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ABSTRACT 

Lower gastrointestinal (GI) toxicity – manifested as diarrhoea – often occurs in cancer 
patients undergoing treatment with tyrosine kinase inhibitors (TKIs). TKIs used for chronic 
myeloid leukaemia have a differential propensity to cause lower GI toxicity, with bosutinib 
having the highest incidence. Management strategies include treatment with non-specific 
anti-diarrhoea drugs, such as loperamide, which can be ineffective. The aim of this project 
was to use a human intestinal cell line model and a murine intestinal organoid (enteroid) 
model to investigate the mechanisms of TKI-induced diarrhoea, and to perform a genome-
wide association study (GWAS) to identify genetic determinants of the adverse event. 

Using human Caco-2 cells in a transwell set-up, we found the EGFR inhibitor gefitinib and the 
BCR-ABL inhibitors bosutinib, imatinib and dasatinib increased paracellular permeability to 
ions. These changes occurred at sub-apoptotic concentrations of 5µM, 50µM, 10µM and 
10µM for bosutinib, imatinib, dasatinib and gefitinib, respectively. Bosutinib (25-100µM) and 
imatinib (100µM) also increased paracellular permeability to macromolecules but dasatinib 
and gefitinib (up to 100µM) had no effect. All four TKIs induced a decrease in cell viability in 
a concentration-dependent manner, as determined by MTT, CellTitre-Glo® and ToxiLight™ 
assay, allowing us to postulate the involvement of cell death in TKI-induced barrier 
dysfunction. Only bosutinib, however, induced re-localization of several cell-cell junction 
proteins, specifically E-cadherin, ZO-1 and occludin, as investigated by immunofluorescence. 
Western blotting showed bosutinib also caused a concentration- and time- dependent 
decrease in levels of these tight junction (TJ) and adherens junction (AJ) proteins, while a 
transient decrease in ZO-1 mRNA transcript level was detected by RTqPCR. Imatinib, 
however, had no effect on TJs and AJs at both the protein and mRNA level. 

Specific pathways upstream of this bosutinib-induced TJ degradation were explored in vitro 
by investigating the mechanism leading to occludin degradation. Whilst an array of pathway 
inhibitors including oxidative stress and cell death inhibitors were unable to prevent 
bosutinib-induced occludin degradation, TIMP-2 downregulation was identified as a 
potential mechanism. 

In the murine intestinal organoid model, increased paracellular permeability, determined by 
leakage of a fluorescently-labelled macromolecule from the enteroid lumen, was seen only 
with bosutinib (10µM). Cytotoxicity of bosutinib (10µM), dasatinib (0.1-10µM) and gefitinib 
(10µM) was confirmed in the enteroid model by the ToxiLight™ assay. By contrast, imatinib 
up to 10µM had no effect on enteroid cell viability. Bosutinib-induced re-localization of TJ 
and AJ proteins were also seen; however, decreased protein levels were not observed.  

The GWAS, performed on 145 dasatinib-treated chronic myeloid leukaemia (CML) patients 
(40 with diarrhoea) from the SPIRIT2 trial, found PLXNC1, a semaphorin receptor involved in 
controlling adherence and inflammation, to be significantly associated with the diarrhoea 
phenotype (odds ratio = 5.10, p < 5x10-8). CCR3, a chemokine receptor linked to celiac 
disease, was associated at the suggestive significance level (odds ratio = 3.37, p < 1x10-5). 
However, a replication cohort composed of a further 137 SPIRIT2 dasatinib-treated patients 
(33 with diarrhoea), failed to support these findings. This likely reflects the study limitations 
and mechanistic complexity of diarrhoea, rather than a lack of genetic involvement. 

This work suggests decreased intestinal barrier integrity, potentially mediated by cell death 
and cell junction disruption, is important in the aetiology of TKI-induced diarrhoea. The 
GWAS suggests the involvement of inflammation in dasatinib-induced diarrhoea; however, 
further studies will be required to confirm or refute this hypothesis. Our study provides a 
foundation for further investigation into the mechanisms of TKI-induced diarrhoea.    
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ANOVA  Analysis of variance 

APES  3-Aminopropyltriethoxysilane 

APS  Ammonium persulfate 

ATCC  American type culture collection 

ATP  Adenosine Triphosphate 

AUC  Area under the curve 

B2M  β-2-Microglobulin gene 

BCA  Bicinchoninic acid 

BCR (-ABL) Breakpoint cluster region (- Abelson murine leukaemia viral oncogene 
homolog 1 fusion protein) 

BCRP Breast cancer resistance protein 

BiP  Binding immunoglobulin protein 

BMI  Body mass index 

BSA  Bovine serum albumin 

CaCC  Ca2+-dependent Cl- channels 

CCR3  C-C chemokine receptor type 3  

Cdc42  Cell division control protein 42 homolog 

CDH1  Cadherin 1 (gene coding for E-cadherin) 

cDNA  Complementary DNA 

CEL  Chronic eosinophilic leukaemia 

CFTR  Cystic fibrosis transmembrane regulator  

CgA  Chromogranin A 

CHOP  CCAAT-enhancer-protein homologous protein or C/EBP homologous  

CHR  Complete haematological response 
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CI  Confidence intervals 

c-KIT  Mast/Stem cell growth factor receptor 

CML  Chronic myeloid leukaemia 

CQ  Chloroquine 

CYP  Cytochrome P450  

DAB  3 3’ Diamino-benzidine 

DAPI  4',6-Diamidino-2-Phenylindole 

DCLK1  Double cortin Like Kinase 1 

dH2O  Distilled water 

DMEM  Dulbecco’s modified Eagle’s medium 

DMSO  Dimethylsulfoxide 

DPP6  Dipeptidyl peptidase like 6 

DPX  Distrylene, plasticizer, xylene 

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen (The Leibniz 
Institute DSMZ - German Collection of Microorganisms and Cell Cultures) 

DSS Dextran sodium sulphate 

ECL Enhanced chemiluminescence 

EDTA Ethylenediaminetetraacetic acid 

EGF  Epidermal growth factor 

EGFR  Epidermal growth factor receptor 

ELISA  Enzyme-linked immunosorbent assay 

ER  Endoplasmic reticulum 

FAK  Focal adhesion kinase 

FBS  Fetal bovine serum 

FD-4  FITC (fluorescein isothiocyanate)-dextran (4kDa) 

FITC  Fluorescein isothiocyanate 

GFP  Green fluorescent protein 

GI  Gastrointestinal 

GIST  Gastrointestinal stromal tumours 

GLP1/2  Glucagon like peptide 1/2 

h  hours 

H&E  Haematoxylin and eosin  

HEPES  4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP  Horseradish peroxidase 

HWE  Hardy-Weinberg Equilibrium 

IBD  Inflammatory bowel disease 
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IBS  Irritable bowel syndrome 

IBS-C  Irritable bowel syndrome (constipation predominant) 

IBS-D  Irritable bowel syndrome (diarrhoea predominant) 

IgA/G  Immunoglobulin A/G 

IL  Interleukins 

IM-54  2-(1H-Indol-3-yl)-3-pentylamino-maleimide 

INF  Interferon 

JNK  c-Jun N-terminal kinase   

iPSC  Induced pluripotent stem cells 

KCNQ5  Potassium (K+) voltage-gated channel subfamily KQT member 5 

LD  Linkage disequilibrium 

LDEV  Lactate dehydrogenase-elevating virus 

Lgr5  Leucine-rich repeat-containing G-protein coupled receptor 5 

MAF  Minor allele frequency 

MAPK(KK) Mitogen-activated protein kinase (kinase kinase) 

MARVEL Myelin and lymphocyte (MAL) and related proteins for vesicle trafficking 
and membrane link 

MCR  Major cytogenetic response 

MCT1/4 Monocarboxylate transporter 1/4 

MDR1  Multidrug resistance protein 1 (also called ABCB1) 

MG-132 Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal 

MLC  Myosin light chain 

MLCK  Myosin light chain kinase 

MTT  3-(4,5,-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MUC2  Mucin 2  

MYO16  Myosin XVI 

MYT1L  Myelin transcription factor 1 like 

NF-κB  Nuclear factor kappa B  

NKCC1  Na-K-Cl cotransporter 1 

NSCLC  Non-small cell lung cancer 

OCLN  Occludin 

OCT-1  Organic cation transporter 1 (also called SLC22A1) 

PARP1  Poly [ADP-ribose] polymerase 1 

PCR  Polymerase chain reaction 

PBS  Phosphate buffered saline 

PDGFR  Platelet-derived growth factor receptor 
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Ph+ ALL  Philadelphia chromosome positive acute lymphoblastic leukaemia 

Ph+ CML Philadelphia chromosome-positive chronic myeloid leukaemia 

PI3K  Phosphoinositide 3-kinase 

PIP2  Phosphatidylinositol 4,5-bisphosphate 

PIP3  Phosphatidylinositol 3,4,5-triphosphate 

PP2A  protein phosphatase 2A 

PKC  protein kinase C 

PLXNC1  Plexin C1 

PYY  Polypeptide YY (tyrosine tyrosine) 

Rac  Ras-related C3 botulinum toxin substrate 1 

RhoA  Ras homolog family member A 

RIPK1  Receptor-interacting serine/threonine-protein kinase 1 

ROCK  Rho-associated protein kinase 

Ser  Serine residue 

SD  Standard deviation 

SDS-PAGE Sodium dodecyl sulfate- polyacrylamide gel electrophoresis  

SEM  Standard error of the mean 

SERPINB6 Serbin (serine protease inhibitors) family B member 6 

SLC22A1 Solute carrier family 22 member 1 (also called OCT-1) 

SMCTs  Sodium-dependent monocarboxylate transporters 

SNP  Single nucleotide polymorphism  

Src  Proto-oncogene c-Src 

TBS-T  Tris-buffered saline with 0.1% Tween-20 

TEER  Transepithelial electrical resistance 

TEMED  Tetramethylethylenediamine 

TFF3  Trefoil factor 3 

TGF-α  Transforming growth factor α 

Thr  Threonine residue 

TIMP  Tissue inhibitor of metalloproteinases 

TKI  Tyrosine kinase inhibitors 

TJs  Tight junctions 

TJP1  Tight junction protein 1 (gene coding for zonula occludens-1) 

TNF  Tumour necrosis factor 

TKI  Tyrosine kinase inhibitor 

Tyr  Tyrosine residue 

UPR  Unfold-protein response 
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UGT1A1 Uridine 5'-diphospho-glucuronosyltransferase (UDP)-
glucuronosyltransferase 1-1 

VEGFR  Vascular endothelial growth factor receptor 

WTCCC  Wellcome Trust Case Control Consortium  

ZO-1  Zonula occludens-1 

Z-VAD-FMK Cell permeable fluoromethyl ketone 
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1.1 The use of tyrosine kinase inhibitors in cancer treatment 

1.1.1 Overview of tyrosine kinase inhibitors 

Small molecule tyrosine kinase inhibitors (TKIs) are orally administered chemotherapeutic 

agents which provide greater targeting specificity than conventional cytotoxic 

chemotherapies (Keller et al., 2009; Fullmer et al., 2011; Shi et al., 2013; Iqbal et al., 2014). 

Whilst the latter act on rapidly dividing cells, targeted therapies – such as TKIs – act on the 

proteins of aberrantly expressed or mutated genes within specific cancerous cells. This 

discriminatory cytotoxicity of targeted chemotherapy should lead to fewer adverse drug 

reactions (ADRs) and higher treatment efficacy. As such TKIs have been an area of focus in 

novel chemotherapeutic drug development. 

TKIs can be subdivided based on kinase targets. For example, breakpoint cluster region 

protein (BCR) - Abelson murine leukaemia viral oncogene homolog 1 (ABL) fusion protein 

(BCR-ABL) inhibitors such as imatinib (De Francia et al., 2013), dasatinib (Wang et al., 2013) 

and bosutinib (Pfizer, 2014; Brümmendorf et al., 2015) are frequently used for the treatment 

of Philadelphia chromosome-positive (Ph+) chronic myeloid leukaemia (CML) (Fig 1.1A-C). 

Some BCR-ABL inhibitors, such as imatinib and dasatinib, can also be used for the treatment 

of Ph+ acute lymphoblastic leukaemia (ALL) (Malagola et al., 2016). By contrast, epidermal 

growth factor receptor (EGFR) inhibitors, such as gefitinib (Shi et al., 2013), are commonly 

used for the treatment of non-small cell lung cancer (NSCLC) (Fig 1.1D). 

 

Figure 1.1. Structures of TKIs used in this project. Chemical structures of BCR-ABL 

inhibitors bosutinib (A), imatinib (B) and dasatinib (C), and EGFR inhibitor gefitinib 

(D). Images produced in ChemDraw Professional version 19.0.1.28 

(perkinelmer.com/uk/category/chemdraw) by S. French. 
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Other classes of TKIs include platelet-derived growth factor receptor (PDGFR) inhibitors 

(Papadopoulos et al., 2018) and vascular endothelial growth factor receptor (VEGFR) 

inhibitors (Lacal et al., 2018); however, the clinical relevance of PDGFR and VEGFR inhibition 

will not be discussed here.  In general, however, it is important to note there is often overlap 

between the spectrum of kinases that are targeted by different drugs. For example, BCR-ABL 

inhibitors imatinib and dasatinib also target PDGFR (Kitagawa et al., 2013). 

1.1.2 Pharmacology of EGFR and BCR-ABL inhibitors 

1.1.2.1 Primary pharmacodynamics (mode of action) of BCR-ABL inhibitors 

BCR-ABL is formed as a result of a reciprocal translocation between chromosome 9 and 

chromosome 22 within hematopoietic stem cells (Sattler et al., 2003; Cilloni et al., 2012). 

Chromosome 9 contains Abelson murine leukaemia viral oncogene homolog 1 (ABL) - which 

encodes for a nuclear-cytosol shuttling tyrosine kinase involved in differentiation, cell 

division, stress signalling and adhesion; chromosome 22 harbours the less well-studied 

breakpoint cluster region protein (BCR) gene (Sattler et al., 2003). Translocation of these two 

chromosomes creates a truncated chromosome 9 known as the Philadelphia (Ph) 

chromosome, harbouring the oncogenic BCR-ABL gene, and an elongated chromosome 22. 

Within the BCR-ABL fusion protein, ABL is constitutively active due to the juxtaposition of 

BCR (Fig 1.2) and retained within the cytoplasm (no longer shuttling between the cytoplasm 

and nucleus). The protein undergoes autophosphorylation activating an array of downstream 

signalling pathways involved in proliferation and survival including the Ras-Raf-MEK-ERK 

pathway, the JAK-STAT pathway and the PI3K/AKT pathway (Cilloni et al., 2012). BCR-ABL 

inhibitors competitively block the adenosine triphosphate (ATP) binding site on the ABL 

domain (Fig 1.2). This prevents autophosphorylation of BCR-ABL attenuating the downstream 

pathways which would otherwise cause over-expansion and survival of haematopoietic cells 

associated with Ph+ CML and Ph+ ALL (Cilloni et al., 2012). 

 

Figure 1.2. Protein domains of BCR-ABL. Green represents the BCR protein and pink 

represents the ABL protein within BCR-ABL. Abbreviations: Ser/Thr kinase, 

Serine/Threonine kinase; SH2/3, Src homology 2/3 domain; Tyr, Tyrosine. Arrow 

indicates the approximate binding site for BCR-ABL inhibitors within the ATP-binding 

pocket of the tyrosine kinase domain. Information on domains obtained from Cilloni et 

al. (2012). Diagram produced in the open-source vector graphics editor Inkscape version 

0.92.4 (inkscape.org/release/inkscape-0.92.4) by S. French. 
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BCR-ABL inhibitors exhibit varied potencies towards BCR-ABL. In vitro inhibition activity 

assays against ABL are often used to determine BCR-ABL inhibition potency, and these 

studies have shown that bosutinib, imatinib and dasatinib inhibit c-ABL with half-minimal 

inhibitor concentrations (IC50s) of 0.5-1nM, 190-400nM and 0.8-9nM, respectively (Rix et al., 

2007, 2009; Pfizer, 2014). 

Imatinib is a relatively selective BCR-ABL inhibitor; however, it also inhibits a handful of other 

tyrosine kinases at similar potencies. These kinases include Mast/Stem cell growth factor 

receptor (c-KIT) and PDGFR (Rix et al., 2007) (Table 1.1). c-KIT is a cell surface tyrosine kinase 

that initiates an array of downstream pathways, including PI3K/AKT, MAPK and Src pathways, 

involved in survival, proliferation and stem cell maintenance (Li et al., 2019). Gain-of-function 

c-KIT mutations can lead to GI stromal tumours (GIST) (70-85% of GISTs contain a mutation 

rendering c-KIT overactive (Li et al., 2019)) and it is therefore unsurprising that imatinib is a 

first-line therapy against GISTs (Iqbal et al., 2014). 

Similarly to c-KIT, PDGFR is a cell-surface receptor tyrosine kinase involved in a diverse array 

of biological processes under both pathological and physiological conditions (Farooqi et al., 

2015). PDGFR influences PI3K/AKT, MAPK and Src family kinase signalling, controlling 

processes such as proliferation, survival, differentiation, migration and haematopoiesis (the 

formation of blood cells). PDGFR activation is especially important during early stages of 

growth and development where it is involved in organ and blood vessel formation. However, 

constitutively active PDGFR fusion proteins – which akin to BCR-ABL can be formed during 

chromosomal translocation – are involved in oncogenesis of blood cancers, including chronic 

eosinophilic leukaemia (CEL) (Appiah-Kubi et al., 2017). Imatinib is currently approved for the 

treatment of PDGFR fusion protein-positive chronic eosinophilic leukaemia (CEL) (Iqbal et al., 

2014). 

Similarly to imatinib, dasatinib also inhibits c-Kit and PDGFR (Rix et al., 2007) (Table 1.1); 

however, dasatinib is not currently approved for the treatment of GISTs and PDGFR fusion 

protein-positive CEL. Bosutinib, by contrast, exhibits reduced activity against c-Kit and 

PDGFR, but like dasatinib, can inhibit the Src family kinases (Table 1.1) (Rix et al., 2007, 2009; 

Kitagawa et al., 2013). 

Src family kinases – the eight mammalian members of which are Blk, Fgr, Fyn, Hck, Lck, Lyn, 

Src and Yes – are non-receptor intracellular oncogenic tyrosine kinases involved in cell 

growth, differentiation, migration and survival (Parsons et al., 2004) as well as progression of 

Ph+ CML and Ph+ ALL (Li, 2008). BCR-ABL and Src family kinases directly interact causing 
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bilateral activation. BCR-ABL activates Src family kinases leading to initiation of the JAK-STAT 

and PI3K/AKT pathways involved in leukaemogenesis, whilst Src family kinases can 

phosphorylate residues on BCR-ABL involved in activation of MEK/ERK oncogenic signalling 

(Li, 2008). Through dual inhibition of both BCR-ABL and Src family kinases, dasatinib and 

bosutinib show increased efficacy and lowered rates of drug resistance (see 1.1.2.4 Efficacy 

and adverse drug reactions of BCR-ABL and EGFR TKIs) than more selective BCR-ABL 

inhibitors such as imatinib. 

 

However, bosutinib and dasatinib are promiscuous kinase inhibitors and this is reflected in 

their high selective entropy. Selective entropy is a single value indicator of drug off-target 

binding calculated using data from large pharmacological profiling experiments. Bosutinib, 

Table 1.1. Protein targets of clinically used BCR-ABL and EGFR inhibitors. The main 
inhibited kinases are shown in bold. A high selective entropy indicates a high level of off-
target binding. 

Drug (references) Cancer type (FDA-
approved) 

Selective 
entropy 

Protein targets 

Imatinib 

(Cohen et al., 2012; Kitagawa 
et al., 2013; Iqbal and Iqbal, 
2014; Brümmendorf et al., 
2015; Malagola et al., 2016) 

Ph+ CML, Ph+ ALL, 
PDGFR fusion 
protein positive 
CEL, GIST 

0.8 BCR-ABL, c-Kit, 
PDGFR 

 

Dasatinib 

(Fullmer et al., 2011; 
Kitagawa et al., 2013; 
Malagola et al., 2016) 

Ph+ CML, Ph+ ALL 

 

3.2 BCR-ABL, c-Kit, 
Ephrin receptors, 
MAPKs, PDGFR, Src 
family kinases 
including Src, TEC 
family kinases 

Bosutinib 

(Keller et al., 2009; Rix et al., 
2009; Pfizer, 2014) 

Ph+ CML 3.1 BCR-ABL, Ephrin 
receptors, MAPKs, 
Src family kinases 
including Src, TEC 
family kinases 

Gefitinib 

(Kitagawa et al., 2013; Shi et 
al., 2013) 

NSCLC 

 

0.5 EGFR, Ephrin 
receptors 

Abbreviations: BCR-ABL, Breakpoint cluster region protein - Abelson murine leukaemia viral oncogene 
homolog 1 fusion protein; CEL, chronic eosinophilic leukaemia; c-Kit, Stem cell growth factor receptor Kit; 
EGFR, Epidermal growth factor receptor; GIST, Gastrointestinal stromal tumour; MAPKs, Mitogen-activated 
protein kinases; NSCLC, Non-small cell lung cancer; PDGFR, Platelet-derived growth factor receptor; Ph+ ALL,  
Philadelphia chromosome-positive acute lymphoblastic leukaemia; Ph+ CML, Philadelphia chromosome-
positive chronic myeloid leukaemia; Src, Proto-oncogene c-Src. 
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imatinib and dasatinib have selective entropies of 3.1, 0.8 and 3.2, respectively (Uitdehaag 

et al., 2014); therefore, whilst imatinib has few additional binding partners to those 

mentioned above, bosutinib and dasatinib interact with many other kinases. For both 

bosutinib and dasatinib these include mitogen-activated protein kinases (MAPKs), Ephrin 

receptors and TEC family kinases (Rix et al., 2007, 2009; Kitagawa et al., 2013; Pfizer, 2014). 

The overlapping, but unique, target profiles of BCR-ABL inhibitors which impact multiple 

biological processes, such as immune regulation, cell communication and cell survival, are 

likely linked to drug efficacy and toxicity (see 1.1.2.4 Efficacy and adverse drug reactions of 

BCR-ABL and EGFR TKIs) (Rix et al., 2007, 2009). 

1.1.2.2 Primary pharmacodynamics (mode of action) of EGFR inhibitors 

EGFR inhibitors function by a similar mechanism to BCR-ABL inhibitors through blocking the 

ATP binding site of their target protein. However, unlike BCR-ABL, EGFR – a proto-oncogene 

encoding a tyrosine kinase receptor located within the plasma membrane – is widely 

expressed in different cell types, thus limiting the selectivity of this therapy. Patients with 

NSCLC frequently have an activating mutation in the EGFR gene which leads to constitutive 

receptor activation and increased agonist sensitivity. This results in increased activation of 

downstream pathways – such as the Ras-Raf-MEK-ERK pathway, the PI3K/Akt pathway and 

the JAK-STAT pathway – leading to increased cell proliferation, angiogenesis and invasiveness 

(Lopes et al., 2015). EGFR inhibitors prevent activation of downstream pathways by binding 

to the cytoplasmic face of the transmembrane receptor at the ATP-binding site (Fig 1.3, 

(Lopes et al., 2015)). This prevents ligands, such as epidermal growth factor (EGF) and 

transforming growth factor α (TGF-α) from inducing EGFR autophosphorylation and hence 

restricting downstream activation of pro-survival and proliferation pathways (Lopes et al., 

2015). In this way, gefitinib can be used for the treatment of NSCLC harbouring EGFR 

activating mutations (Hida et al., 2009). 

 

Figure 1.3. Protein domains of EGFR. Abbreviations: Tyr, Tyrosine; TM, 

Transmembrane domain; JM, Juxtamembrane domain. Arrow indicates the 

approximate binding site for EGFR inhibitors within the ATP-binding pocket of the 

tyrosine kinase domain. Information on domains obtained from Lopes et al. (2012). 

Diagram produced in Inkscape by S. French. 
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 Gefitinib is a relatively selective EGFR inhibitor with at least 100-fold higher affinity towards 

EGFR (also called ErbB1) than the three other ErbB family members (ErbB2-4). This selectivity 

is reflected by its low selective entropy of 0.5 (Uitdehaag et al., 2014). However, gefitinib 

does show inhibition activity towards several Ephrin receptors (Table 1.1), cell-surface 

tyrosine kinases involved in migration and proliferation partially through EGFR cross-talk 

(Kitagawa et al., 2013). In NSCLC, Ephrin receptor genes are frequently mutated and over-

expressed, contributing to pathogenesis and tumour progression (Mäki-Nevala et al., 2013; 

Staquicini et al., 2015). Therefore, Ephrin receptor ‘off-target’ binding by gefitinib may 

contribute to drug efficacy (Uitdehaag et al., 2014). 

1.1.2.3 Pharmacokinetics of BCR-ABL and EGFR TKIs 

The small molecule TKIs used in this project – bosutinib, dasatinib, imatinib and gefitinib – 

are taken orally usually in the form of tablets or capsules at the doses recommended by the 

British National Formulary Edition 78 (www.bnf.nice.org.uk/drug). Imatinib, often used as 

first-line therapy, is given at a dose of 400mg once daily for subjects with chronic phase Ph+ 

CML (Brümmendorf et al., 2015), and at a dose of 600mg for patients with accelerated phase 

or blast phase/crisis Ph+ CML (Cohen et al., 2002) (see Table 1.2 for medical definition of the 

three phases of CML). Patients undergoing dasatinib treatment receive lower doses: 100mg 

once daily is recommended for subjects with chronic phase CML (Fullmer et al., 2011) and 

140mg for more advanced stages of CML. Imatinib and dasatinib can also be used for the 

treatment of Ph+ ALL at recommended doses of 600mg and 140mg daily, respectively 

(Malagola et al., 2016). Bosutinib, currently not approved for the treatment of Ph+ ALL, is 

given to patients in chronic, accelerated and blast phases of Ph+ CML at a dose of 500mg 

once daily (Pfizer, 2014). Gefitinib, on the other hand, is an EGFR inhibitor given to subjects 

with NSCLC at a recommended dose of 250mg daily (Shi et al., 2013). 

