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10 Abstract

11 Manually laying out the floor plan for buildings with highly-dense adjacency 

12 constraints at the early design stage is a labour-intensive problem. In recent decades, 

13 computer-based conventional search algorithms and evolutionary methods have been 

14 successfully developed to automatically generate various types of floor plans. However, there 

15 is relatively limited work focusing on problems with highly-dense adjacency constraints 

16 common in large scale floor plans such as hospitals and schools. This paper proposes an 

17 algorithm to generate the early-stage design of floor plans with highly-dense adjacency and 

18 non-adjacency constraints using reinforcement learning based on off-policy Monte-Carlo Tree 

19 Search. The results show the advantages of the proposed algorithm for the targeted problem 

20 of highly-dense adjacency constrained floor plan generation, which is more time-efficient, 
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21 more lightweight to implement, and having a larger capacity than other approaches such as 

22 Evolution strategy and traditional on-policy search.

23 Keywords: Floor plan generation; highly-dense adjacency and non-adjacency constraint; 

24 algorithm; Off-policy Monte-Carlo tree search; reinforcement learning; generative design;

25 1. Introduction

26 Laying out a floor plan is one of the key tasks in architecture design. It involves making 

27 decisions on the design and layout of all the rooms usually in a 2D space to satisfy various 

28 geometric and topological constraints. Conventionally, this has been a manual trial and error 

29 drawing process, where different pieces are adjusted, rearranged and reconfigured 

30 repetitively until a suitable floor layout that satisfies the various requirements eventually 

31 emerges [1]. This iterative manual process requires a significant amount of human labour and 

32 time, and becomes ever less possible as the size and complexity of the design problem 

33 increases. Due to the iterative and repetitive nature of this problem, automated 

34 computational techniques have replaced the manual design process and become the main 

35 approach for generating floor plans [2]. 

36 Many computational algorithms including heuristic search, mixed-integer 

37 programming have been successfully developed to generate satisfactory floor plans [3]. 

38 Especially, the evolutionary methods which have dominated this field in the last decade can 

39 generate a variety of layouts. However, the adjacency constraints tackled by most of these 

40 approaches are small-in-scale, and more importantly sparse-in-density, where the number 

41 of rooms is within 10 and the number of constraints is usually equally around (or at least no 

42 more than twice) the number of rooms. For example, Camozzato et al. [4] proposed a 

43 procedural method to generate a floor plan of 8 rooms with only 1 adjacency constraint. In 
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44 [5], the authors illustrate a rectangular dissection method through an example of only 4 

45 rooms with 3 adjacency constraints. Case study [6] tackles totally 9 adjacency constraints 

46 within 9 rooms, so the number of adjacency constraints is still no more than the number of 

47 rooms. Therefore, these approaches become inefficient with increased scale and density 

48 due to their limited scalability. For example, Rodrigues et al. [7] have applied the 

49 evolutionary methods to generate floor plans for a hotel up to 30 rooms, however the total 

50 number of adjacency constraints is only 34 and therefore still leads to a sparse adjacency 

51 matrix. Also, their case is not to generate a rectangular floor plan, therefore rooms can be 

52 placed in a more creative way with flexible boundaries. Finally, their algorithm had a 

53 runtime of 52 minutes on a 4GHz 8-core computer with multi-threading, which is not 

54 expensive when considering all kinds of granular constraints that were tackled in the 

55 original work. However, in case to address adjacency constraints only in initial floor plan, it 

56 may become not worth to apply the same approach. In addition to being limited to the 

57 small-scale and sparse-density of the adjacency constraints, this work hasn’t considered the 

58 non-adjacency constraints. This paper tried to address the limitation of existing algorithms 

59 to handle high density topological adjacency and also non-adjacency constraints. 

60 Topological adjacency constraint is one of the most important requirements during 

61 floor plan generation process, which defines the adjacency conditions between any pair of 

62 rooms. The complexity of topological adjacency constraints can be represented in terms of 

63 three factors: scale, density, and type of constraints. The first factor, the scale of constraints 

64 refers to the number of rooms  to place in a floor. Rooms can be any enclosed space. 𝑛𝑟𝑜𝑜𝑚

65 The larger number of the rooms we have, the larger scale of the adjacency constraints we 

66 need to tackle. The second factor, the density of constraints refers to the ratio between the 

67 number of constraints and the number of rooms . For example, in 𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠/𝑛𝑟𝑜𝑜𝑚𝑠
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68 residential floor plans, the adjacency constraints are often small-in-scale and sparse-in-

69 density where there are only a limited of total rooms, and the number of constraints is roughly 

70 equal to or even less than the number of rooms. Whereas in other complex scenarios such as 

71 hotel and school planning, the problem usually have high-dimensional and dense adjacency 

72 constraints with a larger number of rooms to locate, and the constraint density may be much 

73 higher. The third factor, the type of adjacency constraint refers to adjacency constraints and 

74 non-adjacency constraints that need to be tackled while generating the floor layout. 

75 Adjacency constraint is very common in most types of floor plan design, which requires two 

76 rooms to be next to each other. Non-adjacency constraint which requires that two rooms 

77 must not be adjacent, though less common, is also necessary for some practical problems. 

78 For example, in a hospital floor plan, some rooms are not only required to be adjacent to 

79 other rooms for convenient circulating reasons, but also required to be non-adjacent to some 

80 other rooms for isolation and infection control. 

81 This paper proposes an efficient and lightweight algorithm which focuses on tackling 

82 highly dense adjacency constraint matrix, and taking into consideration both the adjacency 

83 and non-adjacency constraints. It uses off-policy Monte-Carlo Tree Search (MCTS) based 

84 reinforcement learning algorithm to solve this problem. The rest of this paper is divided into 

85 four sections. Section 2 gives a brief review of the related computational approaches on floor 

86 plan layout design. Section 3 first introduces the MCTS method and the problem definition, 

87 and then presents the proposed off-policy MCTS for solving the floor plan problem with 

88 highly-dense adjacency and non-adjacency constraints. Section 4 demonstrates two practical 

89 case studies to evaluate the capabilities of the proposed algorithm. Limitation and future 

90 work are discussed in Section 5. Finally, conclusions are drawn in Section 6. 
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91 2. State of the art : Solving floor plan generation problem

92 Since the 1970s, researchers have developed computer-based approaches and 

93 algorithms for architecture design as detailed in the remaining part of this section. These 

94 approaches can be categorised into three main groups: conventional search methods, 

95 theoretical and mathematical proofs, and most recently the evolutionary approaches. 

