
  

 
 
 
 
 

The Spatial Ecology of  Host 
Parasite Communities 

 
 
 
 

 

 

 

 

 

 

 

 

 

Thesis submitted in accordance with the requirements of the University of 
Liverpool for the degree of Doctor in Philosophy by Shaun Patrick Keegan 

 
 

August 2019



i 
 

TABLE OF CONTENTS 

TABLE OF CONTENTS ................................................................................................................. i 

ACKNOWLEDGMENTS .............................................................................................................. iii 

ABSTRACT ...................................................................................................................................... v 

1 INTRODUCTION & LITERATURE REVIEW .................................................................. 7 
1.1 Why space is important for epidemiology? .................................................................................................... 7 
1.2 Spatial scale ............................................................................................................................................... 8 
1.3 Transmission mode and the spatial clustering of infections ............................................................................ 9 
1.4 Quantifying spatial clustering .................................................................................................................... 10 
1.5 The application of network theory to epidemiology ...................................................................................... 11 
1.6 Overview of study systems .......................................................................................................................... 12 
1.7 Coinfection ............................................................................................................................................... 13 
1.8 Thesis outline ........................................................................................................................................... 14 

2 SPATIAL CLUSTERING OF PARASITES WITH DIFFERING TRANSMISSION 
MODES .......................................................................................................................................... 15 

2.1 Abstract ................................................................................................................................................... 15 
2.2 Introduction .............................................................................................................................................. 16 

2.2.1 Studies into the clustering of infectious diseases ....................................................................... 18 
2.2.2 Quantifying clustering: spatial point patterns and K function analysis ................................. 19 
2.2.3 A natural model of clustering of diverse parasite types: The wood mouse parasite system
 20 
2.2.4 Hypotheses ...................................................................................................................................... 23 

2.3 Methods ................................................................................................................................................... 23 
2.3.1 Data .................................................................................................................................................. 23 
2.3.2 K function analysis ......................................................................................................................... 25 
2.3.3 Statistical analysis of K functions ................................................................................................ 27 

2.4 Results ..................................................................................................................................................... 28 
2.4.1 Differences between host and parasite clustering ..................................................................... 28 
2.4.2 Null Model Testing ........................................................................................................................ 32 

2.5 Discussion ................................................................................................................................................ 33 
2.5.1 Apparently high degrees of clustering of Wood Mouse Herpes Virus .................................. 33 
2.5.2 Clustering of environmentally transmitted parasites ................................................................ 35 
2.5.3 Clustering of flea borne parasites ................................................................................................ 36 
2.5.4 Lack of spatiotemporal analysis ................................................................................................... 37 
2.5.5 Sample Size and Inference ............................................................................................................ 37 
2.5.6 Overall conclusions ........................................................................................................................ 38 

3 SPATIAL SCALING OF WITHIN-HOST COINFECTION INTERACTIONS ............. 40 
3.1 Abstract ................................................................................................................................................... 40 
3.2 Introduction .............................................................................................................................................. 41 

3.2.1 Examples of coinfection in natural systems ............................................................................... 42 
3.2.2 A natural model of coinfection: the wood mouse parasite system ......................................... 43 
3.2.3 Aims and hypotheses ..................................................................................................................... 44 



 

ii 
 

3.3 Methods ................................................................................................................................................... 44 
3.3.1 Data .................................................................................................................................................. 44 
3.3.2 Neighbourhood analysis ................................................................................................................ 46 
3.3.3 Statistical Analysis .......................................................................................................................... 47 
3.3.4 Accounting for treated animals .................................................................................................... 48 

3.4 Results ..................................................................................................................................................... 49 
3.4.1 Single parasite models .................................................................................................................... 49 
3.4.2 Coinfection interaction models .................................................................................................... 49 
3.4.3 Null Model Simulation .................................................................................................................. 52 

3.5 Discussion ................................................................................................................................................ 53 
3.5.1 Between host consequences of coinfection ............................................................................... 53 
3.5.2 Methodological advance in the detection of coinfection interactions ................................... 54 
3.5.3 Overall conclusions ........................................................................................................................ 56 

4 SCALING OF COINFECTION INTERACTIONS ACROSS SOCIAL NETWORKS ..... 57 
4.1 Abstract ................................................................................................................................................... 57 
4.2 Introduction .............................................................................................................................................. 58 

4.2.1 Assumptions of homogenous mixing and its limitations ......................................................... 58 
4.2.2 Social network approaches and network features ..................................................................... 60 
4.2.3 Network neighbourhood analysis and the spatial scale of coinfection interactions ............ 62 
4.2.4 Aims and hypotheses ..................................................................................................................... 65 

4.3 Methods ................................................................................................................................................... 65 
4.3.1 Data .................................................................................................................................................. 65 
4.3.2 Social Network Analysis ................................................................................................................ 66 
4.3.3 Statistical models of individual network metrics ....................................................................... 66 
4.3.4 Neighbourhood Analysis of Social Networks ........................................................................... 68 

4.4 Results ..................................................................................................................................................... 69 
4.4.1 Network structure over year and season .................................................................................... 69 
4.4.2 Effects of individual network metrics on individual infection risk ........................................ 71 
4.4.3 “Neighbourhood” analysis of local infection and coinfection risk ........................................ 72 
4.4.4 Null model Test .............................................................................................................................. 74 

4.5 Discussion ................................................................................................................................................ 76 
4.5.1 Individual-level network characteristics ...................................................................................... 76 
4.5.2 Neighbourhood analysis ................................................................................................................ 77 
4.5.3 Future directions ............................................................................................................................ 78 

5 SUMMARY AND CONCLUSION ...................................................................................... 81 
5.1.1 Thesis Summary and Novelty ...................................................................................................... 81 
5.1.2 Comparative clustering – does transmission mode play a role in the spatial distribution of 
cases? 83 
5.1.3 Neighbourhood analysis as a tool to understand coinfection interactions ........................... 85 
5.1.4 Extending neighbourhood analysis to social networks ............................................................ 87 
5.1.5 Overall conclusion ......................................................................................................................... 89 

6 Appendix 1. Non-linear adjustment factor for network connectance for use in simulation of 
large networks ................................................................................................................................. 90 

7 Appendix 2. Supplementary model outputs .......................................................................... 93 

8 REFERENCES ................................................................................................................... 105 



iii 
 

ACKNOWLEDGMENTS 
 
 
I would first like to thank Prof Andy Fenton for his supervision these past 4 years. On 

top of the already high intensity of PhD life, circumstances have proven difficult 

personally these last few years, and Andy’s compassion and patience have proven every 

bit as invaluable as his role as my mentor. The independence I have been afforded in 

my PhD to explore new ideas, to strike up collaborations and to travel the world to 

discuss and improve my science has made me a better scientist is a testament to Andy’s 

excellent supervision. 

 

I would also like to extend my thanks to my wider supervisory team, Dr Amy Pedersen 

and Prof Mike Begon, for their input and counsel in how best to proceed and develop 

the research topics at hand. Additionally, to Dr Vanessa Ezenwa for allowing me access 

to a rich dataset of the African buffalo and supporting my short-term fellowship at the 

University of Georgia – it was an excellent experience.  

 

I must also pay thanks to the many field and laboratory workers over the years who I do 

not know, but without which I would not have had the phenomenal datasets that I have 

with which to explore my ideas and interests in spatial disease ecology. 

 

There are too many office mates and fellow PhD students to name all individually, but I 

would like to thank Kayleigh Gallagher and Toby Irving in particular, for being available 

to let me articulate my ideas, talk through debugging my code and generally being a 

sounding board for venting PhD related stresses to.  

 



 

iv 
 

 

I would also like to thank Amy Halliday, David Webb and Steven Anderson, great 

friends who have made sure that I have never felt far from home while undertaking my 

PhD.  

 

To my parents Jacqueline and Stephen, for supporting me and encouraging me to 

achieve my best before, throughout and after my PhD. I would not have made it 

through without their support.  

 

Finally, I would like to thank my two adorable balls of fluff, Daisy and Riley, for never 

failing to give me a reason to smile, even when times are tough. 



v 
 

ABSTRACT 
 
 

Tobler’s First Law of Geography states that ‘everything is related to everything else, but near 

things are more related than distant things’. In the context of infectious diseases this implies 

that there are likely to be further cases of these infections spatially closer to an infected 

host than spatially further away. This is a simplistic interpretation that fails to consider 

the transmission biology of parasites. I investigated whether a function of spatial 

clustering, the K function, differed from the host and between parasites of a range of 

taxa and transmission modes in the wild wood mouse. Using the studentized 

permutation test, I found that there is a significant difference between a close contact 

transmitted virus, Wood Mouse Herpes Virus (WMHV), and the host and a number of 

parasite species. This is consistent with prior studies of close contact transmitted viruses 

in wood mice, suggesting there is a link between spatial clustering and close contact 

transmission. 

   
Interactions among coinfecting parasites are typically examined at the within-host level, 

often revealing strong effects on individual host susceptibility or disease progression. 

However the effect of these interactions on parasite transmission between hosts, and 

the spatial scales over which those effects operate, has remained unknown. I analyse a 

spatially explicit dataset of the diverse community of parasites infecting wild wood mice, 

to assess the effects of local neighbourhood prevalence of each parasite species on 

individual-level infection risk by the other species, over an increasing range of spatial 

scales. This revealed that the effects of within-host interactions between coinfecting 

parasites can indeed ripple out beyond the individual host, resulting in a network of 

facilitatory and suppressive effects on transmission among these parasites. However 
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these between-host effects were only seen over relatively restricted distances around 

each host, over spatial scales likely reflecting the spatial scale of transmission.  

 
Classical models of infectious diseases generally assume random mixing of individuals in 

a population. In these models each individual is as likely to encounter every other 

individual equally. Ignoring heterogeneities in contacts between individuals can 

overlook a significant element of the transmission biology of the parasite. Recently, 

studies focusing on how social networks relate to the spread of infection have increased 

in number dramatically.  I explore how two measures of an individual’s place in a social 

network, eigenvector centrality and degree, affect the disease status of individuals, using 

a very different study system to the wood mouse, the African buffalo. I find that for 

some parasites, eigenvector centrality affects disease status but that for all parasites 

degree has no effect. I then adapt the neighbourhood analysis technique to investigate 

potential novel parasite-parasite interactions, detecting one previously unknown. 

 
Spatial scale is the theme binding each of the studies in this thesis - from scale of 

clustering, to scale of coinfection interactions. Using pre-existing and bespoke 

techniques, I have explored 2 very different host-parasite communities to tackle these 

issues, concluding that spatial scale is an important consideration in understanding 

parasite biology. 
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1 INTRODUCTION & 
LITERATURE REVIEW 

 

1.1 Why space is important for epidemiology? 

Infection can be characterised by the point in time that it occurs, and the point in space 

that it occurs (Real and Biek, 2007). However, traditional approaches for understanding 

and modelling the transmission and spread of infectious diseases adopt a ‘mass action’ 

approach that assumes homogenous mixing such that all individuals are equally likely to 

contact all other individuals in the population (Anderson and May, 1992). As such this 

standard approach ignores, or at least averages over, the spatial context of transmission. 

In reality, individuals may be more likely to contact individuals that are close to them, or 

there may be environmental heterogeneities that mean the standard assumptions of 

homogenous transmission across the population are invalid. As such, recognising the 

spatial and social context of transmission – with who and where contacts are most likely 

to occur – can dramatically improve our understanding of disease spread, and the 

development of more effective, targeted mitigation strategies.  As an example of this, 

the most heavily cited (788 at the time of writing) article exploring the dynamics of the 

2001 foot and mouth disease (FMD) epidemic in the United Kingdom was a spatially 

explicit, individual based model (Keeling et al., 2001). While this approach is not always 

viable, the degree of information about the occurrence of cases on farms in the United 

Kingdom allowed for a suitably detailed model of transmission throughout the 

epidemic, with reference to the spatial arrangement of infected farms to one and other. 

This spatially explicit modelling allowed for clear recommendations to be provided on 

how to manage a subsequent FMD outbreak in the United Kingdom (Woolhouse, 

2003). Traditional modelling approaches, that typically assume a form of homogenous 
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mixing (Anderson and May, 1992) would have failed to capture the dynamics of the 

spread of the virus.  

 

Spatially, there are several types of parasite spread (White and Forester, 2018). Firstly, 

parasites can spread from an epicentre, uniformly, such as the case of West Nile Virus 

(LaDeau et al., 2008). Some spread via dispersal events, over both small and large 

distances, depending on landscape features acting as barriers to dispersal or not, such as 

in rabies (Smith et al., 2013). Others spredominantly pread locally, with very occasional 

long range dispersal events, such as the amphibian disease ranavirus (Price et al., 2016). 

That there is such diversity in spread suggests that there is some element of the 

underlying biology, such as host or vector movement, or the nature of environmental 

dispersal, that dictates why one parasite spreads around an epicentre uniformly, and one 

will have large-scale dispersal.  

 

1.2 Spatial scale 

Scale is a popular, if problematic word in ecology. Nonetheless, it is a key concept of 

importance in ecological theory (Levin, 1992). It has many, often contradictory usages 

including the spatial and/or temporal resolution of a process, the extent (area 

considered by the study) of processes (Dungan et al., 2002), or the level of biological 

organisation being considered (individual, population, community etc). In this thesis I 

specifically use the term to relate to spatial scale (rather than, for example, biological 

scale), but even then this is another concept with a somewhat over-stretched definition 

in the literature. There are three spatial patterns common to ecological data that affect 

observed processes. Firstly, at the largest of spatial scales, there are overall trends such 

as climate which is the dominant process. Secondly, at intermediate spatial scales there 

is patchiness of the environment, which is a dominant feature. And finally, at the 
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smallest of spatial scales there is stochasticity, whereby local variability dominates 

(Fortin and Dale, 2005). For the purposes of parasite ecology in the context of this 

thesis, I am interested in the 2 smaller scales, the patchy heterogeneous environment 

and the individual variability.  

 

1.3 Transmission mode and the spatial clustering of infections  

Tobler’s First Law of Geography states that ‘everything is related to everything else, but near 

things are more related than distant things’ (Tobler, 1970). In the context of parasites, this 

implies that susceptible individuals closer to an infected host would be more likely to be 

subsequently infected by that host, than individuals further away. If individual a is 

infected, and individual b is closer to a than individual c, the intuitive assumption is that 

individual b is more likely to become infected than individual c. This is an attractive view 

if one is considering only close contact transmission, however given the range of 

methods by which parasites infect susceptible hosts (Antonovics et al., 2017), it may be 

an over simplification.  If the parasite in question is transmitted by an arthropod vector, 

this may facilitate longer range transmission, particularly if that vector is a strong flying 

species such as a mosquito or tsetse fly.  As such, individual c may be equally or even 

more likely to become infected than individual b. In this case, parasite transmission is 

dependent on the movement and distribution of the vector as well as the host 

movement and distribution. Other parasites transmit through shedding infective 

particles into the environment. Transmission is also potentially greatly variable among 

these parasites, as some like cholera (Vibrio cholerae) are water borne, and as such 

dispersal and transmission may be long-range, carried by flowing water, and spatial 

clustering may be apparent around sources of water specifically. Others, such as soil 

transmitted nematodes have limited dispersal capability in the environment, and so 

cases may be clustered where hosts occupy space in the environment.  
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To the best of my knowledge, no comparative study of parasite clustering between 

species with different transmission modes has ever been undertaken. A number of 

individual parasites have been examined (Carslake et al., 2005, Ngowi et al., 2010, 

Yohannan et al., 2014), as well as comparing a single parasite between different hosts 

(Carslake et al., 2005). It is this variability between transmission modes, and the 

implications it has for the degree to which cases of infection by the different parasites 

cluster around one and other; that motivates the work presented in this thesis.  

