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Abstract

Social balance theory studies the way different
friendships and rivalries in a social network influ-
ence each other. Its main result is that, over time,
social networks tend to become balanced. Here,
we combine social balance theory with temporal
logic. This yields an expressive language that can
describe the plausible ways in which a social net-
work might evolve over time.

1 Introduction
Social balance theory was initiated with Heider’s work on
social psychology [1944; 1946; 1958], and later reinvented
by Harary et al. using graph theory in [Harary, 1953;
Cartwright and Harary, 1956; Harary et al., 1965], an ap-
proach in which signed graphs represent social networks of
agents, with positive signs for allies or friends and negative
signs for enemies or antagonists. This has become a basic
framework for studying positive and negative ties, and has
since then become an active area in the field of social net-
work analysis.

A social network is balanced if it meets certain structural
conditions on its positive or negative ties between agents. For
example, a triad of three agents that are all enemies of one
another is considered unbalanced, since two of them have an
incentive to make an alliance against the third. Over time, the
ties in a social network tend to change in a way that makes the
network more balanced. Empirical and theoretical studies of
social balance can be found in [Newcomb, 1961; Doreian et
al., 1996; Hummon and Doreian, 2003; Wang and Thorngate,
2003; Antal et al., 2006; Radicchi et al., 2007; Kulakowski,
2007; Abell and Ludwig, 2009; Zheng et al., 2015].

Here we study the process under which networks become
more balanced from a different perspective, namely that of
temporal logic. Specifically, we introduce the Logic of Al-
lies and enemies (LAE), a variant of Computation Tree Logic
(CTL) [Clarke and Emerson, 1981; Emerson and Clarke,
1982] that describes the behaviour of social networks under
the assumption that they move towards balance “greedily”,
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i.e., that change in relations between agents happens only if it
makes the network more balanced.

LAE allows us to describe properties of networks such as,
for example, “it is guaranteed that a and b eventually become
friends”, “if a and c every become friends then they will re-
main friends forever, and a and bwill forever be enemies” and
“a and bwill remain enemies until there are at least two agents
x and y that are mutual friends of a and b.”. Our main results
are that (1) it is possible for a social network to get stuck in a
local maximum of balance, (2) the so-called balance theorem
holds for LAE and (3) model checking and validity checking
for LAE are PSPACE-complete.

The structure of the paper is as follows. We introduce the
basic ideas of network balance in the next section. In Sec-
tion 3 we introduce the syntax and semantics of LAE, to-
gether with a number of validities; we also show that the
movement towards balance may terminate in a state that is
not fully balanced by instead only stable. We study the com-
putation complexity in Section 4 and conclude in Section 5.

2 Network Balance
a d

b c

A social network consists of a set of
agents with pairwise ties that are positive
(“friends”, “allies”, +), negative (“foes”,
“enemies”, “hostile”,−) or neutral (“neither
friends nor foes”, 0). It is customary to draw
a network as a graph, with solid lines representing positive
relations, dashed lines representing negative relations and the
absence of a line representing neutral relations. For exam-
ple, the diagram above represents a network where there is a
friendship between a and b, between b and d and between c
and d, an enmity between a and d and neutral relations be-
tween a and c and between b and c.

While every relation is between exactly two agents, the dif-
ferent relations do influence one another. The most famous of
these influences is probably the saying that “the enemy of my
enemy is my friend”, so if there is enmity between a and b and
between b and c, then there should be a friendship between a
and c. There are multiple equivalent ways to describe these
influences; our description is based on balanced and unbal-
anced triads.1 Modulo symmetry there are 10 different triads,

1The term “triad” is commonly used in the field of balance theory
for a group of three agents and their relations.
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which are drawn in Figure 1.
We call a triad balanced if its edges reinforce each other.

For example, in the triad −−+ of Figure 1(b), the + edge
between a and c is reinforced because b is a mutual enemy, the
− edge between a and b is reinforced because a is the friend
of b’s enemy c and the − edge between b and c is reinforced
because c is the friend of b’s enemy a. The two balanced
triads are the aforementioned −−+ and the triad +++.