96 2.1 Conventional Search

97 The Conventional search methods are based on searches, enumerations and 

98 recursions by following predefined rules throughout the process. Bhasker and Sahni used a 

99 linear time algorithm to check if there are rectangular duals [8] and, if so, generates 

100 rectangular duals for any n-vertex planar triangulated graphs [9]. This is a remarkable work, 

101 however, it only applies when adjacency constraints represents a planar triangulated planar 

102 (PTP) graph. Other methods can vary from graph transformations [10], shape grammars [12] , 

103 rectangular dissections [5], placement and expansion [4] to exhaustive enumeration, heuristic 

104 search methods [14], and integer programming [16].  Veloso et al. [11] implements shape 

105 grammar into a design customization system based on Computer-Aided Architectural Design 

106 (CAAD) which includes both the algorithmic generation of designs and the detailed 

107 representation of the building. In [13], shape grammars are studied as a network structure of 

108 related designs that are visited consecutively in an exploration process. Heuristic search and 

109 integer programming are two other popular algorithms. Heuristic search highly depends on 

110 user’s constraints and is often implemented differently from case to case, where single-stage 

111 approach and two-stage approach are two common heuristic search approaches used for 

112 multi-floor facility layout [15]. While on the other hand, integer programming is usually an 

113 effective method used to address geometric-dimensional constraints by solving a system of 
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114 inequalities and equalities [17]. Recently, when given a rectangular floor plan layout, Upasani 

115 et al. [18] proposes an method based on linear-optimisation to adjust the geometric 

116 dimensional constraints of a given rectangular floor plan while keeping the topological 

117 adjacency relations unchanged. Most of these methods are rule-based, and can be 

118 implemented effectively. However, they are usually not scalable for large scale problem with 

119 highly-dense adjacency constraints, and more importantly, some of these algorithms may 

120 have blind cases that can never be achieved due to the limitations of the algorithm. For 

121 example, the floor plan in Figure 1 shows a floor plan design that is impossible to be generated 

122 by rectangular dissection algorithm proposed by Flemming [5].

123

124 Figure 1 Blind case for rectangular dissection algorithm

125 2.2 Theoretical and Mathematical Proof

126 At the meantime, there is a second group of research works that are making 

127 remarkable contributions to provide the theoretical and mathematical proof of the layout 

128 problem. The works tried to formulate theorems on the conditions and boundedness of the 

129 solvability of layout problems to further support the computer algorithms. Koźmiński and 

130 Kinnen [19] proposed that a planar graph G has a corresponding rectangular floor plan with 

131 four rooms on the boundary if and only if every interior face is a triangle and the exterior face 

132 is a quadrangle and G has no separating triangles (a separating triangle is a triangle whose 

133 removal separates the graph). Shekhawat [20] created definitions on a generic rectangular 

134 floor plan and maximal rectangular floor plan and stated that a design solution can be 
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135 identified if the target dual graph is the subgraph of the dual graph of one of the maximal 

136 rectangular floor plans. The same authors made contribution from a mathematical theory 

137 perspective on evaluating the feasibility of providing a generic floor plan solution given the 

138 topological constraints [21]. They also proposed an approach based on graph theoretic tools 

139 to produce rectangular and orthogonal floor plan where they innovatively introduce 

140 circulations in the floor plan when a desired solution does not exist for the given adjacency 

141 constraints [22]. These theorems and knowledge can be considered as guidelines to help 

142 improve efficiency when designing a computer algorithm. 

143 2.3 Evolutionary methods  

144 In most recent ten years with the rapid development of computational strength, 

145 Evolutionary Methods as the main group have dominated this field of automated floor plan 

146 generation. According to Kalay [23], Evolutionary Methods ‘‘have proved their ability to 

147 generate surprisingly novel solutions’’ and ‘‘the innovative abilities of GAs (Genetic 

148 Algorithms) have been demonstrated in part through their application to art and to the 

149 generation of floor plans’’. Basically, they mimic biological evolution through natural selection 

150 towards the optimal solution. By starting with an initial population of random individuals 

151 (floor plans in this case), the algorithms repeatedly modify the population by applying three 

152 main types of operators (selection, crossover, mutation) at each iteration to generate 

153 offspring layouts until a certain set of criteria are met. Many efforts have already been carried 

154 out in this field for generative floor plan design. Wong and Chan [24] proposed an 

155 Evolutionary Algorithm called EvoArch which encodes topological configuration in the 

156 adjacency matrices of the graphs and applies operators on these adjacency matrices, where 

157 the nodes of the graphs can be swapped and mutated. In [25], the authors proposed an 
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158 extension to the standard genetic algorithm, which optimally groups some activities together 

159 in the first stage of the computation, and then optimally places activities within these groups 

160 at a second stage. More interestingly, Quiroz et al. [26] proposed a collaborative interactive 

161 genetic algorithm for floor planning, based both subject criteria and object criteria. Subject 

162 criteria allows the designers to make active decisions on selecting offspring from population, 

163 while object criteria corresponds with the codified user constraints.

164 More recently, Rodrigues et al. [27] developed a hybrid evolutionary approach 

165 involving Evolutionary Strategy (ES) and Stochastic Hill Climbing (SHC) to generate floor plans 

166 for complex requirements including highly detailed geometric and topological user 

167 constraints. Multiple evaluators had to be hand-crafted to measure the fitness of the 

168 individual (floor plan) against each kind of constraint. In every iteration, operators resulting 

169 in improved fitness of an individual will be preserved and otherwise discarded to eventually 

170 obtain a set of feasible design solutions that minimize the penalties due to not fulfilling the 

171 geometric and topological objectives. The same authors have also used this similar Evolution 

172 strategy to solve multi-level space allocation problem [7], and conducted clustering 

173 algorithms on generated floorplans based on feature vectors yielded from different shape 

174 representation methods [6].  Dino [28] applied the evolutionary approach for 3D space layout 

175 design problem: given an exact predefined 3D building boundary, the aim is to find solutions 

176 that allocate multiple 3D spaces to fully occupy the building boundary without overflow as 

177 well as satisfying other user constraints. 

178 All these works have indicated the advance of Evolutionary Methods in the generative 

179 design of the floor plan, which outperforms previous conventional approaches mainly in two 

180 aspects: the scale of the problem and the complexity of the constraints. Firstly, Evolutionary 
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181 Methods can be suitable for larger-scale design problem up to dozens of rooms for hospital 

182 and schools. Secondly, it can handle a variety of detailed user-defined constraints including 

183 number and dimensions of rooms, connectivity/adjacency between rooms, size and 

184 orientation of interior and exterior openings, a vacant area in front of exterior openings, wall 

185 thickness. 

186 However, Evolutionary Methods are computationally-intensive and heavy-to-

187 implement. On one hand, since its natural selection process is highly stochastic based on 

188 conducting random operators at each iteration, the computation process is extremely 

189 intensive and expensive to achieve feasible design solutions satisfying various fine-grained 

190 constraints (dimensions/size of rooms, orientation of openings, thickness of wall, etc.). On 

191 the other hand, an evolutionary algorithm is often complex and tedious to implement. It not 

192 only involves creating a series of operators (e.g. geometric translation operator, mutation 

193 operator, alignment operator, etc), but also needs to manually handcraft dozens of metrics 

194 and evaluators to assess the fitness against to all these granular constraints and 

195 requirements. The way to combine the results from all evaluators into a single score can be 

196 somehow subjective to adjust. Therefore, in practice, the evolutionary methods can be very 

197 powerful at handling various fine-grained geometric and topological constraints 

198 simultaneously for more detailed design stages, while for early conceptual design with 

199 adjacency constraints only, it may become inefficient and even unnecessary, and therefore 

200 may not be the best approach to specially solve the problem of highly-dense adjacency 

201 constraints.
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202 2.4 Novelty of the proposed approach 

203 The literatures have been reviewed broadly from conventional search, mathematical 

204 theory, to evolutionary methods. Limited works are found to aim at tackling highly-dense 

205 adjacency constraints. For conventional search algorithms, the time complexity will be 

206 intractable to handle highly-dense adjacency constraints, due to its limited scalability. For 

207 evolutionary methods, it may have potentials to solve large-scale and highly-dense 

208 adjacency constraints, however it’s heavy to implement and time-expensive. Therefore, the 

209 evolutionary methods are usually more suitable for detailed floor plan design with various 

210 fine-grained constraints rather than the problem discussed in this paper with highly-dense 

211 adjacency constraints only. In addition to the dense adjacency constraints, few of the above 

212 works have considered both adjacency constraints and non-adjacency constraints. 

