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Abstract

Fatigue induced cracks is a dangerous failure mechanism which affects mechanical
components subject to alternating load cycles. System health monitoring should be
adopted to identify cracks which can jeopardise the structure. Real-time damage de-
tection may fail in the identification of the cracks due to different sources of uncertainty
which have been poorly assessed or even fully neglected. In this paper, a novel effi-
cient and robust procedure is used for the detection of cracks locations and lengths in
mechanical components. A Bayesian model updating framework is employed, which
allows accounting for relevant sources of uncertainty. The idea underpinning the ap-
proach is to identify the most probable crack consistent with the experimental mea-
surements. To tackle the computational cost of the Bayesian approach an emulator is
adopted for replacing the computationally costly Finite Element model. To improve
the overall robustness of the procedure, different numerical likelihoods, measurement
noises and imprecision in the value of model parameters are analysed and their effects
quantified. The accuracy of the stochastic updating and the efficiency of the numer-
ical procedure are discussed. An experimental aluminium frame and on a numerical
model of a typical car suspension arm are used to demonstrate the applicability of the
approach.

Keywords: Bayesian Model Updating, Real-Time Damage Detection, On-line Health
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1. Introduction1

The fatigue weakening is affecting mechanical components subject to alternating2

load cycles. Intermittent load cycles can initiate cracks which propagate through the3

cross section of the structures. In particular, interactions may occur between the struc-4

tural responses and cracks in components subject to high-frequency dynamic excita-5

tions, leading to vibration-induced fatigue. Once a critical crack length is exceeded,6
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the structure will catastrophically and suddenly fail, even for a stress level much lower7

than the design stress [1]. Consequences may be a premature failure of the compo-8

nent or, even worst, the loss of the entire structure which relies on the component9

integrity. Several strategies are accountable to prevent sudden failures. For instance,10

non-destructive inspections may be performed at predetermined time intervals in order11

to detect the cracks [2]; however, failure may occur between intervals [3]. Alterna-12

tively, a continuous (on-line) monitoring of the dynamic response of the structure can13

allow for real-time crack detection and for a timely intervention with maintenance pro-14

cedures [4]. Repair actions are taken in case the monitoring procedure successfully15

identifies cracks which may jeopardise the structure.16

17

In literature, a number of research has been published proposing damage iden-18

tification procedures, e.g. [5]-[6]-[7]-[8]-[9]-[10]-[11]. Part of those studies dealt19

with real-time or quasi-real-time crack detections but, unfortunately, just few explic-20

itly accounted for relevant sources of uncertainty. J. Maljaars et al. [5] proposed a21

Bayesian framework for fatigue life updating accounting for inspection an uncertain-22

ties. Refs.[6]-[7]-[8]-[9] developed methods for real-time damage detection based on23

different device response signals (e.g. acoustic resonance analysis or device themog-24

raphy), however, uncertainty has been just implicitly accounted or fully neglected. Re-25

cently, Baraldi, Compare, Turati, Mangili and Zio [10]-[11] assessed the health status26

and remain useful life of components considering uncertainty and employing an effi-27

cient particle filtering method. Generally speaking, uncertainty is inevitable and can28

be due to endogenous factors, e.g device parameters and model discrepancies, or to29

external exogenous factors, such as environment variability and measurement noises.30

To the authors viewpoint improve reliability and robustness of health monitoring ap-31

proaches is uttermost important and to produce superior methods, further research has32

to be produced explicitly accounting for uncertainty.33

34

Uncertainty in crack detection and damage identification problems arises from a35

variety of sources; it can affect the numerical model of the device, which differ from36

the real component due to e.g. variability in the manufacturing procedure. It can also37

affect the measured data, due to inadequate measurement devices, noises of surround-38

ing environment or due to a lack of abbundance in measurments. Fatigue failures have39

proven to have an inherent random behaviour [12], which further highlight the neces-40

sity of considering uncertainties if aiming at improving crack detection procedures.41

Popular emerging techniques are now available in the field of computational mechan-42

ics, which can be employed to assist in the monitoring of the health of the structures.43

These techniques modify some specific parameters in a numerical model to ensure a44

good agreement with the data, a so-called inverse problem. A computational frame-45

work well-suited for the solution of such inverse problems also accounting for relevant46

uncertainties is the stochastic model updating [13]-[14]-[15]-[16][17]-[18]-[19]-[20].47

48

Authors in Ref.[17] proposed a Bayesian updating approach for fatigue damage49

prognosis employing the so-called reversible jump Markov chain Monte Carlo. The50

framework can account for uncertainties and two simple crack growth model were51

analysed. However, computational time issues typical of these type of frameworks52
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were not explicitly discussed. Similarly, the Authors in [18] proposed a Bayesian up-53

dating method for crack size quantification and using Lamb wave signals. The method54

was effective for damage prediction but problems of efficiency are not mentioned. H.55

Sun et al. [19] proposed an updating framework for multi flaws identification, based on56

extended finite element method and adapting artificial bee colony algorithm. A para-57

metric study of the noise uncertainty was also proposed. The computational time was58

an issue and the author briefly discuss a hypothetical solution which consists in run59

the analysis in parallel on a compute cluster. In reference [20], the authors present a60

stochastic updating framework and discuss problems of imprecise probability. Impre-61

cise probability becomes relevant for situation where available data are not abbundant62

and information scarce, vague or inconsistent. In those situations, hard to justify ar-63

tificial assumptions may be needed to define a probabilistic model and characterise64

uncertainty (e.g. to define a probability distribution with no information on the family65

and just few specimens). Advanced methods to model uncertainty have been specifi-66

cally proposed, which permit to perform analysis using less and weaker assumptions67

and quantifing the extent of the impreicsion. For instance, some of the most widely68

employed mathematical tools to deal with imprecision are intervals, probability boxes,69

Dempster-Shafer structures, possibility distribution and fuzzy variables [20]-[21]. The70

vast majority of the reviewed works did not account for efficiency in the computations71

at the same time providing an indicator of the imprecision surrounding the analysis.72

Furthermore, none of the reviewed papers assessed the robustness of the Bayesian up-73

dating procedure with respect to different likelihood functional expressions.74

75

In this work, a Bayesian stochastic updating framework is proposed to efficiently76

tackle two damage identification problems. The feasibility of the procedure when real77

experimental data are employed is tested using a real-life aluminium frame [22]. The78

frame’s natural frequencies are measured and used as experimental data in the proce-79

dure. A second application tests the cracks detection procedure using a numerical car80

suspension arm [23]. The mechanical behaviour of device is characterised by collect-81

ing synthetic Frequency Response Functions (FRF) at a specific location and sources of82

aleatory and epistemic uncertainty have been analysed and their effect quantified. Mea-83

surement noises, numerical model discrepancies and an increasing lack of knowledge84

about the true crack parameters are explored and presented in the paper. Two represen-85

tative crack detection cases of increasing complexity are analysed; first, the detection86

of a single crack of known position and not known length, secondly, the detection of87

a single crack of not-known position and not known length. Likelihood functions are88

used in any Bayesian updating procedure to compare the experimental observations89

and the model [14]-[16]-[24]-[25]. Different mathematical formulations can improve90

accuracy and robustness of updating procedure. Hence, different numerical likelihoods91

are proposed in order to encode differently the experimental evidence in the procedure.92

