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Abstract  
This thesis explores how new forms of data can help us better understand health outcomes 
and behaviours. The aims are to examine the contribution of new forms of data within health 
research; explore how they can be improved by geographical context; and identify 
applications of Data Science within health research.  
 
Transaction level loyalty card data was acquired from a national high street retailer for 
England (2012-2014). Analysis explored this high dimensional data by examining the 
associations of features influencing the purchasing of self-medication products and 
predicting future purchasing. Results show new insights into self-medication behaviour, such 
as the difference in purchasing by sex for sun preps and the geographic variations in 
purchasing (e.g. North-South disparities). Clear seasonality was observed reflecting the 
climatic drivers of minor ailments. A scalable and accurate machine learning methodology is 
presented. 
 
Data from the Canada Food Study (396 Canadians, aged 16-30, in five Canadian cities) was 
used to examine food preparation behaviours. A typology was built (k=10) which displayed 
potentially problematic food preparation behaviours (e.g. 5% were service food reliant). A 
measure of time weighted exposure to services (e.g. fast food) was created using respondents 
GPS trajectories. Findings included exposure to fast food being positively associated, 
whereas sport and leisure facilities negatively associated, with BMI. A positive relationship 
was found for the cluster of predominantly service food and BMI. The relationship between 
increased access to fast food and BMI is further highlighted. 
 
Text summaries (abstracts) for every US obesity-related bill enacted 2001-2017 were used to 
investigate policy enactment. What is included in obesity policy abstracts, how enactment 
varies by state and time, and what influences this is considered. A text mining approach 
included measures of term usage (word and comparison clouds), rarity (TF-IDF), 
connectedness (Markov chain), and sentiment. Results displayed a childhood focus within 
policy abstracts (e.g. school and physical activity are prominent terms). The most populous 
states enacted the most bills with no clear geographic trend observed. New information was 
shown, such as the variance by presidential administration is seen (e.g. an initial spike 
observed during the Obama administration) although modelling suggests limited effects.  
 
The thesis demonstrates how new forms of data offer unique opportunities for insights that 
traditional data sources are unable to consider. Geographic context provides further value to 
these data sources. Loyalty card records are shown as valuable in supplementing our 
understanding of self-medication behaviours, through efficient, cheap and objective 
purchasing data which could aid data driven population health surveillance and disease 
monitoring. Analysing obesity-related bill abstracts highlights variance in enactment across 
the US, bringing unprecedented context via the use of text data. Using sequence analysis and 
extending investigation beyond resident location via GPS trajectories facilitated new 
opportunities for understanding dietary behaviours. The findings and Data Science 
approaches demonstrate the usefulness of these new forms of data which present novel 
opportunities for greater understanding that is relevant for public health policy and planning.  
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Chapter 1 : Introduction  

1.1. Background  
Health research is more than just the biomedical sciences. Revolutionary insights and 

contributions have come from outside the field of medicine. The ground-breaking insight 

that lung cancer is caused by smoking came from an epidemiologist (Sir Richard doll) not 

biologists or clinicians (Doll and Peto, 1981; The BMJ, 2005). William Farr is another 

example of contribution from outside the field, where his work in creating a national 

surveillance system catalysed disease observation and detection (Lilienfeld, 2007). 

Geographers and public health researchers attempt to understand health behaviours and have 

gathered and contributed a lot of innovation and knowledge extending beyond the work of 

biomedicine. 

 

The nature of doing health research is constantly evolving. As Ballester, Michelozzi and 

Iñiguez (2003) describe, it is typical of public health studies to first consider Hippocrates. In 

ancient society Hippocrates fundamentally changed medicine from superstition to 

observation (Kleisiaris, Sfakianakis and Papathanasiou, 2014). 19th century developments are 

highlighted by the contributions of William Farr using an early example of causal inference 

for disease outbreak and the first national statistics based health surveillance system 

(Langmuir, 1976; Eyler, 2001; Lilienfeld, 2007), and John Snow who utilised an early form 

of GIS to investigate the 1854 London Cholera outbreak, finding the contamination cause by 

visualising the spatial pattern of infections (Drexler, 2014; Khoury and Ioannidis, 2014). Sir 

Richard Doll utilised questionnaires in his study of smoking and lung cancer (Doll and Peto, 

1981; The BMJ, 2005).  

 

The approaches of the past are, however, not necessarily the only future of research. 

Considering the examples of Hippocrates, Farr, Snow and Doll it is clear that data, methods 

and approaches are ever changing. A rapid recent evolution has occurred through new forms 

of data which are typically big data. For example, health sensors such as smart watches 

provide greater precision than all of the aforementioned pioneers could ever have imagined. 

Drexler (2014) also highlights how contemporary technologies (e.g. GIS software) would 

have reduced Snow’s solution time considerably. At present research is at a crossroads 

where the promise of new forms of (big) data is starting to be achieved and the potential of 

this data is becoming realised through, as Raghupathi and Raghupathi (2014) highlight, 

applications of big data in health. New forms of data (and the associated data driven 

approaches) offer the opportunity to further develop health related research. 
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This thesis examines how new forms of data and advanced statistical processes (via Data 

Science and machine learning) can be applied within public health research that enable 

important health related research questions to be answered.  

 

1.2. Overall research question and aims 
The intent of this thesis is to answer the following research question:  

To what extent can new forms of data help us better understand health outcomes or 

behaviours? 

Three interlinked aims have been selected to meet this intent:  

1. Examine the contribution of new forms of data to health research.   

2. Explore how geographical context can supplement and improve the quality of 

information obtained from new forms of data. 

3. Identify applications of machine learning that can be applied in health research.  

 

The first aim defines the overall rationale for this thesis and each of the research papers 

contained. By studying existing literature, it is possible to understand what new forms of 

data are and how they fit within the disciplines of Health Geography and Quantitative 

Geography. The current research climate and existing applications are examined enabling 

research ideas to be conceived. This in turn enables the selection of research questions, 

datasets and approaches for each of the quantitative chapters. The discussion in each 

quantitative chapter also details the specific contribution of each application presented. 

There is a critique of big data and new forms of data throughout which allows scrutiny of 

these data sources, and a critical personal reflection of their value from an applied point view 

within the conclusion. 

 

The second aim considers the importance of geographic information within new forms of 

data. This will be achieved through three case studies: utilising residential location of 

customers in retail transaction data; linking time referenced GPS data with survey data; and 

exploring the dynamics of space within health policy. The exploration of space will 

primarily be exploratory and the statistical methods employed may not be spatially explicit, 

however the contribution of space is important as both Tobler’s first law details (Tobler, 

1970) and the pioneering work of John Snow highlight (Drexler, 2014; Khoury and 

Ioannidis, 2014).  

 

The third aim will evaluate how machine learning can aid quantitative health (Geography) 

research. This is achieved by reviewing literature to understand the direction Quantitative 
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Geography is moving and examining existing applications. Justifications as to why advanced 

statistical and machine learning methods are appropriate and necessary, and the opportunities 

they bring, are included in the methods and discussion sections of each quantitative chapter. 

 

To ensure the realisation of these aims a number of objectives are included. Table 1.1. 

highlights each objective, the aim it focusses upon and the chapter in which it is met. 

 

Table 1.1. Thesis objectives 

 Objective Aim Chapter 

1 Conduct an in-depth review of existing literature.  All 2-6 

2 Clearly define new forms of data and big data. 1 2 

3 Understand how current new forms of health data being used. 1,2 2 

4 Outline the promise new forms of data bring to health research. 1 2 

5 Assess current applications of machine learning within health research. 3 2-6 

6 Consider the limitations of new forms of data and a data driven approach. All 2 

7 Assess available new forms of data and perform exploratory analysis. 1,2 3-6 

8 Select appropriate methods for the analysis of each dataset. 3 3-6 

9 Apply and openly document statistical and machine learning models.  3 3-6 

10 Analyse model performance using appropriate statistical tests. 3 3-6 

11 Consider how results fit within the wider research environment. 2,3 3-6 

12 Assess the opportunities each new form of data and the methods bring. All 3-7 

13 Outline possible further research. All 7 

 

1.3. Structure 
Seven chapters are contained within this thesis. Chapter 2 provides an in-depth review of 

existing literature and discusses the need for, and contribution of, both new forms of data 

and a Data Science approach within health research. New forms of data and big data are 

introduced and defined, as well as detailing how they are produced, and how they are linked 

with other data. The evolution of Quantitative Geography is explored to understand where 

this approach fits within the discipline and current research environment. Exemplary 

examples of new forms of data are detailed. The promise of new forms of data (as well as 

notable applications) within Health Geography are then reviewed bringing an understanding 

of current methodological approaches and contributions to the field. The challenges of both 

new forms of data and big data, as well as spatial analysis, are detailed enabling an 

awareness of possible issues and limitations associated with such applications. Finally, 

research gaps outline the possibilities and opportunities of this thesis.  
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Chapter 3 is the first of four research papers included in this thesis and is the first of two 

chapters utilising loyalty card records. This chapter details how retail transactions linked 

with loyalty card records (~10 million customers between 2012-2014) acquired from a major 

high street retailer can be used in the study of self-medication. It focuses upon four 

medication groups (coughs and colds, hay fever, pain relief and sun preps) and aims to 

evaluate how this new form of data can be used to help inform our understanding of self-

medication in England. An exploration of 50 socioeconomic and health accessibility features 

perceived (from literature) to impact upon self-medication is performed to understand how 

these features contribute in explaining self-medication purchasing behaviours. Contained is a 

scalable transferable machine learning methodology that could easily be applied in further 

applications. Results demonstrate the usefulness of loyalty card data for producing insights 

at the national level, and the data address issues that traditional studies are unable to consider 

and provide new information for groups that are not contained in other data. 

 

Chapter 4 is the second of two papers utilising the same rarely available loyalty card record 

dataset to explore self-medication behaviours. This chapter considers the opportunities that 

new forms of data bring to population health surveillance by using objective purchasing 

behaviour (i.e. loyalty card records) to examine and then predict future self-medication 

purchasing (for coughs and colds and hay fever products). Analyses used more than 300 

features (reduced during model building and optimization) and a state-of-the-art predictive 

algorithm to predict 17 months of purchasing based on a year of historical data. Examining 

feature importance then provided further context within these models from the influence of 

features. Results display new information often missing from self-medication products of 

how purchasing seasons vary from traditional (or known) ailment seasons and how the 

influence of features differ between the two product types and temporally. The quality, 

possibilities and promise of this data source for supplementing our understanding of health 

are considered as well as the presentation of a scalable, transferable methodology of 

prediction.  

 

Chapter 5 has the objective of examining food preparation behaviours amongst young adults 

in Canada (396 individuals in five Canadian cities) by using survey data linked with food 

logs and GPS trajectories. The relationship between obesity and food preparation, exposure 

to food environment and demographic measures are also considered. The paper details the 

application of data mining via sequence analysis and clustering to build a typology of food 

preparation. This paper extends beyond static studies that only consider residential location-

based exposure with the incorporation of GPS trajectories which allow a measure of time 
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weighted exposure to facilities that affect health (e.g. fast food). Regression models facilitate 

the examination of the outcomes of cluster membership and BMI. The results of this study 

highlight potentially problematic behaviours and substantial inequalities within food 

preparation of young adult Canadians, particularly in regard to access to fast food and BMI. 

 

Chapter 6 is the final research paper contained and utilises the often-overlooked data type: 

text. Text abstracts of enacted obesity related policy for all US states (and Washington DC) 

2001-2017 are used from Centers for Disease Control and Prevention. The chapter examines 

enacted obesity-related policy abstracts in the US by exploring what is included in obesity 

policy abstracts, and how policy enactment varies by state and over time. Analyses follow a 

text mining approach which includes word and comparison clouds, term frequency – inverse 

document frequency, a Markov chain, and sentiment analysis. Negative binomial mixed 

effect models were also used to explore factors (e.g. president, state political party, state 

income medians) that may influence the count of enacted obesity related bills. 

Unprecedented context is presented via the use of text mining, bringing new information for 

obesity-related policy with clear potential for expansion of this research further (and in 

particular internationally).  

 

The final chapter (7) draws this thesis to a close by summarising the main findings as well as 

addressing how the research question, aims and objectives are met. The robustness of this 

thesis is ensured through the consideration and discussion of limitations. Future 

opportunities are highlighted which may advance the novel approaches and findings 

presented from using new forms of data and a Data Science approach and may address the 

limitations of this thesis.   

 

1.4. Author contributions and outputs 
Chapter 1: Alec Davies wrote this chapter. 

  

Chapter 2: Alec Davies wrote this chapter. A summary was presented at the ‘30th European 

Regional Science Associations Summer School’ in Lesvos Greece, 2017. A condensed and 

restructured version of parts of this chapter (co-authored with Mark Green) is published in 

the ‘Routledge Handbook of Health Geography’. Citation:   

Davies, A., & Green, M. (2018). Health Geography and the Big Data Revolution. In: 

Crooks, V., Andrews, G., & Pearce, J. Routledge Handbook of Health Geography. 

Routledge. p324-330. 
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Chapter 3: Alec Davies was the lead author; Mark Green and Alex Singleton co-authored. 

Davies, Green and Singleton conceived and designed the analysis. Davies planned, 

performed all data cleaning and analysis, and wrote the chapter. Green and Singleton 

contributed to revisions. A slightly adapted journal paper version of this chapter is published 

in the ‘Machine learning in health and biomedicine’ special issue in the journal ‘PLoS One’. 

This research was presented at the ‘American Association of Geographers Annual Meeting: 

New Orleans 2018’ conference. Citation:  

Davies, A., Green, M., & Singleton, A. (2018) Using machine learning to investigate 

self-medication purchasing in England via high street retailer loyalty card data. PLoS 

ONE. 13(11): p1-14. 

 

Chapter 4: Alec Davies was the lead author; Mark Green, Dean Riddlesden and Alex 

Singleton co-authored. Davies, Green and Singleton conceived and designed the study. 

Davies planned, performed all data cleaning and analysis, and wrote the chapter. Green, 

Riddlesden and Singleton contributed revisions to the paper. A slightly adapted journal paper 

version of this chapter is published in ‘Applied Marketing Analytics’. This research was 

presented at the ‘American Association of Geographers Annual Meeting: Washington DC 

2019’ conference and in a colloquium session at the Department of Geography at the 

University of Toronto, Canada. Citation:  

Davies. A., Green, M., Riddlesden, D., & Singleton, A. (2020) Using loyalty card 

records and machine learning to understand how self-medication purchasing 

behaviours vary seasonally in England, 2012–2014. Applied Marketing Analytics. 

5(4): p354-370.  

 

Chapter 5: Alec Davies was the lead author; Michael Widener, Mark Green, Alex Singleton 

and David Hammond co-authored. Davies, Widener and Green conceived and designed the 

study. Davies planned, performed all data cleaning and analysis, and wrote the chapter. 

Widener, Green, Singleton and Hammond contributed revisions to the paper. This work was 

resultant from an ESRC Overseas Institutional Visit award (£2000) which funded a visit to 

the University of Toronto. The work included collaboration between the University of 

Liverpool and two Canadian universities (Universities of Toronto and Waterloo).  

 

Chapter 6: Alec Davies was the lead author; Mark Green and Alex Singleton co-authored.  

Davies, Green and Singleton conceived and designed the study. Davies planned, performed 

all data cleaning and analysis, and wrote the chapter. Green and Singleton contributed 

revisions to the paper.  
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Chapter 7: Alec Davies wrote this chapter. 

 

All co-authors have approved the inclusion of each paper within this thesis.  

 

As well as the research feeding directly into the PhD, further outputs have been achieved 

during this PhD study. Publications include:   

Daras, K., Davies, A., Green, M., & Singleton, A. (2018). Developing indicators for 

measuring health-related features of neighbourhoods. In: Longley, P., Cheshire, J., 

& Singleton, A. Consumer Data Research. UCL Press, London. p167-177. 

Daras, K., Green, M., Davies, A., Barr, B., & Singleton, A. (2019) Open data on 

health-related neighbourhood features in Great Britain. Scientific Data. 6(107), p1-

10.  

Davies, A., Dolega, L. & Arribas-Bel, D. (2019) Buy online collect in-store: 

Exploring grocery click and collect using a national case study. International 

Journal of Retail and Distribution Management. 47(3), p278-291.  

Green, M., Daras, K., Davies, A., Singleton, A., Barr, B. (2018) Developing an 

openly accessible multi-dimensional small area index of ‘Access to Healthy Assets 

and Hazards’ for Great Britain, 2016. Health and Place, 54(2018), p11-19. 

Presentations include:  

GISRUK 2017, University of Manchester: How does competition affect grocery 

click and collect performance? 

CDRC Data Partner Forum, Saïd Business School, University of Oxford: Where are 

healthy places?  

Additionally, datasets were contributed to for the Consumer Data Research Centre (CDRC);  

Access to Healthy Assets and Hazards (AHAH). 

 

  



 17 

Chapter 2 : Literature review  
This chapter focuses on new forms of data. First, new forms of data and big data are 

introduced, as well as considering why they are important and how they are produced. It 

outlines the promise presented from such data and why specifically health research should 

take note of and utilise these data. Following this, the quantitative subdisciplines of 

Geography are considered. This context allows understanding for how quantitative 

applications have evolved in Geography and includes new subdisciplines such as Geographic 

Data Science which are shaping how data are applied. The promise that new forms of data 

bring to Health Geography is then explored by considering what Health Geography is. 

Notable applications of new forms of data within the field are provided. Exploring these 

applications and existing approaches (e.g. exploratory analysis, data mining and predictive 

modelling) helped to shape the focus of this thesis and aided in the selection of appropriate 

methods used in the quantitative chapters. Limitations of both data and analysis are 

discussed which are important for ensuring that appropriate data and methodological 

approaches are used, as well as ensuring findings are accurate (e.g. models are interpreted at 

the correct scale to avoid individualistic and ecological fallacies). Research gaps are then 

detailed to outline exactly what this research may tackle. Finally, conclusions are drawn.  

 

2.2. New forms of data  

2.2.1. What are new forms of data?  
In a 2001 keynote at the first European conference of GIS in public health, Löytönen (2001) 

presented how online services and the evolution of mobile technologies would allow 

accessible (authorisation and ethics pending) automated real-time geolocated data. This 

prediction came shortly after the internet was commercialised and years before the first mass 

market smartphones and wearable technologies. 18-years later, all new smartphones feature 

built in ‘health’ apps (as well as numerous third-party apps) that quantify a wide array of 

health phenomena (e.g. sleep tracking and heart rate monitoring) (Pentland, Reid and 

Heibeck, 2013). Smart wearables have further catalysed this data capture with devices such 

as smart watches and fitness bands affordable within the mass market.  

 

New forms of data are non-traditional data sources that are collected for purposes other than 

research (e.g. loyalty card records). Connelly et al (2016) distinguish between made (data 

collected for specific research purposes) and found (data which may be valuable for 

researchers but was collected for non-research purposes – alternatively titled repurposed 

data) data. They are new in a sense that these data have only recently started becoming 

available to researchers. For example, social media (e.g., Facebook or Twitter) did not exist 
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10-15 years ago yet the data that they generate have increasingly been used by researchers to 

understand health-related behaviours (Khoury and Ioannidis, 2014).  

 

As these data are routinely collected by companies (for non-research purposes), collection is 

typically less intrusive. Society is increasingly linked to a smartphone which has facilitated 

the monitoring and control of aspects of life. Massive quantities of both physical and social 

information (e.g. loyalty cards or health tracking) have resulted (Pentland, Reid and Heibeck, 

2013). The digital traces attached to such devices have opened up new avenues for research 

that bring objectivity and ecological validity of everyday behaviour (Pentland, Reid and 

Heibeck, 2013).  

 

Repurposed data have long been used in Geography. Unemployment data or credit 

information are common in geodemographics (Harris, Sleight and Webber, 2005; Singleton 

and Spielman, 2014), and environmental data (e.g. pollution data) have been applied in the 

study of exposure and ill health (Löytönen, 2014). Integrating such new forms of data has 

provided vital insights into the trends and identification of at-risk populations (Ginsberg et 

al., 2009; Raghupathi and Raghupathi, 2014), however newer data such as energy 

performance certificates are generating further context to such issues. These new forms of 

data however must be scrutinized with use.  

 

Within geographical research it is common for data to be aggregated to census-based 

geographies that offer universal scale and are widely familiar (Wise, Haining and Ma, 2001; 

Duque, Ramos and Suriñach, 2007). Data can easily be captured and aggregated to these 

geographies, which also allow for confidentially control where results are non-disclosive. 

Scale is fundamentally limited by the composition of data and licenses which means using 

census geographies allows for incorporating and linking many datasets. New challenges exist 

with new types of data (Brunsdon and Singleton, 2015). For example, Goodchild (2010) 

details how the increased availability of positioning systems (e.g. cell triangulation or GPS) 

have facilitated advances in real time measurement (e.g. Uber data) but bring new challenges 

which may include the variance in signal quality from measurement devices (e.g. cheap 

versus expensive smartphones); the need to extensively clean such data into usable formats 

(e.g. identifying trajectories from raw GPS data); and the ethics of being able to track 

individuals movement.  

 

Despite extensive national coverage, traditional censuses are far from comprehensive and are 

limited in complexity (i.e. less than 50 questions) (Kitchin, 2014; Birkin, Clarke and Clarke, 

2017). A decennial cycle means census data can often be out of date before full release. The 
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scale and information contained within the census is continually important, however 

applying new data brings opportunity to bridge gaps in data coverage (e.g. the index of 

multiple deprivation) (Deas et al., 2003). Supplementing new information allows analysis to 

continue to benefit healthcare planning and complement existing data sources during interim 

years where coverage is lacking.  

 

2.2.2. Big data  
The era of big data has resulted in dramatic changes in research (Miller, 2010; Boyd and 

Crawford, 2012). Greater computational resources are enabling the use of the vast quantities 

of data available (Miller, 2010; Kitchin, 2014; Singleton and Arribas-Bel, 2019). Accessing 

new forms of (big) data are opening up novel opportunities for research. These opportunities 

can be achieved through data driven methods (Miller and Goodchild, 2015). Researchers are 

seeking access to these large datasets which facilitate access to previously unobtainable 

insight (Boyd and Crawford, 2012; Mahrt and Scharkow, 2013). Application has however 

been limited by a lack of expertise (e.g. programming and big data architecture) that are 

necessary in the interrogation and extraction of insight from this data (Manovich, 2015). 

Carefully interpreting this data by utilising expertise can bring valuable insights (van Dijck, 

2014).   

 

A lack of processing power and high hardware costs have historically constrained our ability 

to use big data despite the availability of database management systems (i.e. querying, 

management and analysis software) (Fry and Sibley, 1976; Scholten and de Lepper, 1991; 

Longley et al., 2011). Developments in Data Science are enabling the extraction of usable 

information from data (Murdoch and Detsky, 2013) and now that computational architecture 

has improved to the necessary standards, analysing big data is increasingly possible 

(Herland, Khoshgoftaar and Wald, 2014).  

 

2.2.3. Defining big data 

There is no widely accepted definition of big data (Herland, Khoshgoftaar and Wald, 2014). 

Traditionally if data was too large for typical software to handle efficiently then it was 

referred to as big data; however, constant improvements in computing capacity mean this 

size is always increasing (Manovich, 2015). While size is inherently important (e.g. data 

contained within national healthcare systems are predicted to exceed billions of gigabytes 

(Andreu-Perez et al., 2015)) increased emphasis is being placed on our ability to utilise large 

data (Boyd and Crawford, 2012; Miller and Goodchild, 2015). Data production speeds have 
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increased due to automated collection bringing forth further defining characteristics which 

include speed and diversity (Andreu-Perez et al., 2015). 

 

Kitchin (2014) identifies the “three V’s” of big data research. Volume (or size) typically 

receives the majority of attention (Birkin, Clarke and Clarke, 2017). Velocity refers to data 

that is generated (and received) quickly, often real-time, which creates practical usage issues 

(Kitchin, 2014). For example, transaction data are generated as individuals’ purchase 

products providing a continuous data production. Data are often received in a variety of 

heterogeneous forms, and often completely unstructured (e.g. text data), thereby placing 

emphasis on manipulating such data (Andreu-Perez et al., 2015).  

 

Boyd and Crawford (2012) instead define big data as a combination of technology, analysis 

and mythology. They detail how technology enables computation, analysis allows 

interpretation, and mythology is the belief that big data offer greater insights. Such a 

universal definition is less technical and better aligned to the philosophy of doing big data 

research. Andreu-Perez et al (2015) also recommend including value into any definition. 

There are many small data sets available that can help to answer most research questions. 

Big data should complement or extend these analyses.  

 

2.2.4. Big data creation  

Data are generated in all aspects of daily routines ranging from purchasing food using 

loyalty and credit cards at a supermarket to visiting a doctor. Many of these data were being 

generated in the past at similar levels that would be considered big data today, however these 

data were not being stored or analysed. Large dataset creation has historically been 

constrained by the costs of imputation and processing (Miller, 2010). Fry and Sibley (1976) 

estimated the price of labour for an average dataset to be US$1000 in 1976. As such, we 

have seen national data sets (e.g. censuses) being limited in granularity of both space 

(through aggregation) and time (e.g. every 10 years) (Kitchin, 2014). Automated data 

collection is however rendering these issues obsolete.  

 

Velocity, which represents the continuous production of data that has led to extensive detail 

(Kitchin, 2014), is facilitated via datafication (van Dijck, 2014; Baack, 2015). To reduce the 

costs of producing data companies are increasingly looking to repurpose automatedly 

collected data to supplement existing frameworks. This has resulted in an exponential 

increase in data and has accelerated the transition to datasets that contain more features than 

observations (Efron and Hastie, 2016). Increasingly a social norm, constant data collection 

via unobvious methods such as CCTV, smartphones and sensors has allowed new 
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information to be measured (e.g. interests via social media) (Kitchin, 2014; van Dijck, 2014). 

Despite the rate and size that data is produced, unstructured data is common. Data is rarely 

intuitively indexed and often lacks detailed metadata (Mahrt and Scharkow, 2013; Miller and 

Goodchild, 2015). Nonetheless expertise can overcome a lack of structure and software is 

increasingly enabling the use of unstructured data (e.g. GPS traces and computer vision).  

 

The creation and utilisation of data has been catalysed by advances in computing and in 

particular cloudware (Kitchin, 2014). Companies such as Google offer products and services 

(e.g. Gmail) while retaining the right to mine user data (Andrejevic, 2007). This business 

model highlights the capabilities of further quantification of behaviour, as access to services 

are provided in return for user data (Andrejevic, 2007). This highlights why big data is being 

claimed “the holy grail of behavioural knowledge” (van Dijck, 2014, p199) and the “new 

oil” (Andreu-Perez et al., 2015, p1204). Datafication is however also linked to open source 

culture which allows the creation and usage of data away from the commercial “gold rush” 

(e.g. OpenStreetMap) (van Dijck, 2014; Baack, 2015).   

 

2.2.5. Big data and health  

The ability to obtain improved and further knowledge within the many facets of healthcare 

and public health research is facilitated through big data (Khoury and Ioannidis, 2014; 

Raghupathi and Raghupathi, 2014). Data driven approaches provide the means for the 

potential of big data (e.g. automated diagnosis) to be enabled (Herland, Khoshgoftaar and 

Wald, 2014). While traditional health data sources are rarely the largest in terms of size, the 

potential offered through data linkage to newer forms of data (e.g. linking survey data to 

purchasing behaviours through loyalty card records) could offer novel and exciting insights 

in health-related behaviours (Kayyali, Knott and Kuiken, 2013; Herland, Khoshgoftaar and 

Wald, 2014).  