213 Therefore, this paper proposes a new off-policy MCTS to tackle the high-dense 

214 adjacency constraints considering both adjacency and non-adjacency types in an efficient and 

215 lightweight manner. This idea is inspired by the most recent success of MCTS in AlphaGo [29], 

216 where the authors find the process of putting rooms within the building boundary to satisfy 

217 highly-dense adjacency constraints is similar to the process of putting stones on the game 

218 board which also depends on dense adjacency conditions.
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219 3. Modelling floor plan generation problem using off-

220 policy Monte-Carlo tree search based reinforcement 

221 learning

222 In this section, the background of traditional MCTS is firstly introduced, and then give 

223 a formal definition of the floor plan problem with highly-dense constraints of both adjacency 

224 and non-adjacency types. Finally, off-policy MCTS is proposed to solve this problem.

225 3.1 Monte-Carlo Tree Search (MCTS)

226 Reinforcement learning is a learning system that keeps updating its value function 𝑣

227  (representing the expected total rewards from a state  (or action) onwards) and policy  (𝑠) 𝑠 𝜇

228 (representing the probability distribution of taking actions) based on the rewards  obtained 𝑟

229 in the learning process [30]. Monte-Carlo Tree Search (MCTS) is one of the key methods of 

230 reinforcement learning, which has been widely used in finding an optimal solution in large 

231 Markov decision process. As discussed in details below, floor plan design can be formulated 

232 as a Markov decision process in a way that rooms are being placed one after another within 

233 the boundary. MCTS is also very popular for playing board game, especially the games of Go 

234 [31], where AlphaGo is the most well-known example combining deep neural networks with 

235 MCTS to make promising prediction on the next move. Here, we introduce the basics of MCTS 

236 and then in Section 3.3 describe how to innovatively adjust and adapt it into a floor plan 

237 design.

238 At a high level, MCTS is fundamentally a Markov decision process (MDP). The aim is 

239 trying to maximize the total rewards that could be obtained during this process, which is 

240 achieved by making promising decision or actions at each time step during the process. A 
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241 search tree can be used to represent the decision-making process that at each time step the 

242 agent are located at a node (i.e. state) , and have a set of available actions to choose which 𝑠

243 take the agent towards the children nodes/states in the next time step. In this search tree, 

244 each node  has a set of statistics,𝑠

245 {𝑁(𝑠),𝑊(𝑠),𝑣(𝑠)}

246 where  is the visit count of state ,  is the accumulated total rewards of all times, 𝑁(𝑠) 𝑠 𝑊(𝑠)

247 and  is the value function which is the expected total reward.𝑣(𝑠)

248 Specifically, at each time step, the algorithm proceeds by iterating over multiple 

249 simulations from the current state, and then taking a real action. Each simulation contains 

250 four phases: selection, expansion, roll-out and backup, as shown in Figure 2.

251

252 Figure 2 Four phases of simulation stage in MCTS

253 Basically in each simulation, the algorithm firstly selects a path from the root to a 

254 leaf node within the current tree. Then the leaf node is expanded to include its children in 

255 the tree structure, and a random roll-out is performed starting from this leaf node until 
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256 reaching a terminal state. Finally, a reward obtained by evaluating against this terminal 

257 state is backed up from the expanded leaf node back to the root node.

258 1). Selection starts from the current state  (root node) to recursively choose a child based 𝑠𝑡

259 on a behaviour policy  until a leaf node is reached. UCT [32] is one of the most popular 𝜇

260 algorithms balancing exploitation and exploration. It selects the child  such that:𝑠𝑡 + 1

261 𝑠𝑡 + 1 = argmax
𝑠𝜖𝓢𝑡 + 1

(𝑣(𝑠) + 𝑈(𝑠))

262 𝑈(𝑠) =

∑
𝑠'𝜖𝓢𝑡 + 1

𝑁(𝑠')

𝑁(𝑠) + 1

263 where  is the state of the node at time step ,  is the state space at time step , i.e. 𝑠𝑡 𝑡 𝓢𝑡 + 1 𝑡 + 1

264 all children of ,  means the value of state , and  is the visit count of state .𝑠𝑡 𝑣(𝑠)  𝑠 𝑁(𝑠) 𝑠

265 2). Then the leaf node is expanded and its children are added in the tree structure.

266 3). A roll-out is randomly conducted from the expanded node until a terminal state to obtain 

267 the reward .𝑟

268 4). The reward is backup from the expanded node back to the root node . The visit counts 𝑠𝑡

269 are increased, , and the state value is updated to the mean value: 𝑁(𝑠) = 𝑁(𝑠) + 1 𝑊(𝑠) = 𝑊

270 , .(𝑠) + 𝑟 𝑣(𝑠) =
𝑊(𝑠)
𝑁(𝑠)

271 Each simulation consists of these four phases. After  simulations are completed from 𝑁

272 the current state , a real action/decision is conducted towards its child with the highest 𝑠𝑡

273 state value , and this child node becomes the new root node for the next 𝑠𝑡 + 1 = argmax
𝑠𝜖𝓢𝑡 + 1

𝑣(𝑠)

274 time step. Again, in the next time step,  simulations are carried out from this new root node, 𝑁
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275 and then a real action is taken, and so forth. It ends at a time step when the real action reaches 

276 the terminal state, which it’s called as a real play is completed.

277 3.2 Formalisation of floor plan generation problem

278 The focus of this paper is laying out the rectangular floor plan to satisfy user-defined 

279 high-dense adjacency and non-adjacency constraints at the early design stage. The 

280 rectangular floor plan is a layout where the building boundary is rectangular and every 

281 space/room in the building boundary (including common area such as corridor) should also 

282 be rectangle-shaped [20]. Figure 1 can be an example of a rectangular floor plan.

283 Formally, the goal is to develop an algorithm  which takes a set of user-defined 𝑓

284 adjacency constraints  as input and gives a rectangular floor plan solution  as output 𝐶 𝑅𝐹𝑃

285 satisfying the constraints.

286 (1)𝑓:𝐶→𝑅𝐹𝑃

287 In the problem discussed in this paper, the constraints  can usually be formulated as a dense 𝐶

288 matrix as shown in Eq.(2), where the heads of row and column stand for room ids. The value 

289 “ ” stands for adjacency constraint indicating that two rooms must be adjacent, while value 1

290 “ ” means non-adjacency constraint requiring the two rooms must NOT be next to each ‒ 1

291 other, and value  simply means no specific constraint between the two rooms. Usually only 0

292 the elements at the upper-right side of the diagonal line are valid for defining constraints 

293 while the rest part of the matrix is discarded and default to 0.