We call a triad unbalanced if all its edges weaken one an-
other. For example, in the −−− triad of Figure 1(d) each
pair of agents has reason to become friendly to one another
against a common foe. The other unbalanced triad is ++−.

There are also three triads where two of the edges are nei-
ther reinforced nor weakened, while a third edge experiences
some pressure one way or the other. We call these triads par-
tially balanced. For example, in the triad−−0 of Figure 1(f),
there is no reason for the enmity between a and b or between
b and c to end. But there is a reason for the neutrality be-
tween a and c to turn into a friendship, since they have b as a
common foe.

Finally, the remaining three triads are pressure-free. In
these triads 000, +00, −00, there is no pressure on any of
the edges to change.�
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Figure 1: The ten different triad shapes

The different types of triads and the pressures they experi-
ence are summarized in the following table:

Degree of balance Shape Has a reason to change to . . .

Balanced +++ N/A
+−− N/A

Unbalanced ++− −+−, +−− or +++
−−− +−−, −+− or −−+

Pressure-free
000 N/A
+00 N/A
−00 N/A

Partially balanced
++0 +++
−−0 −−+
+−0 +−−

2.1 Scope
Balance theory models the influence that different relations in
a social network have on one another. But the relations may
be influenced by other factors as well. For example, “John
may be the enemy of my enemy, but he punched me in the
face yesterday so he is definitely not my friend” is a reason-
able attitude, but does not follow from any of the relations
in the network. Since such influences originate from factors
that are not represented in the network, we refer to them as
outside influence.

Predicting outside influence would require an accurate
model of all human behavior, which seems rather unfeasible
and is outside the scope of balance theory, and of this paper.
We therefore do not fully model outside influence. The net-
work dynamics that we represent here are therefore best seen
as the likely changes in the social network provided that there
are no influences from outside the network.

3 The Logic of Allies and Enemies
In this section we first introduce formal definitions of 3-
signed social networks, stability scores and time evolution,
based on the understanding and convention from the previous
section. Then we introduce the syntax and semantics of the
Logic of Allies and Enemies (LAE).

We assume that every social network is finite, so let a finite
set AG be given. Furthermore, because there are no reasons
for friendship or enmity unless there are at least three agents,
we assume that |AG| ≥ 3.

3.1 3-signed social networks
We define a social network to be a 3-signed undirected graph,
with its vertices representing agents and edges representing
ties between agents. The formal definition is given below.

Definition 1 (social networks). A social network (network for
short) is a function N : {{a, b} ⊆ AG | a 6= b} → {+,−, 0}
that assigns to each pair of different agents a positive (+), a
negative (−), or a neutral (0) edge.

Note that the domain of N consists of unordered pairs
of two different agents. We therefore have N({a, b}) =
N({b, a}), by definition. We write N(a, b) for N({a, b}).
We say that a network is complete if it does not contain neu-
tral edges, and that two agents are in the same connected com-
ponent if they are connected by a path of non-neutral edges.

We first introduce the notion of balance coming from the
literature. That is, a network is balanced if all of its triads are
balanced.

Definition 2 ((semi-)balance). A networkN is balanced if for
every distinct a, b, c ∈ AG, the triad abc is balanced in N . A
network N is semi-balanced if for every distinct a, b, c ∈ AG,
the triad abc is balanced or pressure-free in N .

The relation between the two concepts is characterized by
the following proposition.

Proposition 3. A network N is semi-balanced if and only if
all of its connected components are balanced.

A network is semi-balanced if and only if no agent has any
reason to change any of its relations. However, it is possible



for two agents a and b to have both some reasons to become
or remain friends, and some reasons to become or remain en-
emies. So the mere fact that an agent has a prima facie rea-
son to change its relation does not mean that the agent has
an overall reason to change its relation, since the reason for
change may be outweighed by more reasons for the relation
to remain the same. As a result, it is possible for a network to
be non-balanced, while still not containing any overall reason
for any relation to change. We therefore introduce the notion
of stability: a network is unstable if there is at least one pair
of agents that have more reasons to change their relationship
than they have reasons for it to remain the same.