 

Table 1.2. Phases of chronic myeloid leukaemia. Medical definitions of the three stages 
of CML taken from Cohen et al., 2002. Blasts, sometimes also called leukaemic cells, are 
immature and abnormal white blood cells.  

Chronic phase <15% blasts in peripheral blood and bone marrow 

No extramedullary involvement other than spleen or liver 

Accelerated phase  15% - 30% blasts in peripheral blood and bone marrow 

 

Blast phase/crisis >30% blasts in in peripheral blood and bone marrow 

Extramedullary involvement other than spleen or liver 

  



28 
 

Bosutinib, given at 500mg daily, reaches a peak plasma concentration (Cmax) of 101ng/mL 

(190nM) at day 1, and a steady state Cmax of 200ng/mL (377nM) at day 15 (Pfizer, 2014). This 

is much lower than plasma concentrations seen during daily treatment with imatinib, 

1058ng/mL-2596ng/mL (2.14-5.26μM) (Peng et al., 2005; De Francia et al., 2013), and 

gefitinib, 662ng/mL-1064ng/mL (1.5-2.4µM) (Nakamura et al., 2010; Miura et al., 2014). 

Dasatinib, on the other hand, reaches a steady state Cmax of 54.6 ng/mL (100nM) and 

79.7ng/mL (163nM) during the standard 100mg and 140mg once daily regime, respectively 

(Birch et al., 2013; Wang et al., 2013). 

The time to achieve peak plasma concentrations (Tmax) was on average 6 h in Ph+ CML 

patients treated with bosutinib, suggesting a moderately low absorption rate (Pfizer, 2014). 

This is similar to gefitinib, which has a Tmax of 3-7 h (Peters et al., 2014). Dasatinib and 

imatinib, however, are rapidly absorbed and a peak plasma concentration is achieved within 

0.5-3 h (McCormack et al., 2011) and 2-4 h (Cohen et al., 2002) respectively. 

The absolute bioavailability of bosutinib has been determined experimentally, by comparing 

dose exposure (area under the curve, AUC) after oral administration and intravenous 

administration in the same subjects, to be 33% (Pfizer, 2014; Abbas et al., 2016). This reflects 

a relatively low systemic exposure and is similar to the bioavailability of dasatinib (29%) 

(McCormack et al., 2011), but much lower than that of imatinib (98%) (Cohen et al., 2002) 

and gefitinib (60%) (Peters et al., 2014). 

The TKIs investigated in this project have a large volume of distribution due to high 

distribution through most tissues and organs. Bosutinib has the highest apparent volume of 

distribution of >5000L, calculated by dividing total amount of drug in the body by the 

concentration in the plasma, after a single 500mg dose (Pfizer, 2014). Despite high 

distributions throughout the body, these TKIs are also highly bound to plasma proteins 

(~90%) (Cohen et al., 2002; McCormack and Keam, 2011; Peters et al., 2014; Abbas and Hsyu, 

2016). The half-life of bosutinib in Ph+ CML patients is approximately 22 h (Pfizer, 2014), 

whilst the half-life of imatinib is 18 h (Cohen et al., 2002), dasatinib is 5-6 h (McCormack et 

al., 2011) and  gefitinib is 48-72 h (Peters et al., 2014). 

Bosutinib, like most TKIs, undergoes intestinal and hepatic first pass metabolism through the 

action of cytochrome P450 (CYP) enzymes (Hussaarts et al., 2019). Bosutinib, imatinib, 

dasatinib and gefitinib are all predominantly metabolised by CYP3A4, primarily within the 

liver (Cohen et al., 2002; McCormack and Keam, 2011; Peters et al., 2014; Pfizer, 2014). 

Bosutinib is metabolized to its inactivate components, oxydechlorinated bosutinib (M2) and 
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N-desmethylated bosutinib (M5) (Pfizer, 2014; Abbas et al., 2016). Dasatinib is also 

metabolised to inactive components (McCormack et al., 2011). Imatinib, by contrast, is 

metabolised to an active metabolite with similar potency to the parent drug as well as 

inactive metabolites by CYP3A4 (Cohen et al., 2002). 

The major excretory route for bosutinib and its metabolites is through the biliary system, and 

as a result these compounds leave the body primarily in the faeces. This route accounts for 

over 90% of excreted drug, and only 3% is excreted via urine (Pfizer, 2014; Abbas et al., 2016). 

Imatinib, dasatinib and gefitinib are also excreted principally by the biliary system (Cohen et 

al., 2002; McCormack and Keam, 2011; Peters et al., 2014). 

Drugs excreted in the bile can enter the GI tract and be reabsorbed back into circulation, thus 

prolonging the pharmacological action of the drug. This is known as enterohepatic 

recirculation (Hussaarts et al., 2019). Bosutinib, imatinib, dasatinib and gefitinib are 

substrates of the transporters ABCB1 and ABCG2 (Peters et al., 2014; Pfizer, 2014; Hussaarts 

et al., 2019), known to be involved in drug efflux from intestinal cells and liver, suggesting 

these TKIs may undergo enterohepatic recirculation. 

1.1.2.4 Efficacy and adverse drug reactions of BCR-ABL and EGFR TKIs 

First-line therapy for CML is imatinib, a first generation drug (Cohen et al., 2012). Imatinib is 

relatively efficacious in the treatment of chronic phase CML, the most common phase of CML 

upon initial diagnosis (see Table 1.2). Eighty eight percent of patients achieve a complete 

haematological response (CHR) (defined as a normal platelet count, normal white blood cell 

count and no enlargement of the spleen) and 49% achieve a major cytogenetic response 

(MCR) (≤ 35% cells are Ph+) (Cohen et al., 2002). However, treatment of accelerated and blast 

phase CML with imatinib is less successful; only 28% and 4% of patients achieve a CHR, 

respectively (Cohen et al., 2002). This non-response to treatment is known as intrinsic or 

primary resistance and is defined as “an inability to achieve a CHR at 3 months and MCR at 6 

months” (Iqbal et al., 2014). 

In addition to intrinsic resistance, patients may lose imatinib sensitivity over time. This is 

known as acquired or secondary resistance and can occur through: accumulation of BCR-ABL 

mutations (that reduce the affinity of imatinib to bind in the ATP pocket), or over-expression 

of drug transporter genes or increased expression of BCR-ABL (Iqbal et al., 2014). Secondary 

resistance is especially common for patients in the accelerated or blast phase of CML, and 

approximately 25% of CML patients develop resistance to the imatinib within 5 years (Abbas 

et al., 2016). 
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Some patients cannot tolerate the adverse events associated with this drug. In a study 

involving 260 newly diagnosed CML patients treated with the standard 400mg dose of 

imatinib, 5% of patients were discontinued from the drug because of adverse events 

(Kantarjian et al., 2010). Unsurprisingly the most common adverse drug reactions were 

haematological including neutropenia (low neutrophil count) (58%), thrombocytopenia (low 

platelet count) (62%) and anaemia (low haemoglobin levels) (84%). Non-haematological side 

effects included fluid retention (42%), predominantly superficial oedema (36%), nausea 

(20%), diarrhoea (17%), rash (17%) and musculoskeletal inflammation (17%) (Kantarjian et 

al., 2010). 

Dasatinib, a second-generation TKI, is effective in approximately half of Ph+ CML patients 

experiencing imatinib resistance. An MCR is achieved in 56% of chronic phase, 39% of acute 

phase and 25-50% of blast phase patients; whilst 86%, 47% and 28-42% achieve a CHR in the 

respective afore-mentioned phases (Fullmer et al., 2011). However, dasatinib induces 

haematological side effects, including neutropenia, thrombocytopenia and anaemia, at 

slightly higher rates than imatinib (Kantarjian et al., 2010). Dasatinib is also associated with 

an array of non-haematological adverse events including fluid retention (19%), 

predominantly pleural effusion (10-30%), diarrhoea (17-20%), headache (12%), rash (11%) 

and musculoskeletal pain (11%)  (Kantarjian et al., 2010; Fullmer et al., 2011). Similarly to 

imatinib treatment, resistance and intolerance can lead to dasatinib treatment 

discontinuation and the requirement of alternative TKI treatment (Abbas et al., 2016). 

Bosutinib, a third-generation BCR-ABL inhibitor, is active against many mutated forms of BCR-

ABL involved in imatinib and dasatinib resistance including Q252H, Y253F, D276G, E279K, 

M351T, F359V, L384M, H396P, H396R, and G398R (Pfizer, 2014; Abbas et al., 2016). Seventy 

five percent of chronic phase Ph+ CML patients undergoing treatment with bosutinib as third-

line therapy (i.e. resistant or intolerant to imatinib, and a second-line BCR-ABL inhibitor such 

as dasatinib) achieve a CHR whilst 50% achieve a MCR (Khoury et al., 2012). However, 

patients with V299L and T315I mutations are highly resistant to bosutinib (Abbas et al., 2016). 

Haematological adverse events are less frequent during bosutinib treatment, 28-42% of 

patients experience thrombocytopenia, 25% experience anaemia, and neutropenia occurs in 

only 13% (Pfizer, 2014; Brümmendorf et al., 2015). However, ~90% patients experience GI 

adverse events, including diarrhoea (70-90%), nausea (43%) and vomiting (38%). Patients 

also frequently experience rash (32%) and headache (18%); however, fewer patients 
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experience pleural effusion, cardiac toxicity or musculoskeletal toxicity than with imatinib 

and dasatinib treatment (Khoury et al., 2012). 

From these data it is clear that despite belonging to the same TKI inhibitor class of BCR-ABL 

inhibitors imatinib, dasatinib and bosutinib have distinct toxicity profiles (Keller et al., 2009; 

Fullmer et al., 2011; Cohen et al., 2012). 

Gefitinib, an EGFR inhibitor, was the first targeted drug to be approved for NSCLC treatment 

and can be used as first- , second- or third-line treatment (Hida et al., 2009). Patients with 

specific EGFR mutations, including exon 19 deletions or L858R, have a much higher response 

rate (54-94%) to gefitinib relative to patients with wild-type EGFR (5-14%). Therefore, 

screening for these relevant EGFR mutations at diagnosis is undertaken to enable treatment 

stratification (Hida et al., 2009; Shi et al., 2013). Adverse events of gefitinib during standard 

treatment with 250mg daily include acne-like rash (49%), diarrhoea (28%), nausea (5%) and 

leukopenia (low leukocyte count) (5%) (Shi et al., 2013). 

1.2 Gastrointestinal toxicity 

Chemotherapy, including targeted treatment, is well known for inducing a wide range of 

ADRs at high frequency. One of the most common adverse event during treatment with BCR-

ABL and EGFR inhibitors is gastrointestinal (GI) toxicity, including diarrhoea, vomiting, nausea 

and abdominal pain (Keller et al., 2009; Fullmer et al., 2011; Cohen et al., 2012; Shi et al., 

2013; Kantarjian et al., 2014; Pfizer, 2014). GI bleeding, a less frequent GI toxicity, can occur 

during treatment with some forms of TKIs. Dasatinib (Fullmer et al., 2011; Kmira, 2013) and 

imatinib (Sener et al., 2019) induce this adverse event at a frequency of about 4-14% and 5-

8% in CML patients, respectively. Several case reports have also shown dasatinib can induce 

acute and haemorrhagic colitis at low incidence (Erkut et al., 2010; Kmira, 2013; Eskazan et 

al., 2014). Bosutinib-induced GI bleeding, however, is rare with very few cases reported in 

the literature (Khoury et al., 2012). 

Diarrhoea, on the other hand, is especially problematic for patients undergoing treatment 

with bosutinib: approximately 80% of CML patients receiving this third generation BCR-ABL 

inhibitor develop diarrhoea (Kantarjian et al., 2014; Brümmendorf et al., 2015), 10% of which 

experience grade 3-4 diarrhoea (See Table 1.3 for definitions of diarrhoea grades).  Other 

BCR-ABL inhibitors also frequently induce diarrhoea but at a lower rate of both high (3-4) and 

low (1-2) grade toxicities. For example, approximately 20% of dasatinib- and imatinib-treated 
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CML patients experience diarrhoea, and very few cases of grade 3-4 toxicities are reported 

(≤ 3%) (Fullmer et al., 2011; Cohen et al., 2012) (See Table 1.4). 

Table 1.3. Definitions of grades 1 to 5 diarrhoea. Diarrhoea grades as defined by the 
Common Terminology Criteria for Adverse Events (CTCAE) v 5.0, of the National Cancer 
Institute (www.ctep.cancer.gov/protocolDevelopment/electronic_applications/docs). 
Abbreviations: ADL, Activities of daily living.  Instrumental ADL refer to preparing meals, 
shopping for groceries or clothes, using the telephone, managing money, etc.  Self-care 
ADL refer to bathing, dressing and undressing, feeding self, using the toilet, taking 
medications, and not bedridden. 

Grade 1 Increase of <4 stools per day over baseline; mild increase in ostomy 
output compared to baseline 

Grade 2 Increase of 4-6 stools per day over baseline; moderate increase in ostomy 
output compared to baseline; limiting instrumental ADL 

Grade 3 Increase of >6 stools per day over baseline; hospitalization indicated; 
severe increase in ostomy output compared to baseline; limiting self-care 
ADL 

Grade 4 Life-threatening consequences; urgent intervention indicated 

Grade 5 Death 

 

The median time to event of bosutinib-induced diarrhoea in CML patients receiving the 

standard dose of 500mg per day is 3 days (Pfizer, 2014; Brümmendorf et al., 2015). This is a 

relatively rapid onset compared to other TKIs; imatinib induces diarrhoea after a median of 

43 days (Brümmendorf et al., 2015) and the EGFR inhibitor erlotinib given to NSCLC patients 

has a median diarrhoea onset of 12-32 days (Rugo et al., 2019). The time to event for 

diarrhoea induced by dasatinib and gefitinib (the EGFR inhibitor used in this project) is not 

reported in the literature. 

Bosutinib-induced diarrhoea has a median duration of 1-3 days when patients receive 

antidiarrhoeal medication and undergo dose reduction or interruption as required (Pfizer, 

2014; Brümmendorf et al., 2015; Khoury et al., 2018). CML patients undergoing treatment 

with imatinib, at 400mg daily, have a median diarrhoea duration of 5.5 days (Brümmendorf 

et al., 2015). Whilst this time period is longer than that of bosutinib-induced diarrhoea, 

imatinib-induced diarrhoea is typically lower grade and lower incidence (Table 1.4). It is 

important to note that the median duration of an adverse event is defined as the “start to 

stop of event with no grade change (any change in grade represents a ‘new event’)” (Khoury 

et al., 2018); therefore, the total time patients experienced diarrhoea, especially patients 

with high grade toxicity, will most likely have been higher than the numbers stated here. 
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Table 1.4. Diarrhoea incidences, onset and duration of clinically used EGFR and BCR-
ABL inhibitors. *50% was seen in patients with GIST and was lower in patients with CML 

Drug (references) Diarrhoea incidence,  
% (grade) 

Diarrhoea onset and duration in 
days, median (range) 

Imatinib 

(Kantarjian et al., 2010; 
Cohen et al., 2012; 
Brümmendorf et al., 2015) 

17-50* (all grades) 

1-2 (grades 3-4) 
 

Onset: 43 (range not reported) 

Duration: 5.5 (range not 
reported) 

Dasatinib 

(Kantarjian et al., 2010; 
Fullmer et al., 2011)  

17-20 (all grades) 

3 (grades 3-4) 

Onset: Not reported 

Duration: Not reported 

Bosutinib 

(Keller et al., 2009; Pfizer, 
2014; Brümmendorf et al., 
2015) 

70-90 (all grades) 

10 (grade 3-4) 

Onset: 3 (1-210) 

Duration: 1-3 (1-413) 

 

Gefitinib 

(Shi et al., 2013) 

28 (all grades) 

2 (grade 3-4) 

Onset: Not reported 

Duration: Not reported 

 

1.2.1 Implications of lower gastrointestinal toxicity 

Chemotherapy-induced lower GI toxicity has negative consequences for patients. In addition 

to negatively impacting patient quality of life, this toxicity can be dose-limiting requiring dose 

reduction or interruption, resulting in decreased treatment efficacy. Moreover, patient 

compliance in taking oral medication can decrease if the patient experiences GI adverse 

events, thus further decreasing drug efficacy. In some cases, the treatment is discontinued, 

as has been seen in patients treated with both BCR-ABL and EGFR inhibitors (Messersmith et 

al., 2004; Czito et al., 2006; Kantarjian et al., 2014; Brümmendorf et al., 2015). This is 

especially problematic for patients undergoing bosutinib treatment, as diarrhoea leads to 

bosutinib discontinuation, dose interruption and reduction in 1-3%, 14% and 5-6% of patients 

with diarrhoea, respectively (Cortes et al., 2010; Kantarjian et al., 2014). Moreover, bosutinib 

is a third-generation inhibitor given to patients with resistance or intolerance to other BCR-

ABL inhibitors such as imatinib and dasatinib; therefore, bosutinib withdrawal can have 

serious clinical implications, due to a lack of alternative treatments for the patient. 

Patients with grade 3 or 4 diarrhoea – approximately 1 in 10 bosutinib treated patients 

(Kantarjian et al., 2014) – frequently require hospitalization. The economic cost and required 

beds associated with treating this adverse reaction, strain the already tight budget of the 
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NHS. Furthermore, additional diarrhoea-associated complications can develop, such as 

hypokalemia (Agarwal et al., 1994). Medications used to treat diarrhoea, such as loperamide 

(a μ-opioid receptor agonist which slows gut transit), do not target the mechanism of 

chemotherapy-induced toxicity. Consequently, anti-diarrhoeal treatment can be insufficient 

for high grade toxicity (Cortes et al., 2010), and the increased probability of complications 

may not be abrogated. Moreover, anti-diarrhoeal medications have adverse effects 

themselves: loperamide can induce nausea, vomiting, presyncope and abdominal pain 

(Markland et al., 2015). 

Chemotherapy-induced lower GI toxicity also has a negative impact within the 

pharmaceutical industry, at both the pre- and post-marketing stages. It is a bottleneck in the 

pharmaceutical research and development pipeline contributing to drug attrition (Cook et 

al., 2014). GI toxicity is the second most common cause of drug withdrawal from phase I 

clinical trials, and the prevailing cause in phase III (Redfern et al., 2010). This has a huge 

negative economic impact on drug development due to the high investment required to 

perform clinical trials. 

1.2.2 The importance of understanding drug-induced gastrointestinal toxicity 

By understanding the mechanisms of GI toxicity, we can make progress to abrogate the 

related issues discussed above. For example a greater understanding at the molecular and 

cellular level would allow more reliable in vitro pre-clinical predictions of GI toxicity, which is 

currently hindered by the species differences in sensitivity to GI toxicity (Olson et al., 2000). 

The development of better in vitro models, akin to hERG screening in cardiotoxicity (Cook et 

al., 2014), could allow high throughput analysis of chemical compounds for gut toxicity 

instead of the currently laborious process of histopathology. To our knowledge there is no 

literature documenting the use of in vitro gut models as accurate screening tools (Carr et al., 

2017). 

A more comprehensive understanding of the mechanism would also encourage targeted 

pharmacogenomic studies to identify alleles associated with this toxicity. Candidate gene 

studies have already identified genetic variants associated with chemotherapy-induced 

diarrhoea. For example, patients with UDP-glucuronosyltransferase 1-1*28 (UGT1A1*28) 

have a greater risk of developing intestinal toxicity after administration of irinotecan (Iyer et 

al., 2002), whilst rs7699188 and rs2231142 – single-nucleotide polymorphisms (SNPs) within 

ATP-binding cassette sub-family G member 2 (ABCG2) – are associated with gefitinib-induced 

diarrhoea (Cusatis et al., 2006; Lemos et al., 2011). This research aids personalised medicine 



35 
 

by enabling stratification of patients at risk of grade 3 and 4 diarrhoea. Whilst, 

pharmacogenomic testing for GI adverse events is not widespread (Carr et al., 2017), The 

Pharmaceuticals and Medical Devices Agency in Japan recommends pre-emptive testing for 

UGT1A1*6 and UGT1A1*28 before treatment with irinotecan (Etienne-Grimaldi et al., 2015) 

to identify patients requiring dose reduction or alternative medication, due to high risk of 

high grade ADRs including diarrhoea. 

1.3 Physiology of the gastrointestinal tract 

To understand the potential pathomechanistic basis of TKI-induced lower GI toxicity, it is 

necessary to first review the functioning of the lower GI system under normal conditions. The 

main roles of the GI system are digestion, absorption and elimination. The small intestine – 

which is comprised of the duodenum, jejunum and ileum (from proximal to distal) – are 

involved in digestion as well as water, nutrient and vitamin absorption. The large intestine, 

which can be subdivided into four major sections – the caecum, colon (ascending, transverse, 

descending and sigmoid colon), rectum and anus – function to absorb remaining water, 

electrolytes and nutrients from indigestible material and eliminate waste. Uptake of short-

chain fatty acids produced by bacterial fermentation of dietary fibres, and vitamins 

synthesized by bacteria, such as B vitamins, also occurs within the large intestine (Keshav et 

al., 2013). 

1.3.1 Layers of the intestinal walls  

The anatomical layers and structure of the small and large intestinal walls are very similar 

(Keshav et al., 2013). Both are comprised of the serosa/aventitia, the muscularis externa, the 

submucosa and the mucosa, all of which are discussed in further detail below. See Fig 1.4 for 

a schematic of the layers of the intestines. 

The outermost layer of organs within the peritoneal cavity, including the duodenal bulb, 

ileum, jejunum, transverse colon and sigmoidal colon, is the serosa. This double membrane 

of mesothelial cells and connective tissue lines the body cavity and organs. Mesothelial cells 

secrete serous fluid, which functions to decrease friction between organs during muscle 

contraction. The outermost layer of organs outside the peritoneal cavity, specifically the 

duodenum, the ascending colon and descending colon, is the adventitia; a loose connective 

tissue which anchors organs to the body cavity. 

The outermost layer is bound to the muscularis externa, which contains a longitudinal and 

circular muscle layer as well as the myenteric plexus, the main GI nerve supply which controls 
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gut motility. The muscularis externa enable the peristalsis contractions responsible for gut 

transit. However, it is interesting to note that within the large intestine, three separate bands 

of longitudinal muscle fibres (together called the taenia coli) are also present outside the 

serosa which undergo tonic contractions to produce the haustra (segmented pouches) 

unique to the large intestine. 

Above the muscularis externa is the submucosa, which also contains a neural network (the 

submucosal plexus) and connects the muscular layer to the inner most layer, termed the 

mucosa. Within the mucosa, the outer-most layer is a thin muscle layer which enables local 

mucosal movement termed the muscularis mucosae. Above the muscularis mucosae is the 

lamina propria. Comprised of loose connective tissue, this immune and stromal cell-rich layer 

contains vascular tissue which supplies the outer epithelium lining with nutrients, and 

lymphoid tissue involved in immune regulation (Keshav et al., 2013). 

  

Figure 1.4. Anatomical layers of the small and large intestines. Schematic of the 
structure of the small (left) and large (right) intestinal layers, and the cell types of the 
intestinal epithelial layer. Blue and red lines represent blood vessels, whilst yellow lines 
represent lymphatic vessels. Information on anatomical layers and cell types obtained 
from Keshav et al. (2013) and Peterson et al. (2014), respectively. Diagram produced in 
Inkscape by S. French. 
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Within the lamina propria, there are regional differences which reflect functioning. For 

example, the duodenum, which is the first segment of the small intestine, contains Brunner’s 

glands to produce alkaline secretions to neutralize stomach acid; the ileum contain lymphoid 

nodules called Peyer’s patches which are involved in immune regulation and surveillance; 

and the jejunum contains neither Peyer’s patches nor Brunner’s glands (Keshav et al., 2013). 

Surface mucus-secreting cells and specialised goblet cells within the epithelium, which 

secrete mucus onto the luminal side of the outermost epithelial layer, are also often present. 

This outer lining is a single-cell epithelial barrier which, in the small intestine is folded to form 

villi and crypts, and crypts only in the colon. 

1.3.2 The epithelial cell layer 

Within both the small and large intestines, the inner-most epithelial layer forms a selective 

barrier to prevent penetration of luminal contents containing toxins, microorganisms and 

certain antigens into the lamina propria, whilst enabling absorption of nutrients (Peterson et 

al., 2014). This layer contains many different specialized cells (Fig 1.4) including enterocytes, 

goblet cells, enteroendocrine cells and Paneth cells, each with different (although sometimes 

overlapping) roles, formed from undifferentiated stem cells which reside at the crypt base. 

1.3.2.1 Intestinal stem cells 

Stem cells such as Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)-

positive stem cells, differentiate into the cell types of intestinal epithelial layer as they 

migrate up along the villus axis and, in the majority of cases, are shed from the tip (Barker et 

al., 2008). Shedding occurs at a rapid rate with the majority of epithelial cells being renewed 

approximately every four days. This high cell turnover rate accounts for the high sensitivity 

of the lower GI tract to toxicity during treatment with non-targeted chemotherapies such as 

irinotecan and 5-fluorouracil (5-FU), which target dividing cells rather than proteins specific 

to cancer growth and survival (Wardill et al., 2013). 

1.3.2.2 Enterocytes 

Enterocytes, the most abundant cell type formed from small intestinal stem cells, are 

involved in absorption and secretion in the small intestines. The major absorptive cell type 

present in the colon, however, is the columnar colonocyte. The microvilli present on both cell 

types provide an increased surface area for their function. Recent studies have shown these 

cells also have an important role in immune defence such as the production of anti-microbial 

peptides (Peterson et al., 2014). 
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1.3.2.3 Enteroendocrine cells 

The less frequent but equally widespread enteroendocrine cells are mainly involved in the 

normal functioning of the GI tract by controlling processes such as bile secretion, enzyme 

release and satiety (Gunawardene et al., 2011). They can be subdivided based on their 

hormone and peptide secretion. For example, enterochromaffin (EC) cells – which can also 

act as neuroendocrine cells – release the inflammatory mediators serotonin and histamine; 

whilst I-cells in the proximal small intestine secrete cholecystokinin to control satiety and 

inhibit gastric emptying. Other enteroendocrine cells in the intestines are D-, S-, K-, L- and N-

cells, and each has a unique intestinal distribution and secretory peptide profile 

(Gunawardene et al., 2011). 