294 (2)𝐶 = [ \ room1 room2 room3 room4 room5
room1 0 1 0 1 0
room2 0 0 1 ‒ 1 1
room3 0 0 0 1 0
room4 0 0 0 0 1
room5 0 0 0 0 0

]
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295 For above user constraint matrix  shown in Eq.(2), one feasible solution  could be the 𝐶 𝑅𝐹𝑃

296 rectangular floor plan shown in Figure 1, where every constraint indicated by the upper-right 

297 side of the diagonal line of the matrix is satisfied.

298 3.3. Off policy MCTS based reinforcement learning algorithm for floor 

299 plan generation

300 This paper proposes an off-policy MCTS based reinforcement learning algorithm to 

301 solve the above-defined rectangular floor plan problem with the highly-dense adjacency and 

302 non-adjacency constraint matrix. At a very high level, like the traditional MCTS described in 

303 Section 3.1, in each time step, the proposed algorithm conducts multiple ( ) simulations, and 𝑁

304 then takes real action to the next best state. In each simulation as well as the real play, each 

305 room is placed one after another in sequence from the most top-left corner to the bottom-

306 right corner within the building boundary until all rooms have been placed. Here, “top” is 

307 defined to have higher priority than “left”, which means we first look at the available points 

308 at the top-most location, and then choose the left-most one from these points. As shown in 

309 Figure 3, room2, room3, room5, room1 and room4 are placed in sequence, which can be a 

310 possible simulation result for the problem defined in Eq.(2). The simulation result is then 

311 evaluated against the user-input constraints matrix to produce a reward  measuring the 𝑟

312 fitness which is backup to the root of this time step. After multiple simulations, the best next 

313 action is conducted in real play for this time step, and then next time step starts. The process 

314 proceeds until all rooms have been placed in real play.
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315

316 Figure 3 Rooms placed from top-right to bottom-left of our algorithms. 

317 3.3.1 Off-policy MCTS 

318 Although the overall architecture of the proposed Off-policy MCTS is like the 

319 traditional MCTS, there are three key differences in the proposed algorithm. The first two 

320 differences are in the simulation process as shown in Figure 4.

321 The first difference is that we discard the rollout phase, and instead always expand to 

322 the terminal state at the expansion phase in each simulation. Although this makes proposed 

323 algorithm more memory-intensive, however, it can improve the efficiency of repetitively 

324 traversing the tree and the accuracy of the state value  by recording the simulation results 𝑣(𝑠)

325 of all times for every visited node.

326 Secondly and most importantly, instead of traditional on-policy Monte-Carlo 

327 simulation to learn the value function of the behaviour policy , this paper proposes off-policy 𝜇

328 schema to directly learn the value function of optimal policy . This is because the floor 𝜋

329 planning problem has a deterministic environment which is different from the uncertain 

330 environment in two-player games. In two-player games, the first player doesn’t know the next 

331 state after taking an action because opponents move is unpredictable, in which case there is 

332 a need to update the value function towards the mean of total rewards in backup phase in 

333 order to handle the uncertainty of the other player which is the environment. However, in 
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334 floor planning, the environment is deterministic which means the agent always knows the 

335 next state if the agent decides which action to take. Therefore, we can evaluate the optimal 

336 policy by simply updating the state value function to the max value of the total rewards in 

337 history during the backup phase,

338 (3)𝑣(𝑠) = max {𝑟|𝑟 ∈ ℛ𝑠}

339 where  is the set of total rewards obtained in all the simulations that have visited node . ℛ𝑠 𝑠

340 Practically in programming, the state value will only need to be updated if the backup reward 

341  is larger than the currently stored state value: .𝑟 𝑣(𝑠)←𝑟 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑟 > 𝑣(𝑠)

342

343 Figure 4 The simulation stage of proposed off-policy MCTS

344 Finally, differing from the traditional MCTS usually used in real-time two-player games 

345 which are not allowed to be restarted and replayed, proposed algorithm for floor planning 

346 design can restart if the final real solution does not fully satisfy the user’s requirements. 

347 However, instead of restarting from a brand-new search tree, we reuse the previous search 

348 tree and restart the new real play from the tree’s root node at the very beginning, in which 



18

349 way the stored statistics of the search tree will be repeatedly utilised and become richer and 

350 richer until the algorithm finally reaches an optimal solution satisfying all the user constraints. 

351 The pseudo-code of the whole algorithm is presented in Table 1.

352 Table 1 Proposed Off-Policy MCTS algorithm

Initialise root node 𝛼
Initialise number of simulations per time step: 𝑁
Count iteration of replay: 𝑀 = 0
Set current node 𝜌←𝛼
While True:

While  is not terminal:𝜌
For  =  do: 𝑛 1,𝑁

Run simulation from 𝜌
End For
Take real action to next time step:  best_child𝜌← (𝜌) 

End While

If  satisfies all user constraints:𝜌
Break

Else:
Restart and reuse the search tree: 𝜌←𝛼
𝑀←𝑀 + 1

End While

353

354 3.3.2 State and Action

355 For this floor planning problem, at a high level, we put each room in sequence from 

356 top-left corner to right-bottom corner. To allocate each room, we define three successive 

357 steps: the first step is to select the  coordinate of this room, the second step is to select the 𝑥

358  coordinate of the room, and the third step is to choose which room to put into this  𝑦 (𝑥,𝑦)

359 space. This process is illustrated in Figure 5.

360 Therefore, we define three types of state (node) in the search tree, namely , , and 𝑂 𝑋

361 , where different types of states have different kinds of actions. The  state is at the time 𝑌 𝑂

362 when a room has just been placed and the next step/action to take is to choose the -position 𝑥
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363 of the next room. Then, the  state is when the -position of space has been determined and 𝑋 𝑥

364 the action at this state is to choose the -position of this space. The  state is at the time 𝑦 𝑌

365 when the -position of space has been determined, and with the previously determined -𝑦 𝑥

366 position of this space, the next action is to choose which room/id in the remaining rooms to 

367 place into this  space. The flow of the states and actions can be shown in Figure 5, where [𝑥,𝑦]

368 we always stick to the top-left corner of the remaining empty space to place the next room.

369

370 Figure 5 Illustration for the sequential actions and states of proposed algorithm 

371 Specifically, the action space of  state depends on the number of intervals at the top 𝑂

372 horizontal line as shown in Figure 6. For each horizontal interval, there two available -𝑥

373 positions at the half and end of the interval. The goal is to use the least number of actions 

374 while covering all possibilities of topological conditions. For example in Figure 6, there are 

375 two horizontal intervals  and , with four available actions to choose for -[𝑥0,𝑥2] [𝑥2,𝑥4] 𝑥

376 positions . {𝑥1,𝑥2,𝑥3,𝑥4}
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377

378 Figure 6 Example of the action space of x and y positions for a state in the proposed algorithm

379 Similarly, the action space of  state is to choose -positions which depends on 𝑋 𝑦

380 intervals formed by the adjacent right and left vertical lines. In Figure 6, there are four 

381 intervals: , ,  and . For each interval, we choose actions located at [𝑦0,𝑦2] [𝑦2,𝑦4] [𝑦4,𝑦6] [𝑦6,𝑦8]

382 the halfway and end positions of the interval to cover all topological possibilities. Therefore, 

383 in this case, there are eight actions to choose: . Only one exception here is {𝑦1,𝑦2,𝑦3,…,𝑦8}

384 that if in a case the -position is selected at , the immediate next action to select -𝑥 𝑥𝑒𝑛𝑑 𝑦

385 position should exclude . This is to reserve available space for remaining rooms which 𝑦𝑒𝑛𝑑

386 haven’t been placed yet. 