 

1.4 Quantifying spatial clustering  

A spatial point pattern is a dataset in which the locations of observations (as x and y 

coordinates) are recorded within a defined area (Diggle, 2013; Baddeley, Rubak and 

Turner, 2015). There is a common measure of spatial clustering, the K function (Ripley, 

1976), that calculates the correlation between points in a spatial point pattern. This is 

usually expressed as K(r), indicating the clustering occurring over spatial distance r, 

whereby high values of K(r) indicate more clustering than would be expected than 

random. Spatial K functions have been employed to assess spatial clustering in a range 

of parasite systems, from the bacterium Chlamydia trachomatis (Yohannan et al., 2014) to 

the zoonotic tapeworm Taenia solium (Ngowi et al., 2010).  A number of studies (Ribeiro 

et al., 2015; Leite Dias et al., 2016; Madinga et al., 2017) employ a transformation of the 

K function, the L function. Any clustering detected that is above what is expected 

under complete spatial randomness is the product of processes which occur at spatial 

scales up to the point that clustering is detected, not simply at that spatial scale itself. 

There are yet further extensions of the K function, including the spatiotemporal K 

function (Diggle, 2013). These have been used to investigate clustering of cowpox virus 

in wood mice and bank voles (Carslake et al., 2005) and FMD in cattle (Picado et al., 
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2011). Spatially the function was used to determine that clustering of cowpox cases was 

highest within one home range radius of hosts (Carslake et al., 2005). However, while 

this spatiotemporal adaptation of the K function is useful for the analysis of parasite 

clustering, given data of sufficient spatial and temporal resolution, it will not be used in 

this thesis for reasons outlined in further detail in Chapter 3.  

 

1.5 The application of network theory to epidemiology 

Classical models of infectious diseases generally assume random individuals mix 

randomly in a population, much like a chemical reaction. In these models each 

individual is as likely to encounter every other individual as much as any other 

individual (Anderson and May, 1992). In some cases, these models adequately describe 

the dynamics of the infection across the host population, it would be flippant to ignore 

heterogeneities in contacts between individuals which can overlook a significant 

element of the transmission biology of the pathogen - driven by variation between 

individuals in host behaviour. In the last decade or so, studies focusing on how host 

social networks relate to the spread of infectious diseases have increased dramatically 

(White, Forester and Craft, 2017).  Social networks are representations of potential 

pathways for contact, and disease transmission to occur (White, Forester and Craft, 

2017). The aim of utilising social network representations of populations is not to 

discount the utility of traditional compartmental models. Instead it is rather to 

understand fully the importance of heterogeneities in contact structure and understand 

how these contribute to the dynamics of disease in the system. Network analyses have 

been employed in empirical and modelling studies of infectious disease transmission 

across a wide variety of host-parasite systems, ranging from reptiles (Godfrey et al., 

2009; Aiello et al., 2014), ungulates (VanderWaal et al., 2014) to marsupials (Corner, 

Pfeiffer and Morris, 2003), primates (Griffin and Nunn, 2012; Carne et al., 2014; 
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Romano et al., 2016) to humans (Bansal, Grenfell and Meyers, 2007; Salathé and Jones, 

2015).  

 

It is traditional ecological thinking that group living should bring with it increased 

parasite transmission as a consequence (Altizer et al., 2003). However, it has been 

demonstrated via modelling studies that social structures can lead to a protective effect 

from infection (Hock and Fefferman, 2012). The European Barger (Meles meles) lives in 

structured social groups and are carriers of bTB. A government program of badger 

culling has been undertaken to reduce transmission of bTB to cattle, causing disruption 

to the badger clans. This failed to consider the underlying social structure of badgers. 

Perturbation of these clans led to an increase in inter-clan interactions for up to 8 years 

after culling, and as a consequence increased infection (Carter et al., 2007). Small-scale 

culling efforts are likely to result in increased bTB in cattle (Bielby et al., 2014). This 

example showcases the importance of network structures and how they can seriously 

impact disease dynamics under perturbation.  

 

1.6 Overview of study systems 

Data from two very different study systems are analysed in this thesis, described in 

more detail in Chapter 2. Firstly, a longitudinal and spatially hierarchical mark-recapture 

dataset of wood mice and their parasites. Data on parasites in this system range from 

helminth worms and coccidial gut parasites to blood-borne bacterial and protozoan 

parasites. They represent a range of transmission modes, including close contact, 

environmental transmission and transmission via a vector. This dataset has been 

explored in a number of publications (e.g. Knowles et al., 2013; Withenshaw et al., 2016), 

however, until now has not been explored in a spatially explicit fashion. The diversity of 
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parasites recorded in this spatially explicit data set facilitate analysis of how the spatial 

clustering of cases varies across their differing transmission modes. The second system 

to be investigated is the African buffalo. Again, there is parasitological data for a range 

of micro and macroparasites. However, instead of spatially explicit data, the buffalo data 

is more implicit in the form of association data. This allows for the building of social 

networks, that can then be analysed to understand how social proximity affects 

infection occurrence for the range of parasites recorded. 

 

1.7 Coinfection 

As well as it being a truism that individuals in natural populations do not mix 

homogenously, another facet of natural infectious disease systems is coinfection; the 

simultaneous infection of individual hosts by multiple parasite species (Petney and 

Andrews, 1998; Cox, 2001). There is a great deal of ecology operating among parasites 

within hosts (Pedersen and Fenton, 2007) and there are a number of mechanisms by 

which parasites can interact. Such interactions have been observed in a number of wild 

host-parasite systems.  For example, in the wood mouse (Apodomus sylvaticus), there has 

been a well characterised, antagonistic, interaction between a nematode, Heligmosomoides 

polygyrus and a coccidia, Eimeria hungaryensis (Knowles et al., 2013). This was determined 

by experimental suppression of H. polygyrus via treatment with the anthelmintic 

Ivermectin, which resulted in a 15-fold increase in coinfecting Eimeria following 

nematode suppression by the drug. Conversely, in the African buffalo (Syncerus caffer) a 

positive association was detected between coinfecting strongyle nematodes and 

coccidial parasites (Gorsich, Ezenwa and Jolles, 2014), as well as a host of other 

interactions, including interactions between Mycobacterium bovis (bTB) and strongyle 

nematodes (Jolles et al., 2008), and between bTB and Brucellosis (Gorsich et al., 2018a). 

This latter interaction highlights the importance of scale, as mentioned above. bTB is a 
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risk factor for acquiring Brucellosis at the individual level, whereas at the population 

level, Brucellosis has a negative association with bTB (Gorsich et al., 2018b).  

 

1.8 Thesis outline 

The overarching aim of this thesis is to understand the spatial and social context of 

infectious disease occurrence across the range of parasites recorded in the study 

systems, with the intention of using these systems to inform more generally how 

differing transmission modes affect the spatial spread and occurrence of infections. In 

Chapter 2 I describe in more detail the datasets that I will use. This will encompass the 

wood mouse mark recapture dataset, to be used in Chapters 3 and 4, and the African 

buffalo social network dataset to be used in Chapter 5. Chapter 3 explores the spatial 

clustering of parasite infection, with the specific focus being what scale parasites show 

clustering at, in a comparative way between parasite species. Chapter 4 focuses on 

coinfection, and present a novel technique to determine the spatial scale over which the 

effects of interactions between coinfecting parasites spread beyond the individual host. 

This uses the above well characterised interaction between H. polygyrus and E. 

hungaryensis (Knowles et al., 2013) to validate the technique, which is then applied to 

other pairs of coinfecting parasites. Chapter 5 investigates social networks of the 

African buffalo and determines what individual level network characteristics drive 

infection. Additionally, in Chapter 5 I adapt the neighbourhood technique developed in 

Chapter 4 for use on social networks, to determine how parasite infection status is 

affected by prevalence among their neighbours at various distances in the network, and 

to similarly use this technique to investigate the scaling of coinfection interactions in 

this system. Chapter 6 presents an overall Discussion of the work presented in this 

thesis, and considers the broader applications of the findings presented for our 

understanding of the spatial spread and control of infectious diseases more generally. 
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2 SPATIAL CLUSTERING OF 
PARASITES WITH DIFFERING 
TRANSMISSION MODES 

 
 
 
2.1 Abstract 
 
Tobler’s First Law of Geography states that ‘everything is related to everything else, but near 

things are more related than distant things’. In the context of infectious diseases this implies 

that there are likely to be further cases of these infections spatially closer to an infected 

host than spatially further away. This is a simplistic interpretation that fails to consider 

the transmission biology of parasites. Here I investigated whether a function of spatial 

clustering, the K function, differed from the host and between parasites of a range of 

taxa (virus, nematoda, bacteria and protozoa) and transmission modes (close contact, 

environmentally transmitted and flea borne) in the wild wood mouse. Using the 

studentized permutation test, I found that there is no significant difference between the 

host and environmental or flea borne parasites, but that there was a significant 

difference between a close contact transmitted virus, Wood Mouse Herpes Virus 

(WMHV), and the host and a number of parasite species. WMHV clustered significantly 

more at spatial scales of up to ~25 metres. This is consistent with prior studies of close 

contact transmitted viruses in wood mice, suggesting there is a link between spatial 

clustering and close contact transmission. 
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2.2 Introduction 
 

As early as 1854, in his now famous disease maps, John Snow recognised there was 

spatial clustering of cholera cases in London (Snow, 1855). This led to the identification 

of the Broad Street water pump as the most likely source of disease; cases became less 

frequent the further away from the Broad Street pump they were, or the closer to 

another water pump. Snow’s work was a key moment for epidemiology as it showed 

that by using spatially-explicit disease incidence data it is possible to track down the 

source of infection, and its conclusions have been verified and built upon by numerous 

studies. For example, using Kernel Density Estimation, Shiode et al. (2015) showed 

quantitatively that the greatest mortality from cholera was found to be clustered spatially 

around the Broad Street pump. Snow’s cholera data have also been used to develop 

geographic profiling tools for epidemiology, using what we know about the clustering in 

that situation to determine whether new approaches are also able to identify the Broad 

Street pump as the source (Papini and Santosuosso, 2017). 

 

The clustering of cholera cases that Snow observed is in line with Tobler’s First Law of 

Geography, that ‘everything is related to everything else, but near things are more related than distant 

things’ (Tobler, 1970). In the context of infectious diseases, this makes the intuitive 

assumption that susceptible individuals closer to an infected host would be more likely 

to be subsequently infected by that host, than individuals further away. While an 

attractive generalisation, this may be a reductive view. The spatial scale of clustering is 

likely to depend on a number of factors related to both the host, the parasite and the 

environment. The fundamental process required for the propagation of disease is 

transmission between host individuals. Parasites (defined here as an organism living in 

or on another, and that causes harm to that organism), or their infectious propagules 
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must pass from one host to another. There are a variety of methods that parasites use to 

transmit from host to host, some passive (e.g. Ascaris lumbricoides eggs ingested from the 

environment) and some active (e.g. schistosome cercariae seeking a host to infect in 

water), some short-range (e.g. sexually transmitted parasites) and some long-range (e.g. 

tsetse fly transmitted trypanosomiasis), leading to potentially very different patterns of 

spatial clustering, over very different spatial scales. Cholera is water borne, which is why 

there was clustering of cases centred on a contaminated water pump, at the smallest 

spatial scales. Similarly, for parasites that transmit by close contact between hosts such 

as influenza, we may expect cases of infection to cluster closely at small, local spatial 

scales. However, other modes of transmission may give rise to very different clustering 

patterns. For example, for parasites that transmit by using an arthropod vector, 

transmission is dependent not only on host movement and distribution, but on the 

movement and distribution of the vector. An example of this is malaria, transmitted by 

the mosquito Anopheles gambiae.  The mosquito is able to move between hosts 

independently, and this extensive vector movement, or prolonged survival in the 

environment, may decouple the clustering of cases from that of the host, and we may 

not expect to see localised clustering of cases. In the case of environmentally 

transmitted parasites, whether the substrate (soil or water) is static or mobile (in the case 

of flowing rivers), and whether it is ubiquitous, such as soil, or forms discrete patches in 

the environment, will again influence the spatial scale of any clustering of cases. For 

example, if the medium for transmission is the soil, we may see clustering that is closely 

related to the territoriality of hosts. Therefore, the scale at which we observe clustering 

of infection in relation to host clustering, can provide biological insights into the host-

parasite dynamic, specifically the spatial scale of transmission. 
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2.2.1 Studies into the clustering of infectious diseases 

A number of studies have explored aspects of spatial clustering for a variety of 

infectious diseases. For example, in a large study of HIV in rural Uganda, Grabowski et 

al., (2014) investigated spatial clustering of cases across a variety of spatial scales, from 

within household (0 metres apart) up to 250 kilometres. Individuals within households 

were 3.2 times more likely to be seropositive for HIV than the general population 

examined in the study. Weaker, although still statistically significant, clustering was 

detected beyond the household, with individuals within 10 – 250 metres of each other 

being 1.22 times more likely to be seropositive than other participants in general, and 

1.08 times more likely when occurring between 250 – 500 metres of each other 

(Grabowski et al., 2014). HIV is transmitted by sexual (close) contact between 

individuals, limiting its ability to spread over large scales spatially by the constraints on 

its host. The evidence presented by Grabowski et al., (2014) demonstrates this in the 

form of strong local clustering, with weaker clustering as spatial scale increases.   

 

Influenza is an orthomyxovirus, responsible for the deaths of between 50 and 100 

million people in the first pandemic outbreak of the 20th century alone (Johnson and 

Mueller, 2002). Seasonal epidemics occur, due to small changes to the viral surface 

proteins (Smith et al., 2004), whereas pandemics occur when viruses present novel 

surface antigens (Simonsen, 1999). Patterns of host movement, as opposed to 

population size or density were found to be the key determinant of spread of infection 

of interpandemic, seasonal influenza in the United States of America (Viiboud et al., 

2006). Hence the disease spreads in a spatial manner consistent with the movement of 

the hosts. 
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2.2.2 Quantifying clustering: spatial point patterns and K function analysis 

When considering spatial clustering, it is important to think about the type of data 

required for a specific analysis. A spatial point pattern is a dataset in which the locations 

of observations (as x and y coordinates) known as events are recorded within a defined 

area, or window (Diggle, 2013; Baddeley, Rubak and Turner, 2015). Ripley’s K function is 

a standard tool used to determine over what scales a spatial point pattern clusters 

(Ripley, 1976). This function “describes the extent to which there is a spatial dependence in the 

arrangement of events” (Gatrell et al., 1996) where, in the context of infectious diseases, an 

event can be a parasitic infection. While in many ecological studies of K functions, the 

aim is to determine whether there is greater clustering than one would expect by chance 

(i.e., if events were distributed randomly and independently of each other in space), in 

the case of parasitic infections, an important question is whether a parasite shows 

greater or lesser clustering than the host.  Should a parasite be more clustered than the 

host population, it would suggest that there is spatially localised transmission, as 

opposed to the mass action type of transmission that forms the basis of most of our 

understanding of infectious disease ecology (e.g., Anderson and May (1992)). As an 

example of this kind of analysis, Carslake et al., (2005) hypothesised that for cowpox, a 

virus of rodents in the UK transmitted by close contact, cases would be spatially 

clustered within the home range of the host, and temporally clustered within the time it 

takes for the host to rid itself of the virus (approximately 4 weeks). Developing an 

adapted version of the space-time K function, for both host species (wood mice and 

bank voles), Carslake et al. (2005) found that clustering of cowpox cases was indeed 

constrained to a single home range of the host (~ 16 metres) and temporally clustered 

within 4 weeks. This is biologically important given the main route of transmission of 

cowpox is via close contact between individuals. Close contact transmission requires 

that both infectious and susceptible animals be at the same point in space at the same 
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point in time; hence the observed spatiotemporal scale of clustering of cases match that  

expected based on the transmission biology of the parasite. That is, that it would be 

found within the range of space occupied by a single host, within the infectious period 

of the virus. Like HIV, influenza, and measles, this evidence suggests that clustering for 

parasites transmitted via close contact should be driven by host movement and 

distribution, and as such is likely to be highest at the scale of space use by the host. This 

approach proved useful in a subsequent study, whereby the spacetime clustering of mice 

and voles individually fell within the expected spatial and temporal scales for each 

species alone, but did not cluster with respect to the distribution of the opposite 

species, suggesting little or no cross-species transmission (Carslake et al., 2006). Hence 

the relationship between the clustering of disease cases and the host can provide 

invaluable information about potential routes and modes of transmission. 

