then, for any n € N and t > 0, we get, from , that
Ao g Qiln(x) = e_”tAaﬂ Ln(x) = PiAog Ln(T).

Since the operators are linear, we get that A, g Q¢f(x) = PiAq g f(x), for all f € Span(L,). By
continuity of the involved operators in the appropriate Hilbert spaces, we get that the identity
holds on Span(L,) and hence from Lemma |3.5on L2(e). O

As a consequence of the intertwining relation, we derive the following.

Lemma 4.5. e, g(z)dz,z > 0, is the unique invariant measure of the Feller semigroup (Py)¢>0.

Proof. Since Co(Ry) C L?(e), (L.7) holds also on Co(Ry). Next assume that there exists a
measure v(dz) # e, g(z)dx such that for all f € Co(Ry), vPf = vf = [J° f(x)v(dx). Since
by dominated convergence, one has for any f € Co(R;), Ay gf € Co(R4), we get from the
intertwining relation, that

VA sQif = vhaplf,
that is o(z)de = [~ Aa,s x/y) Y dz is an invariant measure for (Qt)t>0, and, thus by unique-

ness of its invariant measure, We must have v(xz) = e™*, Vo > 0. This completes the proof by
14



an appeal to a contradiction argument since from (3.9) and the multiplier M, ; in (3.8) being
zero free on C(_j o), we get Me, , = M, and thus v(dz) = e, g(z)dx. O

We say now that, for n € N, R,, is a co-eigenfunction for P, associated to the eigenvalues e~

if R, € L?(en ) and for any f € L?(e, ),

(PfsRudey, =€ " {fs Rue, , -
We denote by Ay ; the adjoint of Ay g in L2(eq ), i.e. for any f € L%(eq3) and g € L%(e),
(Mrsf9) = (FRas g,

Lemma 4.6. For any f € L%(e, ), we have for a.e. x > 0,

e\ 1) = [ Famensenias (1/3)
Moreover, Ker(AZ’B) = {0} and for any n € N, the equation
(4'5) AZ,,B fn(x) = [’n(x)

has an unique solution in L%(es ) given by Rn(x) = n!((;I;Zx) (2"eqp(2))™.  Moreover, for

all n,t > 0, Ry, is a co-eigenfunction of P; associated to the eigenvalue e
non-self-adjoint. Finally, Ran(Ay, 5) = L2(e).

" and (Py)i>o is

Proof. Note that, for any f,g € L*(eqs ), f,g > 0, we have that

Bap0:De, = [ [ samrasi@ens@is

= [E8 [ rastr /) @en @) Fetriar

e
_ /0 )

g(:) | 16eastrirastt/n Loty

= <AZ,,B f’g>e .

Since if f € L?(eq), |f| € L?(eq ), the first statement follows. Next, as, from Proposition
Aqp has a dense range in L2(e, g), from a classical result on linear operators, Ker(A% 5) = {0}

from where we deduce that there exists at most one solution of the equation (4.5) in L?(e, ).
Then With the notation RMe(z) = ﬂ(gv”e(av))(”) = e(z)L,(z) and writing /A\aﬁf(x) =

I F@y)has L/9)dy/y = [3° F(@/y) A, (y)dy/y, we see that if, for any n > 0, f, is solution
to the equatlon
(4.6) e()A} s fn(7) = Mg pfu(z) = Re(x)

and f, = ef"B € L?(eq ) then, for a.e. z > 0, f,(x) is solution to (4.5). Invoking the theory
of Mellin convolution in the distributional sense, as described in |26, Chap. 11], since from the
Proposition we have that )\, g defines clearly a distribution, then the equation (4.6 can be

written, with the notation of [26, Chap. 11.11], as
favAas(z) = RMe(z).

15



Taking the Mellin transform on both sides of this latter equation, one gets

(=D" T(s)
n! I’(sfn)r(s)’

where we have used for the Mellin transform of R(e(z) the formula 11.7.7 in [26]. That is,

from ,

(4.7) an(s_ 1) = (_TLl!)nI‘(E‘(j)mI‘(as—l—aB%—l — )

with the mapping s — an (s — 1) analytical in (C(l—ﬁ—é,oo)‘ By means of (3.4), we have that
for any € > 0, |an (ib—1)| < Cpre= @92 with C,, = C(n) > 0. Thus, we deduce, from [26,

Theorem 11.10.1] that the Mellin convolution (4.6) admits an unique solution in the sense of
distribution, given, using the formula aforementioned, by

ful@) = R®ey 5(z) = T (e, ()™,

n!
Since the function e, 3 € C®°(Ry), we have f, € C*(R, ). Moreover,

M (s =DMy, ,(s —1) =

I 1O I G S L () _ g _
fn(ZE) - eaﬁ(x) - n!ea,g(x) (:E eaﬁ(l‘)) - Rea,ﬁea7ﬁ(x) - Rn(ZL‘),
and, by (3.12), fn(z®) = o B’@Z) is a polynomial and hence f,, € L*(e, ) N C®(Ry). Thus,

for all x > 0, Ry (z) is the unique solution in L?(e, g) of the equation (4.5]), which completes
the proof of the statement. Next, we deduce from the previous identity and the fact that
Span(L,) = L%(e), see Lemma that A7, 5 has dense range in L?(eq,5). Then, to prove that
for each n € N, R,, is a co-eigen unctlon as the bounded operator A, g has a dense range in
L2(eqa ), it is enough to show that, for all f € L%(e),

<BAC%3 f’ R”>ea7ﬁ = eint <Aa,ﬁ f7 Rn>ea 8

Finally, by means of the intertwining relation (1.7) and the fact that Q; is self-adjoint in L?(ep)
with the Laguerre polynomials ([In)nZO as eigenfunctions, we get that