1.3.2.4 Paneth cells 

Another major intestinal cell class is the Paneth cell. These innate immune cells, present in 

the small intestine and in low number in the ascending colon, are responsible for the release 

of anti-microbial peptides, such as the enzyme lysozyme and defensins, in response to 

bacterial activation of their toll-like receptors (Peterson et al., 2014). Being located within 

close proximity to the intestinal stem cells, they also secrete factors that aid stem cell 

maintenance. They differ from the other principle cells of the intestines due to their 

migration downwards to the crypt base, as opposed to upwards towards the villus tip.   

Consequently, these Paneth cells have a longer cellular half-life than those destined for the 

villus. 

1.3.2.5 Goblet cells 

The final major cell type of the intestines, the goblet cell, also has a protective function, 

secreting mucus glycoproteins called mucins which form a protective barrier against bacteria. 

Within both the small and large intestine, the major mucus component secreted by goblet 

cells is mucin 2 (MUC2); a glycosylated gel-forming mucin which has high capacity to bind 

water (Johansson et al., 2011). Within the small intestine, the combination of mucins, water, 

electrolytes and other components such as antibacterial proteins and IgAs, forms a single 

discontinuous mucus layer which limits bacterial contact with the epithelium. However, 

within the colon, a continuous double mucus layer is present. The dense inner layer prevents 

bacterial penetration, whilst the loose outer layer provides a habitat, and nutrients, for 

commensal bacteria. Goblet cells also secrete trefoil peptides such as trefoil factor 3 (TFF3) 

which stimulate epithelial repair following injury, and increases structural integrity of the 

mucus barrier (Peterson et al., 2014). 



39 
 

1.3.3 The enteric nervous system 

The digestive system is highly complex containing an enteric muscular system, nervous 

system, immune system, endocrine system and microbiota. 

There are approximately 100 million neurons, specifically afferent neurones, interneurons 

and efferent neurones, in the gut which form the enteric nervous system (Grundy et al., 

2012). Alone they form complete neuronal circuits – exemplified by neuronal responses in 

isolated gut tissue – and can therefore be thought of as an independent branch of the 

autonomic nervous system. This neuronal topology enables local coordination of 

physiological gut functions, with neurones in the myenteric plexus controlling gut motility 

and those in the submucosal plexus aiding secretion, immune regulation and vaso-

constriction/dilation (Grundy et al., 2012). 

In addition to functioning independently, the enteric nervous system is linked to the central 

nervous system via parasympathetic and sympathetic pathways. Vagal and spinal afferent 

fibres extend into the lamina propria allowing detection of stimuli in the mucosal layer. This 

allows cranial control of gut functions such as secretion, motility and immune responses so 

intestinal functions can be modulated depending on the needs of the entire organism. This 

autonomic innervation, more commonly known as the gut-brain axis, also allows intestinal 

signalling to the brain stem for GI perception, such as detection of visceral discomfort and 

nausea (Grundy et al., 2012). 

1.3.4 The enteroendocrine system 

The enteroendocrine system is composed of the aforementioned enteroendocrine cells, 

which modulate an array of homeostatic functions through release of signalling molecules 

and hormones in response to changes in luminal contents. These hormones and peptides, 

secreted across the basolateral membrane, can act on nerves, nearby cells (paracrine 

signalling), or be released into the bloodstream (Latorre et al., 2016). 

The enteroendocrine system has a key role in controlling gut motility, through interactions 

with the enteric nervous system. For example, serotonin (5-hydroxytryptamine, 5-HT) 

released from enterochromaffin cells (and serotonergic neurons) can induce the peristaltic 

reflex and segmentation through activation of motor neurones. The enteroendocrine system 

also regulates the enteric immune system, through paracrine secretions which effect nearby 

immune cells. Moreover, enteroendocrine cells can control digestion and satiety, through 

release of peptides and molecules which control these processes. For example, glucagon like 
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peptide-1 and 2 (GLP1 and GLP2) and polypeptide YY (PYY), which are released from L cells 

in response to carbohydrate and fats, promote satiety and food aversion, delay gut motility 

to increase time for nutrient absorption and aid regulation of postprandial glucose levels 

(Latorre et al., 2016). 

The enteric nervous system is intertwined with the enteroendocrine (hormonal) system and 

the interaction between these two systems is often referred to as the enteric neuroendocrine 

system (Keshav et al., 2013). The secretion of hormones from enteroendocrine cells can 

stimulate chemoreceptors on afferent nerves which extend into the lamina propria, and 

release of neurotransmitters from secretomotor neurones can activate enteroendocrine 

cells. This results in an overlapping signalling network with many complex feedback loops. A 

good example of this complexity is signalling initiated by serotonin. 5-HT is present in both 

enteroendocrine (enterochromaffin) cells and serotonergic neurones and can act as both an 

endocrine hormone and a neurotransmitter, regulating an array of functions including GI 

motility, inflammation, secretion and vasodilation (Mawe et al., 2013).. 

1.3.5 The enteric immune system 

The enteric immune system is located mainly in the mucosa and can be divided into the 

innate (non-specific) and adaptive immune system (Keshav et al., 2013). The physical barriers 

(such as mucin secreted by goblet cells) and chemical barriers (including detergent bile acid) 

as well as Paneth cells, mast cells, eosinophils, neutrophils, macrophages and dendritic cells 

comprise the innate immune system. The more complex adaptive immune system is 

composed of gut lymphocytes (B and T cells), which are distinct from blood lymphocytes, and 

are present in the lamina propria and aggregated lymphoid nodules. 

Within the small intestine, specifically the ileum, Peyer’s patches are present – aggregated 

lymphoid nodules overlaid with a specialized follicle-associated epithelium, which contain a 

reduced number of goblet cell and enterocytes (Miller et al., 2007). Microfold (M)-cells make 

up 5-10% of the follicle-associated epithelium in humans. These cells contain basolateral 

membrane invaginations in which antigen-presenting cells, such as dendritic cells, reside. M-

cells sample and transcytose luminal antigens and microorganisms from the GI lumen, 

presenting them to the underlying immune cells. These activated immune cells migrate to 

nearby lymphoid nodules where they initiate the production and expansion of plasma cells, 

which release secretory IgAs. Equivalent structures to Peyer’s patches are present in the large 

intestine, termed caecal patches in the ileocaecal valve and colonic patches in the colon and 

rectum (Mowat et al., 2014). 
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Under normal physiological conditions, the immune system acts to identify and counter 

pathogens; however, over-activity of the immune response can result in inflammation which 

may lead to diarrhoea (see 1.4.4 Inflammation and ER stress). 

1.3.6 The muscular system 

The two main intestinal muscular layers are comprised of smooth muscle subunits connected 

by gap junctions which allow electrical impulses to travel between cells during contraction 

(Grundy et al., 2012; Spencer et al., 2016). Contraction does not require external input as gut 

pacemaker cells, called the interstitial cells of Cajal, generate slow wave potentials which 

spread across the muscle.  Contraction and relaxation of longitudinal and circular muscles 

generate two types of intestinal motility: a) peristalsis, which functions to propel gut contents 

along the intestines; and b) segmentation, which allows mixing of the luminal contents with 

intestinal secretions (Keshav et al., 2013).  These processes are modulated extrinsically by 

the central nervous system and intrinsically by the enteric nervous, enteroendocrine and 

immune systems. For example, excitatory enteric motor neurones, which originate from the 

myenteric plexus and innervate the circular and longitudinal muscle layers, initiate 

contraction by releasing acetylcholine and tachykinins such as substance P and neurokinin A. 

Inhibitory motor neurones oppose the action of excitatory neurones, and induce relaxation, 

through release of several neurotransmitters including nitric oxide and vasoactive intestinal 

polypeptide. Distension induced by food passing along the intestine leads to caudad 

relaxation in front of the bolus of food and orad contraction behind, aiding propulsion along 

the GI tract towards the distal end (Grundy et al., 2012). Drugs which result in increased 

intestinal motility, through modulation of the aforementioned processes can lead to 

diarrhoea (See 1.4.3 Dysmotility). 

1.3.7 The gut microbiota 

The intestines contains an estimated 1013-14 mutualistic bacteria (Johansson et al., 2011; 

Jandhyala et al., 2015). With a few exceptions, the number of bacteria increases along the 

intestinal tract from approximately 500/ml in the stomach, 105/ml in the proximal small 

intestine to 109-12/ml in the colon (Mowat et al., 2014). The majority of species are obligate 

anaerobes, however, aerobic species are present in the upper small intestine, and a total of 

500-1000 different intestinal bacterial species exist. The four major phyla of these species 

are Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria, with the former two 

representing 90% of the intestinal microbiome (Rinninella et al., 2019). 
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This mutualistic microbiome is vital for the physiological functioning of the gut. It has an 

immunomodulatory role – for example, through regulating chemokine and IgA production 

and affecting gut-associated lymphoid tissue development – and helps exclude pathogenic 

bacteria (Jandhyala et al., 2015). It also has a role in gut barrier maintenance, such as 

preserving tight junctions (TJs) during stress-induced damage (see section 1.4.2 Intestinal 

barrier dysfunction: the paracellular pathway). In addition, the microbiota is important in 

nutrient and xenobiotic metabolism. Bacteria use glycans present in mucus, and indigestible 

polysaccharides in food, as an energy source to produce vitamins (such as B vitamins and 

vitamin K) and short-chain fatty acids. Short-chain fatty acids, such as acetate and butyrate, 

can be taken up by the host, enabling partial recovery of energy used in mucus layer 

production (Johansson et al., 2011). 

Diarrhoea induced by cytotoxic chemotherapy-induced such as 5-FU and irinotecan is 

associated with marked changes in the intestinal microbiota in patients (Stringer et al., 2013) 

and in vivo (Stringer et al., 2007, 2009). For example, patients with chemotherapy-induced 

diarrhoea (chemotherapy regimes were capecitabine, cisplatin/5-FU, FOLFOX, 5-FU/folinic 

acid, carboplatin and gemcitabine) show decreased faecal Firmicutes (including Lactobacillus 

spp. and Enterococcus spp), Bacteroidetes (specifically Bacteroides spp.) and Actinobacteria 

(specifically Bifidobacterium spp.). It is likely that alterations in the microbiota contribute to 

the pathogenesis of diarrhoea; changes in the intestinal microbiome can result in immune 

dysfunction and increased stress responses (Jandhyala et al., 2015). However, due to the lack 

of in vitro models incorporating the gut microbiome (Carr et al., 2017), the specific 

mechanistic role of the gut microbiota in chemotherapy-induced diarrhoea remains poorly 

understood and as such was not investigated during this project. 

1.4 Mechanisms of chemotherapy-induced lower 
gastrointestinal toxicity  

Despite the wealth of research performed on a handful of drugs (primarily irinotecan, 5-FU 

and methotrexate) (Bowen et al., 2007; Logan, 2008; Logan et al., 2008, 2009; Melo et al., 

2008; Hamada et al., 2010, 2013; Youmba et al., 2012; Nakao et al., 2012; Beutheu et al., 

2013; Sakai et al., 2013; Soares et al., 2013; Song et al., 2013; Stringer et al., 2013; Lima-

Júnior et al., 2014), a detailed mechanistic understanding of chemotherapy-induced lower GI 

toxicity is lacking for most chemotherapeutic agents. Fortunately, a detailed understanding 

of the GI tract, basic mechanistic knowledge of lower GI disorders (such as ulcerative colitis, 

Crohn’s disease and irritable bowel syndrome), and previous studies of chemotherapy-
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induced diarrhoea, enable us to hypothesize the potential processes involved in TKI-induced 

diarrhoea. These processes include secretion, intestinal barrier dysfunction, increased 

motility and inflammation. These processes are connected from a molecular level to a 

systems level, and this high level of overlap means lower GI toxicity is frequently 

multifactorial (Keshav et al., 2013). However, for simplicity they will be discussed separately 

below. It is important to note that the examples of chemotherapy-induced diarrhoea 

mechanisms may be specific to the drug of interest and cannot be extrapolated to all forms 

of chemotherapy. 

1.4.1 Secretion: the transcellular pathway 

Until the late 1960s, the intestines were believed to have a purely digestive and absorptive 

role but cholera enterotoxin studies in the early 1970s showed the intestinal epithelium was 

capable of actively secreting electrolytes (Field et al., 1972), a process later found to have 

functional importance. Under normal conditions, this secretion is tightly regulated by the 

transcellular pathway to allow fluid balance. 

The transcellular pathway involves movement of ions between the lumen and underlying 

tissue through intestinal cells via channels, active transporters and co-transporters in both 

the apical and basolateral membranes (Field, 2003). The transcellular pathway varies 

spatially along the length of the intestine and along the crypt-villus axis, with secretion 

dominating in the undifferentiated crypt bases and nutrient absorption dominating as cells 

move up the crypts and differentiate. The main ions secreted via this pathway are chloride 

ions (Cl-) and hydrogen carbonate ions (HCO3
-), whilst sodium ions (Na+) are more important 

in coupled uptake of sugars and amino acids (Keshav and Bailey, 2013) (Fig 1.5). 

Cl- secretion occurs through Cl- channels such as the ATP-gated cystic fibrosis transmembrane 

regulator (CFTR), Ca2+-dependent Cl- channels (CaCC) and voltage-gated Cl- channels (Matos 

et al., 2007) (Fig 1.5C). Cl- secretion is predominant in undifferentiated crypt cells, and 

functions to protect the stem cell niche by “flushing” crypts of potential toxins. Consistent 

with this, Na-K-Cl cotransporter 1 (NKCC1), a symporter involved in basolateral uptake of Cl-

, and CFTR are downregulated during differentiation (Barrett, 2018). 

HCO3
- secretion, in contrast to Cl- secretion, has recently been shown to occur at similar levels 

in undifferentiated and differentiated intestinal cells, using an intestinal organoid model (see 

section 1.5.2.2. From 2-dimensional to 3-dimensional cultures) (Barrett, 2018). However, 

higher levels of the HCO3
- producing enzyme, carbonic anhydrase, and the Cl-/HCO3

- 
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antiporters down regulated in adenoma (DRA), are seen in differentiated cells. HCO3
- 

secretion does not occur by facilitated diffusion through channels as with Cl- secretion but by 

co-transport via Cl-/HCO3
- antiporters, such as the aforementioned DRA (Seidler, 2013) (Fig 

1.5C). HCO3
- levels are high in the proximal small intestine in order to neutralize stomach 

acid. 

Sodium-glucose transport is prevalent in enterocytes, which are located in the villus region 

of the small intestine. Monosaccharides, glucose and galactose, enter cells across the brush 

border through symport with Na+ through sodium/glucose co-transporter 1 (SGLT1), also 

known as solute carrier family 5 member 1 (SLC5A1), which is only expressed in mature 

enterocytes (Dyer et al., 2002; Wright et al., 2011). This uphill accumulation of hexoses at the 

brush border is followed by downhill transport of monosaccharides across the basolateral 

membrane into the bloodstream. Colonocytes, however, are predominantly involved in the 

transportation and metabolism of short-chain fatty acids (Kiela et al., 2009; Dalile et al., 2019) 

(Fig 1.5A).  Short-chain fatty acids are transported across the apical membrane by H+-coupled 

and Na+-coupled transporters, monocarboxylate transporter 1 (MCT1) and sodium-

dependent monocarboxylate transporters (SMCTs), respectively. Short-chain fatty acids not 

metabolized by colonocytes, pass across the basolateral membrane – for example through 

monocarboxylate transporter 4 (MCT4) – enter portal circulation and are oxidised by 

hepatocytes (Fig 1.5B). 

Secretory diarrhoea occurs during excess net movement of ions into the intestinal lumen due 

to decreased absorption and/or increased secretion. The resulting decrease in luminal water, 

which can also occur due to nutrient malabsorption, causes water to flow by osmosis through 

the paracellular pathway (see section 1.4.2 Intestinal barrier dysfunction: the paracellular 

pathway) into the gut lumen, secondary to the flow of ions – a process known as ‘solute-

solvent drag’ (Hammel et al., 2005). This is seen in inflammatory bowel disease (IBD) (Gareau 

et al., 2013), infectious diarrhoeas such as that induced by cholera (Field et al., 1972), and 

during treatment of rats with irinotecan (Sakai et al., 1997). 

Excess Cl- secretion has also been implicated in EGFR inhibitor-induced diarrhoea (Van Sebille 

et al., 2015), as several lines of evidence suggest epidermal growth factor (EGF) has a role in 

inhibiting Cl- secretion. EGFR agonists EGF and TGF-α can inhibit secretagogue (such as 

carbachol or thapsigargin)-induced Cl- transport in T84 human colonic epithelial cells (Uribe 

et al., 1996; Chow et al., 2007; McCole et al., 2007), and EGF can inhibit carbachol-induced 

Cl- secretion in mouse colon (McCole et al., 2007). 
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Figure 1.5. Transport of ions across the intestinal epithelium. Schematic of the 
transport processes involved in monosaccharide uptake in enterocytes (A, orange), 
short chain fatty acid uptake in colonocytes (B, yellow) and ion secretion in 
undifferentiated crypt cells (C). Secretion of HCO3

- is shown in red, however, HCO3
- 

secretion can also occur in differentiated enterocytes, and Cl- secretion is shown in blue. 
Secondary messenger levels, controlled by an array of pathways including the 
inflammatory response, are involved in controlling transporter activity. Abbreviations: 
CaCC, Ca2+-dependent Cl- channels, CFTR, cystic fibrosis transmembrane regulator; DRA, 
down-regulated in adenoma; MCT1/4, monocarboxylate transporter 1/4; NHE1-3, 
sodium proton exchanger 1-3; NKCC, sodium-potassium-chloride cotransporter; SCFAs, 
short-chain fatty acids; SLC5A1, solute carrier family 5 member 1; SLC2A2, solute carrier 
family 2 member 2; SMCTs, sodium-coupled monocarboxylate transporter. Diagram 
produced in Inkscape by S. French. 
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Src is also involved in controlling chloride secretion. Interferon gamma (IFN-γ)-induced and 

H2O2-induced inhibition of Cl- transport in human colon epithelial cells is mediated by Src 

(Uribe et al., 2002; Chappell et al., 2008) implying Src inhibition by bosutinib and dasatinib 

could lead to increased Cl- secretion. However, unlike with EGFR inhibitors (Van Sebille et al., 

2015), Cl- secretion has not been put forward as a mechanistic hypothesis for diarrhoea 

induced by Src inhibitors. 

1.4.2 Intestinal barrier dysfunction: the paracellular pathway 

The paracellular pathway also has a highly important role in regulating the passage of ions 

and fluids into the lumen; however, it differs from the transcellular pathway in that 

substances move between neighbouring cells (through the intercellular space rather than 

transcellularly). This movement is controlled by junctional complexes, or more specifically 

tight junctions (TJs) and adherens junctions (AJs), which interconnect cells of the epithelial 

layer. Each junction is a dynamic conglomerate of transmembrane and cytosolic proteins 

linked internally to the actin cytoskeleton and externally to junctional complexes on adjacent 

cells (Fig 1.6, Zihni et al., 2016). 

TJs are situated on the apical side of the cell and are believed to have a more prominent role 

in regulating paracellular permeability and barrier function than AJs. The main 

transmembrane components of TJs are the tetraspan claudin family proteins (which is made 

up of 24 isoforms) and MARVEL domain proteins (consisting of occludin, MARVELD3 and 

tricellulin) (Zihni et al., 2016). Unlike MARVEL domain proteins, most claudins are similar to 

traditional ion channels and have anion or cation selectivity, depending on the claudin 

isoform. However, some, such as claudin-1, have sealing properties which prevent the 

passage of ions. These paracellular TJ channels control the ‘pore’ pathway; a pathway 

regulating the flow of ions and small molecules. The second pathway, the ‘leak’ pathway – 

which augments paracellular movement of macromolecules – is controlled by MARVEL 

domain proteins (Liang et al., 2014). The less well studied more basally-located AJs, which 

contain a single-pass transmembrane glycoprotein, E-cadherin, are involved in initiation of 

intercellular contact and TJ assembly (Zihni et al., 2016). 

Transmembrane proteins in TJs and AJs bind to adaptor proteins which link to the 

cytoskeleton and enable bilateral signalling to and from the TJ complexes. E-cadherin binds 

to adaptor proteins of the catenin class: the three dominant forms are p120-catenin, α-

catenin and β-catenin. However, the most common adaptor protein is zonula occludens 1 

(ZO-1), which is present in both TJs and AJs (Stevenson et al., 1986). ZO-1 and other adaptor 
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proteins modulate an array of cellular processes such as differentiation and initiation of the 

stress response, through transcriptional and post-transcriptional regulation. Conversely, 

adaptor proteins enable information to be transmitted from intracellular compartments to 

TJs and AJs allowing cellular control of permeability and cell adhesion (Zihni et al., 2016). 

 

 

Figure 1.6. Proteins of tight junctions (TJs) and adherens junctions (AJs). Simplified 

schematic of the interconnected cytosolic and transmembrane proteins found at TJs 

and AJs. Abbreviations: GAP, GTPase-activating protein; GEF, guanine nucleotide 

exchange factor; MARVEL, myelin and lymphocyte (MAL) and related proteins for 

vesicle trafficking and membrane link; ZO-1, zonula occludens 1; ZONAB, ZO-1-

associated nucleic acid binding protein. Diagram produced in Inkscape by S. French 
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Despite the comprehensive protein ultrastructure of TJs and AJs, detailed knowledge of the 

pathophysiological regulation of these junctions during disruption is lacking, partly due to the 

vast array of proteins within TJ and AJ complexes (Adachi et al., 2006; Zihni et al., 2016). 

However, TJ and AJ dysregulation is a well-documented process in the pathogenesis of 

diarrhoea. 

When these junction proteins are disrupted, intestinal permeability increases and 

hydrostatic pressure from blood vessels and the lymphatic system forces fluids into the 

lumen resulting in diarrhoea (Field, 2003). This decreased barrier integrity can also lead to 

bacterial translocation further exacerbating the diarrhoea adverse event, as reported in vivo 

during methotrexate treatment (Song et al., 2006). 

TJ and AJ dysregulation has been shown to be induced by both conventional chemotherapy 

– such as the topoisomerase inhibitor irinotecan (Nakao et al., 2012), the anti-folate drug 

methotrexate (Hamada et al., 2010, 2013; Youmba et al., 2012; Beutheu et al., 2013) – and 

targeted chemotherapy such as EGFR inhibitors (Fan et al., 2014) (Table 1.5). Caco-2 cells and 

rats treated with methotrexate showed decreased occludin and ZO-1 expression and 

redistribution of these proteins away from the plasma membrane, which is consistent with 

increased permeability through the ‘leak’ pathway (Hamada et al., 2010; Youmba et al., 2012; 

Beutheu et al., 2013). Beutheu et al. also showed methotrexate can increase permeation 

through the ‘pore’ pathway in Caco-2 cells. This decrease in intestinal resistance also occurs 

in rats treated with irinotecan (Nakao et al., 2012). Similar findings have also been shown for 

5-FU which decreases the number of intercellular junctions and levels of AJ proteins in human 

colorectal cancer cell lines and mice (Song et al., 2013; Buhrmann et al., 2015; Tao et al., 

2015). The EGFR inhibitor erlotinib reduces junction protein levels and increases paracellular 

permeability in rat IEC-6 cells and mice (Fan et al., 2014). TJ and AJ degradation during 

gefitinib treatment has also been shown in IEC-6 cells, but changes in permeability and 

translatability into a rodent model has not been assessed (Hong et al., 2014). Finally, an 

increase in intestinal permeability is seen in patients treated with gefitinib (Melichar, Dvořák, 

et al., 2010), 5-FU (Daniele et al., 2001) and high-dose methotrexate (Meng et al., 2016). 

However, these studies did not assess TJ and AJs. Overall, these data suggest increased flux 

through both the ‘pore’ and ‘leak’ pathways, partially due to TJ degradation and decreased 

barrier integrity, may be a common process likely involved in the pathogenesis of certain 

forms of chemotherapy-induced diarrhoea.  
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Table 1.5. Alterations in TJ and AJ expression in lower GI toxicity. In vitro and in vivo studies showing alterations in protein levels of TJ and AJ proteins due to 
chemotherapy treatment. Only studies on rodent models or intestinal-derived cell lines are reported. Upwards, downwards and sideways arrows indicate an increase, 
decrease or no change in expression level, respectively.  N/A denotes an area where no studies have been reported. NS denotes a non-significant change 

 Tight junction proteins Adherens junction proteins Present in tight junction and 
adherens junctions 

Chemotherapy  Claudins Occludin E-cadherin Catenins Zona occludens-1  

Irinotecan 
(Topoisomerase I 
inhibitor) 

Claudin-1 in rat jejunum 
and colon (Nakao et al., 

2012) 

Rat jejunum and colon 
NS (Nakao et al., 2012) 

N/A N/A Rat jejunum and colon 
(Nakao et al., 2012) 

Methotrexate 
(Dihydrofolate 
reductase inhibitor) 
 

Claudin-1 in rat jejunum 
(Youmba et al., 2012)  

 
Claudin-1 in human 
Caco-2 (Youmba et al., 
2012) 

 
Claudin-2 in rat small 
intestine (Hamada et al., 
2013) 

Rat jejunum (Youmba 
et al., 2012)   
 
Human Caco-2 
(Youmba et al., 2012) 

 
Rat small intestine 
(Hamada et al., 2013) 

N/A N/A Rat jejunum (Youmba et 
al., 2012)  

  
Human Caco-2 cell line 
(Youmba et al., 2012; 
Beutheu et al., 2013) 

5-FU 
(Thymidylate 
synthase inhibitor) 
 

Claudin-1 in mouse small 
intestine (Song et al., 
2013) 

 
Claudin-2 in human 
HCT116 cell line 
(Buhrmann et al., 2015) 

Mouse small intestine 
(Song et al., 2013) 
 

Human HCT116 cell 
line (Buhrmann et al., 
2015) 

β-catenin in 
colorectal 
tumour 
mouse model 
(Tao et al., 
2015) 

Mouse small intestine 
(Song et al., 2013) 

Erlotinib 
(EGFR inhibitor) 

N/A N/A Rat intestinal tissue 
(Fan et al., 2014)  

 
Rat IEC-6 cell line (Fan 
et al., 2014) 

N/A Rat IEC-6 cell line (Fan et 
al., 2014) 

Gefitinib 
(EGFR inhibitor) 

N/A N/A Rat IEC-6 cell line 
(Hong et al., 2014) 

N/A Rat IEC-6 cell line (Hong et 
al., 2014) 
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1.4.3 Dysmotility 

Dysmotility including increased intestinal transit, which can occur as a result of altered 

activity of the enteric or central neural pathways or enteroendocrine signalling (Mawe et al., 

2013; Spencer et al., 2016), is another mechanism which can cause diarrhoea (McQuade et 

al., 2016). Increased motility reduces the time for water reabsorption from luminal contents 

to occur. 