 

2.2.3 A natural model of clustering of diverse parasite types: The wood mouse parasite 

system 

The wild wood mouse (Apodemus sylvaticus) is native to the United Kingdom, as well as 

much of Western Europe. These animals are host to over 30 species of parasites, of 

varying taxa and transmission modes (Knowles et al., 2013). This diversity across the 

parasite community makes these animals an ideal study system to investigate clustering 

of infection cases in relation to that of the host, and between the different parasite 

species. As described above, previous clustering analyses have been undertaken in the 

wood mouse and bank vole (Clethrionomys [now Myodes] glareolus) system, with regards to 

the host populations and of individuals infected with cowpox virus (Carslake et al., 

2005). However, cowpox is just one, relatively rare (~5%) parasite in this system; there 
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are a large number of parasites showing a range of transmission modes and chronicities 

(Table 2.1).  

 

Table 2.1 Parasites considered in the clustering analysis, their transmission mode and chronicity of 

infection.    

Parasite Taxa Infection Type Transmission Mode 

Heligmosomoides polygyrus Nematoda Chronic Environmental 

Eimeria hungaryensis Protozoa Acute Environmental 

E. apionodes Protozoa Acute Environmental 

Bartonella grahammi Bacteria Acute Vector (Flea) 

B. taylorii Bacteria Acute Vector (Flea) 

Trypanosoma grosi Protozoa Chronic Vector (Flea) 

Wood Mouse Herpes Virus Virus Chronic Close Contact or  

Vector (Tick) 

 

The most common parasite in the system is the nematode Heligmosomoides polygyrus, 

which is transmitted environmentally in the soil. While Snow’s cholera had a clear 

environmental source to cluster around (water pumps), given that the nematode eggs 

are excreted as the mice defacate as they move across the environment, clustering for 

this parasite may be less local. This may also be true for the similarly transmitted 

protozoan parasites Eimeria hungaryensis and E. apionodes, which infect faeco-orally via 

occysts in the envionment. However, given that they have a differing chronicity of 

infection compared to H. polygyrus, being acute rather than chronic, this may yet again 

affect the scale over which cases of infection cluster. In particular, we may expect a 

chronic environmentally transmitted parasite to be continually shedding infectious 

particles into the environment, whereas for acute infections, there is a much more 

restricted temporal window by which these particles can be shed. Hence it is reasonable 
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to hypothesise that H. polygyrus will be clustered closely with the host in space, whereas 

for Eimeria spp. there may be a temporal decoupling, which may cause it to be less 

consistent with the host with regards to spatial clustering. Contrastingly, vector 

transmitted parasites may show different patterns of clutering compared to parasites 

with these other transmission modes. Many vectors can move independently of their 

hosts, and as such two hosts do not need to come into contact spatially or temporally 

for transmission to occur. Fleas, for example can potentially move far from their host 

relative to their size, and may increase the range spread, particularly spatially. Tick borne 

parasites may be likely to show significant temporal decoupling from the host, given 

ticks consume a blood meal, leave that host and then do not consume their next blood 

meal until the following year. Hence, the clustering of tick-borne pathogen cases may be 

quite unnconnected to the contemporary clustering of their hosts. The wood mouse is 

infected by flea borne parasites such as the chronic-infecting protozoan Trypanosoma 

grosi, and multiple species of the acute-infecting bacteria Bartonella spp.. Hence, 

comparing between these different parasites allows me to ask whether the degree of 

clustering of infections is the same for parasites with the same tranmission mode 

(indeed, the same vector species), or if there is some other aspect (e.g. chronic vs. acute 

infection) that differentiates how cases of parasite infection are clustered. Finally among 

the parasites in this system that I consider is wood mouse herpes virus (WMHV). While 

it is commonly believed WMHV virus is transmitted via close contact, there is some 

debate as to its true route of transmission in the field, and there is some evidence to 

suggest that it is also transmitted by tick vectors (Hajnická et al., 2017). Hence it is 

possible that the scale over which WMHV infections cluster may give biological insight 

into which hypothesised transmission mode (direct contact v. tick-borne) contributes 

most to the overall transmission, and spatial distribution, of WMHV cases. 
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This chapter sets out to address two key questions relating to the spatial clustering of 

parasite cases in the wood mouse system. Firstly, are parasite cases more or equally 

spatially clustered than that of the host animal? Next, do parasites cluster differently 

from each other and, in particular, does any difference in the spatial scale of clustering 

correlate with transmission mode? To accomplish this, I will use a longitudinal dataset 

of wood mouse captures and parasitological data for these captures.  Note that, whereas 

Carslake et al., (2005) were able to look for temporal and spatiotemporal clustering, due 

to the long-term nature of their data, our data are temporally limited to monthly from 

May to December, which would severely restrict power of such analysis. Hence, due to 

this lack of temporal resolution and range, I have elected to focus exclusively on spatial 

clustering.  

 

2.2.4 Hypotheses 

Given the above information regarding the potential differences arising from 

transmission mode, I hypothesise that I will detect differences in the spatial scale of 

clustering between parasites of differing transmission modes. Additionally, I expect to 

see different clustering between parasites and their host, depending on the transmission 

mode, again with parasite species that share a transmission mode showing similarly-

distinct clustering from that of the host.  

 

2.3 Methods 
 

2.3.1 Data 

These data were collected under the supervision of Professor Andy Fenton and Dr 

Amy Pedersen over a 6 year period from 2009 to 2014. A number of papers have been 

published using parts of these data over the years (e.g. Knowles, Fenton and Pedersen, 
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2012; Knowles et al., 2013; Withenshaw et al., 2016), however all analysis in this thesis is 

novel.  

 

Individuals were trapped three-weekly or four-weekly, using baited Sherman traps 

(Alana Ecology, UK; dimensions 8.9cm x 7.6cm x 22.9cm), from May to December in 

2009 to 2014 in woodlands in the North West of England. Traps were laid on a semi-

permanent grid with 2 traps laid every 10 m, which were checked every day for 4 

consecutive days in trapping weeks. At first capture, all mice were permanently tagged 

with a tagged with a subcutaneous microchip transponder for identification (AVID 

Friend Chip). For all mice at each capture, the following metrics were taken: body 

length (nose tip to base of tail), weight (g), sex, reproductive status and an estimate of 

age were recorded (see Knowles et al., (2013) for further details). At every capture, faecal 

samples were collected from previously sterilised, single occupancy traps for faecal 

floatation and microscopic analysis to identify and quantify both helminth eggs and 

coccidial oocysts (measured as eggs/oocysts/gram; see Knowles et al. (2013) for details 

of identification and quantification of infection by these gastrointestinal parasites). At 

each weekly capture, a small blood sample was taken from the tip of the tail for analysis 

of microparasites (including wood mouse herpes virus, and blood-borne infections 

Bartonella spp. and Trypanosmoa grosi; see Knowles et al. (2012) and Withenshaw et al. 

(2016) for details of identification and quantification of these parasites). For 

microparasites, sensitivity analyses of detection methods were limited due to the small 

volume of blood able to be extracted from each animal, and the restrictions on repeated 

bleeding. For macroparasites, there is some variation between captures for individuals 

with regards to the number of parasites detected (e.g. eggs/oocysts per gram). 

Repeatability for infection status was relatively high (Eimeria spp. 78.7%, H. polygyrus 

73.7%) (A. Pedersen, pers comm). Individuals were also checked visually for 
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ectoparasites (fleas and ticks), as described in Withenshaw et al. (2016). All mice were 

released at the point of capture after handling. 

 

Table 2.2. Number of hosts and parasite prevalence across all grids for each year as based on the 
first capture of each individual. Parasite prevalence presented as the mean across all grids 
investigated in each year. Hp = H. polygyrus; Eh = E. hungaryensis; Ea = E. apionodes; Bgr = B. grahamii; 
Bta = B. taylorii; Tryps = T. grosi 
 

Year Host Hp Eh Ea Bgr Btay Tryps WMHV 

2009 521 0.304 0.323 0.199 0.203 0.267 0.081 0.142 

2010 434 0.430 0.253 0.166 0.245 0.289 0.159 0.165 

2011 725 0.262 0.255 0.254 0.131 0.175 0.067 0.094 

2012 571 0.164 0.191 0.156 0.088 0.342 0.058 0.111 

2013 471 0.085 0.101 0.165 0.031 0.159 0.070 - 

2014 981 0.182 0.171 0.108 0 0 0.054 - 

 

The sampled population represents approximately 80% of the total population of the 

grid (A. Fenton, pers. comm.). Given that individuals are often caught multiple times, 

the decision was taken to only consider the first capture of an individual in a given year, 

as a way to standardise what data was used in the final analysis, relative to that 

individual. While it was known to occur, individuals rarely crossed between grids, likely 

owing to the small home ranges used by wood mice.  

 

2.3.2 K function analysis 
 
The K function is a widely used tool for determining whether a point pattern is more or 

less clustered than would be expected under the conditions of complete spatial 

randomness (CSR). The formula of the K function over spatial distance r is: 
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Where |W| is the observational window (i.e., number of trapping points on the grid), n 

is the number of points in the point pattern (i.e., within distance r of each other), and dij 

is the distance between points i and j.  I{dij < r} is an indicator function, which takes the 

value 1 if dij < r (i.e., if points i and j lie within distance r of each other, and hence 

should be included in the calculation of the K function), and 0 otherwise.  eij( r ) is the 

edge correction (Baddeley, Rubak and Turner, 2015). The edge correction is included to 

account for the fact that points towards the edge of the window will have neighbours 

that are undetectable out-with the study window.  

 

It should be noted that the data were collected from traps laid in pairs every 10 metres. 

This leads to the issue that there is some small scale variation in trap locations. Hence 

there may be two recorded captures of animals at a given trap location (one in each of 

the pair of traps at that location). Given the inability of the unmarked K function to 

deal with multiple replicates of the same point, the decision was taken to jitter the 

spatial coordinates by up to 1 metre, to account for small-scale, but unquantified, spatial 

variation in trap position around each location. This was preferred to the marked K 

function, which can allow for multiple entries per point location, as in the absence of 

fine resolution GPS data, it was considered the best way to consider multiple captures at 

the same trapping date and same coordinates using the 10 metre trapping regime.  

 

All K functions and subsequent analyses were generated in R version 3.5.2 (R Core 

Team, 2018) using the package “spatstat” version 1.58-2 (Baddeley, Rubak and Turner, 

2015). 
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2.3.3 Statistical analysis of K functions 
 

Testing whether a K function differs from CSR is undertaken by enveloping of the K 

function. This is done by simulating point patterns to produce an outward bound from 

which, if the observed K function deviates, we can determine that it is significantly 

different from CSR (Baddeley, Rubak and Turner, 2015). Significant differences 

between groups of point patterns can be detected using the non-parametric Studentized 

Permutation Test (Hahn, 2012), which calculates a summary function, in this case the K 

function, for each pattern supplied to it, and then determines whether there is a 

statistically significant difference between these summary statistics between groups. The 

output is a p value which can be used to determine statistical significance. In what 

follows, each pattern represented either the host or cases of infection by one of the 

parasites for a given year on each grid. For example, cases of H. polygyrus on a single grid 

in a single year produced a point pattern, and this process was repeated for all parasites 

and the host for all years of the study.  Due to the differing sampling efforts over the 2 

survey periods (2009-2011 and 2012-2014), these periods were treated as independent 

groups of points and analysed separately. This was confirmed by running the 

Studentized Permutation Test on these two groups, which revealed significant (p < 

0.05) differences in K functions of the host between the two year groups (2009-11 and 

2012-14); however K functions within each year group did not differ significantly from 

each other.  

 

Initially these statistical tests were run with point patterns of parasites and the host 

included to determine whether there was any significant difference between the degree 

of clustering of any parasite species and the host. This was carried out at a series of 
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spatial distances to assess whether, and over what spatial scales, host and parasite 

clustering differed. Firstly, this was done from 0-35 metres, to test whether there were 

significant differences in clustering over 2 home ranges around the host (Carslake et al., 

2005). Secondly, these tests were run on subdivided spatial scales, to assess any 

difference in clustering between parasite-parasite/parasite-host up to 1 home range (0-

16 metres) and then from 1-2 home ranges (17-35 metres). 

 

In cases where statistically significant differences were detected in the full models, these 

were then used to undertake Studentized Permutation Tests in a pairwise manner 

between all parasite-parasite/parasite-host pairs as a form of post-hoc analysis to 

identify which specific combinations (host and/or parasite) differed. In what follows we 

present both the raw p values from each pairwise comparison, and also when adjusted 

using the False Discovery Rate (Pike, 2011), reported as q in the results, which accounts 

for multiple testing and can be interpreted similarly (here, statistical significance is 

assumed for q < 0.05). As a supporting component of this post hoc analysis, K 

functions for each parasite/host were pooled, and then plotted for comparison.  

 

2.4 Results 
 

2.4.1 Differences between host and parasite clustering 
 

For 2009-2011 there was no significant difference in clustering between the host and 

parasites at any spatial scale (0-35 metres: T =1316.4, p = 0.385, q = 0.385; 0-16 metres: 

T =227.9, p = 0.973, q = 0.973; 2012-2014: 17-35 metres: T = 1145.7, p = 0.078, q = 

0.156). Similarly for 2012-2014 there was no significant difference in clustering between 

the host and parasites from 0-35 metres (T = 710.85, p = 0.039, q = 0.078) or from 0-
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16 metres (T =115.81, p = 0.491, q = 0.654). However there was significant difference 

in clustering between the host and parasites from 17-35 metres (T =588.06, p = 0.007, q 

= 0.028). As a result, post hoc pairwise models were run using the Studentized 

Permutation Test (Table 2.3). 

Table 2.3. p and q values of models testing for significant differences between K functions, run on 
the 2012-2014 data and over a spatial range of 17-35 metres. p values are shown in the top diagonal 
of the table and q values are shown on the bottom diagonal. Hp = H. polygyrus; Eh = E. hungaryensis; 
Ea = E. apionodes; Bgr = B. grahamii; Bta = B. taylorii; Tryps = T. grosi.    

 Host Hp Eh Ea Bgr Bta Tryps WMHV 

Host - 0.351 0.531 0.641 0.192 0.280 0.447 0.072 

Hp 0.655 - 0.538 0.279 0.723 0.773 0.603 0.053 

Eh 0.717 0.717 - 0.518 0.258 0.401 0.410 0.021 

Ea 0.733 0.603 0.717 - 0.192 0.272 0.351 0.239 

Bgr 0.603 0.774 0.603 0.603 - 0.648 0.774 0.024 

Bta 0.603 0.774 0.675 0.603 0.733 - 0.655 0.029 

Tryps 0.695 0.733 0.675 0.655 00.744 0.733 - 0.090 

WMHV 0.4032 0.371 0.270 0.603 0.270 0.270 0.420 - 

 

Based on a threshold for significance of p < 0.05, the majority of parasites did not have 

K functions that differed significantly from each other, or from the host (Table 2.3; Fig 

2.1). The exceptions to this all involved WMHV; two parasites had significantly (p < 

0.05) different K functions over 17-35 meters compared to WMHV: B. taylorii (p = 

0.029; Fig 2.1) and E. hungaryensis (p = 0.021; Fig 2.1). In addition WMHV had a 

borderline significantly (p < 0.1) different K function from the host (p = 0.072; Fig 

2.1), H. polygyrus (p = 0.053; Fig 2.1) and T. grosi (p= 0.09; Fig 2.1). In all cases WMHV 

displayed greater K(r) values (Fig 2.1), and so greater degrees of clustering, than these 

other parasite species, and the host, over 17-35 metres.  
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However, after p value correction with the false discovery rate, there were no models 

within the pairwise tests that were statistically significant (q > 0.05 for all comparisons; 

Table 2.3). This is not an unexpected issue when running pairwise models, given the 

stringency of the false discovery rate to ensure no false positives.  To attempt to 

determine where the difference between the K functions of the point pattern groups lie, 

they were inspected visually (Figs 2.1). Overall it appears that the environmentally 

transmitted parasites H. polygyrus, E. hungaryensis and E. apionodes show patterns of 

clustering that closely follow those of the host (Fig 2.1), as do the two Bartonella species 

(Figs 2.1).  However, WMHV appears to show higher degrees of spatial clustering than 

the host and the environmentally transmitted parasites H. polygyrus, E. hungaryensis and E. 

apionodes (Fig 2.1), and these differences are most strongly apparent at larger spatial 

scales (i.e., distances in excess of 20 metres).  Furthermore, the flea-transmitted parasite 

T. grosi seems to show less clustering than the host and the environmentally transmitted 

parasites (Fig 2.1), and these differences are most apparent between 10-30 metres. 
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Figure 2.1 The spatial clustering (K function) of parasites in comparison with one and other 
over 0 to 35m. All data shown are from 2012-2014 combined. The parasite denoted on the left-
hand side is shown in red, with the other parasite, denoted above, shown in black. The main 
diagonal shows clustering of the parasite defined on the left-hand side in red, and of the host in 
black.     
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An important point to consider when comparing K functions as in Fig 2.1 is that the 

lack of a difference in the K function does not equate to a lack of an interesting result. 