 

Medicine has been pioneering in the onus that it has long placed on both information and 

scientific evidence (Murdoch and Detsky, 2013). Despite this longstanding 

acknowledgement, healthcare delivery has been slow to utilise the rich information 

contained within its own infrastructure (Safran et al., 2007). There are significant 

opportunities for public health to study the success other fields have had in evolving to large 

dataset application (Kayyali, Knott and Kuiken, 2013; Weber, Mandl and Kohane, 2014), 

such as transaction data in Retail, or telescope data in Astronomy (Murdoch and Detsky, 

2013). 
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2.2.6. Data linkage  

The ability to combine many types of data, which measure a range of phenomena, into a 

comprehensive database can offer increased value via heterogeneity (Pentland, Reid and 

Heibeck, 2013; Andreu-Perez et al., 2015). Both structured and unstructured data can be 

combined to bring further detail (Denny, 2012). While there has been good progress in 

linking administrative sources (e.g., health records as Pentland, Reid and Heibeck (2013) 

describe), there have been few examples using commercial data sources. This is due to 

factors such as difficulties in data linkage, or companies being concerned about potentially 

sharing competitive advantage. Initiatives such as the Consumer Data Research Centre have 

pioneered collaborations with industry, however ethical issues remain. As Boyd and 

Crawford (2012) argue, there is a fine line between accessibility and ethics, which means 

progress is slow. 

 

2.3. The quantitative subdisciplines of Geography 
Science is suggested to be entering a data driven fourth phase (Hey, Tansley and Tolle, 

2009; Miller and Goodchild, 2015). A digital revolution is occurring in Geography, whereby 

digital devices are becoming essential in research, communication and dissemination (Ash, 

Kitchin and Leszczynski, 2018). Research has shifted to digital form and is finding wider 

audiences (Kitchin, 2014). Qualitative research is similarly affected as communication has 

shifted to the digital space (Ash, Kitchin and Leszczynski, 2018), such as social media, video 

communication and increased use of mobile devices (Lima and Musolesi, 2012). 

 

Geography’s interdisciplinary nature is deep routed (Singleton and Arribas-Bel, 2019). The 

quantitative revolution enabled new avenues of research to develop. Qualitative research is 

also increasingly embracing the quantities and richness of data and the digital research 

environment (Miller, 2010; Ash, Kitchin and Leszczynski, 2018).	Evolving beyond the roots 

of Quantitative Geography, data driven subdisciplines have emerged including Geographic 

Information Science, Geocomputation and most recently Geographic Data Science.  

 

2.3.1. Quantitative Geography 

The quantitative revolution within Geography emerged from a need for rigorous spatially 

explicit theory and models to achieve objective analysis and research with spatial data 

(Marchand, 1974; Fotheringham, Brunsdon and Charlton, 2000). Evolving from 

mathematical roots, the aim is “to maximise knowledge on spatial processes with the 

minimum of error” (Fotheringham, Brunsdon and Charlton, 2000, p4). Spatial data may be 

present; however, often the methods employed are borrowed from other disciplines (e.g. 
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Statistics) and are therefore aspatial (Fotheringham, Brunsdon and Charlton, 2000; Wise, 

Haining and Ma, 2001; Murray, 2010).  

 

At the most basic level Quantitative Geography incorporates Statistics (e.g. measures of 

central tendency or regression analysis) (Murray, 2010). Methods that were integral to the 

revolution are continually relevant (e.g. linear regression); however, Geographers were quick 

to modify these methods to enable spatial attributes to be recognised (e.g. geographically 

weighted regression) (Fotheringham, Brunsdon and Charlton, 2000). Advanced 

nonparametric methods (e.g. tree ensembles) have enabled greater measurement complexity 

and the inclusion of diverse data that bring improved efficiency and performance (Efron and 

Hastie, 2016).  

 

2.3.2. Geographic Information Systems/ Science 

Geographic Information Systems became popular in the 1980s (Goodchild, 2010). As a 

software for both exploratory analysis and spatial modelling, specialist spatial data 

manipulation software underpin Geographic Information Systems (Fotheringham, Brunsdon 

and Charlton, 2000; Murray, 2010; Longley et al., 2011; Haining, 2014). Emerging from 

developments primarily within computing, Geographic Information Systems have substantial 

importance to Quantitative Geography, with functionalities ranging from digitization to 

spatial interaction models (Murray, 2010). Geographic Information Systems can handle 

diverse data types (e.g. raster or vector data) and are powerful tools for geographic analysis 

(Fotheringham, Brunsdon and Charlton, 2000; Kistemann, Dangendorf and Schweikart, 

2002).  

 

Geographic Information Science instead refers to “the basic research field that seeks to 

redefine geographic concepts and their use in the context of [Geographic Information 

Systems]” (Mark, 2000, p48). Early Geographic Information Systems lacked integrated 

spatial theory because of a commercial focus (Fotheringham, Brunsdon and Charlton, 2000). 

Decades later computing architecture has shifted to the cloud and has enabled wider software 

accessibility (e.g. fully interactive web hosted software such as ArcGIS Online or Carto) as 

powerful workstations are no longer a requirement (Schuurman, 2009). Modern graphical 

user interfaces are much more intuitive and large tools have developed (e.g. PostGIS) 

meaning adoption has increased. Geographic visualisation reincarnates the value of images 

versus text, and is a useful tool in exploring and understanding spatial distributions; 

however, as visualisation limits detail, data cleaning is vital for visualisations to be accurate 

(Jacquez, 2014).  
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2.3.3. Geocomputation 

Early Geographic Information Systems were limited in statistical complexity which 

catalysed the emergence of Geocomputation (Gahegan, 2012). Widespread data availability 

has created a need for Geographers to learn skills from Computer Science (e.g. 

programming) to draw geographic insight (Brunsdon and Singleton, 2015). Geocomputation 

is defined as “the art and science of solving complex spatial problems with computers” 

(Geocomputation.org, cited in Cheng, Haworth and Manley, 2012, p481). Geocomputation 

refreshed focus for geographical analysis by providing scalable tools for addressing complex 

issues (Gahegan, 2012). As a further paradigm of Quantitative Geography, Geocomputation 

borrows and compiles methods from multiple disciplines (e.g. classification and predictive 

modelling) (Cheng, Haworth and Manley, 2012). The increasingly digital world has allowed 

real-world phenomena to be captured and modelled with tools from Geocomputation 

(Brunsdon and Singleton, 2015). Blurred lines are present though, as it could be argued 

Geocomputation is just combining more computational resources with Geographic 

Information Science (Brunsdon and Singleton, 2015). 

 

2.3.4. Geographic Data Science 

The desire to utilise massive datasets has shaped modern data analytics (Miller, 2010; 

Kitchin, 2014; Efron and Hastie, 2016). These massive datasets lay outside the typical 

sources that social scientists utilise and are allowing new ways to measure phenomena 

(Singleton and Arribas-Bel, 2019). Traditional methods at the core of Quantitative 

Geography are continually attractive due to their ease of application and interpretability, 

however, Data Science techniques are necessary in order to utilise these new forms of (big) 

data (Cheng, Haworth and Manley, 2012).  

 

Efron and Hastie (2016) recount how the discipline of Statistics was initially theory led due 

to computational resource limitations, however this barrier is no longer apparent allowing 

these methods to be utilised. Both the availability of data and the need for state-of-the-art 

prediction has seen machine learning improve predictive performance (Luo, 2016; 

Mullainathan and Spiess, 2017). Nonetheless both approaches have a place within 

quantitative research as “the question shall determine the method” (Elliott, 1999, p240).  

 

A simplistic definition of Data Science is “the science of dealing with data” (Naur, 1974, 

p397). Naur (1974) notably suggests insights and interpretation of the results from Data 

Science application are reliant on collaboration with experts from other disciplines. 

Singleton and Arribas-Bel (2019) elaborate to detail how Data Science is a combination of 
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techniques and tools, but also a mindset. A key proficiency is the ability to generate insight 

(Cleveland, 2001; Provost and Fawcett, 2013). Data Scientists have long existed in the 

private sector (where focus is on monetization and competitive advantage) but have 

historically been known as data mining or machine learning specialists (Provost and Fawcett, 

2013; Varian, 2014; Singleton and Arribas-Bel, 2019).  

 

While big data is often seen as aspatial, underlying geographic dimensions are present 

providing important context (Arribas-Bel, 2014; Singleton and Arribas-Bel, 2019). For 

example, retail patronage decisions and the resultant transactions are inherently spatial and 

are impacted by further geographic factors such as weather. Geographic Data Science allows 

both geographic theory and Data Science methods to be fused in the pursuit of greater 

insight (Singleton and Arribas-Bel, 2019). As Singleton and Arribas-Bel (2019) highlight, 

there are many possible future opportunities applying Data Science methods in Geography. 

These could include predictive modelling, data mining, clustering, dimensionality reduction 

or sequence analysis.  

 

2.3.5. Software  

Geographic Information Systems offer the means for spatial analysis but are often limited in 

depth (Gahegan, 2012; Brunsdon and Comber, 2015). Although technological advances have 

brought considerable developments to software, the industry standard GIS (ESRI ArcInfo) is 

limited in scope (Haining, 2014). Computing is however developing at an incredible pace. 

Innovations such as cloud computing have created solid foundations for Geographic 

Information Systems, opening up analysis to wider audiences (Kistemann, Dangendorf and 

Schweikart, 2002).  

 

There has been a rise in open source software that are free and constantly updated (e.g. 

Python, R and QGIS). Programming is increasingly necessary to utilise such data meaning 

statistical software has adopted the integration of spatial techniques, and spatial software has 

embedded programming (Jacquez, 2014; Brunsdon and Singleton, 2015). Software such as R 

and Python have enabled further application of machine learning (Mullainathan and Spiess, 

2017). R for example evolved from the statistical language S, where statistical capabilities 

are deeply rooted (Brunsdon and Comber, 2015). Brunsdon and Singleton (2015) credit both 

R and Python for the development of Geocomputation. Access to data has also improved. 

Application programming interfaces (commonly APIs) allow for the easy download of data 

through querying.  
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Built computing is becoming more efficient through multicore software, parallel computing 

and GPU processing which have optimised performance. Physical computing power is 

however becoming less necessary. It is possible to pool computing resources in clusters 

using software such as h2o, docker and Kubernetes. Powerful virtual machines are also 

accessible on demand through services such as Amazon Web Services, Microsoft Azure and 

Google Cloud Platform. Extremely powerful virtual machines that are equivalent to physical 

machines that would cost many thousands can be rented for increasingly lower prices (a few 

pounds per hour). Research facilities are increasingly offering access to servers, clusters, and 

cloud providers to enable the processing of large data.  

 

2.4. New forms of (health) data  
Data Science has facilitated the use of the vast data available that comes in a variety of forms 

(i.e. structured and unstructured data) (Andreu-Perez et al., 2015). Healthcare is largely data 

driven, however traditionally data has been unstructured and in physical copy form (e.g. 

paper records) (Raghupathi and Raghupathi, 2014). Technological advances have led to 

easier data creation and storage. Patient records are increasingly being digitised (i.e. 

electronic health records) (Safran et al., 2007; Raghupathi and Raghupathi, 2014) and both 

open and secure data are increasingly available at various level of detail. For example, the 

NHS provides both open access data (e.g. prescription data at small area geographies) as 

well as secure data which are restrictive in storage conditions and statistical disclosure (e.g. 

hospital episode statistics). 

 

Data is typically sourced from health infrastructure, however, new forms of data are 

increasingly becoming available (Herland, Khoshgoftaar and Wald, 2014) enabling enriched 

data driven possibilities (Pentland, Reid and Heibeck, 2013). Applications are well 

established in pandemic management where Data Science methods can provide information 

for response during disease outbreaks (Andreu-Perez et al., 2015). The most prominent 

example is Google Flu Trends which predicts outbreaks of influenza from influenza-related 

internet searches (Dugas et al., 2012), although similar studies have used Twitter data to 

estimate the prevalence of influenza (Lampos, De Bie and Cristianini, 2010). 

 

While the possibilities are wide ranging for the potential applications of big data in Health 

Geography, a few exemplary examples are focused on to illustrate feasible opportunities 

within the field.  
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2.4.1. Loyalty card data 

Loyalty cards offer a lot of potential for health research. The original purpose of loyalty 

cards was to encourage brand loyalty through incentives (Sharp and Sharp, 1997; Mauri, 

2003). Organisations, particularly the grocery sector, soon realised the potential to 

understand consumer behaviour and shape personalised shopping experiences (e.g. discount 

coupons and deciding which products to stock in stores). The importance of focusing on 

existing customers became apparent and communication networks were created (Hart et al., 

1999; Wright and Sparks, 1999). Loyalty card schemes (and more recently smartphone 

loyalty Apps) further developed with innovations in e-commerce. Electronic point of sale 

technology is now widely implemented (Byrom et al., 2001) and new developments (e.g. 

contactless payments) have led to further digitisation of currency. Retailers can greater 

understand patronage via the information resultant of these technologies (Byrom et al., 2001; 

Felgate et al., 2012).  

 

Commercial datasets provide novel opportunities for health research, however, to date there 

has been limited usage because of the difficulties associated with access, disclosure control 

and the protection of commercial advantage. Despite this, researchers are increasingly 

gaining access to these sources of information. Notable examples of the use of commercial 

datasets include:  

- Silver et al. (2017) used point-of-sale data on purchasing behaviours in supermarkets 

(15.5 million transactions in 26 stores) to evaluate the impact of the introduction of a 

sugar sweetened beverage tax in Berkeley, California. Results suggested that a 

considerable decline in sales occurred where the tax was introduced. These findings 

from objective purchasing information were novel and important in understanding 

how successful a similar tax could be elsewhere, as modelled estimates and survey 

data are typically used. Loyalty card data would have strengthened the quality of the 

study allowing for a better understanding of changes in behaviours post-intervention, 

however they still demonstrate the usefulness and potential of consumer data.  

- Nevalainen et al. (2018) used loyalty card records to investigate purchasing cycles of 

the most frequently purchased products in Finland. Findings identified problematic 

behaviour of high purchasing of beer, cigarettes and soft drinks. Although being 

limited to only one company in Finland, these findings brought new product 

exposure information, alongside new context into different shopper behaviours (e.g. 

personnel versus customers). 

- Loyalty card records have been employed in a pioneering application of cancer 

surveillance. Flanagan et al. (2019) linked loyalty card records with diagnosis 

history to explore the opportunities of historical medication purchasing for 
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indicating early disease onset. Despite their study containing only small sample of 

participants, purchasing of related medication did occur prior to diagnosis 

demonstrating the potential of data driven health surveillance based off objective 

purchasing data (Flanagan et al., 2019). 

 

Despite the vast amount of new information packed within loyalty card and transaction level 

data, such data must be scrutinised before use as data provenance is typically unavailable 

and often quality is assumed (Wigan and Clarke, 2013). The majority of loyalty card 

schemes are free to join, and it is a customer’s choice whether or not to join a scheme. Brand 

strength and offerings will strongly determine membership. From a research perspective 

there is no control on the sample. Membership will vary geographically with the presence of 

stores, brand awareness and demographics which can lead to bias within the data. 

Nevalainen et al. (2018) describes how store format (e.g. superstores versus local) may 

influence behaviour which could impact basket size or product selection. Differences in the 

characteristics of people who hold loyalty cards and those who do not must be acknowledged 

when analysing such data, particularly if findings may contribute to health policy. 

Nevalainen et al. (2018) detail how an additional step could be to validate findings against 

existing sources (e.g. against a health outcome survey or clinical data).  

 

While they are an imperfect data source since not all individuals have loyalty cards where 

they shop (and individuals may have multiple cards) and the population may be biased (e.g. 

Waitrose shoppers are not representative of the UK population), they can provide objective 

data on behaviours not available previously. This is important given the under-reporting of 

behaviours within traditional self-reported data sources (Flegal, 1999; Nevalainen et al., 

2018). For example, the majority of research exploring factors associated with over the 

counter medicine has utilised self-reported survey data which have shown to exhibit bias as 

individuals may not correctly recall usage (Green et al., 2016). Loyalty card datasets contain 

considerable detail of objective purchasing behaviour and provide opportunities beyond just 

retailer commercial advantage (Nevalainen et al., 2018). Despite the presence of 

representativeness, loyalty card data is a very useful supplement for health outcome research.  

 

2.4.2. GPS data 

GPS enabled devices (e.g. smartphones) are constantly producing information of movement 

(Pentland, Reid and Heibeck, 2013). GPS enabled devices collate information from a 

number of satellites to provide coordinates of their position. When combined with a 

timestamp, important contextual detail for the investigation of geographic patterns and the 

modelling of human behaviour is presented (Löytönen, 2014; Brunsdon and Singleton, 
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2015). Geolocation can be in real-time (via GPS) but can also occur post event (via 

combining transactions to store addresses).  

 

The novelty of GPS data is the ability to move beyond residential location within research. 

GPS enabled mobile technologies detail where we move and where we consume, facilitating 

an additional focus upon activity spaces and the movement of people (Pentland, Reid and 

Heibeck, 2013; Widener et al., 2018). Caryl et al. (2019) applied GPS to study children’s 

exposure to tobacco retailers finding higher exposure (in terms of duration and the density of 

retailers) of children from deprived areas. Cell phone data providing GPS information have 

also been used in West Africa to track travel patterns and predict where Ebola might spread 

to after detecting an outbreak in a town or village, allowing public health officials to set up 

early preventative barriers for containing the spread of the disease (Wesolowski et al., 2014). 

These examples highlight the contribution of GPS data to study health outcomes. 

 

GPS movement data is increasingly being collected and combined in research with other 

resources such as smartphone based questionnaires (Pentland, Reid and Heibeck, 2013). The 

provision of extensive GPS movement data, and the ability to perform data linkage to 

combine this with comprehensive information from other sources (e.g. food diaries) enables 

greater depth in behavioural research (Stopher and Greaves, 2007). The use of trajectory data 

from GPS devices in food behaviour research is increasing (e.g. Chaix et al. (2012); Scully 

et al. (2017;2019); Widener et al. (2018)). For example, Widener et al. (2018) utilised GPS 

data in the study of activity-based exposure for the creation of individual movement 

trajectories in the study of food environments. Findings suggested a negative association for 

exposure to fast food and grocery purchasing, whereas a positive association was found for 

immediate consumption and exposure to fast food (Widener et al., 2018). 

 

2.4.3. Text data 
Text data is a type of unstructured data (i.e. data of unstandardized length and format) 

(Delgado et al., 2002), and is hypothesized to account for up to 80% of all business related 

information (Grimes, 2008). Text data is widely generated in health care ranging from 

clinicians notes to social media posts accounting for a considerable amount of information. 

Text mining involves the use of specific data mining techniques than can be applied on text 

data (Dörre, Gerstl and Seiffert, 1999; Delgado et al., 2002). Text data is rich with 

information however its unstructured nature must be converted into a usable form (Raja et 

al., 2008). Jensen, Jensen and Brunak (2012) explain how despite clear opportunities within 

health research text mining has been constrained by both ethics and a shortage in skill.  
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Electronic Health Records (a “byproduct of routine clinical care” (Denny, 2012, p1)) have 

been used in numerous studies investigating adverse drug reactions through text analysis 

(Warrer et al., 2012). Methods vary in complexity from free text searching (basic) to natural 

language processing (complex) (Warrer et al., 2012). For example Wang et al. (2009) 

studied the prevalence of adverse reactions to medication (e.g. skin rash, fatigue and 

hypertension) from text within discharge summaries. Utilising a text analysis approach in 

this context facilitated new and further knowledge to be obtained of the problematic side 

effects of medication. 

 

Outside of traditional health text data (i.e. electronic health records) new forms of text data 

are increasingly available. Text data from search engines and social media have been found 

to be correlated with actual disease incidence (particularly in the study of influenza), 

highlighting a useful, cheap and fast way to monitor health outcomes (Wilson et al., 2009; 

Corley et al., 2010; Valdivia et al., 2010). Lee, Agrawal and Choudhary (2013) extended this 

work to the real-time automated monitoring of both influenza and cancer in the US via 

Twitter, where geolocation allows this information to be visualised spatially.  

 

Policy documents are a further example of a new form of text data, however, in the limited 

application to date research has consisted of exploratory research (e.g. Lopez-Zetina, Lee 

and Friis, 2006) and the impact of individual policies such as healthy eating and physical 

education (e.g. Cawley and Liu, 2008; Eyler et al., 2012; Lankford et al., 2013). Further 

applying text analysis poses opportunities for understanding the evolution of policy and 

decision making within a quantitative framework.   

 

2.4.4. Further examples  
New forms of (big) data have been used for further facets of health science. Wearable 

sensors (e.g. smart watches or heart rate monitors) have become mainstream within society, 

enabling the ability to accurately and regularly measure important health indicators (e.g. vital 

signs) and improving the information available to understand health outcomes (Heintzman, 

2016; Xie et al., 2018). This benefit extends to patients as these devices can be used to 

improve chronic disease management (e.g. type 1 diabetes) (Heintzman, 2016).  

 

Mapping services such as Google Street View have also been mined as a new data source for 

collecting information about neighbourhoods such as aesthetics, location of food outlets and 

land use (Bethlehem et al., 2014). Fully automating the process has proved difficult but 

represents a useful research avenue, particularly with new developments in image 

processing, machine learning and computer vision. Google has also incorporated air quality 
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sensors onto their street view cars to collect data on levels of Nitric Oxide, Nitrogen Dioxide 

and Black Carbon (Tuxen-Bethman, 2017), and the data can be requested from Google for 

research purposes. There is also growing interest in using remote sensing data to develop 

desk-based audits of features of the physical and built environment (Charreire et al., 2014).  

 

2.5. Health Geography and the promise of new forms of (big) data  
Public health research has extended beyond the traditional focus on disease incidence and 

prevalence to consider further aspects such as healthcare and health behaviours (Rosenberg, 

1998; Kearns and Moon, 2002). Health Geography has historically incorporated 

contemporary human geography themes (e.g. deprivation and wealth inequality) in a wide 

literature (Asthana et al., 2002) and has developed as a recognized subdiscipline (Rosenberg, 

1998; Dummer, 2008). 

 

Early health-related geographical enquiry was categorized into two separate facets of 

research (Parr, 2002; Dummer, 2008). Medical Geography typically relates to the study of 

disease incidence, the associated spatial variation and their causes (Parr, 2002; Dummer, 

2008). Health Geography was born out of debates involving Medical Geographers and others 

(e.g. (Mayer and Meade, 1994; Kearns, 1995; Kearns and Moon, 2002)) where it was felt 

biomedical focus on the determinants of health never fully captured the true role of place on 

health and wellbeing. Kearns (1995) suggested a Health Geography was better aligned with 

Social Geography, which was followed by Rosenberg (1998) calling for an inclusive 

discipline as both subdisciplines suffered similar weaknesses and combining expertise could 

facilitate greater depth within research.   

 

Extending beyond applied Medical Geography, Health Geography brought 

acknowledgement that sociodemographic characteristics contribute to health behaviours 

which enabled the concept of space and place to enrich the research environment (Kearns, 

1995). Health research extended to incorporate wider measures of physical and social 

aspects of society beyond the traditional disease focus (Elliott, 1999). Examples such as the 

index of Access to Healthy Assets and Hazards (AHAH) (Green et al., 2018) combined 

expertise from both remits as well as from Geographic Data Science to produce valuable 

insights and a product that is useful to wide audience beyond Health Geography.  

 

The relationship between health and place is a key concept to Health Geography (Crooks et 

al., 2018). Geography has an intrinsic value to health research due to the presence of an 

inherent spatial element in health outcomes (Scholten and de Lepper, 1991; Dummer, 2008). 
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The deep routed spatial element is concentrated on human-environment associations 

(Dummer, 2008). Being able to visualise disease distributions geographically was a 

significant contribution that Geography enabled (Kearns, 1995). The incorporation of space 

ranges beyond basic exploratory analysis and visualisation (i.e. mapping), to advanced 

theory and modelling.  

 

2.6. Applications of new forms of data in Health Geography 
Health Geographers are recognised for thinking appropriately, but also innovatively, around 

how space and place influence health (Elliott, 2018). These techniques are often borrowed 

from other disciplines reflecting the multidisciplinary nature of subject area; however, it is 

fundamental that the technique is suitable for the analysis (Elliott, 1999). This section 

considers categories of applications in Health Geography that range in methodological 

complexity (i.e. exploratory analysis to applied machine learning) highlighting the need for 

research along this complexity spectrum.  

 

2.6.1. Exploratory analyses   

Exploratory analysis within health research dates back as far as 1851 when John Snow used 

mapping to demonstrate the inherent spatial nature of cholera deaths (Drexler, 2014; Khoury 

and Ioannidis, 2014). Tobler’s first law of geography (i.e. ‘everything is related to 

everything else but near things are more related than distant things’ (Tobler, 1970, p236)), 

emphasizes this inherent spatial component which is important to consider within health 

research. Application has occurred in studying the spread of disease (e.g. John Snows 

Cholera map), accessibility to healthcare (e.g. the Index of Access to Healthy Assets and 

Hazards (Green et al., 2018), or understanding the influences of health behaviours (e.g. the 

relationship between exposure to tobacco and deprivation (Caryl et al., 2019)).  

 

The relationship between the environment and health-related outcomes are complex and may 

have multiple causes (Trinca, 2014). For example, there are many determinants of hay fever 

(e.g. multiple pollen species, allergies or pollution), meaning prediction is notoriously 

difficult (Davies and Smith, 1973; McInnes et al., 2017; MetOffice, 2018a, 2018c). Spatial 

investigation can enable the identification of at-risk populations and contextual insight 

(Haining, 2014). Through the mapping of plant species (e.g. McInnes et al., 2017) 

knowledge can be added for explaining disease incidence.  

 

A common application has been the development of composite indicators. Providing ranked 

measures of phenomena, composite indicators are acknowledged as tools that can provide 
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considerable context in the study of health phenomena and aid policy (OECD, 2008). Data 

availability has resulted in indices increasing in depth (Deas et al., 2003) as these measures 

have evolved from the Townsend score which contained only four variables, to indices 

which contain considerably more information (Jordan, Roderick and Martin, 2004). The 

2015 Index of Multiple Deprivation is an example which includes non-traditional 

information (e.g. road traffic accidents) in the health domain (Smith et al., 2015). Green et 

al. (2018) instead specifically focused their research on health accessibility creating the 

Index of Accessibility to Healthy Assets and Hazards. Green and colleagues used retail 

outlet locations to compute distances for all postcodes (also aggregated to Local Super 

Output Area) in Great Britain to their nearest amenities such as fast food outlets, pubs or off-

licenses. These national level metrics from diverse data sources enable a better 

understanding of the role of neighbourhood features on health and health-related behaviours 

without the need for extensive data manipulation.  

 

2.6.2. Data mining 

Extracting insight from data using statistical or machine learning methods is known as data 

mining (Hastie, Tibshirani and Friedman, 2009). Insights can be mined using traditional 

methods (e.g. linear regression or Ward’s hierarchical clustering) or advanced machine 

learning algorithms (e.g. XGBoost or DBSCAN) (Efron and Hastie, 2016; Luo, 2016). The 

opportunities of data mining have been recognised with the numerous applications that 

already exist (Herland, Khoshgoftaar and Wald, 2014). Regression is widely applied, for 

example sociodemographic and health covariates have been used to infer prescription and 

self-medication behaviours (Green et al., 2016). In areas where usage has lacked there is a 

clear need for application (e.g. pharmacovigilance). Wilson, Thabane and Holbrook (2004) 

detail the need for data mining to detect adverse drug reactions which pose a significant 

drain on healthcare resources and could be mitigated with greater information. 