Furthermore, interval-valued indicators are proposed to quantify the level of impreci-93

sion in the damage detection based on the 5th-95th percentiles credibility interval.94

95

Computational efficiency is an hard requirement for real-time applications and by96

including uncertainty, the problem worsening. Specifically, many time-consuming97

model evaluations are required for the uncertainty quantification. This issue has been98
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faced by adopting an emulator. In theory different emulator types can be used if ade-99

quately trained to reproduce the model input-output relationship. In this work, Artifi-100

cial Neural Networks (ANN) [25] because they are flexible, in principle, universal ap-101

proximating functions able to deal with non-linearity. In addition, a parallel computing102

strategy is adoped to further decrease the wall-clock time for the updating procedure.103

OpenCossan [26]-[27], a general purpose open source software for uncertainty quan-104

tification, has been employed in all the stages of the analyses.105

106

The rest of the paper is structured as follows: Section 2 outlines the main concept107

of Bayesian model updating. In Section 3 different empirical likelihoods are defined.108

The efficient Bayesian updating procedure, employed for real-time damage detection,109

is presented in Section 4. The aluminium frame experiment and updating is presented110

in Section 5. In Section 6 the FE model for components crossed by cracks is described111

and 7 presents the numerical suspension arm of a vehicle. The different likelihoods112

are compared and results discussed for different detection cases. Random noises and113

uncertainty in the undamaged device parameters have been also investigated and results114

presented in Section 8. The main features and limitation of the approach are presented115

in Section 9 and Section 10 closes the paper.116

2. Bayes’ Theorem and Model Updating117

A Bayesian model updating procedure is based on the well-known Bayes’ theorem118

[28]. The general formulation is the following:119

P (θ|D,I) =
P (D|θ, I)P (θ|I)

P (D|I)
(1)

where θ represents any hypothesis to be tested, e.g. the value of the model parameters,120

D is the available data (i.e. observations), and I is the background information. Main121

terms can be identified in the Bayes theorem:122

• P (D|θ, I) is the likelihood function of the data D;123

• P (θ|I) is the prior probability density function (PDF) of the parameters;124

• P (θ|D,I) is the posterior PDF;125

• P (D|I) is a normalization factor ensuring that the posterior PDF integrates to 1;126

The equation (1) introduces a way to update some apriori knowledge on the param-127

eters θ, by using data or observations D and conditional to some available information128

or hypothesis I .129

Bayes law has been applied in the updating of structural models see [29] and [30]; in130

particular, the Bayesian structural model updating has been successfully used to update131

large finite element models using experimental modal data [31]. In a structural model132

updating framework, the initial knowledge about the unknown adjustable parameters,133

e.g. from prior expertise, is expressed through the prior PDF. A proper prior distribu-134

tion can be a uniform distribution in the case when only a lower and upper bound of the135
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parameter is known, or a Gaussian distribution when the mean and the relative error of136

the parameter are known.137

138

The likelihood function gives a measure of the agreement between the available ex-139

perimental data and the corresponding numerical model output [24]. Particular care has140

to be taken in the definition of the likelihood, and the choice of likelihood depends on141

the type of data available, e.g. whether the data is a scalar or a vector quantity. Differ-142

ent likelihood leads to different accuracy and efficiency in the results of the updating143

procedure and should be selected with caution; as an example, the use of unsuitable144

likelihood function might cause that the model updating do not produce any relevant145

variation in the prior [32].146

Finally, the posterior distribution expresses the updated knowledge about the parame-147

ters, providing information on which parameter ranges are more probable based on the148

initial knowledge and the experimental data.149

2.1. Transitional Markov-Chain Monte-Carlo150

The Bayesian updating expressed in equation (1) needs a normalizing factorP (D|I),151

that can be very complex to obtain or not treatable. An effective stochastic simulation152

algorithm, called Transitional Markov Chain Monte Carlo (TMCMC) [33], has been153

used in this analysis. This algorithm allows the generation of samples from the complex154

shaped unknown posterior distribution through an iterative approach. In this algorithm,155

m intermediate distributions Pi are introduced:156

Pi ∝ P (D|θ, I)
βi P (θ|I) (2)

where the contribution of the likelihood is scaled down by an exponent βi, with 0 =157

β0 < .. < βi < .. < βm = 1, thus the first distribution is the prior PDF, and the last158

is the posterior. The value of these exponents βi is automatically selected to ensure159

that the dispersion of the samples at each step meet a prescribed target. For additional160

information the reader is reminded to [33]. These intermediate distributions show a161

more gradual change in the shape from one step to the next when compared with the162

shape variation from the prior to the posterior.163

In the first step, samples are generated from the prior PDF using direct Monte-Carlo.164

Then, sample from the Pi+1 distribution are generated using Markov chains with the165

Metropolis-Hasting algorithm [34], starting from selected samples taken from the Pi166

distribution, and βi is updated. This step is repeated until the distribution characterized167

by βi = 1 is reached. By using the Metropolis-Hasting algorithm, samples are gener-168

ated from the posterior PDF without the necessity of ever computing the normalization169

constant. By employing intermediate distributions, it is easier for the updating proce-170

dure to generate samples also from posterior showing very complex distribution, e.g.,171

very peaked or multi-modal.172

3. The Proposed Numerical Likelihoods173

Experimental vibrational data from the reference structure can be used within the174

model updating. For instance, the FRF is an indicator of the dynamic response of a175
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component and it has been used to assess the structural integrity and the damage level176

of components and systems [35]-[36]-[37]-[38]. Expert knowledge of the device can177

be useful to reduce the number of candidate positions where the damage (e.g. crack)178

will be more likely to be initiated and propagated. Generally, cracks will most likely179

initiate in certain locations characterised by high concentration of stresses. Following180

this consideration, just a finite number of possible crack positions have been selected181

based on expert judgements. The cracks have been inserted in these specific positions,182

assuming the lengths has random parameters. Within the model updating framework,183

the cracks present in the damaged structure are regarded as uncertain model proper-184

ties. The prior probability distribution of the length parameter is assumed uniform in185

any stress concentration point and with any possible physically acceptable length, i.e.186

compatible with geometric constraints and material proprieties.187

188

Within the proposed damage detection framework, experimental frequency responses189

are compared with the simulated frequency response of the numerical model. For the190

proposed applications, numerical likelihoods are proposed and used to compare the191

experimental data with the simulations data. The expressions are going to be dis-192

cussed based on their efficiency and accuracy. Specificity, the accuracy will be assessed193

by comparing the true cracks lengths and positions θ with the posterior distribution194

P (θ|D,I) mean and checking if the true θ falls into the 5th-95th percentile interval of195

the posterior.196

197

The likelihoods can be generally expressed as:198

P (D|θ, I) =

Ne∏
k=1

P (xek;θ) (3)

or, equivalently, in the form of the log-likelihood:199

P (D|θ, I) =

Ne∑
k=1

log(P (xek;θ)) (4)

where xek represents the kth experimental evidence, Ne is the number of available200

experimental data and θ is the vector of random crack lengths. The term P (xek;θ)201

is the one including the experimental evidence and three numerical expressions have202

been analysed. The first likelihood, named Likelihood-1, is a Gaussian distribution of203

the difference between the response of the model and the target values:204

P (xek;θ) ∝ exp

(
−1

2
·
[
h(θ, ωk)− he(ωk)

σ

]2
)

(5)

Likelihood-2, is empirically defined as follows:205

P (xek;θ) ∝ 1− exp

(
−
√

1

[h(θ, ωk)− he(ωk)]
2

)
(6)
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Figure 1: The 3 numerical likelihoods (on the Y-axes) as functions of the difference between model output
and experiment (on the X-axes).