We determine the stability of an edge by computing its at-
traction and repulsion. We define the attraction between two
agents to be the number of reasons for them to become or
remain friends, and the repulsion the number of reasons to
remain or become enemies. This means that the attraction
between a and b is the number of mutual friends/foes, while
the repulsion is the number of agents to which a and b have
different non-neutral ties.

Definition 4 (stability of edges). Let N be a social network,
and let a, b ∈ AG. The attraction, repulsion and stability
score of (a, b), denoted attr(a, b), rep(a, b) and score(a, b),
respectively, is given by

attr(a, b) = |{c | N(a, c)=N(b, c) and N(a, c) ∈ {+,−}}|
rep(a, b) = |{c | N(a, c) = +, N(b, c) = −}|+

|{c | N(a, c) = −, N(b, c) = +}|

score(a, b) =

{
attr(a, b)− rep(a, b), if N(a, b) = +,
rep(a, b)− attr(a, b), if N(a, b) = −,
−|attr(a, b)− rep(a, b)|, if N(a, b) = 0.

An edge ab is stable if score(a, b)≥0, and unstable otherwise.
An unstable edge is improving if its attraction is greater than
repulsion, and deteriorating if repulsion greater than attrac-
tion.

Put in a different way, a positive edge is unstable if it is
deteriorating, a negative edge is unstable if improving, and a
neutral edge is unstable if either deteriorating or improving.

Definition 5 (stability of networks). A network is stable if
every edge is stable, and unstable otherwise. The stability
score of a network N is the sum of the stability scores of its
edges. We write score(N) for the stability score of N .

It is easy to see that every semi-balanced network is stable:
if no edge has any reason to change then, in particular, no
edge has more reasons to change than to remain the same.
The converse does not hold, however.

b c

a d

f e

For example, the network on the right
is stable but not balanced. For every
edge in this network the agents have a
reason to change their relation, but also
a countervailing reason to keep their cur-
rent relation. E.g., a and b might wish to
become friends due to their common friendship with c and e,
but they also wish to remain enemies due to the fact that d
and f are enemies of b but friends of a.

Proposition 6. The set of semi-balanced networks is a proper
subset of the set of stable networks.

If a network is unstable, one or more relations have more
reasons to change than to remain the same. In such a situa-
tion, we expect one of these relations to change accordingly.

Definition 7 (successors). We say a network N2 is a succes-
sor of a network N1 if: (i) N1 is stable and N1 = N2, or (ii)
N1 andN2 differ in exactly one edge ab, and for that edge it is
either the case that ab is improving in N1 and N2(a, b) = +,
or that ab is deteriorating in N1 and N2(a, b) = −. We write
N1 ; N2 if N2 is a successor of N1.

Proposition 8. Let N1 and N2 be two networks such that
N1 ; N2. Then,

1. If N1 is stable, then score(N1)=score(N2);
2. If a neutral edge of N1 becomes positive or negative in
N2, then score(N1) can be greater than, equal to or
smaller than score(N2);

3. If a positive (resp. negative) edge of N1 becomes nega-
tive (resp. positive) in N2, then score(N1)<score(N2).

Definition 9 (time evolution). LetN be a social network. The
time evolution T (N) of N is the smallest graph (S,;) such
that: (i) N ∈ S, and (ii) if N1 ∈ S and N2 is a successor of
S, then N2 ∈ S and N1 ; N2.

The time evolution of N is not necessarily a tree, nor is it
acyclic. However, by Prop. 8 the only cycles are self-loops,
i.e., of the form N1 ; N1, where N1 is stable. For along a
timeline (i.e., a branch of the time evolution), either the stabil-
ity scores of the involved networks increase or the networks
contain less neutral edges (neutral edges can change to be
positive or negative, but not vice versa). We can therefore
abuse notation by saying that T (N) has a depth, namely the
length of the longest cycle-free path.

Proposition 10. The depth of T (N) is bounded from above
by 2 · |AG|5.