 

Social media (e.g. Twitter) offers a novel source of information on human relationships and 

social interactions; however, application has been limited due to data complexity. Strategies 

to utilise this data have ranged from randomly sampling tweets (e.g. Eichstaedt et al. (2015)), 

to classifying the content of posts with machine learning (e.g. Nguyen et al., (2016)). A 

spatial dimension can be added by combining geotagged information provided in tweets. For 

example, Nguyen et al., (2016) used machine learning techniques to classify whether 

individuals were tweeting about fast food or high calorie/energy dense foods finding a 

positive correlation between the number of fast food outlets and the state level prevalence of 

obesity. Similar studies have been undertaken using Twitter to measure geographical 
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patterns in happiness (Gore, Diallo and Padilla, 2015), physical activity (Nguyen et al., 

2016), diet (Nguyen et al., 2016; Widener et al., 2018), psychological distress (Eichstaedt et 

al., 2015) and ailments (Paul and Dredze, 2011). Despite these opportunities, geotagged 

tweets only represent a <1% subset, and those who geotag tweets are demographically 

different to those who do not (Sloan and Morgan, 2015). 

 

Further possibilities come in the form of bespoke health geodemographic classifications. 

Widely applied in marketing (e.g. MOSAIC) geodemographic classifications consider 

neighbourhoods to carry insights of their residents (Harris, Sleight and Webber, 2005; 

Abbas, Ojo and Orange, 2009). “Geodemographics are small area classifications that provide 

summary indicators of the social, economic and demographic characteristics of 

neighbourhoods” (Adnan et al., 2010, p283). Creation is however computationally intensive 

as big data creates pressure on clustering algorithms to group data (Adnan et al., 2010). 

Geodemographic tools pose the opportunity for many applications with public health 

(Petersen et al., 2011). Health specific composite indices (e.g. the Index of Multiple 

Deprivation (Smith et al., 2015) and the Index of Access to Healthy Assets and Hazards 

(Green et al., 2018)) have proven successful in developing area level health measures and 

knowledge. Geodemographics offer further data mining opportunities to advance small area 

health knowledge beyond composite indicators. Population profiles substantiate detail within 

geodemographic classifications and highlight neighbourhood similarities (Abbas, Ojo and 

Orange, 2009). Applying Geodemographics within further analysis (e.g. predictive 

modelling) also brings opportunities for further contextual measures of health-related 

phenomena.  

 

2.6.3. Predictive modelling 
Predictive modelling is the process of forecasting outcomes, ranging from statistical analysis 

(e.g. linear regression) to complex machine learning algorithms (e.g. tree based ensemble 

methods and deep learning) (Kuhn, 2013; Efron and Hastie, 2016). It is regarded as a vital 

tool for healthcare as it facilitates the utilisation of big data (e.g. predicting diagnosis or 

Hospital admissions) (Luo, 2016). Within Geography predictive features (or covariates) are 

typically socioeconomic or demographic variables (e.g. Orueta et al. (2013); Green et al. 

(2016)), although research such as Orueta et al. (2013) have shown how further context 

specific measures can bring greater explanatory power. 

 

Applying machine learning algorithms can bring superior performance (Efron and Hastie, 

2016; Luo, 2016). These models provide very accurate and fast predictions and have the 

ability to handle nonparametric data. Application has, however, been limited in healthcare 
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due to the black box nature of these algorithms lacking interpretability (versus classical 

Statistics) as clinicians typically lack the Data Science understanding but also struggle to 

trust these complex methods (Luo, 2016).  

 

Existing applications of predictive modelling within the field of health are varied. Dekker, 

Verkerk and Jongen (2000) detail how the vegetable industry has responded to increasing 

dietary consciousness by attempting to predict nutrient loss in farming to ensure produce 

meets sufficient nutrition content. Predictive modelling has been applied in disease 

prediction combining numerous data sources (Pentland, Reid and Heibeck, 2013; Herland, 

Khoshgoftaar and Wald, 2014; Andreu-Perez et al., 2015). An example is Google Flu 

Trends, which predicts outbreaks of flu from flu-related internet searches (Dugas et al., 

2012). Twitter data has also been used to estimate the likelihood of food poisoning in New 

York (Sadilek, Brennan and Kautz, 2013). Sadilek and colleagues (2013) present a 

surveillance tool which aligns with official hygiene inspections. The application matches the 

locations of restaurants with geotagged tweets in real-time and suggests amount of sick 

visitors are a key predictor of food hygiene (Sadilek, Brennan and Kautz, 2013). 

 

Predictive risk models are another example. These models identify high risk patients with the 

aim of better allocating healthcare resources (Panattoni et al., 2011; Bates et al., 2014). 

Orueta et al. (2013) predicted the expected cost of patients in Spain and their health care 

consumption in the next year, enabling efficient resource planning. Similarly patient medical 

histories (via electronic health records) have been used to predict strokes (Nwosu et al., 

2019). Panattoni et al. (2011) suggest the NHS have been pioneering in their application of 

these models, however disclosure issues of patient level predictions can hamper the 

deployment of these effective planning tools as ethical considerations must be met.  

 

Advanced models can bring more accurate predictions, however error is continually present 

(Kuhn, 2013). For example, classification problems can result in false positives and 

negatives. In a health care setting (e.g. does a patient have a disease) this error may result in 

the wrong or no treatment being given. Regression problems (e.g. predicting the number of 

people with a disease) can experience similar issues relating to over or underperformance. 

Google Flu Trends is the most prominent example of predictive error where predicting flu 

based on search engine behaviour resulted in massive over prediction (Butler, 2013; Lazer et 

al., 2014). 
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2.7. Challenges of new forms of data 

2.7.1. Challenges of big data 

While big data offer many possibilities, there are important limitations. Privacy concerns are 

increasingly important to the public, but they may be unaware that their data is being used in 

external research or being linked to other sources. Boyd and Crawford, (2012) describe how 

despite the opportunities presented, the ability to measure all aspects of life is a 

“manifestation of big brother” (Boyd and Crawford, 2012, p664). Society has changed 

because of big data (Lyon, 2014) where the transfer of information in return to access to 

digital services is now ingrained (van Dijck, 2014). This is problematic as data collection has 

in many applications evolved to become unconscious mass surveillance (Lyon, 2014). For 

example smart sensors have been used to measure passive Wi-Fi signals from phones to 

study changes in high street footfall (Soundararaj, Lugomer and Trasberg, 2019). This can 

also bring unintended consequences. Lyon (2014) highlights further privacy concerns that 

occur with long term or permanent data storage of health data that are further impacting 

society, describing how mental health records can cause restriction on the ability to travel or 

obtain visas.  

 

As with all research, but particularly when using big data, ethics is important. Big data 

presents ethical concerns as data may contain potentially identifiable information. In the 

remit of health this is particularly sensitive. Many datasets are collected automatically for an 

initial purpose (e.g. transaction data is necessary for business finances), however the full use 

cases may not be initially apparent, meaning individuals may not have a transparent view of 

how their data may be used (Lyon, 2014). As health data increasingly moves into digital 

space new issues arise such as cybersecurity that did not exist with paper health records 

(Schukat et al., 2016). Providing access to such data brings additional risk of improper use, 

for example Strandburg (2013) details a breach from the commercial sector where an 

individual improperly accessed data about a colleague. Within research, ethics are 

acknowledged by stringent approval processes that must be passed before research is 

approved to be conducted. Once passed, access to individual level data is rare without 

confidentially agreements and secure facilities. Such careful design and planning are key for 

mitigating risk and reducing the potential for unintended consequences (Schukat et al., 

2016). As data are typically anonymised and aggregated to larger scales where individuals 

are distanced and unidentifiable, the individual is often protected but applications of analysis 

are restricted instead to group level.  
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 “Bigger data are not always better data” (Boyd and Crawford, 2012, p668). Moving away 

from thinking about the size of data and incorporating Boyd and Crawford’s (2012) 

philosophy is more appropriate. We should not view a difference between big and small 

data; they are both data. Similarly, just because more data is available and can be easily 

linked, does not mean we should just do so, as data quality and compatibility issues (e.g. 

timing) will undoubtedly arise (Wigan and Clarke, 2013). Data should be judged on what it 

can add to a research question, as well as the quality that it offers (i.e. garbage in equals 

garbage out). Despite the increasing ability to use many features, every measure should still 

be justified. Rather than a big data revolution, we should acknowledge the all-data revolution 

where importance is placed on innovative analytics to better understand the world (Lazer et 

al., 2014). Taking a (Geographic) Data Science approach avoids many of these issues and 

focuses on the methods necessary for analysis. 

 

As Khoury and Ioannidis (2014) highlight, in order to avoid issues such as ecological 

fallacies we must be aware of the noise contained as “big error can plague big data” (Khoury 

and Ioannidis, 2014, p1054). The complexities found within big data (e.g. nonparametric or 

correlated features) violate the assumptions of traditional methods and require the use of 

newer methods (e.g. machine learning). Aggregation is also common which allows the main 

patterns to be observed, but it is also used because group behaviours are easier to model (in 

terms of speed and performance). Further difficulty comes as data provenance is often 

lacking (this may be intellectual property of a data provider, or alternatively just not 

disclosed) meaning that data quality is assumed to be good (Wigan and Clarke, 2013). In 

order to achieve insights from big data and contribute useful health knowledge, data quality 

must be considered and issues (e.g. the noise present within big data) must be addressed 

(Khoury and Ioannidis, 2014; Lyon, 2014). If an application opts to use big data then it 

should be unbiased, and results should be validated against some form of ground truth (e.g. 

comparing results to established health surveys) if available (Nevalainen et al., 2018). This 

also places emphasis on ensuring the technique employed is carefully selected and suitable 

for the analysis (Elliott, 1999).  

 

Large sample sizes are often used to improve predictions, however interpretability can be 

limited when applying black box algorithms, which as Luo (2016) describes, has limited 

applications of machine learning within clinical practice. As new forms of data are collected 

for purposes other than research, understanding data is vitally important (Boyd and 

Crawford, 2012), which can be difficult when metadata is typically lacking. Classic research 

is hypothesis driven where data collection is focused on answering a specific question. 

Repurposing data moves us away from this and raises issues of the potential presence of 
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unintended consequences that can influence behaviour. Examples of how big data can alter 

behaviour include: 

- social media fundamentally aims to monetise behaviour and utilises complex 

marketing algorithms that filter what people see (van Dijck, 2014); 

- customer relationship management promotions can alter behaviour based on criteria 

such as purchasing cycles and frequency, meaning behaviour that may not represent 

life ‘as-is’ (Andrejevic, 2007; Wigan and Clarke, 2013; van Dijck, 2014);  

- wearable technologies provide users with health data that was previously 

unobtainable in real time (e.g. calorie tracking) and the software on these devices 

rewards increased and sustained participation (Schukat et al., 2016). 

 

It is not the case though that big data will suddenly improve health applications overnight. In 

2013, Google Flu Trends overestimated doctor visits for influenza-associated conditions by 

twice what validated data suggested it should be (Butler, 2013). The same service also 

underestimated the H1N1 pandemic due to how people were searching for the condition 

(Cook et al., 2011). It is important not to overestimate the potential of big data by 

acknowledging the big data hubris; big data should supplement, rather than replace, 

traditional approaches (Lazer et al., 2014). Understanding data samples and bias is a key 

consideration if new forms of data or big data are going to be used to inform policy or health 

in decision making, as despite the large sample sizes, specific groups of people may be 

unintentionally excluded from analysis. For these reasons it is important to stress the value 

part of any big data application. 

 

2.7.2. Challenges of the spatial analysis of data 

Spatial scale is important as aggregation can alter results and may cause ecological fallacies 

or modifiable areal unit problem (Fotheringham, Brunsdon and Charlton, 2000). Dependent 

on the scale (e.g. local or national) the measurement of health outcomes can vary greatly 

therefore geographic scale should be carefully selected (Dummer, 2008; Jacquez, 2014). 

Aggregation is common particularly as census geographies are widely accepted and familiar 

(Wise, Haining and Ma, 2001; Duque, Ramos and Suriñach, 2007). Both individual and 

ecological studies offer considerable insight to public health knowledge (Subramanian et al., 

2009; Idrovo, 2011).  

 

Ecological fallacy (originally discovered by Robinson (1950) when studying illiteracy) is 

concerned with the difference in insight when the interpretation scale is different to the 

measurement scale (e.g. if assumptions are made for individuals when an outcome is 

aggregate) (Fotheringham, Brunsdon and Charlton, 2000). To add further complication the 



 39 

reverse can be true (e.g. assumptions for the aggregate based on the individual), known as 

individualistic fallacy (Alker, 1969 in: Subramanian et al., 2009). The research question 

should define the scale; analysis and interpretation scale must match (Openshaw, 1984a). 

Ecological level research must be careful that findings are not presented at individual level 

and vice versa. 

 

The modifiable areal unit problem refers to the aggregation of data to changeable zones (e.g. 

census geographies could change with urbanisation of a rural area) (Fotheringham, Brunsdon 

and Charlton, 2000). Aggregation determines this extent as “at the level of the individual 

field there is no spatial association” (Openshaw, 1984b, p3). Areal geographies are 

fundamental in the analysis and visualisation of outcomes; however, data are sensitive to 

their unit of measurement (e.g. population density varies considerably within census 

geographies) (Openshaw, 1984b; Fotheringham, Brunsdon and Charlton, 2000).  

 

Despite aggregation levels being selected by researchers, increasingly the scale of 

measurement is becoming determined by consistent metrics, indicators and geodemographic 

data products (e.g. Lower Super Output Area or Local Authority District are typical UK 

scales). Interpretation must account for the modifiable nature of these geographies 

(Openshaw, 1984b). A possible solution is to study at an individual level (i.e. not 

aggregating) (Fotheringham, Brunsdon and Charlton, 2000) but the ability to visualise or 

model big data in this way is often inefficient. However, as area level observation is often 

important, varying spatial scale alternatively allows for the further and important context of 

outcomes at national, regional and local levels (Dummer, 2008; Subramanian et al., 2009), 

allowing identification of at risk populations and efficient policy (Hay et al., 2005). These 

solutions are somewhat hampered by data disclosure issues and the need to preserve privacy. 

Alternatively, spatial models offer an acknowledgement of space (Openshaw, 1984b). These 

issues must be considered within study and ideally outcomes should be measured at the 

finest scale possible to minimise aggregation effects, however it is often not possible to meet 

these requirements.   

 

2.8. Research gaps 
“The application of big data to health care is inevitable” (Murdoch and Detsky, 2013, p1352) 

and is driven by the enormous associated costs of healthcare (Kayyali, Knott and Kuiken, 

2013). Murdoch and Detsky (2013) detail how new insights, better information distribution, 

personalised medicine and self-care are enabled through big data and will improve the 

healthcare economy. Despite the presence of constraints (e.g. skill shortages, ethics or 
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computational power), this literature review has demonstrated the clear opportunities and 

need for the application of big and new forms of data within health.  

 

This thesis falls under the remit of utilising extremely detailed data from various sources, 

linking them with existing datasets and applying a Data Science approach (i.e. data mining 

and machine learning methods) to derive new insights. These applications fall in areas where 

research is lacking but knowledge is necessary. The areas of self-medication and obesity are 

specifically focused upon due to the extensive drain these areas have upon healthcare 

(Heikkinen and Järvinen, 2003; Pillay et al., 2010). The opportunities presented come from 

both fine resolution information of individuals (e.g. over the counter product purchasing or 

food preparation diaries linked with GPS data) as well as policy related documents.  

 

Fine resolution public health information is vital in determining at risk populations (Hay et 

al., 2005). For example, data driven approaches have aided the identification of life-

threatening complications (e.g. thoracic risk detection) (Andreu-Perez et al., 2015) and 

evidence based prescribing (Raghupathi and Raghupathi, 2014). Despite this, high data 

creation and capture costs associated with clinical data have limited the temporal coverage 

available (Andreu-Perez et al., 2015). A further limitation is that clinical data account for 

only those who make GP visits, whereas public health extends beyond this into the globally 

adopted hybridised practice of self-care.  

 

Deregulated low strength medications used in the treatment of minor ailments are widely 

available. Health-literacy, emergent from the self-care movement, has developed amongst 

the general population where the use of over the counter medicines (in short term treatment) 

is high (Magruder, 2003). Existing research that has explored self-medication have utilised 

self-reported data from health surveys (e.g. Green et al., 2016). Accessing big data in the 

new form of transactions linked with loyalty card records offer significant opportunities to 

bring new information to minor ailment prevalence research, and novel insights into self-

medication behaviours. For example Flanagan et al. (2019) used a this data as a proof of 

concept for detecting ovarian cancer earlier. Opportunities are presented for both 

understanding the drivers of self-medication as well as predicting future purchasing.  

 

Within obesity there are similar opportunities for further knowledge. Large amounts of 

information from dietary surveys are not new, however focus has typically been on 

consumption. Knowing where food is prepared is an important consideration of consumption 

as those who prepare their own food are more likely consume the recommended levels of 

nutrients (Larson et al., 2006). Eating out has also been found strongly associated with fast 
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food consumption where higher caloric consumption is consequential (Lachat et al., 2012; 

An, 2016; Penney et al., 2017). Exposure to such services, associated with low cost and 

convenience, is a key determinant of obesity (Tremblay and Willms, 2003; Burgoine et al., 

2014). The provision of extensive GPS movement data, and the ability to perform data 

linkage to combine this with comprehensive information from other sources (e.g. food 

diaries) provides considerable opportunity to build on existing research in this area (e.g. 

Chaix et al. (2012); Scully et al. (2017;2019); Widener et al. (2018)) and enables for greater 

depth in behavioural research (Stopher and Greaves, 2007). 

 

There are also opportunities beyond the focus of people and their behaviours. Obesity policy 

has been considered in numerous papers that include exploratory research (e.g. Lopez-

Zetina, Lee and Friis, 2006; Cawley and Liu, 2008; Eyler et al., 2012; Lankford et al., 2013), 

as well as modelling features that explain policy enactment (Boehmer et al., 2007; Hersey et 

al., 2010; Donaldson et al., 2015). This research however has often failed to account for the 

text contained as data. Few studies have analysed the text contents of bills (e.g. Cawley et 

al., 2008; Lankford et al., 2013), which are largely limited to qualitatively analysing and 

summarising texts. The opportunity of utilising text data poses great potential for 

understanding the drivers of obesity policy and how this has changed over time.  

 

2.9. Conclusion 
New forms of data have generated a lot of interest across many disciplines. While many 

challenges remain, a lot of promise is offered by repurposing data. The opportunities don’t 

necessarily only relate to new data, but also the possibilities Data Science brings. Beyond 

data, this literature review has highlighted the value of a data driven (Geographic Data 

Science) approach which provides the means of exploring these new datasets. Through 

machine learning and data mining novel applications are possible and the opportunities and 

value of these datasets increases vastly. This thesis aims to provide exemplary examples of 

the possibilities available, addressing the research gaps that have been highlighted within 

this literature review. 
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Chapter 3 : Using machine learning to investigate self-

medication purchasing in England via high street retailer 

loyalty card data. 
This chapter is the first of four quantitative chapters presented and is the first of two 

applications using loyalty card records from a major high street retailer. This chapter focuses 

on how utilising this new form of data can enhance and extend knowledge beyond traditional 

datasets that are typically employed to study minor ailments. The chapter uses data that has 

coverage of approximately 20% of the adult population in England and focuses on four 

medication groups (coughs and colds, hay fever, pain relief and sun preps). As the number of 

characteristics suggested to impact self-medication is extensive, the machine learning 

methods employed allow the influence of many features to be compared. New information is 

presented at the national level with the inclusion of groups that are not contained within 

other data.  

 

3.1. Introduction 
The economic health-care burden of minor ailments (e.g. coughs and colds or sunburn) on 

the National Health Service is extensive (Pillay et al., 2010). Self-care, a globally adopted 

movement, empowers patients to take control of their healthcare (World Health 

Organization, 2000a; Hughes, McElnay and Fleming, 2001; Foley et al., 2015). Self-

medication occurs via over the counter medicines used to treat minor ailments. Patients 

assume a greater health management responsibility as they diagnose and select suitable 

medical treatment, which can reduce the burden on health care providers; the process is 

typically hybridised with a combination of health care professionals and most recently online 

services such as WebMD (Hughes, McElnay and Fleming, 2001). 

 

Traditionally over the counter products were weaker than medicines available through 

prescription, although stronger medication is increasingly becoming available at pharmacies 

via deregulation (Keen, 1994; Hughes, McElnay and Fleming, 2001); however, key 

differences of pack size and cost remain (Bradley and Bond, 1995; Morthorst et al., 2018). 

Over the counter pharmaceuticals have purchase quantity restrictions and therefore are 

typically used as cheap short term treatments, whereas longer term treatment may require 

repeat prescriptions from GPs (Keen, 1994; Bradley and Bond, 1995; Hughes, McElnay and 

Fleming, 2001). Cost is influential for medication route as some population groups in 

England are prescription fee exempt (e.g. elderly, pregnant). The costs of prescribing cheap 

or weak medication has witnessed scrutiny with paracetamol highlighted as a high cost to the 
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National Health Service (NHS England, 2017). It is possible that social factors such as 

poverty or income could influence the likelihood of self-medication. 

 

Despite the benefits to the health-care industry, self-care may result in mistreatment of health 

conditions which could have severe consequences and increased burden (Hughes, McElnay 

and Fleming, 2001). Consultation of ailments between patients and clinicians may be lacking 

within self-care dependence (Hughes, McElnay and Fleming, 2001; Foley et al., 2015; 

Morthorst et al., 2018). Delay of treatment or misdiagnosis, concurrent medication and 

unrelated medical conditions cause increased risk during self-medication (Bradley and Bond, 

1995; Hughes, McElnay and Fleming, 2001). Side effects due to additional health 

complications (and other behaviours such as alcohol consumption) can be serious 

particularly if products are not correctly labelled or if patients are not medication literate 

(Montastruc et al., 1997; Lee et al., 2017; Morthorst et al., 2018). Accidental and purposeful 

poisoning creates a considerable issue to the NHS with paracetamol related poisonings 

accounting for 16% of total poisonings (Morthorst et al., 2018). Painkillers are most likely 

over the counter drugs to be abused (Wazaify et al., 2005). Developing effective population 

surveillance systems to identify potential harms represents an important yet difficult venture. 

 

The self-care movement has to an extent been fuelled by smart devices and fitness tracking 

which enable individuals to measure their own health and fitness (e.g. via heart rate monitors 

or smart watches) (Steinbrook, 2008). Health records are increasingly digitised (Raghupathi 

and Raghupathi, 2014). Data linkage across health care (e.g. centralised patient records or 

access to health data from smart devices) would allow practitioners greater awareness of 

patient medication to reduce the risk of side effects (Sivarajah et al., 2017; Trifirò, Sultana 

and Bate, 2018). People also now have greater access to healthcare through digital services 

such WebMD and video appointments, meaning diagnosis is the most accessible it has ever 

been. As new forms of health data are becoming available, the ability to apply methods to 

deal with these data is important in allowing this data to mined and further insights created, 

showing an importance and relevance of applied big data research.  

 

New forms of (big) data are non-traditional data sources collected for purposes other than 

research (e.g. loyalty card records, social media profiles, smart sensors) and are increasingly 

available to health researchers. One of these new forms of data, loyalty card records, offers 

interest to researchers and policy makers. Traditional research that has explored how self-

medication behaviours differ throughout the population have only utilised self-reported data 

from health surveys (Green et al., 2016). Self-reported data has been shown elsewhere to be 

affected by bias (Green et al., 2016) and objective purchasing behaviours may offer one 
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solution for minimising such bias. Such data are often ‘big’ and cover national scales, 

compared to smaller health surveys that are often localised to smaller regions and therefore 

have less relevance to the national scale where public health policy decision making is often 

made. They also offer a less intrusive form of data collection since data are collected 

routinely by organisations. Real time purchase information for minor ailment medicines may 

be useful for improving surveillance systems (particularly through data linkage). 

 

The aim of this study is to investigate how high street retailer data can help to inform our 

understanding of how individuals self-medicate in England. 

 

3.2. Methods 

3.2.1. Data  
The outcome data explored in this study is transaction records linked to customer loyalty 

cards provided from a national high street retailer. The primary use of loyalty cards is to 

increase customer knowledge and thus strengthen retailer loyalty (Byrom et al., 2001). When 

a customer purchases a product and provides a loyalty card their transaction is logged against 

their account in return for incentives and promotions. When customers register for a loyalty 

card, they are asked to provide additional details including age, gender and address. 

 

Data were provided as individual transactions for ~300 categories of products. Upon 

accessing the data, this was cleaned from 15 million to 10 million customers by age and 

postcode. The cleaning process was required to account for unrealistic ages (e.g. greater than 

100 years) or missing data (e.g. no age provided). The majority of this the reduction in 

sample size was via the removal of all non-England postcodes. This was due to differences 

in how prescribed medicines are funded between countries of the UK as well as the 

availability of predictors of which many are limited to England (e.g. Output Area 

Classification). Due to the sensitive nature of the data used, we are limited by the sample 

characteristics that can be reported. Despite the data being representative as it only contains 

loyalty records for one high street retailer, the large amount of information provided for self-

medication purchasing enables detail at a much greater scale than previously available.  

 

Transactions were aggregated by customer and product group to determine whether a 

customer purchased a product within the two-year period, April 2012 to 2014. The product 

groups were coughs and colds (e.g. cough suppressants, throat lozenges), hay fever (e.g. 

antihistamines), pain relief (e.g. paracetamol, ibuprofen) and sun preps (e.g. sun lotions). 

These categories were the lowest level and most detailed aggregation available. This allowed 
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for a comparison between over the counter medicines whilst maintaining as much detail as 

possible. Higher aggregations were provided in a hierarchy but using these would mean a 

loss of self-medication context (e.g. sun preps would be grouped as toiletries). This 

information was aggregated for Local Authority District and Lower Super Output Area using 

National Statistics Postcode Lookup (Office for National Statistics, 2016), and converted to 

the proportion of total customers per geography. Local Authority District (n = 326) was used 

as this is the lowest level allowed to publish data spatially by the data provider; Lower Super 

Output Area (n = 32844) was used in our analytical models to provide more detailed spatial 

resolution of our sociodemographic predictors. 

 

We selected a diverse range of sociodemographic explanatory variables to explore how they 

related to self-medication purchasing patterns (shown table 3.1). These were selected based 

on previous research that has found that multiple aspects of an individual’s social 

circumstances are associated with their likelihood of consuming self-medicines (Green et al., 

2016; Lee et al., 2017). The objective was to utilise many sociodemographic variables as no 

single variable can best measure any social issue, as well as leveraging the machine learning 

approach that can handle a large number of features. Explanatory (variables) included 

Output Area Classification (Gale et al., 2016), Rural Urban Classification (Bibby and 

Shepherd, 2004), the Index of Multiple Deprivation (Smith et al., 2015) and the Index of 

Access to Healthy Assets and Hazards (Green et al., 2018). Output Area Classification 

groups were used to measure population characteristics and were aggregated to Lower Super 

Output Area level using proportions of each group. Index of Multiple Deprivation score was 

used to account for deprivation. The Index of Access to Healthy Assets and Hazards was 

included as it comprises a range of health-related environmental measures such as air quality 

and accessibility to healthcare (Green et al., 2018). As the methods selected (detailed later) 

are non-parametric, the models can handle similar or correlated measures meaning features 

such as the Index of Multiple Deprivation and Index of Access to Health Assets and Hazards 

can be used in the same model despite some overlap between environmental and access 

domains.   
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Table 3.1. Predictors included in machine learning models 

Variables Dataset  

Age (median)  High Street Retailer loyalty card data via CDRC 

AHAH (components: Dentists; Emergency 

Departments; Fast Food; Gambling; GP 

Practices; Greenspace 900m; Leisure; NO2; Off 

Licences; Pharmacies; PM10; Pubs; SO2; 

Tobacconists) 

CDRC (Access to Healthy Assets and Hazards) 

IMD Score  Gov.uk (Index of Multiple Deprivation 2015) 

Rural Urban Classification (groups A1-E2) Nomis (ONS Census Key Statistics) 

Output Area Classification (groups 1a-8d) ONS via CDRC (2011 Output Area 

Classification Geodata pack) 

 

3.2.2. Statistical analyses  
Exploratory analysis was performed to understand national level patterns using the Local 

Authority District level aggregated data. We calculated the overall distribution of purchasing 

each product stratified by gender to examine which medicines were most common. We then 

mapped overall purchasing patterns to explore how behaviours varied geographically.  