For example, consider the flea borne parasites. Here, a lack of difference is perhaps 

more interesting across all spatial scales given that fleas are able to move independently 

of the host.  

 

2.4.2 Null Model Testing 

A null model was used to check the approach was statistically robust and did not 

generate false positives. Data were simulated to conform with the prevalence of each 

parasite on each grid for the years 2009-2011. This was done by maintaining the spatial 

locations of the real captures of mice, and randomly assigning infection amongst them 

consistent with the prevalence of each parasite on that grid and year combination. The 

K function of these simulated data were compared to the real host K functions showing 

no significant differences (Table 2.4). This supports the analyses, in that a simulated 

parasite pattern does not diverge from the underlying pattern of host clustering. 

Table 2.4. p values of models testing for significant differences between K functions of simulated 
infections with respect to the host in 2009-2011, across 0-35m, 0-16m and 17-35m 

Parasite p (0-35m) p (0-16m) p (17-35m) 

H. polygyrus 0.906 0.386 0.200 

E. hungaryensis 0.708 0.370 0.204 

E. apionodes 0.922 0.366 0.196 

B. grahamii 0.652 0.378 0.222 

B. taylori 0.299 0.371 0.221 

T. grosi 0.730 0.369 0.180 

WMHV 0.911 0.372 0.187 
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2.5 Discussion 
 

2.5.1 Apparently high degrees of clustering of Wood Mouse Herpes Virus  

At scales greater than 20 metres, I found evidence that WMHV exhibits a higher degree 

of clustering than the host, as well as other parasites, both environmentally transmitted 

(E. hungaryensis and H. polygyrus) and flea-borne (B. taylorii and T. grosi). This is striking as 

WMHV is the only parasite I analysed to be transmitted via close contact of individuals. 

This increased clustering relative to that of its host, is similar to what Carslake et al. 

(2005) observed for another close contact transmitting virus, cowpox. While it is 

difficult to generalise too far beyond two examples, the similarities in these responses 

for these similarly transmitted parasites, do suggest contact transmitted viruses tend to 

show higher levels of spatial clustering than their host. Mechanistically this may arise 

because there is a need for both infectious and susceptible host to occupy the same 

point in space for the virus to transmit, therefore leading to highly localised 

transmission, rather than individuals at differing distances from each other being equally 

likely to be infected. However, it should be noted that Carslake et al. (2005) saw the 

highest levels of clustering of cowpox cases at particularly localised spatial scales, 

typically restricted to within one home range size of the host (~16 metres), whereas the 

clustering of WMHV cases observed here was seen at larger spatial scales up to two 

host home range diameters (35 metres). This may reflect genuine differences between 

their pathogens, in transmission mode or other aspects of life-history (see below for 

further consideration of these possibilities). However, it must be remembered that the 

K function is a cumulative measure. Whilst we may observe this increased relative 

clustering over 20 metres, processes operating at smaller spatial scales may be impacting 

this.  
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As noted in the introduction, it has been suggested with some experimental evidence 

(Hajnická et al., 2017) that WMHV may transmit via a tick vector. If WMHV is 

transmitted by this route to a substantial degree, then this may explain why it exhibits 

clustering at spatial scales different from what Carslake et al. (2005) observed for 

cowpox. Furthermore, if tick transmission is important for WMHV, we may still expect 

it to differ from the other vector-borne parasites in this system (Bartonella spp. and T. 

grosi), which are flea transmitted. Fleas and ticks have substantially differing ecologies 

and host seeking behaviours which will impact their use of space. Fleas are relatively 

mobile, and able to move from host to host over some distance. Ticks on the other 

hand are significantly less mobile in space, and tend to seek one blood meal per year. 

This not only would result in differing spatial ecologies of transmission, but also 

differing spatiotemporal ecologies of transmission. So, while we may not see a 

difference between the K functions of WMHV and B. taylorii and B. grahamii, it is also 

not surprising that we do see a difference between the K function of WMHV and T. 

grosi, at scales above 20 metres. Unfortunately, with no data available on any tick-borne 

parasites in this system that are definitely transmitted by ticks, I cannot draw any firm 

conclusions about the transmission mode of WMHV via clustering comparisons, other 

than to note that it clusters in a distinct fashion from the host, some environmentally 

transmitted parasites, and some flea borne parasites.  

 

WMHV also has another unique feature about its biology which may lead to a fuller 

understanding of parasite clustering. In our dataset, WMHV infections were quantified 

in terms of seropositivity, which detects host antibodies to WMHV, and so essentially 

measures whether the host has ever been infected by the parasite. For WMHV this is a 

rather crude and indirect measure as, although causing chronic infections, the parasite 



 

35 
 

has both an active and latent phase (Wu et al., 2000). In the active phase, the parasite is 

able to transmit to other hosts, however in the latent phase it cannot. Hence where 

infected parasites are detected via serology may bear little resemblance to where they are 

actually transmitting to other hosts. Future studies should aim to resolve this issue, by 

searching for both seropositivity, to determine whether there is infection or not, but 

also for Orf50, a genetic marker of active WMHV infections, detectible by PCR (Wu et 

al., 2000). Typically this is done using the spleen as the best site for detection from 

sacrificed animals (Hajnická et al., 2017). However, should it be possible to detect this 

gene from smaller-volume blood samples also (i.e., without the need for destructive 

sampling of the host), this would provide a significant boost to understanding clustering 

of infection spatially. Doing so would not only produce an interesting temporal dataset 

of activation and latency of infection in the wild, but would allow us to determine 

whether active infections show spatial clustering, thereby indicating contemporary bouts 

of transmission. 

 

2.5.2 Clustering of environmentally transmitted parasites 

We found no evidence that environmentally transmitted parasites in our dataset (the 

nematode H. polygyrus, or the gut-dwelling Eimeria spp.) show significantly different 

clustering from the host animals over any spatial scales.  This contrasts with what Snow 

found in the cholera cases in London, mentioned in the introduction, which is also 

environmentally transmitted. However, cholera was not ubiquitous in the environment, 

and the clustering was detected around sources of cholera (water pumps) as opposed to 

cases, potentially explaining the differences observed here. Wood mice defecate in the 

environment throughout their home range. This would imply that H. polygyrus eggs and 

Eimeria spp. oocysts are also deposited throughout their range. Given that H. polygyrus 

eggs and Eimeria spp. oocysts can remain viable for some time in the soil (likely several 
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months), the environment which it occupies is likely to pose an infection risk to others 

for a long period of time. Hence the deposition of parasite eggs or oocysts into the 

environment from an infected animal, and the subsequent uptake and infection of them 

into another animal will act to decouple the observed occurrence of cases. As such it is 

then not surprising that we see the distribution of parasites to be not different from that 

of the hosts.   

 

2.5.3 Clustering of flea borne parasites 

Perhaps most surprisingly in this study, B. grahamii and B. taylorii do not differ from host 

clustering at any spatial scale, whereas T. grosi appears less clustered than the host at 

ranges up to 25 meters in the 2012-2014 data, when assessing the K function plots 

visually (Fig 2.1). I had hypothesised that as fleas are able to disperse independently of 

the host, that I may see clustering operate at potentially larger scales than the host home 

range. However I found no support for this hypothesis. This leads to two potential 

conclusions. Either, flea vectors are spatially tied significantly closer to the host than I 

had anticipated, or the scale of analysis is insufficient to detect any difference in 

clustering. On the latter point, this study examines clustering up to 2 home ranges of 

the host (~35 metres). As the K function is a cumulative metric, it may be that 

clustering between 1 and 2 home ranges of the host only becomes apparent when 

looking over a larger spatial scale. A remedy to this in future studies, to ensure a fuller 

understanding of flea borne transmission is to use larger grid sizes. This would allow the 

K function to be calculated at larger scales, with limited edge effects. Currently, with the 

size of the grids, edge effects become increasingly important in the calculation of the K 

function, even for relative small spatial scales.  A larger grid would reduce the 

importance of peripheral points and allow for larger spatial scales to be examined with 

confidence.  
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2.5.4 Lack of spatiotemporal analysis 

While there has been no spatiotemporal analysis in this chapter, it is certainly the 

direction that future analyses of these types should take. Given this has been 

undertaken on a legacy dataset (i.e., one collected before the present analyses were 

conceived), I was unable to direct sampling with respect to a spatiotemporal analysis. 

The benefits to the spatiotemporal approach as undertaken by Carslake et al., (2005) is 

that the coupling of cases in both space and time can be given due consideration. The 

key difference in the dataset they analysed and the one that I have analysed is that there 

is a significant gap in trapping each year (from January – May) in the data examined 

here, as opposed to full annual coverage across multiple years.  This is the limiting 

factor in being able to combine temporal clustering with spatial clustering. Carslake et 

al., (2005) were able to use their temporally extended data to not only determine that 

cowpox virus clusters spatially within one home range, but also that it clusters 

temporally within approximately 4 weeks of the infection being identified, consistent 

with what is known with the infectious period of cowpox virus. This may become 

important when trying to differentiate clustering among some of the parasites 

considered here. For example, while there was no difference seen in purely spatial 

clustering between H. polygyrus, E. hungaryensis and E. apionodes, this does not preclude 

the possibility that their clustering in time may differ (e.g., due to differences in 

longevity of environmental infection stages, for example), and as such their overall 

spatiotemporal clustering may be different. I would encourage future analyses on this 

type of system to consider this in full before sampling.  

 

2.5.5 Sample Size and Inference 
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One point to consider when comparing clustering between different species of parasite 

and the host is the varying prevalence of each parasite. For the host-parasite 

comparisons, this represents comparing a K function to a subset of the same K 

function. Were prevalence to reach 100%, there would be no difference and we would 

be observing the same K function. This warrants caveating that for high prevalence 

parasites, this method may be insufficient for comparison. It is likely that the 

spatiotemporal methods used by Carslake, et al (2005), as being more desirable may still 

be able to detect differences in clustering. 

 

2.5.6 Overall conclusions 

Clustering of parasitic infections are variable and likely depend on a range of driving 

factors relating to the host, parasite and the environment. Here, I have analysed a range 

of parasites and given due consideration to their transmission mode and infection type 

(chronic versus acute). The key difference found in this study was between WMHV and 

its host, as well as several other parasites, primarily those transmitted via the 

environment. The close contact nature of WMHV and cowpox, as investigated by 

Carslake, et al. (2005) is comparable, and it is worth highlighting that both of these 

parasites show spatial clustering that is greater than the host. This similarity may 

provide some insight into the key aim of this chapter – to determine if transmission 

mode had implications for spatial clustering of parasitic infections. Furthermore, it 

appears that the spatial clustering of soil-transmitted parasites and flea-borne parasites 

(at least the Bartonella spp. analysed here) map onto that of the host relatively closely. As 

discussed above, this is not unexpected for the soil transmitted parasites presented in 

this study and, for vector borne parasites, given that clustering is consistent with the 

host, this may suggest that the fleas are not regularly undertaking large dispersal events. 
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Overall then, these analyses provide tentative support for the hypotheses that parasite 

transmission biology may leave a signal on the observed degree of parasite clustering 

relative to that of the host at different spatial scales, but in the absence of data on 

temporal (and therefore spatiotemporal) clustering it is hard to draw definitive 

conclusions. As such, any differences between the parasites in the wood mouse study 

system arising from any temporal differences in their viability away from the host 

remain unresolved. 
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3 SPATIAL SCALING OF WITHIN-
HOST COINFECTION 
INTERACTIONS 

 

 

3.1 Abstract 

Interactions among coinfecting parasites are typically examined at the within-host level, 

often revealing strong effects on individual host susceptibility or disease progression. 

However the effect of these interactions on parasite transmission between hosts, and 

the spatial scales over which those effects operate, remain unknown. I analyse an 

extensive, spatially explicit dataset of the diverse community of parasites infecting wild 

wood mice in the UK, to assess the effects of local neighbourhood prevalence of each 

parasite species on individual-level infection risk by the other species, over an increasing 

range of spatial scales. My analysis revealed that the effects of within-host interactions 

between coinfecting parasites can indeed ripple out beyond the individual host, resulting 

in a network of facilitatory and suppressive effects on transmission among these 

parasites. However these between-host effects were only seen over relatively restricted 

distances around each host, over spatial scales likely reflecting the spatial scale of 

transmission. One implication of these effects may be the occurrence of knock-on, 

between-host consequences of antiparasite treatment for infection risk by non-target 

parasites, even for non-treated individuals. 
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3.2 Introduction 

Hosts are typically infected by multiple parasite species throughout their lives (Cox, 

2001). Interactions between coinfecting parasites have been identified in many human, 

livestock and wildlife systems (Nacher et al., 2000; Graham et al., 2001; Lello et al., 2004; 

Ezenwa et al., 2010; Telfer et al., 2010; Babu and Nutman, 2016), with potentially 

important implications for host susceptibility, clinical disease progression, and treatment 

efficacy (Pedersen and Fenton, 2007). However, attention has focused primarily on the 

within-host mechanisms driving these interactions, with little understanding of the 

consequences they have for parasite transmission between hosts, and over what spatial 

scale this transmission interference occurs. Theory predicts coinfection interactions can 

alter transmission dynamics by affecting the population-level force of infection of either 

parasite species, but the nature of this scaling relationship can be highly non-linear, 

dependent on the mechanism driving the within-host parasite interaction (Fenton, 2008, 

2013; Yakob et al., 2013). Recent evidence from natural systems supports these broad 

predictions. For example, population-level analyses of nematode and protozoan 

infections in wood mice found no signal of any interspecific association (Fenton et al., 

2014), even though drug treatment experiments clearly showed these nematodes 

strongly suppress the protozoa within individual hosts (Knowles et al., 2013; Pedersen 

and Antonovics, 2013, Chapter 2). Similarly, opposing individual- and population-level 

effects of helminth – Mycobacterium bovis (bTB) coinfection have been reported in 

African buffalo (Ezenwa and Jolles, 2015); anthelmintic-treated individuals benefited 

through reduced bTB-induced mortality, but this was predicted to increase bTB 

transmission at the population level due to the prolonged survival of, and hence 

opportunities for onward transmission from, bTB-infected hosts (Ezenwa and Jolles, 

2015). These results suggest that within-host coinfection interactions can have 

potentially counterintuitive effects on parasite transmission through the host 
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population. However, there has been no explicit empirical demonstration of how 

within-host parasite infections affect parasite transmission in a natural system, nor 

quantification of the spatial scale over which such effects occur.  

 

3.2.1 Examples of coinfection in natural systems 

Coinfection is the normal state of a host in nature (Petney and Andrews, 1998; Cox, 

2001). For example, the African buffalo (Syncerus caffer) hosts a number of parasite 

species, many of which have been shown to interact or co-associate within the host, 

such as strongyle nematodes and coccidial parasites, which have been shown to 

associate positively association (Gorsich, Ezenwa and Jolles, 2014). There are a number 

of other associations and interactions, positive and negative, in this system, including 

between Mycobacterium bovis (bTB) and strongyle nematodes (Jolles et al., 2008), and 

between bTB and Brucellosis (Gorsich et al., 2018a). These findings are important in 

highlighting the issue of the scale of the interaction; bTB is a risk factor for acquiring 

Brucellosis at the individual level, whereas at the population level, Brucellosis has a 

negative effect on bTB (Gorsich et al., 2018b).  