However, few studies have assessed the effect of chemotherapy on intestinal motility, 

potentially due to the lack of in vitro models. However, ex vivo experiments on rodent models 

have shown that 5-FU and irinotecan increase GI transit suggesting a role of dysmotility in 

certain forms of chemotherapy-induced diarrhoea (Soares et al., 2008; Lima-Júnior et al., 

2014). 5-FU-treated mice displayed an exacerbation in carbachol-induced contractions of 

dissected duodenum smooth muscle (Soares et al., 2008), whilst irinotecan-treated mice 

exhibit increased sensitivity to acetylcholine-induced duodenal segment contractions ex vivo 

(Lima-Júnior et al., 2014). It has been suggested that irinotecan decreases intestinal transit 

time through modulation of acetylcholine signalling and the potassium voltage-gated 

channel subfamily KQT member 5 (KCNQ5) (Takahashi et al., 2014). Diarrhoea predominant 

IBS (IBS-D) patients also display a rapid colon transit relative to healthy patients further 

confirming the pathogenic role of dysmotility in diarrhoea (Chey et al., 2001).  

1.4.4 Inflammation and ER stress 

The generalised mechanism of cytotoxic chemotherapy-induced GI mucositis and high grade 

diarrhoea is believed to involve apoptosis and inflammation (Sonis et al., 2004). The 

hypothesized 5-stage mechanism involves: 1) initiation by a cytotoxic agent causing an 

increase in reactive oxygen species (ROS); 2) ROS-induced cell death and gene upregulation 

including increased production of pro-inflammatory cytokines; 3) positive feedback leading 

to signal amplification damaging submucosa and basal epithelium; 4) inflammatory cell 

infiltration and bacterial colonisation; and 5) healing (Sonis et al., 2004). This inflammatory 

cascade often causes shortening of villi and damages crypt architecture, thus reducing the 

surface area for reabsorption, decreasing mucosal integrity and causing excess mucous 

secretion. Aberrant cell death also contributes to inflammatory damage and reduces 

intestinal barrier integrity. Overall, this results in malabsorption of water and electrolytes 

leading to diarrhoea (Fig 1.7). 

In line with this hypothesis, many diarrhoea-inducing chemotherapeutic agents have been 

shown to increase the expression of intestinal inflammatory cytokines in vivo. Treatment of 
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dark Agouti rats with irinotecan to induce mild to moderate diarrhoea results in increased 

intestinal tissue levels of nuclear factor kappa B (Nf-κb), tumour necrosis factor (Tnf), 

interleukin Il-1β and Il-6 (Logan et al., 2008). In Swiss mice, a cytokine production inhibitor 

diminished irinotecan-induced diarrhoea (Melo et al., 2008), attenuated intestinal cytokine 

(Tnf-α and Il-1β) upregulation and decreased histopathological damage (inflammatory cell 

infiltration, shortened villi and loss of crypt architecture). A similar finding was seen in Il-18-

/- mice (Lima-Júnior et al., 2014). 5-FU has also been shown to induce inflammatory cytokine 

release of Tnf-α, Il-β, Il-6, Il-17a and Il-22, and cause histopathological damage in rodent 

models (Sakai et al., 2013; Soares et al., 2013). 

 

However, very few studies have assessed the effect of chemotherapy on inflammation in the 

context of chemotherapy-induced diarrhoea in humans. One study showed patients with 

chemotherapy-induced diarrhoea – including that induced by capecitabine, cisplatin and 5-

FU – have increased (although not significant) blood serum levels of TNF-α post-treatment 

(Stringer et al., 2013). Chemotherapy (type not stated) has also been shown to induce 

Figure 1.7. Inflammatory responses leading to diarrhoea. Simplified schematic of the 

key processes involved in inflammatory diarrhoea. Information for diagram obtained 

from Sonis et al. (2004). Diagram produced in Inkscape by S. French. 
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intestinal apoptosis and crypt/villi damage in patients undergoing treatment (Keefe et al., 

2000). 

Whilst an inflammatory response  leading to damage and atrophy of the mucosa is highly 

plausible for cytotoxic chemotherapy, certain diarrhoea-inducing targeted therapies, such as 

the EGFR inhibitor lapatinib (Moy et al., 2007), show no histological signs of intestinal 

epithelial damage (Van Sebille et al., 2015). Lapatinib induces diarrhoea at a frequency of 

approximately 40% in patients with breast cancer, however it rarely causes high grade 

diarrhoea (Moy et al., 2007). These data allow us to hypothesize that certain TKIs may 

induced low grade diarrhoea by a mechanism separate to inflammation, or a mechanism 

which involves a low level of localised acute inflammation insufficient to induce visible 

mucosal damage. 

By contrast, certain EGFR inhibitors have been shown to induce endoplasmic reticulum (ER) 

stress which can contribute to GI inflammation (Fan et al., 2014; Hong et al., 2014). ER stress 

under normal physiological conditions is prevented by the unfolded-protein response (UPR) 

(Shkoda et al., 2007; Kaser et al., 2008). The UPR is a signalling cascade responsible for 

maintaining correct protein-folding (Cao, 2015); through refolding or degradation of  

misfolded proteins in the ER. Under environmental perturbations, the UPR machinery can 

become over-loaded and misfolded proteins accumulate in the ER resulting in the initiation 

of the ER stress signalling pathway, which can induce cell death and inflammation (Hetz, 

2012). Intestinal epithelial cells have high rates of protein synthesis making them particularly 

sensitive to ER stress-induced damage (Cao, 2015). 

Studies have shown dysregulation of the UPR pathway impairs intestinal epithelial barrier 

function. Polymorphisms in UPR genes are linked with IBD (Barrett et al., 2008; McGovern et 

al., 2010), ER stress markers are upregulated in IBD (Hu et al., 2007; Shkoda et al., 2007), and 

knock-out studies in mice with dextran sodium sulphate (DSS)-induced colitis demonstrate a 

causal role of ER stress in its pathogenesis (Bertolotti et al., 2001; Kaser et al., 2008). ER stress 

has also been directly implicated in drug-induced disruption of intestinal barrier integrity.  

Knock down of C/EBP Homologous Protein (CHOP), a master regulator of ER stress, in IEC-6 

cells (a rat intestinal epithelial cell line) attenuates erlotinib-induced decrease in E-cadherin 

levels, increase in IL-6 secretion and apoptosis (Fan et al., 2014). In addition, markers of ER 

stress, such as CHOP, are upregulated by diarrhoea-inducing chemotherapies including 

gefitinib (Hong et al., 2014) and erlotinib (Fan et al., 2014) in IEC-6 cells. 
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As stated previously, diarrhoeal mechanisms are highly interconnected, and inflammation is 

a good example of this interconnectivity. Pro-inflammatory cytokines – such as IL-1β (Al-Sadi 

et al., 2008), TNF-α (Ma et al., 2004) and IFNγ (Bruewer et al., 2003) – can disrupt tight 

junction integrity through downregulation and relocalisation of TJ proteins including ZO-1 in 

colorectal cancer cell lines, resulting in increased paracellular permeability and further 

disrupting intestinal integrity. Moreover, inflammation can increase sensitivity to dysmotility. 

Il18-/- mice, or mice treated with an IL-18 inhibitor, show decreased sensitivity to irinotecan-

induced duodenal contractility (Lima-Júnior et al., 2014). 

1.5 Models for studying gastrointestinal toxicity 

1.5.1 In vivo and ex vivo models 

Animal models are widely used in safety pharmacology as predictive models for human GI 

toxicity, and they can also be used to further mechanistic understanding. The majority of 

pathomechanistic research on chemotherapy-induced intestinal injury has been carried out 

on rodent models, mainly focussing on alterations in intestinal absorption, permeability and 

motility (Mao et al., 1996; Southcott et al., 2008; Nariya et al., 2009; Dong et al., 2014; Maioli 

et al., 2014; Forsgård et al., 2016; Carr et al., 2017). 

Relative to other forms of toxicity, GI toxicity shows high concordance (of around 80%) 

between animal studies and humans for an array of pharmaceuticals including anti-cancer 

agents (Greaves et al., 2004). This suggests animal models have good translatability and 

observations made in animal studies may be applicable to humans. 

1.5.1.1 Rodent models 

Rodent models can be used to assess for indications of GI toxicity and this is often performed 

via the faecal pellet method (Marks et al., 2013). Intestinal motility can be assessed by oral 

administration of solid transport markers (e.g. charcoal/barium sulphate) (Carr et al., 2017) 

or ex vivo by measuring contractility of intestinal segments (Soares et al., 2008; Lima-Júnior 

et al., 2014). Changes in intestinal permeability can be assessed by oral administration of 

markers which can then be detected in the plasma (e.g. fluorescein isothiocyanate (FITC)-

dextran (Dong et al., 2014)) or urine (e.g. lactulose (Southcott et al., 2008)). The lactulose-

mannitol test is a common test which measures both changes in intestinal permeability and 

absorption. Changes in permeability can also be assessed ex vivo, for example, by measuring 

transmural resistance using an Ussing chamber (Dong et al., 2014) or using the in vitro 

everted sac model to study FITC-dextran permeation (Maeda et al., 2010). More standard 
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techniques such as immunohistochemistry, immunoblotting and PCR can also be carried out 

on intestinal tissue. 

Mice (such as C57BL/6, BALB/c and Swiss mice) are generally considered a good model for GI 

toxicity, particularly involving intestinal inflammation, because their intestinal development, 

microbiome and immune response is comparable to that of humans (Jiminez et al., 2015). 

Furthermore, genetically modified mice, such as knock-out mice, are readily available which 

aids mechanistic studies by enabling the roles of specific genes to be explored. 

These factors – along with their small body size, short gestation period and relatively low 

husbandry costs – explain why mice are the most commonly used animal model in GI 

research. However, only relatively small tissue samples can be harvested from mice, and 

therefore rats are often used as an alternative model if tissue mass is a limiting factor in 

performing informative experiments. 

Unlike mice, rat strains are often outbred – such as Wistar and Sprague-Dawley rats – leading 

to greater inter-experimental variability (Jiminez et al., 2015), and fewer strains of genetically 

modified rats are available, further limiting the use of this model. However, an array of 

research into the mechanism of chemotherapy-induced diarrhoea has been carried out in 

rats, by studying permeability and histopathological changes (Mao et al., 1996; Song et al., 

2006; Southcott et al., 2008; Nariya et al., 2009; Maeda et al., 2010). 

1.5.1.2 Non-rodent animal models 

Pigs are a commonly used alterative to rodents due to similar intestinal physiology and 

morphology to humans (Jiminez et al., 2015). However, their large size and much longer 

gestation period means studies on this species are much less frequent. Rabbits, guinea pigs, 

dogs, monkeys and the non-mammalian zebrafish model have also been studied, but to a 

lesser degree (Greaves et al., 2004). It is not surprising that the majority of animals chosen 

for studying human intestinal toxicity and diseases have a monogastric anatomical structure 

akin to that in humans. 

1.5.2 In vitro models 

Very few in vitro GI models have been developed with the primary focus of toxicity. Current 

models are mainly utilized for oral drug absorption predictions (Antunes et al., 2013; Li et al., 

2013; Huang et al., 2014) and to increase understanding at a physiological (Sung et al., 2011) 

and developmental level (Kim et al., 2005; Spence et al., 2011; Feng et al., 2013; McCracken 
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et al., 2014). However, currently available models – detailed below – may be adapted for 

studying toxicity. 

1.5.2.1 Cell types 

Cells utilized for in vitro research can be broadly divided into primary cells and cell lines, and 

the latter subdivided into cancer cell lines and non-tumour-derived immortalized cell lines 

(Carr et al., 2017). GI research has utilized an array of intestinal cell types, including 

enterocytes, intestinal stem cells, goblet cells and enterochromaffin cells (de Bruïne et al., 

1992; Sato et al., 2009; Vázquez et al., 2013). Embryonic and induced-pluripotent stem cells 

(iPSC) have also been employed, which can be differentiated into many of the cell types in 

the intestinal epithelial lining, each of which have their merits and constraints (Table 1.6). 

Primary cells are derived directly from human or animal tissue and maintained in vitro as 

suspension cells, an explant culture or a monolayer. Primary cells have high physiological 

relevance due to genotypic and phenotypic similarity to in vivo cells, and therefore research 

performed on human primary cells has a higher probability of translatability to patients 

(Kauffman et al., 2013). In addition, primary cells can be used to generate models 

genotypically linked to patients facilitating personalised medicine and aiding comprehension 

of toxicity stratification (Dekkers et al., 2013). However, primary cells are infrequently used 

in preliminary research. This is partly due to difficulty in obtaining samples used to isolate 

epithelial cells, especially that of human primary intestinal tissue. Whilst, human primary 

cells are commercially available (Kauffman et al., 2013), they are expensive, technically 

challenging to maintain (due to cell dedifferentiation, and an increased sensitivity to cell 

contamination) and have a limited life-span in vitro (Kaeffer, 2002). 

Cell lines however are easily accessible, can be maintained to a high passage and are more 

durable. As the name suggests, cancer cell lines are derived from tumours. Non-tumour-

derived immortalized cell lines are derived from healthy cells and induced to propagate 

indefinitely by transformation using viral oncogenes (Carr et al., 2017). The homogeneous 

nature of single cell lines can be advantageous in terms of data reproducibility but – along 

with aneuploidy, DNA mutations and altered expression profiles in cancer cell lines 

(Hilgendorf et al., 2007; Moon et al., 2013; Vaessen et al., 2017) – underlie the low 

translatability when modelling healthy tissue. Non-tumour-derived immortalized cell lines, 

however, exhibit greater similarity to primary cells but still display some cancer-like 

properties to allow continued growth. The majority of available intestinal non-tumour-

derived cell lines and cancer cell lines are used to model enterocytes (Hu et al., 2004; 
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Kauffman et al., 2013; Carr et al., 2017). Most intestinal non-tumour-derived cell lines are of 

epithelial origin (e.g. IEC-6 and FHs74Int cells) and the majority of intestinal cancer cell lines 

are from carcinomas (cancer developed from epithelial cells; e.g. HT29, and, the most 

commonly used, Caco-2) (Carr et al., 2017). However, cell lines which model other cell types 

are also available such as those which model goblet cells (e.g. HT29-MTX cells) (Vázquez et 

al., 2013) and enterochromaffin cells (e.g. NCI-H716) (de Bruïne et al., 1992). 

Table 1.6 Cells amenable for use as in vitro lower gastrointestinal models to study toxicity. Table detailing 
the merits and constraints of different cell types used in in vitro research. 

CELL TYPE MERITS CONSTRAINTS 

Cancer cell lines  

Colorectal adenocarcinoma cell lines 
(e.g. human Caco-2, HT-29, T84 
(Kauffman et al., 2013)) 

 

Non-tumour-derived immortalised 
cell lines  

Intestinal epithelium-derived cells 
(e.g. rat IEC-6 (Hong et al., 2014)) 

Easily accessible  

Can be maintained to a high 
passage 

Spontaneously differentiate 

 

 

Long differentiation time 
period  

Unable to form gut-like 
geometries de novo  

Poor translatability compared 
to primary cells 

Single cell type 

Unamenable to organoid 
generation 

Primary intestinal epithelial cells 
(IEC) 

IECs isolated from patient samples or 
animal models (Kauffman et al., 
2013) 

 

 

Greater biological relevance than 
cell lines 

Models can be genotypically 
linked to patients 

Formerly differentiated 

 

Finite lifespan in vitro 

Difficulty obtaining human 
primary intestinal epithelial 
cells 

Variability between subjects 

Unamenable to organoid 
generation 

Induced pluripotent stem cell (iPSC) 

Patient-specific somatic cells can be 
reprogrammed to embryonic-like 
cells which are further manipulated 
forming induced intestinal models. 
iPSC lines are also available 
(Kauffman et al., 2013) 

 

Models can be genotypically 
linked to patients 

Potential to differentiate into 
many cell types  

Amenable to organoid generation 

Organoids from iPSCs are a 
poor model of adult intestines.  

Organoids from iPSCs have 
slow formation  

Embryonic stem cell (ESC) 

Primary ESCs can be collected from 
embryos and ESC lines are 
commercially available (Yamada et 
al., 2002) 

Mice embryonic stem cells grow 
rapidly  

Potential to differentiate into 
many cell types  

Amenable to organoid generation 

 

Organoids from ESCs are a poor 
model of adult intestines 

Intestinal stem cells 

Lgr5+ stem cells of the intestinal 
crypt can be extracted from rodents 
and patients (Sato et al., 2009) 

Models can be genotypically 
linked to patients 

Potential to differentiate into 
many cell types  

Amenable to organoid generation 

 

Human adult intestinal stem 
cells grow slowly 

Difficulty obtaining human 
intestinal stem cells 
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It is possible to culture two or more cell types together – a technique called co-culturing – to 

increase physiological relevance through increased cellular heterogeneity. Crosstalk between 

cells can aid in the generation of differentiated phenotypes. For example co-culturing HT29-

MTX cells with intestinal epithelial cells enables a physiologically-relevant mucus layer to be 

amalgamated into the model (Vázquez et al., 2013). 

1.5.2.2 From 2-dimensional to 3-dimensional cultures 

The simplest model of the intestines is that of a basic monolayer where adherent intestinal 

cells are cultured until they reach 100% confluency. Upon reaching confluency, cells undergo 

contact-dependent differentiation forming distinctive apical and basal cellular aspects 

(Kauffman et al., 2013). Commonly utilised cells for this include Caco-2 (Seth et al., 2004) and 

IEC-6 cells (Hong et al., 2014). 

Transwell models (2.3.5 Cell permeability assay, Fig 2.1) are slightly more complex than basic 

monolayers as they model both the environment above and below the intestinal epithelial 

layer (Kauffman et al., 2013). Cells are seeded onto a porous membrane of a suspended insert 

by addition to the upper (apical) compartment of a transwell plate, which models the lumen. 

The cells form a monolayer imitating the intestinal lining and the transwell set-up permits 

access to the basolateral chamber – which represents the lamina propria (environment 

underlying the intestinal epithelial lining). In this way, transwells are good models for 

studying changes in permeability even when employed with cancer cell lines. They are 

amenable for use with cell lines such as Caco-2 cells (Carrasco-Pozo et al., 2013; Fan et al., 

2014; Tong et al., 2014), human primary intestinal epithelial cells (Kauffman et al., 2013), 

human iPSC-derived intestinal cells (Kauffman et al., 2013), and co-cultures (Pusch et al., 

2011; Antunes et al., 2013; Li et al., 2013). However, human primary intestinal epithelial cells 

and iPSC-derived intestinal cells have much greater paracellular permeability than in vivo 

limiting the translatability and physiological relevance of this model (Kauffman et al., 2013). 

The main use of transwells is predicting absorption of orally administered drugs (Artursson 

et al., 2001; Pusch et al., 2011; Antunes et al., 2013; Li et al., 2013; Moon et al., 2013). 

However, increase in intestinal permeability – such as that measured by decreased 

transepithelial electrical resistance (TEER) or increased permeation of an apically 

administered macromolecule to the basolateral chamber – can be measured using a 

transwell (Beutheu et al., 2013; Fan et al., 2014). Increased paracellular permeability is an 

indicator of compromised barrier function, which can be the result of inflammation, cell 

death and/or cell junction disruption. Transwell models have been employed previously to 
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assess chemotherapy-induced changes in intestinal permeability (Fan et al., 2014) 

exemplifying how this model is amenable for research at a mechanistic level. 

With a few exceptions utilizing either co-culturing (Li et al., 2013) or micro-scaffolds (Yu et 

al., 2012), most transwell models lack 3-dimensional structures such as crypts. Scaffolds, 

which can be generated by 3D printing (Lee et al., 2005), moulding (Wang et al., 2009; Sung 

et al., 2011)) and bio-reactors (Yu et al., 2014), manipulate the cellular micro-environment 

enabling generation of 3-dimensional models. Whilst these models exhibit greater 

physiologically relevant topology, they are still limited by lack of cell type heterogeneity; a 

problem being overcome by progressive research on organoids. 

Organoids are organotypic cultures – often described as mini organs – derived from cells or 

organ explants (Fatehullah et al., 2016). Intestinal organoids (called enteroids) form an 

enclosed ‘lumen’ with several intestinal crypts and villus-like projections (without the 

requirement of a micro-scaffold). Highly reminiscent of the in vivo structure, these enteroids 

contain all the major cell types of the intestinal epithelial layer including enterocytes, goblet 

cells, Paneth cells, enteroendocrine cells and Lgr5+-stem cells (Sato et al., 2009). In this regard 

organoids represent an important bridge between in vitro and in vivo studies increasing 

translatability.  Thus far enteroids have been developed from: 1) rodent (Yamada et al., 2002) 

and human (Finkbeiner et al., 2015) embryonic stem cell lines;  2) rodent (Sato et al., 2009; 

Moon et al., 2013), human (Sato et al., 2011) and pig (Khalil et al., 2016) intestinal stem cells; 

3) rodent (Ueda et al., 2010) and human (Spence et al., 2011; Ayehunie et al., 2013) iPSCs; 

and 4) rodent (Sato et al., 2009) and human (Jung et al., 2011) whole crypt preparations. The 

application of organoids in research so far have included determining efficacy and 

pharmacokinetic parameters of chemotherapeutic agents (Imura et al., 2010), again with few 

experiments focussing on toxicity. However, assays have been developed to measure cell 

death (Grabinger et al., 2014), chloride secretion (Dekkers et al., 2013) and permeability 

(Leslie et al., 2015) that can be utilized for mechanistic studies. 

Another relatively new model is the ‘humans-on-a-chip’ micro-device which is the only in 

vitro model out of those discussed to take on a systems biology approach. In this model, cells 

(Imura et al., 2010) or tissue slices (van Midwoud et al., 2010) from different organs are 

compartmentalised and subjected to specific microenvironments that mimic dynamic in vivo 

conditions. For example, these micro-devices can incorporate fluid flow that mimics 

peristalsis. Applications of ‘humans-on-a-chip’ micro-devices with a microintestine 

component include determining pharmacokinetic parameters (Imura et al., 2010; van 
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Midwoud et al., 2010) and ascertaining cytotoxicity of chemotherapeutics (Imura et al., 

2010). In this regard, the microintestine component is typically utilized to determine 

absorptive properties rather than focusing on the intestines as a target of toxicity. 

1.5.3 Models utilized in this project 

Preliminary research will be carried out on differentiated Caco-2 cell monolayers, a human 

colorectal adenocarcinoma cell line. This cell line is readily available in our laboratory and is 

routinely used in non-clinical studies by pharmaceutical companies. Several drug 

transporters – including those involved in import (OCT-1/SLC22A1) and export (ABCB1/MDR1 

and ABCG2/BCRP) of BCR-ABL inhibitors (bosutinib, imatinib and dasatinib) and EGFR 

inhibitor (gefitinib) – are expressed at a similar level between Caco-2 cells and the human 

jejunum (Hilgendorf et al., 2007; Brück et al., 2017; Vaessen et al., 2017). 

Caco-2 cells model the intestinal epithelium; however, this model lacks an immune, nerve 

and muscular component; therefore, this project will mainly focus on diarrhoeal mechanisms 

involving the intestinal lining: changes in trans- and para-cellular permeability (due to cell 

death and/or cell-cell junction disruption). The main focus will be on the latter mechanism 

as it has been shown that chemotherapy TKIs, specifically nilotinib, erlotinib and gefitinib, 

induce barrier dysfunction in rat intestinal epithelial IEC-6 cells (Fan et al., 2014; Hong et al., 

2014). 

When employed in transwells, the Caco-2 model is recognised by the Food and Drug 

Administration (FDA) as a good model for determining absorptive ability, metabolism and 

efflux of drugs (Hu et al., 2004). Although this project will not assess any of these 

pharmacokinetic parameters, it is not an unreasonable assumption – given the 

interconnectivity of intestinal absorption, permeability and barrier function – that Caco-2 

transwell models represent a good model for studying intestinal permeability. 

Where positive findings are observed in Caco-2 cells, similar experiments will be performed 

on an enteroid model developed from the proximal small intestine of BALB/c mice, as 

differentiated Caco-2 cells more closely resemble the small intestine than the colon (Hidalgo 

et al., 1989). These enteroids will be developed from whole crypt preparations to enable 

relatively quick enteroid propagation (Sato et al., 2009). As stated above, enteroids form a 

physiologically relevant 3D structure and have been shown to contain all the major cell types 

of the intestinal epithelium (Sato et al., 2009) and in this regard, can be used to determine 

the translatability of results. Human enteroids would represent a more clinically relevant and 
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translatable model, however this is beyond the remit of this project due to lack of access to 

patient samples. 