387 The action space for the  state is much simpler. It is to choose which room to put into 𝑌

388 the just selected  space. The number of the actions in this case is the number of [𝑥,𝑦]

389 remaining rooms that haven’t yet been placed.

390 Finally, after all the rooms have been placed, we first conduct horizontal expansion 

391 and then vertical expansion to fill the empty space and yield the rectangular floor plan , 𝑅𝐹𝑃

392 as shown in Figure 7. 
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393

394 Figure 7 Expanding rooms to fulfil the building boundary after all rooms having been placed

395 3.3.3 Reward

396 Recalling the previous paragraphs, there is a need to generate a reward at the end of 

397 each simulation by evaluating the fitness of the result solution  against the user-defined 𝑅𝐹𝑃

398 constraints . To do this, we will first compute the adjacency matrix  of the  solution,𝐶 𝑀𝑅𝐹𝑃 𝑅𝐹𝑃

399 (4)𝑀𝑅𝐹𝑃 = [ \ room_1 … room_n
room_1 𝑎11 … 𝑎1𝑛

⋮ ⋮ ⋱ ⋮
room_n 𝑎𝑛1 … 𝑎𝑛𝑛

]
400 where  is  if  and  are adjacent to each other, and  otherwise. There 𝑎𝑖𝑗 + 1 room_i room_j ‒ 1

401 is no 0 entries in this adjacency matrix  of the design solution. Then the reward can be 𝑀𝑅𝐹𝑃

402 calculated and normalized through:

403 𝑟 =
𝑐𝑎 ‒ 𝑐𝑏

𝑐𝑎 + 𝑐𝑏

404 (5)

405 𝑤ℎ𝑒𝑟𝑒    (𝑐𝑎 ‒ 𝑐𝑏) = ∑(𝑀𝑅𝐹𝑃 ∘ 𝐶)
   (𝑐𝑎 + 𝑐𝑏) = 𝑛𝑜𝑛𝑒𝑧𝑒𝑟𝑜(𝐶)

 

406 (6)
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407 where  is the user-defined constraint matrix,  is the number of satisfied constraints in the 𝐶 𝑐𝑎

408 solution , and  is the number of unsatisfied constraints in the solution. Thus, the 𝑀𝑅𝐹𝑃 𝑐𝑏

409 reward  ranges between [-1.0, 1.0] where 1.0 means all the user-defined constraints have 𝑟

410 been satisfied by the planning solution, and -1.0 means none has been satisfied. To get 

411 numerator , we first compute element-wise product between the adjacency matrix (𝑐𝑎 ‒ 𝑐𝑏)

412  of the solution and the user constraint matrix , and then sum all the elements of the 𝑀𝑅𝐹𝑃 𝐶

413 product result. For denominator , we simply count the number of nonzero elements (𝑐𝑎 + 𝑐𝑏)

414 in the constraint matrix  which is the total number of user-defined constraints. 𝐶

415 4. Evaluation

416 The proposed algorithm is evaluated from two perspectives: time efficiency, and 

417 capability. The first case study aims to evaluate the time efficiency of the proposed algorithm 

418 in solving adjacency constraints. The proposed algorithm is compared with the Evolution 

419 Strategy by using the floor plan problem proposed in [27]. In the second case study, the aim 

420 is to validate the capability of the proposed algorithm for solving the problem with highly-

421 dense adjacency constraints, where the proposed algorithm is evaluated against a large dual-

422 graph based floor plan problem which is most recently addressed in [10] through complicated 

423 graph transformations. 

424 In both studies, the effort was made to make the problem more complex by including 

425 additional non-adjacency constraints to test the ability of the proposed algorithm in tackling 

426 both adjacency and non-adjacency constraints simultaneously. In all scenarios, we also make 

427 a comparison between proposed off-policy MCTS and the traditional on-policy MCTS.



23

428 4.1 Time efficiency

429 In this test, the proposed algorithm is compared with Evolution strategy and also 

430 traditional on-policy MCTS on the same floor plan problem proposed in [27]. In the original 

431 problem, there are totally 9 rooms to allocate with 11 adjacency constraints as represented 

432 in the constraint matrix , where the density of constraints is  which is not 𝐶1
11

9 = 1.222

433 very high.

434 𝐶1 = [
\ room1 room2 room3 room4 room5 room6 room7 room8 room9

room1 0 1 1 1 1 0 0 0 0
room2 0 0 0 0 0 0 0 0 0
room3 0 0 0 0 0 0 0 0 1
room4 0 0 0 0 0 1 0 0 0
room5 0 0 0 0 0 1 1 1 1
room6 0 0 0 0 0 0 0 0 0
room7 0 0 0 0 0 0 0 1 0
room8 0 0 0 0 0 0 0 0 0
room9 0 0 0 0 0 0 0 0 0

]
435 The proposed algorithm runs on a single-thread, and only takes 5.2 seconds to get the optimal 

436 solution satisfying all the constraints. The result in Figure 8 shows the sequence of the nine 

437 rooms placed by the proposed algorithm one after another. The order of the rooms placed in 

438 the process is: 8, 5, 7, 4, 6, 1, 2, 9 and finally 3. The resulting score 1.0 means the final reward 

439  which indicates that all the user-defined constraints have been satisfied. 𝑟
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440

441 Figure 8 Result of the proposed algorithm for the planning process of the first case

442 Additionally, to make the problem more complex with non-adjacency constraints, 

443 we add additional non-adjacency constraints in the above original constraint matrix. For 

444 example, we want room1 to be only adjacent with room 2, 3, 4, 5 and not adjacent with any 

445 other rooms, so we can specify “-1” for the elements between room1 and room6, 7, 8, 9. 

446 We determine the non-adjacency constraints in a way that none of the solutions in original 

447 work [27] satisfies. This is to verify if the proposed algorithm can discover any solution with 

448 adjacency relations different from the original work. Thus, 21 additional non-adjacency 

449 constraints are insert into the original matrix , which results in a highly-dense constraints 𝐶1

450 matrix  with 9 rooms and 32 constraints (including 11 adjacency and 21 non-adjacency 𝐶𝑛𝑜𝑛
1

451 constraints) leading to a very high constraint density of .32
9 = 3.556
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452 𝐶𝑛𝑜𝑛
1 = [

\ room1 room2 room3 room4 room5 room6 room7 room8 room9
room1 0 1 1 1 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1
room2 0 0 ‒ 1 0 ‒ 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1
room3 0 0 0 ‒ 1 0 ‒ 1 ‒ 1 ‒ 1 1
room4 0 0 0 0 ‒ 1 1 ‒ 1 ‒ 1 ‒ 1
room5 0 0 0 0 0 1 1 1 1
room6 0 0 0 0 0 0 0 ‒ 1 ‒ 1
room7 0 0 0 0 0 0 0 1 ‒ 1
room8 0 0 0 0 0 0 0 0 0
room9 0 0 0 0 0 0 0 0 0

]
453 In this case, the proposed algorithm takes 13.8 seconds on a single-thread to get the optimal 

454 solution for .  The solution is shown in Figure 9. The result score/reward is 1.0 indicating 𝐶𝑛𝑜𝑛
1

455 both all the adjacency and nonadjacency constraints have been satisfied by the proposed 

456 solution. It validates that the proposed algorithm can address both types of adjacency and 

457 nonadjacency constraints.