 

There are a number of mechanisms by which parasites can interact. For example, the 

strongyle nematode and bTB interaction appears to have a basis in the modulation of 

the host immune response (Ezenwa et al., 2010). Similarly in humans, the nematode 

Ascaris lumbricoides provides a protective effect against cerebral malaria, via modulation 

of the IgE immune response (Nacher et al., 2000). With different parasites stimulating 

differing immune responses (e.g. T-helper Type 1 versus T-helper type 2 responses), 

hosts may be forced to response in a way that may be beneficial to some parasites but 

costly to others. Another means by which parasites may interact with one another 

within the host is resource competition. For example, blood feeding worms have been 



 

43 
 

shown to compete with malaria parasites for red blood cells (Budischak et al., 2018). 

Clearly, all these processes play out within individual co-infected mice, affecting their 

probability of being infected and/or the duration of infection.  To what extent these 

within-host processes translate to affect the infectiousness of those individuals and the 

subsequent spread and infection risk among the wider host population currently 

remains an open question. 

 
 
 
3.2.2 A natural model of coinfection: the wood mouse parasite system 

The wild wood mouse (Apodemus sylvaticus) is native to the United Kingdom and much 

of Western Europe. These mice are host to over 30 species of parasites, from a range of 

taxa, and with a range of transmission modes, and hosts are rarely infected with only a 

single parasite species (Knowles et al., 2013). As we know there is potential for 

ecological interactions between parasites (Pedersen and Fenton, 2007), and the diversity 

of parasites across this community makes these animals an ideal study system to 

investigate coinfection interactions between the different parasite species.  In particular, 

experimental perturbation through anthelmintic treatment has demonstrated a strong, 

antagonistic, interaction between a nematode, Heligmosomoides polygyrus and a coccidian, 

Eimeria hungaryensis (Knowles et al., 2013), such that anthelmintic-treated hosts had 

around a 15-fold increase in oocyst output by coinfecting E. hungaryensis. The previous 

drug-treatment experiment has clearly demonstrated that nematodes, and in particular 

the dominant species H. polygyrus, suppresses oocyst output of coinfecting E. 

hungaryensis. However the question remains whether the nematode-induced suppression 

of oocyst output, which is the vehicle for transmission of this species, affects Eimeria 

transmission between hosts, and over what spatial scale these effects may be observed. 
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3.2.3 Aims and hypotheses 

To address the above question, and to explore the spatial scale of any between-host 

consequences of other potential within-host interactions between coinfecting parasites, 

I develop and undertake a novel analysis of spatially explicit data of wild rodents and 

their parasites, and show that within-host coinfection interactions do indeed influence 

between-host transmission, but only at local spatial scales. 

 

3.3 Methods 

3.3.1 Data 

I analysed an extensive mark-recapture dataset of wild wood mice (Apodemus sylvaticus) 

and several of their parasites spanning multiple taxa and transmission modes, as 

discussed previously in Chapter 2 (Table 3.1; Chapter 2). This chapter uses data 

exclusively from grid HA1 in 2012. This grid was significantly larger than all others 

surveyed over the 6 year trapping period, and additionally, was subject to a much more 

intense trapping regime (every 2 weeks). This made it the most amenable option to 

investigate the spatial scale of coinfection interaction effects. There were 252 wood 

mice and a total of 986 independent captures. It is estimated that this represents 

approximately 80% of the total population of the grid (Fenton, 2020, Pers. Comm.). 

While there were multiple captures of individuals, each capture was treated 

independently given that each capture is temporally distinct, and the neighbourhood 

prevalence is determined by previous captures to a given temporal point relative to each 

spatial capture location (i.e., focal individuals at subsequent captures will have 

experienced additional exposure events than when captured previously, and so were 

treated independently). 
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Table 3.1. Parasites considered in the neighbourhood analysis study, with categorisation of 
potentially-important life-history characteristics (chronicity of infection and transmission mode).  
Overall prevalence of each parasite, across all grids and years, is also shown.    

Parasite Taxa Infection Type Transmission Mode Prevalence 

Heligmosomoides polygyrus Nematoda Chronic Environmental 0.240 

Eimeria hungaryensis Protozoa Acute Environmental 0.147 

E. apionodes Protozoa Acute Environmental 0.157 

Bartonella spp. Bacteria Acute Vector (Flea) 0.478 

Trypanosoma grosi Protozoa Acute Vector (Flea) 0.118 

Wood Mouse Herpes 

Virus (WMHV)  

Virus Chronic Close Contact or  

Vector (Tick) 

0.191 

 

Using this dataset I first assessed how the infection risk of each parasite species 

associates with the neighbourhood prevalence of infection by that species around each 

focal individual, for increasing neighbourhood sizes. This helps inform how individual-

level infection risk by each parasite species is related to levels of infection in the wider 

neighbourhood, and the spatial scale of those effects.  Secondly, I assessed how the 

neighbourhood prevalence of one species affected the infection risk or intensity of 

other, potentially interacting, parasite species within neighbourhoods of increasing size. 

I did this first for two pairs of parasites where previous treatment experiments have 

quantified within-host interactions (or lack thereof) between them; the nematode 

Heligmosomoides polygyrus  was found to suppresses the protozoan Eimeria hungaryensis  

(Knowles et al., 2013), but had little impact on a different protozoan species, E. apionodes 

(Knowles et al., 2013). Having validated the method with these known interacting/non-

interacting pairs of species, I then extended the analysis to consider other pairs of 

species for which there is no current evidence of interaction between them. 
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3.3.2 Neighbourhood analysis 

I considered each individual at a single capture point as a focal individual in turn. 

Around each focal animal at each capture, we defined its neighbourhood of size r as the 

trap locations within r metres of the focal animal’s capture location (Fig. 3.1). I then 

determined the number and identity of every other individual caught at traps within that 

neighbourhood at any time point prior to the capture date of the focal individual; 

captures of animals within the neighbourhood but after the focal animal’s capture date 

were ignored. I then calculated the neighbourhood prevalence of infection by a 

specified parasite as the proportion of neighbours that were positive for that parasite 

within the focal’s neighbourhood of radius r.  

 

 

Figure 3.1. An example of 3 neighbourhoods constructed from a focal individual on a hypothetical 
grid. Each subsequent neighbourhood, larger than but encompassing the previous one, takes into 
account all neighbours in the neighbourhoods smaller to it, and any additional neighbours. Shown 
here are infected neighbours. The algorithm will also search separately for uninfected neighbours. 

I compiled this dataset using all mice as focal animals in turn, for all possible 

neighbourhood sizes, from r = 10 m (immediate neighbours only) up to r = 100m (the 

entire grid). For some individuals and neighbourhood sizes, it was not possible to 
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account for their entire neighbourhood as some of it lay outside the experimental grid. 

In these instances, we assumed that the grid was representative of the wider woodland, 

and as such the observed prevalence of infection within the neighbourhood on the grid 

reflected that of the focal’s entire neighbourhood.   

 

3.3.3 Statistical Analysis 

My overall aim was to establish whether within-host interactions between coinfecting 

parasites affect the force of infection by one of those parasite species on other mice 

within a specified neighbourhood size. I did this by examining whether the infection 

intensity (egg/oocyst burden of infection of a specified parasite among infected 

animals) or when this was unavailable, the infection risk (presence/absence of infection 

by a specified parasite) in each focal host varied with the prevalence of infection by 

other, specified parasites within neighbourhoods of each specified size.  For each 

neighbourhood size (r = 10m to 100m), I ran Generalized Linear Mixed Effects Models 

(GLMMs) implemented in a Bayesian framework using stan (rpackages: rstan (version 

2.17.3), brms (version 2.3.0)). I did this for all possible of pairs of focal and potentially-

interacting parasites in the dataset. All analyses were undertaken in R (version 3.5.0).  

 

Each individual’s focal parasite status was measured either as intensity (Gaussian model, 

with egg or oocyst output per gram of faeces among infected animals only, for those 

parasites where this was possible [E. hungaryensis, E. apionodes and H. polygyrus]), or as 

infection presence/absence (binomial model with log link, for WMHV, Bartonella spp. 

and T. grosi), as my response variable. My main fixed effect of interest was parasite 

prevalence of each specified parasite within the defined neighbourhood. In all models I 

also controlled for the following potential confounders of the focal individual: its 

infection status (positive/negative) with the potential interacting parasite, sex (male or 
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female) and age (adult or not). I also controlled for the total number of animals in the 

defined neighbourhood, and the date of capture as a 2nd-order polynomial to account 

for non-linear seasonal effects, and focal ID number as a random effect to control for 

potential pseudo-replication arising from multiple captures of the same individual. I did 

not carry out any model reduction or simplification, to ensure consistency in model 

structure across all analyses, and I report the coefficients (median model estimate, ± 

95% credible intervals) for neighbour parasite prevalence on focal host infection 

intensity or presence/absence for each neighbourhood size (separate analyses run for r 

= 10m to 100m), while controlling for the same set of potential confounders in all 

analyses.   

 

3.3.4 Accounting for treated animals 

The dataset contained some animals that had been treated with the anthelmintic 

Ivermectin or the anticoccidial drug Vecoxan. Treated individuals were excluded as 

focal individuals in this study as it may confound the results. However, they were 

allowed to be considered as neighbours (i.e., they do occur on the grid, and so could 

potentially contribute to infection of focal individuals). Ivermectin has been shown to 

be effective in reducing the intensity of nematode infection in wild wood mice, but the 

effect is very transient, with treated individuals reinfected within days of treatment 

(Knowles et al., 2013; Clerc et al., 2019). Vecoxan (an anti-Coccidial drug) was 

administered to some animals on the grid, however there is no observable effect of 

Vecoxan on either Eimeria species (M Clerc, 2017). Given the lack of observable effect, 

I ignore any Vecoxan treatment, and consider Vecoxan treated animals as any other 

focal host in our analyses. 
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3.4 Results 

3.4.1 Single parasite models 

Initial analysis examined how neighbourhood prevalence by each parasite associated 

with focal infection risk by that same parasite species, at increasing spatial scales. These 

are displayed in Fig 3.2 along the diagonal of the panel. Infection risk by E. apionodes 

and H. polygyrus were each positively associated with neighbourhood prevalence of those 

parasites, up to spatial scales beyond 2 home ranges of the host (~30-50m). WMHV 

prevalence appears to become more positively associated with increased risk of 

infection at the largest spatial scales, close to the size of the grid as a whole. There 

appears to be no notable association between T. and Bartonella spp. prevalence and 

infection status of focal individuals across any spatial scales. Interestingly, E. hungaryensis 

appears to be negatively affected by prevalence at small spatial scales.   

 

3.4.2 Coinfection interaction models 

These results are presented in Fig 3.2 in the off diagonal plots. My analysis revealed a 

general reduction in individual-level intensity of E. hungaryensis in focal hosts with 

increasing H. polygyrus prevalence in the wider neighbourhood, but primarily at spatial 

scales which approximate the mean home range size of wood mice (~14m radius) 

(Carslake et al., 2005). At spatial scales larger than 2 home ranges, there was no 

association between neighbourhood H. polygyrus prevalence and E. hungaryensis intensity. 

Conversely, I found no effect of H. polygyrus neighbourhood prevalence on E. apionodes 

intensity, the species known not to interact strongly with H. polygyrus) at any spatial 

scale. Hence increasing neighbourhood prevalence of H. polygyrus appears to result in a 

reduction of E. hungaryensis infection risk, the species which H. polygyrus is known to 

suppress oocyst output of within individual hosts, but this is only seen in 
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neighbourhoods up to around 1 host home range diameter.  Furthermore, there was no 

detected effect of neighbourhood H. polygyrus prevalence on E. apionodes infection risk, 

the species known not to interact strongly with H. polygyrus within individual hosts. 

Hence, these results provide proof of concept that this technique is a viable means of 

detecting parasite-parasite interactions (and non-interactions) across a range of spatial 

scales using observational data. 

 

Having shown that parasites with strong within-host interactions leave a signal of that 

interaction at localised spatial scales, and that parasites that don’t interact do not leave 

such a signal, I sought to test for evidence of interactions within the wider community 

of parasite species infecting these hosts, using the directly-transmitted wood mouse 

herpesvirus (WMHV), the flea-borne bacterium Bartonella spp., and the flea-borne 

protozoan Trypanosoma grosi.  

 

I found negative associations between neighbourhood H. polygyrus prevalence and 

individual-level infection risk of both WMHV  and T. grosi for neighbourhood sizes up 

to around 36m. The opposite was seen for the association between H. polygyrus 

prevalence and Bartonella spp. infection risk over similar neighbourhood sizes, with 

Bartonella spp. infection risk increasing with neighbourhood H. polygyrus prevalence for 

neighbourhoods up to ~40m. There was also a positive effect of E. apionodes prevalence 

on T. grosi infection risk across neighbourhood sizes up to ~50m, and reciprocal 

positive effects of neighbourhood Bartonella spp. prevalence on WMHV infection risk, 

and of WMHV neighbourhood prevalence on Bartonella spp. infection risk across 

neighbourhoods of 50m and over.  There were no obvious associations between 

neighbourhood prevalence of either E. hungaryensis or T. grosi on infection risk of 

intensity of any other parasite. 
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Figure 3.2 Plots of neighbourhood effects of the explanatory parasite, listed on the left, on the 
response parasite, listed on the top, for increasing neighbourhood sizes (radius in metres around 
focal individuals) on the x-axes.  The diagonals show the effect of each parasite on itself. Each plot 
shows outputs from 15 separate models for a total of 540 models in this figure.  Points show median 
model estimates and envelopes show 95% credible intervals. Interactions of note are indicated with 
a *. 
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3.4.3 Null Model Simulation 
 
To help assess the ability of this approach to detect true relationships and to ensure that 

the method is not biased to generating associations when there are none, simulations 

were done with an absence of coinfection interactions. Based on the prevalences of 

each parasite in the H. polygyrus – E. hungaryensis relationship, infections were randomly 

assigned to animals in the dataset, while maintaining the spatial coordinates of the real 

animals. Upon undergoing further neighbourhood analysis to ensure that the 

relationship does not emerge via some statistical artefact, there was no neighbourhood 

size which this was the case (Fig 3.3). 

 

 

Figure 3.3 Neighbourhood effects of a randomised parasite (based on H. polygyrus prevalence) on E. 
hungaryensis. The diagonals show the effect of each parasite on itself. Each plot shows outputs from 
15 separate models for a total of 540 models in this figure. 

Sample size here represents approximately 80% of the population (Fenton, 2020, Pers. 

Comm.). Given the ability of the technique to detect the known H. polygyrus – E. 

hungaryensis, as well as not detecting an interaction in randomly simulated data, this 

sampling effort would seem sufficient. 
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3.5 Discussion 

3.5.1 Between host consequences of coinfection 

The within-host dynamics of coinfection, and how these alter disease progression, have 

been well documented in a range of systems. Here I have been able to demonstrate, 

using one of these well-characterised interactions (Knowles et al., 2013), that there are 

detectable consequences of within-host interactions for between-host transmission. 

Given this suppressive interaction of H. polygyrus on E. hungaryensis, and the 15-fold 

reduction in E. hungaryensis oocysts shed by H. polygyrus coinfected hosts (Knowles et al., 

2013), it would seem only logical that the transmission potential of E. hungaryensis is 

severely decreased. I show that the effect of this negative interaction is detectable up to 

two home ranges around the host, with strongest effects being seen at distances closest 

to a single home range (Fig 3.2). Not only does this support the expectation that there 

would be consequences for transmission, the scale of transmission interference detected 

is sensible given the biology of transmission of these parasites. Consider two hosts, 

individual a and individual b, each with a home range around them. There can be a 

degree of overlap of this home range, such that a and b occupy some overlapping space. 