<PtAa,B f7 Rn>ea’5 = <Aa,6 Qtfv Rn>ea75 = <Qtfa Az,ﬁ Rn>e = e—nt <f, £n>e

_ —nt
= e " (Aap f, R”>eag
which completes the proof, since for all n > 0, R,, # Pn. O

4.1. Proof of Proposition The facts that P,,, R, € L?(e, ) for all n > 0 and Span(P,,) =
L2(eq, ) follow easily from lemmas and Next, for any f € L%(e, ), a simple change
of variables yields that
o al'(afs +a)
Hf”eaﬁ - F(Oé,8+1) Hf OCHe
with Bo = afBa +a—1 and f o pa(z) = f(z%) € LQ(eBQ). Thus, the two Hilbert spaces are
isomorphic. Since the polynomials are dense in L?(e 5.) and Ry opa(x) = Pi(z) is a polynomial
of order n, we deduce from a standard result, see e.g. [20, Chap. 2.6, that Span(R,) = L?(e, 3).
Next, using successively (4.3]) and (4.5)), observe that for any n,m € N,
<,Pn;Rm>ea,5 = <A£mRm>ea,5 = <£naA*Rm>e = <£n>£m>e = 5nm7
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which shows that the sequences are both biorthogonal and minimal. Next, by means of (4.3)
and the Parseval identity of the Laguerre polynomials, we get, for any f € L2(e, g),

1P, ZI(A*,gf7E> ? = 1A% s lle < [1fllew.s:
n=0

which provides the Bessel property of (P,). It remains to show that (P,) is not a Riesz basis.
By the open mapping theorem and A, gL, = Py, n > 0, it is enough to show that A, g is not
bounded from below. Observing, from (3.10)), that

[[Aa,8 Prlleq s T(n+ DB+ 1) [IPalless, T(n+1T2(2an + af + 1)

[palle - T(an+aB+1) lpalle  D(an+ap+1)02(2n+1)

D(n+1)D'3 (2antaf+1) oo
T(antaf+1)T'2 (2n41)

and, by Stirling approximation, e~n(l-a)log2 e get that

[1Aa,p Prlleas

n=oo  ||pnlle

which completes the proof.

4.2. Proof of the Theorems n -. The proof of Theorem - (resp. - follows readily
from the lemmas [£.2] [£.3] and an application of the Hille-Yosida theorem, combined with the

lemmas and (resp. Proposition and the lemmas and .

5. PROOF OF PROPOSITION

5.1. The bound (2.4). We start with the following observation.

Lemma 5.1. The sequence of polynomials (Py,) are the Jensen polynamials associated to the
generalized modified Bessel function I, g(x) =T'(af+1)> 02, W 2 i.e. for any z,t €

n!”’
R, we have

(5.1) 4T, 5(xt) ZP

In particular, the sequence (P,) is not orthogonal in any weighted L? space.

Proof. First, from [8, Proposition 2.1(ii)], easy algebra yields the identity . From an elegant

result of Chihara [6] stating that the Laguerre polynomials are the only sequence of orthogonal

polynomials generating the so-called Brenke type function of the form , we complete the

proof. O
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Then, on the one hand, since, for any p =0, ...,n—1, and x € R, where we modify here slightly
the notation to emphasize the dependency on the parameter § in (1.10)),

n

o T(k+1) () p
(PE(—z)?) = Z I'(k—p+1)T(ak +ka5 + 1)xk

k=p
N r(n—p+1)r(ap+a5+1 P rak+aﬁ+p)+1)
- F(n+ 1) B+ .
(52) T Th-pt 1)F(ap+a5+1)7)”_5( z)

Next, from (5.1]), we get, after performing a change of variables, that, for all n,z > 0,

n! dz
Po(—z) = —= 74 /T a(2) e
(5.3) n(—) 2mx b e*'*Ty 5(2) sy

where the contour is a circle centered at 0 with radius nz > 0. Since the series representation
of Z, g defines an entire function, one obtains from the Stirling approximation, that, for any

1 - . 1 . . _ adl T
B >1-— 2, its order is kli)m T = 547 and its type is to, = ¢ klggo E(T(ak +~v +

klnk
oo In(T'(ak+y+1)k!)
Dk!)~

1
all z > 0 and large n, max|,|—n; |Za,5(2)| < ete(n)*F1 “GQince plainly, for all z > 0 and n € N,
|Pr(z)| < Pp(—2x), see (1.10)), we deduce, from ([5.3)), that

= (a4 1)a_ai+1. Thus, a classical bound from its maximum modulus yields that for

1

TL'@ %n!efnlnn 2T .
"Pn(l‘)‘ < f |€ ‘ |n+1 — nx) o+ T o /0 encosﬂdegcn%efa(nm) 1

where for the last inequality we used the bound n! < el =" 3 and f027r e"°s0d9 < 2men.

Finally, from % = nP, we prove (2.4)), for any non-negative integer p, from (5.2).

5.2. The bound (2.5). From (3.17), we get, by differentiating term by term, that, for any
qeN,

) i kr k:/a+nq+ﬁa+1) watha
ozﬁ—}-l L(k/a+Bd+1)  nlk!’

Wi ()
k=0

where we have denoted for brevity 84 = B, —q¢= 3+ é —1—¢q and ny = n — ¢. Note that for
any m € N and 0 < r < m with 7 = [r] + 1, we have the immediate inequality

Fim+r+1)

— \7r+1
T+ 1) <(m+7)...(m+1) < (m+7) 1.