Proof. Each reason for an edge to improve or deteriorate can
be identified by a triad abc, where ab and bc influence ac.
There are less than |AG|3 such triples, so the stability score
must be between −|AG|3 and |AG|3. Furthermore, there are
at most |AG|2 edges with value 0. Since every non-reflexive
transition requires either one edge to become non-neutral or
the stability score to increase, the maximum cycle-free path
length is at most 2 · |AG|3 · |AG|2 = 2 · |AG|5.

3.2 Syntax and semantics
We wish to reason about social networks and their evolution
with a logical language. As T (N) strongly resembles the
branching time models of CTL, we base the temporal con-
nectives of our language on those of CTL. In addition to these
temporal connectives we use a number of atoms that describe
the ties. Because it is important for the network dynamics
how many mutual friends/foes two agents have, we also use a
quantifier ∃≥nx that allows us to describe how many agents
satisfy a certain property.

Definition 11 (languages). The language L of LAE is given
by the following grammar:

ϕ ::=Paa |Naa|¬ϕ |(ϕ→ϕ) |AXϕ |A(ϕUϕ) |E(ϕUϕ) |∃≥nxϕ



where a, x ∈ AG and n ∈ N. We use the Boolean operators
∧,∨,> and ⊥ as well as the CTL operators EX, AF, EF, AG
and EG as abbreviations as usual. Oab is used as an abbre-
viation for (¬Pab ∧ ¬Nab). With regard to the quantifier,
∃≥nxϕ reads as “there are at least n agents x such that ϕ(x)
is true.” We will make use of the following abbreviations:

∃xϕ =df ∃≥1xϕ
∀xϕ =df ¬∃x¬ϕ
∃!nxϕ =df (∃≥nxϕ ∧ ¬∃≥n+1xϕ)

For simplicity we treat Pab and Pba as the same formula,
and similarly for the operators N and O.

Formally, the meaning of the formulas is determined by the
satisfaction relation |=, which is defined as follows.

Definition 12 (satisfaction). Whether a network N satisfies
(notation N |=) a formula is determined inductively by the
following (where ϕ and ψ are formulas, and a, b, x ∈ AG):

N |= Pab iff N(a, b) = +
N |= Nab iff N(a, b) = −
N |= ¬ϕ iff not N |= ϕ
N |= (ϕ→ ψ) iff N |= ϕ implies N |= ψ
N |= AXϕ iff ∀N ′ : if N ; N ′ then N ′ |= ϕ
N0 |= A(ϕUψ) iff ∀N1, · · · , if N0 ; N1 ; · · · then

∃i : Ni |= ψ and ∀j < i,Nj |= ϕ
N0 |= E(ϕUψ) iff ∃N1, · · · such that N0 ; N1 ; · · ·

∃i : Ni |= ψ and ∀j < i,Nj |= ϕ
N |= ∃≥nxϕ iff there are distinct a1, . . . , an ∈ AG

such that N |= ϕ
[
a1

x

]
∧ · · · ∧ ϕ

[
an

x

]
,

where ϕ
[
ai

x

]
(for all i = 1, . . . , n) is the formula achieved by

substituting all occurrences of x in ϕ to ai.
A formula is satisfiable if there is a network that satisfies it,

unsatisfiable if no network satisfies it, and valid if all networks
satisfy it.

Our logic is strong enough to express stability of edges and
networks and balance of triads and networks:

stable(a, b)=df(Pab∧AXPab)∨(Nab∧AXNab)∨(Oab∧AXOab)
stable =df ∀xy stable(x, y)
noneutral(a, b, c) =df ¬(Oab ∨Obc ∨Oac)
balanced(a, b, c) =df (Pab∧Pbc∧Pca) ∨ (Pab∧Nbc∧Nca)

∨(Nab∧Pbc∧Nca) ∨ (Nab∧Nbc∧Pca)
balanced =df ∀xyz(noneutral(x, y, z)→ balanced(x, y, z))

where stable(a, b) intuitively says that the edge ab is stable,
stable says that the current network is stable (N |= stable iff
N is stable), noneutral(a, b, c) says that abc contains no neu-
tral edges, balanced(a, b, c) says that abc is a balanced triad
(positive 3-cycle), and balanced says that the current network
is balanced (N |= balanced iff N is balanced). Semi-balance
can also be expressed in LAE, but not in a straightforward
way. We explain how it can be expressed in Section 3.3. To
further illustrate the expressive power of LAE, we list some
validities below.