This is important, as given the environmental transmission via infectious propagules in 

the soil for H. polygyrus and E. hungaryensis, there must be some degree of spatial overlap 

of habitat use by the hosts for transmission to occur. At the most extreme case of a lack 

of spatial overlap, with only the smallest shared space usage, the maximum distance 

from the far edge of a’s home range to the far edge of b’s home range is approximately 

2 home ranges in size – aligning with the scale of interaction that I have seen in the 

results of this study.  
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This validation of the method has allowed a much more thorough exploration of other 

potential parasite interactions. I have detected 6 novel interactions at scales beyond the 

host. Strikingly, I found Bartonella spp. (Fig 3.2) positively and T. grosi (Fig 3.2) negatively 

affected by H. polygyrus neighbourhood prevalence. While the direction of these effects 

are opposing, the peaks of where the spatial scale was most strong is the same, between 

1 and 2 home ranges. This is particularly interesting as both parasites are flea 

transmitted, suggesting that there may be a link between transmission mode and the 

spatial scale over which any interactive effects occur. 

 

3.5.2 Methodological advance in the detection of coinfection interactions  

This technique represents a significant move forward in the detection of coinfection 

interactions from observational data. Crucially, I have shown that the spatial scale of 

observation is vital in detecting these interactions, given the seemingly local nature of 

many that I have detected.  This sensitivity of detection to the spatial scale examined 

may explain why many larger-scale, population-based analyses of coinfection 

interactions fail to discover any significant association between parasites from cross-

sectional data (Fenton et al., 2014). The results presented here show that examining 

whole-population data effectively averages across all spatial scales, thereby obscuring 

the local processes of transmission interference arising from within-host interactions 

that play out over much smaller spatial scales around each individual host. 

 

It should also be noted that the form of rodent mark-recapture experiment on regularly 

spaced grids used in this analysis is not unique to these data; many studies of wildlife 

use similarly collected data (Turner et al., 2014). Given the utility of the technique, and 

the pre-existing data available, application of neighbourhood analysis to both new and 
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legacy data of this form may provide significantly more insight into the interactions 

between parasites, and therefore their community ecology. 

 

While this technique has been designed as a bespoke analysis tool for this data set, 

conceptually it need not be restricted to mark-recapture data on a regularly spaced grid. 

The concepts of neighbourhood analysis as presented, that parasite-parasite interactions 

can be detected at intermediate scales by considering neighbours of a host across a 

range of scales could be applied to other systems and types of data. This could lend 

itself to investigations of parasite-parasite interactions across multiple scales in a variety 

of systems.  

 

The temporal dimension of this technique has not been fully explored in this chapter. 

However, this is ripe for further exploring the spatiotemporal interactions between 

parasites. The neighbourhood analysis algorithm allows for selectively altering the 

temporal window in which neighbourhood prevalence is calculated. This opens up 

possibilities for exploring other related questions. For example, investigating whether 

there is a defined temporal window in which the neighbourhood prevalence is 

important, such as how this relates to environmental viability of the parasite. 

 

Of the self-associations investigated in this chapter, the most striking is that of E. 

hungaryensis. One would not expect a negative effect of neighbourhood prevalence on 

focal infection risk at any spatial scale; positive associations should be much more likely, 

due to localised transmission processes, resulting in clusters of infection. However, 

given the negative trend between neighbourhood E. hungaryensis prevalence and 

individual-level infection risk across a number of models at small spatial scale (Fig 3.2), 

this affect seems consistent. One possibility is that there is some form of long-lasting 
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protective immunity to E. hungaryensis in the wild, and that a high local prevalence is 

indicative that an individual may have been infected at some point in the recent past 

and is resistant to subsequent infection. How likely, or effective immunity to E. 

hungaryensis is in the wild is unclear, however (Clerc, 2017).  

 

3.5.3 Overall conclusions 

Overall I have shown that within-host interactions between coinfecting parasites can 

affect their localised transmission dynamics, leaving a signal of that interaction at spatial 

scales beyond the individual host. Furthermore the spatial extent of that effect operates 

across different spatial scales for different parasites, and is likely to reflect their spatial 

scale of transmission. There are many human, livestock and wildlife disease systems 

where there are well established within-host parasite interactions among coinfecting 

parasites, and a growing body of research has examined the consequences of those 

interactions for the success and impact (beneficial or detrimental) of disease treatment 

approaches on individual host health (Griffiths et al., 2011, 2015). However, my results 

suggest that there could be knock-on, between-host consequences of such treatments, 

particularly in communities experiencing high coverage mass drug administration, for 

localised transmission dynamics of non-target parasites, with implications for infection 

risk even among non-treated individuals.  
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4 SCALING OF COINFECTION 
INTERACTIONS ACROSS 
SOCIAL NETWORKS  

 
 
4.1 Abstract 
 
Classical models of infectious diseases generally assume random mixing of individuals in 

a population, like a chemical reaction. In these models each individual is as likely to 

encounter every other individual equally. While in some cases, these models adequately 

describe the dynamics of the infection across the host population, ignoring 

heterogeneities in contacts between individuals can overlook a significant element of the 

transmission biology of the pathogen, driven by variation in host behaviour. In the last 

decade or so, studies focusing on how social networks relate to the spread of infection 

have increased dramatically in number. Using a well-studied population of African 

Buffalo from Kruger National Park in South Africa, I explore how two measures of an 

individual’s place in a social network, eigenvector centrality and degree, affect the 

disease status of individuals. I find that for some parasites, eigenvector centrality affects 

disease status but that for all parasites degree has no effect. I then adapt the 

neighbourhood analysis technique presented in chapter 4 to investigate potential novel 

parasite-parasite interactions. I have detected a previously unknown association, with 

coccidia positively predicting bTB infection status. This adaptation of neighbourhood 

analysis has shown that is an additional tool in the search for ecological interactions 

between parasites. 
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4.2 Introduction 
 

4.2.1 Assumptions of homogenous mixing and its limitations 
 

Typically, models of the transmission and spread of infectious diseases in their host 

populations make the assumption of homogenous mixing, whereby contacts between 

susceptible and infectious individuals occur at random, and all individuals in the 

population are equally likely to encounter each other (Begon et al., 2002). This 

assumption of homogenous mixing has proven effective in predicting the spread of 

infectious diseases within some systems. That being said, these models fail to capture 

potentially significant elements of host biology that can influence pathogen 

transmission and spread. Those models typically partition the host population into 

discrete, homogenous categories, within which all individuals are treated as equal. In the 

case of the simplest Susceptible-Infected-Recovered (SIR) models, individuals are assigned to 

a class based on their infection status, in this case S for susceptible (uninfected), I for 

infected and R for recovered. The changes through time in the numbers of individuals 

within each class are then typically described by a system of ordinary differential 

equations which can be used to model disease progression numerically (in all but the 

most simple of models), or to calculate metrics such as R0 (the basic reproductive 

number) analytically. A key component of these models is the transmission rate, usually 

represented by b, which is a composite parameter, describing the rate at which 

susceptible and infected individuals randomly encounter each other, and the probability 

of pathogen transmission given an encounter (Begon et al., 2002; McCallum et al., 2017).  
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While the assumption of homogenous contact structures makes the corresponding 

models tractable and accessible, there is a significant amount of heterogeneity in host 

biology that is not realised in these models. For example, individuals may differ 

behaviourally, such that some interact more with other individuals, and as such be 

potentially at greater risk of being infected or infecting others. The spatial arrangement 

of hosts may also be heterogeneous, with some clusters and sub-communities giving 

rise to some individuals having a higher frequency of contacts with each other than with 

others. There are a number of adaptations to the compartmental framework which have 

aimed to account for heterogeneities and non-linearities in transmission. For example, 

frequency dependent transmission assumes the rate of acquisition of new infections is 

dependent on the frequency or proportion of infectious cases in the population, rather 

than on absolute population density (Begon et al., 2002). Hence, per capita contact rates 

are assumed to be constant, independent of density, and has been traditionally used to 

model vector borne or sexually transmitted infections. One would not expect the 

number of sexual partners to increase linearly with density, as individuals find or have a 

fixed number of sexual partners regardless of the population size. Neither would one 

expect the number of vector bites to increase linearly with host population size, as 

vectors require a limited number of blood meals and, for example, flying vectors (e.g., 

mosquitoes or tsetse flies) may be sufficiently mobile to locate the appropriate number 

of hosts locally, regardless of overall population size. Thrall, Antonovics and Hall 

(1993), demonstrate that frequency dependent models can predict coexistence between 

host and parasite in the case of sexual or vector transmission. Nonlinearity may also be 

present in the transmission function itself. These nonlinearities represent the underlying 

biology of the host and parasites, while still being captured in the compartmental 

framework (Fenton et al., 2002). Indeed, this apparent flipping from density to frequency 
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dependence has been modelled for the virus of wild rodents, cowpox (Smith et al., 

2009). We can therefore think of frequency and density dependence being the two 

extremes of a transmission function that varies with density in this instance. As density 

increases, from a low density starting point, we see what appears to be density 

dependence, and then when densities increase while the population is at a higher 

density, we see something more akin to frequency dependence (Smith et al., 2009).  

 

4.2.2 Social network approaches and network features 

An alternative to the above compartmental models is to treat individuals as individual 

components and describe contacts between them explicitly; in other words, to consider 

the social network of contacts between individuals across the population. Social 

networks explicitly represent potential pathways for contact between individuals, and 

hence routes by which disease transmission can occur assuming transmission is by 

direct host-to-host contact, or through a shared environmental medium (White, 

Forester and Craft, 2017). For example, using genetic data from Escherichia coli in 

giraffes, VanderWaal et al., (2014), demonstrated that the transmission network (i.e., the 

links through which the pathogen passed from individual to individual) closely 

correlated to the social network (i.e., the observed occurrences of individual-to-

individual contacts). The dependence of transmission on social structure highlights the 

potential importance of variations in social network structure, and how they may serve 

as powerful predictors of infection.   

 

The aim of developing social network representations of populations is not to discount 

the value and utility of compartmental models, but rather to understand fully the 

importance of heterogeneities in contact structure. Social networks have been used to 

investigate the connectedness and potential for pathogen transmission in populations 
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(Hirsch et al., 2013) and to successfully predict the likelihood and intensity of infection 

(Godfrey et al., 2010). They have also been used to characterise how variation in host 

contact types can have implications for likelihood of disease transmission (Blyton et al., 

2014). While Escherichia coli is primarily spread through the faecal-oral route, Blyton et al., 

(2014) found that spatial proximity was less explanatory than host contacts, showing a 

difference in what types of contact a host has, and its risk of infection. These 

approaches have been employed in empirical and modelling studies of infectious disease 

transmission across a wide variety of systems, from reptiles (Godfrey et al., 2009; Aiello 

et al., 2014), ungulates (VanderWaal et al., 2014), marsupials (Corner, Pfeiffer and 

Morris, 2003), primates (Griffin and Nunn, 2012; Carne et al., 2014; Romano et al., 

2016) and humans (Bansal, Grenfell and Meyers, 2007; Salathé and Jones, 2015).  

 

Regardless of the system being described, all social networks take the same basic 

structure. Individuals are represented in the network by nodes (White, Forester and 

Craft, 2017). A connection between two nodes is called an edge (White, Forester and 

Craft, 2017). Edges can be directional (i.e. information is flowing in one direction) or 

non-directional (i.e. information flows evenly between nodes).  These edges can be 

weighted or unweighted, meaning that some edges may represent more information flow, or 

occur more often, than others (White, Forester and Craft, 2017). The structure and 

composition of the network can then be measured in various ways. The distance is the 

number of edges between any two nodes (White, Forester and Craft, 2017). How 

connected an individual node is can be measured by a range of measures of known as 

centrality. Degree centrality is the number of edges leading to or from a node (White, 

Forester and Craft, 2017). More comprehensive than degree centrality is eigenvector 

centrality which is a much more holistic measure than degree, given that it not only 

accounts for the number of edges attached to a node, but also the relative importance 
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of this node in the network as a whole (White, Forester and Craft, 2017). The decision 

of which metric(s) to use is dictated by the amount of data available to inform them and 

the questions being addressed. 

 

4.2.3 Network neighbourhood analysis and the spatial scale of coinfection interactions 

It may be easy to consider the utility of network analysis in species with limited 

contacts, such as the territorial mice described elsewhere in this thesis. However, what 

of those species that are drastically different, and significantly more social? 

As explored in chapter 3, I have developed a method for looking at how the 

neighbourhood context of infection and coinfection influences an individual’s infection 

risk, over intermediate spatial scales between the individual, and the whole population, 

termed neighbourhood analysis. This was developed for, and successfully tested on, the 

spatially explicit dataset of the territorial wood mice. I am interested in testing whether 

this method can be extended to ask questions of transmission and coinfection 

interaction in a very different system spatially and socially, and determine whether there 

is spatial or social scaling of these processes. Herding species present a very different 

social situation compared to territorial species such as wood mice, due to their close 

association with each other. For such animals, by observation of known individuals 

within herds, association data can be generated and subsequently a social network of 

potentially transmission-relevant contacts can be constructed.  

 

Group living is often associated with the cost of higher parasitism, due to close contacts 

between individuals and high (sub-)population densities (Altizer et al., 2003). However, 

not all individuals in groups necessarily behave the same, nor will they interact 

homogenously within those groups. Some individuals will inevitably contact more with 

other individuals within and between groups, thereby acting as potential super-
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spreaders, driving transmission dynamics among the group. Alternatively, other 

individuals may have very limited connections with other members of the group, 

thereby acting as potential sinks of transmission, with limited opportunities for onward 

transmission. How the group is structured may therefore provide an insight into how 

the parasite dynamics are shaped.  

 

In this chapter I analyse association data within the African buffaloes system. These 

animals have several micro- and macroparasites, and there are a number of well 

characterised interspecific interactions occurring between these parasites. Notably, there 

is an interaction between bovine tuberculosis (Mycobacterium bovis, bTB) and strongyle 

nematodes, with nematodes and bTB being negatively associated at both the within-

herd and whole population levels (Jolles et al., 2008). However, at the individual level, 

when there is an absence of nematode infection, for example through anthelmintic 

treatment, bTB fails to infect the host, and this has been attributed to 

immunomodulation by the nematodes. Nematodes stimulate the T-Helper Type 2 (Th2) 

component of the immune system, which is antagonistic to the T-Helper Type 1 (Th1) 

response that combats some microparasites such as bTB. Hence, when nematodes are 

removed by deworming, the Th1 response increases, preventing bTB infection (Ezenwa 

et al., 2010). 

 

In addition to the bTB-nematode interaction, there has also found to be a positive 

association between nematodes and coccidia. This is irrespective of age, sex or season 

(Gorsich, Ezenwa and Jolles, 2014).  Common exposure to both parasites was 

considered one means of explaining this correlation. However, there are well 

characterised negative interactions between nematodes and coccidia in other systems 

(e.g. Knowles et al., 2013; Pedersen and Antonovics, 2013) and there may be a number 
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of underlying reasons for this correlation. Furthermore, several microparasites of these 

buffaloes have also been found to interact with each other. bTB is a risk factor for the 

acquisition of brucellosis at the individual level, however the reverse is not true, with 

there being no effect of brucellosis on bTB infection (Gorsich et al., 2018). At the 

population level though, brucellosis has a negative effect on bTB, with there being no 

effect of bTB on brucellosis at this scale (Gorsich et al., 2018a). Population level 

competition, as seen here, is likely a consequence of the immunosuppressive effects of 

bTB operating at the individual level. 

 

It is clear from these examples, and my work in chapter 4, that the scale of observation 

is important in determining the observed effects of a parasite-parasite interaction (Jolles 

et al., 2008; Gorsich et al., 2018b). These studies on the buffalo have given insight into 

the effects of parasite-parasite interactions across a range of ecological scales 

(individual, herd and whole population), however, more can be done to understand the 

intermediate scales (i.e. beyond the individual but within the herd/population), and in 

particular the spatial scales over which the effect of those interactions can be observed. 

As stated above, Chapter 3 introduced a novel method termed neighbourhood analysis 

to analyse infection and coinfection effects at intermediate spatial scales. The aim here 

is to adapt this method to apply to social networks, to examine the scale of infection 

and coinfection interaction effects in the buffalo system. While wood mice are 

territorial, buffalo are significantly more social animals. As such, I can use a social 

network approach as the basis for this neighbourhood analysis and use distance 

between individuals on the network as a proxy for overlap of space use by individuals. 