A machine learning approach was applied to explore important sociodemographic 

characteristics of purchasing patterns for self-medication products. The rationale was the 

effectiveness and scalability of these statistical methods in capturing data complexity when 

utilising large data (Chen and Guestrin, 2016). Non-parametric modelling allows analysis of 

large numbers of observations and measures that require better predictive models in feasible 

timeframes; traditional models typically perform weaker in comparison (Efron and Hastie, 

2016). Machine learning, in particular tree based models, are nonparametric in nature 

enabling the exploitation of data and are widely applied and highly effective particularly in 

ensemble methods (Chen and Guestrin, 2016). Various feature types as well as large feature 

and sample sizes can be utilised as each feature is treated separately. 

Two regression tree ensemble methods were applied. The first, Random Forests, is a tree 

ensemble method that recursively partitions data in a greedy fashion – constantly improving 

(Efron and Hastie, 2016). Features are selected automatically from a sample which adds the 

‘randomness’. The method was selected as the baseline for model performance as it requires 

little hyperparameter tuning (i.e. the model hyperparameters are relatively optimal to begin 

with). The randomness prevents model overfitting, and the method is robust to noise as it 

selects strong complex learners with low bias (Kuhn and Johnson, 2013). 



 47 

Boosting and in particular Extreme Gradient Boosting (XGBoost) was the second tree 

ensemble method selected. Boosting combines weak classifiers to produce an ensemble 

classifier with superior generalised misclassification of error (Kuhn and Johnson, 2013). An 

overall classifier with superior performance is determined by voting based off an ensemble 

of iteratively created weak learners; each new tree addresses the errors of its predecessors by 

reweighting misclassified points (Kuhn and Johnson, 2013; Efron and Hastie, 2016). 

Hyperparameter tuning enables an algorithm to be optimised and is fundamental to boosting 

as it can significantly improve predictive performance, however both searching for and 

tuning parameters bring greater computational complexity (Efron and Hastie, 2016). 

Hyperparameter tuning is strict towards overfitting. The key difference is Random Forests is 

focused on reducing variance, whereas XGBoost reduces bias to build a model. XGBoost is 

used as the method we are most interested in due to the increased performance that comes 

from hyperparameter tuning, whilst the parallel application allows greater computational 

complexity in shorter time frames.  

The four self-medication product groups were used: coughs and colds, hay fever, pain relief 

and sun preps. Random Forests and XGBoost models for each product class were created. 

Data for each product contained n = 32844 records. These data were split into 70% training 

datasets (n = 22993). The remaining 30% (n = 9851) was used as holdout datasets (unseen 

test datasets) to assess model performance. The unit of analysis are Lower Super Output 

Areas (n = 32844). This is detailed in Table 3.2.  

Random Forests have few hyperparameters to tune, hence the reputation for being a very 

accurate out of the box learning method. The column subsample (number of features) for 

each tree was 1/3, and the number of trees (rounds) was constrained to 500 as there was little 

gain by extending beyond this. The model was utilised with default settings from the 

randomForest R package (Liaw and Wiener, 2002).  

Contrastingly as hyperparameter tuning is very important for optimising XGBoost models. 

Hyperparameters were found using an aggressive grid search to find the best combination of 

parameters within a range provided. The grid search included 10-fold cross-validation 

allowing for optimal hyperparameters to be found for each model (shown Table 3.2). 

Random Forests computation time was greater than XGBoost; XGBoost uses shallower tree 

depth and a parallel computing implementation. Model performance is analysed using 

performance metrics of R! and RMSE. Feature importance ranking is used to compare 

feature selection across model types, and partial dependence plots are used to explore the 

relationship between the most important features and the outcome variables of proportional 

product purchase. Despite machine learning algorithms witnessing performance increase, 
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context is often lost. Partial dependence plots are similar in function to coefficients in OLS 

regression, allowing for context to be retained (Greenwell, 2017). Partial dependence plots 

hold all variables constant within the model except the specified variable which is varied 

across its range. This allows interpretation of how the target variable changes as the 

specified variable changes, capturing correlations.  

Analysis was performed using R (R Core Team, 2014). Random Forests were created in the 

randomForest R package (Liaw and Wiener, 2002), gradient boosting in the XGBoost R 

package (Chen et al., 2018) and the data splits, hyper parameter search and model evaluation 

was performed using the caret R package (Kuhn, 2008). The ‘pdp’ r package (Greenwell, 

2017) was used to explore the marginal effect of the top five ranked features and ggplot2 

(Wickham, 2016) was used for visualisations.  

 

3.3. Results 

3.3.1. Overall purchasing behaviours 

Figure 3.1. shows each of the product group proportion distributions by gender. Pain relief is 

shown to have the highest proportion of purchasing (median of 65.94%), whereas hay fever 

the lowest (median of 29.41%). One explanation for why hay fever has lower purchasing 

than the other products is that the associated condition does not affect the whole population. 

Pain Relief and coughs and colds (median 65.84% and 58.56%) both have high purchasing 

proportion due their high availability in England, in part related to how common they are as 

ailments (Morris, Cantrill and Weiss, 2001; Thielmann et al., 2018). Each of the products 

have similar distributions for both males and females, suggesting there isn’t gender 

sensitivity within loyalty card customers for these product groups. Sun preps purchasing is 

the only product with a significant difference in the distribution, with proportions almost 

double for females (median 29.98 male, 47.01 female). 
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Figure 3.1. Proportion purchasing per Local Authority Level of self-medication 
products by gender 

 

Figure 3.2. plots the geographic variation in purchasing of each product by quintiles at Local 

Authority District level. A consistent spatial pattern of higher purchasing in London and the 

South-East region is observed for each product bar sun preps. For coughs and colds, hay 

fever and pain relief there are distinct North-South differences with the North-West regions 

exhibiting lower purchasing. Sun preps exhibit a differing spatial pattern from the other 

medicines, with urban and central areas displaying higher proportion of sales compared to 

costal and rural areas (e.g. East Anglia and the South-East).  
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Figure 3.2. Proportion purchasing per Local Authority District of self-medication 

products (top left coughs and colds, top right hay fever, bottom left pain relief, bottom 
right sun preps) 

 

3.3.2. Explaining sociodemographic correlates of purchasing behaviours 

Table 3.2. shows the performance metrics of Root Mean Squared Error (RMSE) and R! for 

model. XGBoost performs better for both metrics except for coughs and colds where the 

performance is marginally worse (.002 worse for R!, .0001 for RMSE). Sun preps has the 

best predictive performance; however, this product group exhibits the greatest variance 

between performance metrics with Random Forests performing .0231 worse with for R!. 

Despite the poorest performance being for coughs and colds at .5010, there is good 

predictive performance across all our models. The difference in predictive ability shows that 
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of the variables included the variance is explained for some products more than others. 

Further variables may be included if the goal was solely predictive performance. 

 

Table 3.2. Comparison of machine learning model performance 

 Coughs and colds Hay fever Pain relief Sun preps 

 R
andom

 
Forests 

X
G

Boost 

R
andom

 
Forests  

X
G

Boost 

R
andom

 
Forests 

X
G

Boost 

R
andom

 
Forest 

X
G

Boost 

Training sample size 
70% 70% 70% 70% 70% 70% 70% 70% 

Hyper-parameters         
Learning Rate  0.01  0.01  0.01  0.01 
Gamma  0  0  0  0 
Minimum child weight 

 1  1  1  1 

Column subsample  
.33 .7 .33 .7 .33 .7 .33 .7 

Row subsample  .8  .8  .8  .8 
Maximum depth 

 6  6  6  6 

Rounds 500 5000 500 5000 500 5000 500 5000 
Performance          
R2  .5030 .5010 .5881 .5993 .6010 .6063 .6148 .6379 
RMSE  .0492 .0493 .0391 .0388 .0427 .0423 .0475 .0460 
Run Time (minutes) 10 2 10 2 10 2 10 2 

Learning rate = step size shrinkage used to make model conservative; Gamma = minimum loss 

reduction to make further partition; Minimum child weight = minimum instance weight needed in a 

child; Maximum depth = maximum depth of a tree (number of splits) (Chen and Guestrin, 2016); 

RMSE = Root Mean Squared Error 

 

The purpose of this modelling is to investigate which sociodemographic factors are 

important for predicting purchasing patterns. We focus on the top five most important 

features from each model as these have the highest influence on overall model performance, 

with the remaining variables having less impact. The top five variables account for as much 

as 50% of loss reduction in the models. To visualise feature importance, we use Alluvial 

plots (an extension of Sankey diagrams) to show how ranks vary between models for each 

medicine. Figure 3.3. shows the ranks coloured by decile. The highest feature importance is 

stable for each medicine, showing similar features are consistently important for both 

methods. There is greater variability seen further down the variable rankings where variables 

have smaller effects. 
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Figure 3.3. Rank comparison of feature importance 

(note: ‘Decile’ refers to the decile of ranks from XGBoost) 

 

Figure 3.4. presents the partial dependence plots for each model of the top five most 

important variables. A yhat value of 0 (y axis) represents the average proportion of 

customers. Positive values are interpreted as an increase, negative a decrease from the 

average value. There are three broad patterns observed. Socioeconomic features were stable 

and commonly high ranking in each model, particularly the Index of Multiple Deprivation 

score (9 of 20 occurrences). Areas that had higher Index of Multiple Deprivation scores were 

negatively associated with purchasing patterns. Air quality variables were also common (10 

out of 20). Particulate matter (PM10) and nitrogen dioxide (NO2) were both positively 

associated with purchasing patterns for coughs and colds, hay fever and pain relief. Sulphur 

dioxide (SO2) was negatively associated with coughs and colds, and hay fever. Age only 

appeared in the top five once and was negatively associated to sun preps. Across all the 

models six features rank in the top ten. Eight features rank in the top ten for all models 

except sun preps, showing consistently important features across all product groups.   
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Figure 3.4. Partial dependence plots 

(note: top five products from each XGBoost model) 

 

3.4. Discussion 
Loyalty card records from a national high street retailer have provided intriguing findings 

about self-medication patterns in England via novel application of machine learning. The 

large sample size of national level data on objective behaviours provides new context for 

customer behaviour of purchasing medicine, building on previous studies that have relied on 

small self-reported samples from specific regions that may be biased or less applicable to 

national-level decision making.  

 

Our findings demonstrate that coughs and colds and pain relief medicines both have high 

proportions of purchasing, representing their common prevalence as minor ailments, with 

median proportions per Local Authority District above 55%. Sun preps were the least 

common medication purchased, particularly for males. There are numerous potential 

explanations for this. One explanation is that females are more likely to be responsible or 
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informed about the adverse effects of the sun, and therefore engage in protective measures 

(Miles et al., 2005). Such differences may account for skin cancer rates being higher in 

males. Targeting males through loyalty card records may offer one approach for tackling 

such patterns. That being said, sun prep purchasing patterns are far lower than self-reported 

estimates from other surveys (e.g. Peacey et al. (2006)), which may represent their bias or 

that individuals purchase sun preps from other locations as well. Another possible 

explanation is that Sun Preps are solely preparatory whereas the other medicines can serve as 

response to immediate discomfort. This may influence people purchasing for their household 

and despite physically purchasing a product they may not actually consume the product, 

particularly in the instance of families. Surprisingly, we detect little difference between sex 

for the other medicines which contrasts to the wider literature demonstrating females having 

higher likelihood of consuming non-prescribed medicines (Figueiras, Caamano and Gestal-

Otero, 2000; Green et al., 2016). 

 

We detect considerable geographical inequalities in purchasing patterns for each of our 

medications. A North-South divide is highlighted, with the distribution of purchasing 

patterns following the known distribution of socioeconomic measures and in particular 

poverty/deprivation (Smith et al., 2015). This observation extends to southern population 

centres clearly highlighted as having the higher proportions of purchasing, and in particular 

the suburban surrounds of London. Our data offers potential for the geographic targeting of 

locations to increase self-medication behaviours. Sun preps once again differ in their 

distribution, with higher purchasing in urban and central regions of England. It is important 

to note that purchasing behaviours were lowest in coastal regions, which have been found to 

have higher UV radiation levels compared to inland locations (Kazantzidis et al., 2015). 

These areas though are also characterised by older populations and given that purchasing 

behaviours for sun preps declined with age (figure 3.4.) this may also explain our findings. 

Given the difference in protective behaviours and risk of skin cancers, these represent 

important areas to target interventions. 

 

Socioeconomic features were consistently shown to be associated with the purchasing of 

each medicine. Index of Multiple Deprivation score is consistently important in all models, 

exhibiting a negative association. For pain relief, aspiring and affluent Output Area 

Classification group has a positive spike between 0 and .1 with a slight positive correlation 

observed. Challenged Asian terraces Output Area Classification group are shown negatively 

correlated. The Output Area Classification pen portraits describes a group that exhibits high 

unemployment and overcrowding (Office for National Statistics, 2014). These findings 

follow previous research which has found positive associations between higher 



 55 

socioeconomic status and over the counter medication usage (Figueiras, Caamano and 

Gestal-Otero, 2000; Green et al., 2016). These associations link to income and education 

levels associated with such occupations. Individuals with higher levels of income have 

greater disposable resources that can be invested in purchasing self-medications. Increased 

educational attainment may also represent greater cognitive resources and therefore greater 

awareness towards understanding how or the need to self-treat ailments (Lee et al., 2017). 

The socioeconomic findings, particularly Index of Multiple Deprivation score, show a 

correlation between deprivation and decreased proportion of purchasing over the counter 

products.  

 

Age was identified as an important feature in the sun preps model. The partial dependence 

plot shows a negative association with age. Potential causes are that protection against the 

sun declines with age, with younger ages representing customers purchasing for dependent 

others (i.e. mothers protecting their children against sunburn), or lower compliance with 

medicine guidelines as age increases (Jarrett, Sharp and McLelland, 1993; Lowe et al., 

1995). Targeting older individuals who may be at risk of sunburn and skin cancer represents 

an important focus for policy makers. 

 

Air quality was found to be an important contextual predictor of purchasing behaviours for 

all products other than sun preps (given there is little causal expectation of such a 

relationship for sun preps, this was expected). PM10 and NO2 are shown to be positively 

correlated with purchasing in the coughs and colds, hay fever and pain relief models. This 

relates to rates being higher in urban areas resultant of transport (Kukkonen et al., 2001; 

Bealey et al., 2007; Charpin and Caillaud, 2017; Green et al., 2018). PM10 exhibiting high 

feature importance as well as a positive correlation with increased levels aligns with research 

that suggests risk of hay fever and also reduced lung function (possibly increasing 

susceptibility to respiratory issues such as coughs and colds) are associated to traffic-related 

air pollution (Charpin and Caillaud, 2017). SO2 distribution in the partial dependence plots 

is unconventional being negatively correlated to purchasing behaviours, then increasing and 

levelling off. SO2 is considered harmful at high concentrations, and such levels are often 

found in areas of intense industry which are typically not urban (DEFRA, 2017). Similar to 

pollution, major conurbations (Rural Urban Classification) exhibits a positive association for 

cough and colds, possibly linked to the ailments typically being viral.  

 

There are several limitations to our study. The data agreement signed by the high street 

retailer means that sample characteristics must remain anonymous. This constrains our 

ability to report on how representative the data are, a necessary component of any research. 
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Despite the inclusion of 50 features, the study only utilises a select group of variables 

limiting the exploration to purely socioeconomic and environmental characteristics. Data 

linkage could identify further knowledge, such as Hospital Admission data or even open 

prescription data, although information could only be linked at aggregated geographic scale 

due to the scale that the data is available at. In this study, we consider only whether someone 

has purchased a product within the 2-year period. Involving seasonality could aid further 

understanding. This approach could see further data from weather stations involved to see if 

there are seasonal effect apparent. The limitation of not knowing who the individuals are 

purchasing for (i.e. themselves or significant others) means that the results are purely based 

on purchasing and demand side factors. We are also unaware of actual usage of products. 

Our analyses are also cross-sectional and are limited in their ability to draw inferences about 

relationships to sociodemographic variables. There are also ecological fallacies and 

inferences about how they apply towards understanding individual-level relationships that 

should be avoided. 

 

3.5. Conclusion 
This research utilises big data giving an understanding of large sample purchasing 

behaviour. The data contains close to 20% of the adult population in England, far larger than 

any previous self-medication study. The data driven approach using loyalty card data allows 

for actual purchasing behaviour captured within the data, allowing unprecedented context 

within data. This approach is a novel contribution to current self-care debate, hopefully 

allowing for further research expanding on the findings.  
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Chapter 4 : Using loyalty card records and machine 

learning to understand how self-medication purchasing 

behaviours vary seasonally in England, 2012-2014 
This chapter uses the same loyalty card dataset from chapter 3 and builds on the 

opportunities suggested in the discussion. Two product groups are focused upon (coughs and 

colds and hay fever) due the known seasonality of the associated ailments. This chapter 

considers the opportunities for using new forms of data in population health surveillance and 

builds on existing approaches (e.g. the use of social media or search engine data) by 

providing objective purchasing information. As more than 300 features were originally 

available, a data driven methodology allowed the reduction of features to create accurate 

predictive models to predict 17-months of future self-medication product purchasing. Results 

offer new detail into the temporality of self-medication purchasing for these products and 

highlights the promise of both this data and approach in population health surveillance.  

 

4.1. Introduction  
Fine resolution public health information is vital for determining at-risk populations (Hay et 

al., 2005). Data driven applications are improving health surveillance frameworks 

(increasingly in real-time) which have proven successful in pursuit of discovering such at-

risk populations (Ginsberg et al., 2009; Raghupathi and Raghupathi, 2014). Identification of 

potentially life threatening complications (e.g. thoracic aortic dissection) (Andreu-Perez et 

al., 2015) and evidence-based prescribing (Raghupathi and Raghupathi, 2014) are possible 

when deploying a data driven approach to medicine. Despite this, clinical based data lack 

temporality and have high associated creation and collection costs (Andreu-Perez et al., 

2015).  

 

Repurposing data from non-traditional sources (e.g. over the counter medicine transactions) 

are improving how we approach public health (Davies, Green and Singleton, 2018). These 

new forms of data are collected automatically (e.g. real-time transactions) and have allowed 

new approaches to healthcare surveillance through the utilisation of big data (Ginsberg et al., 

2009). Successful applications include using search engine data to predict influenza 

outbreaks (Google Flu Trends) (Cook et al., 2011), social media (e.g. Twitter data) to track 

post-earthquake Cholera outbreaks in Haiti (St Louis and Zorlu, 2012), and loyalty card data 

to explore self-medication purchasing (Davies, Green and Singleton, 2018). These surrogate 

sources contribute superior speed and detail, providing a framework for fast estimates, 

inferences and early detection of disease (Magruder, 2003; Butler, 2013; Olson et al., 2013; 
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Raghupathi and Raghupathi, 2014; Santillana et al., 2014), and have been found correlated 

to actual disease data (Valdivia et al., 2010).  

 

Transactions linked with loyalty card data create a significant opportunity to improve 

knowledge regarding the prevalence and seasonality of minor ailment prevalence via over 

the counter medication purchasing information. These data do not only offer potential for 

merely monitoring prevalence but also in understanding the drivers of self-medication 

behaviours and predicting future behaviour. Self-medication offers a significant benefit to 

reducing the healthcare burden of minor ailments (Heikkinen and Järvinen, 2003; Pillay et 

al., 2010), however as most of this information is held within industry, access is rare. 

Existing research has explored associations between primarily socioeconomic features and 

both prescription and over the counter medicines (e.g. Green et al. (2016)), where surveys 

are a common data source. Temporality within over the counter purchasing has been 

considered (e.g. Magruder (2003) and Magruder et al. (2004)) although applications have 

largely been exploratory and few applications have had access to loyalty information (e.g. 

Davies, Green and Singleton, 2018 or Nevalainen et al., 2018). There is a research gap for 

utilising this real-time objective purchasing information for both understanding and 

predicting self-medication behaviours temporally.  

 

Health-literacy, emergent from the self-care movement, has developed amongst the general 

population where over the counter medicine usage is high (Magruder, 2003). Sales of these 

medicines have been found highly correlated with physician records whilst reaching wider 

audiences than prescriptions (Magruder, 2003). Insights of purchasing behaviour are 

important for understanding the prevalence of over the counter medication which can infer 

the extent of ailments. Alternatively, this information could be used in a preventative 

framework to identify at-risk populations based on over-the-counter purchasing behaviours, 

which could aid clinicians in addressing issues such as self-medication dependence, 

misdiagnosis and concurrent medication (Bradley and Bond, 1995; Hughes, McElnay and 

Fleming, 2001). Accessing over the counter transaction data offers an opportunity for novel 

insights into self-medication behaviours, and the possibility of knowledge for future disease 

trends. The combination of transactions with anonymised loyalty information address the 

issues seen in other data (e.g. aggregation (Ginsberg et al., 2009) or self-reporting bias 

(Green et al., 2016)), allowing accurate information retention.  

 

The aim of this study is to utilise loyalty card records to understand self-medication 

behaviours; explore how this varies over time and the drivers of these trends; and highlight 

opportunity for using them to predict future purchasing.  
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4.2. Methods  

4.2.1. Data 

We used anonymised transaction records linked to customer loyalty records from a national 

high street retailer, 2012 to 2014. Data are automatically collected and combined with 

loyalty accounts when a customer presents a loyalty card during transaction. Data contained 

anonymised individual level transactions for ~15 million customers grouped into ~300 

categories. Data cleaning removed unrealistic (e.g. ages below 18 and above 100), missing 

values, and customers from outside of England. Data were constrained to England as 

prescription practices vary throughout the constituent countries of the UK.  

 

We selected two outcomes – hay fever and coughs and colds. These minor ailments were 

chosen because they were identifiable within the high street retailer’s hierarchical product 

categories. Both ailments are associated with commonly self-treated conditions and provide 

contrasting seasonal patterns. Other medicines categories were less distinct in the hierarchy 

are therefore excluded. We opted to use the finest level of detail available (lowest hierarchy 

groups) to avoid loss of context. We aggregated transactions to Lower Super Output Area 

Level which are administrative areas containing a mean population of ~1500 people (n = 

32843, excluding the Isles of Scilly) (Office for National Statistics, 2016). Aggregated 

values were the proportion of customers purchasing each outcome per month.  

 

A data driven approach was taken for the selection of explanatory variables (detailed later). 

We included any predictor available that had been demonstrated in the literature to be 

associated with self-medication or health behaviours, resulting in an initial count of ~300 

predictors.   

 

Environmental predictors of weather (Robinson et al., 2017) and yearly pollution data 

(Brookes et al., 2016) were aggregated from a national coverage raster grid (1x1km) to 

produce monthly LSOA averages. These data sources (CHESS and DEFRA) were selected 

as they are openly downloadable and useable for research, providing accurate modelled 

national coverage raster information. The outcomes are inherently seasonal therefore the 

influence of the weather and environment is an important consideration. Research suggests 

an environmental influence for these ailments (e.g. air quality and rhinitis) (Charpin and 

Caillaud, 2017).  
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Accessibility measures included predictors from the Index of Access to Healthy Assets and 

Hazards; a comprehensive data resource measuring contextual and geographical features 

related to health (e.g. air quality, green space) and overall index combining all measures 

(Green et al., 2018). Air quality measures (e.g. SO2, PM10) are cited as causes of both 

ailments and have previously been identified as predictive features (Hajat et al., 2001; 

Heikkinen and Järvinen, 2003; Davies, Green and Singleton, 2018). Individual measures of 

accessibility to pharmacies and GPs (from the Index of Access to Healthy Assets and 

Hazards) were included as a proxy for healthcare access. Physician diagnosis have 

previously been found correlated with over the counter medication sales (Magruder, 2003).  

 

Socioeconomic status has previously been found to influence self-medication usage, where 

higher status has led to increased over the counter medication usage (Green et al., 2016). The 

Index of Multiple Deprivation (Smith et al., 2015) was used as a proxy for neighbourhood 

deprivation. The Output Area Classification (Gale et al., 2016) was selected to measure the 

demographic characteristics of neighbourhoods (included as a proportion of Lower Super 

Output Area per group) and has been found a predictor of over the counter medication 

purchasing (Davies, Green and Singleton, 2018). Rural Urban Classification (Bibby and 

Shepherd, 2004) is utilised as a proxy for the effects of living environments, particularly as 

exposure (e.g. to viruses (PM2.5) and dust (PM10) (Charpin and Caillaud, 2017)) varies 

considerably within different environments. The sources of the socioeconomic variables can 

be seen in table 3.1.  

 

Finally, we utilised information from the high street retailer data (including median age of 

loyalty card holders and previous sales). When predicting sales, historical purchasing 

features have been found important (Žylius, Simutis and Vaitkus, 2015). Previous month 

product and related product transactions were aggregated using the same method as the 

outcome for use as predictors (e.g. tissues, pain relief). Further product information 

including total product sales values were also included. 

 

4.2.2. Statistical analyses  

Machine learning models (e.g. tree ensembles) have been demonstrated to perform better 

than commonly used time-series methods (e.g. ARIMA) and are more flexible in dealing 

with large numbers of predictors (Adamowski et al., 2012; Žylius, Simutis and Vaitkus, 

2015; Pavlyshenko, 2016). Tree Ensembles are commonly applied in prediction and bring 

superior performance for complex nonparametric data (Chen and Guestrin, 2016). Extreme 

Gradient Boosting (XGBoost) is a scalable parallel implementation that combines weak 

learners to create superior leaners, using regularisation to minimise overfitting (Chen and 
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Guestrin, 2016). Possessing better efficiency and speed above other algorithms, XGBoost 

has been shown to outperform SVMs and Random Forests (Ogutu, Piepho and Schulz-

Streeck, 2011).  

 

A monthly forecasting approach is selected allowing a detailed temporal resolution whilst 

keeping model computation feasible. Training data contain a year’s worth of monthly 

observations per Local Super Output Area. 10-fold cross validation and a 70-30 train-test 

data split were used in parameter tuning. Initial models were static, trained on month 1-12 

(April 2012 to May 2013) and used to predict to month 13-27 (April 2013 to September 

2014). A dynamic approach was then employed, retraining the model in a moving 12-month 

window producing a separate model per month to predict months 13-27. Dynamic retraining 

approaches have been observed to improve performance (Santillana et al., 2014). The 

comparison of modelling allows evaluation of the accuracy of predicting 17 months in 

advance and scrutiny of how the models change with the inclusion of updated information 

(key for evaluating their potential in population health surveillance).  

 

Initially ~300 predictors were available. Following a backward feature selection approach 

(including correlation, variance inflation factor and feature importance analysis) features 

were reduced to 40 for coughs and colds and 43 for hay fever. Performance increased with 

feature reduction suggesting more complexity is not necessarily better (Lazer et al., 2014). 

Further engineered features included temporal information (month), and seasonality 

measures of typical seasons for coughs (Autumn to Winter (Heikkinen and Järvinen, 2003)) 

and hay fever (Spring to Summer (MetOffice, 2018c)) which improved performance. 