Proposition 13. The following formulas are valid, where
a, b, c and d are assumed to be distinct:

1. (One is neither a friend nor an enemy of oneself) Oaa
2. Pab→∃xPax, Nab→∃xNax and Oab→ ∃≥2xOax

3. (Stable networks don’t evolve) stable→ (ϕ→ AXϕ)
4. (At most one sign is changed in one step)

(Pab ∧ Pcd)→ AX(Pab ∨ Pcd)
5. (A network becomes stable eventually) AFstable
6. (A network is stable after 2 · |AG|5 steps) AX2·|AG|5stable
7. (Balance implies stability) balanced→ stable
8. (There are |AG| agents) ∃≥|AG|xϕ↔ ∀xϕ

Proof. Statements 5 and 6 follow from the fact that the depth
of T (N) is bounded by 2 · |AG|5. The remaining statements
follow easily from the definitions.

3.3 Balance theorem revisited
Let us start by formally defining what we mean by the net-
work being divisible into cliques.

Definition 14. A clique division of a networkN is a partition
V1, . . . , Vk of AG such that (i) for all i = 1, . . . , k and all
a, b ∈ Vi, N(ab) = + and (ii) for all i, j such that 1 ≤ i <
j ≤ k, either N(a, b) = − for all a ∈ Vi and b ∈ Vj or
N(a, b) = 0 for all a ∈ Vi, b ∈ Vj .

A clique division is semi-bipartite if for every i there is at
most one j such that for a ∈ Vi and b ∈ Vj , N(a, b) = −.

A network is (semi-bipartite) clique divisible if it has a
(semi-bipartite) clique division.

The property of being clique divisible, and of semi-
bipartite clique divisible, can be expressed in LAE as follows:

clique =df ∀xy(Pxy→(∀z(Nxz→Nyz)∧¬∃≥2z(Pxz∧Oyz)))
sbclique =df clique ∧ ∀xyz¬(Nxy ∧Nyz ∧Nxz)

The definition of clique is not entirely straightforward, but the
following proposition shows it is a faithful definition.

Proposition 15. A network N is clique divisible iff N |=
clique. N is semi-bipartite clique divisible iff N |= sbclique.

Proof. A network is clique divisible iff for every a, b and c,
if N(a, b) = + then N(a, c) = N(b, c). We show that the
formula clique guarantees exactly this property.

Take any two agents a and b such that N(a, b) = + and
let c be a third agent. Suppose that N(a, c) 6= N(b, c). Then
we distinguish two possibilities: (i) one of a, b is an enemy
of c and the other is not or (ii) one of a, b is a friend of c
while the other is neutral. Without loss of generality, the neg-
ative relation in case (i) and the positive relation in case (ii)
is between a and c. Then, in case (i), we have N |= Pab
and N 6|= Nac → Nbc, so N 6|= clique. In case (ii), we
have N |= Pab, N |= Pac ∧ Obc and N |= Pab ∧ Obb, so
there are at least two witnesses for ∃≥2z(Paz∧Obz). Again,
N 6|= clique.

Similar reasoning shows that if a and b have the same re-
lation with every c, then clique holds. So clique holds if and
only if N is clique divisible. Furthermore, a clique division
is semi-bipartite if every clique is hostile to at most one other
clique, so if no three cliques are mutually hostile. It is easy to
see that this is the case iff sbclique holds.

In Section 3.2 we claimed that the property of being semi-
balanced can be expressed in LAE. Here, we define a formula
semi-balanced that expresses this property. The definition



of semi-balanced is not entirely straightforward. The prob-
lem lies in the fact that Oab may hold because N(a, b) = 0,
or it may hold because a = b. So while a semi-balanced net-
work does not contain any triads of the form ++0, it may
contain agents x, y and z such that Pxz ∧ Pyz ∧ Oxy, if
x = y. In the formula semi-balanced we have to take care
of this special case.

semi-balanced(a, b) =df ∀x(((Pax ∧Nxb)→ Nab)∧
((Nax ∧ Pxb)→ Nab)∧

((Pax ∧ Pxb)→ (Pab ∨ (Oab ∧ AXOab)))∧
((Nax ∧Nxb)→ (Pab ∨ (Oab ∧ AXOab))))

semi-balanced =df ∀y∀z semi-balanced(y, z).