Likelihood-3, is proportional to the inverse of the squared-error:206

P (xek;θ) ∝ 1− exp

(
−1

[h(θ, ωk)− he(ωk)]
2

)
(7)

where he(ωk) is the kth experimental response (i.e. the FRF value) at the frequency ωk,207

σ is the standard deviation of the data, h(θ, ωk) is the the vibrational response of the208

simulated model at the frequency ωk and for a given parameter vector θ.The frequency209

responses selected were defined by the authors based on an empirical experimental210

basis, therefore, further details will be discussed in the case study in Sections 5-7. Af-211

ter the stochastic updating procedure, the posterior distributions provide a qualitative212

characterization of the most likely crack length and positions, i.e. the cracks param-213

eters which provide output similar to the experimental observation will have higher214

posterior probability density.215

216

The different likelihoods mathematical expressions are proposed on an empirical217

basis and used to test the detection robustness when the experimental data are encoded218

differently within the procedure. For clarity, the likelihood in equations 5, 6 and 7 are219

displayed in Figure 1 by solid, dashed and dotted lines, respectively. It can be observed220

that likelihood 1 decreases more rapidly than likelihood 2 and 3 for an increasing dis-221

crepancy between model and experiment.This means (from an intuitive point of view)222

that likelihood 1 will provide as likely only model that well-explain the data, i.e. which223

provide a small [h(θ, ωk)− he(ωk)]. On the other hand, likelihood 3 will indicate as224

plausible also models resulting in higher discrepancies between simulated vibrational225

responses and the experimental data.226
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4. The Bayesian Procedure for On-line Damage Detection227

The Bayesian updating framework solved using the TMCMC is an effective frame-228

work for model updating but generally not efficient. The computational time issue229

should be addressed in order apply the procedure on-line. To tackle this problem a230

time-saving procedure has been implemented has follows:231

1. Sample θ from the parameter space, forward the sample to an high-fidelity FE232

model to obtain h(θ, ωk) for all ωk considered. The vibrational responses h(θ, ωk)233

and the corresponding θ are collected in a database;234

2. Calibrate, validate and select a well-suited emulator M̂ to be used as surrogate235

for the time expansive Finite Element modelM. Use the sampled θ as surrogate236

inputs and h(θ) as its targets;237

3. Select number of samples (Ns) for the TMCMC, set i = 0 and select the prior238

distribution P (θ|I) (so far it is not a real-time procedure, it is done before the239

updating);240

4. START THE ON-LINE PROCEDURE: Collect experimental data D, which is a241

collection of vibrational responses he(ωk) of the real-life component;242

5. Sample form the prior P (θ|I); Compute the likelihood function P (D|θ, I) us-243

ing M̂ instead of the FE model and the experimental data he(ωk);244

6. Compute βi and use equation 2 to calculate intermediate posterior Pi. Set the245

intermediate posterior as new prior P (θ|I) = Pi and i = i+ 1. Repeat point 5246

and 6 until βi=1;247

7. Compute mean µ, the 5th and 95th percentile interval [p5, p95] of the posterior.248

Compare the results to the experimental θe (which is in practice unknown) and249

assess the accuracy of the updating;250

In the first stage of the procedure, a parallel computing strategy is proposed. The251

ASCII file injection routine provided by OpenCossan is used for the implementation.252

The FE modes of damaged devices are solved on a computer cluster obtaining a dataset253

of frequency responses in relevant coordinate directions. The output and the corre-254

sponding input damage parameters θ are saved. Once the dataset is generated, ANNs255

are calibrated and best emulator architecture selected based on R2 score. It has to be256

noticed that the time spent for the data collection and emulator selection is not affect-257

ing the efficiency of the detection procedure. The real-time part of the procedure starts258

only when experimental measurements (or synthetic experimental data) are obtained,259

the step 4 in the procedure. The procedure is efficient thanks to the surrogate model260

M̂ and local parallelization of the TMCMC. The surrogate ANN model is evaluated261

many times in computing the intermediate likelihoods for a little computational cost,262

drastically reducing the calculation time.263

264
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pm1

Figure 2: The experimental aluminium frame with two movable masses [22].
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5. Case Study A: Aluminium Frame Model Updating265

The first application is named Case Study-A and the Bayesian updating framework266

is used to detect the position of two masses installed on an aluminium frame, represent-267

ing here a structural damage. This detection case employs experimental measurements268

and will be used to test the validity of the updating framework when real experimental269

data is employed.270

The aluminium frame is displayed in Figure 2 and is similar to the one presented by271

P.Liang et al. [22] and by Khodaparast, Mottershead and Badcock [15]. It is composed272

of 7 beams (3 horizontals, 2 long verticals and 2 shorter verticals) and two movable273

masses. The horizontal (axis x) position of the masses can not be changed whilst the274

vertical positions (axis z) can be modified by sliding the masses along the smaller verti-275

cal beams. In this experimental setting, the masses reproduces the structural variability276

of the frame when imperfections/damages occur, their vertical strokes are 30 cm and go277

from minimum of 5 cm to maximum 35 cm. The distance between the lower mass and278

the bottom horizontal beam is named pm1 and the distance between the higher mass279

and the middle horizontal beam is named pm2, see Fig.2. The position pair (pm1, pm2)280

will be the parameter vector θ to be updated.281

282

The experimental data and simulation outputs are retrieved from an earlier experi-283

ment [22] and are going to be presented in Section 5.1. An high-fidelity FE model was284

used to calculate the natural frequencies of the structure. The material proprieties and285

model parameters were deterministically updated in previous analysis and details are286

not going to be discussed here. In fact, the final aim of this procedure is to detect struc-287

tural damages and cracks which are represented here by the two movable masses. The288

proposed procedure starts by assuming availability of an high-fidelity numerical model289

of the device (i.e. a FE model having parameters tuned/updated to well-represent the290

damaged system vibrational behaviour). The framework proposed in this work may be291

extended to first update the parameters of the undamaged structure. However, this has292

been considered out from the final porpoise of the paper and not further discussed.293

5.1. Simulated and experimental data294

The natural frequencies of the frame were obtained by hammer impact and for 5295

different masses positions (pm1, pm2)e. Table 1 summarises the available experimen-296

tal data. Only six natural frequencies were measured, corresponding to the 1st order297

in-plane bending (ωe1), 1st order out-of-plane bending (ωe2), 1st order torsion (ωe3), 2nd298

order in-plane bending (ωe4), 2nd order out-of-plane bending (ωe5) and 2nd order torsion299

modes (ωe6). In addition to the experimental frequencies, simulations were retrieved300

from the high-fidelity FE. The simulation database includes 103 vectors of natural fre-301

quencies (ω1, .., ω6)s and the input pairs of 103 masses vertical positions (pm1, pm2)s.302

A scatter plot for the simulated natural frequencies is presented in Figure 3 while the303

simulated pairs (pm1, pm2)s are displayed in 4. It can be noticed that the available304

(pm1, pm2)s do not exhaustively explore the input space, i.e. majority of the samples305

focuses on the region between 12-28 cm stoke. This might affect the goodness of the306

ANN and in turn the effectiveness of the updating and will be further discussed in the307

next Sections.308
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Figure 3: The scatter plots of the simulation results for the considered natural frequencies of the structure.
Results were obtained by sampling (pm1, pm2), pairs of masses vertical positions [22].