18



q
Let n > 2max(q, —afd) = 2¢ and put K&, = <l ¢ % Then an application of the

«
inequality above with the choice of n gives

k k
W@ ()] < 1 Z”:F(k/a+nq+5g+1)xa+53 Z D(k/a+ng + BL + 1) zatha
" T T+ \& T(k/a+pi+1) alkl & T(k/a+pi+1)  nlkl
< xﬁg'H( )|5°"+2 " (th,nnx)é N e®Ba+o(1) (1+ ’y%oz)n—H o0 pntl ngng‘
- L@ +1) &= T(kja+ 4+ 1)k (B +1) 2= ul &l
(5.4) < oBAHY (KL n)lPal+2 & (K4 pnax)a . eBa+o(1) (1 4 Adq)" T 2 bl i+
T [(af +1) = T(k/o+ B+ 1)k! a"Hl(ef+1) & nl Kk~
where v = T B,‘i =1+ O( ) Next, since the first series in the last inequality defines an

entire functlon (at the argument z%), as in the proof of Lemma we compute easily its order
to be — 1 and its type to be t, = (o + 1)~ a+1 to obtain that for large n,

00 k
Z (Kgy,nnm)a ) eta([(g,nnx)%ﬂ
= T(k/o+ Ba + 1)k! ‘

For the second term on the right-hand side of (5.4, we have, from the Stirling approximation

and recalling that x < (kn)®, with k < ;F7e ~2 that
n=B(1 + 4la)rtl X krtl patha o (1. ntl 0 il k ok
antl n! k! - +E n! k!
k=n k=n
10" ren § ke Gm ) (oo
< (14— " 2~ PNty
< ( + a) Vne Y ke (er)
k=n
l] n+l on .n
< nb(1+2)7 25 —oq),
o 1—ex

where we used the bound n! > C’n”fée_” and noted that e %) In(5) < 1, for £k > n. This

together with the fact that lim,, Kg[,n =K, = HO‘ completes the proof.

6. UNIFORM BOUNDS FOR |W,(z)| VIA SADDLE POINTS METHODS AND PROOF OF
PROPOSITION

In this section we consider uniform bounds in z and n for |R,(x)|. We shall use two of its
representations as given in Proposition in order to obtain the best asymptotic bound for
[[Rnlleq s- It will be more convenient to state our estimates in term of the function

Wi(x) = Rn(z)eq s(x).
Note that according to our assumptions
Bo=afa=af —a+1>0.

The next result collects all bounds we appeal to in our proofs.
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Proposition 6.1. We write, for any a € (0,1),

o csc (ﬁ)
sin® (57255 )

with Co < Bo < An. Then, we have the following bounds.

a+l (7
61) Co=ae 150 5 _

: , and Ay, = (1+ a)aH ,
sin® (ga)

(1) For any a > —B, and any fixred x > 0, we have, for any 0 < € < a and n large,
m

(6.2) IW,(z)| = O (n%*a csc ((a - 6)5)” gr“) .

(2) Let v = Ra(0:)n®, 0, € (0,%), where

5 N (S(iln (ZS)@*)> <sin§i<ll1(2£§e*)>a

(6.3) 0, — Fa(fs) = a® (

is a decreasing function for each o € (0, 1] with ko (0) = Ay, Ka (ﬁ) = By, Ra (g) =

Cy. Then, foranyl>a>0 andf € (0, %) uniformly on o > & and 0 < 0 < 6 we have

1

Bati
with C (o, 0,) = C (0, &) <cos 0. (%) ") ’ , where C (0,&) > 0, that

7 sin((1+a)6x) cos O« sin O
(6.4) Wh(z)| < C(a,e*)xﬁae”( R TTCTm R <sin<a9*>)>.

(3) For any 1 > & > 0 and 0 < € < B, — C, there is ng € Ny such that for n > ng

uniformly on 1 > o > @& (resp. on o > 0) and z € ((Ua +6) no‘,Zana) (resp. on
T € (Eana,Zana))

n| —In(a)+1 o ifa —a
(6.5) Wa ()] = O (xﬁae_éx‘l"e ( In(a)+35(1+a) 1 )) '

(4) Uniformly on x > An®, for anyn < 1,

1
(66) |Wn($)| = 0 (ag xﬂaefmca enHO"”>
where, with [%, 1) C Eq = [(a+ 1)_5, 1) , Va € (0,1),

Hoy = max{n(1+a)" —(a+1) - In(a)in (™ 1)}

a+1

(6.7) = (114 @) —(@+1) =) Ly — 0 (07 = 1) Iyer,y

and limq4q limna% Hey = 0.

To prove Proposition [6.1] we resort to different saddle point approximations of the Mellin-Barnes
representation (3.15)) of W, (z), that is for any n € N, a > —f, and = > 0,

_1\n a+100 s B
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We discuss different scenarios: when z is fixed and n — oo and when « belongs to different non-
overlapping regions in R4 which vary with n. The latter is required by the estimates obtained
via optimal application of a somewhat generalized saddle point method.

6.1. The bound . From , we get that for fixed x > 0 and « as in the statement,

L [ [T + ib)|
Wi (z)| < Cx /Oo T(n+1)|T(a+ib—n)|

where throughout C' stands for a generic positive constant. The celebrated formula |I'(a + ib —
n)| |IT(n+1—a+ib)] , and the uniform bound [sin(m(a 4 ib))| < Ce™! yield

that
o [ |T(a+ib)T (n — a + ib)
(6.9) Wa(z)] < Cx /R T(n+1)

Next using the bound ({3.3]), we get, for any 0 < € < a,

o [ IT(n+1—a+ib)
<
W@l < cam [~ S

Hence, using [28, Lemma 2.6, we obtain, for large n, that

T (aa + Ba + iab) |db

= |sin(7r(a7in—ib))|

I (ala+ib) + Ba)| e™*db.

’ e(l—a-ﬁ-e)% |b|db

enlnn—n T n—%
c—sec((1—a+97)" *.
11(n_~_1)s.(e(:(( a+e)2

The Stirling approximation, e.g. (3.3)), for I (n 4+ 1) shows that (6.2) holds.