Proposition 16. A network N is semi-balanced if and only if
N |= semi-balanced.

Proof. Suppose that N is semi-balanced, and that N |=
Pax ∧ Pxb. Then there are two possibilities: either a = b
or abx is a semi-balanced triad with at least two positive
edges. In the first case N |= OAb ∧ AXOab, since an
agent is neutral to itself. In the second case, abx must be
of the form +++, so N |= Pab. In either case, N |=
(Pax∧Pxb)→ (Pab∨ (Oab∧AXOab)). The antecedents
of the other three implications are false, so they are trivially
satisfied. It can similarly be shown that if N |= Pax ∧Nxb,
N |= Nax ∧ Pab or N |= Nax ∧Nxb all four implications
hold, so N |= semi-balanced.

Suppose then that N contains a triad abx such that N |=
Pax ∧ Pxb ∧ Oab. Because a and b have a mutual friend
x, the edge ab has an attraction of at least 1. There are two
possibilities. Firstly, the edge ab may be improving. In that
case, N 6|= AXOab, and therefore N 6|= (Pax ∧ Pxb) →
(Pab ∨ (Oab ∧ AXOab)). Secondly, the attraction may be
counterbalanced by a repulsion due to an anti-mutual rela-
tion with x′. In that case, we have either N 6|= (Pax′ ∧
Nx′b) → Nab or N 6|= (Nax′ ∧ Px′b) → Nab. In ei-
ther case, N 6|= semi-balanced. For all other unbalanced
or partially balanced triads abx it can similarly be shown that
N 6|= semi-balanced.

Now that we have the formulas semi-balanced and
sbclique, it is quite easy to formulate the Balance Theorem.

Theorem 17 (balance). |= semi-balanced↔ sbclique.

Proof. Suppose N |= sbclique. By Proposition 15 this im-
plies that N is semi-bipartite clique divisible. Now, take any
triad abc in N . If a, b and c are members of the same clique,
then abc is of the form +++. If a and b are members of the
same clique and c is a member of a different clique, then abc
is of the form +−−, if the cliques are hostile to each other, or
+00, if the cliques are neutral to each other. If a, b and c are
all members of different cliques, then due to the fact that N
is semi-bipartite, at most two of these cliques can be hostile
to one another. So abc is of the form −00 or 000. Each of
these possible forms for abc is either balanced or pressure-
free, so N is semi-balanced. By Proposition 16 this implies
that N |= semi-balanced.

Suppose N |= semi-balanced. By Proposition 16, N is
semi-balanced. Let V1, . . . , Vk be the partition such that a, b

are in the same part if and only if there is a path of posi-
tive relations from a to b. Because N is semi-balanced, pos-
itive relations are transitive. So every a, b ∈ Vi have posi-
tive relations. It follows that V1, . . . , Vk is a clique division.
Now, suppose towards a contradiction that there are cliques
Vi, Vj , Vl that have negative relations with one another. Then
for a ∈ Vi, b ∈ Vj and c ∈ Vl, the triad abc is of the form
−−−. This contradicts N being semi-balanced. The clique
division V1, . . . , Vk is therefore semi-bipartite. By Proposi-
tion 15, this implies that N |= sbclique.

4 Computational Complexity
Now that we have defined our logic of allies and enemies,
we address the complexity of model checking and validity
for this logic. Formally, the model checking problem is to
determine, given a network N and a formula ϕ, whether
N |= ϕ. The validity problem is to determine, given a for-
mula ϕ, whether |= ϕ. We show that both the model checking
problem and the validity problem are PSPACE-complete.

Before we can determine the complexity of either decision
problem, we first need to define a measure for the input, and
the complexity is then defined relative to this measure.