1.6 Aims and objectives of this project 

This research project aims to investigate the mechanism of TKI-induced diarrhoea by performing 

in vitro assays on an intestinal epithelial cell model (Caco-2 cells) and an organoid model (BALB/c 

mouse enteroids). We also aim to determine genetic variants associated with dasatinib-induced 

diarrhoea through a genome-wide association study (GWAS). The primary focus of research will 

be on bosutinib as this TKI induces diarrhoea, a marker of lower GI toxicity, at higher incidence 

than other TKIs.  

 The sequential objectives are outlined below: 

1. To determine the effect of TKIs on intestinal barrier integrity and cell viability in Caco-2 

cells 

a. To assess the effect of TKIs on intestinal barrier integrity by measuring: 1) 

changes in paracellular permeability in a transwell set-up; and 2) changes in 

protein levels, gene expression and localization of TJ and AJ proteins 

b. To perform cytotoxicity assays with TKIs 

 

2. To determine the mechanism of TKI-induced changes in permeability in Caco-2 cells 

a. To assess the ability of TKIs to induce ER stress and cytokine release 

b. To determine signalling pathways involved in barrier dysfunction through use 

of pathway inhibitor drugs 

 

3. To assess the translatability of findings from the Caco-2 model to a mouse enteroid model 

a. To perform barrier integrity (see aim 1) and cytotoxicity studies on enteroids 

 

4. To identify genetic variants associated with dasatinib-induced diarrhoea 

a. To undertake a genome-wide association study (GWAS) on dasatinib-treated 

CML patients to identify SNPs associated with dasatinib-induced diarrhoea 
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2.1 Chemicals and drug compounds 

Bosutinib was kindly provided by Pfizer (Surrey, UK) and used in chapter 1. Bosutinib used in 

subsequent chapters was obtained from Tocris (Abingdon, UK). Imatinib was kindly provided 

by Novartis (Surrey, UK); dasatinib from Tocris; and gefitinib from Sigma-Aldrich (Gillingham, 

UK). Drug stocks of 50mM were prepared by solubilising in DMSO and aliquots were stored 

at -20 ˚C. 

Tunicamycin, chloroquine, MG-132, bafilomycin, 3-MA, N-acetyl cysteine, necrostatin-1, IM-

54, ferrostatin and z-vad-fmk were kindly provided by Dr. Shankar Varadarajan, University of 

Liverpool. GM6001 was kindly donated by Dr Mark Morgan, University of Liverpool. 

Cycloheximide and deferoxamine were purchased from Abcam (Cambridge, UK), ML–7 from 

Tocris and Y–27632 from Stem Cell Technologies (Cambridge, UK). 3-MA was solubilised in 

nuclease-free H2O. All other compounds were solubilised in DMSO. 

2.2 Buffers and solutions 

Tris-buffered Saline (TBS) 

1.21g Tris-base (0.1M)  

8.77g NaCl (0.15M) 

1L of distilled water (dH2O) 

pH adjusted to 7.6 

 

Tris-buffered Saline-Tween (TBS-T) 

As above with 1mL Tween-20 (0.1% (v/v)) 

 

Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) Running Buffer 

11.4g Glycine (0.152M) 

3.0.g Tris-base (25mM)  

1g Sodium dodecyl sulfate (3.47mM)  

1L of dH2O 

 

Western blot Transfer Buffer 

11.4g Glycine (0.152M) 

3.03g Tris-base (25mM)  

200mL of methanol (20%) 

800mL of dH2O 
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N-2-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid (HEPES)-Buffered Saline  

7.95g NaCI (136mM) 

372.8mg KCI (5mM) 

47.7mg Na2HPO4 (336µM) 

1.00g Glucose (5.6mM) 

2.38g HEPES (10mM)  

1L dH2O 

pH adjusted to 7.4 

 

Tris-Acetate-EDTA (TAE) Buffer  

484mg Tris(hydroxymethyl)aminomethane (4µM) 

114µl Acetic acid (2mM) 

38mg EGTA (1mM)  

100mL dH2O 

 

Lysogeny (LB) Broth 

10g Tryptone 

5g Yeast extract  

5g NaCl (85mM) 

1L ddH2O 

 

2.3 Cell line culture and experiments 

Caco-2 cells and HEK293T/17 cells were obtained from the American Type Culture Collection 

(ATCC) (Middlesex, UK). 

2.3.1 Caco-2 cells 

The Caco-2 cell line (ATCC® HTB-37™) is a human colorectal cancer cell line developed from 

a colorectal adenocarcinoma of a 72-year old Caucasian male. In their undifferentiated state 

Caco-2 cells resemble immature colonic epithelial cells (Sambuy et al., 2005). However, Caco-

2 cells spontaneously differentiate into enterocytes with a foetal-like small intestinal 

phenotype upon reaching confluency. Loss of the colonic phenotype, along with secretion of 

the small bowel marker α1-antitrypsin, is seen at day 6 (3-4 days post-confluency). However, 

intestinal alkaline phosphatase (ALPI), an enterocyte differentiation marker, becomes 

elevated later at 13-21 after seeding (Engle et al., 1998), and the standard time period for 

full differentiation into enterocytes is 21 days (18-19 days post-confluency) (Lea, 2015). 
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2.3.2 HEK293T/17 cells 

The HEK293 cell line is derived from human embryonic kidney epithelial cells. HEK293T/17 

cells (ATCC® CRL-11268) are highly transfectable derivatives of HEK293 cells and were used 

for lentivirus generation in this project (see 2.3.12 Generation of Caco-2 cells stably 

expressing fluor-labelled occludin and lifeact for time-lapse imaging). Subculture and 

maintenance of this cell line was identical to that of Caco-2 cells. 

2.3.3 Cell line subculture and maintenance 

Caco-2 and HEK293T/17 cells were maintained in Thermo Scientific™ Nunc™ EasYFlask™  T75 

and T75 Cell Culture Flasks, respectively, in high glucose Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with heat-inactivated foetal bovine serum (FBS) (10% v/v final conc.) 

and L-glutamine (2mM final conc.), all purchased from Thermo Fisher Scientific, 

Loughborough, UK. Cells were incubated at 37˚C under a humidified atmosphere of 5% CO2 

and growth media replaced on alternate days. Cells were maintained up to a passage of 30 

and sub-cultured upon reaching ~80% confluency. For passaging, growth media was 

removed, and cells were washed with phosphate buffered saline (PBS), pH 7.3, at 37˚C, 

detached with 0.25% (v/v) trypsin-ethylenediaminetetraacetic acid (EDTA) solution (Sigma-

Aldrich) and split 1:4. Caco-2 cells for experimental work were seeded at the densities stated 

in Table 2.1, to give a consistent cell number per surface area of 1.34 x 105 cells/cm2. Cells 

were fed on alternate days for a minimum of 10 days, unless otherwise stated. 

Table 2.1. Cell volumes used to give the same number of cells per surface area, 
between experiments using different plates  

Plate type Well surface 
area (cm2) 

Concentration 
(cells/mL) 

Volume 
(μl) 

12-well Transwell (clear polyester 
membrane, 12mm, 0.4μm pore size) 
(Corning) 

1.12 3 x 105 500 

Nunclon™ Delta Surface 24-well plate 
(Thermo Fisher Scientific) 

2 3 x 105 893 

Nunclon™ Delta Surface 96-well plate 
(Thermo Fisher Scientific) 

0.32 3 x 105 143 

Nunc™ Lab-Tek™ II  Chamber Slide™ 
System (4-well) (Thermo Fisher 
Scientific) 

1.7 3 x 105 756 

CELLview™ 4-compartment culture 
dish with glass bottom (Greiner Bio-
One, Gloucestershire, UK) 

1.9 3 x 105 848 
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2.3.4 Short tandem repeat profiling 

DNA from Caco-2 cells (3 x 106 cells) was extracted using DNeasy Blood & Tissue Kit (QIAGEN, 

Manchester, UK) according to the manufacturer’s protocol. Cells were brought into 

suspension by passaging (see 2.3.3 Cell line subculture and maintenance). In brief, cells were 

spun down at 300g for 3 min, supernatant discarded and washed once with PBS (200µl). 

Ethanol (200µl) was added to cells and the mixture pipetted into a DNeasy Mini spin column 

in a collection tube. Samples were centrifuged at 6000g for 1 min and flow-through 

discarded. Column was washed with AW1 buffer (500µl) and spun at 6000g for 1 min, then 

with AW2 buffer (500µl) and spun at 20,000g for 3 min. Spin columns were transferred to 

new collection tubes, AE buffer (200µl) was added to spin column membranes and columns 

incubated at room temperature for 1 min. DNA was eluted by spinning at 6000g for 1 min. 

DNA was analysed at the Cell Line Authentication Facility, University of Liverpool. 

Authentication was undertaken by Mrs Patricia Gerard using the GenePrint® 10 (Promega, 

Southampton, UK) authentication method. The Leibniz Institute DSMZ, German Collection of 

Microorganisms and Cell Cultures (DSMZ), and ATCC databases were used for comparison. 

Cells were confirmed to be Caco-2 cells (see Appendices, Fig A.1). 

2.3.5 Cell permeability assay 

Cells were seeded into 11 wells of a 12-well transwell plate (see Table 2.1) with 0.5ml and 

1.5ml growth media in apical and basal compartments, respectively, and cultured for up to 

14 days as described in 2.3.3. A diagram of the transwell setup can be visualized in Fig 2.1.  

Media without cells was added to the final well to determine the basal resistance of the 

polyester membrane and maximum FITC-dextran (4kDa) (FD-4) flux. 

Prior to drug dosing cells were washed twice with phenol red-free DMEM. Phenol red-free 

DMEM containing 2mg/ml FD-4 (0.5ml) was added to the apical compartment and test drugs 

were either added to the apical or basal compartment. Electrical resistance measurements 

were obtained using ‘chop-stick’ electrodes with the Millicell ERS-2 Epithelial Volt-ohm Meter 

(Millipore (UK) Ltd., Watford, UK). Electrical resistance values () were converted to a 

transepithelial electrical resistance (TEER) value by subtracting basal resistance 

(measurement from well without cells) and multiplying by the surface area of the monolayer. 

Aliquots of DMEM (50µl) were removed from the basal chamber for up to 24 h and 

transferred to a black 96-well plate. Fluorescence was measured using the Beckman Coulter 

DTX 880 Multimode detector (excitation 485nm; emission 535nm). A 1 in 2 serial dilution of 
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FD-4 (2mg/ml) was used to generate a standard curve to convert fluorescence to FD-4 

concentrations through interpolation. 

 

2.3.6 Cell dissociation assay 

Differentiated monolayers of Caco-2 cells in 24-well plates were drug treated with a range of 

concentrations for up to 24 h. As described by Nagafuchi et al. (1994), cells were then washed 

with PBS once and incubated with HEPES-buffered saline containing either 0.01% (v/v) 

trypsin and 1mM CaCl2 (Tc treatment) or 0.01% (v/v) trypsin and 1mM EGTA (Te treatment) 

for 2 h at 37°C. EGTA treatment completely disperses cells to enable determination of the 

total number of cells per well. Cells were dissociated through pipetting up and down 15 times 

using a p1000 tip and 100µl aliquots transferred (in triplicate) into a 96-well plate for imaging. 

One image per well was taken using light microscopy at x4 magnification. The number of cell 

clumps per well was determined using a pipeline set up on the cell image analysis software, 

CellProfiler (Carpenter et al., 2006). After automatic detection of cell clumps the ‘raw’ 

(original) and ‘object’ (processed through CellProfiler) images were exported and compared 

manually to confirm accuracy of the automatic detection of cell clumps. Data are presented 

Figure 2.1. Schematic of transwell set-up used in permeability experiments. Diagram 
shows a cross section through one of the wells in a transwell plate. The epithelial cell 
layer is modelled by the Caco-2 cell monolayer. The apical (upper) compartments 
models the intestinal lumen whilst the basolateral (lower) compartment models the 
lamina propria, the space underneath the epithelial cell layer. The semi-permeable 
membrane enables macromolecules, such as FITC-dextran, or ions to flow across the 
monolayer, whilst providing sufficient support for Caco-2 cells to grow and 
differentiate. Drugs can be added to the apical or basolateral compartment to model 
local or systemic exposure, respectively. The transwell setup permits access to the both 
the apical and basolateral compartments, such that ‘chop-stick’ electrodes can be 
placed in both compartments to measure resistance across the monolayer. Moreover, 
after addition of a labelled macromolecule to the apical compartment, aliquots of 
basolateral compartment media can be obtained to determine levels of 
macromolecules in the basolateral compartment, in order to assess macromolecular 
flux across the monolayer. 
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as NTC (the total number of clumps after Tc treatment) divided by NTE (the total number of 

‘clumps’ after Te treatment. NB Te treatment completely separates the cells so each ‘clump’ 

is a single cell). Cells with weakened cell-cell adhesion strength will have greater dispersion 

upon pipetting thus creating more (smaller) clumps and a higher NTC value; therefore NTC/ NTE 

is the extent of cell dissociation normalized to the total cell number, and is inversely 

proportional to cell-cell adhesion strength. 

2.3.7 Cell line cytotoxicity assays 

The cytotoxicity of TKIs was determined using three separate 96-well format assays: 3-(4,5,-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Sigma-Aldrich); 

CellTiter-Glo® luminescent assay (Promega, Southampton, UK); and ToxiLight™ luminescent 

assay (Lonza, Verviers, Belgium), as described below. Differentiated monolayers of Caco-2 

cells in 96-well plates were dosed with 100µl drugged media and appropriate controls for up 

to 24 h. Three technical repeats and at least three biological repeats were performed for all 

assays. Viability was determined relative to no treatment control after subtraction of a 

background reading without cells. Plates were read on the Beckman Coulter DTX 880 

Multimode detector. 

2.3.7.1 MTT assay 

The MTT assay was used to assess NAD(P)H-dependent cellular oxidoreductase enzyme 

activity which can indicate the number of viable cells in a semi-quantitative manner. Thiazolyl 

Blue Tetrazolium Bromide in PBS (5mg/ml, 10µl) was added to cells in 100µl drugged media 

and incubated for 3 h at 37˚C in the dark. Purple formazan crystals, generated through 

NAD(P)H-dependent oxidoreductase activity, were dissolved by a 15 min incubation with 

100µl MTT Solubilization Solution (90% (v/v) Isopropanol, 10% (v/v) Triton X-100, 0.1N HCl). 

Absorbance was measured at 570nm. 

2.3.7.2 CellTitre-Glo® assay 

The CellTitre-Glo® assay was used to determine cellular ATP levels, which indicates the 

presence of metabolically active cells, and therefore can be used to determine cell viability. 

CellTitre-Glo® reagent (100µl) was added to the cells and incubated at room temperature for 

2 min with gentle agitation. Samples were transferred to a white 96-well plate and 

luminescence was measured for 1 second per well. 
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2.3.7.3 ToxiLight™ assay 

The ToxiLight™ Non-Destructive Cytotoxicity Bio Assay Kit was used to measure adenylate 

kinase (AK) release from cells; a marker of cell death. AK detection reagent was reconstituted 

in 10ml assay buffer and allowed to equilibrate to room temperature for 15 min prior to use. 

After drug treatment, ToxiLight™ 100% lysis reagent (50μl) was added to three untreated 

wells and tris acetate (50μl), a non-cytotoxic buffer, was added to all remaining wells (a 

required volume correction to ensure volumes in control and TKI-treated wells were equal to 

those with lysis buffer) and incubated for 15 min.  Twenty microlitres of solution from each 

well were transferred to a white 96-well plate, 100μl AK detection reagent added and 

luminescence read after a 5 min incubation at room temperature. Viability was calculated as 

the inverse of cell death (AK release), relative to 100% lysis. 

2.3.8 Cell line Western blotting 

2.3.8.1 Preparation of protein lysates 

Differentiated monolayers of Caco-2 cells in 24-well plates, were drug dosed (1-50µM) for up 

to 24 h. After washing cells twice with ice cold PBS, proteins were lysed with RIPA buffer 

(Sigma-Aldrich) containing 1% (v/v) Calbiochem protease inhibitor cocktail III (Merck 

Millipore, Watford, UK,) and stored at -20°C. 

Protein determination was performed using the DC™ Protein Assay (Bio-Rad, Watford, UK). 

A 5-point bovine serum albumin (BSA) standard curve (0.2-1.5mg/ml) was prepared in RIPA 

buffer. Caco-2 protein lysate samples and standard curve samples (5μl), reagent A (25μl) and 

reagent B (200μl) were added to a clear 96-well plate. After 15 min incubation at room 

temperature absorbance was measured at 595nm on the Beckman Coulter DTX 880 

Multimode detector. Protein samples were adjusted to equal concentrations using RIPA 

buffer. Stock 4x Laemmli buffer (Bio-Rad) containing 20% (v/v) β-mercaptoethanol was 

added and samples were then denatured at 95˚C for 5 min prior to gel loading. 

2.3.8.2 SDS-PAGE and membrane transfer 

Whole cell lysates (15ng) and Kaleidoscope protein ladder (8µl) (Bio Rad) were loaded into a 

gel that comprised a 3% acrylamide (v/v) stacking and 8% acrylamide (v/v) resolving gel, 

prepared as described in Table 2.2. 

Proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE) at 30mA per gel, constant Amps, for 1h in SDS-PAGE running buffer (see 2.2 

Buffers and Solutions). Proteins were then electrophoretically transferred onto a methanol-



69 
 

soaked Immobilon-P Polyvinylidene Difluoride Transfer Membrane (Merck Millipore) at 

200mA per gel, constant Amps, in Western blot transfer buffer for 1 h. 

Table 2.2 Components of SDS gels used for Western blotting 

Gel 3% acrylamide (v/v) 
stacking gel 

8% acrylamide (v/v) 
resolving gel 

dH2O 3.20ml 4.73ml 

ProtoGel stacking buffer 
(Geneflow) 

1.25ml - 

ProtoGel resolving buffer 
(Geneflow) 

- 2.50ml 

ProtoGel acrylamide to 
bisacrylamide stabilized 
solution (Geneflow) 

500µl 2.67ml 

10% (w/v) Sodium dodecyl 
sulfate (SDS)  

50µl 100µl 

10% (w/v) Ammonium 
persulfate (APS) 

25µl 50µl 

Tetramethyl-ethylene-
diamine (TEMED) 

7.5µl 15µl 

 

2.3.8.3 Antibody incubations and membrane visualization 

Membranes were blocked in 10% (w/v) non-fat milk in TBS-T for 1 h prior to incubation with 

primary antibodies in 5% (w/v) non-fat milk in TBS-T or TBS-T, as indicated in Table 2.3, at 4˚C 

overnight with constant agitation. The membrane was washed with constant agitation in TBS-

T at room temperature (6 x 5 min washes). Membranes were incubated with the appropriate 

horseradish peroxidase (HRP)-coupled secondary antibody in 5% (w/v) non-fat milk in TBS-T 

(Table 2.4) for 1 h at room temperature with constant agitation then washed as before. 

Membranes were visualised with the Pierce™ enhanced chemiluminescence (ECL) Western 

Blotting Substrate (Thermo Fisher Scientific) on the Bio-Rad ChemiDoc™ Touch Imaging 

System. Densitometry was performed using ImageJ software (Schneider et al., 2012), and 

levels of the protein of interest normalised to the β-actin loading control. 
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Table 2.3. Primary antibodies (IgGs) used for Western blotting of Caco-2 cell and organoid protein lysates. Primary antibodies (immunoglobulins, IgG) 
were diluted in 5% (w/v) non-fat milk in TBS-T. Molecular weight is given as the predicted band location given by the manufacturer. Unless otherwise 
stated in ‘Target’, antibody was suitable for both human Caco-2 and mouse enteroid work. 

Target Manufacturer and Catalogue number Host  Titre of 
primary IgG  

Titre of secondary 
IgG  

Molecular weight 
(kDa)  

Intestinal Alkaline Phosphatase 
(ALPI) 

Novus Biologicals (Abingdon, UK); H00000248-
M03 

Mouse 1:500  1:10,000  70, monomeric 

140, dimeric 

β-actin Santa Cruz Biotechnology (Insight 
Biotechnology Ltd., Middlesex, UK); sc-47778 

Mouse 1:1,000  1:5,000  42 

Binding immunoglobulin protein 
(BiP) 

Abcam (Cambridge, UK); ab21685 Rabbit 1:1,000 1:10,000  78 

CCAAT-enhancer-protein 
homologous protein (CHOP) 

Abcam (Cambridge, UK); ab11419 Mouse 1:1,000  1:2,000  29 

E-cadherin Cell Signaling Technology (London, UK); 14472 Mouse 1:1,000  1:10,000 135 

Human Occludin Abcam (Cambridge, UK); ab167161 Rabbit 1:10,000  1:10,000  65 

Mouse Occludin  Novus Biologicals (Abingdon, UK); NBP1-87402 Rabbit 1:1,000  1:10,000  65 

Poly[ADP-ribose]polymerase 1 
(PARP1) 

Cell Signaling Technology (London, UK); 9542 Rabbit 1:1,000 1:5,000  116, full length  

89, cleaved 

Tissue inhibitor of 
metalloproteinases 2 (TIMP-2) 

Cell Signaling Technology (London, UK); 5738 Rabbit 1:1,000  1:5,000  22 

Zonula occludens 1 (ZO-1) Thermo Fisher Scientific (Loughborough, UK); 
61-7300 

Rabbit 1:1,000  1:10,000  195 
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Table 2.4. Secondary antibodies (IgGs) used for Western blotting of Caco-2 cell and 
organoid protein lysates. Secondary antibodies were diluted in 5% (w/v) non-fat milk  

Target Manufacturer and 
Catalogue number  

Catalogue 
number 

Host Conjugation 

Mouse Cell Signaling Technology 
(London, UK) 

7076S Horse Horseradish 
peroxidase 

Rabbit Cell Signaling Technology 
(London, UK) 

7074S Goat Horseradish 
peroxidase 

 

2.3.9 Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 

Differentiated Caco-2 cell monolayers in 24-well plates were drug treated (25µM) for up to 

24 h. RNA was extracted using the ReliaPrep™ RNA Cell Miniprep System (Promega) following 

the manufacturer’s protocol. Cells were washed twice in ice cold PBS and lysed in 250µl BL + 

TG buffer with pipetting. Isopropanol (85μl) was added to the lysates, mixed, and then 

transferred to a mini-column in a collection tube. Samples were centrifuged at 14,000g for 

30 sec and the liquid flow-through discarded between washes. RNA wash solution (500μl) 

was added to the column and spun at 14,000g for 30 sec. DNase I incubation mix was applied 

directly to the spin column membrane and incubated for 15 min at room temperature. 

Column wash solution (200μl) was then added and spun at 14,000g for 15 sec. RNA wash 

solution (500μl) was added and spun at 14,000g for 30 sec. The mini-column membrane was 

washed again with RNA wash solution (300μl) then centrifuged at 14,000g for 2 min. RNA 

was eluted using nuclease-free H2O (30μl), by addition to column membrane then spinning 

at 14,000g. RNA was stored at -80°C. RNA purity and quantity was determined using the 

Thermo Scientific Nanodrop 8000 spectrophotometer. RNA samples with a 260nm/280nm ≥ 

2 were used for reverse transcription to generate complimentary DNA (cDNA). 

Reverse transcription was performed using the High Capacity cDNA Reverse Transcription Kit 

(Thermo Fisher Scientific). Reverse Transcription Master Mix contained 10x RT Buffer (2μl), 

25x dNTP Mix (0.8μl), 10x RT Random Primers (2μl), MultiScribe™ Reverse Transcriptase (1μl) 

and nuclease-free H2O (9.2μl) per reaction. This master mix (15μl) was added to purified RNA 

samples (20ng/μl, 5μl) in a 96-well reaction plate. Reverse transcription was performed in an 

Applied Biosystems Veriti 96 Well Thermal Cycler at 25˚C for 10 min, 37˚C for 120 min then 

85˚C for 5 min. 

Purity, quality and concentration of cDNA samples was determined using the Nanodrop 8000. 

Samples were adjusted to 80ng/μl in nuclease-free H2O and gene expression determined by 
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TaqMan® assay (Applied Biosystems, Paisley, UK). PCR reaction mix was prepared using 20x 

TaqMan® Gene Expression Assay (1μl), 2x TaqMan® Gene Expression Master Mix (10μl) and 

nuclease-free H2O (5μl) per reaction. PCR reaction mix (16μl) was added to cDNA (4μl) or no-

template controls (nuclease-free H2O only, 4μl) in a 384-well PCR plate in triplicate. TaqMan® 

Gene Expression Assays were CDH1 (E-cadherin) (Hs01023894_m1), TJP1 (Zonula occludens-

1/ZO-1) (Hs01551861_m1), OCLN (occludin) (Hs00170162_m1) and B2M (beta-2-

microglobulin) (Hs99999907_m1). Samples were amplified using the following cycling 

conditions: - a) 2 min at 20˚C; b) denaturation at 95˚C for 10 min; and c) 40 cycles of 15 sec 

at 95˚C (denaturation) and 1 min at 60˚C (primer annealing and extension), using the Applied 

Biosystems 7900HT Fast Real-Time PCR System. ΔΔCt and RQ values were determined using 

RQ Manager and results normalised to the B2M housekeeping gene. 

2.3.10 Immunofluorescence 

Differentiated Caco-2 cell monolayers were grown on Nunc® Lab-Tek® 4-well Chamber 

Slides™. Cells were then dosed with drugs (25µM) or vehicle control for up to 24 h. After 

washing twice with ice cold PBS, cells were fixed with 4% (v/v) paraformaldehyde in PBS for 

30 min at 4˚C. Cells were washed 3 times with ice cold PBS before addition of 

permeabilization buffer (0.2% (v/v) Tween-20, 0.5% (v/v) Triton X-100, in PBS) for 30 min at 

4˚C. Blocking was then performed for a minimum of 1 h at room temperature with 1x blocking 

buffer (Blocker™ BSA (10%) in PBS (Thermo Fisher Scientific) diluted to a 1% (v/v) working 

solution in PBS). 