Therefore, within herds, I can span the individual and whole herd scales in an 

incremental manner to understand how infection and coinfection interactions scale 

spatially across the social network.  
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4.2.4 Aims and hypotheses  
 

In this chapter I investigate the questions raised in this chapter using the African 

buffalo social network relate to individual levels of parasitism. For example, are more 

connected individuals, by either degree or eigenvector centrality, more likely to be 

infected? Is this true for all parasite species? Secondly, I determine how infection risk 

scales with distance in the network by applying a form of neighbourhood analysis to 

these data. Finally, this will be used to investigate the spatial scaling of known parasite-

parasite interactions, and to search for new potential interactions. 

 

4.3 Methods 
 

4.3.1 Data  
 
Dr Vanessa Ezenwa of the University of Georgia has kindly allowed access to the 

following dataset to undertake the analyses for this thesis.  Female African Buffalo were 

trapped between June 2008 and August 2012. Trapping was conducted in the southern 

region of Kruger National Park in South Africa. 200 animals were captured in 2008 by 

helicopter which were then fitted with radio collars. They were trapped twice yearly 

after this. They were assigned to treatment or control groups randomly upon their initial 

capture. Lost individuals, as a result of emigration or death were replaced, with their 

treatment status matching that of the individual they replaced. Animals were from herds 

in two locations, Lower Sabie, and Crocodile Bridge. Their herd was recorded at 

subsequent captures. Initial estimates of the Lower Sabie herd population was 1117. 

The Crocodile Bridge herd was estimated to be 2104. 100 animals in each herd (50 
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control, 50 treated with slow-release fenbendazole bolus) were enrolled in this study. 

Animal age was recorded and faecal and blood samples were collected to test for micro- 

and macro-parasites. For more information on the African buffalo dataset, please see 

(Ezenwa and Jolles, 2015). 

 

4.3.2 Social Network Analysis 
 

Social network analysis was conducted in R (version 3.5, R Core Team, using the 

package igraph (version 1.2.1). The data were subsetted for year, and season (dry or wet) 

within each year. Interaction matrices were generated using a custom built function, 

which took each possible pair of individuals in turn, and determined if at any time 

within that year and season combination, they were recorded as occurring within the 

same group. If they were, the pair were assigned a 1, or if they were not, they were 

assigned a 0. The resulting dataset across all pairs was then subsetted to exclude all pairs 

with a 0, to produce a matrix of all edges in the network. igraph was then used to 

convert these interaction matrices to graph objects which could then be used to extract 

a number of individual network characteristics.  

 

4.3.3 Statistical models of individual network metrics 
 

The first set of models assessed how individual infection status was influenced by 

individual network metrics (degree and eigenvector centrality), which provide 

information on how well connected each individual is within the larger network. This 

analysis used a series of Generalized Linear Mixed Effect Models (GLMMs) conducted 

using stan, in the R package brms. These models sought to determine the effect of 

those individual level network features on whether an individual was infected with a 
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given parasite or not, using a Bernoulli error structure. Given that some animals in the 

dataset had received anthelmintic treatment as part of an on-going study, which may 

affect observed infection levels, only the infection status of individuals that were 

untreated were considered in these models. However, all animals were considered when 

generating the social networks that were used to determine the individual network 

metrics. 

 

The structure of these statistical models was as follows: 

Parasite Infection Status ~ Eigenvector Centrality + Degree + Age + Year + 

Season + Herd + Treatment + (1| Animal ID) 

 

All parasite infection status is recorded as 0/1, presence/absence data and so the 

models will have a binomial error structure. Eigenvector centrality and degree were 

standardised (variable – mean variable / standard definition variable) for inclusion in 

the model.  Each model included each individual’s eigenvector centrality and degree as 

the main variables of interest in predicting infection risk for each individual, and the 

animal’s Age (continuous variable, in months), and the Year (factor: 4 levels, 2009-2012) 

and Season of sampling (factor, 2 levels, Wet or Dry) were included to account for any 

variation that may occur as a result of these. In addition, all models included each 

animal’s unique identification number as a random effect to control for 

pseudoreplication arising from multiple samples from each individual.  In all analyses, 

there was considered to be strong support for a given variable if the 95% credible 

intervals of its estimate did not cross zero. 

 

There is, of course, some degree of correlation between degree, and eigenvector 

centrality across nodes in the network (~69%). This make sense, since nodes with a 

high number of edges are more likely to be important, but that ultimately, low degree 



 

68 
 

individuals attached to these high degree individuals will have a higher eigenvector 

centrality as a consequence of this connecting edge. Conversely, high degree individuals 

connected to a number of unimportant nodes will have lower eigenvector centralities as 

a consequence. While there is correlation, this was considered within the bounds by 

which both terms could be included in the same model (< 70%), making it possible to 

directly compare the relative influence of these two related, but different metrics 

(Harrison et al., 2018). That being said, I have also elected to run statistical models 

looking at either degree or eigenvector centrality independently to ensure that any 

results are robust. 

 
4.3.4 Neighbourhood Analysis of Social Networks 
 
The approach described in chapter 4 to quantify the influence of neighbourhood 

context on individual infection risk from spatially explicit data was adapted to be used 

on social networks. Instead of Euclidian spatial distance, the distance from each focal 

individual in the network is used. To explain the process, consider a focal individual. 

This individual will have “neighbours”, or nodes associated with it via an edge in the 

network. Hence individuals directly connected to that focal individual by one edge can 

be thought of as its immediate neighbours (within 1 edge ‘distance’), whereas those 

individuals connected to the focal via an immediate neighbour can be thought of as a 

neighbour within 2 edges ‘distance’ etc. For neighbourhoods of 1 edge in distance, I 

determined the infection state of those neighbours, and then calculated the prevalence 

(proportion of neighbours infected with the parasite of interest) in this neighbourhood 

of the focal individual. Then, for neighbourhoods of 2 edges in distance (i.e., not only 

the nodes connected to the focal, but also the nodes connected to those nodes that are 

1 edge from the focal), were considered when determining the prevalence. This was 

done incrementally for all distances D, from 1 up to the maximum distance from the 
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focal. The largest network distance in the dataset was 7, although for some season and 

year combinations it was as small as 3. Neighbourhood prevalences were calculated 

both for the focal parasite in a given analysis, to determine the effect of neighbourhood 

prevalence on its own infection status, as well as for all possible interacting parasites in 

the neighbourhood. Once these neighbourhood prevalences had been calculated, 

GLMMs were conducted, using the format: 

 

Focal Parasite ~ Prevalence of focal parasite at distance D + Age + Season + (1| Animal 

ID)  

 

Focal Parasite ~ Prevalence of Potential Interacting Parasite at distance D + Focal Status 

with Potential Interacting Parasite + Age + Season + (1| Animal ID)  

 

Where D is the distance up to which we consider the neighbourhood.  

 

4.4 Results 

4.4.1 Network structure over year and season  
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Figure 4.1 Network plots for each year and season combination. 
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4.4.2 Effects of individual network metrics on individual infection risk 

Standardised degree and standardised eigenvector centrality histograms are shown in fig 

4.3. Degree was not a strong predictor for the presence of any of the parasite species 

(the 95% credible intervals crossed 0 for the effect of degree on all parasites), however 

for models including both variables, there was a weak positive association with coccidia 

(Fig 4.2). For eigenvector centrality however, there was a strong positive association 

with nematode infection status (95% credible intervals did not cross 0), and a weakly 

negatively association (slight crossing of 95% CIs with 0) for coccidia infection status 

(Fig. 4.2). There was no evidence of an association with eigenvector centrality for either 

bTB or Brucellosis (Fig 4.2). 

 
Figure 4.2 Blue, where degree or eigenvector centrality have been considered alone, red 

where they have been considered in the same model as each other. 
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Models were run with either standardised degree, standardised eigenvector centrality, or 

both. Full model outputs including the effects of controlling parameters are shown in 

Appendix 2. There appears to be no notable difference between the complete models 

or the individual models, with the exception of a slightly more defined posisitve 

relationship between degree and Coccidia infection status (Fig 4.2). 

 

 
Figure 4.3 Histogram of standardised degree and of standardised eigenvector centrality 

 

4.4.3 “Neighbourhood” analysis of local infection and coinfection risk 
 
Neighbourhood analysis was first conducted to determine whether the prevalence of 

parasites at increasing distances across the network from a focal host were associated 

with an increase or decrease in the probability of the host being infected with that 

parasite or not. For bTB, neighbourhood prevalence was a strong positive predictor of 

infection up to network distances of 4 edges (Fig 4.4). Hence, there were clusters of 
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strongyle nematodes, neighbourhood prevalence was a weak positive predictor of 

individual infection risk across all network distances (Fig 4.4). Coccidia neighbourhood 

prevalence was a strong positive predictor up to network distances of 6, but the effect 

then switched to being negative at distances of 7 (Fig 4.4). There was no effect of 

prevalence on Brucellosis at any scale (Fig 4.4).  

 

In terms of coinfection effects, bTB neighbourhood prevalence strongly negatively 

predicted strongyle nematode infection status up to distance 3, but weakly negatively 

from 4 to 6 network distances away (Fig 4.4). There was no effect of bTB prevalence on 

Brucellosis or coccidia at any distance. Strongyle nematode neighbourhood prevalence 

did not affect coccidia infection risk up to distance 6 in the network, however they were 

strongly positively associated at distance 7 (Fig 4.4). Strongyle nematode prevalence did 

not predict either bTB or Brucellosis at any network distance, and Brucellosis 

prevalence did not predict the presence of any parasite in this study at any distance in 

the network (Fig 4.4).  Similarly, coccidia neighbourhood prevalence did not predict 

strongyle nematode or brucellosis infection status at any distance in the network. 

However, coccidia prevalence weakly positively predicted bTB at distances 2 to 4 in the 

network, but not at any other distance (Fig 4.4). 
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Figure 4.4 Neighbourhood analysis plots for bTB, Strongyl Nematodes, Brucella and Coccidia. 
Diagonals represent the effect of the parasite prevalence on itself.  

 
4.4.4 Null model Test 
 
Data were simulated as described in Appendix 1. for the purpose of testing the null 

model of this technique – that is a model with no coinfection interaction. As can be 

seen in Table 4.1, there emerges only one spurious interaction detected providing 
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support for the interactions detected as shown in Fig 4.4, showing considerably more 

interactions. These data are presented as a table and not a figure due to high variability 

in credible intervals seen in 50% and 100% sampling.  

 

Table 4.1 Tabulated neighbourhood analysis results. Sampling 10%, 50% and 100% of 

simulated networks of 1000 individuals.  

 

Sampling  Distance Low CI Mean High CI 
10%  1 -2.4 -0.9 0.6 

  2 -2.4 -0.7 1 

  3 -3.1 -1.1 0.8 

  4 -3.4 -1.2 0.9 

  5 -3.4 -1.2 0.8 

      
Sampling  Distance Low CI Mean High CI 

50%  1 -729.6 -29.5 687.1 

  2 -3.1 -1.2 0.7 

  3 -9.4 -4.8 -0.3 

  4 -19.8 -7.5 4.6 

  5 -80.3 -32.1 14.8 

  6 -549.7 -260.1 23.2 

  7 -931.4 -121.8 681.4 

      
Sampling  Distance Low CI Mean High CI 
100%  1 -743 -30.8 647.1 

  2 -3 -2.1 0.6 

  3 -9.2 -4.8 -0.5 

  4 -19.7 -7.5 4.3 

  5 -78.4 -32.1 15.1 

  6 -561.3 -260.1 28.8 

  7 -911 -121.8 683.3 
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4.5 Discussion 

4.5.1 Individual-level network characteristics  

Using network analysis as a proxy for understanding the contact structure between 

hosts, I identified eigenvector centrality as an individual-level network metric 

determining whether individuals are infected or not by nematodes within these African 

buffalo herds. Eigenvector centrality is a metric by which the influence of a node in a 

network is calculated with consideration to its connection to other nodes and their 

relative importance; a node (individual) connected to other nodes which themselves are 

considered important are ranked higher than nodes which are connected to less 

important nodes. As such, this could be considered a more holistic metric than the 

standard measure of the degree of a given node, which would rank higher for a node 

with many connections, even if these connections were themselves to nodes with little 

network influence. In the case of infectious disease transmission, it could be considered 

that connections to important neighbours with respect to their network position is in 

fact more important than simply than frequency of contacts. It is therefore notable that 

for two parasites in this network, nematodes and coccidia, there were strong effects of 

eigenvector centrality, whereas the effects of degree were limited small for all parasites 

with the exception of coccidia (Fig 4.2).  

 

It is surprising though, that for no parasites did degree have an outright effect (the 95% 

Cis did not cross 0). The biological rationale for investigating degree is that it appeared 

to be a sensible proxy for density dependent transmission. A higher degree indicates 

that an individual is in contact with more neighbours. It is possible that none of these 

parasites are governed by density dependence alone, or, as noted above, that degree 
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only tells part of the story, and that eigenvector centrality is a more robust measurement 

of the importance of an individual in the social network.  

 

The strong positive effect of eigenvector centrality on an individual’s infection risk with 

nematodes is possibly an indicator that this metric is a good proxy for shared space 

usage. Nematodes are transmitted by eggs in the soil, and as such sharing space with 

more infected individuals may lead to an increase in risk of infection.  

 

4.5.2 Neighbourhood analysis 

Neighbourhood analysis has provided an insight into the effects of parasite prevalence 

on infection status at intermediate scales, and some insight into how parasite-parasite 

interactions may scale. For bTB, strongyle nematodes and coccidia, I showed that 

locally (i.e. sub-whole population) high prevalence is indicative of a higher risk of 

infection. This follows logically, that higher bTB prevalence up to an intermediate scale 

poses a risk, in that if an individual’s neighbours have neighbours that have bTB, then 

the focal individual is at risk – it is not one’s neighbours that pose a risk, but the 

neighbours of one’s neighbours. For strongyle nematodes and coccidia it also follows 

logically that there is a generally positive trend to higher distances, as these parasites are 

environmentally transmitted. Environmentally transmitted parasites that have long 

periods of remaining infective in the environment are expected to be more ubiquitously 

spread in line with the distribution of the host. 

 

The network is only partially known, representing a fraction of the animals in each herd. 

This does present some limitation, however simulation analyses were conducted (Table 

4.1) to demonstrate that spurious interactions do not emerge regularly and that I can be 

confident in the reliability of the presented results. 
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These four parasites were chosen to focus these analyses on as there had been 

documented interactions between various combinations of them. Strongyle nematode 

prevalence was only found to associate with coccidia infection status at the largest 

scales. The reciprocal effect of strongyle nematodes on bTB was not detected here and 

there may be several reasons. It is possible that the analysis better captures bTB 

transmission, which is primarily a close contact transmitted parasite. This is evidenced 

in the single infection neighbourhood analysis of the social networks, with the notably 

strong effect of bTB prevalence on bTB infection probability.  

 

There were no detectable effects of Brucella on other parasite species. This is notable 

given that there is the previously characterised association with bTB. However, given 

that the Brucella infection risk neighbourhood analysis (Fig 4.4) shows no effect of local 

prevalence on itself, this may in fact be unsurprising and be a way of determining the 

sensitivity of the technique. 

 

Finally, one novel association that has emerged is that of the effect of coccidia 

prevalence on bTB. Although weak, it does appear that there is a positive predictor of 

bTB by coccidia prevalence up to intermediate scales. There is currently work ongoing 

investigating bTB-coccidia associations, and this neighbourhood analysis result is an 

exciting first step in determining whether there is an interaction between these parasites.  

 

4.5.3 Future directions 

bTB persistence in Kruger National Park has been experimentally determined to last 

approximately 4 weeks in faeces, 6 weeks from tissue samples and as low as 5 days in 

buried samples (Tanner and Michel, 1999). These are relatively short periods of time in 
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contrast to other infectious particles, such as nematode eggs. Given that these data were 

pooled over a whole season (6 months) for calculating network metrics there is still a 

significant amount of within-season behaviour that will be lost, specifically relating to 

mating and raising of young. Going forward, if the neighbourhood approach is to be 

reapplied, a more stringent temporal weighting may provide further insight into the 

potential interactions at these intermediate scales. While bTB transmission appears 

relatively well characterised in this study, a finer temporal resolution may produce better 

characterised networks, and as such a better spatial proxy for contacts with potential for 

transmission. 