458

459 Figure 9 Solution to constraint matrix with nonadjacency constraints in the first case

460 Table 2 compares the time efficiency of the proposed algorithm, and traditional on-

461 policy MCTS. We can see that the time cost of the proposed off-policy MCTS is only around 
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462 5.2 seconds for  (original adjacency constraints) and 13.8 seconds for  (original 𝐶1 𝐶𝑛𝑜𝑛
1

463 adjacency and additional non-adjacency constraints) with only a single thread, while the 

464 original evolution strategy (ES) work [27] spends 2100 seconds (around 35 mins) for  with 𝐶1

465 two threads on dual-core. This is because the original ES work has additionally addressed 

466 more detailed geometric constraints (room size, orientation, etc). This exactly justifies as we 

467 previously mentioned that ES is more powerful and suitable for more detailed and later design 

468 stage considering diverse fine-grained constraints rather than the highly-dense adjacency 

469 constraints only discussed in this paper. In contrast, the proposed algorithm is more efficient 

470 and light-weighted for adjacency constraints only in the early conceptual design stage. 

471 Therefore, the proposed algorithm and evolutionary methods have distinct 

472 differences regarding advantages, disadvantages and suitability for different use cases. For 

473 the proposed algorithm, the advantages are that it is more light-weight for implementation 

474 and it is very efficient to address highly-dense topological adjacency constraints. The 

475 disadvantage is that it can’t handle detailed geometric constraints. This makes it more 

476 suitable to be applied in initial floor plan at early design stage. For evolutionary methods, 

477 the advantage is that it is very powerful for addressing various constraints all together. The 

478 disadvantage is that it’s heavy to implement, and becomes unnecessary and less efficient 

479 when coming to solve adjacency constraints only. This makes it more suitable for detailed 

480 later design stage.

481 Table 2 Comparison the performance between the proposed algorithm, GA, and On-policy MCTS

Test ID Algorithm
Time cost 
(s)

Environment Constraints

1 the proposed off-policy MCTS 5.2
Single-threaded

2.3 GHz Intel one Core
𝐶1
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2 the proposed off-policy MCTS 13.8
Single-threaded

2.3 GHz Intel one Core
𝐶𝑛𝑜𝑛

1

3 Traditional On-policy MCTS 4.4
Single-threaded

2.3 GHz Intel one Core
𝐶1

4 Traditional On-policy MCTS >300
Single-threaded

2.3 GHz Intel one Core
𝐶𝑛𝑜𝑛

1

482 Figure 10 compares with the performance between proposed off-policy MCTS and 

483 traditional on-policy MCTS, where each point shows the reward obtained after each real play 

484 and immediately a new real play will restart by reusing the search tree until the full reward 

485 1.0 (optimal solution) is achieved, as illustrated in proposed algorithm Table 1. For original 

486 adjacency constraints  (without non-adjacency constraints), we set the hyperparameter  𝐶1 𝑁

487 (number of simulations per time step) to be 250, and the results show that there is no 

488 significant difference between the proposed algorithm and the on-policy MCTS. Both can 

489 quickly achieve an optimal solution (full reward 1.0) with zero or one restart of real play. 

490 However, the proposed algorithm significantly outperforms the traditional on-policy MCTS 

491 when considering the additional nonadjacency constraints as in . With  set to 1000, the 𝐶𝑛𝑜𝑛
1 𝑁

492 proposed algorithm can still rapidly reach full reward with 13 seconds and no need to restart 

493 real play, while the traditional on-policy approach is not able to find the optimal solution for 

494 more than 300s with multiple restarts. Therefore, the proposed algorithm is more robust than 

495 the traditional on-policy MCTS in terms of the highly-dense constraints including both 

496 adjacency and non-adjacency constraints.
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497

498 Figure 10 Comparison between the proposed algorithm and traditional on-policy MCTS

499 4.2 Scalability

500 In the second case study, in order to test the capability of the proposed algorithm for 

501 larger-scale and much higher-dense constraints, a larger-scale dual graph problem recently 

502 proposed by Wang et al. [10] was used. This problem is defined in Figure 11, which illustrates 

503 the user-defined connectivity constraints. Two nodes linked by an edge indicate that the 

504 corresponding two rooms must be adjacent in the floor plan, while two nodes that are not 

505 linked by an edge indicate the corresponding two rooms must be non-adjacent in the floor 

506 plan. The goal is to find a rectangular floor plan that satisfies both the adjacency and non-

507 adjacency constraints defined in this dual graph. The way the original authors proposed is to 

508 first find an existing template floor plan whose dual graph is very similar to the dual graph of 

509 the original problem. In this case, the dual graph of the existing template as shown in Figure 

510 12(a) does not contain room10. Then they apply complex graph transformation rules on this 

511 existing floor plan template to insert room10 in order to transform it to satisfy the original 

512 user-defined dual graph as shown in Figure 12(b). This method works very well and can help 
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513 reuse and utilize existing floor plan for additional customized constraints. However, it 

514 requires the practitioners to obtain access to abundant existing floor plan legacy and 

515 resources.   

516

517 Figure 11. Dual graph of user requirement

518

519 Figure 12. Graph transformation from the existing floor plan template

520 In this section, we apply the proposed algorithm to generate the floor plan solution 

521 simply from scratch. Firstly, we convert the original large dual graph (Figure 11) to a constraint 

522 matrix . It contains 12 rooms, and totally 66 constraints with 25 adjacency constraints 𝐶𝑛𝑜𝑛
2

523 and 41 non-adjacency constraints. The density of constraints in this problem is extremely high 

524 with a density value to be 66
12 = 5.5
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525 𝐶𝑛𝑜𝑛
2 = [

\ 𝑟𝑚1 𝑟𝑚2 𝑟𝑚3 𝑟𝑚4 𝑟𝑚5 𝑟𝑚6 𝑟𝑚7 𝑟𝑚8 𝑟𝑚9 𝑟𝑚10 𝑟𝑚11 𝑟𝑚12
𝑟𝑚1 0 1 1 ‒ 1 ‒ 1 ‒ 1 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1
𝑟𝑚2 0 0 1 1 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1
𝑟𝑚3 0 0 0 1 ‒ 1 ‒ 1 1 1 1 ‒ 1 ‒ 1 ‒ 1
𝑟𝑚4 0 0 0 0 1 1 ‒ 1 ‒ 1 1 ‒ 1 ‒ 1 ‒ 1
𝑟𝑚5 0 0 0 0 0 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1 ‒ 1
𝑟𝑚6 0 0 0 0 0 0 ‒ 1 ‒ 1 1 ‒ 1 ‒ 1 ‒ 1
𝑟𝑚7 0 0 0 0 0 0 0 1 ‒ 1 ‒ 1 ‒ 1 1
𝑟𝑚8 0 0 0 0 0 0 0 0 1 1 ‒ 1 1
𝑟𝑚9 0 0 0 0 0 0 0 0 0 1 1 ‒ 1