After blocking, cells were incubated with the appropriate primary antibody in 1x blocking 

buffer (Table 2.5). Incubation was performed overnight at 4˚C. Cells were then washed three 

times using ice cold PBS at 10 min intervals on an orbital shaker and subsequently incubated 

with the corresponding secondary antibody – Goat anti-mouse Alexa Fluor®594 

(ThermoFisher Scientific, A-11012) or Goat anti-rabbit Alexa Fluor®488 (ThermoFisher 

Scientific, A-11008) – at a 1:1000 dilution in 1x blocking buffer for 1 h. In preliminary 

experiments, secondary antibody only was added to one of the four chambers to assess any 

off-target binding of the secondary antibody. Minimal off-target binding was observed. Cells 

were washed again at 10 min intervals using cold PBS then 1:1000 Phalloidin-iFluor 594 

Reagent CytoPainter (Abcam, ab176757) in 1x blocking buffer added for 20 min; again 

followed by two washing steps. Walls of the chamber slide were removed and one drop of 

4',6-Diamidino-2-Phenylindole (DAPI)-containing VECTASHEILD (Vector Laboratories Ltd., 

Peterborough, UK) was added per well. Slides were then sealed using a coverslip and z-stack 
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images collected on a Zeiss Axio Observer.Z1 fitted with ApoTome 2. Levels of target proteins 

were semi-quantitatively determined by measuring mean fluorescence intensity in ImageJ 

(Schneider et al., 2012). 

Table 2.5. Primary antibodies (IgGs) used for immunofluorescent staining of Caco-2 cell 
and organoids. Primary antibodies were diluted in 1x blocking buffer. Unless otherwise 
stated in ‘Target’, antibody was suitable for both human Caco-2 and mouse enteroid work. 

Target Manufacturer and 

Catalogue number 

Host Titre of primary 
IgG  

E-cadherin Cell Signaling Technology 
(London, UK); 14472 

Mouse 1:50 

Human Occludin Abcam (Cambridge, UK); ab31721 Rabbit 1:500 

Mouse Occludin Novus Biologicals (Abingdon, UK); 
NBP1-87402 

Rabbit 1:50 

Zonula occludens 1 
(ZO-1) 

Thermo Fisher Scientific 
(Loughborough, UK); 61-7300 

Rabbit 1:50 

 

2.3.11 MMP array 

Total protein levels of MMP1, 2, 3, 8, 9, 10 and 13, and TIMP1, 2 and 4 were determined by 

the Human MMP Antibody Array (Abcam, ab134004) following the manufacturer’s protocol. 

In brief, cell lysates were collected using 2x Cell Lysis Buffer diluted to a 1x solution in dH2O 

containing 1% (v/v) protease inhibitor cocktail. Cell growth media was also harvested. Protein 

lysate concentrations were determined using the Pierce™ bicinchoninic acid (BCA) Protein 

Assay Kit (Thermo Fisher Scientific) according to the manufacturer’s protocol. BSA calibration 

standards (see 2.3.8 Western blotting) and lysates (25µl) were loaded into a clear 96-well 

plate and 200µl of a working reagent consisting a 50:1 ratio of Reagent A:B were added and 

incubated for 30 min at 37˚C. Absorbance was read at 562nm using the Beckman Coulter DTX 

880 Multimode detector.  

Array membranes were placed printed side up into the 8-well tray and blocked with 2 ml 1x 

Blocking Buffer at room temperature for 30 min with agitation. Both media and cell samples 

were spun at 18,000g for 10 min to pellet out cellular debris. Cell samples were then diluted 

to 250µg/ml in 1x Blocking Buffer. Either 1 ml of media or protein sample was incubated with 

the array membranes overnight at 4˚C, with agitation. Membranes were transferred to a 

clean container and washed with 20 ml of 1x Wash Buffer I for 30 min, with agitation. 

Membranes were returned to the 8-well tray and washed with 2 ml of 1x Wash Buffer I for 5 

min, 3 times. Membranes were then washed twice with 1x Wash Buffer II for 5 min. 
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Membranes were incubated with 1 ml of 1x Biotin-Conjugated Anti-Cytokines overnight at 

4°C, with agitation. Membranes were washed using the three wash steps above and 2 ml of 

1x HRP-Conjugated Streptavidin was applied and incubated for 2 h at room temperature, 

with agitation. Membranes were washed, again as described above. Membranes were 

incubated with 250µl Detection Buffer C combined with 250µl Detection Buffer D for 2 min 

at room temperature and membranes then imaged using the Bio-Rad ChemiDoc™ Touch 

Imaging System. Protein levels were determined using ImageJ software and normalized to 

the average reading of the positive controls on the membrane. 

 

2.3.12 Generation of Caco-2 cells stably expressing fluorescently labelled 

occludin and lifeact for time-lapse imaging  

2.3.12.1 Overview of experimental strategy 

The following plasmid work and lentiviral production was performed with the assistance of 

Dr Nicolas Harper in the Department of Molecular and Clinical Cancer Medicine at the 

University of Liverpool. A second generation lentiviral system, which is replication 

incompetent and lacks virulence genes, was used for enhanced safety  (Zufferey et al., 1997). 

Plasmids containing fluorescently labelled genes of interest: mCherry-Lifeact-7 and Occludin-

C-14 were purchased from Addgene (#54491 and #54211, respectively). The fluorescently 

labelled genes of interest were amplified by polymerase chain reaction (PCR) and ligated into 

a lentiviral transfer plasmid (pLJM1 P2A), donated by Dr Nicolas Harper (Fig 2.2 and 2.3). 

After transformation of bacteria with the modified pLJM1 P2A plasmid, positive colonies 

were identified by PCR, expanded overnight and plasmids extracted by Mini-prep. Next, 

lentiviral particles were generated by transfection of HEK-293T cells with the newly 

generated lentiviral transfer plasmid, the packaging psPAX2 plasmid (Addgene, #12260) and 

the envelope pMD2.G plasmid (Addgene, #12259). Lentiviral particles were then used to 

transduce Caco-2 cells and cells were imaged using time-lapse fluorescence microscopy. For 

complete plasmid maps see Appendices Fig A.2-4. 
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Figure 2.2. Schematic flow diagram for cloning of mCherry-Lifeact into pLJM1 P2A 

to generate pLJM1 P2A-L1. Simplified schematic of steps involved in the generation 

of the lentiviral transfer plasmid containing the fluorescently-labelled gene of 

interest. Plasmids maps were generated using SnapGene software (GSL Biotech, 

Chicago, USA). Primers are shown in purple and restriction enzymes in bold black. 

Many plasmid features have been removed for the simplicity of this schematic. For 

complete plasmid maps see Appendices, Fig A.2 and A.3. 
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Figure 2.3. Schematic flow diagram for cloning of mEmerald-Occludin into pLJM1 

P2A to generate pLJM1 P2A-O1. Simplified schematic of steps involved in the 

generation of the lentiviral transfer plasmid containing the fluorescently-labelled gene 

of interest. Plasmids maps were generated using SnapGene software (GSL Biotech, 

Chicago, USA). Primers are shown in purple and restriction enzymes in bold black. 

Many plasmid features have been removed for the simplicity of this schematic. For 

complete plasmid maps see Appendices, Fig A.2 and A.3. 
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2.3.12.2 Polymerase chain reaction (PCR) to generate plasmid inserts 

A 50µl PCR reaction containing 1µl plasmid template (25ng/µl), 10µl Q5 reaction buffer 

(#B90275; New England Biolabs, Hitchin, UK), 1µl deoxynucleotide (dNTPs) solution mix 

(10mM) (New England Biolabs), 5µl forward and reverse primers (10µM) (Integrated DNA 

Technologies) (Table 2.6), 0.5µl Q5 High-fidelity DNA polymerase (New England Biolabs, 

#M04915) and 32.5µl nuclease-free H2O, was performed in duplicate. Thermocycling was 

performed using the SimpliAmp Thermal cycler (Life Technologies) with the following cycling 

conditions:  a) initial denaturation at 95˚C for 2 min; b) 35 cycles of: 30 sec at 95˚C 

(denaturation), 30 sec at 58˚C (primer annealing) and 2 min at 68˚C (extension); and c) final 

extension at 68˚C for 10 min. 

 

2.3.12.3 DNA electrophoresis 

To confirm the successful generation of PCR products, PCR samples were separated in 

ethidium bromide-stained TAE-buffered agarose gels (1.5% (w/v) or 0.75% (w/v) UltraPure 

Agarose (Invitrogen), 0.8µl ethidium bromide in 100ml TAE buffer, see 2.2 Buffers and 

Solutions) at 135V for 20 min before the DNA was visualized under UV light.  

2.3.12.4 PCR clean-up 

After amplification of plasmid inserts, PCR clean-up was undertaken using the Wizard® SV 

Gel and PCR clean-up system (Promega) following the manufacturer’s protocol. In brief, 

membrane binding solution (200µl) was added to a spin column in a collection tube prior to 

the addition of PCR product. Columns were spun at 16,000g for 60 sec and flow-through 

discarded. Columns were washed twice with wash buffer (750µl then 500µl) and spun at 

16,000g for 60 sec. Flow-through was discarded and samples were spun for an additional 5 

Table 2.6 PCR primers to generate plasmid inserts. 

Template 
plasmid 

Primer name Primer sequence 
(5’ - 3’) 

Name of 
insert 
DNA 

Size of PCR 
product 
(bp) 

mCherry-
Lifeact-7 
plasmid 
(Addgene, 
54491)   

Forward: Lifeact For 
Blunt 

GCCACCATGGGCGT
GGC 

L1 798 

Reverse: mCherry 
EcoRI Rev 

CCGGAATTCTTACT
TGTACAGCTCGTCC
ATGC 

mEmerald-
Occludin-C-14 
(Addgene, 
54211) 

Forward: mEmerald 
AgeI For 

CGCTACCGGTCGCC
ACCA 

O1 2353 

Reverse: Occludin 
Blunt Rev 

GCGGTACCCTATGT
TTTCTGTCTATC 
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min at 16,000g. To elute DNA, nuclease-free H2O (40µl for PCR product, 25µl for DNA digest 

product) was added to the spin column membrane and incubated at 42˚C for 3 min, then 

spun at 16,000g for 5 min. DNA was then quantified by Nanodrop. 

2.3.12.5 Restriction enzyme digestion 

Restriction enzyme digestion was undertaken using 8µl 10x CutSmart buffer (New England 

Biolabs, B7204S), 1µl restriction enzyme(s) (New England Biolabs, Table 2.7) and 70µl insert 

DNA (100ng/µl) or 15µl plasmid DNA (50ng/µl) in nuclease-free H2O, to give a final volume 

of 80µl. Products were digested for 1 h or 2 h at 37˚C for insert DNA and plasmid DNA, 

respectively. 

 

2.3.12.6 Ligation of lentiviral plasmid and inserts 

Restriction enzyme digestion products, as generated above, were purified using PCR clean-

up (see 2.3.12.4 PCR clean-up) before ligation. DNA concentration and quality were again 

assessed by Nanodrop. Ligation was performed in a 10µl reaction volume containing: 1µl 10x 

T4 DNA ligase buffer (New England Biolabs, B0202S), 0.5µl T4 DNA ligase (New England 

Biolabs, M0202S), 1µl plasmid (50ng/µl) and 4µl insert DNA (100ng/µl) in nuclease-free H2O 

made up to 10µl final volume. The ligation reaction mix was incubated overnight at 4˚C to 

generate plasmids pLJM1 P2A-L1 and pLJM1 P2A-O1. The ligation reaction was halted by 

incubation at 65˚C for 10 min before being cooled on ice. 

2.3.12.7 Bacterial transformation 

Fifty microlitres NEB® Stable competent E.coli (New England Biolabs) was added to 5µl of the 

incubated ligation mixture containing PLJM1 P2A-L1 and PLJM1 P2A-O1, vortexed and 

incubated on ice for 30 min. Bacteria were transformed by heat shock at 42˚C for 1 min then 

placed on ice for 2 min. Three hundred and fifty microliters of Super Optimal Broth medium 

(2% (w/v) tryptone, 0.5% (w/v) yeast extract, 10mM NaCl, 2.5mM KCl, 10mM MgCl2, 

10mM MgSO4 in dH2O) containing 1% (w/v) glucose) was added to the bacteria and incubated 

Table 2.7 Restriction enzymes used for digestion of insert DNA (L1 and O1) and lentiviral 
plasmid (pLJM1 P2A). All restrictions enzymes were purchased from New England Biolabs 

Insert DNA digest Plasmid digest 

Insert DNA Restriction enzyme Plasmid Restriction enzymes 

L1 EcoRI pLJM1 P2A EcoRI and SnaBI  

O1 AgeI pLJM1 P2A AgeI and SnaBI 
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for 1 h 30 min with shaking at 37˚C. Bacteria were streaked onto LB agar plates containing 

100mg/ml carbenicillin (Sigma-Aldrich) and incubated at 37˚C overnight. 

2.3.12.8 PCR colony screening 

Bacterial colonies were picked and screened for the presence of lentiviral plasmids 

containing the gene of interest (PLJM1 P2A-L1 and PLJM1 P2A-O1). Picked bacteria were 

added to a 15µl reaction containing 7.5µl OneTaq Quick Load x2 Master Mix with Standard 

Buffer (New England Biolabs, M04865), 1.5µl of each forward and reverse screening primers 

(Table 2.8) and 6µl nuclease-free H2O. PCR was performed using the following cycling 

conditions: a) initial denaturation for 2 min at 95˚C; b) 25 cycles of: 30 sec at 95˚C 

(denaturation), 30 sec at 58˚C (primer annealing) and 30 sec at 68˚C (extension); and c) final 

extension for 10 min at 68˚C. The presence of the desired PCR product was determined by 

agarose gel electrophoresis (see 2.3.12.3 DNA electrophoresis) and positively identified 

colonies were further incubated overnight in 5ml LB broth (see 2.2 Buffers and solutions) 

containing 100mg/ml carbenicillin with shaking at 37˚C. 

Table 2.8 Sequences of primers for PCR colony screening. Primers were ordered from 
Integrated DNA Technologies. Expected size of PCR product is given in base pairs (bp). 
Starred primers were also used for DNA sequencing. 

Plasmid Primer Primer sequence (5’ - 3’) Size of PCR 
product (bp) 

pLJM1 
P2A-L1 

Forward: mCherry-F CCCCGTAATGCAGAAGAAGA 401 

Reverse: cPPT Rev* CTATTATGTCTACTATTCTTTCC 

pLJM1 
P2A-O1 

Forward: Occludin Scr For CTGCAAAGGGAAGAGCAGG 531 

Reverse: cPPT Rev* CTATTATGTCTACTATTCTTTCC 

 

2.3.12.9 Isolation of plasmid DNA 

Plasmid DNA was isolated from bacteria using the QIAprep spin mini-prep kit following the 

manufacturer’s protocol. In brief, bacterial cultures were centrifuged at 6,200g for 3 min and 

the bacterial pellet resuspended in P1 buffer (250µl). P2 buffer (250µl) and N3 buffer (350µl) 

were added with mixing by inversion. The mixture was centrifuged at 16,000g for 10 min and 

the supernatant transferred to a QIAprep spin column. The column was spun at 16,000g for 

30 sec and flow-through discarded. The column was washed with PB buffer (500µl) and spun 

at 16,000g for 30 sec, then PE buffer (750µl) and spun at 16,000g for 30 sec. Residual wash 

buffer was removed by centrifugation at 16,000g for 1 min. DNA was eluted by adding 
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nuclease-free H2O (50µl) directly to the column membrane and incubation for 1 min followed 

by 1 min centrifugation at 16,000g. 

2.3.12.10 DNA sequencing 

Plasmids pLJM1 P2A-L1 (colony 5) and pLJM1 P2A-O1 (colony 15) were sequenced using the 

Sanger sequencing service provided by Source BioScience (Nottingham, UK). pLJM1 P2A-L1 

was sequenced using cPPT Rev (Table 2.8), whilst pLJM1 P2A-O1 was sequenced using cPPT 

Rev (Table 2.8) and SFFV Prom For (TTTGAATTAACCAATCAGCCTGC) primers. Sequence 

analysis was undertaken in SnapGene (GSL Biotech, Chicago, USA) and sequences can be 

found in the Appendices, Fig A.5 and A.6. 

2.3.12.11  Lentivirus production 

Production of second generation lentiviral particles requires three plasmids: a) an envelope 

plasmid, in this case pMD2.G (Addgene, #12259), which codes for the viral fusion protein 

vesicular stomatitis virus glycoprotein protein (VSV-G), enabling virus to bind to and enter 

host cells; b) a packaging plasmid, in this case psPAX2 (Addgene, #12260), containing HIV-1 

gag (which codes for structural virion proteins), HIV-1 pol (which codes for the enzymes 

involved in virus DNA replication and integration), HIV-1 rev (involved in post-transcriptional 

regulation) and HIV-1 tat (involved in transcriptional regulation); and c) the transfer plasmid, 

which contains the transgene of interest flanked by long terminal repeats necessary for 

packaging, reverse transcription and integration (Zufferey et al., 1997). 

HEK293T cells (10ml, 4 x 105 cells/ml) were seeded into 100mm cell culture dishes and 

allowed to adhere overnight. psPAX2 (2µg), pMD2.G plasmid (2µg) and pLJM1 P2A-L1 or 

pLJM1 P2A-O1 (6µg) were diluted in NaCl (300µl, 150mM). Polyethylenimine (20µl, 1mg/ml) 

was also diluted in NaCl (300µl, 150mM). Both mixtures were combined, vortexed and left at 

room temperature for 15 min, before being added dropwise to the plated HEK293T cells, and 

incubated overnight under standard cell culture conditions. Growth media was replaced the 

next day, and cells cultured for 3 days. The virus-containing growth media was harvested, 

spun at 300g for 5 min, and the supernatant aliquoted and stored at -80˚C. Due to time 

constraints, the viral titre was not determined. 

2.3.12.12 Transduction 

Caco-2 cells were plated at 2 x 105 cells/well into 12-well plates and transduced the following 

day with a mixture containing either pLJM1 P2A-L1 virus or pLJM1 P2A-L1 virus 

(undetermined titre) and polybrene (final concentration 8µg/ml). Two volumes of virus were 

used (50µl and 100µl) in an attempt to determine optimal virus volume for transduction. 
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Plates were immediately spun at 300-400g for 1 h, to enhance viral infection, and incubated 

under standard cell culture conditions overnight. The following day media was replaced, and 

upon reaching ~80% confluency cells were harvested and expanded in culture for use in 

subsequent experiments. Due to time constraints, single cell clones of transfected cells were 

not generated after transduction so a heterogeneous mix of transduced Caco-2 cells were 

used for imaging. 

2.3.12.13 Time-lapse Imaging of transduced cells 

The following time-lapse microscopy work was performed with the assistance and training 

from Prof Violaine See, Dr Marco Marcello and Dr Jennifer Adcott in the Centre for Cell 

Imaging at the University of Liverpool. This work was part funded by the University’s 

Technology Directorate voucher scheme. 

Virus-transduced Caco-2 cells were seeded into 4-compartment Cellview™ culture dishes 

(Greiner Bio-One International) at the concentration stated in Table 2.1. Cells formed 

differentiated monolayers after 10 days and were treated with vehicle control or 25µM 

bosutinib. Live imaging was undertaken using a Zeiss 710 Confocal Microscope with 

excitation at 488nm and detection between 492-551nm in order to detect mEmerald. 

mCherry was not imaged to the presence of artefacts (explained in more detail below). Z-

stack images were taken every 5 min for up to 5 h during which cells were incubated in a 

humidified atmosphere at 37˚C with 5% (v/v) CO2. Maximum intensity projection .TIFF files 

were generated using Fiji software (Schindelin et al., 2012) and the descriptor-based series 

registration (2d/3d+t) plugin was used to remove stage jitter. Animations were generated in 

.GIF format with a 70 millisecond delay between each image (.TIFF file) i.e. at approximately 

x4000 the original speed. 

2.3.13 Enzyme-linked immunosorbent assay (ELISA) 

Differentiated Caco-2 cell monolayers in 24-well plates were dosed with vehicle and TKIs 

(25µM) for 24 h. Media was harvested and stored at -80˚C. Levels of TNF-α were determined 

by Human TNF-alpha DuoSet ELISA (R&D Systems, Abingdon, UK). Capture antibody was 

diluted to a stock solution of 480µg/ml in PBS, detection antibody to 3µg/ml in PBS and 

protein standards to 135ng/ml in reagent diluent (R&D Systems). 

Capture antibody (4µg/ml in PBS) (100µl per well) was added to a High Binding 96-well plate 

(Greiner Bio-One, Gloucestershire, UK). The plate was sealed and incubated overnight at 

room temperature with agitation. Wells were washed with wash buffer (300µl) 3 times by 
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inversion. Plates were blocked with reagent diluent (300µl) for 1 h 30 min at room 

temperature, with agitation. Wells were washed 3 times with wash buffer (400µl) by 

inversion. Standards (100µl, 0pg/ml - 1000pg/ml TNF-α protein standards in DMEM) and test 

media samples (100µl) were added, and the plate covered with an adhesive strip and 

incubated overnight at 4˚C with agitation. Wells were washed 5 times with wash buffer 

(300µl) by inversion. Detection antibody was added (100µl, 50ng/ml in reagent diluent) and 

incubated for 2 h at room temperature with agitation. Wells were washed 3 times with wash 

buffer (300µl) by inversion. One hundred microlitres of diluted streptavidin-HRP (1 in 40 in 

reagent diluent) was added and incubated in the dark for 20 min at room temperature. Wells 

were washed 3 times with wash buffer (300µl) by inversion. One hundred microlitres of 

Substrate Solution (SIGMAFAST OPD tablets in 20ml dH2O) was added and incubated in the 

dark for 20 min. Stop solution (50ul, 2M H2SO4) was added and the plate gently rocked before 

reading at 492nm (with a background reading at 570nm) using a Tecan Sunrise plate reader. 

2.4 Organoid culture and experiments 

2.4.1 Organoid culture and maintenance 

2.4.1.1 Mice 

Male BALB/c mice (aged 8-12 weeks) were purchased from Charles Rivers Laboratories 

(Margate, UK), and housed in specific pathogen-free conditions under a 12:12 hours light-

dark cycle, at the University of Liverpool. Animals were given standard chow (Special Diet 

Services, Essex, UK) and water ad libitum. Schedule 1 culling was performed by cervical 

dislocation. All procedures were performed under UK Home Office licences. Prof Mark 

Pritchard, University of Liverpool, was the project licence holder (project licence number 

40/3392). 

2.4.1.2  Isolating murine small intestinal crypts to generate organoids 

The proximal region of BALB/c male mouse small intestines was removed and contents 

flushed out with ice cold PBS. The intestines were cut longitudinally then into 1cm lengths, 

transferred to a universal tube and shaken with ice-cold PBS until no debris was present. The 

tissues were suspended in ice cold chelation buffer (2mM EDTA in PBS) for 30 min at 4°C with 

constant agitation. Tissues were transferred to ice-cold shaking buffer (43.3mM sucrose, 

59.4mM sorbitol in PBS) and vigorously shaken by hand until crypts were released into 

solution. The crypt solution was filtered through a Falcon® 70µM cell strainer allowing only 

the crypts to pass through the membrane. Crypts were spun at 200g for 10 min at 4°C. The 

crypt pellet was resuspended in ice-cold phenol red-free and lactose dehydrogenase 



83 
 

elevating virus (LDEV)-free Matrigel Basement Membrane Matrix (Scientific Laboratory 

Supplies Limited, Nottingham, UK) containing 500ng/ml Epidermal Growth Factor (EGF), 

1000ng/ml Noggin and 5000ng/ml R-spondin (R&D Systems, Abingdon, UK) at a 

concentration of approximately 10 crypts/µl. Crypt-containing Matrigel (50µl per well) was 

pipetted directly into a pre-warmed 24-well plate and incubated at 37°C for 10 to 20 min to 

polymerise the Matrigel. The Matrigel dome was overlaid with 450µl 1:1 phenol red-free 

DMEM/Nutrient Mixture F-12 Ham (Thermo Fisher Scientific) with 25mM HEPES buffer, 

4.5mM L-glutamine (Life Technologies), 100µg/ml Primocin (InvivoGen, Toulouse, France), 

1% (v/v) 100x N-2 supplement (Life Technologies) and 2% (v/v) 50x B-27TM supplement (Life 

Technologies). Complete media supplemented with 50ng/ml EGF, 100ng/ml Noggin and 

500ng/ml R-spondin was replaced every 4 days. 

2.4.1.3 Organoid subculture and maintenance 

Organoids were split 1 in 4 once a week. The Matrigel domes were washed once with 500µl 

PBS and resuspended by pipetting up and down (with a P1000 pipette) with 500µl ice-cold 

PBS. The Matrigel/organoid solution was passed through an insulin syringe (27G needle), 

10ml ice-cold PBS added to further dilute Matrigel, and the solution spun at 200g for 6 min 

at 4°C. The supernatant was removed, and the organoid pellet resuspended in ice cold 

Matrigel containing growth factors and plated out as described above. For experiments, 

organoids were seeded into 48-well plates using 20µl Matrigel per well overlaid with 200µl 

media containing growth factors. Organoids were maintained at 37˚C under a humidified 

atmosphere of 5% CO2. 

All experiments were performed 3 to 5 days after sub-culturing. Organoids were washed 

once with PBS and test drugs added to media (as described above) without growth factors. 

2.4.2 Organoid permeability assay 

The permeability assay was adapted from a previously established assay, developed by Leslie 

et al. (Leslie et al., 2015). Optimization of this assay for use at the Gastroenterology 

Department, University of Liverpool, was undertaken by Dr Louise Thompson. Organoids 

were grown in Matrigel domes on UV-sterilised 13mm coverslips in 48-well plates. Coverslips 

containing organoids were transferred onto a microscope slide and placed on the microscope 

stage of the microinjection system (Nikon Eclipse Ti-s fitted with an Eppendorf 

micromanipulator 5171, an Eppendorf FemtoJet express and a Jun-air compressor). 