Wy(z)] < Cz %'~

6.2. The bounds and of Proposition For sake of clarity, we present the proofs
of our estimates by stating several intermediate results which emphasize the different key steps
of the saddle point approach. We postpone the proofs of the ones requiring some technical
developments to the next subsections. Throughout, we shall recall, assume and use the following
relations
Ba=0fy=aBf—a+1 and <=1-—c.

Note that according to our assumptions 3, > 0. We start with the following general upper
bound which follows as a result of using different estimates of the gamma function.

Lemma 6.2. For any n € N and k > 0 with n = sa and © = (ka)*n®, we have that on
0 <¢ <G, or equivalently aa > h, for any h > 0, that

|Wn($)‘ < Caﬁa_%nﬁag_ﬁa—%en]{m(g) / eagg(T)Rg(T)dT
0

(6.10) = Cami(r) T drdate ) [T nOR (r)ar,
0

where C' = C(h) > 0 is non-increasing in h > 0,

(6.11) 0=

((1 +a)ln(l+72%) —3<ln (1 + ?)) 7 <(1 + &) arctan 7 — arctan (Z)) ,
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« « [SE
++lnc+ln<+ln\<|>7
S S S

(6.12) go(r) =

N | —



and
Ba—1

(6.13) R =(1+7)"% (@+7)1.

To optimize the upper bound of W, (x)| we first investigate the function g.(7) defined in (6.12]).
More precisely, we have that

(6.14) g.(1) = —(1 + a) arctan(7) + sgn() arctan (’;) + mle>1y,
and, the following result.
Lemma 6.3. For all ¢ > 0, g.(0) = 0. Moreover, the equation
gi(r) =0
has a non-zero solution T, = 7(s) > 0 if and only if ¢ > OCL_H Finally, for all ¢ > 0, the mapping
T+ g.(7) attains a unique global mazimum at 1. = 7(s), given by

1 _ 72
(6.15) 9e(T4) = 3 <(1 +a)ln(l1+72) —<n (1 + §2>) o> poy

Upon taking out e®<(™) in (6.10) and using that n = ag, we obtain
Wa(z)] < Caga_%nBag_Ba_%en(HH(g)+%g§(T*))I(a’ o)
(6.16) < COF%(ﬁg)*go‘*%/i%:cﬁae”(H”<<)+%g<(T*))I(a, <)

where the remainder integral expression is given by
(617) I(a’ g) — / ea(gc(T)*gc(T*))Eg (T)dT.
0

We note that the saddle point method is not immediately applicable as the integrand in I(a,<)
depends on the parameter ¢ € (0,00). In order to be able to estimate I(a,<), we need to deliver
some additional information on the mapping 7. = 7(s). First we start though with a very useful
lemma that will be used in the sequel. Note that

—(1 + «) arctan(7y) + arctan (T—*) =0, ¢<1

6.18 gl (1) = 17
(6.18) ¢ (7x) 0. o>l

m — (1 4 «) arctan(r,) — arctan (T—*>

c—1
is simply (6.14]) at the point of a unique global maximum 7, > 0. We have the following claim.
Lemma 6.4. The solution of (6.18]) in terms of 0, = arctan (7,) € (0, %) s given by

tan(6.) B sin ()

(6.19) s(0) =1- tan ((1+a)f.)  sin((1+ a)f)cos(6,)

Moreover, 0, — <(0) is increasing on (0, 5) with range (%ﬂ, oo) and the following holds.

(1) s = 7(s) is non-decreasing on (0, 00) with 7.(c) = 0 on (0, ;57| and 7.(1) = tan (m)

(2) s = h(s):= TTf(IC) = tan ((1 + «) 0,) is increasing on (1%1, 1) and decreasing on (1,00),

with h (ﬁ) =0, limc_,1 h(s) = 00 and lim_,o0 h() = tan (5 (1 — ).
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We are now ready to provide bounds for the remainder integral I(a,<) in (6.16)).

Lemma 6.5. (1) For any K > 1, there exists C = C(K) > 0 such that

C
(6.20) sup I(a,s) < —5.
<K o

(2) Fix & > 0. Then Ya > & > 0 there exist uniform constants Ko > 2,Cy > 0 such that,
for¢ > Ky > 2,

(6.21) I(a,5) < CocPota.

emma, [6.5 shows that for any choice of ¢ < K the upper bound in (6.16]) can be reduced to
L 6.5| sh hat f y choi f K th bound in ((6.16] be reduced
(6.22) Wi(z)| < C(K, Ba)a—g—&-ﬂ_anﬁag—ﬁ_a—%enH:(O — Coz_%(ﬂg)_Ba_%ﬂ%xﬂae”H;(g)

where

N 1
(6.23) H(<) = Hi(o) + 296(m)le> 257y
For given x > 0,n > 0 we wish to minimize H}(s). For this purpose, putting 7. = [5| h, we

observe, differentiating (6.18]) with respect to ¢, that

/ /
{ (14 a) i = o, <1,

1 . W > 1
A+a)me =g 2L

Thus, from (6.15) we are able to get that

0 1 72
&gg(ﬂk) =3 In (1 + §2> )

and to conclude with the help of (6.11]) that

1 Infg] Te>z2 2
(6.24) gH*(g) _ aln(ke) +Infe] | Heat) <ln (1+T;>—(1+a)1n(1+73)>.
S

o5 " G2 2¢2 2
As a result we have the following claim.