5 10 15 20 25 30 35

pm
1
e

5

10

15

20

25

30

35

pm2
e

Figure 4: The 103 samples (pm1, pm2)e of masses vertical positions [22].

11



(pm1, pm2)
e [cm] ωe

1 [Hz] ωe
2 [Hz] ωe

3 [Hz] ωe
4 [Hz] ωe

5 [Hz] ωe
6 [Hz]

(5,5) 19.92 22.67 47.16 63.46 181.06 279.85
(20,20) 17.91 20.27 45.67 64.73 190.84 284.10
(35,35) 15.99 17.68 41.94 50.80 166.34 257.06
(11,11) 19.58 21.73 47.00 67.535 196.21 285.95
(29,29) 16.65 18.85 43.93 55.428 174.35 284.84

Table 1: The available experimental natural frequencies obtained changing masses positions (pm1, pm2)e.
The data is collected using hammer impact test.

5.2. Surrogate model: calibration, validation and selection309

The FE model of the structure, being computationally expensive, is replaced by310

a cheaper emulator. An Artificial Neural Network is trained using as input vectors311

the 103 pairs (pm1, pm2)s and as target vectors the 103 simulated natural frequencies312

(ω1, .., ω6)s. The ANN architecture consists of 3 layers; 1 input layers with 2 nodes, 1313

output layer with 6 nodes and 1 hidden layer with 10 nodes. The calibration was per-314

formed using the Feed-Forward Back-Propagation algorithm and sigmoidal activation315

functions. The network uses 70 % of the simulations for training, 15 % for validation316

and 15% for testing. The overall regression coefficient R2 resulted very good (close to317

1), thus, no further architectural improvement was considered.318

5.3. Model updating and results319

The procedure starts by selecting the prior distributions for pm1 and pm2 which320

are assumed uniform and constrained by the masses vertical strokes, i.e. P (θ|I) ∼321

U(5,35). The available experimental data is used to compute the likelihoods as ex-322

plained in Section 3. In this case study but without loss of generality, the kth exper-323

imental measurement he(ωk) in Eqs.(5)-(7) is replaced by ωek and the term h(θ, ωk)324

is replaced by ωk(θ). The number of samples Ns is set equal to 100 and updating325

repeated for the 3 likelihood expressions and for the 5 available experimental measure-326

ments. Results have been qualitatively ranked based on the accuracy of P (θ|D,I).327

328

Table 2 presents the updating results using the 5 experiments and the 3 likelihood329

expressions. Figure 5 displays the Kernel density estimators [39] of the marginal pos-330

teriors obtained using different likelihoods and for the experiment pm1=20 cm and331

pm2=20 cm. Considered the limited number of available simulations, the overall up-332

dating result was quite satisfactory both in accuracy and computational speed. It can be333

observed that mean values of the posterior distributions (red solid lines) is fairly close334

to the true experimental mass positions (grey dashed lines) and the percentile interval335

[p5, p95] often includes the true position.336

337

Comparison of the 3 adopted likelihoods points out that Likelihood-3 results in338

more accurate detections (i.e. smaller variance and narrower percentile intervals). A339

lack of accuracy can be also observed, for instance, in the result obtained for the exper-340

iment pme
1 = 5 cm (i.e. percentile intervals are very wide and result [5.67,22.56] and341

[5.30,29.47] for Likelihood-1 and Likelihood-2, respectively). This is probably due342
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Likelihood-1 Likelihood-2 Likelihood-3
True θe [cm] µ [p5, p95] µ [p5, p95] µ [p5, p95]
pme

1 = 5 10.07 [5.67,22.56] 12.30 [5.30,29.47] 7.31 [5.07,10.02]
pme

2 = 5 10.93 [7.01,17.70] 13.85 [9.06,27.02] 10.64 [8.68,11.74]
pme

1 = 20 18.41 [10.51,23.74] 19.51 [14.03,25.22] 18.74 [14.41,21.51]
pme

2 = 20 21.31 [11.12,27.83] 21.39 [16.18,30.54] 22.07 [18.44,29.65]
pme

1 = 35 31.51 [26.90,34.56] 30.65 [25.24,34.60] 32.07 [29.12,34.36]
pme

2 = 35 34.2 [33.19,34.89] 33.78 [32.65,34.90] 34.68 [34.10,34.97]
pme

1 = 11 13.30 [7.55,18.57] 13.25 [7.69,19.24] 12.56 [8.54,16.80]
pme

2 = 11 14.23 [9.37,21.72] 15.12 [7.69,19.24] 15.09 [11.62,19.14]
pme

1 = 29 29.39 [24.76,33.00] 27.63 [14.33,33.72] 29.31 [24.06,34.08]
pme

2 = 29 27.28 [22.81,32.30] 28.26 [29.18,32.83] 29.25 [23.59,33.94]

Table 2: The mean values µ, the 5th and the 95th percentiles [p5, p95] for posterior distributions of the mass
vertical positions. Result obtained using different likelihoods as presented and with different experimental
masses positions.

to discrepancies between the experimental data and high-fidelity model, or to a low343

performance of the surrogate model in certain region of the parameter space. In fact,344

the available 103 pairs (pm1, pm2), were not exhaustively exploring the input space.345

In Figure 4 can be seen how the ANN inputs (pm1, pm2)s are focused between 12-28346

[cm], therefore ANN might be lacking in generalizing the model behaviour in the ex-347

tremes of the parameters possibility space (i.e. region around 35 cm and 5 cm).348

349

The TMCMC algorithm and 100 samples are processed using a local parallelisation350

on 4 cores machine installing 8.00 Gb ram and an Intel(R) Core(TM) 2.00 GHz pro-351

cessor and the computational time for each detection is about 3-4 minutes. None of the352

three likelihood shown relevant advantage from the computational time perspective.353

6. Cracked Components Modelling354

Finite Element (FE) analysis has become established as a powerful family of meth-355

ods for the spatial approximation of systems of partial differential equations. It has356

been used in a multitude of areas in the engineering field, e.g. the analysis of mechan-357

ical components or structures. Nevertheless, the mechanical behaviour of structures358

may be altered if the elements are crossed by cracks. The cross section of the compo-359

nent is reduced, which causes a reduction of the stiffness. Moreover, the stress field is360

also modified in the vicinity of a crack.361

362

Advanced FE methods have been designed to improved models of cracked mechan-363

ical components. The eXtended Finite Element Method (XFEM), first introduced by364

[40], has received considerable attention over the past few years. This method is suit-365

able to model components in presence of cracks and has the clear advantage of simpli-366

fying the mesh generations. The method consists of enriching the elements affected by367

a crack by introducing additional shape functions, which increases the number degrees368

of freedoms (DOFs) associated with the nodes. The stress field in these elements is369
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Figure 5: Posterior distibutions of the masses positions obtainedNs =100 and using 3 proposed likelihoods,
The reference experimental masses positions is (pm1, pm2)e =(20,20) [cm].