 

An area where future investigation should focus is to identify males in the system. 

Mating behaviour is likely to lead to differing contact structures at certain times of the 

year. Given the dataset comprises exclusively females, I was unable to consider these 

within-season behavioural variations and these data would strengthen my understanding 

of how contacts vary over time. Additionally, given the transmission biology of 

Brucella, and that aborted reproductive material can act as a means of transmission this 

would increase understanding of how network positioning impacts disease risk in the 

specific context of reproductive contacts. 

 

While perhaps less feasible, it would perhaps be most informative to capture whole 

herd data. These data would be an ideal resource for understanding how network 

structures relate to disease metrics, however it is important to note the serious difficulty 

capturing such data of herds of 1000+ animals (Ezenwa and Jolles, 2015). In the 

absence of such detailed data capture, studies such as presented in this chapter provide 

sufficient insight into the nature of how host interaction heterogeneity, and interactions 

across a range of spatial scales affect parasite transmission. Additionally, this chapter 
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presents a means of detecting novel parasite-parasite interactions otherwise 

undetectable at previously investigated spatial scales, opening up investigation of new 

parasite pairs.  
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5 SUMMARY AND CONCLUSION  
 
 

Each chapter of this thesis has tackled a key issue in spatial ecology and applied it to the 

understanding of infectious disease dynamics; spatial scale. This is a concept that, 

through overuse of the term ‘scale’ has a confusing past in the literature.  It is hoped 

that the work in this thesis, by combining the development and application of novel 

analytical methods to two comprehensive datasets comprising mammals with different 

social behaviours, and multiple parasite species exhibiting a range of transmission 

modes and life-histories, will clarify and extend concepts relating to spatial scale in 

epidemiology.  This final chapter summarises the key findings of the previous chapters, 

emphasising the novel aspects of the work presented, and considers various key, 

overriding themes that emerge from the separate studies, and their relevance for our 

understanding of the spatial dynamics of host-parasite systems more generally. 

 

 

5.1.1 Thesis Summary and Novelty 

In Chapter 2 I investigated the spatial clustering of a range of micro- and macro-

parasites of the wood mouse. This chapter is novel in that this is the first cross-parasite 

species comparison of clustering by use of the K function and associated statistical tests 

that I am aware of. These parasite species ranged in transmission mode (close contact, 

environmentally via soil and flea borne). I found a difference in spatial clustering 

between WMHV cases, a close contact transmitted parasite, and that of the host and 

other parasites. However, I found no notable differences between the host and 

environmentally and flea borne parasites.  
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In Chapter 3, I sought out to understand how parasite-parasite interactions that occur 

within the host, have consequences for transmission and infection risk at spatial scales 

beyond the individual host. To achieve this I developed a new analytical method, 

neighbourhood analysis, that quantifies the infection prevalence of parasites over 

incremental spatial neighbourhoods around each host, and then relates that prevalence 

to the infection status of that parasite, or other parasites, within focal hosts. This is the 

first attempt to empirically determine the spatial scale over which within-host 

interspecific parasite interactions extend. The method was tested using the known 

antagonistic interaction between H. polygyrus and E. hungaryensis, and the known non-

interaction between H. polygyrus and E. apionodes (Knowles et al., 2013), and showed that 

parasite-parasite interactions can be detected from among-host data, but only by 

examining those data at an appropriate spatial scale. The method was then applied to 

investigate all possible pairs of parasites in the system, which revealed a number of 

novel interactions not previously detected in this study system, highlighting its potential 

for uncovering potential within-host interactions not detectable by other means. 

 

In Chapter 4, I sought to extend the question of the spatial (or social) scale of 

interspecific parasite interaction effects, using a different study system (African 

buffaloes) with different social behaviour from territorial wood mice; herding 

behaviour. This involved adapting the neighbourhood analysis approach from Chapter 

3 and allowing the exploration of herding animals and determining how both infection 

risk and coinfection interactions scale in these types of systems. This chapter first 

showed that individual infection risk was most associated with the eignenvector 

centrality of the individual; suggesting that risk isn’t purely due to the number of 

contacts an individual, but due to the number of secondary contacts each of those 

contacted animals have.  Applying this method to the coinfection data then led to the 
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discovery of a novel parasite-parasite interaction, of coccidial on bTB infections, 

potentially furthering our understanding of the transmission dynamics of this important 

pathogen. 

 

5.1.2 Comparative clustering – does transmission mode play a role in the spatial 
distribution of cases? 

 
 
The analyses presented in Chapter 2 provide tentative support for the hypotheses that 

differences in parasite transmission biology may leave different signals on the observed 

degree of parasite clustering relative to that of the host at different spatial scales.  

 

I found evidence that WMHV exhibits a higher degree of clustering than the host, as 

well as other parasites, both environmentally transmitted (E. hungaryensis and H. 

polygyrus) and flea-borne (B. taylorii and T. grosi) at scales greater than 20 metres. WMHV 

is the only parasite I analysed to be transmitted via close contact of individuals, but this 

increased clustering relative to that of its host, is similar to what Carslake et al. (2005) 

observed for another close contact transmitting virus, cowpox. While it is difficult to 

generalise too far beyond two examples, the similarities in these responses for these 

similarly transmitted parasites do suggest contact transmitted viruses tend to show 

higher levels of spatial clustering than their host, resulting in higher levels of spatial 

aggregation of cases across the landscape. However, it must be remembered that the K 

function is a cumulative measure; whilst we may observe this increased relative 

clustering over 20 metres, processes operating at smaller spatial scales may be impacting 

this.  
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I found no evidence that environmentally transmitted parasites in this dataset (the 

nematode H. polygyrus, or the gut-dwelling Eimeria spp.) show significantly different 

clustering from the host animals over any spatial scales.  This contrasts with what Snow 

found in the cholera cases in London, mentioned in the Chapter 2, which is also 

environmentally transmitted. However, cholera was not ubiquitous in the environment, 

and the clustering was detected around sources of cholera (water pumps) as opposed to 

cases, potentially explaining the differences observed here. Wood mice defecate in the 

environment throughout their home range. This would imply that H. polygyrus eggs and 

Eimeria spp. oocysts are also deposited throughout their range. Given that H. polygyrus 

eggs and Eimeria spp. oocysts can remain viable for some time in the soil (likely several 

months), the environment which they occupy is likely to pose an infection risk to others 

for a long period of time. Hence the deposition of parasite eggs or oocysts into the 

environment from an infected animal, and the subsequent uptake and infection of them 

into another animal, will act to decouple the observed occurrence of cases. As such it is 

then not surprising that we see the distribution of parasites to be not different from that 

of the hosts.   

 

For flea borne parasites, I had hypothesised that as fleas are able to disperse 

independently of the host, that I may see clustering operate at potentially larger scales 

than the host home range. Surprisingly, B. grahamii and B. taylorii do not differ from host 

clustering at any spatial scale. This leads to two potential conclusions. Either, flea 

vectors are spatially tied significantly closer to the host than I had expected, or the scale 

of analysis is insufficient to detect any difference in clustering.  

 

Spatiotemporal analysis is the direction that future analyses of these types should take. 

Given my analyses have been undertaken on a legacy dataset (i.e., one collected before 
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the present analyses were conceived), I was unable to direct sampling with respect to a 

spatiotemporal analysis. The benefits to the spatiotemporal approach as undertaken by 

Carslake et al., (2005) is that the clustering of cases in both space and time can be given 

due consideration. The key difference in the dataset they analysed and the one that I 

have analysed is that there is a significant gap in trapping each year (from January – 

May) in the data examined here, as opposed to full annual coverage across multiple 

years. Hence I was not able to examining temporal clustering of cases over extended 

windows of time, preventing assessment of the temporal extent of prior space use by 

one animal on subsequent infection risk by another.  Such temporal effects may be 

important, for example, in distinguishing H. polygyrus clustering from that of E. 

hungaryensis, if one species has more long-lived infective stages in the environment than 

the other. 

 
 
5.1.3 Neighbourhood analysis as a tool to understand coinfection interactions 
 
I have been able to demonstrate, using a well-characterised parasite-parasite interaction 

in a wild mammal population (Knowles et al., 2013), that there are detectable 

consequences of these within-host interactions for between-host transmission. Given 

this suppressive interaction of H. polygyrus on E. hungaryensis, and the reduction in E. 

hungaryensis oocysts shed by H. polygyrus coinfected hosts (Knowles et al., 2013), it follows 

logically that the transmission potential of E. hungaryensis should be severely decreased. I 

show that this within-host interaction does indeed suppress E. hungaryensis transmission, 

and that the signal of this negative interaction is detectable up to two home ranges 

around the host, with strongest effects closest to a single home range.  

 

This validation of the method has allowed a much more thorough exploration of other 

potential parasite interactions in this system. I have detected 6 novel interactions at 
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scales beyond the host that have not previously been reported in this system. I found 

that the neighbourhood prevalence of H. polygyrus affected individual infection risk of 

Bartonella spp. positively and that of T. grosi negatively. However, despite the contrasting 

directions of these effects, the peaks of where the spatial signal was most strong was the 

same, between 1 and 2 home ranges. Both parasites are flea transmitted, suggesting that 

there may be a link between transmission mode and the spatial scale over which the 

signal of any interactive effects occur. 

 

A further implication of these analyses is that the spatial scale of observation is vital in 

detecting these interactions, given the seemingly local nature of many that I have 

detected.  This technique therefore, represents a significant move forward in the 

detection of coinfection interactions from observational data. Larger scale, population-

based analyses of coinfection interactions have previously failed to detect any significant 

association between parasites from cross-sectional data because of this sensitivity of 

detection to the spatial scale examined (Fenton et al., 2014). The results presented here 

suggest that examining whole-population data effectively averages across all spatial 

scales, thereby obscuring the local processes of transmission interference arising from 

within-host interactions that play out over much smaller spatial scales around each 

individual host. 

 

This form of rodent mark-recapture experiment on regularly spaced grids is common to 

many studies of wildlife, with similarly collected data (Turner et al., 2014). Given the 

utility of the technique, and the pre-existing data available, application of 

neighbourhood analysis to both new and legacy data of this form may provide 

significantly more insight into the interactions between parasites, and therefore their 

community ecology. 
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Overall I have shown that within-host interactions between coinfecting parasites can 

affect their localised transmission dynamics, leaving a signal of that interaction at spatial 

scales beyond the individual host. Furthermore the spatial extent of that effect operates 

across different spatial scales for different parasites, and is likely to reflect their spatial 

scale of transmission. There are many human, livestock and wildlife disease systems 

where there are well established within-host parasite interactions among coinfecting 

parasites, and a growing body of research has examined the consequences of those 

interactions for the success and impact (beneficial or detrimental) of disease treatment 

approaches on individual host health (Griffiths et al., 2011, 2015). However, my results 

suggest that there could be knock-on, between-host consequences of such treatments, 

particularly in communities experiencing high coverage mass drug administration, for 

localised transmission dynamics of non-target parasites, with implications for infection 

risk even among non-treated individuals.  

 

 
5.1.4 Extending neighbourhood analysis to social networks 
 

Neighbourhood analysis, adapted for use on social networks (Chapter 4), has provided 

an insight into the effects of parasite prevalence on infection status at intermediate 

scales, and some insight into how parasite-parasite interactions may scale. I showed that 

locally (i.e. sub-whole population) high prevalence is indicative of a higher risk of 

infection for bTB, strongyle nematodes and coccidia. 

 

These four parasites were chosen to focus these analyses on as there had been 

documented interactions between various combinations of them. Strongyle nematode 

prevalence was only found to associate with coccidia infection status at the largest 
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scales. The reciprocal effect of strongyle nematodes on bTB was not detected here and 

there may be several reasons. It is possible that the analysis better captures bTB 

transmission, which is primarily a close contact transmitted parasite.   This is evidenced 

in the single infection neighbourhood analysis of the social networks, with the notably 

strong effect of bTB prevalence on bTB infection probability. There were no effects of 

Brucella on other parasite species detectable in these models which is notable given that 

there is the previously characterised association with bTB. Given that the Brucella 

infection risk neighbourhood analysis shows no effect of local prevalence on itself 

however, this may in fact be unsurprising and act as a means of determining the 

sensitivity of the technique. One novel association that has emerged is that of the effect 

of coccidia prevalence on bTB. Although weak, it does appear that there is a positive 

predictor of bTB by coccidia prevalence up to intermediate scales. There is currently 

work ongoing investigating bTB-coccidia associations, and this neighbourhood analysis 

result is an exciting first step in determining whether there is an interaction between 

these parasites.  

 

While perhaps not practically feasible, it would perhaps be most informative to capture 

whole herd data. These data would be an ideal resource for understanding how 

neighbourhoods of animals are spread across a social network. However it is worth 

noting the serious difficulty capturing such data of herds of 1000+ animals (Ezenwa 

and Jolles, 2015). In the absence of such detailed data capture, studies such as presented 

in Chapter 5 provide sufficient insight into the nature of how host interaction 

heterogeneity, and interactions across a range of spatial scales affect parasite 

transmission.  
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5.1.5 Overall conclusion 

The theme binding this thesis together is that of spatial scale - from scale of clustering, 

to scale of coinfection interactions. Using pre-existing (Chapters 2 and 4) and bespoke 

techniques (Chapter 3 and 4), I have used 2 comprehensive datasets to tackle these 

issues in multi-parasite systems. Spatial scale is ultimately important in understanding 

these systems, and in disease ecology more broadly. Future analyses should consider it 

from the data collection point of view.  
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6 Appendix 1. Non-linear adjustment 
factor for network connectance for 
use in simulation of large networks 

 

 

Networks were constructed as described in Chapter 4. For the purposes of simulating 

networks of a larger size, but retaining key aspects of the structure of the overall 

network, it is appropriate to scale connectance in a non-linear fashion. Given the study 

system in question are buffalo, which occupy real space, it is fair to assume that as the 

number of individuals increases, the space they will occupy increases. I assume this will 

increase with the square of the number of individuals, like area increases with the square 

of the radius of a circle. This will ultimately have an effect on the network metrics, 

given that individuals further apart in space may be less likely to encounter each other. 

Given that area increases non-linearly, it is appropriate to use a similarly considered 

adjustment factor in this case. 
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Figure A1.1 Edge density of each network in relation to the number of individuals used to construct the network. The 
2009 dry season is a clear outlier with regards to both number of individuals and edge density. 

 

Based on the data displayed in Fig A1.1, I have elected to exclude the network metrics 

from the 2009 dry season as a means of calculating an adjustment factor for the scaling 

up of connectance. The mean size of the network, excluding the 2009 dry season is 

192.28 and the mean connectance is 0.270. Using the formula, 

 

𝐶'()*+' = 𝐶)+(,	 5
𝑁)+(,.

𝑁'()*+'.
7 A1 

 

to calculate the target connectance, I multiply the observed connectance (0.270) by a 

non-linear adjustment factor /!"#$
%

/&#!'"&%
 , which accounts for differences between the mean 

observed population (192.28) and those of networks to be simulated. 
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Figure A1.2 Adjusted connectance based on application of formula A1 

Connectance is therefore calculated as shown in Fig A1.2 based on the observed values 

in the data. These adjusted connectances are then applied when simulating networks 

larger than what is seen in the observed data.
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7 Appendix 2. Supplementary model 
outputs 

 
 
 

 
Figure A2.1 Nematode: Degree Only 
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Figure A2.2 Nematode: Eigenvector Centrality Only 
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Figure A2.3 Nematode: Complete Model 
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Figure A2.4 bTB: Degree Only 
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Figure A2.5 bTB: Eigenvector Centrality Only 
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Figure A2.6 bTB: Complete Model 
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Figure A2.7 Brucella: Degree Only 
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Figure A2.8 Brucella: Eigenvector Centrality Only 
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Figure A2.9 Brucella: Complete Model 
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Figure A2.10 Coccidia: Degree Only 
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Figure A2.11 Coccidia: Eigenvector Centrality Only 
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Figure A2.12 Coccidia: Complete Model 
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