Definition 18. The size of a formula ϕ, denoted |ϕ| is given
recursively by

|Pab| = |Nab| = 1, |¬ϕ| = |AXϕ| = |ϕ|+ 1,
|ϕ→ ϕ′| = |A(ϕUϕ′)| = |E(ϕUϕ′)| = |ϕ|+ |ϕ′|+ 1,
|∃≥nxϕ| = |ϕ|+ n.

The clause |∃≥nxϕ| = |ϕ|+ n means that we assume that
n is represented in unary. This is not critical for our results:
all complexity results presented in this paper would still be
true if we used a binary or decimal representation of n, with
corresponding size measure |∃≥nxϕ| = |ϕ|+ 1 + log n.

The difficulty of the model checking and validity problems
depends on AG as well as ϕ. This suggests two possible ways
to define the input of the two problems. If we consider AG to
be part of the input, then the input size for both problems is
|ϕ| + |AG|. If we consider AG to be fixed, and therefore not
part of the input, then the input size is |ϕ|. Fortunately, this
distinction turns out not to matter: regardless of whether we
consider AG to be part of the input, the model checking and
validity problems are PSPACE-complete with respect to the
relevant input size. In fact, our proofs in this section apply to
either case.

4.1 Model checking in LAE: PSPACE-complete
We show that the complexity of the decision problem is
PSPACE-complete. We start by proving hardness.

Lemma 19. Model checking for LAE is PSPACE-hard.

Proof. We use a reduction from the truth/satisfiability prob-
lem of quantified Boolean formulas (QBFSAT) which is
known to be PSPACE-complete [Stockmeyer and Meyer,
1973]. Take any QBF instance Q1p1 · · ·Qnpnψ(p1, . . . , pn),
where every Qi is either ∃ or ∀. Let N be the network such
that N(ab) = + and N(x, y) = 0 for {x, y} 6= {a, b}. We
can now simulate the choosing of true/false of QBFSAT by



choosing either b (for truth) or any other agent (for false) us-
ing the quantifier of LAE. Note that we can recognize the
choice because we have N |= Pab and N |= ¬Pac for any
c 6= b. We have N |= Q1x1 · · ·Qnxnψ(Pax1, . . . , Paxn)
iff |= Q1p1 · · ·Qnpnψ(p1, . . . , pn). The PSPACE-hardness
of LAE model checking now follows immediately from the
PSPACE-hardness of QBFSAT.

Example 20. Consider the QBF instance ∀p∃q(p ↔ q),
which is valid. The translation to LAE is ∀x∃y(Pax ↔
Pay). For every x ∈ AG, choose y ∈ AG in the follow-
ing way: if x = b, then choose y = b, otherwise choose
y = a. Then we have N |= Pax ↔ Pay. It follows that
N |= ∀x∃y(Pax ↔ Pay). Consider then the QBF instance
∃p∀q(p ↔ q) which is not valid. The translation to LAE is
∃x∀y(Pax ↔ Pay). Now, choose y in the following way: if
x = b, then y = a, otherwise y = b. Then N 6|= Pax ↔
Pay. It follows that N 6|= ∃x∀y(Pax↔ Pay).

Note that the reduction requires only 2 agents. This implies
that model checking is PSPACE-hard regardless of the choice
of AG. Left to show is that the model checking problem of
LAE can be solved in polynomial space.

Lemma 21. Model checking for LAE is in PSPACE.

Proof. The temporal operators of LAE are those of CTL.
The standard model checking algorithms for CTL [Clarke and
Emerson, 1981] can therefore, with minor modifications, be
used here. The algorithm is based on a case distinction re-
garding the main connective of ϕ. We present only two of
these cases here, those of ∃≥nxψ and A(ψUχ), in Algorithms
1 and 2, respectively. In these cases, as in most other cases,

Algorithm 1 Model checking algorithm for the case ∃≥nxψ
1: initialize k = 0
2: for all a ∈ V do
3: if N |= ψ[x/a] then
4: k ++
5: end if
6: end for