then expressed using a combination of the standard and of the enrichment shape func-370

tions.371

Figure 6 depicts the concept underpinning the eXtended Finite Element Method. In372

case an element is crossed by a crack, a Heaviside function centred on the crack is373

introduced as an additional shape function and the nodes of interest are enriched with374

additional DOFs (the squared marked nodes). This step function accounts for the dis-375

continuity of the displacements between the two lips of the crack. In case an element376

includes the crack tip, the corresponding nodes of the finite element model (round377

marked nodes) are enriched with specific shape functions Fa. These functions corre-378

spond to the asymptotic displacement field at the vicinity of a crack tip, which can be379

determined analytically. This allows capturing efficiently the displacement and strain380

fields near the crack tip, without excessive refinement of the mesh. For more details381

about the enrichment procedure for the tip elements and in general about the XFEM382

the reader is reminded to [40],[41] or [42].383

384

It is worth noticing that mesh refinement in the vicinity of the crack tip may be nec-385

essary when the extended finite elements method is used, in spite of the enrichment of386

the nodes at the crack tip [43]. Nevertheless, the mesh does not have to be compatible387

with the crack, which considerably simplifies the re-meshing. In general, mesh refine-388

ment near the crack length induces more realistic results, hence has been considered in389

this work. An example of refinement of the mesh around the crack length is presented390

in Figure 7.391

In the XFEM, an approximation of the crack displacement can be expressed as follows392

[44]:393

u(x)xfem =
∑
i∈I

uiφi +
∑
j∈Υ

H(x)bjφj +
∑
k∈κ

[
φk

(
4∑
a=1

Fa(x)cak

)]
(8)
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Figure 6: An example of DOFs enrichment for the eXtended Finite Element Method.

where I, Υ and κ are sets of classical FE nodes, squared nodes and circled nodes, re-394

spectively. The term u(x)i is the standard DOF of the node i, φ is the nodal shape func-395

tion and H(x) and Fa are the Heaviside and crack-tip functions, respectively. These396

have been added to the nodes belonging to Υ and κ and the quantities bj , cak are the397

corresponding DOFs.398

In case the behaviour of a cracked structure under dynamic excitation needs to be deter-399

mined, the stiffness matrix may be computed using the XFEM, as previously explained.400

The mass matrix is not modified by the presence of cracks, and no special action needs401

to be taken. The problem is consequently solved using the standard procedure for linear402

dynamics: the modes and frequency of vibration are determined by solving the eigen-403

value problem associated with the mass and stiffness matrices, and the FRF associated404

with any node of the finite element model are determined.405

7. Case Study B: Crack Detection in a Car Suspension Arm406

The goal of case study B is to detect fatigue induced cracks in the car suspension407

arm [23], depicted in Figure 8. The device is fairly complex and it is similar to the one408

used in the automotive industry [45]. It can freely rotate along the axis indicated in409

figure by the dashed line; the suspension spring and the wheel structure are connected410
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Figure 7: An Example of coarse grid (on left hand side panel) and grid re-meshed around the crack length
and tip (on right hand side panel).

at the location indicated by “S”. The stress concentration points (i.e. the selected can-411

didate crack locations) are indicated by numbers 1 to 6 ans selected based on expert412

opinion.413

In this example, the experimental FRFs are simulated using the high-fidelity XFEM of414

the cracked suspension arm. The XFEM is built using the software Code Aster [43]. A415

crack with fixed length is inserted in one of the candidate positions, and the reference416

FRF is computed at the position indicated by “O”. Both the FRF in direction X and417

Y are considered, while no FRF is obtained in the direction Z since the structure can418

freely rotate in that direction. Figures 9 displays the FRFs in the directions X and Y419

when a 5 mm length crack is considered. In order to improve graphical output log-420

arithmic frequency scale is employed and just three out of six possible positions are421

displayed. It can be observed that different crack parameters modify the vibrational re-422

sponse of the device, i.e. changing the shape of the FRF. Specifically, the most relevant423

differences can be observed around the FRF peaks where both the resonance frequen-424

cies and the FRF amplitudes are changed. The result is in line with earlier experiments425

on cracked devices, for instance [36].426

427

The stochastic crack detection procedure is tested for two cases characterised by an428

increasing level of epistemic uncertainty, thus, increasing complexity. The two cases429

to be analysed are defined as follows:430

I ) Detection of single crack having known position and unknown length;431
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Figure 8: The suspension arm FE model. The most likely crack initiation points indicated by number 1 to 6
and the measurement point ‘O’ were FRF are collected.

II ) Detection of a single crack of unknown position and length;432

For both cases I and II, the crack detections are performed using the 3 empirical like-433

lihood expressions presented and results point out positive and negative features of434

the different formulations. Computational inaccuracy may affect the numerical FRFs,435

especially in the high-frequency domain. Thus, high frequency ranges have been ne-436

glected. A total of six FRF computed at six resonance frequencies are used as experi-437

mental data for the detection, 3 FRFs in X and 3 in Y directions (see Figure 10). Those438

are selected based on previous analysis [32] and because the amplitude displays higher439

variability with respect to the crack positions and lengths at those specific locations. In-440

tuitively, this makes easier for the updating procedure to identify responses of different441

crack parameters.442

7.1. Simulation data and synthetic measurements443

In the first phase of the procedure (Section 4) simulated frequency response func-444

tions of the damaged device are collected. Crack lengths are considered as uncertain445

parameters and are modelled using uniform probability distributions. Since the crack446

is physically constrained to not touch the flanges of the arm, a maximum length of 5447

mm is assigned to the cracks in position 1 and 2, while the length is limited to 10 mm448

for the cracks in positions 3 to 6. The crack samples are forwarded the XFEM of the449

suspension arm by using the ASCII file injection routine provided by OpenCossan [26]450

and results are pairs of FRFs (in X and Y directions), one for each sample of crack451

length and position.452
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Figure 9: Frequency response functions of the high fidelity FE model in log-frequency scale. A single crack
of 5mm length is inserted in the stress concentration points 1, 3 and 6.

The vibrational response of the damaged suspension is computed for 3000 cracks, 500453

lengths for each one of the 6 stress concentration point (displayed in Figure 8). The454

simulation run in parallel on a computer cluster counting approximatively 40 work-455

ers. Results are 3000 FRFs in each coordinate direction. This procedure generates a456

database of input parameters and corresponding model outputs, later used to train of457

the surrogate model.458

7.2. Surrogate model: Calibration, validation and selection459

FRF peak 1
FRF peak 2 FRF peak 3

FRF peak 4

FRF peak 5

FRF peak 6

Figure 10: The 6 considered peak frequency responce functions.

The input data for the surrogate models is the vector of simulated cracks θ whilst460

the output data is a vector of six resonance FRF in the considered frequencies. Specif-461

ically, 3 amplitudes in direction X, named FRFpeak 1,2,3 and the 3 the direction Y,462
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named FRFpeak 4,5,6, have been considered. Figure 10 qualitatively displays the data463

used for the updating. The reason why the entire simulated FRF has not been consid-464

ered as output vector for the surrogates was to avoid over-complexity, limit the dimen-465

sionality of outputs and further reduce computational time. In the updating case I, 500466

single crack lengths in a known position (position 6 in Figure 8) are considered. Case467

II aims is to detect single crack with unknown length and position, therefore all the468

3000 simulations are used to train the ANN.469

470

The networks architectures for cases I and II consist of 6 output nodes and 1 input471

node (case I for the crack length) or 6 input nodes (case II, the 6 lengths). The number472

of hidden layers and nodes is selected using trail and fail method and based on ANN473

performance. Sigmoid functions are employed in each node and back-propagation al-474

gorithm trains the ANN.475

The best architectures have been selected such that the R2 is maximised. In order
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Figure 11: Regression plots of the selected ANN trained for a single crack of unknown position and length.