Micropipettes were made from borosilicate glass capillaries with 1mm and 0.58mm external 

and internal diameter, respectively (Harvard Apparatus, Edenbridge, UK), using a Zeitz DMZ 
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Universal electrode puller with the following settings: Heat, 400; Preliminary pull, O3O; 

Distance threshold for elongation, O22; AD, 12O.  FD-4 (10mg/ml in PBS) was loaded into a 

micropipette, using a p10 pipette tip. FD-4 was injected into organoid lumens using the 

microinjection system (injection and compensation capillary pressures of Pi = 1400hPa and 

Pc = 30hPa, respectively). Three to six organoids were injected per treatment. After injection, 

organoids were washed twice with PBS, returned to media and allowed to stabilise for 3 h 30 

min under standard organoid culture conditions, to allow the epithelial layer to re-seal and 

dye leakage to reach a steady low-level state (Dr L. Thompson, personal communication). 

Images of injected organoids were captured at x10 magnification before (0 h) drug dosing 

using bright field and fluorescence microscopy on the microinjection system. Organoid 

growth media was dosed with vehicle, test drug or positive control (2mM EGTA) and further 

images captured for up to 4 h, with organoids being returned to dosed media and placed in 

incubator after image acquisition. Images were analysed using ImageJ (Schneider et al., 2012) 

by drawing around the bright field organoid image and using this outline to determine the 

pixel intensity retained within the borders of the fluorescent image. The pixel intensity is 

directly proportional to the fluorescence intensity and therefore can be used to determine 

the levels of FD-4 retained within the organoid lumen in a semi-quantitative manner. The 

large variation in organoid size resulted in variable volumes of FD-4 being injected into the 

lumen; therefore, changes in pixel intensity were normalised to the starting value (time zero; 

0 h) of each individual organoid. 

2.4.3 Organoid cytotoxicity assays 

2.4.3.1 ToxiLight™ assay 

The ToxiLight™ Non-destructive Cytotoxicity BioAssay Kit (Lonza) was used to measure AK 

release from organoids, a marker of cell death, as described above (2.3.7.3 ToxiLight™ assay). 

Growth media was removed and organoids were overlaid with 300μl media containing test 

drugs (0.1µM – 10µM) for up to 24 h. Twenty microlitres of drugged media was transferred 

to a white 96-well plate and 100μl of AK detection reagent added and incubated at room 

temperature for 5 min. Background luminescence of the media was also tested using 20µl of 

drug-free media. Luminescence was read for 1 sec at 22˚C using the Beckman Coulter DTX 

880 Multimode detector. 

Prior to drug dosing images of each well of the culture plate were obtained at x1 

magnification using a Zeiss Stemi-2000C stereomicroscope. Using ImageJ (Schneider et al., 

2012) organoids were drawn around using the freehand draw tool and total area of the well 
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occupied by organoids was calculated. AK release was calculated by subtraction of the 

background luminescence and normalised to the organoid area per well. 

2.4.3.2 Circularity assay 

The circularity assay was developed by Dr Carrie Duckworth at the University of Liverpool as 

a method to measure enteroid cell death in a semi-quantitative manner (Jones et al., 2019). 

Jones et al. showed increased circularity (i.e. organoids becoming rounder, e.g. due to loss of 

crypt architecture) positively correlated with caspase-3 cleavage, a marker of apoptosis, in 

male C57BL/6 mouse enteroids dosed with 100ng/ml TNF-α for up to 24 h (chapter 5, Fig 

5.6). We therefore wished to use this assay to determine cell death in our TKI-treated male 

BALB/c mouse enteroids. In this assay, light microscopy images of organoids at x20 

magnification were obtained before and after dosing using the Zeiss Axiovert 25 microscope. 

Organoids were drawn around with the freehand tool in ImageJ (Schneider et al., 2012) to 

measure their circularity score pre- and post- dosing. Circularity score varied between 

organoids, due to differing sizes and number of crypts, therefore changes in circularity were 

calculated as a percentage relative to the circularity measurements at time zero (0 h). 

2.4.4 Organoid histology 

2.4.4.1 Generating slides for staining 

3-aminopropyltriethoxysilane (APES) coating was applied to slides to improve tissue 

adhesion. APES-coated slides were generated by placing SuperFrost Microscope slides in 2% 

(v/v) APES in acetone for 2 min then acetone for 2 min. Slides were then washed for 2 min in 

dH2O, three times, and dried in a 37°C incubator. 

2.4.4.2 Organoid fixing, embedding and sectioning 

Organoids were dosed with 10µM bosutinib, imatinib or vehicle for 4 h. Media was removed, 

and organoids were washed twice with PBS. The Matrigel dome was solubilised in 400µl Cell 

Recovery Solution (Corning, Amsterdam, The Netherlands) for 40 min on ice. All following 

pipetting steps were performed using P1000 tips with the ends cut off to increase the tip 

aperture, in order to reduce organoid damage and conserve organoid structure. The 

organoids were resuspended by gentle pipetting, and 4% (v/v) paraformaldehyde in PBS 

(400µl) was added and incubated for 30 min at room temperature. Organoids were pelleted 

by centrifugation at 200g for 2 min and the supernatant discarded. The organoid pellet was 

gently resuspended in 100µl liquefied HistoGel™ Specimen Processing Gel (ThermoFisher 

Scientific). Liquefication was achieved by microwave-heating the HistoGel™ for up to 15 sec. 

The HistoGel™ suspended organoids were pipetted onto a cooling plate and allowed to 
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solidify before being transferred to a Histosette II histology cassette (Simport Scientific, 

Quebec, Canada), and stored in 70% (v/v) ethanol for a minimum of 2 h. HistoGel™-fixed 

samples were dehydrated through a series of alcohols: a) 90% (v/v) ethanol for 2 h; b) 100% 

(v/v) ethanol for 30 min; c) 100% (v/v) ethanol for 30 min; and d) 100% (v/v) ethanol for 1 h 

30 min. Cassettes were transferred to xylene overnight and immersed in fresh xylenes for 5 

min the following day. This latter xylene immersion step was then repeated twice to ensure 

complete removal of ethanol. Cassettes were transferred to liquified paraffin wax pre-heated 

to 60°C for 2 h, then a second container of liquefied paraffin wax at 60°C for 3 h. Samples 

were then embedded in paraffin wax in Simport Scientific Disposable Base Molds using the 

ThermoFisher Scientific Histocentre 3 Tissue Embedder. Four micron sections were cut using 

a LEICA RM2255 microtome, placed onto APES-coated microscope slides (see 2.4.4.1) and 

dried at 37˚C. 

2.4.4.3 Organoid immunofluorescence 

Sections were deparaffinised by two 5 min incubations in xylene and hydrated through a 

series of alcohols as follows: a) 100% (v/v) ethanol for 1 min; b) 100% (v/v) ethanol for 1 min; 

c) 90% (v/v) ethanol for 1 min; and d) 70% (v/v) ethanol for 1 min. Sections were fully 

hydrated in dH2O for 1 min and permeabilized in 0.2% (v/v) Triton X-100 in PBS, for 20 min. 

Sections were washed three times in PBS for 5 min with agitation and blocked using Blocker™ 

BSA (10%) in PBS (ThermoFisher Scientific) diluted to a 1% working solution in PBS for 1 h. 

Sections were incubated with primary antibody in PBS overnight at 4°C (Table 2.5, 2.3.10 

Immunofluorescence). Sections were washed for 10 min with agitation in PBS, three times, 

prior to a 1 h incubation with appropriate secondary antibody – goat anti-mouse Alexa 

Fluor®488 (ThermoFisher Scientific, A-11001) or goat anti-rabbit Alexa Fluor®488 

(ThermoFisher Scientific, A-11008) – diluted 1 in 200 in PSB.  Sections were washed for 10 

min in PBS, three times. Sections were mounted with DAPI-containing VECTASHEILD (Vector 

Laboratories). Images were obtained by fluorescence microscopy using a Zeiss Axio 

Observer.Z1 fitted with ApoTome 2. 

2.4.4.4 Organoid immunohistochemistry 

Sections were deparaffinised by two immersions in fresh xylene for 5 min. Sections were 

hydrated in a series of decreasing alcohols as follows: a) 100% (v/v) ethanol for 5 min; b) 3% 

(v/v) H2O2 in methanol for 10 min; c) 100% (v/v) ethanol for 1 min; d) 90% (v/v) ethanol for 1 

min; and e) 70% (v/v) ethanol for 1 min. Sections were then placed in dH2O for 1 min. Antigen 

retrieval was performed by submerging sections in 10mM citrate buffer (2.94g/l sodium 

citrate di hydrate in dH2O, pH 6) in a cling-film covered container and microwaved at 800W 
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for 10 min; any evaporated citrate buffer was replenished and the sections microwaved for 

a further 10 min. Slides were cooled for 10 min under running tap water, then permeabilized 

with 0.2% (v/v) Triton X-100 in PBS for 5 min. Sections were washed twice for 5 min in TBS-T 

with constant agitation. Sections were drawn around using a PAP pen (Abcam) to create a 

hydrophobic barrier to retain and localize solutions on the section. Sections were blocked 

with 2.5% normal horse serum (Vector Laboratories) for 30 min in a humidified chamber at 

room temperature. Primary antibody diluted in 2.5% normal horse serum (Table 2.9) was 

added to the sections and incubated in a humidified chamber for 2 h. The sections were 

washed three times for 5 min in TBS-T. Sections were incubated for 30 min in a humidified 

chamber at room temperature with the appropriate secondary antibody, ImmPRESS HRP 

reagent kit peroxidase anti-rabbit IgG (made in horse) or anti-goat Ig (made in horse) (Vector 

Laboratories). Sections were washed three times for 5 min in TBS-T. The 3 3’ diamino-

benzidine (DAB) mixture was prepared by mixing one DAB tablet and one urea tablet (Sigma-

Aldrich) in 5 ml dH2O. DAB solution was applied to the sections and incubated in a humidified 

chamber, protected from light, for 6 min. Slides were washed in dH2O for 5 min with 

agitation. Sections were counterstained with haematoxylin and dehydrated through a series 

of increasing alcohols as follows: a) 70% (v/v) ethanol for 1 min; b) 90% (v/v) ethanol for 1 

min; c) 100% (v/v) ethanol for 1 min, followed by another 1 min step in fresh 100% (v/v) 

ethanol; and d) xylene for 5 min, twice (with the second step being in fresh xylene). Slides 

were mounted with distyrene-plasticiser-xylene (DPX) mountant (Sigma-Aldrich). 

 

 

Table 2.9 Primary antibody details and dilutions used for organoid 
immunohistochemistry.  

Target Manufacturer and Catalogue 
number 

Host Dilution of primary 
IgG  

Active caspase- 
3 

R&D systems (Abingdon, UK); 
AF835 

Rabbit 1:2000 

Chromogranin A 
(CgA) 

Abcam (Cambridge, UK); 
ab15160 

Rabbit  1:800 

Doublecortin 
like kinase 1 
(DCLK1) 

Abcam (Cambridge, UK); 
ab31704 

Rabbit  1:500 

Lysozyme (Lyz) Agilent Dako (Santa Clara, 
California); 
A0099 

Rabbit  1:3500 

Trefoil factor 3 
(TFF3) 

Santa Cruz Biotechnology (Insight 
Biotechnology Ltd., Middlesex, 
UK); 
sc-18272 

Goat  1:500 
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2.4.4.5 Haematoxylin and eosin staining 

Sections were deparaffinised by two 5 min incubations in xylene and hydrated through a 

series of alcohols as follows: a) 100% (v/v) ethanol for 1 min; b) 100% (v/v) ethanol for 1 min; 

c) 90% (v/v) ethanol for 1 min; and d) 70% (v/v) ethanol for 1 min. Sections were fully 

hydrated in dH2O for 5 min. Sections were stained with haematoxylin for 3 min and run under 

tap water for 10 min, before staining with eosin for 3 min 30 sec. Excess eosin was removed 

by dipping in dH2O and samples dehydrated through a series of alcohols: a) 70% (v/v) ethanol 

for  15 sec, b) 90% (v/v) ethanol for 15 sec, c) 100% (v/v) ethanol for 15 sec, d) 100% ethanol 

for 15 sec, followed by incubation in xylene for 10 min. Slides were mounted with DPX 

mountant. 

2.4.5 Organoid Western blotting 

2.4.5.1 Preparation of protein lysates 

Organoids were dosed with 10µM bosutinib, 10µM imatinib or vehicle for 4 h. Organoids 

were washed twice with PBS (500µl), and extracted from the Matrigel by incubation with 

400µl Cell Recovery Solution (Corning) for 40 min on ice. Organoids were resuspended by 

pipetting, 10ml ice cold PBS was added to further dilute Matrigel, and the suspension spun 

at 200g for 6 min at 4°C. Supernatant was discarded and the organoid pellet solubilised in 

50µl RIPA buffer (Sigma-Aldrich) containing 1% (v/v) protease inhibitor cocktail III (Merck 

Millipore). Protein levels were determined using the DC™ Protein Assay (Bio-Rad) as 

described previously in 2.3.8. Western blotting protocol was undertaken as described 

previously (see 2.3.8.1 Preparation of protein lysates). Antibodies used are described in 

Tables 2.3 and 2.4 (2.3.8.3 Antibody incubations and membrane visualisation). 

2.4.6 Organoid swelling assay 

The swelling assay was developed by Dekkers et al. (2013) as a method to assess CFTR 

activity, in a semi-quantitative manner, in patients with cystic fibrosis to potentially predict 

patient responses to CFTR restoring drugs. Dekkers et al. found that addition of forskolin, a 

compound which activates chloride secretion through the CFTR channel, increased luminal 

and total organoid surface area in C57BL/6 mice small intestinal organoids and human rectal 

organoids, due to an increase in luminal fluid content. We therefore adapted this assay, to 

determine whether TKIs induced secretion in our organoid model. Static images of organoids 

at x20 magnification were obtained using a Zeiss Axiovert 25 microscope, before and after 

drug dosing (10µM) for 30 min. Organoids were drawn around using the freehand tool in 

ImageJ (Schneider et al., 2012) to measure changes in area (i.e. swelling), indicative of 
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secretion. Due to the variability in organoid size, changes in area of each organoid were 

normalized to the organoid area at time zero. 

2.5 Statistical analyses of cell line and organoid experiments 

All data are expressed as the mean ± standard error of the mean (SEM) of at least three 

independent experiments, unless otherwise stated. Statistical analyses were performed in 

Prism 6 (Version 6.01; GraphPad Software Inc, California, USA). The unpaired two-tailed 

Student’s t-test was used on data sets that consisted of two sample groups. Those consisting 

of more than two sample groups were analysed by one-way analysis of variance (ANOVA), 

and where significance was reached, a Dunnett’s post-test was performed. Correlations 

between two variables were assessed by Spearman’s rank correlation coefficient. Area under 

the curve (AUC) was compared for cell and organoid permeability experiments, to decrease 

multiple comparisons and therefore the probability of false positives. N represents the 

number of biological repeats and, where appropriate, n refers to the number of organoids 

sampled (chapter 5) or number of technical repeats (chapter 3 and 4) per biological repeat. 

The statistical significance threshold was set at 0.05 in all analyses. 

2.6 Genome-wide association study (GWAS) 

2.6.1 Study design 

The SPIRIT2 trial is a UK-based phase 3 prospective randomised trial to compare the clinical 

efficacy of daily oral dasatinib (100mg) and imatinib (400mg) for the treatment of CML, with 

a 5-year event free survival follow-up (www.clinicaltrials.gov; study identifier: 

NCT01460693). Ethical permission for the original study was obtained from the London 

Research Ethics Committee, UK (REC ref# 07/H718/90). Written informed consent was 

obtained prior to patient inclusion. Patient information on age, gender and body mass index 

(BMI) was collected.  GI adverse events, including occurrence of diarrhoea and grade, were 

logged according to the Common Terminology Criteria for Adverse Events (CTCAE) system, 

of the National Cancer Institute (www.ctep.cancer.gov/protocolDevelopment 

/electronic_applications/docs) Clinical information was kindly supplied by Prof Stephen 

O’Brien, Centre for Life, Newcastle University. Patient samples were a gift from the CML 

subgroup of the UK National Cancer Research Institute, and staff at the SPIRIT2 biobank (Prof 

Letizia Foroni and Prof Sandra Loaiza, Hammersmith Hospital campus, Imperial College 

London) kindly supplied these samples. In addition, Prof Richard E Clark, permitted access to 

these samples. The study was conducted in accordance with the declaration of Helsinki. 
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Genotyping had already been undertaken on some dasatinib-treated patients from the 

SPIRIT2 trial to perform a genome-wide association study (GWAS) to identify SNPs associated 

with dasatinib-induced pleural effusion, which occurs in about a third of patients (Fullmer et 

al., 2011), in a previous study (Drs Ana Rodriguez, Benjamin Francis, Eunice Zhang and Andrea 

Davies, University of Liverpool, unpublished data). Imatinib patients were not genotyped, as 

the pleural effusion adverse event is rare with this treatment (Cohen et al., 2002). In this 

study, we aim to use adverse event information from the SPIRIT2 trial and genotype 

information from the study on dasatinib-induced pleural effusion to identify genetic variants 

associated with dasatinib-induced diarrhoea. 

2.6.1.1 Patient cohort 

A total of 814 CML patients were recruited to the SPIRIT2 trial, 407 of which were recruited 

to the dasatinib arm, and assigned to the discovery cohort or replication cohort. Patients with 

high DNA concentrations to allow genome-wide screening were assigned to the discovery 

cohort. After removal of patients for which samples were not obtained or DNA extraction 

failed (51) or patient consent not obtained (9), 347 patients remained: 181 within the 

discovery cohort and 166 within the replication cohort (Fig 2.4). No power calculation was 

performed to determine the required patient sample size for this study. 

 
Figure 2.4. Flow chart of discovery and validation cohort used in dasatinib-induced  
diarrhoea GWAS. 
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2.6.2 DNA collection and extraction 

DNA was extracted from patient bio-banked peripheral blood mononuclear cells using the 

AllPrep DNA/RNA Mini Kit (Qiagen®, Manchester, UK) according to the manufacturer’s 

protocol. This was performed by Dr Andrea Davies and Ms Gemma Jones at the University of 

Liverpool. 

2.6.3 Discovery cohort 

2.6.3.1 Genome-wide genotyping 

The purity of DNA (ratio of absorbance at 260nm and 280nm i.e. A260/A280) was assessed 

using the ThermoFisher Scientific NanoDrop™ 8000 UV-Vis Spectrophotometer and only 

samples with A260/A280 ratio 1.7-2.1 were included in downstream genotyping. The amount 

of double-stranded DNA was measured using the Quant-iT PicoGreen dsDNA Assay Kit 

(ThermoFisher Scientific). DNA was diluted to 50ng/µl in nuclease-free H2O for genome-wide 

genotyping. This was performed by Dr Andrea Davies, at the University of Liverpool. 

One hundred and eighty-one samples were genotyped using the Infinium™ 

OmniExpressExome-8 v1.4 chip (Illumina, Cambridge, UK) at the Oxford Genomic Centre, 

Wellcome Trust Centre for Human Genetics, Oxford University, UK. This was coordinated by 

Dr Eunice Zhang, at the University of Liverpool. 

2.6.3.2 Data quality control  

Genotype quality control was undertaken at both the individual sample level and the SNP 

level. This analysis was performed with binary .bim/.bed/.fam files using PLINK v1.07 

(www.cog-genomics.org/plink2) (Purcell et al., 2007). R v3.1.1. software (www.r-project.org) 

was used to generate QC plots. Data quality control analyses were undertaken with the help 

of Dr Benjamin Francis, in the Biostatics Department at the University of Liverpool. 

2.6.3.3 Data quality control per individual 

Individuals with more than 3% of their genotyping data missing were removed from the 

analyses (n=3). Individuals with discrepancies between their reported gender and the 

predicted gender using X chromosome heterozygosity (whereby individuals with X 

chromosome heterozygosity >0.8 and <0.2 are assigned a genotypic gender of male and 

female, respectively) were also removed (n=0). Individuals with an unassigned genotypic 

gender or missing reported gender were removed (n=0). Identity-by-descent (relatedness, 

PI_HAT) – the average number of non-autosomal independent SNPs that each pair of 

individuals share – was calculated by pruning 50kb data regions and correlating the SNPs 
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within these regions. No kinship was detected between any sample pairs by identity by 

descent. Heterozygosity rate was calculated in an attempt to detect potential DNA 

contamination or inbreeding. Whilst 2 individuals fell outside of the ± 2 standard deviation 

(SD) margins of heterozygosity rate, these individuals were not removed due to their close 

proximity to the ± 2 SD cut-off point. Samples were merged with the HapMap Yoruba, Han 

Chinese, Japanese and Caucasian dataset, and principal component analysis was used to 

identify ethnic outliers. Non-Caucasian individuals were removed from the study (n=16). 

After quality control streamlining, the data set consisted of 161 patients. 

2.6.3.4 Data quality control per SNP 

A SNP call rate <95% can indicate inaccurate genotyping, therefore these SNPs were removed 

(n=66,225). SNPs with a minor allele frequency <1% were removed (n=266,747). Nineteen 

SNPs deviating from the Hardy-Weinberg Equilibrium (HWE) (p < 1x10-5) were also removed, 

leaving 617,980 SNPs that passed quality control. 

2.6.3.5 Imputation 

The Wellcome Trust Case Control Consortium (WTCCC) subjects of Caucasian ancestry were 

merged with our SPIRIT2 patient set to increase imputation accuracy. Haplotype backbone 

data was created based on genotype data using the SHAPEIT2 v2.r644 software package 

(Delaneau et al., 2013). Imputation was performed using IMPUTE2 v2.3.0 (Howie et al., 2009) 

with the 1000 Genomes March 2012 release. Imputed SNPs with a minor allele frequency 

<1%, INFO score (estimation of imputation accuracy) <0.4 and HWE p-value < 1x10-5 were 

excluded. After post-imputation quality control, genotype information on 9,080,496 SNPs 

remained for analysis. Caucasian WTCCC subjects were then removed and not used in 

subsequent analyses. Imputation was undertaken by Dr Benjamin Francis. 

2.6.4 Association analysis  

Patients were grouped based on diarrhoea phenotype into controls and cases: diarrhoea 

absent (grade 0) and diarrhoea present (grades 1-4), respectively. Sixteen patients had 

constipation, missing diarrhoea phenotype information or co-morbidity, and were therefore 

not used in the association analysis, thus leaving 145 patients to take forward to subsequent 

analyses (Fig 2.4). 

Imputed genotypes were analysed in dosage format using the frequentist additive model in 

SNPtest (Burton et al., 2007). The qqman package in R v.3.1.1. (www.cran.r-project.org) was 

used to generate the Manhattan plot. LocusZoom (Pruim et al., 2010) was used to generate 
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regional association plots of SNPs which reached suggestive significance (p<1x10-5) or 

genome-wide significance (p<5x10-8). Statistical analysis was undertaken in SNPtest. 

Association analysis was performed with the help of Dr Benjamin Francis, and data 

interpretation was achieved with the assistance of Dr Eunice Zhang. 

2.6.5 Validation and replication of lead single nucleotide polymorphisms 

(SNPs) 

Lead SNPs identified from the discovery cohort with p < 1x10-5 were assessed. Singleton SNPs, 

those without any correlated SNPs, were not considered for validation or replication, due to 

the high probability of a false-positive association. Among correlated SNPs (with r2 > 0.2), 

only the SNP with the most significant p-value, within each linkage-disequilibrium block, was 

taken forward for validation and replication. 

Genotyping was undertaken using either TaqMan™ (Applied Biosystems) or KASP™ (LGC 

Biosearch Technologies, Hoddesdon, UK) SNP assays on the Applied Biosystems 7900HT Fast 

Real-Time PCR System. Among the six SNPs selected for validation and replication, two were 

inventoried TaqMan™ SNP Genotyping assays (rs35636998 and rs9559427); 2 were 

successfully custom designed TaqMan™ SNP Genotyping assays (using the online tool: 

www.thermofisher.com/order/custom-genomic-products/tools/gene-expression/) (rs12424 

256 and rs73718779); and 2 failed custom design and were redesigned using KASP™ 

technology (using the online tool: www.biosearchtech.com/products/pcr-kits-and-

reagents/genotyping-assays/kasp-genotyping-chemistry) (rs6975293 and rs6760938). Probe 

details are listed in Table 2.10. 

Genotypes predicted by imputation were then compared to genotypes assigned by TaqMan™ 

or KASP™ genotyping to calculate ‘concordance with imputation’ as a percentage. Adherence 

to HWE was calculated in an attempt to assess genotyping accuracy. Logistic regression 

assuming an additive mode of inheritance was performed in PLINK v1.07 on binary 

.bim/.bed/.fam files containing genotype information in order to calculate allelic odds ratios 

and P-values of associations. 
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2.6.5.1 TaqMan™ genotyping 

Genomic DNA (40ng), including 10% repeats as quality control, and negative control 

(nuclease-free dH2O) were loaded into 384-well optical plates and dried overnight. DNA was 

amplified in a 5µL reaction mix containing 2.5µL 2x Genotyping Master Mix (Applied 

Biosystems, 4371355), 0.125µL 40x TaqMan™ SNP Genotyping assay and 2.375µL nuclease-

free H2O. The plate was pre-read using the Applied Biosystems 7900HT Fast Real-Time PCR 

System to identify background fluorescence. Thermo-cycling was carried out with an initial 

activation step at 95˚C for 10 min, followed by 40 cycles of 95˚C for 15 sec (denaturation) and 

60˚C for 90 sec (primer annealing and extension). A post-read was performed after thermo-

cycling and allelic discrimination was undertaken using SDS v2.2 (Applied Biosystems, Paisley, 

UK). An example allelic discrimination plot can be viewed in Fig 2.5. 