Hyperparameters and features were kept constant to aid comparison of models.  

 

Analysis was performed in R (R Core Team, 2014). Modelling was performed in the 

XGBoost (Chen et al., 2018), caret (Kuhn, 2008) and ALEPlot packages (Apley, 2018) and 

visualisations made using ggplot2 (Wickham, 2016).  

 

4.3. Results  
Monthly purchasing is more common for coughs and colds than hay fever medicines (1.7%-

6.3%, and 0.5%-3.4%, respectively) (figure 4.1.). Monthly proportions are considerably 

smaller than the total proportion of customers purchasing products throughout the whole 

time period (58.6% and 29.4% respectively).  
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Seasonality is observed for both medicines however hay fever seasons are more clearly 

defined. Coughs and colds proportions rise through Winter peaking in December (6.3% in 

2012 and 5.5% in 2013). A summer trough is observed with the lowest proportions in June to 

August (figure 4.1.). Contrastingly hay fever demonstrates a clear Autumn to Winter off-

season. The highest proportions of hay fever are observed March to September (maximum 

July 2013 (3.3%) and June 2014 (3.4%)). Summer 2012 exhibits a lower peak at 2.5%, 

however, this was the coldest June for two decades (MetOffice, 2013). The interquartile 

range is greater for coughs and colds suggesting more variance nationally (possibly as hay 

fever is distinctly seasonal).  

 

 
Figure 4.1. Median and interquartile range of proportion purchasing products per 

month 

 

We next fit models to predict purchasing trends between May 2013 and September 2014. 

The static model consistently over predicted coughs and colds purchasing (figure 4.2.a). The 

predicted values for dynamic retraining find similar trends in the data, however, a time lag is 

observed where large changes occur (e.g. September and December 2013). Figure 4.1. 

showed that interquartile range increased with increased sales. R2 values were highest where 

purchasing proportions are highest reflecting the benefits of greater variation in the training 

data. The range of R2 value (0.5-0.7) outlines good performance. The worst performance is 

seen in August 2013 and 2014 where the lowest median proportions are found. Normalised 
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Root Mean Square Error (nRMSE) is consistent across the 17 months and follows a similar 

trend to the R2 value. Model performance increased with dynamic retraining. 

 

Modelling hay fever (see figures 4.2.d-f) results in trends similar to the training data. July 

2013 sees the peak purchasing for 2013 whereas in 2012 and 2014 July witnesses declining 

purchasing showing that this approach fails to pick up yearly changes. This is likely 

reflecting the low variation in values across most months, limiting the model training 

performance. During the off-season, stable trends for hay fever mean predicted medians are 

closer to the actual values. However, model performance (e.g. R2 value) is poorer during this 

period as well. The decrease in R2 is however expected as this is influenced by the decrease 

of range within the data therefore explanation of the variance is reduced.  

 

 
Figure 4.2. a) Coughs and colds median sales and predictions; b) Coughs and colds R2 
performance; c) Coughs and colds interquartile range nRMSE; d) Hay fever median 
sales and predictions; e) Hay fever R2 performance; f) Hay fever interquartile range 

nRMSE 

  

The dynamic modelling approach generally performs better than the static model, however a 

time lag occurs with the abrupt changes in sales (August 2013 and 2014 are over predicted). 

nRMSE is highest for the dynamic model at these time lags. The models struggle to predict 

the peaks; however, this is constrained by only the availability of one year of training data. A 
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greater coverage of historically data could improve predictive performance with seasons 

identified.  

 

Exploring the feature importance across our models allows an evaluation of the predictors of 

self-medication (figure 4.3.). Only the top eight features (top 10%) are considered since they 

have the largest effect on the reduction of model error. For both categories, previous month 

product and related product purchasing are the most important features consistently. Month 

and buying season are important as temporal identification features. Distinct seasonality of 

hay fever purchasing is shown with buying season most important across seven months 

(figure 4.3.b). Temperature is also observed as consistently high ranking suggesting a 

climate influence. Sulphur dioxide pollution level is the only environmental predictor here 

for coughs and colds. No social predictors were observed as important here. 

 

Comparably feature importance ranking is erratic for hay fever likely due to the greater 

seasonality of this product. Mean age of loyalty card holders is higher ranking suggesting 

this product group is sensitive to age. The largest number of changes in rank is seen for hay 

fever (August 2013 and 2014) corresponding with the highest nRMSE where purchasing 

medians decline for the off season.  

 

 
Figure 4.3. Feature importance rank change across models for eight most important 

features 
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In order to obtain further context from XGBoost models, Accumulated Local Effect plots 

(Apley, 2016) are used to understand associations between important features and the 

outcome in black box methods, particularly when correlation is present between predictors 

(Apley, 2016; Molnar, 2019). Accumulated Local Effect plots vary a feature across its range 

to consider its association with the outcome expressed as ‘delta’. Again, only the top 10% of 

features are considered due to the highest reduction of error (and therefore influence) on the 

models.  

 

Figure 4.4. shows ALE for coughs and colds. As expected, purchasing of product and related 

product features (cough and colds proportion, cough value and pain relief proportion) are all 

positively associated with an increase in delta. Similarly (as expected) buying season is 

positively associated with purchasing. Seasonality is observed within the feature ‘month’ in-

line with typical seasons (Heikkinen and Järvinen, 2003). Positive delta is seen for Autumn 

to Winter, and negative for Spring to Summer. The largest increase is found where delta is 

highest, observed in December. This would suggest there is a large positive increase in 

proportion of customer purchasing in December. Age displays positive delta for ages 

between 40-60 for coughs and colds. Cold incidence rate is known to be “inversely 

proportional to age” (Heikkinen and Järvinen, 2003, p52), therefore it is likely that 

purchasing is for significant others (particularly children). Temperature is relatively static 

with small fluctuations from zero delta; however, delta is slightly elevated between 2.5-

7.5°C. Coughs and colds are associated with a number of viruses that have varying 

seasonality which would likely explain the stability of temperature (Heikkinen and Järvinen, 

2003).  

 

Increased previous month product and related product features (hay fever proportion, hay 

fever value, sun preps proportion, pain relief proportion) are again associated positively for 

hay fever (figure 4.5.). Seasonal trends are observed, with buying season positively 

associated, and months Spring to Summer having large positive delta. Age, again as seen in 

coughs and colds, exhibits positive delta between 35-60 years old. It is possible these age 

ranges are purchasing for dependent others (i.e. parents purchasing for children), as 

decreasing and negative delta is viewed outside this range (Gray, Boardman and Symonds, 

2011). For hay fever, positive delta is observed between temperature ranges 10-15°C and at 

19°C, suggesting these temperatures increase sales. These ranges relate to optimal 

temperature ranges for trees (10-15°C), and 19°C is within the optimal range for grass 

species to release pollen (MetOffice, 2018a).  
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Figure 4.4. Accumulated local effects plot for eight most important features (coughs 

and colds) 

 
Figure 4.5. Accumulated local effects plot for eight most important features (hay fever) 
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4.4. Discussion  
Using transaction level loyalty card data has provided valuable insights into the temporality 

of over the counter purchasing for the product groups considered. Distinct seasonality in 

purchasing was apparent with coughs and colds products more common in Winter and hay 

fever in Summer. Modelling trends in purchasing confirmed the importance of seasonality, 

as well as temperature and median age. We also found that our dynamically retrained 

modelling approach was in general better at predicting purchasing behaviours than a static 

approach. Our results demonstrate the potential of using such data for population health 

surveillance and forecasting. 

 

Buying season is an important variable for both products but is ranked higher for hay fever 

than coughs and colds which is likely due to the more distinct purchasing season. This 

indicates positive influence (shown in ALE plots figures 4.4.-4.5.) of known coughs and 

colds season (Heikkinen and Järvinen, 2003) and pollen season for hay fever (MetOffice, 

2018b). The observed epidemiological trend of the common cold “increases rapidly in 

autumn, remains fairly high through winter and decreases again in spring” (Heikkinen and 

Järvinen, 2003, p52). We find that over the counter coughs and colds purchasing observes 

the same initial increase and decline in Autumn and Winter, however we also observe an 

additional peak in Winter (shown Figure 4.1.). The large increase in December (and highest 

Delta (figure 4.4.)) may relate to a lag from Autumn (buying when needed), but possibly also 

preparatory purchasing for Winter, particularly as January and February have purchase 

decline. The less defined seasonality within purchasing (i.e. no clear buying or prolonged 

off-season) is likely attributable to the amount of associated viruses and respiratory ailments 

that have varying seasons (Heikkinen and Järvinen, 2003).  

 

Forecasting hay fever is notoriously difficult as the season varies substantially year-on-year 

(Davies and Smith, 1973). Our approach offers new information of the buying season of hay 

fever products. We observe peak purchasing between June and July, which concurs with 

historically observed peaks in early June (Davies and Smith, 1973) and widely disseminated 

information to the public (MetOffice, 2018c). We observe a purchasing season from April to 

September, coinciding with seasonal temperatures which are likely to effect purchasing. 

Temperatures between 10 and 15°C have a positive delta (figure 4.5) and at 19°C increase is 

observed, relating to optimal pollen release temperatures (MetOffice, 2018a). The inclusion 

of a seasonality feature based on public advisory information (e.g. MetOffice (2018c)) 

increased model performance, highlighting influence on purchasing. 

 



 68 

Environmental features were important reflecting the seasonality of products (increasing 

performance when included). Temperature is highly ranked for both products which 

contrasts to research suggesting weather does not bring performance improvement over 

historical information when predicting sales (Žylius, Simutis and Vaitkus, 2015). 

Temperature plays differing roles for our outcomes. For hay fever, it is a proxy variable that 

correlates to the production of pollen (although is directly driving that production hence 

indirectly influencing hay fever). In contrast, respiratory conditions (e.g. cold viruses and 

influenza) are influenced by colder weather (Heikkinen and Järvinen, 2003). We did not 

detect strong associations though for our other environment measures including air quality 

with only Sulphur Dioxide ranking in the top 10% of features for coughs and colds. This is 

despite evidence demonstrating that poor air quality is a determinant of both hay fever (e.g. 

PM10) and respiratory conditions associated with coughs and colds (Hajat et al., 2001; 

Charpin and Caillaud, 2017).  

 

We did not find any evidence in the importance of any social or demographic predictors. 

This was surprising since previous research has demonstrated the importance of social 

inequalities in self-prescribed medicine behaviours (i.e. lower socioeconomic status groups 

being less likely to self-medicate) (Green et al., 2016). Despite this, the inclusion of these 

predictors brought model performance improvement highlighting some (albeit small) 

predictive importance. Median age of loyalty card holders in areas was found to be 

important. The result reflects that people aged 35-60 years had the highest proportion of 

medicine purchasing (and positive Delta in ALE plots), however this age range has been 

found to exhibit purchasing for dependent others or replenishing family medicine stock 

(Gray, Boardman and Symonds, 2011).  

 

A number of limitations are present within this research. The limited time series data used 

(2012 to 2014) constrains historical training data to one year, limiting the quality of training 

and therefore predictions. The dynamic models show that retraining improves capturing 

trends, however nRMSE shows that where large differences occur compared with previous 

years the model performs poorly. Our model therefore presents more of a proof of concept 

for potential usage in a predictive surveillance model. Greater use of historical data could 

provide a feasible implementation for utilising over the counter product sales as an early 

indicator of disease trends, however there are many possible obstacles (e.g. ethical concerns 

and data linkage between multiple retailers and health records). Purchasing information does 

not equate to consumption of medicines and is a key limitation of these data. However, sales 

data have been shown to correlate to disease incidence rates highlighting value (Magruder et 

al., 2004). Model performance was not perfect and would stress the need for utilising such 
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data alongside other (more traditional) data to fully understand trends in self-prescribed 

medications. Further involvement of environmental features such as pollen within the hay 

fever models (e.g. Ito et al., (2015)) would likely bring performance gain however access to 

such data is limited. Interpretation of our results must be careful to avoid committing any 

ecological fallacies. Inferences of our results can only be made at Local Super Out Area 

level, limiting the application of our models. One opportunity to extend the model would be 

to explore the spatial patterns in purchasing over time and how they relate to disease 

outbreaks (e.g. Magruder (2003)). We also only focus on residence location and do not 

account for movement or spatial exposure (e.g. commuting) (Hanigan, Hall and Dear, 2006).  

 

4.5. Conclusion  
Presented are insights from a novel application of machine learning with new forms of data 

via a scalable Data Science approach for predicting trends in purchasing of self-medication. 

We build on previous over the counter medicine applications with the inclusion of loyalty 

card records (Magruder, 2003; Magruder et al., 2004). The application could act as an early 

indicator of ailment incidence that could complement existing methods (e.g. Santillana et al., 

(2014)), and may offer cheaper and more efficient means of data collection than existing 

disease surveillance systems that employ traditional health data (Ginsberg et al., 2009).  
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Chapter 5 : Using Machine Learning to explore food 

preparation amongst young adults in Canada 
While chapters 3 and 4 have shown how national scale transaction level loyalty card records 

can benefit public health knowledge, both studies are restricted to residential based location 

and do not consider the movement of individuals. The Canada Food Study presented an 

opportunity to extend focus to dynamic individual level exposure through GPS trajectories 

linked to a health survey. This dataset also highlights how big data does not necessarily 

relate purely to size (e.g. number of observations) but also can offer size in terms of width 

which in this dataset is thousands of features. The chapter considers the relationship between 

obesity and food preparation via the use of sequence analysis and clustering to create a 

typology of food preparation. The outcomes of cluster membership and then BMI are used in 

regression models for further understanding. This application identifies problematic food 

preparation behaviours in Canada and highlights a novel opportunity within obesity research.  

 

5.1. Introduction  
Global obesity rates have witnessed widespread increase coinciding with shifts in global 

food systems and changes in dietary practices. Resultant of prolonged energy imbalance, 

obesity is defined as the excessive build-up of body fat that may impair health (World Health 

Organization, 2000b; Katzmarzyk, 2002). Obesity rates in Canada increased from 5.6% in 

1985 to 25.3% in 2017, with similar increases observed across all provinces (Katzmarzyk, 

2002; Statistics Canada, 2019). Severity has risen and Body Mass Index is now more 

commonly exceeding 40 (i.e. class III obesity) causing a major issue to public health and its 

economy (e.g. increased incidence of obesity-related non-communicable diseases) (World 

Health Organization, 2000b; Kim and Basu, 2016; Lebenbaum et al., 2018). Obesity 

threatens “both the overall health status of Canadians and the Canadian healthcare system” 

(Anis et al., 2010, p31), with 2021 estimates suggesting a CAN$9 billion direct cost, 

accounting for 2.5% of healthcare spending (Birmingham et al., 1999; ObesityCanada, 

2019).  

 

Accessible, cheap, and extensively promoted ‘junk’ food is considered a key contributor to 

obesity increase (Hill and Peters, 1998; World Health Organization, 2000b; Guthrie, Lin and 

Frazao, 2002; Barlow, McKee and Stuckler, 2018; Fong et al., 2019). To date research has 

commonly focused on understanding associations between obesity and the built 

environment, food contents from dietary recalls, and physical activity (Hill and Peters, 1998; 

Tremblay and Willms, 2003; Kestens et al., 2012; Satija et al., 2015; Crowe et al., 2018). 
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While a multitude of studies examine these individual relationships, few have incorporated 

this information together, particularly linking nutritional and health surveys along with built 

environment data (e.g. exposure to food outlets (Casey et al., 2012; Burgoine et al., 2014)). 

 

Childhood obesity has dramatically increased since 1980, bringing long-term risk, 

consequences, and severe public health concerns (World Health Organization, 2000b; 

Johnson-Taylor and Everhart, 2006; Abarca-Gómez et al., 2017). Globally, child and 

adolescent obesity was 4.5 times higher in 2016 (18%) versus 1975 (4%), and 5% higher 

versus adults (13%) (World Health Organization, 2018). Despite research commonly 

focusing upon adolescence, there is a lack of understanding about important factors that may 

impact obesity rates among young adults, including preparation habits, food-related 

behaviours, and environmental exposures (Johnson-Taylor and Everhart, 2006; Larson et al., 

2006). With youth obesity more prevalent than ever before and young adults (particularly 

men) more likely to consume fast food (Duffey et al., 2009; Lachat et al., 2012), there is an 

urgent need for research that explores dietary behaviours during the transition to adulthood 

(ages 16-30). 

 

Examining where and by whom food is prepared brings important context to nutrition 

studies. Findings from Larson et al. (2006) suggest those who prepare their own food are 

more likely to consume the recommended level of nutrients. An inverse relationship between 

consuming food sourced out of home and obesity is widely cited, associating service food 

(e.g. fast food) with poor nutrient intake (vs prepared at home) and weight gain (Duffey et 

al., 2009; Smith et al., 2009; Powell, Nguyen and Han, 2012; Penney et al., 2017). Exposure 

to such services, associated with low cost and convenience, is a key determinant of obesity 

(Hill and Peters, 1998; Tremblay and Willms, 2003; Burgoine et al., 2014). In contrast, 

skipping meals (particularly breakfast) has been linked to grazing behaviour, negatively 

impacting nutrition and hampering cognitive function (Benton and Parker, 1998; Waterhouse 

et al., 2005; DeJong et al., 2009). Skipping breakfast has been suggested as an associated 

cause of obesity (DeJong et al., 2009). To our knowledge, there have been no examinations 

of how different sequential meal behaviour patterns (including origin, location, and meals 

skipped) is affected by exposure to food environments, and how this subsequently links to 

BMI. 

 

To fill the aforementioned gap in the literature, our study uses data from the 2016 Canada 

Food Study. Launched as a part of a larger multi-country effort to explore links between diet 

and health, the Canada Food Study combines comprehensive assessments of diet and dietary 

practices over time with high resolution urban built environment exposure data. To achieve 
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this, the Canada Food Study has utilised the ubiquity of GPS-enabled smartphones to capture 

daily spatial activity patterns. The use of trajectory data from GPS devices in food behaviour 

research is increasing (e.g. Chaix et al. (2012); Scully et al. (2017;2019); Widener et al. 

(2018)). The provision of extensive GPS movement data, and the ability to perform data 

linkage to combine this with comprehensive information from other sources (e.g. food 

diaries) enables for greater depth in behavioural research (Stopher and Greaves, 2007). 

 

Methods of sequence analysis and data mining make it possible to derive interpretable 

typologies of behaviour (Gabadinho et al., 2011). Commonly utilised in career path analysis, 

these methods focus on complete events sequences (Abbott and Tsay, 2000), and provide 

analysis opportunities of the sequential food preparation data collected in the Canada Food 

Study. We examine food preparatory behaviours by creating a typology of preparation 

sequences. Doing this, alongside an assessment of time weighted GPS trajectory data, while 

also accounting for important covariates, will allow a novel exploration of the relationship 

between obesity, food preparation, consumption, and exposure to food environments. 

 

5.2. Methods 

5.2.1. Data 

The dataset used (the 2016 Canada Food Study) is described in detail by Hammond, (2017), 

Hammond, White and Reid, (2017) and Widener et al., 2018). Summarising Widener and 

colleagues’ description, respondents, aged 16-30, were recruited in five Canadian cities 

(Edmonton, Halifax, Montreal, Toronto and Vancouver) via in-person intercept sampling 

(from a sample of stratified sites). Eligibility is determined by residence, age, internet and 

device access, and no prior Canada Food Study enrolment. Consent was provided prior to 

completing the study. Of the 3000 young adults in the initial survey, 1568 were invited for a 

smartphone sub-study and 686 participated. Respondents must have expressed interest for 

the follow-up study and had an eligible smartphone. Using a GPS-enabled smartphone and 

the CFSMobile app, high resolution trajectory data was collected which included a temporal 

component. Participants received a CAN$2 recruitment cash incentive, a CAN$20 Interac e-

transfer after survey completion and an additional CAN$25 Interac e-transfer after GPS 

study completion.  

 

After excluding respondents due to incomplete participation (e.g. failing to complete all 

separate sections of the study, travelling outside Canada during the study or significant 

amounts of ‘refuse to answer’), 396 individuals were used in our analysis. Summary 

statistics of the overall sample are as follows. 35% were of the sample were (assigned the 
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sex at birth of) male and 65% female. The median age was 21. In terms of ethnicity, 52% of 

the sample identified as White, 4% Aboriginal, 4% Black, 10% Chinese, 7% South Asian 

and 23% other. 86% of the sample had completed a minimum education level of a high 

school diploma or equivalent. The median BMI of the sample was 23.4. 

 

5.2.2. Food preparation sequence typology 
The Canada Food Study includes food preparation recall questions over a one-week period. 

Respondents provided the location and who prepared food for three daily meals (breakfast, 

lunch, dinner) for seven consecutive days. Sequences were standardised by order (beginning 

Monday breakfast). Possible answers were:  

- Home, by you (including minimal prep), 

- Home, by someone else (e.g. family/ partner), 

- Out of home service (e.g. restaurant/ takeout),  

- Someone else’s home, 

- Did not eat. 

This data contained 21 columns of data for each respondent, with the aforementioned five 

possible answers. In its raw form this data is not particularly useful nor easy to 

comprehendible by the human eye. Sequence analysis enabled this information to be mined 

providing insights from methods such as clustering. While the data is novel, it is the 

sequence analysis that adds value to this data. Food preparation sequences are mined in order 

to understand how food preparation varies through a week, and to explore whether there are 

typical behaviours within our sample. Considering these data as sequences provides the 

opportunity to easily interpret behaviours at a population level. Clustering enables this 

analysis to extend to consider whether behaviours such as skipping breakfast or eating out on 

the weekend exist and to understand the characteristics of the groups that exhibit these 

behaviours. Understanding these behaviours as an outcome and exploring the characteristics 

of individuals who exhibit them are key to be able to develop knowledge and policy within 

obesity and nutrition. Analysis was performed in R (R Core Team, 2014).  

 

Sequence analysis 

Sequence analysis allows the visualisation and data mining of sequential data. Following a 

methodology similar to McVicar and Anyadike-Danes (2002), sequence analysis was 

performed using TraMineR (R package) (Gabadinho et al., 2011). The sequences are made 

up of 21 meals from Monday breakfast to Sunday Dinner. To analyse these sequences 

optimal matching is necessary to examine the similarity of sequences. This allows the 

creation of a cost matrix of substitutions, allowing sequences (e.g. Did not eat – Home, by 
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you – Home, by you and Did not eat – Home, by you – Home someone else) to be judged 

similar, despite not matching exactly (Dijkstra and Taris, 1995). The Hamming (Hamming, 

1950) method for optimal matching was used as equal weighting is given to position. As 

dissimilarity is determined by the number of positions that do not match, the approach is 

strict to time warp (e.g. Out of home service – Home, by you – Home, by you and Home, by 

you – Out of home service – Home someone else have no positional matches and are 

therefore different) (Studer and Ritschard, 2016). 

 

Clustering 

Both Ward’s method of hierarchical clustering (Ward, 1963) and K-medoids (Park and Jun, 

2009) were tested to cluster the food preparation sequences. Ward’s method is 

agglomerative, categorising data into a tree of clustered groups (Liao, 2005). K-medoids 

arbitrarily categorises data into clustered groups and iteratively minimizes an objective 

function until within cluster sum of distances between medoids is minimised (Hartigan and 

Wong, 1979; Liao, 2005; Park and Jun, 2009). Clusters were created for a range of k (2-10) 

to allow a parsimonious solution to be identified. Ward’s method (k=10) was selected via 

qualitative exploration of representative sequences and state frequency plots, elbow plots and 

the gap statistic. A need for a high number of splits was highlighted (e.g. for low splits 

respondents with exclusively Out of home service and Home, by you were grouped 

together). The gap statistic (Tibshirani, Walther and Hastie, 2001) and qualitative 

exploration suggested k=10 optimal. Ward’s method was selected over K-medoids since the 

latter produced less optimal results (e.g. multiple Home, by you clusters were produced only 

varying at one state). Clustering was performed using the cluster (Maechler et al., 2018) and 

kmed (Budiaji, 2019) R packages, with model metrics explored using the factoextra package 

(Alboukadel Kassambara and Mundt, 2017). 

 

5.2.3 Time weighted exposure 

Mobility patterns are theorised to be consistent, with high probabilities of returning to 

familiar locations (Lin and Hsu, 2014; An, 2016). GPS movement data initiates the 

generation of time weighted average daily exposure to food and health-based facilities (e.g. 

fast food, sport and leisure). Using the itinerum-trip-breaker algorithm (SAUSy-Lab, 2019), 

cleaned representations of activity spaces are extracted for each participant. As SAUSy-Lab 

(2019) describe, the algorithm removes erroneous points (i.e. similar points to temporal 

neighbours and large jumps indicating no signal), segments data and then performs location 

detection using a time-weighted kernel density estimation, generating coordinates with a 

temporal component indicating activity occurrence. A parameter of ten minutes was 
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determined by the authors as a reasonable threshold to determine whether a person has 

remained in a location for long enough to be considered a place of note. The algorithm also 

calculates travel time between locations.  

 

Multiple buffers were generated around each place of note, with distances intended to 

account for direct sight (250m) and an approximate 15-minute walk (1km). Business register 

data from Statistics Canada was used to quantify obesity-relevant businesses in the built 

environment (e.g. food retail and sports facilities). North American Industry Classification 

System (NAICS) codes were used to classify businesses by count, aggregated at the 

Dissemination Area level (Statistics Canada (Business Register Division), 2017). The 

proportion of the Dissemination Area’s area (Statistics Canada, 2017) intersecting each 

activity location buffer was calculated and used to weight Dissemination Area business 

count for that site. For example, if a Dissemination Area contained ten fast food retailers and 

the buffer covered 50% of the area, the location would be considered exposed to five fast 

food retailers. A daily total exposure to the built environment measurement per participant is 

calculated by: 

- Multiplying the number of relevant businesses within activity space buffers by the 

time spent in each buffer 

- Summing the total weighted counts across all activity space buffers. 

These daily exposures are averaged across the number of days GPS data was provided per 

individual, creating a dynamic movement based average exposure measurement.  

 

5.2.4. Statistical analyses 

Summary statistics, state frequencies, and representative sequences were calculated to 

provide descriptive context for our typology.  

 

As personal contexts drive where food is sourced and consumed (Widener et al., 2018), 

multinomial logistic regression was used to examine whether demographic and built 

environment features explained an individual engaging in our clusters of food preparation 

behaviours. Covariates included:  

- Age - linked to increased likelihood of consuming Out of home service;  

- Sex and race - associated to food-preparatory behaviours (Larson et al., 2006);  

- Household size - found impacting likelihood of eating Out of home service (Datar, 

2017); and  

- Time weighted exposure to facilities (fast-food, restaurants, sport and leisure).  
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Linear regression was used to examine BMI as a function of our sequence clusters, exposure, 

and demographic features. Exploratory features include:  

- Age - associated with differences in obesity rates;  

- Sex - obesity is typically higher for women (World Health Organization, 2000b);  

- Ethnicity - risk of complications from obesity vary with ethnicity as fat is stored 

differently (World Health Organization, 2000b; Katzmarzyk, 2002; Gittelsohn et al., 

2018);  

- Household size - found inversely related to BMI (Datar, 2017); and  

- Time weighted exposure to facilities (fast-food, restaurants, sport and leisure) - 

caloric access is considered a key influencer of obesity (Tremblay and Willms, 

2003).  

Regression models were performed using base R (R Core Team, 2014) and the nnet R 

package (Venables and Ripley, 2002) and regression summary tables were created using the 

stargazer package (Hlavac, 2015). 