476

to simplify the analysis, a maximum of two hidden layers and 10 nodes per layer are477

considered. The ANNs is calibrated using 70% of the available data, 15% is used for478

validation and 15% for testing.479

480

A single-hidden-layer ANN proven to perform well by reproducing the input-output481
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Figure 12: The relation between inputs and targets. The figure displays variation of the 6 frequency peaks
for different crack length in position 6.

behaviour of the FE model. However, have been outperformed by multi-hidden layer482

ANNs. This result can be explained if considered the highly non-linear behaviour of the483

outputs, see Figure 12. This behaviour is more difficult to be captured by using ANNs484

with a single hidden layer. Thus, ANNs with two hidden layers have been adopted485

and the number of nodes in each hidden layer set equal to 10. Figure 11 presents lin-486

ear regression results for the selected ANN architecture and the second detection case.487

Analogous results have been obtained for the detection case I.488

7.3. Model updating489

7.3.1. Case I: Single crack, known position490

The Bayesian updating procedure is used first to detect of single crack length which491

has a known position 6. The procedure starts selecting prior distribution for the crack492

length P (θ6|I) ∼ U [0,10]. Three synthetic experimental FRFs are analysed, corre-493

sponding to cracks of “short” (2.41 mm), “medium” (4.51 mm) and “long” (8.02 mm)494

lengths. The detection procedure is repeated to test the empirical likelihoods defined495

in Section 3 which are computed using the data described in Section 7. Results are ob-496

tained for TMCMC samples Ns =50 and have been qualitatively ranked based on the497

accuracy of the posterior distributions. The suitability of the likelihoods is discussed.498

499

Figure 13 displays the posterior distributions histograms for the 3 likelihood ex-500

pressions and the 3 crack lengths. The red dotted vertical line correspond to the true501

crack length to be detected while the red solid vertical lines are the mean values for the502

posteriors. It can be observed high probability densities around the true crack lengths503

(dashed grey lines), which indicates that the updating procedure was successfully per-504

formed. The resulting posteriors mean values µ, the 5th and the 95th percentiles are505

presented in Table 3. The mean values of the posteriors distributions slightly overesti-506

mate for cracks of medium and long lengths while it is slightly underestimated in the507
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Figure 13: Posterior distibutions of “long” crack (bottom plots), “medium” (central plots) and “short” (top
plots) crack lengths of known position 6 obtianed using the 3 proposed likelihoods.

Likelihood-1 Likelihood-2 Likelihood-3
Experimental θ µ [p5, p95] µ [p5, p95] µ [p5, p95]
Short (2.41 mm) 1.98 [0.85,3.32] 1.65 [0.99,2.66] 1.83 [1.12,2.70]

Medium (4.51 mm) 4.98 [3.60,6.76] 4.89 [4.54,5.59] 4.85 [4.53,5.34]
Long (8.02 mm) 8.59 [7.43,9.84] 8.14 [7.95,8.24] 8.18 [8.08,8.23]

Table 3: The mean values µ, the 5th and the 95th percentiles [p5, p95] forNs=50 samples from the posterior
distributions of the crack length. Result obtained using different likelihoods and 3 crack lengths.

short crack case. For the vast majority of cases, the true crack length lays within the508

percentile interval [p5, p95].509

510

Considered the final aim of the updating, the procedure produced was successful511

and the result proved that crack lengths was well-identified in all the considered cases.512

The three likelihoods seems all well-suited to be used within the detection framework,513

although they present some differences in the accuracy and robustness of the detection.514

The Likelihood-1 has posterior distributions characterized by higher variance, see for515

instance the wider percentile intervals in Table 3. It also appears to be more conserva-516

tive for the final answer to the detection problem, i.e. the true crack length was always517

included in the considered interval. Conversely, Likelihood-2 and Likelihood-3 seem518

to produce more accurate posteriors (i.e. narrower intervals), although in some cases519

the true crack length do not fall within [p5, p95] (such as the medium and short cracks520

for Likelihood-2 and 3, respectively).521

522

The TMCMC algorithm was solved in parallel on 4 cores of a machine installing523

8.00 Gb ram and an Intel(R) Core(TM) 2.00 GHz processor. Thanks to the efficient524

parallel computing strategy for the TMCMC and surrogate model approach, the wall-525
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clock time needed for each detection was approximatively 1 minute and 20 seconds526

using Ns =50. None of the three analysed likelihood results superior from the compu-527

tational time perspective.528

7.3.2. Case II: Single crack, unknown position529

The procedure presented in Section 7.3.1 has been extended for detection of both530

the length and the position of a crack. The procedure, has been tested considering531

the three likelihoods and assuming uniform prior distributions P (θi|I) ∼ U [0,10] for532

cracks in position i = 3,4,5,6 and P (θi|I) ∼ U [0,5] for position i = 1,2. The refer-533

ence synthetic FRF has been obtained for a crack in position 6 of length 8.01 mm.534

Figures 14, 15 and 16 display the marginal posterior distributions obtained by using535

the Likelihood-1, Likelihood-2 and Likelihood-3, respectively. The bottom plot on536

the right-hand side displays the marginal posterior distribution of the crack length in537

position 6. The posterior mean (red solid line) is displayed and compared to the true538

reference length (dashed grey line).539
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Figure 14: The marginal postirior PDFs of the crack, obtained computing the likelihood using ‘Likelihood-
1’.

Table 4 summarizes the resulting statistics computed for each of the 3 updating.541

For all 3 the updating, the results point out an accurate detection of the reference crack542

length in the true position 6, with high probability densities in the interval [7-9] mm.543

Unfortunately, Likelihood-1 and Likelihood-2 produce marginal posteriors with high544

probability densities also for other crack positions. False detections can be observed in545

position 5 around [4-5] mm or in position 1 between [3-5] mm], see Figures 14 and 15.546

An explanation might be found considering the FRF behaviour i.e. the way of vibrat-547

ing of the cracked suspension arm. This can indicate a similarity between the device548

vibrational response for “long” crack in position 6 and 4-5 mm cracks in position 1 or 5.549

550

The result pointed out limitation of the first two likelihoods in this analysis. Con-551

versely, the result obtained adopting ‘Likelihood-3’ seems to be more conservative. In552
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Figure 15: The marginal postirior PDFs of the crack, obtained computing the likelihood using ‘Likelihood-
2’.
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Figure 16: The marginal postirior PDFs of the crack, obtained computing the likelihood using ‘Likelihood-
3’.
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Likelihood-1 Likelihood-2 Likelihood-3
Experimental θe [mm] µ [p5, p95] µ [p5, p95] µ [p5, p95]