𝑟𝑚10 0 0 0 0 0 0 0 0 0 0 1 1
𝑟𝑚11 0 0 0 0 0 0 0 0 0 0 0 1
𝑒𝑚12 0 0 0 0 0 0 0 0 0 0 0 0

]
526 We use the same computational hardware configuration as Section 4.1: Single-

527 threaded 2.3 GHz Intel one Core. With hyperparameter  set to 3000 and taking  as input, 𝑁 𝐶𝑛𝑜𝑛
2

528 the result shows that the proposed algorithm yielded the optimal solution within 900 seconds 

529 satisfying all the 66 constraints of 12 rooms. The solution is shown in Figure 13. This validates 

530 the capability of the proposed algorithm to solve large-scale dual graph floor plan problem 

531 with extremely high-dense adjacency and non-adjacency constraints, where the density value 

532 of constraints is over 5.

533
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534 Figure 13. The solution to the original dual graph

535 In the above dual graph Figure 11, two nodes without an edge mean non-adjacency 

536 constraint between the two rooms. However, in some case, unlinked nodes are interpreted 

537 as “no constraints” meaning the corresponding rooms can either be adjacent or non-adjacent. 

538 For such purpose, we can simply relax the non-adjacency constraints in the original constraint 

539 matrix  by changing all the “-1” (non-adjacency constraints) to “0” (no constraints) which 𝐶𝑛𝑜𝑛
2

540 therefore generates a new constraint matrix  of 12 rooms with 25 adjacency constraints as 𝐶2

541 shown below. It means that we only want to guarantee that the linked nodes in the dual graph 

542 Figure 11 are still adjacent to each other in the floor plan solution while the unlinked nodes 

543 are free to either be adjacent or non-adjacent rooms in the floor plan solution. We can see 

544 that this new matrix  (without non-adjacency constraints) also keeps with a high constraint 𝐶2

545 density of . 25
12 = 2.083

546 𝐶2 = [
\ 𝑟𝑚1 𝑟𝑚2 𝑟𝑚3 𝑟𝑚4 𝑟𝑚5 𝑟𝑚6 𝑟𝑚7 𝑟𝑚8 𝑟𝑚9 𝑟𝑚10 𝑟𝑚11 𝑟𝑚12

𝑟𝑚1 0 1 1 0 0 0 1 0 0 0 0 0
𝑟𝑚2 0 0 1 1 1 0 0 0 0 0 0 0
𝑟𝑚3 0 0 0 1 0 0 1 1 1 0 0 0
𝑟𝑚4 0 0 0 0 1 1 0 0 1 0 0 0
𝑟𝑚5 0 0 0 0 0 1 0 0 0 0 0 0
𝑟𝑚6 0 0 0 0 0 0 0 0 1 0 0 0
𝑟𝑚7 0 0 0 0 0 0 0 1 0 0 0 1
𝑟𝑚8 0 0 0 0 0 0 0 0 1 1 0 1
𝑟𝑚9 0 0 0 0 0 0 0 0 0 1 1 0

𝑟𝑚10 0 0 0 0 0 0 0 0 0 0 1 1
𝑟𝑚11 0 0 0 0 0 0 0 0 0 0 0 1
𝑒𝑚12 0 0 0 0 0 0 0 0 0 0 0 0

]
547 With the same computational resources and hyperparameter settings, the proposed 

548 algorithm spends around 1000 seconds to get the optimal solution for  as shown in Figure 𝐶2

549 14, and the corresponding dual graph of this solution is shown in Figure 15. We can see that 

550 the original dual graph (Figure 11) now becomes a subgraph of this dual graph (Figure 15) 

551 which has additional three edges highlighted in red colour. 
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552

553 Figure 14 Solution to dual graph without nonadjacency constraints

554

555 Figure 15 Corresponding dual graph for the solution to 𝐶2
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556 Figure 16 compares the performance between the proposed algorithm and the 

557 traditional on-policy MCTS for both the original constraint matrix  and the later relaxed 𝐶𝑛𝑜𝑛
2

558 constraint matrix . We can see that proposed off-policy MCTS has more capacity for this 𝐶2

559 kind of high-dense adjacency constraints problem. It shows the proposed proposed off-policy 

560 MCTS only conducts 3-4 replays to reach the full reward 1.0 (optimal solution) within 1000 s 

561 for both original constraints (with non-adjacency constraints) and relaxed constraints 

562 (without non-adjacency constraints). In contrast, the traditional on-policy MCTS is shown to 

563 be not able to find the optimal solution by using more than 10 replays in the first hour, where 

564 the rewards oscillated between 0.5 and 0.9 with difficulty to converge to 1.0.

565

566 Figure 16. Performance comparison between the proposed algorithm and traditional on-
567 policy MCTS for dense constraint matrix  and matrix 𝐶𝑛𝑜𝑛

2 𝐶2
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568 5 Limitations and discussion

569 5.1 Orthogonal polygon boundary and Multi-story buildings

570 As presented above, this paper only shows how this algorithm can be applied to 

571 solve rectangular floor plan where both rooms and building boundary are in rectangular 

572 shape. However, we argue here that the proposed algorithm can also be similarly used for 

573 orthogonal polygons boundary. By following the rules in Section 3.3, the algorithm starts 

574 from most top-left point to place the next room, where “top” has higher priority than “left”, 

575 which means that when placing next room, we first look at the top-most available locations, 

576 and then choose the left-most point from these top-most locations as the spot to place next 

577 room. Therefore, the sequence of placing rooms in orthogonal polygons boundary looks like 

578 Figure 17 below. Similarly, the actions, states and rewards presented in Section 3.3.2 and 

579 Section 3.3.3 can be applied in the same way here as well. This could be a potential work of 

580 interest in the future. 

581

582 Figure 17. Potential floor plan for orthogonal polygons boundary by the proposed algorithm 

583 It’s technically similar to apply for multi-story buildings. In floor plan for multi-story 

584 building, it has one key additional constraint that we need to care about, which is that there 

585 are common spaces such as lift/stair/bathroom that should be located at the same position 

586 across all floors. To deal with this, we can firstly start a single common MCTS to locate these 

587 common spaces since they are located at the same location across all floors, which is then 
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588 followed by separate sub MCTS threads in parallel to locate the rest of rooms in each floor 

589 respectively for satisfying the corresponding adjacency constraints, as shown in the Figure 

590 18 below. This can also be a valuable work for future efforts.

591

592 Figure 18. MCTS process for multi-story building

593 5.2 Integrating with linear/mathematic programming for further additional 

594 constraints

595 As mentioned above, the proposed algorithm generates floor plan at early design 

596 stage in an efficient and scalability manner. It provides initial floor layout which satisfy 

597 highly dense adjacency and non-adjacency constraints, however it doesn’t consider other 

598 fine-grained constraints such as geometric and dimensional constraints. There is a need to 

599 integrate the proposed algorithm with other algorithms (e.g. mathematic programming) as 

600 a workflow. In this workflow, the proposed algorithm generates an initial floor layout to 

601 satisfy the adjacency relations, which is then fed into mathematic programming system to 

602 address additional fine-grained constraints. 