Lemma 6.6. The equation B%H:(g) = 0, which is equivalent to

B 1 7'3
(6.25) —aln(k) = aln(s) + In[3] + B <ln (1 + §2> ~(I+a)n(1+ 7'*2)> ]I{§>ai+l}7
_1
has a unique solution ¢, = s(k) for all ak > C&. We have, with k = ki = K(sx) and S, = 1 —¢,
1

1 (_ _1 L1472\
(6.26) e = — <|€* ooy + (147)?2 <M> H{<*>1$a}> )
which when ¢ > 95, Ra(0x) = (akr.)® is expressed by (6.3)) in terms of 0. = arctan(rx), and,

for all 0, € (0, 5),

1 T2 sin (0,)
2 —Ing+n@G)+-n(l+ ——— ) =h|—5) <-1 .
(6:27) nee o) n( i <<*1>2> n<sm(a0*>> < ~lnle)
_1
Finally, if ak < Cg, we have that a%H:(g) <0, for all ¢ > 0.
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Proof. The representation (6.26) of k4 is immediate from the equation (6.25)), which in turn
is the solution to 4 O H*(c) = 0, see (6.24). If ¢ > 257, then (6.3) follows as a result of the
parametrization 6, = arctan(r.) in (6.26). Next from the fact that lim,_,olnk = —oo we

conclude that B%H *(s) <0, for all ¢ > 0 and ax < C, since (6.25) has no solution. O

_1
6.2.1. Proof of (6.4) and (6.5). When ax > Cg thanks to (6.25) of Lemma and upon

substitution in (6.23) we have that

« I 1 72
6.28 Hi(o)=———-In—+-In{1+—"— | I~ a.
( ) ( ) G |§*| 9 < (g* . 1)2> {§*>a+1}

Using (6.28) with the parametrization 6, = arctan (7y), from and -, we get

since, in this setting, (om*) = Fa (04) € (Ca, Aq) is represented by and from Lemma m
G > =55. Next from 6.22)) taking out the term —% in , and using T = Ra(0:)n®, we get

1_ akg

1
1 _Ba—% 1 1 n< u(e*)> (9*)
Wa(2)| < Cal—3 <ﬁg (9*)§*> k2% (0,)z 27" gnin(@e \” .

1 o
The estimate (6.5)) is obtained with the worst possible choices, that is, &g (0) = (1 + a)%,
6 (0) = aiﬂ in the last exponent, &, (6x) € (Ca,Aa) and ¢, > u%a

1

6.2.2. Proof of (6.6). When ¢ < 51 from (6.26), we have .. = Sy ©
K =1 yields the following inequality, recalling that ra = kM,

and thus (6.22)) with

1(3 41 . 1
Wh(z)] < Coa_?’?f<Ba+2)e"HW(C*):U’B‘*JF%e_nm,

where we have set H}, () = —& —1In (%) + g*(z(j)é and note that €§(5&+%) <1l,for0<¢<
a7~ Easy algebra gives then that
(ikH;n(c*) - a—(gl%—i—a)g (1 - 71) .
Cx
Thus, H, ;m(g*) has at most one local maximum on (O, Q—H) either at % or at f,j% = n, with
H; (ﬁ) =n(1+ oz)é'*‘l — (a+1) — In(a) and H;n( —n%) =In ( s ), which completes

the proof of .

6.3. Proofs of the lemmas.

6.3.1. Proof ofLemma. Recall that 8, = af3q = 1+a (B — 1). First, from [28, (2.2.30), Ch.2,
p.50] since R(s) > 0 we have, when |as| > h, that

'I‘(as + Ba)

< Ba
I (as) < Clas|
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for some constant C' = C'(h) > 0. Hence, using this in with aa > h, we get with some
absolute constant C' > 0 that

COzBO‘:C_a 0 oz
Wa(z)] < w/ la + ib|*

I'(a+ ib)

I'(a —n +1ib) db

I' (acx + iad)

2CaPag=agfatl oo 5 [T(a(l+ir))T 1+
(6.29) _ 0ot fa / 11 4 i | Lla(L i) Tlaa (1 +i7))
0

F'(n+1) I' (a(S+1i1))
where we have performed the change of variables 7 = % and n = ag. We proceed with some
estimates of the gamma functions. First, from [28], (2.1.8), Ch.2, p.70], we get that for aa > h

‘ dr,

. (% 1n(1+72)—(1+a)’r arctan(T))
F(a(l+in)T(aa(l+in)| < C(h)emeFesein o)

N|=

a2 (1+72)

Next, from [28, (2.1.8), Ch.2, p.70] using that a¢ln (a) = In (%)n with some absolute constant
C > 0, we have that

T (a(5+i7))| "

A

Ce—n—&-aef(afagf%) In(a) e (afagf%) In[c+ir|+ararctan Z

_ Ce—nnng—naéea—aln(a)ea(—g 1n(€2+72)+7 arctan %) (62 + 7_2)% .

Putting pieces together and using the Stirling formula for I'(n+1) yield with some C' = C'(h) > 0,
the inequality

8. T(a(l+41))T (aa (1 +i1))] B R R

6.30) |1 Ba ’ < C n aa—i—aaln(aa)Ra

( )’ +Z7—‘ F(n—i—l)\f‘(a(f—i—w))] — (aa) in 26 e S(T)
— Ba—1 1

where with R(7) = (1+7%) 2 (S +12) i, see (6.13)),

Ra,c(T) _ e%((1+a) ln(1+72)_fln(§2+7—2))e—a’r((l-ﬁ-a) arctan(’r)—arctan%)Ec (T)
(6.31) = WM ®hRIR (7) = ¢¥9:(N e BEIR (1),
Plugging the upper bounds (6.30) and (6.31)) in (6.29)), we get that

— _ oo
‘Wn(.%')‘ < Caﬁa—%n—%aﬁa—‘r%e—aln(az)—n In¢—aa+aaln(aa)—a3n[g| / 6(1_(]§(‘r)§§(7_)d7_7
0
which, after rearranging the terms by using the relations x = (axn)® and n = ga, completes the
proof of the form (6.10)). The fact that ¢ € (0, 5*) follows from the fact that ao = Za > h.