θ1 =0 4.43 [4.10,4.91] 4.04 [1.97,4.89] 2.81 [0.28,4.72]
θ2 =0 0.18 [0.12,0.25] 0.79 [0.06,2.35] 2.35 [0.56,4.76]
θ3 =0 0.22 [0.09,0.36] 6.11 [4.86,8.64] 5.88 [1.99,9.26]
θ4 =0 1.75 [0.97,2.42] 6.84 [1.67,9.77] 5.20 [2.25,8.15]
θ5 =0 4.61 [4.40,4.81] 3.77 [0.43,4.80] 5.54 [0.98,9.03]
θ6 =8.01 8.52 [6.33,9.80] 8.55 [7.98,9.61] 8.87 [7.74, 9.85]

Table 4: The mean values µ, the 5th and the 95th percentiles [p5, p95] of the posterior ditribution for
crack length in the 6 positions. Result obtained for Ns =50, for different numerical likelihoods and for an
experimental reference crack of length 8.01 mm in position 6.

facts, a relatively narrow percentile interval ([7.74-9.85] mm) can be observed around553

the true crack length. Furthermore, no false detection were observed. The posterior554

distributions in positions 1 to 5 are close to the initial prior, i.e. uniformly distributed,555

and percentile intervals are almost as large as the possibility domain. This means that556

none of the crack lengths in positions from 1 to 5 can be fairly associated to the exper-557

imental evidence provided.558

559

In Table 4 can be observed that the breadth of the 5th and the 95th percentiles in-560

tervals are wider when compared to the one obtained in the detection updating case I,561

see Table 3. The result of the detection case II is characterized by higher uncertainty if562

compared to the detection case I. This was expected due to the higher epistemic uncer-563

tainty affecting the updating case II (lack of knowledge on the true position of crack).564

565

The computational time needed for the TMCMC solution was about 10-15 minutes566

using 50 samples and local paralelisation the works on 4 cores of a machine installing567

8.00 Gb ram and an Intel(R) Core(TM) 2.00 GHz processor. None of the three likeli-568

hood shown relevant advantage from the computational time prospective.569

8. Supplementary Uncertainty Analysis570

In the previous crack detection cases, the crack parameters (length and position)571

have been considered affected by epistemic uncertainty. The procedure detects the most572

plausible crack parameters of the XFEM accordingly to the experimental evidence.573

The procedure was efficient and effective. Nevertheless, the employed crack model574

based on XFEM is an approximate deterministic model and as such, it will unlikely575

behave as a real structure crossed by random cracks. Thus, to further test and prove576

effectiveness of the proposed detection procedure, additional layers of uncertainty have577

been analysed. The crack detection updating case I and II have been performed by578

adding noises to the synthetic experimental FRFs. The analysis is then followed by an579

uncertainty propagation of the imprecisely known material proprieties of the cracked580

car component. These analyses will test the goodness of the framework for increasing581

discrepancy between results from the XFEM and the experimental evidence.582
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Figure 17: One FRF in X direction with an added noise with SNR of 30 dB.

Figure 18: One FRF in X direction with an added noise with SNR of 10 dB.

8.1. Updating with noise, randomness in the external environment583

In order better understand the effect of randomness due to the external environment,584

noises have been added to the synthetic experimental FRF. Signal-to-noise ratio (SNR)585

is defined as the ratio between the power of the signal and power of the noise affecting586

the signal. Noises in different directions are often generated by common sources (e.g.587

internal error of the measuring tool, external environment disturbances, etc.). Thus,588

without loss of generality, correlated noises in both X and Y directions have been ap-589

plied to the reference vibrational observations. The goodness of the detection in both590

case-I and case II have been tested. ‘Likelihood-3’ has been selected for the analysis591

and three noise levels added to the reference FRFs. The SNR has been set equal to 100592

dB (low noise), 30 dB (medium noise) and 10 dB (high noise. Figures 17-18 depict the593

FRF in X direction for the medium and high noises cases, respectively.594

595

8.1.1. The updating result, case-I596

The results were carried out by using 3 reference cracks in known position 6 (as597

explained in Section 7.3.1). The likelihood adopted was computed as in Equation 7598

and three noise levels were investigated as previously introduced. In Table 5, the re-599

sults obtained for 9 detection cases are presented while Figure 19 displays posterior600

distributions fitted using Kernel-Density.601

As expected, results confirm that the accuracy in the detection deteriorates when602

noises intensity increases (i.e. SNR decreases). Nevertheless, for moderate noises603

(SNR equal to 100 dB and 30 SNR), the posteriors distribution are performing quite604
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Figure 19: Posterior distributions for a short crack (panels in the first raw), medium and a long crack (panels
in the last raw) in position 6 when low noise (first column panels), medium and high noise are applied to the
vibrational response.

100 SNR 30 SNR 10 SNR
Experimental θe6 µ [p5, p95] µ [p5, p95] µ [p5, p95]
Short (2.41 mm) 2.30 [0.71,3.88] 2.12 [0.82,3.49] 0.51 [0.13,0.675]

Medium (4.51 mm) 5.07 [3.57,6.60] 5.33 [3.78,6.97] 3.01 [0.88,5.45]
Long (8.02 mm) 8.58 [7.28,9.88] 8.58 [7.38,9.75] 6.59 [5.56,7.13]

Table 5: The mean values µ, the 5th and the 95th percentiles [p5, p95] for Ns=50 samples and using
Likelihood-3. The result have been obtained using different Signal-to-Noise Ratios and 3 reference crack
lengths in known position 6.

well for all the considered crack lengths. On the other hand, by increasing the noise605

(i.e. SNR=10 dB), high posterior probability masses can be observed for lengths not606

corresponding to the reference crack. To conclude, the detection was fairly robust607

even for moderate noise and the framework correctly provided a good indication of the608

possible range of crack lengths.609

8.1.2. The updating result, case-II610

The results are obtained by using a reference crack of length 8.01 mm in position611

6 (as in section 7.3.1). Both crack position and crack length are unknown. The likeli-612

hood adopted for the analysis is the Likelihood-3 and three level of noise included as613

described. Table 6 presents posterior statistics for the crack length in position 6 and614

different noises. Figure 19 displays posterior distributions fitted using Kernel-Density.615

The marginal posterior distributions obtained for the positions one to five result ap-616

proximatively uniforms, therefore not displayed for synthesis reasons.617

As expected, also for the detection Case II the accuracy of the results decreases618

when increasing the noise in the measured data. Nevertheless, the updating appear to619

be fairly robust to medium noise levels (SNR up to 30 dB). Conversely, high noises620

make the detection failing (i.e. a miss detection). This happen when the marginal621
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Figure 20: Posterior distributions for three noise level using a reference crack 8.01 mm long in the (unknown)
position 6.

posterior distribution becomes practically uniform and the corresponding percentile622

interval very large (e.g. [1.47,8.97] mm). This corresponds to a non-informative result.623

Possible ways of tackling the problem of miss-detection is to incorporate more robust624

and abundant data in the detection procedure (see section 8.3) and to efficiently and625

effectively filter noises which affect the vibrational response.626

8.2. Uncertainty in the model parameters627

Uncertainty was assumed affecting the Young‘s modulus (E) of the undamaged628

suspension arm. Uncertainty in the material propriety of the device can be due to629

fluctuations in the manufacturing process, which makes the device behaviour differs630

(slightly) from the hypothetical design configuration. The E modulus has been as-631

sumed normally distributed around a known mean value (2.1 105 psi in the initial set632

up of the model) with standard deviation equal to 3% of its mean value. Parallel Monte633