7: if k ≥ n then
8: return true
9: else

10: return false
11: end if

Algorithm 2 Model checking algorithm for the case A(ψUχ)
1: if N |= χ then
2: return true
3: else if N 6|= ψ then
4: return false
5: else if N |= ψ then
6: compute N = {N ′ |

N ; N ′}
7: ifN = {N} then
8: return false
9: else

10: initialize x = true
11: for all N ′ ∈ N do
12: if N ′ 6|= A(ψUχ)

then
13: x = false
14: end if
15: end for
16: return x
17: end if
18: end if

the algorithm recursively calls itself. In each case, however,
the recursive calls are either for a strictly smaller formula or
for a different network N ′ that occurs strictly deeper in the
tree T (N). Since T (N) is of finite depth and has no cycles
except in leaf nodes, it follows that the algorithm terminates.

The usual algorithm for CTL runs in polynomial time, but
that is with respect to |ϕ| and the size of the computation tree.
In our case, this computation tree is T (N), which is in general
exponentially large with respect to |AG|. Fortunately, we do
not need to keep all of T (N) in memory at once: we can free
all memory needed to compute whether N ′ |= A(ψUχ) be-
fore we begin to compute N ′′ |= A(ψUχ). In effect, this al-
lows us to search T (N) in a depth-first way using an amount
of memory polynomial in the depth of T (N). As shown in
Proposition 10, this depth is polynomial in |AG|. As such,
model checking for LAE is in PSPACE.

Theorem 22. Model checking for LAE is PSPACE-complete.

4.2 Validity checking in LAE: PSPACE-complete
We begin with PSPACE-hardness, for which we give, as usual,
a reduction from QBFSAT.

Lemma 23. Validity checking for LAE is PSPACE-hard.

Proof. We use a formula γ to characterize models in which a
and b are the only agents to have any any non-zero edges to
anyone else, and the relation between a and b is positive. I.e.,

ξ =Pab ∧ ∀x(∃y(Pxy ∨Nxy)→
(Pxa ∨ Pxb)) ∧ ¬∃≥2xPax ∧ ¬∃≥2xPbx.

Networks satisfying ξ are exactly of the form that was used in
Lemma 19. If N |= ξ, then |= Q1p1 · · ·Qnpnψ(p1, . . . , pn)
iff N |= Q1x1 · · ·Qnxnψ(Pax1, . . . , Paxn). It fol-
lows that |= Q1p1 · · ·Qnpnψ(p1, . . . , pn) iff |= ξ →
(Q1x1 · · ·Qnxnψ(Pax1, . . . , Paxn)). This reduction does
not depend on |AG|, so the validity problem of LAE is
PSPACE-hard regardless of whether AG is a parameter.

Left to show is PSPACEmembership. This too can be shown
using the result for model checking.

Lemma 24. Validity checking for LAE is in PSPACE.

Proof. For given AG there are finitely many different net-
works. This means that we can check whether ϕ is valid
in LAE, using an exhaustive search. That is, for every net-
work N we check whether N |= ϕ. Since model checking
can be done in polynomial space (w.r.t. |N | + |ϕ|) and we
only need to keep one network in memory at a time, valid-
ity checking can be done in polynomial space with respect to
|N | + |ϕ| = |AG| + |ϕ|. If we consider AG to be constant,
this means that validity checking is in PSPACEwith respect to
|ϕ|. If we consider |AG| to be a parameter, then the problem
is in PSPACEwith respect to |AG|+ |ϕ|. In either case, it is in
PSPACEwith respect to the relevant input size.

The PSPACE-completeness of LAE follows immediately.

Theorem 25. Validity checking for LAE is PSPACE-complete.

5 Conclusion
We introduced a logic of allies and enemies (LAE), which
combines social balance theory with temporal logic. LAE can
be used to describe the likely evolution over time of relations
in a social network.



An important concept from social balance theory is that of
balance. We showed that the balance theorem can be formu-
lated and proven in LAE. Furthermore, we showed that, in
addition to balance, the weaker concept stability is important
for understanding the behaviour of social networks. Finally,
we showed that both model checking and validiy checking for
LAE are PSPACE-complete.
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