 

5.3. Results  

5.3.1. Descriptive analysis  

Looking at all sequences from the sample, Home, by you is the most frequent preparation at 

breakfast (.6), however, Did not eat is notably prevalent at breakfast (.2) versus other 

mealtimes (shown figure 5.1.a). Out of home service accounts for larger frequency for lunch 

and dinner, increasing at the weekend. Evening meals are rarely missed, with Home, by you 

again displaying the largest frequency (.45). Someone else’s home increases towards and is 

highest at weekends. Entropy for each state (figure 5.1.b) is lowest at breakfast, suggesting 

lacking diversity of food preparation behaviours compared to lunch/dinner. A small increase 

in entropy is observed chronologically, likely due to higher variance at weekend.  
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Figure 5.1. a) State frequency (left); b) state entropy (a measure of uncertainty) (right). 

Note: the X axis details the meal number of the day (e.g. M1 is meal 1). 

 

5.3.2. Exploratory analysis of typology 
Figure 5.2. provides a graphic breakdown of our ten clusters, containing a vast amount of 

information. Further documentation of these plots can be found in the TraMineR R package 

(Gabadinho et al., 2011) documentation, however, the following description should aid 

interpretation of Figure 5.2.. Part a. displays representative sequences that make up each 

cluster. The Y axis shows the number of representative sequences that are contained within 

each cluster, as well as the cluster size. The symbols (e.g. ) distinguish between sequences 

on the Y axis and also on the discrepency and the mean distance measures (above each set of 

representative sequences). The X axis is split into 21 blocks, each block represents a meal in 

order (i.e. position one is Monday breakfast or meal nine is Wednesday dinner). For 

example, cluster 9 has one representative sequence (all meals are prepared at home by 

someone else). As these sequences are representative, figure 5.2.b. instead shows the 

frequency of each food preparation type within each of cluster. Again using the example of 

cluster 9, one representative sequence is shown in part a., whereas part b. shows that from 

Wednesday onwards, out of home service food actually increases in frequency. This 

information links back to part a. with the discrepency being three and the mean distance four 

for this cluster.  

 

Ten clusters are found within the food preparation sequences. While the largest cluster 

contains 160 people, the smallest cluster contains 11. Despite the cluster size being 
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unbalanced, using a smaller number of clusters meant that distinct sequences were dispersed 

through other clusters losing context (highlighted in figure 5.2. within clusters 7, 9 and 10). 

Ten clusters were kept to ensure this context was not lost. Within our ten homogenous 

clusters, there are five prominent behaviours (figure 5.2.a-b); Home, by you (clusters 1, 4, 6 

and 8), Home, by someone else (clusters 2 and 9), mixed Home, by you and Home, by 

someone else (clusters 3 and 5), Out of home service (cluster 7) and Did not eat (cluster 10). 

Distinct subsequences are found such as clusters missing breakfast (1, 2, 6, 7 and 10), and 

increased weekend Out of home service (clusters 1, 5, 8).  

 

Of the Home, by you prominent clusters, cluster 4 (n=160) is the largest with Home, by you 

across all meals. Cluster 6 (n=29) is similar, however breakfast is typically missed and a 

higher BMI is witnessed (.7 increase). Both cluster 4 and 6 infrequently include Out of home 

service. Here the highest ages are found (cluster 4=23.2, cluster 6=23.3). Fast food exposure 

is high at 250m and 1km buffers, despite low Out of home service bevhaviours.  

 

Cluster 1 (n=26) sees inclusion of Did not eat and Out of home service (particularly Out of 

home service at weekends), while cluster 8 (n=24) sees only higher Out of home service. 

Participants in cluster 1 typically skip breakfast, and have a BMI 1.1 above average. Cluster 

1 sees frequent Out of home service, despite low exposure to fast food. Cluster 8 is younger 

(20.8 years), however BMI is .7 above average and travel time is 7.3 minutes above average, 

possibly indicative of more Out of home service. Cluster 2 (n=34), displays similarities with 

cluster 1 (indentical BMI), however Home, by someone else replaces HY. Did not eat 

breakfast is common. These sequences frequent Out of home service, despite below average 

exposure to fast food. 

 

Those in cluster 9 (n=16) have one representative sequence: all meals are Home, by someone 

else except Sunday dinner (HY). Travel time and fast food exposure allign with average. 

 

Home, by you/ Home, by someone else mix is found in clusters 3 (n=59) and 5 (n=16). 

Cluster 3 has static behaviour of breakfast (Home, by you), lunch (Home, by you/ Home, by 

someone else mix) and Dinner (Home, by someone else). Age is low (19.9), household size 

is high (median=4), and exposure to fast food is low for this group. Constrastingly, cluster 5 

displays no clear pattern and sporadic Out of home service inclusion. Above average BMI is 

possibly influenced by the lack of food preparation structure, alongside higher fast food 

exposure, compared with cluster 3. There is some Out of home service at weekends for both 

groups.  
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Cluster 7 (n=29) has majority Out of home service. Two representative sequences are 

observed: all Out of home service, or all Out of home service but Did not eat breakfast. Age 

(20.3) is low for this cluster, along with household size (2.5). Fast food exposure is low at 

250m (.08), increasing at 1km.  

 

Cluster 10 (n=11) exhibits isolated behaviour with Did not eat dominant (Breakfast is 

typically skipped). This group has the lowest median age (18.7), however median BMI is 

above average. Travel time is the largest observed (87.2 minutes), and fast food exposure is 

low.  

 

Table 5.1. Summary statistics of clusters 

 

 

 

Cluster 

 

n Age 

(mean) 

 

BMI 

(median) 

Travel 

time 

(mean 

mins) 

Household  

size 

(median) 

Fast Food 

250m 

(median) 

Fast Food 

1000m  

(median) 

1 26 21.5 23.4 84.5 3 .26 2.96 

2 34 21.2 23.4 87.3 3.5 .11 2.71 

3 59 19.9 21.9 80.0 4 0.12 2.83 

4 160 23.2 22.3 77.7 2 .22 4.40 

5 16 22.1 22.8 71.0 3 .21 2.26 

6 29 23.3 23.0 62.0 2 .32 4.95 

7 22  20.3 22.5 66.5 2.5 .08 3.69 

8 24 20.8 21.5 85.3 3 .15 2.91 

9 16 21.1 23.0 80.3 3.5 .20 3.21 

10 11 18.7 22.9 87.2 3 .07 2.44 

All  397 21.9 22.3 78.0 3 0.18 3.77 
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Figure 5.2. a) Representative sequences for typology b) state frequencies for typology 
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5.3.3. Explaining food preparation behaviours 

Cluster 4 (predominantly Home you) is the reference category for our outcome as this is 

largest cluster which represents consistent at home preparation behaviour. Covariate 

reference categories are sex = female, location = Toronto, and race = white.  

 

Age is significant for all clusters (p<.001). A one-unit increase decreases the odds of being 

in each cluster (except cluster 6 displaying a positive relationship). Sex is significant for all 

groups except clusters 8 and 10 (p<.001); all odds of cluster membership are greater than one 

(i.e. males were more commonly associated with clusters 1-3, 5-7 and 9). Cluster 7 displays 

the largest coefficient (OR = 8.97) suggesting being male increases the likelihood of 

predominantly Out of home service. Similarly, a large odds ratio (3.60) was observed for 

Home, by someone else (cluster 9) versus Home, by you (cluster 4).  

 

Few associations were observed between locations. Significant odds (p<.001) are found for 

cluster 9, meaning the odds of Home, by someone else versus Home, by you is higher for 

Montreal versus Toronto. Significance (p=.002) is seen for cluster 5 with higher odds for a 

mix of Home, by you / Home, by someone else / Out of home service vs Home, by you for 

individuals in Vancouver versus Toronto. All other associations were non-significant. 

 

Significant odds were found for participants identifying as Chinese and clusters lacking 

consistent home preparation (1-2, 7, 9 and 10). The highest odds (OR = 17.71) for 

participants identifying as Chinese was cluster 9 (which has higher occurrence of Home, by 

someone else), which is similar for participants identifying as South Asian (OR = 10.67) and 

race=Other (16.72). Chinese and South Asian exhibit the only higher odds of being in cluster 

7 (Out of home service majority).  

 

Access to leisure facilities have non-significant odds for all clusters, however 250m access to 

fast food or restaurants was found to have varying effects. For example, cluster 7 (Out of 

home service dominant) exhibits non-significant odds for fast food, but a significant per unit 

increase of 8.8% is found for restaurants (p=.003).  

 

All odds are significant (p<.001) for travel time. The highest odds (1.012) are found for 

cluster 10 (the most sporadic eating behaviour vs cluster 4). The odds are lowest (.982) for 

cluster 6, despite this group typically missing breakfast. 
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Household size is significant for all clusters. Cluster 9 (predominantly Home, by someone 

else) has the highest odds for an increase in household size whereas cluster 7 (Out of home 

service) and cluster 6 (Home, by you - most similar to 4) exhibit the lowest odds. 

 

Table 5.2. Multinomial logistic regression (exponentiated odds ratios) 

 Dependent Variable:  

 C
luster 1 

C
luster 2 

C
luster 3 

C
luster 5 

C
luster 6 

C
luster 7 

C
luster 8 

C
luster 9 

C
luster 10 

Age 
0.900*** 

(0.065) 

0.894*** 

(0.061) 

0.798*** 

(0.055) 

0.940*** 

(0.075) 

1.027*** 

(0.058) 

0.793*** 

(0.083) 

0.817*** 

(0.075) 

0.890*** 

(0.082) 

0.660*** 

(0.150) 

Sex Male 
1.731*** 

(0.482) 

2.866*** 

(0.443) 

2.207*** 

(0.371) 

1.702** 

(0.596) 

1.890*** 

(0.455) 

8.970*** 

(0.565) 

1.059 

(0.549) 

3.600*** 

(0.643) 

0.195 

(1.174) 

Location 

Edmonton 

0.346 

(0.874) 

0.460 

(0.674) 

0.841 

(0.512) 

0.916 

(1.004) 

1.160 

(0.648) 

0.298 

(0.926) 

0.787 

(0.747) 

0.950 

(1.000) 

0.207 

(1.250) 

Location 

Halifax 

0.721 

(0.657) 

0.348 

(0.647) 

0.358 

(0.522) 

0.534 

(0.930) 

0.323 

(0.706) 

0.589 

(0.698) 

0.351 

(0.741) 

0.450 

(1.294) 

0.397 

(0.983) 

Location 

Montreal 

0.851 

(0.802) 

0.486 

(0.897) 

0.594 

(0.663) 

1.787 

(0.923) 

1.110 

(0.657) 

0.322 

(0.963) 

1.287 

(0.953) 

3.140*** 

(0.909) 

0.523 

(1.352) 

Location 

Vancouver 

0.559 

(0.688) 

0.685 

(0.633) 

0.731 

(0.547) 

2.696** 

(0.828) 

0.227 

(0.862) 

0.219 

(0.936) 

1.004 

(0.715) 

1.876* 

(0.900) 

0.379 

(1.113) 

Race 

Aboriginal 

0.696 

(1.133) 

1.684** 

(0.801) 

0.256 

(1.128) 

0.862 

(1.170) 

1.075 

(1.156) 

0.00002 

(0.00001) 

1.375 

(0.892) 

0.001 

(0.0005) 

0.00004* 

(0.00002) 

Race 

Black 

0.559 

(1.177) 

0.403 

(1.192) 

0.438 

(0.821) 

0.526 

(1.215) 

0.861 

(0.926) 

0.577 

(1.359) 

0.00001 

(0.00003) 

0.0003 

(0.0005) 

2.629* 

(1.329) 

Race Chinese 
4.868*** 

(0.710) 

4.637*** 

(0.685) 

1.168 

(0.677) 

0.00001 

(0.00001) 

1.351 

(0.794) 

6.675*** 

(0.865) 

1.105 

(0.910) 

17.709*** 

(1.344) 

4.165** 

(1.416) 

Race South 

Asian 

1.022 

(0.923) 

1.385 

(0.767) 

0.437 

(0.778) 

0.00001 

(0.00003) 

1.075 

(0.902) 

3.795*** 

(0.833) 

0.00001 

(0.00002) 

10.673*** 

(1.368) 

0.00000 

(0.00001) 

Race Other 
0.697 

(0.660) 

0.667 

(0.622) 

0.749 

(0.449) 

0.544 

(0.703) 

0.548 

(0.614) 

0.867 

(0.721) 

0.863 

(0.632) 

16.724*** 

(1.189) 

2.509** 

(0.892) 

Sport Leisure 
0.583 

(0.786) 

0.239 

(1.091) 

0.319 

(0.677) 

0.888 

(0.743) 

0.209 

(1.089) 

0.758 

(0.976) 

0.221 

(1.107) 

0.278 

(1.195) 

1.588 

(1.528) 

Fast food 
1.288* 

(0.569) 

1.231 

(0.635) 

2.525*** 

(0.421) 

0.514 

(0.801) 

1.301* 

(0.595) 

0.743 

(0.683) 

5.410*** 

(0.595) 

6.128*** 

(0.775) 

1.570 

(1.281) 

Restaurants 
0.987** 

(0.312) 

0.750 

(0.403) 

0.796*** 

(0.256) 

1.348*** 

(0.358) 

0.844** 

(0.300) 

1.088** 

(0.364) 

0.151 

(0.825) 

0.304 

(0.586) 

0.107 

(1.354) 

Travel time 

(mean) 

1.005*** 

(0.005) 

1.003*** 

(0.005) 

1.002*** 

(0.005) 

0.993*** 

(0.009) 

0.982*** 

(0.008) 

0.991*** 

(0.008) 

1.005*** 

(0.005) 

1.001*** 

(0.007) 

1.012*** 

(0.009) 

Household size 
1.311*** 

(0.158) 

1.594*** 

(0.143) 

1.561*** 

(0.121) 

1.361*** 

(0.189) 

0.860*** 

(0.173) 

0.838*** 

(0.215) 

0.923*** 

(0.185) 

1.723*** 

(0.193) 

1.350*** 

(0.228) 

Constant 
0.599 

(1.685) 

0.640 

(1.557) 

13.040*** 

(1.330) 

0.329 

(2.082) 

0.883 

(1.574) 

36.299*** 

(1.993) 

20.389*** 

(1.817) 

0.017 

(2.419) 

155.753*** 

(3.321) 

AIC 1556.076 1556.076 1556.076 1556.076 1556.076 1556.076 1556.076 1556.076 1556.076 

Sample size 396 396 396 396 396 396 396 396 396 

Note: Exponentiated odds ratios, standard errors and p-values (*p<0.05; **p<0.01; ***p<0.001) are displayed  
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5.3.4. Examining whether good preparation is associated to body weight 

Age is positively associated with BMI (.140, p=.05). Sex and household size are non-

significant. Aboriginal race was positively associated with a 2.386 BMI increase (p=.05) 

whereas all other categories demonstrating no association. All cities exhibit increased BMI 

compared with the reference (Toronto) however Montreal is the only significant coefficient 

(2.174, p=.012).  

 

Fast food exposure (250m) was positively associated with BMI increase (1.329, p=.019), 

whereas leisure exposure (250m) was inversely related to BMI (-1.639, p=.025). Exposure to 

restaurants and travel time are non-significant. The typology suggests individuals within 

cluster 7 may have higher BMI than individuals in cluster 4, indicating increased BMI for 

those with food predominantly prepared Out of home service, however the level of 

significance was inconclusive (p=.093). No other cluster is found significant.  
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Table 5.3. Linear Regression 

 
Dependent variable: 

 Body Mass Index 

Age 0.140* (0.071) 

Sex Male 0.482 (0.535) 

Location Edmonton 1.296 (0.796) 

Location Halifax 0.961 (0.742) 

Location Montreal 2.174* (0.858) 

Location Vancouver 0.863 (0.740) 

Race Aboriginal 2.386* (1.213) 

Race Black 0.572 (1.204) 

Race Chinese -1.325 (0.888) 

Race South Asian 0.032 (1.035) 

Race Other -0.029 (0.652) 

Cluster 1 0.290 (1.024) 

Cluster 2 1.254 (0.946) 

Cluster 3 -0.219 (0.786) 

Cluster 5 0.286 (1.249) 

Cluster 6 0.029 (0.977) 

Cluster 7 1.916 (1.137) 

Cluster 8 -1.618 (1.063) 

Cluster 9 
 

1.493 (1.316) 

Cluster 10 1.602 (1.513) 

Sport Leisure -1.639* (0.728) 

Fast Food 1.329* (0.562) 

Restaurants -0.204 (0.351) 

Travel Time (mean) 0.0002 (0.006) 

Household size -0.101 (0.173) 

Constant 19.253*** (1.914) 

Observations 396 

R2 0.095 

Adjusted R2 0.034 

Residual Std. Error 4.701 (df = 370) 

F Statistic 1.560* (df = 25; 370) 

Note: Beta coefficients, p values 

(*p<0.05; **p<0.01; ***p<0.001) and standard errors 

are displayed 
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5.4. Discussion  
Utilising food diaries alongside GPS movement data allows for unprecedented context when 

analysing food preparatory behaviours. Little, if any research, has explored how food 

preparation behaviours vary sequentially, how environmental context may relate to this, and 

how these important factors link to health outcomes like BMI. We build on previous dietary 

behaviour studies with the novel use of sequences, contributing new information to the 

national and global concern of improving diet (An, 2016). 

 

We demonstrate that potentially problematic behaviours exist with food preparatory 

behaviours, as 5% of our sample predominantly have food prepared out of home service. 

Eating out is strongly associated with fast food consumption, and higher caloric consumption 

is consequential (Lachat et al., 2012; An, 2016; Penney et al., 2017). Furthermore, 

concerning sequences are observed with increased Out of home service at weekends (clusters 

1, 5 and 8) as it is suggested that consumers do not offer the same scrutiny to ingredients 

compared with Home, by you preparation (Guthrie, Lin and Frazao, 2002).  

 

In contrast, 30% of our study population fall in representative sequences missing meals (Did 

not eat breakfast). Research has shown skipping meals can negatively impact daily nutrition, 

is linked to obesity, and can hamper some cognitive function (Benton and Parker, 1998; 

Waterhouse et al., 2005; DeJong et al., 2009). Skipping breakfast also promotes 

unfavourable grazing behaviours (Waterhouse et al., 2005). We find clusters regularly 

missing breakfast exhibit higher median BMI.  

 

The highest median ages tend to be in Home, by you clusters (4 and 6). This is consistent 

with research suggesting younger adults are more likely to consume Out of home service 

(Larson et al., 2006). Significant associations of younger age and Home, by someone else 

clusters possibly capture younger individuals living with family. In our data, however, a 

positive association between increased age and BMI is exhibited aligning with global trends 

(World Health Organization, 2018). This polarity could be suggestive of increased wealth 

(from the transition from education to work) influencing portion size and therefore caloric 

intake (Lachat et al., 2012). 

 

We detect higher odds of males belonging to clusters lacking Home you, consistent with the 

notion that young adult males are more likely to consume fast food, and a greater likelihood 

of young adult females being invloved in food preparation (Larson et al., 2006; Duffey et al., 

2009). Non-significant effects are found for sex predicting BMI. Despite obesity rates 
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typically being higher for women, this finding aligns with obesity prevalence predictions in 

Canada which suggest similar rates in men and women (World Health Organization, 2000b; 

Gotay et al., 2013). 

 

Household size is suggestive of Out of home service cluster membership, corresponding 

with smaller household sizes being linked to consuming food away from home (Datar, 

2017). Literature associates larger families with lower BMI, however we find no significant 

effects (Datar, 2017). Household size has been cited as a determinant to skipping meals, 

whereas we do not observe any obvious relationship (DeJong et al., 2009; Datar, 2017).  

 

We observe varied effects by race. Significant effects for participants who identify as 

Chinese and cluster 7 and 9 membership show a reliance on others for food preparation. 

When predicting BMI, participants who identify as Aboriginal, a group with a greater risk of 

obesity, is the only race displaying a significant positive coefficient (Katzmarzyk, 2002; 

Gittelsohn et al., 2018). Evidence of varied preparation by race, and associations with BMI, 

show an important determination in food behaviours and obesity when considering at-risk 

populations.  

 

The theory that widespread access to caloric foods is linked to the consumption of such 

foods (Tremblay and Willms, 2003) is not convincingly found in this analysis. Summary 

statistics show that exposure is low for cluster 7 (predominantly Out of home service) and 

high for clusters with little Out of home service (4 and 6). Moreover, log odds are non-

significant for clusters with high Out of home service, and fast food exposure (5 and 7). 

Restaurants are however significantly positively associated suggesting that Out of home 

service may not necessarily be influenced purely by fast food outlets. Contrastingly, clusters 

(1, 3, 8) with sporadic inclusion of Out of home service exhibit significant positive log odds 

for time weighted fast food exposure, suggesting complex exposure interactions. In relation 

to BMI, exposure measures concur with expectations that access to calorie dense food is a 

key influencer of obesity (Tremblay and Willms, 2003). Access to restaurants is non-

significant, possibly suggesting a difference in quality versus fast food (Lachat et al., 2012; 

Faber et al., 2013; Penney et al., 2017). As expected, access to sport and leisure facilities are 

negatively associated with BMI increase.  

 

Cluster 7 (predominantly Out of home service) exhibits the highest significance of any 

cluster. Showing a positive association with BMI, this agrees with the wider research of a 

positive relationship between Out of home service and obesity (Hill and Peters, 1998; 

Tremblay and Willms, 2003; Penney et al., 2017). This finding is consistent with research 
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suggesting involvement in food preparation increases the likelihood of meeting nutrient 

guidelines, however the significance level is low (p=.093) (Larson et al., 2006). 

 

There are numerous limitations in our study. Despite wide application, food surveys are 

limited by cost and time, substantiated with our lack of complete data (Biro et al., 2002). 

Eligibility, a reduction of invites for the additional GPS study, out of country travel, data 

completeness and data linkage issues meant only subsample could be used in our study. 

Similarly, the available covariates were restricted – e.g. snack data had no temporal or 

quantity metadata and therefore was omitted. Socioeconomic status is also not considered 

which may influence both access and consumption choice, and has been associated with 

higher (but also different types of) away from home energy consumption (DeJong et al., 

2009; Lachat et al., 2012; Penney et al., 2017). Furthermore, dietary recall surveys feature 

measurement error, under-reporting and self-selection bias (Faber et al., 2013; Satija et al., 

2015; Crowe et al., 2018), however some error is assumed for every dietary recording 

method (Biro et al., 2002).  

 

In this study data preparation groups include generic features (e.g. Out of home service). 

Despite a general literature consensus that Out of home service is negative based on the 

premise that fast food is the main source, quality varies considerably between fast-food 

(large, cheap, low-quality) and sit-down restaurants (expensive, specifically sourced 

ingredients) (Lachat et al., 2012; Faber et al., 2013; Penney et al., 2017). Similarly, home 

preparation infers healthiness, despite including food that may require little preparation (e.g. 

frozen meals). We also fail to consider ease, speed, price, or the number of people food is 

being prepared (all potential influencers of food choice) (Waterhouse et al., 2005). 

Nonetheless, utilising preparation instead of food consumption is likely to reduce reporting 

bias as exact foods are withdrawn.  

 

Diet is exposure and time dependent therefore an individual’s behaviour can dramatically 

change (Widener and Shannon, 2014). Although GPS data are typically restricted to one 

week (e.g. Chaix et al. (2012); Scully et al. (2017)) our findings cannot be considered a 

ground truth for all Canadians aged 16-30 (Satija et al., 2015). GPS data are widely accepted 

as supplementary data and bring clear value, but limitations include unstable signals, data 

processing and transfer, and variance in device quality (Shen and Stopher, 2014). Other 

spatial issues could also affect results. For example, we attribute environmental exposure to 

a 250m buffer around activity spaces in our models, accounting for direct sight. Other 

distances could be relevant, based on the type of facility, and issues like cumulative exposure 

are not accounted for. 
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Despite these limitations, there are real opportunities for using the presented methods with 

datasets in other regions and across other populations. The increase in high resolution 

location information, along with data from time use and dietary diaries provide exciting 

possibilities to conduct new studies that seek to merge data sources to provide a more 

holistic view of food-related behaviours and subsequent health outcomes. 

 

5.5. Conclusion 
The increase in obesity, high associated costs to Canadian healthcare, and predicted further 

caloric availability means understanding food preparatory behaviours for young adults in 

Canada is of great importance (Birmingham et al., 1999; Barlow, McKee and Stuckler, 

2018). Population surveillance is deemed necessary to explore the obesity epidemic in 

Canada (Katzmarzyk, 2002). Unfortunately, quantifying food preparation and consumption 

is extremely difficult and like most nutritional studies the only viable data collection is via 

survey. Our study is not nationally representative (An, 2016), however we are able to 

highlight problematic behaviours among young urban adults in North America. Our 

approach is novel in dietary behaviour research, and contributes information to the obesity 

epidemic in Canada, with a methodology that is transferable and scalable provided data 

availability which hopefully will be used to inform policy and change social norms. 
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Chapter 6 : An application of text mining for understanding 

the evolution of US obesity related policy (2001-2017) 
Chapters 3, 4 and 5 have examined new forms of data that either have a residential location 

or a dynamic movement people focus, however, there is a lot of available data that extend 

beyond individuals and groups of people. This chapter instead highlights opportunities for 

using text data for further insight into Public Health. Text summaries (abstracts) of enacted 

obesity related bills are used to explore the focus of obesity policy, and how this varies 

geographically and temporally. Following a text mining approach, a range of methods are 

employed from word clouds to sentiment analysis to explore these data. The influences of 

obesity related policy enactment are also modelled using negative binomial mixed effect 

models. This chapter highlights the knowledge and context that is obtainable within another 

non-traditional data source that impacts upon health behaviours and exhibits clear benefit 

and potential for further application.  

 

6.1. Introduction  
US Obesity prevalence is one of the highest internationally, reflecting issues such as average 

calorie consumption per capita exceeding double recommended levels (Abelson and 

Kennedy, 2004; Hales et al., 2017). Adult obesity trends have increased from 30.5% in 2001 

to 39.6% in 2017 (Hales et al., 2017). Morbid obesity, the most severe form of obesity has a 

current prevalence of 7.7% (National Institute of Diabetes and Digestive and Kidney 

Diseases, 2019) which may present further issues for future healthcare resources (World 

Health Organization, 2000b; Sturm, 2007; US Department for Health and Human Services, 

2010; Kim and Basu, 2016). Driving obesity increases are significant changes to dietary 

patterns and environments (Hill and Peters, 1998). Nutrition environments (increased 

exposure and access to cheap high calorie food and drink) alongside physical inactivity 

(increased sedentary lifestyles) are cited as key determinants (Hill and Peters, 1998; World 

Health Organization, 2000b; Guthrie, Lin and Frazao, 2002; Sturm, 2007; US Department 

for Health and Human Services, 2010; Fong et al., 2019).  

 

The significance of the high prevalence of obesity has seen considerable policy effort aimed 

at tackling and reversing trends, however success has been limited. The 2001 Surgeon-

General’s Call To Action sought collaboration to improve (i.e. reduce and prevent) the 

obesity situation in the US (US Department for Health and Human Services, 2001); 

however, despite providing guidelines, response to the call has been argued as weak 

(Abelson and Kennedy, 2004). The proceeding 2010 Surgeon-Generals vision stated that 
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“the prevalence of obesity, obesity-related diseases, and premature death remains too high” 

(US Department for Health and Human Services, 2010, p1). At the most basic level 

individuals need to make healthier choices (e.g. exercise, reduce sugar intake) (US 

Department for Health and Human Services, 2010). Individual freedom of choice cannot be 

regulated; however, state policy and regulations can act to improve environments 

(McKinnon et al., 2009). With the determinants of obesity complex and numerous, the 

solutions will need to cover many different stakeholders (e.g. individuals, private sector and 

communities) and many facets require action (e.g. agriculture, advertising and community 

programmes) (McKinnon et al., 2009; Gortmaker et al., 2011). In both Surgeon-General 

reports (US Department for Health and Human Services, 2001, 2010) the numerous 

opportunities for legislation within society are clearly outlined, ranging from education (e.g. 

food service and curriculums) to the environment (e.g. advertising and parkland).  