6.3.2. Proof of lemmas and . First, for ¢ < 1, we note from (6.14)) that g”(7) = —11;:70‘2 +

&% <0, VY7 > 0ifand only if 7° > 5= (1 - 5(1 + a)), ¥7 > 0, which is equivalent to ¢ < ;%5.

Therefore, the mapping 7 — ¢/ (7) is decreasing for ¢ < +47 and otherwise increasing on a finite
interval of the type (0,b) and then decreasing to lim,_, g.(7) = —Fa < 0. Since g.(0) = 0 we
conclude the claim in this case. For ¢ = 1 the claim is immediate, thus we assume in the sequel
that ¢ > 1. It is clear that 7 — g/(7) is decreasing, ¢/(0) = 7 and lim, o g/(7) = —Fa < 0,
which completes the proof of the Lemma Next, the proof of is immediate from

(6.18). The fact that ¢ = ¢(f) is increasing on <0, ﬁ) follows from the fact that both

cos (0,) and sin((1 + «)6.)/sin(af,) are decreasing on this interval. The remaining portion

between (ﬁ, g) is dealt with (6.19) since tan(f,) and —m are increasing on the

interval. This completes the proof of the first part of Lemma [6.4 Let ¢ < 1. Then we know
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from Lemma that 7. = 0, for ¢ < 0%1 The fact that 7, is increasing for ¢ € (0%17 oo)

follows from the properties reflected in of Lemma which imply that 6, = arctan(r)
and hence 7, is increasing with ¢. The fact that h(s) is increasing on (0,1) and decreasing on
(1,00) follows from upon differentiation and using the fact that 77 > 0. The values of
(1), limg 1 h(<), limgy h(s), lime—,o0 k(<) follow from substitutions and manipulations of (6.18)).

6.3.3. Proof of Lemma . For ¢ <1 we have from (6.13)) with p, = %‘1 — 1 that
R (1) < (1 + Tz)ﬁa )

Next according to Proposition for each ¢, g.(7) attains a unique global maximum at 7,

and from Lemma we have that sup < 7(s) = 7(1) = tan( Therefore, with

1+
1+a

I (a,5) = /Otan( 79) o079 T)dT <

where we set Kj(a) = tan (%d) <{”“>0}) + ]I{pa<0}> However, we check that from
2

with ¢ <1 that for 7 > tan (% ) we have that

T T

5 (1 + «) arctan (tan (504)) < ——.

Thus, for any 0 < e < 1 and ¢ < 1 using a = % >nand 7 — T (¢) > 7 — 7 (1) ZT—tan(gd)
we have that

™
2(1+a)
(ﬁ) < tan (5&) and we get that

1+a <a=

tan ga

1 + 7'2)@’ dr < Ki(«a),

S—

Ir(a,q) = /00 e . 9 R (7)dr < /00 et (r—tan(54)) (1+ 7'2)% dr < Ky (o),
tan(Z & tan( % 6)
with K (a) = [ e -7 (1 + (7 + tan (3a)) ]I{ﬁa>0})ﬁa dr. Thus, we have that
I(a ¢)="I(a,¢)+ I2(a,s) < Ki(a) + K2 () .
However, as limq o p, = 4 + limg o 25 = 1 then clearly oK (a) = o(1). Also immediately

a?Ks(a) = o(1). Thus (6.20) follows for ¢ < 1. The proof of (6.20)) follows a similar pattern for
K > ¢ > 1 with some K > 1. To prove (§6.21)), choose, for any ¢ =¢—1 > 1, 7 > {tan (gH),
for some 0 < H < 1. Then from (6.14) we have that

92(7) <7m- gH — (14 @) arctan (€tan (gH)) .

Therefore, for any § > ¢ > 0 small enough and 1 > Hy > 1 — § there exists, Ko = Ko(e) > 2
such that Voo > & and ¢ > Ky we have that ¢/ (1) < —e, V7 > {Tp, with Ty = tan (%Ho), and,
thus we conclude that 7, < ¢Ty. Using again that at T« the function g.(7) attains a unique
global maximum, we get using the expression for R(7) in - ) that

L(a,) = / e 9 ”dTRg(T)dT
0

<To Ba=1 1
/ (1472 (@42 dr
0

3 To Ba—1 1
62/ (1+37%) 2 (147°)tdr.
0
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When 3, > 1 we then get by estimating at 7 = Tp that I1(a,s) < CcPats, Otherwise, if
1 1

0 < B4 < 1, we get by estimating only (1 + 7'2) 1< (1 + TO2)Z in the last integral and changing
back variables that

=

¢To Ba—1 —_— —_—
Li(a,6) << / (1 + 7'2) 7 dr < 0Ptz < 0Pt
0

Next, since g/ (1) < —€,V7 > {Tp, and 7, < ¢Tp, we have, recalling that n = ac,
S T —
B = [ A0 R (rar
<To
S - Ba—1 1
< / e =) (14 72) "7 (P +72) i dr
<To
0 n Ba—1 1
- / e eET (1 +(r+ GTO)Q) ? (?2 +(r+ €T0)2> Y dr.
0
Since ¢ > Ky > 2 we have that 1/¢ < KU_]L < 1/2, and, thus we get, by performing a change of

variables,

/ooo (=) (1 +3 (1 + To)2> - (1 +(r+ T°)2> an

njw

Ir(a,s) <<

Again when (3, > 1 we get using that 2 (1 4+ Tp)? > T > 0 that for some C' = C(Ko, Ho) > 0
we have that
Ba=1

(1+E(r+m)°) T <CP )

and we conclude, with some C = C(Kj, Hy, €) > 0, that
Iy (a,5) < CsPats,
Assume next that 0 < 8, < 1. Clearly,
sup (e‘5<1_f§c>)67 (1 +(r+ T0)2)i> <C,
>0
for some C' = C(Hp, Ko, €) > 0 and thus

Ba—1

Bl < o [T (26 n) T e
0

1

— _ e}
C’Toﬁaflé'ﬁa‘% / e_%(l_’?o)”dr
0

IN

Therefore, we again conclude that I (a,¢) < C¢Ptz. Since I(a,s) = I (a,s) + 12 (a,s) we
deduce the inequality (6.21]) and therefore conclude the proof of our lemma.