603 At a high level, after the proposed algorithm generates an initial floor layout 

604 satisfying all the topological adjacency constraints, mathematic programming can be 

605 subsequently conducted on this initial layout to make further adjustments to satisfy 
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606 additional geometric constraints while keeping the adjacency relationship intact. Figure 19 

607 shows the workflow to achieve this and specific steps to integrate the proposed algorithm 

608 and mathematic programming. 

609

610 Figure 19. Workflow integrating the proposed algorithm and mathematic programming for 

611 additional geometric-dimensional constraints

612 In step 1, the proposed algorithm is conducted to satisfy the user-defined highly-

613 dense adjacency and non-adjacency constraints. An initial layout is generated satisfying 

614 these user-defined adjacency constraints. This initial layout defines a set of topological 

615 relationships between rooms, which are used as the optimisation boundary in following 

616 mathematic programming process. 

617 In step 2, mathematic programming is conducted for satisfying the user-defined 

618 geometric constraints, similar to previous work [5, 18]. In this step, we need to define both 

619 optimisation boundary and optimisation objective function, where optimisation boundary is 



37

620 defined according to the topological relationships, while optimisation objective function is 

621 defined according to the additional geometric-dimensional constraints we want to address 

622 in mathematic programming. The goal is to minimize the objective function within the 

623 optimisation boundary. 

624 The optimisation boundary is defined according to the topological relationships of 

625 the initial layout generated in step 1, because we want to keep the topological relationships 

626 intact. The boundary is in form of a system of simultaneous equations or inequalities 𝑭𝒃(𝑥1,

627 , where  and  are the width and height of room i respectively. For a 𝑥2,…,𝑥𝑛,𝑦1,𝑦2,…,𝑦𝑛) 𝑥𝑖 𝑦𝑖

628 simple example shown in Figure 20, the optimisation boundary  can be represented as:𝑭𝒃

629 {
𝑥1 + 𝑥2 = 𝑊
𝑥3 + 𝑥4 = 𝑊
𝑦1 + 𝑦3 = 𝐻
𝑦2 + 𝑦4 = 𝐻

𝑦1 = 𝑦2
𝑦3 = 𝑦4
𝑥1 < 𝑥3
𝑥4 < 𝑥2

0 < 𝑥𝑖 ∈ [1,2,3,4]
0 < 𝑦𝑖 ∈ [1,2,3,4]

630

631

632 Figure 20 A simple example of initial layout yield in step 1

633 On the other side, the optimisation objective function is defined according to the 

634 additional geometric-dimensional constraints that we want to address in this mathematic 
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635 programming, where we try to minimize the discrepancy between the initial layout and 

636 geometric constraints. For example, if the geometric constraints include: 

637 (1) width of room1 is larger than 3.5 m, 

638 (2)  the area of room2 is bigger than 10 m2, 

639 (3) the height of room 3 is 4.0 m, and 

640 (4) the width to height ratio of room4 should be smaller than 1.2, 

641 then the optimisation objective function (subject to be minimized) can be represented as:

642

𝐹𝑜 = 𝑤1(max (0, 3.5 ‒ 𝑥1)) + 𝑤2(max (0, 10 ‒ 𝑥2𝑦2))

+ 𝑤3|4 ‒ 𝑦3| + 𝑤4(max (0,
𝑥4

𝑦4
‒ 1.2))

643 where  is the weight assigned to room  in order to balance the geometric compliance for 𝑤𝑖 𝑖

644 each room. Please note, in case if the objective function  is linear, mathematic 𝐹𝑜

645 programming essentially becomes linear programming. 

646 Once the optimisation boundary  and the optimisation objective function  are 𝑭𝒃 𝐹𝑜

647 defined, mathematic programming can be conducted to find the solution minimizing the 

648 objective function within the boundary. This solution is the optimal layout that satisfies 

649 geometric constraints as much as possible while keeps the original adjacency relationships 

650 intact. Therefore, in this way, the proposed algorithm and mathematic/linear programming 

651 can be feasibly integrated into a workflow, where the proposed algorithm firstly tackles 

652 adjacency constraints, followed by mathematical programming subsequently addressing 

653 additional geometric constraints. 
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654 5.3 Further proof on existence checking

655 Although this paper proposed an efficiency algorithm to search for an optimal RFP 

656 solution corresponding to adjacency constraints, however, the paper hasn’t proposed an 

657 efficiency way to check the existence of a RFP for a given adjacency matrix. As mentioned, 

658 [8] and [9] proposed a linear time algorithm to check if there are rectangular duals and, if 

659 so, to generate rectangular duals for any n-vertex planar triangulated graphs. But it only 

660 applies when the adjacency constraints represent a planar triangulated planar (PTP) graph. 

661 Most recently, [20] aimed at checking the existence of a RPF and constructing the RPF for 

662 any graphs that is not restricted to PTP graph. They came up with a rule-based approach 

663 which needs to enumerate all possible MRFP graphs (maximal rectangular floor plan graphs) 

664 and subsequently check if the targeted graph is a subgraph of one of the MRFP graphs. This 

665 is a remarkable contribution, while still a non-trivial approach. Therefore, there is still a 

666 need for future works to propose more efficient methods for checking the existence of RFP 

667 for any given graphs.

668 6. Conclusions

669 Inspired by the recent advanced searching and planning algorithms applied in AlphaGo, 

670 we propose a novel off-policy Monte-Carlo Tree Search to tackle the complex highly-dense 

671 adjacency and non-adjacency constrained floor plan problem in a time efficient and scalable 

672 manner. The proposed algorithm updates the state-value function to the max value of the 

673 historical total rewards it has ever seen instead of the average of the historical rewards in 

674 traditional on-policy MCTS. Two case studies are conducted to evaluate the time efficiency 

675 and scalability of the proposed algorithm respectively. The first case study shows that in terms 

676 of time efficiency, the proposed algorithm significantly outperforms Evolution strategy and 
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677 traditional on-policy MCTS using two constraint matrixes with density values to be 1.222 and 

678 3.556 respectively. The second case study further validates the capacity of the proposed 

679 algorithm by solving a large-scale dual graph problem with extremely high constraint density 

680 being more than 5.5.

681 The proposed algorithm extends the research in the domain on automated floor 

682 layout generation to include high-density adjacency constraints using reinforcement learning 

683 based on Off-policy MCTS. The proposed algorithm demonstrated the potential of application 

684 of Off policy MCTS algorithms to address the floor layout generation problem, in addition to 

685 the traditional methods using search-based methods, evolutionary algorithms and proofs. In 

686 particular, the proposed algorithm tackles the limitation of search and evolutionary 

687 algorithms to manage highly-dense adjacency and non-adjacency constraints during the early 

688 stage design. Although the implementation that was used in this paper is a simplification of 

689 the actual problem (with complex floor layout), the promising results from the evaluation give 

690 a grounding for further research in this area to explore more complex floor layouts by 

691 remodelling the state representation of the problem. 

692
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