 

Understanding how features influence the enactment of policies enables greater depth in the 

knowledge of successful obesity response. Current research includes exploratory research 

(e.g. understanding the relationship the built environment and obesity) (Lopez-Zetina, Lee 

and Friis, 2006); evaluating the impact of individual policies (e.g. healthy eating or physical 

education) (Cawley and Liu, 2008; Eyler et al., 2012; Lankford et al., 2013); critical analysis 

and frameworks for future polices (e.g. coordinating food environment interventions) 

(McKinnon et al., 2009; Sacks, Swinburn and Lawrence, 2009; Gortmaker et al., 2011); and 

exploring the drivers of bill enactment (i.e. bills passing through legislation), for example, to 

understand obesity prevention legislation (Boehmer et al., 2007; Hersey et al., 2010; 

Donaldson et al., 2015). The majority of these studies routinely focus on themes such as 

childhood obesity, addressing taxes, exposure and media image (e.g. school environments 

account for a considerable quantity of obesity bills) (Boehmer et al., 2007; Cawley and Liu, 

2008; Frieden, Dietz and Collins, 2010; Lankford et al., 2013). A lack of focus on adults is 

noticeable, and there is a need for further examination of why particular bills are enacted 

versus others (Donaldson et al., 2015).  

 

Previous research has found bill topic and the semantics of policy phrasing important for 

understanding obesity policy trends. Soda tax and nutrition labelling are notable strategies 

that are increasingly prominent in legislation (Eyler et al., 2012; Lankford et al., 2013; 

Donaldson et al., 2015). The language used in bills has also proven important. Specific 

emphasis within bills has progressed over time (e.g. increased detail for the management of 

vending machines) (Lankford et al., 2013). Support for bills is also influenced by 

perceptions of the cause of obesity (i.e. whether the onus of obesity is an individual’s fault) 

(Barry et al., 2009; Donaldson et al., 2015; Joslyn and Haider-Markel, 2019). Decision 
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makers are likely to avoid the possibility of creating feelings of discrimination by not 

supporting bills that contrast with their constituents’ beliefs (Barry et al., 2009; Donaldson et 

al., 2015; Joslyn and Haider-Markel, 2019).  

 

Research has typically not considered how phrasing might explain bill enactment rates or 

how the phrasing has evolved over time. Few studies have analysed the contents of bills (e.g. 

Cawley and Liu (2008); Lankford et al. (2013); Donaldson et al. (2015)), and studies which 

have are largely limited to qualitative analyses. Related studies have primarily focused on 

enactment rates of bills (particularly childhood obesity related) as an outcome (Donaldson et 

al., 2015) and typically fail to consider bills texts as data. These approaches are restricted by 

short study durations and the ability to analyse and quantify increasing quantities of data 

(e.g. measuring trends of words terms over time). Utilising methods such as text analysis and 

the mining of large repurposed unstructured data (i.e. obesity policy abstracts), brings 

significant opportunities for improving the understanding of what influences obesity-related 

policy enactment. Taking advantage of this new form of data allows for novel exploration 

and contribution to knowledge focusing on the characteristics of policy abstracts; how bill 

enactment varies geographically; and what drives policy enactment over time. 

 

The aim of this study is to investigate how utilising text data in the form of obesity-related 

policy abstracts can help inform our understanding of obesity-related bill enactment in the 

US.  

 

6.2. Methods  

6.2.1. Data 

Data were obtained from the Centers for Disease Control and Prevention (CDC) who collate 

information on health-related legislation (Centers for Disease Control and Prevention, 

2019b). An earlier and less comprehensive version of these data have been utilised in other 

studies (Hersey et al., 2010; Lankford et al., 2013). The dataset contains information of 

every bill enacted from 2001-2017 for all 50 states and Washington DC, the state and year 

bills were enacted in, the topic of a bill, and a text summary (abstract). We focused only on 

policy where the topic was defined as nutrition (n=1699), physical activity (n=1212) or 

obesity (n=1609). Full bills lack structure (e.g. considerable amounts of cross-referencing 

between bills and structure that would require removal before analysis) and would require 

individual searching and downloading from an archive (n=4520), therefore abstracts were 

instead utilised in this study. The term count of abstracts ranged from 5 (e.g. provision 5491 

- Alaska 2003) to 281 (provision 6472 – Arkansas).  
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As obesity-related law is largely devolved from federal law with a state level legislative 

focus, we correspondingly focus analysis here at the state level (Boehmer et al., 2007). 

Previous studies have used enactment rate as the outcome (Boehmer et al., 2007; Hersey et 

al., 2010; Donaldson et al., 2015), however our dataset only provided full coverage for 

enacted policies. We therefore use enactment count per state per year as our outcome, 

calculated for all enacted policies, as well as stratifying by health topic (nutrition, obesity 

and physical activity).  

 

Covariates were derived from literature and included measures of health, political majority 

and demographics and were combined by year and state. Our health measures included the 

percentage of individuals with obesity (defined as body mass index of 30+) and the 

percentage of people who exercised in the last month, which were both derived from the 

CDCs Behavioural Risk Factor Surveillance System (BRFSS) (Centers for Disease Control 

and Prevention, 2019a). The influence of obesity on health has varied in studies. Obesity 

prevalence has been found inversely associated with overall obesity law enactment at state 

level (Marlow, 2014), and obesity rates have been found unpredictive of obesity legislation 

in short duration studies (i.e. 3-year data) (Eyler et al., 2012; Donaldson et al., 2015). We 

explore the impact of these measures over a much wider time frame.  

 

The effects of state majority political party varied in previous enactment research. Changes 

in state majority party has been found influential of law enactment (Cawley and Liu, 2008), 

however state political party association has been found irrelevant within the context of 

obesity prevention policy (2011-13) (Donaldson et al., 2015). We use state political majority 

in the last election, as well as president at the time as our political measures (The U.S. 

National Archives and Records Administration, 2019). 

 

Our socioeconomic predictors included yearly median income estimates from the US Census 

Bureau’s annual social and economic supplements of their current population survey (US 

Census Bureau, 2019). Whilst previous studies have included a measure for income (e.g. 

Eyler et al. (2012); Marlow (2014)) limited effects have been observed (e.g. on state level 

obesity related legislation enactment) (Marlow, 2014); our study extends to incorporate a 

much wider time frame.  

 

6.2.2. Statistical analyses 

A text mining approach was applied in order to extract insights from the policy abstracts. 

Text mining involves the use of specific data mining techniques that can be applied on text 
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data (Dörre, Gerstl and Seiffert, 1999; Delgado et al., 2002). Text data is rich with 

information, however, its unstructured nature must be converted into a usable form (Raja et 

al., 2008). For each abstract stop words (e.g. and, or, to) and numbers were removed, and 

words were stemmed to their root to remove duplication via tense (e.g. schools is stemmed 

to school). The ability to analyse unstructured data extends beyond basic analytics enabling 

deeper understanding and insight (Dörre, Gerstl and Seiffert, 1999; Delgado et al., 2002; 

Raja et al., 2008). 

 

Five text mining methods were applied ranging from simple visualisations to more complex 

measures of word rarity and sentiment. Each method provides a specific measure relating to 

the structure of the text and they are used to attempt to understand the contents of obesity bill 

abstracts. First, word clouds are a visual method of displaying the frequency of term 

occurrence within documents which provide an overview of words and bigrams that are 

prevalent within the documents (Cidell, 2010). Within a word cloud, the larger the size of the 

text, the more frequently a term is used. Comparison clouds instead enable the difference in 

frequency of term usage to be quantified across groups of texts (Kopp, 2019). Colour 

highlights the group that terms are used most by, and the text size indicates the size of 

difference. These two methods are the most basic visualisation, but both highlight summary 

characteristics of the policy abstracts, enabling initial exploratory understanding of their 

content.  

 

Term frequency – inverse document frequency (TF-IDF) is a measure of word rarity within 

texts (Leskovec, Rajaraman and Ullman, 2014; Silge and Robinson, 2017). We use TF-IDF 

to expand beyond the basic summary statistics displayed within word clouds and explore 

term usage in greater depth in the form of word rarity. The intent is to distinguish differences 

between policy topics by using TF-IDF to highlight the presence of specific and possibly 

specialist terms (Leskovec, Rajaraman and Ullman, 2014). To summarise the explanations of 

the TF-IDF calculation by Leskovec, Rajaraman and Ullman (2014), Silge and Robinson 

(2017) and Hamdaoui (2019), for each word term frequency is first calculated by dividing 

the number of times a word is used in a document by the overall count of words in that 

document. Inverse document frequency is then calculated by dividing the total number of 

documents in a group by the number of documents that contain the word and taking the log 

of this result. Finally, the term frequency is multiplied by the inverse document frequency to 

create TF-IDF, where larger values signify greater rarity.  

 

Considering how words are used in sequence is also important for understanding text 

structure and key phrases. Exploring bigrams (pairs of words) instead of singular words is 
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one way to obtain this information, but we are also interested in combinations of words that 

are commonly used in sequence. We use Markov chains to extend the analysis and our 

understanding from word or bigram scores to wider network of connections. Markov chains, 

an implementation of graph theory, produce a network of nodes for terms commonly used in 

sequence; connecting lines with arrows detail the direction, and the transparency level 

emphasises the strength, of connection (Kiss, 1968; Silge and Robinson, 2017). From the 

words that make up a collection of documents, a probability is assigned for each bigram 

from each initial word, enabling a network to be created with probability thresholds for 

inclusion (Kiss, 1968; Silge and Robinson, 2017). For example, if we use the term body as 

our initial word of a bigram and the second term of mass. This bigram (body mass) has a 

large number of connections and therefore a high probability of mass to be used after the 

term body, therefore the two terms are connected with an arrow from body to mass. Mass is 

also commonly connected to index therefore a further connecting arrow links mass to index 

highlighting body mass index.  

 

Finally, sentiment analysis allows the quantification of underlying opinions with documents 

to be mined and extracted (Liu, 2012; Silge and Robinson, 2017). We apply sentiment 

analysis to explore the presence of opinion with the abstracts, particularly focusing on 

whether this changes over time, whether this changes during transition between presidential 

administrations, and whether this aligns with enactment counts. This may indicate how the 

text contents of bills may relate to enactment. When applying this analysis, sentiments are 

assigned to every word with a document. Lexicons contain these measures of sentiment, 

which score words by category (e.g. positive or negative) and can be combined to create an 

overall sentiment score of a text, enabling comparison with similar documents (Silge and 

Robinson, 2017). The Bing lexicon for example contains a large dictionary of positive and 

negative terms (approximately 7000) however there is a greater proportion of positive words 

(Hu and Liu, 2004; Silge and Robinson, 2017).  

  

To explore the influences of obesity related policy enactment negative binomial mixed 

effects models were applied. These models enable the use of this longitudinal data and has 

previously been applied in this context for shorter duration studies (Eyler et al., 2012; 

Donaldson et al., 2015). The outcome is enactment count per state. The fixed effects are 

political (president and state political party), health (percentage population with BMI 30-

98.9 and percentage population who exercised in the last month) and demographic (median 

income). The random effect is year. 
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Analysis was performed in R (R Core Team, 2014) using the wordcloud (Fellows, 2018), 

tidytext (Silge and Robinson, 2016), ggplot2 (Wickham, 2016), igraph (Csardi G, 2006), 

ggraph (Pedersen, 2018), tidyverse (Wickham, 2017), tmap (Tennekes, 2018) and lme4 

(Bates et al., 2015) packages. The regression summary table was produced using the 

stargazer package (Hlavac, 2015). 

 

6.3. Results 

6.3.1. What is included in US obesity-related policy abstracts?  
Figure 6.1 provides a visual quantification of term usage within enacted obesity related bill 

summaries. Term prevalence across all enacted policy abstracts is visualised by individual 

term (figure 6.1.a) and combination of terms (i.e. bigrams, figure 6.1.b). Within figures 

6.1.a-b. the size and colour gradient of the terms details their frequency of use (i.e. small 

light words are used less frequently than large dark words, with large dark words being the 

most common). The most common individual term is school, whereas the most common pair 

of words (bigram) is physical activity (physic activ). We see that school is present in bigrams 

(e.g. public school, school district, school program). This would suggest a focus of obesity 

related policies on children. Physical (physic) and activity (activ) are prevalent as individual 

words, however as a pair these words are much more frequent. We also see themes such as 

task force, development (develop) and tax are also common within policy abstract text.   

 

Comparison clouds allow the variance by theme to be observed (figure 6.1.c-d). Here the 

frequency is again shown by size but instead relates to the difference in usage between 

topics. Colour instead highlights the policy theme (e.g. Nutrition is blue) and the size 

indicates the topic the term is used most in. For example, food is used more within Nutrition 

bill abstracts, whereas physic within Physical Activity abstracts. The most common term 

school (and similarly education) is the most prominent in all topics, however physical 

activity is more frequent for bigrams because of the frequency of use in physical activity 

policy abstracts. Food has the largest variance of frequency for any term (under nutrition). 

Nutrition policy abstracts has higher variance of usage for agriculture and nutrition terms, 

whereas for physical activity policy abstracts education, transport and development appear 

as specific keywords. Comparably education is common across all topics, however transport 

is only common for physical activity. Despite obesity bill abstracts having the highest 

average word count per abstract (51; nutrition is 46 and physical activity is 48), there is 

much less specific frequency variance of terms. Nonetheless obesity sees a focus on weight 

gain, prevention and obesity.  
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Bigrams (figure 6.1.b) show that physical activity is frequent for all topics (and is the most 

frequent bigram if stratified by topic), however the highest variance of usage comes within 

physical activity policy abstracts (figure 6.1.d). Bigrams with comparably higher use for 

physical activity policy abstracts are again themed around education and transport (e.g. 

transit oriented or health education). Prevalence of agriculture specific themes are found in 

nutrition policy abstracts (e.g. farmers market and agricultural products). Obesity abstracts 

lacked bigrams that are comparably used more than other topics, suggesting difficulty in 

distinguishing obesity bill abstracts compared to the other topics. 

 
Figure 6.1. Abstract summary term statistics for a) word cloud of term frequency; b) 

bigram cloud of frequency for combination of words; c) word comparison cloud of 
frequency usage; d) bigram comparison cloud of frequency for combination of words 

  

Figure 6.2. develops the information from figure 6.1. by instead focusing on word rarity by 

focusing on terms that are specifically used by each separate topic. Term frequency - inverse 

document frequency was calculated for both terms and bigrams by health topic (figure 6.2.). 

The y axis displays the word or bigram, and the x axis is the rarity score. Only the highest 

scoring words and bigrams are including for each topic. For example, for Nutrition terms 

breastfe (breastfeeding stemmed) has the highest score and therefore is the rarest term. This 
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enables unique themes to be identified; for example, nutrition policy abstracts see some 

focus around breastfeeding, whereas obesity policy abstracts see a surgery focus, and 

physical activity policy abstracts include government programmes (e.g. FAPE – Free 

Appropriate Public Education). Bigrams are noticeably different; nutrition sees numerous 

uses of farm, obesity sees direct mention of obesity (e.g. morbid obesity, weight gain) as 

well food delivery, whereas physical activity sees the involvement of incentives (e.g. bike 

month). 

 

 
Figure 6.2. Visualisation of the rarity of words and bigrams (combinations of words) 

for each obesity topic (using term frequency - inverse document frequency) 

 

Figure 6.3. extends the text analysis to focus on at connections of words. This allows us to 

not only focus on frequency, but also word parings and their connections to highlight key 

words or phrases that are frequently used in sequence using a Markov chain. Figure 6.3. 

visualises word pairings with a frequency greater than 50 times across all abstracts. The 

words are represented by nodes and arrows show the direction of connection (e.g. rules 

follows amends, so in text this would read amends rules); the darker the arrow the greater 

the frequency. Key connector words are highlighted e.g. Physical which is connected to a 

number of terms: activity, fitness, education. Similarly, education follows health, physical, 

and nutrition. School pro/precedes terms, explaining the high prevalence within the word 

cloud however low for bigram word cloud (e.g. school district, school lunch, public school). 

Contrastingly some individual phrases are also observed with no other connections (e.g. 
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childhood obesity or vending machines). Multiple connections are also observed (e.g. 

amends rules relating, healthy food products/service, body mass index, and public transit-

oriented development). These results suggest the presence of regular buzzwords within 

policy summaries highlighting themes that are consistent in enacted bills. It may be that 

these themes are of key interest to policy, and therefore the high prevalence may relate 

policy addressing these issues are enacted. Knowing this information may also help decide 

future policy themes by understanding the contents of successful policy abstracts.  

 
Figure 6.3. Visualisation of connecting words appearing more than 50 times (using a 

Markov Chain) 

 

6.3.2. How does obesity-related policy vary by state?  
Between 2001 and 2017, 4520 obesity-related bills were enacted. The mean number of 

policies enacted per state was 89, with a range 12-274. The lowest overall count came from 

South Dakota (12), Nebraska (21), Kansas (23), Wyoming (24) and Montana (26). The 

highest enacted counts were exhibited in the most populous states of California (most 

populous; 274), Texas (second most populous; 240), and Illinois (fourth most populous; 

224). States with significantly smaller populations (e.g. Rhode Island and Arkansas) still 

enacted a higher count of bills (143 and 152 respectively).  

 

Stratifying by health topic, 1699 bills were enacted for nutrition, 1609 obesity and 1212 

physical activity. The lowest state mean was for physical activity (24), with higher means for 
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nutrition (33) and obesity (32). The largest range was seen for physical activity bills, 

boasting the both the highest (California = 98) and lowest (South Dakota = 1) counts by 

health topic. Nutrition and Obesity have similar ranges, with South Dakota again the lowest 

(5 and 6), however Illinois had the highest count for nutrition (90) and Texas for obesity 

(98). California, Texas and Illinois, boasted the highest counts for all three topics.  

 

Figure 6.4.a. shows how counts vary geographically. The lowest overall count came from 

states in bordering between the Mountain and Northern Midwestern regions (South Dakota, 

Nebraska, Kansas, Wyoming and Montana). Texas and California (most populous and 

largest by area) behave differently from all neighbouring states, with significantly higher 

enactment counts. Similarly, Illinois differs from its neighbours, with Wisconsin and Indiana 

exhibit some of the lowest overall counts. With the exception of New Hampshire, states in 

New England and Middle Atlantic are above average.  

 

Varied emphasis on health topics is observed (Figure 6.4.b-d). At regional level this variance 

is most noticeable in the North-eastern states (Middle Atlantic and New England). Here New 

York exhibited a lower count for overall obesity-related bills, however had the fourth highest 

number of nutrition bills (a 45% share), whereas the neighbouring Pennsylvania has high 

nutrition enactment for the area and low enactment for other topics. The Mountain and 

Midwestern states enactment is better aligned and consistent. At state level examples of 

differing bill focus (or topic priorities) are highlighted by Texas exhibits a low focus (24.6%) 

on nutrition, whereas in Oregon 49.4% of policies enacted are nutrition-based bills. 
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Figure 6.4. Policy enactment count by state a) all policy, b) nutrition, c) obesity, d) 

physical activity. 

(note: boundary polygons were obtained from the spData R package (Bivand, Nowosad and 

Lovelace, 2019)). 

 

 

a.) All enacted policies  
 

 
 

 
 

b.) Nutrition enacted policies  
              

c.) Obesity enacted policies 
 

 
 

 
 

d.) Physical activity enacted policies 
 

 

Enacted count
12 to 41
41 to 77
77 to 111
111 to 182
182 to 274

H
awaii

Alaska

Enacted count
1 to 14
14 to 27
27 to 41
41 to 56
56 to 98

H
awaii

Alaska

Enacted count
1 to 14
14 to 27
27 to 41
41 to 56
56 to 98

H
awaii

Alaska

Enacted count
1 to 14
14 to 27
27 to 41
41 to 56
56 to 98

H
awaii

Alaska



 101 

6.3.3. How has obesity-related policy changed over time?  

In the 17-year time frame of this data, there has been three presidents: Presidents Bush 

(Republican), Obama (Democratic) and Trump (Republican). 64% of enacted policies were 

in the Democratic Obama administration. The same topics are favoured in the Bush and 

Obama Administrations, with Nutrition (38% and 37%) and Obesity (34% and 37%) having 

the largest shares of enacted bills, and Physical activity the lowest (28% and 26%). 

Contrastingly however, during the first term of the Trump administration 71% of bills 

enacted were Nutrition, whereas 8% were obesity and 20% physical activity, showing an 

apparent shift in focus. At state level, Democrat states had the largest amount of bills enacted 

(61.6%). There was little difference by topic with nutrition between political party. 

 

Figure 6.5. plots trends in summary statistics of policy abstract contents across the three 

political periods. Line plots show overall state averages, with smoothed conditional means 

used to ease interpretation. We stratify enactment count by political party of a state to 

examine if trends vary between Republican and Democratic states. We also use the measures 

of average sentiment (percentage of words that have positive sentiment) and average 

wordcount, to quantify the structure of policy abstracts. Wordcount is used to measure text 

structure which ranges from 5 to 281 words. We track this over time to explore how 

variation changes in relation to political periods (i.e. is more detail included in the final year 

before presidential change to push bills through).  

 

Average enacted count remained fairly stable during the Bush administration, before a slight 

increase in the final few years. Early promise was seen in the Obama administration with 

enactment counts far higher than the previous administration (reaching 18 in 2010). Average 

count however drops considerably to less than four in 2013 and for the remainder of this 

administration. The first year of the Trump administration continues the low enactment 

(average less than one enactment per state). Comparing state political parties’, Democratic 

states were consistently higher over the period than compared to Republican states. The gap 

between Democrat and Republican states was widest during the first half of the Obama 

administration, although trends were similar.  

 

For the measures of text structure, we see a gradual increase in average word count, peaking 

in 2011 (60) during the Obama administration. Average word count then falls to similar 

levels as seen pre 2010, before a second rise in 2017 (60 during the Trump administration). 

Average word count is largely similar by political party, before separating post 2013 with 

declining Republican length. The percentage of words that have positive sentiment are held 

consistent between two and three throughout the majority of the 17-year period, however an 
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increase is witnessed to 3.5 in 2017 (Trump administration first year). The sentiment of 

Democratic states is predominantly slightly more positive however the difference is very 

small (typically one more positive word on average).  

 

 
Figure 6.5. Smoothed conditional yearly state means for count of policies enacted (top), 

average abstract word count (middle) and percentage of words positive (bottom) 

 

Individual word clouds for Democrat and Republican state bills are largely the same (results 

not shown), as well as being very similar to figure 6.1.a, suggesting little difference in term 
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frequency by party. Despite this similarity a comparison cloud highlights the differences in 

term use (figure 6.6.). We detect differences in term use and political party majority. 

Democrat states displayed more specific usage of transport and monetary related terms (e.g. 

transport, transit, funds, and development). Contrastingly, Republican state bills see higher 

focus on the keyword physical, as well as activity, education and nutrition. 

 
Figure 6.6. Comparison cloud of frequency of terms by political party 

 

6.3.4. What influences obesity-related policy?  

Negative binomial mixed effects models are used to explore the influences of obesity-related 

policy enactment. Our outcome is the count of policies enacted (per state, per year).  

 

For all obesity-related policy, we found no significant effect for policy enactment during 

President Obama’s or Trump’s administration (in comparison to the Bush administration). 

Republican states were significantly negatively associated with an increase in enacted bills 

(IRR=.604 p<.001). For our health measures, state level obesity prevalence (IRR=.959, 

p=.045) and physical activity in the last month (IRR=.918, p<.001) are also negatively 

associated with an increase in enacted bills. Median income of a state was not associated to 

the number of policies enacted, suggesting little difference in policy behaviours between rich 

and poorer states. Our random effect, year, accounts for 52% of the variance explained. The 

coefficient of determination suggested fixed affects account for 15.3% of variation, 

increasing to 59.1% including random effects.  
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Each heath topic is also explored individually. For each theme, Obama administration is 

non-significant. While the Trump administration had non-significant effects for nutrition 

policy, we detect negative associations for obesity (IRR=.020, p=.025) and physical activity 

(IRR=.083, p=.023) compared to our reference category Bush administration. Republican 

states are negatively associated with an increase in enacted bills for nutrition (IRR=.518, 

p<.001), obesity (IRR=.642, p<.001) and physical activity (IRR=.626, p<.001).  

 

State level obesity prevalence is only found significant in the topic of physical activity with a 

negative association (IRR=.953, p=.045). State level physical activity in the last month is 

negatively associated with an increase in enactment count across all topic models (IRR= .925 

and .926, p<.001 for both). Median income ($1000s) is non-significant for nutrition, whereas 

it is found positively associated with enacted count for obesity (IRR=1.02, p=.028) and 

physical activity (1.018, p=.050).  

 

The random effects show that temporal trends account for a 44% of variation for nutrition 

policy and 42% for physical activity policy. A much higher proportion of variation is 

explained by year for obesity (65%). The Marginal R2 is similar across our topic models 

(15%-19%). Conditional R2 however noticeably increases for Obesity (71%), with 18% 

more variance being explained by combined effects, highlighting the temporal influence 

being greater for obesity policy. 
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Table 6.1. Results of negative binomial mixed effects regression models analysing state 
obesity related policy enactment (n= 866) 

Dependent variable: 

Count of Enacted policies for: 

Variable 
Model 1  

All 

Model 2  

Nutrition 

Model 3  

Obesity 

Model 4 

Physical Activity 
 

Fixed effects 

President Bush Reference Reference Reference Reference 

President Obama  1.015 (.977) 1.230 (.624) .492 (.348) 1.069 (.890) 

President Trump  .121 (.051) .238 (.115) .020 (.025) .083 (.023) 

Democratic state Reference Reference Reference Reference 

Republican state .604 (<.001) .518 (<.001) .642 (<.001) .626 (<.001) 

Obesity  .959 (.045) .972 (.138)  .979 (.377) .953 (.045) 

Physical activity  .918 (<.001) .925 (<.001) .926 (<.001) .926 (.001) 

Median Income ($1000s)  
 

1.015 (.060)  1.004 (.588) .1.020 (.028) 1.018 (.050) 

(Intercept) 4.228 (<.001) 1.746 (.063) 1.457 (.477) 1.173 (.640) 

Random effects 

σ2 .88 .81 1.16 1.11 

τ00 Year  .94 .64 2.12 .81 

Intraclass Correlation Coefficient   .52  .44 .65 .42 

Marginal R2  .153 .153 .188 .183 

Conditional R2  .591 .526 .713 .527 

AIC 4046.445 2851.357 2459.582 2442.782 

Note: Incident rate ratio (p-value). 

 

6.4. Discussion 
Using data on US obesity-related policy and applying a Data Science approach has helped to 

identify valuable insights into what is included in obesity-related policy abstracts, and how 

this has changed between 2001 and 2017. Our study has several notable strengths. We 

analyse one of the longest time frames of obesity-related policy during a period of 

considerable political change. We extend previous research through utilising the 

unstructured text information within policy abstracts to examine the evolution of policy 

content. It provides a detailed investigation of trends in the language used in policy and 

moves beyond prior research that does not consider text data when exploring obesity bill 

enactment (e.g. Boehmer et al. 2008 and Donaldson et al. 2015). Our results demonstrate the 
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potential of utilising policy text summaries when exploring policy that can be applied within 

multiple contexts for understanding responses to obesity.  