Carlo run generates 500 samples of the imprecisely known variable. A fixed crack of634

length 5 mm in position 5 have been considered for this analysis and the XFEM is used635
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100 SNR 30 SNR 10 SNR
Experimental θe6 µ [p5, p95] µ [p5, p95] µ [p5, p95]
Long (8.02 mm) 8.49 [7.58,9.79] 8.68 [7.62,9.73] 5.34 [1.47,8.97]

Table 6: The mean values µ, the 5th and the 95th percentiles [p5, p95] obtained for Ns=50 and using
Likelihood-3. The result shows different Signal-to-Noise Ratios, reference crack has length 8.01 mm and
unknown position 6.

to obtain FRFs in X and Y directions, one for each realisation of E. For simplicity, the636

Young‘s modulus is assumed homogeneous therefore within each Monte Carlo run the637

XFEM is solved using just one sampled value. Figure 21 displays the variability of the638

FRF in X-direction for different E values.639

640

It can be observed high variability of the FRFs due to relatively small imprecision641

in the E parameter. The FRFs show some similarities and differences, e.g. approxima-642

tively same result for the accelerations at the resonance peaks but a shift of the reso-643

nance frequencies. Indeed, the spectrum of uncertainty associated with the variability644

in the E modulus is quite significant and combined with the epistemic uncertainty on645

the true crack parameters makes the updating procedure challenging. Improvement646

of the updating framework and possible way of overcome the issues are going to be647

discussed in Section 9.648

8.3. Convergence study for increasing availability of experimental data649

A convergence test is used to assess an improvement in detection accuracy if more650

data are made available. Specifically, the mean value and the percentile intervals of651

the posteriors are computed for 9 cases characterised by an increasing availability of652

experimental data. For the 9 cases, the numbers of available experiments are 1, 5, 25,653

100, 200, 250, 300, 300 and 400, respectively. 6 additional health indicators are ex-654

tracted from each experimental FRF (i.e. 12 FRF peaks in total) for the cases 8 and655

9 allowing to further increase the information available for the updating. The experi-656

mental measurements are generated using a single crack at (known) position 6 with a657

length of 8 cm, and random correlated noise added to each measurement (SNR set to658

be 30 dB). Figure 22 displays the percentiles, mean of the posterior distribution and659

true crack length for the 9 cases. As expected, it can be observed that the width of660

the credibility interval tends to decrease for increasing level of information and the661

mean of the posterior distribution tends to the true parameter value. The convergence662

study shows that the proposed monitoring procedure can achieve more accurate predic-663

tions for an increasing number of experimental data. Moreover, for the same number664

of experimental data an improved accuracy was observed when more prognostic in-665

dicators were employed (see cases 7 and 8 with both 300 experimental FRF). This666

shows that even if the same number of measurement is available, increase the number667

of well-suited health indicators can help in avoiding false detections, miss detections668

and improve the overall procedure accuracy.669
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Figure 21: The imprecision in the FRF in X direction due to uncertianty in the Young’s modulus E. The
displayed FRFs is obtained using reference crack of 5 mm in the stress concentration point 5.
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Figure 22: The percentile interval (dashed lines) and mean (solid line) of the posterior distribution for the 9
cases considered. Posteriors computed using likelihood 1 and 30 TMCMC samples.

9. Discussion670

The proposed computational framework has been tested for 3 numerical likelihoods671

and for 2 different applications namely case study A and case study B. The aim of the672

first problem was to detect the positions of two movable masses installed on an alu-673

minium frame (emulating structural damage). The focus of the case study B was to674

detect length and position of fatigue induced cracks in a car suspension arm. The675

crack detection problem has been tested using different experimental data and increas-676

ing level of uncertainty associated (e.g. crack detection cases I then case II then noisy677

data). Thanks to the surrogate modelling approach and high performance computing678

strategy, the framework proved to be efficient for quasi-real-time applications. The679

suitability of the 3 numerical likelihoods was tested, pointing out advantages and dis-680

advantages for the detection goals.681

Some of the results obtained for the case study A were actually false detections. This682

was probably due to surrogate model inaccuracy and or experimental measurement683

noises. The artificial neural network resulted inaccurate when was used to mimic the684

FE model behaviour in areas of the parameter domain which were poorly explored685

during the simulation phase. In crack detection case II (crack of unknown position and686

length), the marginal posterior shown also false detection in positions where a crack687

was not present. This can be due to similarities between FRFs for different crack pa-688

rameters, to code inaccuracies or ineffectiveness of the numerical likelihoods.689

Further analysis of uncertainty, such as noise in the data and imprecision in the mate-690

rial parameter of the simulated model, pointed out some of the future challenges for691

industrial applicability of the updating framework. Aleatory uncertainty in the form692

of random noises has been introduced in the experimental FRFs and, as expected, in-693

creasing noise level reduces the accuracy of the detection. For instance, a signal to694

noise ration up to 30 dB provided satisfactory updating results while increasing noise695

(reducing SNR to 10 dB) made the updating procedure fails. Some efficient nose-696
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filtering techniques can be considered to improve the detection accuracy.697

Uncertainty has been considered affecting the material propriety of the suspension698

arm (the young modulus) and has been propagated through its extended finite element699

model. The result shows significant variation in the dynamic response of the system.700

This points out how the updating might result challenging if an high-fidelity is un-701

available. The proposed framework rely on good adherence between the vibrational702

response of the FE model and real device. Future developments might be focusing703

on advanced noise filtering techniques and adopting a pre-updating of the undamaged704

model parameters. This will likely reduce epistemic uncertainty in the FE model, thus705

increasing its suitability for realistic industrial applications.706

10. Conclusions707

A Bayesian model updating procedure for fatigue induced cracks detection has708

been presented and applied to two case study. First, a real-life aluminium frame has709

been used to test the effectiveness of the framework when real experimental data were710

collected. Then, the procedure has been tested on a complex numerical suspension711

arm of a vehicle and for two distinct crack detection cases. Vibration data was used712

as the reference data for the updating. Computational time for real-time application713

is a hard requirement and the problem has been tackled by using a parallel computing714

strategy and replacing high-fidelity FE models with artificial neural network emula-715

tors. The effects of different likelihood expressions and different experimental data on716

the detection have been analysed. The crack detection has been tested for two case717

study of increasing complexity. First, to detect a single crack with unknown length but718

known position and second, to detect a single crack with unknown position and length.719

Comparison between the likelihood expressions did not suggest major differences in720

terms of computational cost. Nevertheless, some of the updating results pointed out721

limitations in accuracy and false detections. This is possibly due to a similarity in the722

vibration response of the device for different cracks or to a shortcoming in the emu-723

lator accuracy. In all the analysed cases, the structural damage was detected correctly724

around the true length and position. Discussion on the limitations of the procedure725

has been presented by a comprehensive investigation on the role of aleatory and epis-726

temic uncertainties for a correct detection. Additional tests for the framework were727

performed adding noises of different intensity to the data. The framework proved to728

be robust for low and medium noises, but considering higher noise level an uncertainty729

in the device material proprieties makes the detection procedure fails. An analysis of730

the convergence of the method for an increasing availability of data was also proposed.731

Results confirm that the accuracy of the monitoring procedure increases for increas-732

ing information quality and quantity (i.e. more experimental measurements and more733

monitoring indicators for each experiment). Strengths and limitations of the framework734

emerged thanks to a comprehensive uncertainty analysis.735
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