6.4. Proof of Proposition We are now ready to derive our upper bound for the norms
of Ry, in L?(e, ) and L%(€, .4).
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6.5. The estimate (2.6). Recall that 3, = a8, = 1 + a (8 — 1). Writing
1
Ep(z) =T(af + OWi(z)z et

we split the norms squared into three pieces as follows

Bana Zano‘ o0
(6.32) R, , = / Fy(w)dz + / F(2)da + / Fo(w)da,
= 2

Ban® Aan®

_1
where we have set B, = 2¢ (AQC“ — Agtt

~~
o
o)
5]
N
B
+
N’
|
Q
+
—
N—r

> . We have the following

useful fact recalling that C, = aa,,(ﬁa;
2

Lemma 6.7. There exists a > 0 such that, for any 0 < a < @, By > B.. Moreover, for any
€ (0,1), By, > C,.

Proof. The first claim follows from the inequality limg_,o =& Bg g =2

we write fi(a) = (a+1) “ and Cg; = fa(a)fs(a), where fa(a) = — ‘);a) and f3(a) =
os'ta (). Note that By > C4 is equivalent to fi(c) — fa(c) f3(e) > 2 (o + 1). We have that

f2 is non-decreasing convex on (0,1) and since f](a) = %7)2&%1 (¢ —In(a+ 1)) and f'(a) =

fl( ) (111 (a+1)— +1>, we deduce that fi is concave on (0,1) with lima—0 fi(@) — fo(a) =

e—2>2 and as f3(e) < 1, we have that there exists a; > 0 such that for any 0 < o < oy
fi@) = fao(a) fs(a) = fi(@) = fala) > 2(a+1).

Repeating this argument, one constructs an increasing sequence (q,,), with n < 10, where a,, ,

is obtained from «,, by using the bound for a € oy, 3], f3(a) = cos“a (Fa) < cos® (Ra,) <1
yielding to the second claim in the case a < 3. Now assume that o > 1. Since f3(a) < f3(a) =
cos?(9) with f§ (o) = —4m? cos(mar) > 0 for a € (3,1] and lima—1 f{(a)— f5(a) = 4(1-1n(2)) ~
1.23 < 2 and as above one may construct a sequence (q,,) with a; = 1 and oy < %, such that
for any a € (3, a,), fo(a) < Sm(ﬁing) which guarantees the existence of o, ; < a,,, such that

for any o € [ QXpt1, & ]7

(a+1)% — —2_Fi(a) > 2a+1),

sm( 5)

which completes the proof. ]
Recall that g, =5 +1— é Then for each range we have the following estimates for large n.

1
1) On (0,B,n%), we have from the estimate (6.2]), with a = B", xr = kn% k < B§ and any
0 < € < a, that, for large n,

1
o) < oo (om0 o s () )

and hence
/Bana Fy(z)dz = O (nﬁa+aﬁa+3+a62n<— ln(sm((‘”zf)"))Jr;(aJrn"Il_(a+1))> |
0
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2) On (Byn®, Ayn®). Since, from Lemma B, > C, and for small o, B, > B, we can use
the estimate (6.5)) to get

Aan® 2n( —In(a)+1(a 1QT+17(11
/ Fo(z)de = O (no‘+°"8°‘e ( (@rtz(aty et ))> :

Ban®

3) On (Aan®,00). Let = 14 for any 0 < e < 3 we have, from (6.6),
Fn(x) < Cae—2nln((%+e)_a_1) wﬁa+é€*€$é

and thus, we get, for any 0 < € < ¢, that
o0 1 —a -+
/ Fn(:zr)dx < Cae—ann((§+e) —l)efenAg ]
Zana

Hence,

/OO Fy(z)dz = O (e*T).

Aan®

To conclude the proof of the estimate (2.6)), we note that, for all a € (0,1),

1 [e3 1 [e]3
To=—In(2*—1) > —1n(a)+§(a+1)%l —(a+1) > — In(sin (0‘21)) +5(a+1) a
where the first inequality follows from (6.7) with = & and the second from sin (%) <a,Va e

(0,1). ’

—(a+1),

6.5.1. The estimate (2.7). We recall that for any 0 < v < « and 7,, > 0 fixed

1
L1
é%ﬁ,a(m) = ‘TﬁJrEilenaz’yv T > 07
and as above, writing,
1
— 1 — =
Fu(@) = Wi (a)a— s+l e

we split the norms squared into four pieces as follows

1 Kaon® _ Aan® _ 0o N
Ral2,, = /0 By (w)da + /1 By (w)da + / Fo(x)ds + / P (2)da,

Kan® Aan®

«
T ,—20—¢ o
where K, = ¢ (—a+1> .