 

We demonstrate that keywords (frequency of use) within obesity related policy abstracts are 

primarily related to education and physical activity. Childhood obesity is a prevalent theme 

within policy and often aims to target the development of behaviours early in life (US 

Department for Health and Human Services, 2010). The higher usage of terms relating to 

childhood policy found is possibly indicative of lower adult obesity focus in other studies 

(e.g. obesity prevention policy) (Donaldson et al., 2015). We also see themes such as task 

force, development (develop) and tax are also common within our policy abstracts, which are 

often favoured approaches due to feasibility of implementation (Boehmer et al., 2007; 

Donaldson et al., 2015).  

 

Despite overall key words primarily relating to education and physical activity, we detect 

unique focus within topics (e.g. nutrition policy focusing on agriculture and physical activity 

infrastructure). This prevalence aligns with research suggesting themes such as healthier 

food provision are successful policy interventions for nutrition, whereas for physical activity 

themes such as transport infrastructure achieves greater impact (Mayne, Auchincloss and 

Michael, 2015). Obesity policy abstracts comparably lacked specific term usage compared to 

other topics, further highlighted by low TF-IDF rarity scores (except weight gain). Extending 

analysis to include word networks displays the presence common buzzwords through 

prevalent term linkage (e.g. farmers markets or body mass index). 

 

Regional clusters (particularly in the Southern region) exhibiting high obesity prevalence 

have been displayed spatially in the US (Agovino, Crociata and Sacco, 2019). Our analysis 

suggests that population appears to play a greater role than space for enactment count, with 

the most populous states enacting the highest amounts of bills. Low counts appear to be 

located in the Midwestern region, however beyond this there is no clear spatial pattern. 

 

Changes in state political party have been found to be influential of policy enactment. We 

find Democratic states enacted more policies in the 17-year period (61.6%) aligning with the 

party’s political views of promoting government intervention (e.g. the provision of 

healthcare) (Blendon et al., 2008). Modelling enactment count found Republican states 

significantly negatively associated with an increase in enacted bills for all topics. These 

findings align with previous research which has suggested that health and nutrition laws are 

less likely to pass within Republican states (Boehmer et al., 2008; Cawley and Liu, 2008; 

Marlow, 2014). Notably however we detect a higher usage of the term nutrition within 
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republican policy abstracts where nutrition laws are suggested as less likely to be pursued 

(Cawley and Liu, 2008), and although count is higher, the share of policies enacted from 

each topic remains consistent across all three topics. Despite this, nutrition accounts for the 

highest amount of obesity related policy enactment (38% Democrat vs 37% Republican) 

suggesting it receives more intervention through policy than obesity and physical activity. 

 

Visualising change over time displayed variance by presidential administration. The largest 

change is seen when the Obama administration was elected with a change in the national 

political party appearing to increase policy enactment. Despite this, our mixed effects model 

suggests no significant effect of the Obama administration for any topic. We however detect 

negative associations for obesity and physical activity policy enactment for Trump 

administration vs our reference category (Bush administration), indicative of the differences 

seen in enactment shares compared with other administrations (e.g. Obesity policy 26% 

lower for Trump vs Bush administration). 2017 is however the only year in the Trump 

administration was in office in this dataset. It is typically acknowledged that there is a shift 

in focus in re-election years, as term limits (which have been found predictive of enactment 

rates) can constrain long term policy (Eyler et al., 2012). In contrast we find that average 

enactment counts generally align with previous years within the same term, and that the first 

year in term is low for both the Bush and Trump administration.  

 

Modelling suggests that our health covariates have varied effects. We find obesity 

prevalence negatively associated with overall and physical activity policy enactment; 

however, the effect has low significance. No significant effect is found for nutrition and 

obesity policy. These contrasting effects appear to situate amongst varied influence of 

obesity seen within literature, highlighting the need for further exploration (Eyler et al., 

2012; Marlow, 2014; Donaldson et al., 2015). Physical activity in the last month is however 

negatively associated with enactment across all topics. This suggests that as state level 

exercise participation increases, enactment count drops across all obesity related policy.  

 

Using median income as a proxy for poverty, we find no significant effects for overall or 

nutrition policy, suggesting little difference between rich and poorer states. In contrast, we 

observed a positive association between obesity and physical activity, suggesting richer 

states enact more of these bills. We consider year as our random effect which accounts 

approximately half of the variation explained by each model. Studies with short durations 

note the lack of longitudinal data as a key limitation (Hersey et al., 2010). We find when 

combined with fixed effects the coefficient of determination increases considerably, showing 

the noticeable influence of time and highlighting that our modelling approach is appropriate.  
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There are a number of limitations to this study. When examining keywords, we only 

consider terms and bigrams, which could be further extended to n-grams. Similarly, the 

amount of context derived from documents could be extended, however our research is 

exploratory in this area. We are limited by the data only containing full records for bills 

which passed (i.e. were enacted). The CDC stopped including information for introduced, 

vetoed and dead bills within this dataset from 2016 (Centers for Disease Control and 

Prevention, 2019b) and therefore we cannot derive enactment rates as we only have 

complete information for enacted bills. We also do not account for further potential 

influences of behaviour. There are many features beyond our measurement such as time 

spent focusing on re-election, that have previously been found predictive (Eyler et al., 2012). 

We only consider bill abstracts and do not quantify the introduction of taxes (e.g. soda tax) 

which have been favoured over the introduction of restrictive bills (Thow et al., 2010; Eyler 

et al., 2012; Donaldson et al., 2015). Quantifying the impact of taxes is difficult (e.g. farmers 

markets are funded by soda tax offsetting potential impacts) (Donaldson et al., 2015). 

Despite bringing new context by focusing on topic as well as overall obesity related policy, 

we do not examine policy in further scope whereas individual bill themes are increasingly 

favoured due to feasibility (e.g. task forces) (Boehmer et al., 2007; Donaldson et al., 2015). 

Knock on effects are also apparent, where bills are passed in one state this leads to adoption 

in further states (e.g. vending machine bills in California) (Boehmer et al., 2007). Funding 

has also been found associated with obesity law enactment (e.g. CDC funding in 2005 in 

Kentucky) (Hersey et al., 2010).  

 

6.5. Conclusion 
This research utilised a data driven approach giving an understanding of obesity related 

policy enactment. The data contains 17 years’ worth of all obesity related bills and the 

inclusion of text abstracts bring far more scope than any previous obesity policy study. The 

data driven approach allows text to be mined as data, bringing unprecedented context. We 

present a novel contribution to obesity policy knowledge, hopefully allowing further 

research to expand upon our approach and findings.  
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Chapter 7 : Conclusions  
This chapter concludes this thesis by providing a summary of the findings, limitations and 

possible future extensions of this research. Research findings detail how each aim, objective 

and the overall research question are addressed. Limitations are considered to ensure 

robustness as well as the correct interpretation of this work. Future opportunities are 

highlighted, which may address the limitations and enable a continuation of the novel 

findings and approaches presented. Finally, the concluding statement draws this thesis to a 

close.  

 

7.1. Research findings  
This thesis displays several notable strengths of new forms of data in the emerging fourth 

phase of Science (Hey, Tansley and Tolle, 2009). The lack of applications within the wider 

research environment (due to data access, computational resources and methodological 

approach) is addressed by providing four novel studies involving new forms of data. The 

opportunities of these surrogate sources is clearly demonstrated within both the literature 

review and each of the quantitative applications contained, highlighting the greater depth, 

accuracy and new information obtainable within public health research (Hay et al., 2005; 

Dummer, 2008). This section translates how these core findings relate to and answer my 

overall research question, aims and objectives. 

 

7.1.1. Aim 1: Examine the contribution of new forms of data to health research.   

In order to achieve this aim, an in-depth literature review was conducted (objective 1). New 

forms of data and big data were defined (objective 2), and those currently being used 

(objective 3) and available (objective 7) were considered. The promise of new forms of data 

in health research was evaluated (objective 4) with limitations explored helping shape the 

applications presented (objective 6). In each quantitative chapter the new forms of data 

available were discussed and exploratory analysis performed (objective 7). The contribution 

of each new form of data was considered throughout (objective 12). 

 

Evident gaps within public health knowledge appeared when reviewing existing literature. 

Knowledge of self-medicating individuals beyond self-reported surveys is limited despite 

data (e.g. open prescription) being available. In the study of dietary behaviour, research is 

typically nutrition or accessibility focused; food preparation has seen little attention. Within 

policy enactment research there is a lack of understanding as to why bills are enacted. This 

thesis demonstrates how the use of new forms of data can benefit public health research as 

standalone (e.g. loyalty card records) and supplementary sources (e.g. GPS data and 
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surveys). The opportunities for repurposing existing data as well as acknowledging that data 

can come in a variety of forms (e.g. sequences or text data) is shown.  

 

Loyalty card records contribute new information of the exposure of self-medication 

products. Pain relief and coughs and colds products were purchased by up to 75% of 

customers per LSOA, displaying wide exposure. Sun prep products contrasting displayed a 

low customer reach and clear differences by sex were observed (e.g. males purchasing less). 

New detail in the seasonality of minor ailments showed further detail beyond observed 

epidemiological trends (e.g. cough and cold purchasing in December) (Heikkinen and 

Järvinen, 2003). This data is significantly larger than other self-medication studies with the 

inclusion of loyalty records which brings objective purchasing information extending beyond 

predominantly self-reported information (e.g. (Green et al., 2016)). 

 

Viewing food diaries as sequences allows for behaviours to be mined enabling greater value 

with the resultant insights. The typology created highlights problematic behaviours of young 

adult Canadians for meal preparation (e.g. 30% of the sample do not eat breakfast). While 

current applications of linking surveys and GPS information do exist, their focus is 

predominantly exposure based (e.g. Chaix et al. (2012); Scully et al. (2017;2019); Widener 

et al. (2018)). Linking food preparation sequences and GPS based exposure, and considering 

how these factors link to health outcomes (like BMI) brings new information to the national 

and global concern of improving diet (An, 2016).  

 

Text is acknowledged as a data source and highlights further detail of the determinants of 

bill proposal success. The prevalent policy theme of childhood obesity (US Department for 

Health and Human Services, 2010) is observed with the presence of key words (e.g. 

education or physical activity). Themes relating to more feasible intervention (e.g. task force 

or tax) were common (Boehmer et al., 2007; Donaldson et al., 2015). Including and 

acknowledging unstructured text information extends beyond studies in bill enactment (e.g. 

Boehmer et al. 2008 and Donaldson et al. 2015) highlighting opportunities for more detailed 

investigation into notable public health issues (e.g. obesity).  

 

7.1.2. Aim 2: Explore how geographical context can supplement and improve 

the quality of information obtained from new forms of data. 
Health outcomes are intrinsically spatial and therefore geographic context is an important 

consideration and contribution (Dummer, 2008). The wider research area of quantitative 

geography and the evolutions within the field are first considered within chapter 2 (objective 
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1), which details current applications of health data (objective 3) and the limitations present 

(e.g. ecological fallacy) (objective 6). The importance of spatial context is also seen in each 

quantitative chapter using exploratory analysis (objective 7).  

 

The visualisation of enactment count by state enables the conveyance of information of 

variations in enactment by policy topic, as well as the similarities between neighbouring 

states in the US. As regional clusters have previously been found for obesity prevalence (e.g. 

(Agovino, Crociata and Sacco, 2019)) it is important to consider how policy may be 

influenced spatially; however, visualisations suggest population size appears to have a 

greater impact than space as the most populous states enact the most bills (e.g. California 

and Texas). Visualising enactment spatially facilitated greater depth in the extraction of 

insight.  

 

By combining loyalty card records with residential location a North-South divide was 

displayed highlighting geographical inequalities as purchasing patterns appearing to follow 

existing deprivation metrics (e.g. Smith et al. (2015)). Problematically low purchasing of sun 

prep products was observed in coastal regions where UV radiation is highest (Kazantzidis et 

al., 2015). In this form, geographic context yields valuable detail and has potential for 

determining locations to target policy, action or intervention.  

 

Creating a time-weighted measure of exposure using the GPS traces allowed an extension of 

knowledge beyond resident based location. Results displayed no convincing presence of 

correlation between access to calorie-dense foods and using these establishments. Exposure 

was low for clusters predominantly eating out and high for clusters not. This increased detail 

of movement data enables a further and more accurate understanding of the complexities in 

the relationship between unhealthy eating and exposure to food environments.  

 

The contribution of geographical information within statistical (or machine learning) 

modelling is also shown. Aggregated air quality measures are found as an important 

contextual predictor of purchasing. PM10, which is associated with respiratory issues 

(Charpin and Caillaud, 2017), exhibited positive correlations with hay fever purchasing. 

When predicting monthly purchasing, aggregated temperature ranked highly. Temperature 

correlates to the production of pollen (MetOffice, 2018a), whereas respiratory conditions are 

influenced by colder temperatures (Heikkinen and Järvinen, 2003). Exposure measures 

showed access to calorie dense food does influence BMI (Tremblay and Willms, 2003). 

State level sociodemographic measures were found as influential features of obesity-related 

policy enactment. A positive association was observed between obesity bill enactment and 
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median income suggesting richer states enact more bills. The geographic context within 

these measures highlight its importance within research for further understanding health 

outcomes.  

 

7.1.3. Aim 3: Identify applications of machine learning that can be applied in 

health research.  
The high street retailer dataset presented is considerably larger than historically available 

minor ailment data (i.e. the transactions of 10 million customers). Despite data from the 

Canada Food Study only containing 396 individuals, more than a thousand contextual 

variables were contained from the combination of food diaries and GPS traces. The 

unstructured nature of the text summaries presented different complexities of size as 

contained were more than 4000 unstructured individual policy summaries. Further 

information (e.g. socioeconomic features) is similarly abundant and easily linked at census 

geographies. This size (of both observations and predictors) meant the selection of 

appropriate modelling techniques was important to maximise the opportunities these datasets 

present (in terms of computing resources and time). By assessing current applications 

(objectives 3 and 5) appropriate modelling techniques were selected (objective 8).  

 

Machine learning was often presented as the most effective approach. Forecasting hay fever 

season is notoriously difficult (Davies and Smith, 1973). The state-of-the-art predictive 

algorithm employed enabled high performance on a limited historical times series. Further 

interpretation of these models is made possible using Partial Dependence and Accumulated 

Local Effects analysis; for example, hay fever purchasing was highest at optimal pollen 

release temperatures (MetOffice, 2018a). This dataset may offer cheaper and more efficient 

means of data collection than existing disease surveillance systems (Ginsberg et al., 2009) 

(objective 12). The methodology employed could be applied as an early indicator of ailment 

incidence complementing existing methods (e.g. Santillana et al., 2014) (objective 9).  

 

The use of sequence analysis within food preparation study is innovative and provides 

further context for understanding dietary behaviours via the creation of an easily 

interpretable typology of food preparation. The typology demonstrates 5% of the sample is 

out of home service reliant which is problematic as eating out is strongly associated with fast 

food and higher caloric consumption (Lachat et al., 2012; An, 2016; Penney et al., 2017). 

The data mining approach is again scalable with a clear methodology presented (objective 

9). 

 



 113 

Despite the limited acknowledgement of text as data, the semantics of policy phrasing have 

previously been found important. For instance, soda tax and nutrition labelling are 

increasingly prominent in legislation (Eyler et al., 2012; Lankford et al., 2013; Donaldson et 

al., 2015). Similarly, specific term usage is known (e.g. increasingly detailed physical 

activity programmes (Lankford et al., 2013)). The methodological approach highlights the 

opportunities for text as data, bringing further detail of bill policy abstract keywords and 

how semantics change over time. This scalable and transferable methodology can enable 

research to extend in terms of depth, providing greater understanding of bill enactment 

(objective 9). 

 

Each of the models presented in this thesis were statistically tested in order to analyse model 

performance (objective 10). Various stages of performance evaluation were passed (i.e. 

method selection, parameter tuning and performance metrics). The results were discussed 

and considered against existing research in each respective area (objective 11); an important 

step in evaluating the opportunities of each modelling approach (objective 12).  

 

7.1.4. Overall research question: To what extent can new forms of data can help 

us better understand health outcomes or behaviours? 
The aforementioned aims have proven important in answering the overall research question 

of this thesis. The two health themes studied are responsible for the use of considerable 

amounts of healthcare resources. Minor ailments have been scrutinised due to their extensive 

drain on the NHS (Pillay et al., 2010; NHS England, 2017). Obesity represents a significant 

issue globally which is highlighted by the considerable amounts of targeted policy (Abelson 

and Kennedy, 2004) (e.g. US Department for Health and Human Services (2001; 2010)). 

The new forms of data used were vital in enabling these applications and have provided 

novel insights. 

 

This thesis extends beyond the reach of many studies limited to traditional datasets. New 

information within minor ailment research is presented for a group that typically cannot be 

considered due to a lack of available data. The inclusion of sequence analysis and a typology 

of food preparation sequences, and the subsequent linking with GPS trajectories, is also a 

new approach for obesity-related research. One of the longest time frames of obesity-related 

policy during a period of considerable political change is studied. The use of unstructured 

text information and text analysis is an evolution in the study of obesity policy. 
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The value of new forms of data is clearly displayed by the new facets of research they 

enable. As repurposed data are generally cheaper and more efficiently collected the 

opportunities for application are considerable (Ginsberg et al., 2009). Results demonstrate 

the potential of using such data within population health surveillance, forecasting, and the 

understanding of health behaviours; all of which are important for preventative frameworks 

(Bradley and Bond, 1995; Hughes, McElnay and Fleming, 2001). The inclusion of objective 

information (e.g. purchasing records, GPS movement) and focus on outcomes that are less 

sensitive to reporting biases (e.g. food source instead of actual meal) have applicability in 

national-level decision making. The applications may act as early indicators or complement 

existing methods (e.g. Santillana et al., 2014). 

 

Important also is the data driven approach undertaken to handle the quantities and 

complexities of these data which facilitates the extraction of unprecedented context. A 

clearly detailed, transferable and scalable methodology is presented in each quantitative 

chapter enabling others to understand and dissect the approaches used (objective 9). While 

new forms of data offer benefit, Data Science tools contribute significantly to the ability of 

using these data, enabling their potential to be achieved. 

 

7.2. Limitations  
While this thesis has focused on the novelty, relevance and importance of new forms of data 

and a Data Science approach within the study of health outcomes, there are several 

limitations.  

 

While new forms of data and big data are increasingly desired by and available to 

researchers, the sensitive nature of individual level data create important and necessary 

barriers to access (Boyd and Crawford, 2012; Mahrt and Scharkow, 2013). Ethical approval 

and approval from the data provider alongside specific data usage and storage conditions are 

required. The sensitivity of individual level information means disclosive sample 

characteristics often must remain anonymous, constraining the ability to fully report the 

representativeness of the data. The rigorous application processes and very specific usage 

terms somewhat hamper the reproducibility of science; however, these procedures are 

necessary when utilising highly sensitive data.  

 

Although data is linked from a number of sources within each quantitative chapter, the 

linkage process is simple and restricted to census geographies. The scale of aggregation was 

primarily determined by disclosure requirements and the scale of data that is being linked 
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(e.g. deprivation indexes or area level business counts); however, the aggregation levels 

were kept as detailed as possible (Subramanian et al., 2009). Data linkage could though 

occur at finer scales. Flanagan et al. (2019) were able to link data at the individual level, 

combining diagnosis histories with individual purchasing behaviour. While this would bring 

a greater level of granularity, Flanagan et al. (2019) had only 11 participants in their study. 

Joining information at the individual level would pose significant ethical concerns, 

particularly at the national scale.  

 

Despite the regularity of aggregation to widely accepted and familiar scales (e.g. census 

geographies) (Wise, Haining and Ma, 2001; Duque, Ramos and Suriñach, 2007; Ginsberg et 

al., 2009), the potential presence of ecological fallacy and modifiable areal unit problem 

must be acknowledged (Fotheringham, Brunsdon and Charlton, 2000). The findings 

presented in this thesis can only be applied to the level of aggregation used (Openshaw, 

1984a). The loyalty card analysis is residential location focused and therefore movement or 

spatial exposure is neglected (Hanigan, Hall and Dear, 2006). Using GPS data combats this 

limitation; however, the sample sizes and time frame are considerably restricted. While it is 

common for GPS data to be restricted to one week (e.g. Chaix et al. (2012); Scully et al. 

(2017)), and for studies to confine results to aggregate measures (e.g. census geographies), 

the findings cannot be considered as ground truth for all groups (Satija et al., 2015).  

 

The findings presented in these analyses are association-based and not casual in their 

inferences. The methods employed (e.g. regression) enable prediction and inference, 

however, they are fundamentally based on correlations between outcomes and predictors 

(Freedman, 1997). Tree ensemble methods (e.g. Random Forests and XGBoost) are based 

regression trees which “were developed for the purposes of prediction and classification, not 

causal inference” (Gass et al., 2014, p6). Interpretation of the results should therefore be 

made carefully. Conclusive causes of health outcomes are difficult to obtain (Hill, 1965; 

Lucas and McMichael, 2005) as “the cause of illness may be immediate and direct, [or] it 

may be remote and indirect” (Hill, 1965, p295). Despite this, criteria for causation (as 

outlined by Hill (1965)) such as coherence, strength and consistency are displayed within 

this thesis and elude to clear conclusions (Freedman, 1997). The results presented are 

important but cannot be deemed causal.   

  

Despite the presentation of new insights into facets of health that have rarely (if at all) been 

studied in this way, the results are representative and focus on demand side factors. For 

example, in chapters 3 and 4 it is vital that interpretation acknowledges that the data only 

contains purchasing information and is limited to approximately 20% of adults in England. 
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The insights only describe the behaviours of those within this sample. There is no context as 

to why or for whom the products are being purchased (in the case of significant others) or 

when or why these products are being consumed. While this limits the potential insights 

derived from analyses, sales data has been found correlated with physician records 

suggesting that they still have value (Magruder et al., 2004).  

 

These datasets are also limited in longitudinal scale. The high street retailer dataset is only 

available from 2012-2014 constraining the performance ability of modelling. Greater 

availability of historical data could improve the findings with more detail. The Canada Food 

Study data employed is limited by completeness of data (constrained by cost and time (Biro 

et al., 2002)). GPS traces and preparation sequences are limited to one week. Eligibility, a 

reduction of invites for the GPS study, out of country travel, data completeness and data 

linkage issues meant only a subsample could be used in our study.  

 

Reflecting on my personal experiences of performing applied data science and big data 

research, there is a lot of hype and excitement surrounding new forms of data. However, this 

size brings considerable limitations in the usability and speed in which analysis can be 

performed and insights gained. Such data requires specialist skills in data querying in order 

to convert raw data into useable forms. While the datasets employed within this thesis are 

huge in their raw form, it is necessary for dimensions to be reduced or data to be aggregated 

in order to make this interpretable and useable. For example, the loyalty card dataset was 

reduced from transaction level information to aggregations by both time and spatial scale, 

meaning that by the time data is fed into models the size had considerably reduced. 

Infrastructure adds additional complexity as in order to be able to use some of these data sets 

specific infrastructure is necessary. Whether that be secure facilities or access to big 

compute, there are further requirements that are necessary which can limit even accessing 

the data in the first place. 

 

The methods employed (and necessary) to use this data are advanced and require both 

advanced understanding (e.g. machine learning models) and further skillsets that are heavily 

reliant on programming. Knowledge of relational databases and SQL is necessary to initially 

be able to query big relational data, whereas text mining instead moves analysis away from 

tabular data and into the realms of unstructured data. Proficiency in the software R (R Core 

Team, 2014) proved key for me to be able to apply the necessary machine learning 

approaches on the data. Method specific knowledge was also important, such as parameter 

tuning being vital when applying tree ensemble methods in order to achieve improved 

predictive performance. Specialist understanding is also necessary to be able to interpret 
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results. Combining data cleaning, modelling and interpretation means than researchers must 

play the role of data engineer, data scientist and data visualisation analyst, along with having 

expertise in their domain. These skillsets are difficult to acquire and are rare in unison 

meaning that the ability of researchers to actually apply new forms of data and big data are 

limited. When considering using such data researchers must ensure they have the necessary 

proficiency.  

 

There are many opportunities for research to include new forms of data and big data, 

however, the limitations have shown the many facets to how it is only supplementary. There 

are many limitations of the data that must be considered, as well as ethics, infrastructure 

requirements and specialist skills necessary to use such data. These data are also untested in 

the long term, compared with data (such as censuses) which have a stable history. A key 

stumbling block is also the lack of data provenance, metadata and documentation that is 

provided with these datasets which constrains sample understanding and use. The excitement 

that surrounds big data such not taint existing and established data sources, as big data 

should only be considered supplementary to these.  

 

7.3. Future opportunities  
The research presented in this thesis highlights how new forms of data can be used to 

explore public health outcomes. There are several opportunities of extending this research, 

which may address the limitations of this research (objective 13). 

 

Loyalty card data could be linked with actual health outcome data to understand how 

medicine purchasing relates to how individuals manage health conditions. Researchers such 

as Flanagan et al. (2019) have demonstrated the possibilities for this by linking cancer 

diagnosis and consumer data. Linking NHS prescription data would highlight areas of self-

medication or prescription reliance. Alternatively, data could be combined with Hospital 

episodes statistics data from the NHS which would allow further investigation into issues 

such as paracetamol poisoning (Wazaify et al., 2005; Morthorst et al., 2018). Due to the 

sensitivity of the high street retailer data, hospital episodes statistics and individual level 

survey data, such applications would have severe ethical and confidentiality concerns that 

would need to be addressed before interesting multidisciplinary projects could be pursued. 

 

Sequence analysis of food preparation and time weight exposure could be extended to 

multiple years of the Canada food study to understand whether increase in age changes 

dietary behaviour. Exposure measures could focus specifically by day instead of a weekly 
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aggregated measure (provided data availability). The use of GPS data could evolve to 

attempt to understand why exposure matters. For example, identifying the specific moments 

of the day individuals visit restaurants or fast food outlets, and whether such behaviours are 

associated with dietary behaviours or obesity. Complex effects of exposure are noted; 

however, the focus does not extend beyond associations of preparation and exposure. 

Alternatively, further application could link data from loyalty programmes or purchasing 

receipts, allowing understanding of what foods are eaten or the nutritional value of each 

meal. Greater detail on the measures and outcomes in this investigation will help produce 

more accurate models.  

 

The application of text mining highlighted new opportunities for the study of health 

outcomes. There is clear opportunity for text mining to be applied beyond obesity-related 

policy abstracts and could be applied to further texts. Public health reports are one example, 

where understanding could be contributed of how perceptions of health outcomes have 

changed over time, and whether there are underlying drivers within the phrasing of health-

related reports. There is a considerable opportunity to use text mining internationally. As 

demonstrated by Bautin, Vijayarenu and Skiena (2008), text analysis methods (e.g. 

sentiment analysis) can be applied to multiple languages allowing international research. 

Exploring policy responses to health outcomes (e.g. obesity) on an international scale would 

enable an understanding of effective policy response and may highlight the most appropriate 

or successful global approaches.    

 

7.4. Concluding statement  
The value of accessing and applying new forms of data in public health research is clearly 

shown in this thesis. Whether applications be in exploratory research investigation, or more 

specific in public health surveillance, there are clear opportunities and value for unlocking 

these new forms of data. As both minor ailments and obesity pose such extensive population 

level issues both nationally and globally, the insights and knowledge presented within the 

quantitative chapters of this thesis have clear relevance and impact in understanding these 

issues. The (Geographic) Data Science approach necessary in applying these datasets has 

been clearly documented and could be applied and transferred to similar public health 

themes. The findings may be used in public health planning and policy and will hopefully 

help to catalyse future research.  
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