1) On (0,1) and (1, K,n®), we use the bound (2.5)), which yields that
1

_ 1 1

)

and thus, on the one hand,

1

1 1
/ Fy(x)dr < CnHﬁJri/ x5+ée2¥“(m)#lfﬁaﬂd:ﬁ
0 0

_ 1
OB+ p2tan™ T

IN
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On the other hand,

Kaon® B 1 Kan
/ Fy(x)de < Cun'thta /
1 1

@

1 1
. 1
2Pt e2ta(nz) 6T =Tz 4o

_ 1 o g
2tqvatl —nan”

Ka l)
1 1 n vY
Can1+ﬁ+g+aﬁ+a+1 / VPrae dov.

n—(l

Next with = 9% pen SRR PRI h / N Ta, 21 1 1
ext with g,(v) = 2teva+i —7,n" v7, we have ¢/, (v) = v 2o Tap5lyy

and simple computation yields that ¢/, (v) < 0 on (n™%, K,) and thus

?ana _ 1
/ Fn(x)dx < Canl—‘rﬁ—‘ré—i-athana-‘rl ‘
1
Putting pieces together, we get

Kaon® B 1 _ %
(633) / Fn(l')dl‘ = 0 <n1+ﬂ+a+a€2tana+ ) ]
0

2) On (K,n®, Aan®). First, note that since o — K, (resp. a — A,) is non-increasing (resp. non

decreasing) and lim, 0 Ko = €€ < lim, 0 Ay = 1, we have, K, < A4, for all a € (0,1).
Then, using the bound (6.2)), with a = —%‘l, and any 0 < € < «, we get

Fn (."L‘) < Cn6a+3€2n IH(CSC(@>> e_fin% ’

and, hence

(6.34) /Aana Fu(z)dz = O (nﬂa+3+ae2nln<csc((a_2e)7r))eKiyn

2[R

Kan® > '
3) On (Aan®, o), we use the bound , with n =0, to get
Fn(fb) = C’Otxﬁori_i 62"(—ln(a)—(a+1))e—ﬁax%,

and, hence for any 0 < € < 7, we have

(6.35) / Ey(z)dz = o<e—2"1n<a>—m”).

Aan®

The proof is completed by combining (6.33[), (6.34) and (6.35]).

7. PROOF OF THEOREM [1.4]

We have now all the ingredients to complete the proof of Theorem (1.4} First, from the inter-

twining relation (|1.7)) and the expansion ([1.8)) of the Laguerre semigroup of order 8 = 0, we get,
in the L?(e, ) topology, that for any f € L*(e), t > 0,

Pl f(x) = MapQif(@)=Dap D e ™ (fLa)e Lalx) =D e ™(f, La)e Pul),
n=0 n=0

where the last identity is justified by the Bessel property of the sequence (P,) combined with

the fact that for any f € L2?(e), the sequence ({f,Ln)e) € £2(N). Next since from Proposition
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Ran(An5) = L%(eqs) and Ker(Ayz) = {0}, we have that A;% is densely defined from
L?(e, ) into L?(e) and thus, for any f € Ran(A,g) and t > 0,

Pf(x meaﬂ,>7x>mﬁ%m

Note that the two linear operators coincide on a dense subset of L?(e,g). Using now (£.5), we
deduce that, for any f € Ran(A, ) and ¢ > 0,

(7.1) Pf = Sf inL’(eqp)

where we have set

o0

(7.2) Sif =Y (Pef, Ra)e,, Z T Rudews P

n=0 n=0
From again the Bessel property of the sequence (P,), we have that the domain of S; is D(S;) =
{f € L%(ea,3); (e 7™ (f., Rn)e,5) € £*(N)}. Next, an application of the Cauchy-Schwarz inequal-
ity yields, for any f € L%(e, ), some € > 0 and n large,

[(f Rdews] < [ flleaslRalleas < €11 flleqs:

where we have used the bounds (2.6). Thus, for any ¢t > T, D(S;) = L%(ea,3) and using the
synthesis operator as defined in , we get that S; extends to a bounded linear operator
in L%(ey ). Hence, from , since Ran(A, ) = L2(ea75), we conclude, by an uniqueness
argument, that for all f € L%(e, g) and t > Ty, P; = S;. Next, by means of the bound (2.7)), we
have for any f € L%(€, ), n large and some € > 0,

€q,
(R = (FRZL) <,

€v,8,a

eOé,B
n —

€y,8,x

< ellatom IIfHeW

€y,8,a

Thus, plainly, for all ¢ > 0, L? (€4,8,0) € D(S¢). Then, as (Ry, Pn)n>0 is a biorthogonal sequence,
see Proposition we deduce from (7.2) that, for any f € L%(€,4,4), t > 0 and m > 0,

<Stf7R > :<Ptf77?’ ) )

that is S;f — P;f € Span(R,)*. However, since from Proposition H Span(R,) = L?(eq ),
we conclude that S;f = P, f in L?(e, 3), as in a Hilbert space the notion of complete and total
sequence coincide. Next using the bound (2.4), we get that, for any p € N and 0 < z < K, for
any K > 0,

d e f, Rudeas PP@)| < D eT(f, Rden s | [PP ()]
n=p =
3 1
< C Z e |(f, Rn)ens| NPt 3 pta(ne) THa
n=p
< C E e_nt-f-ta(nK |<fa n>ea,5| np-‘r%’
n=p

where, from the preceding discussion, the last term is finite whenever ¢t > 0 and f € Ran(A, g)U

L2(€y54) or t > T, and f € L?(e, ). Similarly, using in addition the bound (2.5), we get for
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any integer ¢, 0 <z < K,0<y < K, K,K > 0,

(7.3) Z e MWD (y) PP (z)| < CyPtad Z efntnp+%+]ﬂ+§—1—q!+2ef(an%+17

k o
CHPNO@) =S (e f Rade, PP @),
n=p

where the series is locally uniformly convergent on R*. This combined with (2.5, which is
uniform in y € (a,b), for large n, for any fixed couple 0 < a < b < 0o, gives that

d* > .
P (@,y) = Y ()t e MW () PP (@),
n=p

where the series is locally uniformly convergent on RE’;. Finally, observe that on the one hand,
for all ¢ > 0, P,Py(x) = 1, and hence according to [33], (P:)i>0 is a Cp-Feller semigroup. On
the other hand, from , we get that for all ¢ > 0, (x,y) — P.(z,y) is locally bounded and
the strong Feller property follows from [34, Corollary 2.2], which completes the proof of the
Theorem.
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