Table 2.10 Sequences of Taqman™ and KASP™ probes for the six SNPs in the imputation 
validation and replication study. SNPs of interest are shown in square brackets (bold 
text). Polymorphisms (other than the SNP of interest) within the context sequence of 
KASP assays are indicated in accordance with IUPAC codes.  

SNP Assay Type Context Sequence (5’ - 3’) Design Strand 
(forward or 
reverse) 

rs12424256 Taqman™  

(Custom) 
CTATATTGCCCAGGCTGGTCTCAAA[C/T]T
CCTGACCTCAGGTGATCTGCCTGC 

Reverse 

rs9559427 Taqman™  

(Inventoried) 
TGTAAAGGTTTGTTATACAGGTAAA[C/T]
ACGTGTCATAGAGGTTTGTTGTACA 

Reverse 

rs35636998 Taqman™ 

(Inventoried) 
GCCACTGTGCCAGGCCCAGATTTTG[A/G]
CAAGTTTTAAAAGTGCCCAGATTAA 

Reverse 

rs6975293 Taqman™ 

(Custom) 
CTCTGGGTCTTATATCAGTGTCGTTCTCTG
GGACCAGCACTGKCCCCATATGG[C/G]TA
CCACTGGGACGTGTAGTTGACCTCTGAYG
TGCACRGCAGATGCACGGACAGKCAGGG 

Forward 

rs6760938 KASP™ 

(Custom) 
ATGCACCTKCATGTCAATGGGGCTGGAGT
AAGGCTCCCACGCTGCTGTCTTCCCCAYA[
C/T]CCTGACAGCTGAGTGTTGGGGACAA
AAGTGTGCCCTTCCCTCCAGTGGCCAACA
CRTGGTCT 

Forward 

rs73718779 KASP™ 

(Custom) 
AGTTTGAGCATTTTCATTATCACTT[C/T]G
CAATAATGCATAAACACTGAACAA 

Reverse 
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2.6.5.2 KASP™ genotyping 

Genomic DNA (40ng) and negative control (nuclease-free dH2O) was loaded into 384-well 

optical plates, again including 10% repeats as quality control, and dried overnight. DNA was 

amplified in a 5µL reaction containing 2.5µL KASP v4.0 2x Master Mix (LGC, KBS-1016-021), 

0.07µL primer and 2.43µL nuclease-free H2O. Thermo-cycling was performed using the 61-

55˚C and 68-62˚C touchdown protocols for rs6975293 and rs6760938, respectively, on the 

Applied Biosystems 7900HT Fast Real-Time PCR System. Cycling conditions were as follows:  

1) a Taq enzyme activation step of 94˚C for 15 min; 2) 10 touchdown cycles: 20 sec at 94˚C 

then 60 sec at 61˚C (rs6975293) or 68˚C (rs6760938) with the 60 sec step decreasing by 0.6˚C 

each cycle; 3) 26 cycles: 20 sec at 94˚C then 60 sec at 55˚C (rs6975293) or 62˚C (rs6760938); 

Figure 2.5. Annotated allelic discrimination plot for rs73718779 generated in SDS 

v2.2. Samples automatically called as homozygous X, heterozygous and homozygous 

Y are shown as red, green and blue circles respectively. Samples which were not 

called, including negative controls, are shown as black crosses. 
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and 4) 30˚C for 60 sec. The plate was read after thermo-cycling and allelic discrimination was 

carried out using SDS v2.2 (Applied Biosystems). An example allelic discrimination plot can 

be viewed in Fig 2.5. 

2.6.6 Replication cohort 

A potential 166 dasatinib-treated patients were available for the replication cohort (inclusion 

criteria described above). However, insufficient DNA remained to genotype 27 patients and 

adverse event information was not available for 2 patients, thus leaving a total of 137 

patients to be taken forward into the replication cohort (Fig 2.4). DNA extraction and 

TaqMan™ or KASP™ genotyping was performed as above. DNA concentrations were 

determined using a ThermoFisher Scientific Nanodrop 8000 UV-VIS Spectrophotometer. As 

with the analysis of PCR-based genotype data in the discovery cohort, HWE was calculated, 

and logistic regression assuming an additive mode of inheritance was performed in PLINK 

v1.07 to determine allelic odds ratios and P-values for associations. 
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CHAPTER 3: INVESTIGATING THE 

MECHANISMS OF TYROSINE 

KINASE INHIBITOR-INDUCED 

DIARRHOEA USING CACO-2 

CELLS 
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3.1 Introduction 

Within the gut, intestinal permeability is tightly regulated to allow the passage of nutrients 

into the circulation while preventing the translocation of bacteria and food antigens. 

Epithelial junctional complexes connect neighbouring cells of the epithelial layer and control 

paracellular permeability (Zihni et al., 2016). They act as a ‘gate’ to facilitate the passive flow 

of ions and molecules through the paracellular space, and therefore also control water flow 

between the intestinal lumen and underlying tissue (Zihni et al., 2016). Consequently, 

increased paracellular permeability due to epithelial junction disruption can lead to 

diarrhoea. 

It is therefore not surprising that decreased levels and altered distribution of junctional 

complex proteins is seen in diarrhoea-dominant irritable bowel syndrome (IBS-D) (Bertiaux-

Vanda et al., 2011; Wilcz-Villega et al., 2014) and inflammatory bowel disease (IBD) (Prasad 

et al., 2005; Oshima et al., 2008; Arijs et al., 2011; Poritz et al., 2011; Das et al., 2012; Soletti 

et al., 2013; Zhang et al., 2015). For example, decreased levels and altered distribution of the 

junction proteins occludin (Bertiaux-Vanda et al., 2011) and ZO-1 (Wilcz-Villega et al., 2014) 

are seen in patients with IBS-D. Moreover, patients with Crohn’s disease and ulcerative colitis 

frequently have decreased levels of occludin (Poritz et al., 2011), ZO-1 (Das et al., 2012) and 

E-cadherin (Arijs et al., 2011; Zhang et al., 2015). Epithelial junction disruption has also been 

implicated in chemotherapy-induced diarrhoea through the use of cell line and rodent 

models (Hamada et al., 2010, 2013; Youmba et al., 2012; Nakao et al., 2012; Beutheu et al., 

2013; Song et al., 2013; Fan et al., 2014; Hong et al., 2014; Buhrmann et al., 2015; Refaat et 

al., 2015; Tao et al., 2015), and in patient studies, where increased intestinal permeability is 

seen in individuals treated with chemotherapy agents such as methotrexate (Meng et al., 

2016) and 5-fluorouracil (5-FU) (Daniele et al., 2001). See Table 1.5 (1.4.2 Intestinal barrier 

dysfunction: the paracellular pathway) for a summary of studies showing alterations in TJ and 

AJ protein levels during chemotherapy. 

There are two major categories of epithelial junctional complexes: tight junctions (TJs) (also 

known as zonula occludens) and the adherens junctions (AJs) (Zihni et al., 2016). Whilst AJs 

have some control over paracellular permeability (Greenspon et al., 2011), the main role of 

these junctions is in initiation, maintenance and maturation of cell-to-cell contacts.  

Formation of AJs leads to rapid assembly of the more apically located TJs, which have a more 

prominent role in regulating paracellular flux. 
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Paracellular permeability can be divided into two independent pathways: the charge-

selective ‘pore’ permeation pathway and the size-selection ‘leak’ permeation pathway which 

controls flux of substances based on their charge and size, respectively (Zihni et al., 2016). 

The size-selective pathway allows the diffusion of larger solutes and macromolecules ≤ 60Å 

in size (Buschmann et al., 2013). Changes in this pathway can be determined by measuring 

diffusion of a tracer molecule – for example a fluorescently-labelled polysaccharide such as 

FITC-dextran – across a membrane/monolayer in vitro, ex vivo or in vivo (Zihni et al., 2016). 

Occludin, a transmembrane protein in TJ complexes, is thought to be highly important in 

controlling macromolecular flux (Buschmann et al., 2013), but the mechanistic basis of 

macromolecular diffusion is far from elucidated (Zihni et al., 2016). 

Passage through the charge-selective pathway is controlled by claudins, transmembrane 

proteins in TJ complexes which enables flux of ions up to ~4.5 Å (Watson et al., 2001). 

Claudins assemble into ion-selective channels (Krug et al., 2012) which can be grouped 

according to their selectivity into:  a) cation-selective claudins, e.g. claudin 2; b) anion-

selective claudins, e.g. claudin 17 (Krug et al., 2014); and c) sealing claudins which restrict ion 

transport, e.g. claudin 1 (Zihni et al., 2016). The charge-selective pathway is believed to be 

controlled by channel opening, endocytosis, as well as transcriptional and post-

transcriptional regulation of claudins. Alterations in claudin levels are seen in IBS-D (Bertiaux-

Vanda et al., 2011), ulcerative colitis (Prasad et al., 2005; Oshima et al., 2008; Poritz et al., 

2011; Das et al., 2012) and Crohn’s disease (Prasad et al., 2005; Poritz et al., 2011) and rodent 

models treated with the cytotoxic chemotherapeutic agents irinotecan, methotrexate and 5-

FU (Nakao et al., 2012; Youmba et al., 2012; Hamada et al., 2013; Song et al., 2013; Buhrmann 

et al., 2015). Changes in this pathway can be assessed by measuring electrical resistance (also 

known as transepithelial electrical resistance, TEER) across a membrane or monolayer 

(Furuse et al., 2001). 

Both the size-selective and the charge-selective pathways have been linked to 

chemotherapy-induced diarrhoea in vitro (Beutheu et al., 2013; Fan et al., 2014). For 

example, use of rat IEC-6 intestinal cell monolayers has shown erlotinib can increase 

permeability via the size-selective pathway (Fan et al., 2014), whilst treatment of human 

Caco-2 adenocarcinoma epithelial cells with methotrexate can alter FITC-dextran flux and 

TEER (Youmba et al., 2012; Beutheu et al., 2013). 

In this chapter, we have tested the hypothesis that the BCR-ABL inhibitors bosutinib, imatinib 

and dasatinib, and the EGFR inhibitor gefitinib, increase paracellular permeability and disrupt 
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cell junctions of intestinal epithelial cells in vitro. The aims of the chapter were to use the 

human Caco2 intestinal epithelium cell model to: 

1. Evaluate the effect of bosutinib, imatinib, dasatinib and gefitinib on paracellular 

permeability (via both the ‘pore’ pathway and the ‘leak’ pathway) and cell-cell 

adhesion  

2. Compare the cytotoxicity of bosutinib, imatinib, dasatinib and gefitinib 

3. Determine the ability of bosutinib, imatinib, dasatinib and gefitinib to alter protein 

levels, mRNA levels and localization of TJ and AJ proteins, focussing on occludin, E-

cadherin and ZO-1 

4. Analyse changes in the cytoskeleton after addition of bosutinib, imatinib, dasatinib 

and gefitinib 

3.2 Results 

3.2.1 Caco-2 cells form a fully differentiated monolayer of polarised 

enterocytes within 10 days 

Caco-2 cells were deemed an adequate model due to their human intestinal origin and 

frequent use in academic and pharmaceutical research (Carr et al., 2017). They are 

undifferentiated cells (Engle et al., 1998), and therefore preliminary experiments were 

required to determine the time period necessary for sufficient differentiation into mature 

polarised enterocytes with distinct apical and basal aspects. Accumulation of intestinal 

alkaline phosphatase (ALPI), a well-documented enterocyte differentiation marker 

(Hinnebusch et al., 2004), was used to determine differentiation progression. Western blot 

analysis showed both dimeric (~140 kDa) and monomeric ALPI (~70 kDa) increased with time 

(Fig 3.1; One-way ANOVA, p<0.05). Monomeric ALPI levels were significantly increased at 

days 10 and 13 relative to day 1 (Fig 3.1B; Dunnett’s test, p<0.05), whereas dimeric ALPI levels 

were only significantly increased at day 13 (Fig 3.1C; Dunnett’s test, p<0.05). Levels of both 

monomeric and dimeric ALPI appeared to plateau around 10 days after seeding. 

The presence of a confluent cell monolayer after 10 days was further determined by using 

TEER. TEER was measured daily, for up to 15 days of growth (Fig 3.2). TEER increased with 

time and was significantly higher than day 1 from day 5 onwards (Fig 3.2; Dunnett’s test, 

p<0.05), excluding days 6, 7 and 12 – presumably due to a lower number of TEER readings 

taken on these days. TEER appeared to plateau at around day 10 – consistent with plateauing 
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levels of ALPI. Caco-2 monolayers used in subsequent experiments were therefore allowed 

to differentiate for 10-14 days prior to drug treatment. 

 

Figure 3.1 Expression of intestinal alkaline phosphatase (ALPI) during Caco-2 cell 
differentiation. Caco-2 cells were grown to a monolayer and allowed to differentiate 
for up to 15 days. The expression of monomeric ALPI (B) and dimeric ALPI (C) was 
analysed by Western blot (A). *p<0.05, **p<0.01 versus day 1, One-way ANOVA 
followed by Dunnett’s test, mean ± SEM, N=3. 

Figure 3.2. Decrease in paracellular permeability during Caco-2 cell differentiation. 
Caco-2 cells were seeded onto transwell membranes. Transepithelial electrical 
resistance (TEER) was measured each day from day 2 up to day 15. *P<0.05, 
**P<0.01 versus day 2, One-way ANOVA followed by Dunnett’s test, mean ± SEM, 
N=3-4. 
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3.2.2 Apical bosutinib increases flux through the charge-selective permeation 

pathway in Caco-2 cells 

Increased paracellular permeability via the ‘pore’ pathway has been implicated in TKI-

induced diarrhoea (Fan et al., 2014); therefore, changes in ion flux across Caco-2 monolayers 

after TKI addition were studied by measuring transepithelial electrical resistance (TEER). 

TKIs were administered to the apical aspect to mimic oral administration, i.e. gut luminal 

exposure, to ensure experiments were as physiologically relevant as possible. All TKIs tested 

caused a time- and dose-dependent decrease in TEER (Fig 3.3). Bosutinib caused the most 

marked decrease in TEER at the 24 h time point out of all the TKIs tested (Fig 3.3A). TEER 

decreased by ~70%, ~40%, ~30% and 0% after 24 h treatment with 10μM bosutinib, 

dasatinib, gefitnib and imatinib, respectively. Bosutinib also induced the most rapid drop in 

TEER with values decreasing as early as 15 minutes after addition of the drug. 

To statistically analyse data, area under the curve was calculated for each concentration. 

Bosutinib (Fig 3.3A; Dunnett’s test, p<0.001), gefitinib (Fig 3.3E; Dunnett’s test, p<0.01) and 

dasatinib (Fig 3.3D; Dunnett’s test, p<0.05) significantly decreased TEER at 10μM; however, 

imatinib did not significantly decrease TEER until a concentration of 50μM was reached (Fig 

3.3C; Dunnett’s test, p<0.01). 

To determine the minimum bosutinib concentration capable of decreasing TEER, TEER was 

assessed using concentrations below 10μM. The reported Cmax plasma concentrations in Ph+ 

leukaemia patients during treatment with 500mg bosutinib daily at day 1, 150nM, and day 

15, 400nM, were also included (Pfizer, 2014; European Medicines Agency, 2018). However, 

the steady state trough plasma concentration in patients receiving this same dose regime, 

120nM, was not included (Mita et al., 2018). Five micromolar bosutinib significantly 

decreased TEER (Fig 3.3B; Dunnett’s test, p<0.01) but lower concentrations, including plasma 

concentrations found in patients, had no significant effect. 
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Figure 3.3. Effect of apical TKIs on the charge-selective permeation pathways. 
Caco-2 cells were seeded into transwell plates. After 10-14 days, bosutinib (A, B), 
imatinib (C), dasatinib (D) or gefitinib (E) was added to the apical compartment and 
transepithelial resistance (TEER) across the monolayer was measured using 
chopstick electrodes as described in methods. Data are presented relative to the 
starting value (time zero). *p<0.05, **p<0.01, ***p<0.001 of area under the curve 
of treated versus vehicle, One-way ANOVA followed by Dunnett’s test, mean ± SEM, 
N=3-4. 
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3.2.3 Basolateral plasma concentrations of TKIs do not alter flux through the 

charge-selective permeation pathway in Caco-2 cells 

To gain an understanding of the effects of systemic TKIs (TKIs in the plasma after absorption) 

on permeability, changes in TEER were assessed after administering Cmax plasma 

concentrations of TKIs to the basolateral compartment: 400nM bosutinib (Pfizer, 2014), 3µM 

imatinib (De Francia et al., 2013), 150nM dasatinib (Wang et al., 2013) and 1.5µM gefitinib 

(Miura et al., 2014). No significant changes in TEER were seen over the 24 h period studied 

(Fig 3.4; t-test, p>0.05). Gefitinib induced a slight decrease in TEER although this did not 

achieve significance (Fig 3.4D; t-test, p>0.05). 

 

 

Figure 3.4. Effect of basolateral TKIs at C
max

 plasma concentrations on the charge-

selective permeation pathway. Caco-2 cells were seeded onto transwell membranes. 
After 10-14 days, 400nM bosutinib (A), 3µM imatinib (B), 150nM dasatinib (C) or 
1.5µM gefitinib (D) was administered to the basolateral compartment and 
transepithelial resistance (TEER) across the monolayer was measured. Data are 
presented relative to the starting value (time zero). Area under the curve of treated 
versus vehicle control was not significant for bosutinib, imatinib, dasatinib and 
gefitinib, t-test, mean ± SEM, N=3-4. 
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3.2.4 Bosutinib increases flux through the size-selective permeation pathway 

in Caco-2 cells 

As the ‘leak’ pathway may be involved in TKI-induced diarrhoea (Fan et al., 2014), alterations 

in the size-selective permeation pathway were assessed by measuring the flux of a 

fluorescently labelled polysaccharide 4kDa FITC-dextran (FD-4) across the monolayer. FD-4 

(2mg/ml) was administered to the apical compartment in combination with TKIs (up to 

100µM), and accumulation of FD-4 in the basal compartment was measured. An increase in 

para-cellular permeability results in increased basal accumulation of FD-4. Bosutinib 

increased basal FD-4 accumulation in a time- and dose-dependent manner that reached 

significance at 25µM (Fig 3.5A; One-way ANOVA, p<0.01). However, area under the curve 

analysis found gefitinib and dasatinib did not significantly increase FD-4 accumulation even 

at 100μM (Fig 3.5C, D; One-way ANOVA, p>0.05). Imatinib (100µM) significantly increased 

flux through the ‘leak’ pathway, but the concentration of basal FD-4 accumulation was much 

lower than that induced by 100μM bosutinib (~600µg/mL and ~150µg/mL for bosutinib and 

imatinib, respectively). These data show that bosutinib consistently induces the greatest and 

most rapid increase in permeability to all the other TKIs tested. 

 

Figure 3.5. Effect of TKIs on size-selective permeation pathway. Caco-2 cells were 
seeded onto transwell membranes. After 10-14 days, 4kDa FITC-dextran (2mg/mL, FD-
4) and a concentration range of bosutinib (A), imatinib (B), dasatinib (C) and gefitinib (D) 
were added to the apical compartment. DMEM (50μL) were collected from the basal 
compartment for up to 24h and fluorescence intensity measured. **p<0.01, ***p<0.001 
of area under the curve of treated versus vehicle, One-way ANOVA followed by 
Dunnett’s test, mean ± SEM, N=5-8. 
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3.2.5 Bosutinib is cytotoxic to Caco-2 cells 

To assess whether the observed increases in permeability were a consequence of drug-

induced cell death, Caco-2 cell viability was determined after TKI treatment for 24 h using 

MTT assay (Fig 3.6) and CellTitreGlo® assays (Fig 3.7). 

MTT assays showed bosutinib, imatinib, dasatinib and gefitinib all significantly increased and 

then decreased viability with increasing drug concentrations (Fig 3.6; One-way ANOVA, 

p<0.05). Bosutinib appeared to be the most cytotoxic, with viability decreasing from 50μM 

after a 24 h incubation, whilst imatinib, dasatinib and gefitinib did not decrease viability until 

a concentration of 250μM was reached (Fig 3.6; Dunnett’s test, p<0.05). Significant increases 

in viability were seen at 50μM imatinib, 100μM dasatinib and 50-100μM gefitinib (Fig 3.6B-

D; Dunnett’s test, p<0.05). No significant increases in viability were seen after bosutinib 

treatment for 24 h at any concentration, but 3 h treatment of 25µM bosutinib significantly 

increased cell viability (Fig 3.6A; Dunnett’s test, p<0.05). 

 

Figure 3.6. Effect of TKIs on cell viability using MTT assay. Caco-2 cells were treated 
with up to 500μM bosutinib (A), imatinib (B), dasatinib (C) or gefitinib (D) for 3h and 24h. 
The percentage of viable cells remaining was then determined using MTT assay which 
measures NADH-dependent oxidoreductase enzyme activity. Data are representation as 
the percentage change relative to 0µM. *p<0.05, **p<0.01, ***p<0.001 versus vehicle, 
One-way ANOVA followed by Dunnett’s test, mean ± SEM, N=3-5, n=3. 
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CellTitreGlo® assays demonstrated a more gradual and dose-dependent decrease in viability 

compared to the MTT assay, which showed a marked drop-off in viability above a certain 

threshold. Consistent with MTT results, bosutinib and gefitinib significantly decreased cell 

viability at 50μM and 250μM, respectively, after 24 h treatment (Fig 3.7A, D; Dunnett’s test, 

p<0.05). However, significant levels of cell death were induced at lower concentrations than 

observed when using the MTT assay for imatinib and dasatinib (Fig 3.7B, C; Dunnett’s test, 

p<0.05). Again, bosutinib and imatinib induced an apparent increase in viability at low 

concentrations, but this effect was not significant and less prominent than that seen with 

MTT assays. 

 

Due to the increases in cell viability seen at low concentrations, we attempted to determine 

whether MTT and CellTitreGlo® assays over-estimate viability. Cell death was further 

assessed by a number of different methods including poly(ADP-ribose) polymerase (PARP) 

cleavage by Western blotting, nuclear fragmentation as determined by 4′,6-diamidino-2-

phenylindole (DAPI) staining, and cell membrane degradation by ToxiLight™ assay. 

Figure 3.7. Effect of TKIs on cell viability using CellTitre-Glo® assay. Caco-2 cells were 
treated with up to 500μM bosutinib (A), imatinib (B), dasatinib (C) or gefitinib (D) for 3h 
and 24h. The percentage of viable cells remaining was then determined using CellTiter-
Glo® luminescent cell viability assay which measures ATP levels. Data are representation 
as the percentage change relative to 0µM. *p<0.05, **p<0.01, ***p<0.001 versus vehicle, 
One-way ANOVA followed by Dunnett’s test, mean ± SEM, N=3-5, n=3. 
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PARP is involved in DNA repair during environmental stress (Satoh et al., 1992) and PARP 

cleavage is a marker of apoptosis (Oliver et al., 1998). In a 3 h dose-response with bosutinib, 

PARP was cleaved to produce an 89kDa band indicative of apoptosis (Boulares et al., 1999) 

at 25µM and 50µM (Fig 3.8A); however an increase in the ratio of cleaved PARP to full length 

PARP was only significant at 50µM (Fig 3.8B; Dunnett’s test, p<0.05). Following treatment 

with 25µM bosutinib over a 24 h time course, an 89kDa PARP cleavage fragment was 

detected from 3 h onwards (Fig 3.8C, D; Dunnett’s test, p<0.001). It is important to note that 

the low ratios of cleaved PARP : full length PARP seen at 16 h are probably due to a flaw in 

the experimental set-up — cells used for the 16 h time point were treated 8 h after ‘time 

zero’, for convenience of cell harvesting — rather than a true reflection of decreased cell 

death at 16 h. 

 

Figure 3.8. Effect of bosutinib on PARP cleavage. Caco-2 cells were incubated 
with 1-50μM bosutinib for 3 h (A-B) or 25μM bosutinib for up to 24h (C-D). The 
expression of cleaved PARP (C PARP) and full length PARP (F L PARP) was analysed 
by Western blot and results shown as a ratio of cleaved PARP : Full length PARP. 
Actin was used as a loading control. Representative blots (A,C). *p<0.05, 
***p<0.001 versus vehicle, One-way ANOVA followed by Dunnett’s test, mean ± 
SEM (B, D), N=3. 
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Nuclear fragmentation was assessed after 3h treatment with 25µM TKIs (Fig 3.9A-E). 

Bosutinib treatment alone induced a significant increase in the percentage of cells (~6%) 

undergoing nuclear fragmentation (Fig 3.9F; Dunnett’s test, p<0.001). 

 

 

Figure 3.9. Effect of TKIs on nuclear fragmentation. Caco-2 cells were incubated 
with vehicle (A) or 25μM bosutinib (B), imatinib (C), dasatinib (D) and gefitinib (E) 
for 3 h, stained with DAPI and viewed at x40 magnification. Images are 
representative of 3 independent experiments (A-E). Number of fragmented nuclei 
(white arrows) were counted in ImageJ and calculated as a percentage of the total 
nuclei number (F). ***p<0.001 versus vehicle, One-way ANOVA followed by 
Dunnett’s test, mean ± SEM, N=3, n (fields of view) = 3. Slides were not blinded 
before analysis. 
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 ToxiLight™ assay, a non-destructive cell death assay which measures the release of cell 

membrane impermeable adenylate kinase into the growth media, was used to assess the 

end-point of cell death. Caco-2 cells were treated with a range of concentrations of bosutinib, 

imatinib, dasatinib and gefitinib up to 100µM. Concentrations of 50µM-100µM bosutinib, 

100µM dasatinib and 25-100µM gefitinib caused a significant decrease in cell viability (Fig 

3.10A, C, D; Dunnett’s test, p<0.05), but imatinib did not induce cell death (Fig 3.10B; One-

way ANOVA, p>0.05). 

  

Figure 3.10. Effect of TKIs on cell viability using ToxiLight™ assay. Caco-2 cells were 
treated with up to 100μM bosutinib (A), imatinib (B), dasatinib (C) or gefitinib (D) for 
24h. The percentage of viable cells remaining was then determined using ToxiLight™ 
luminescent cell viability assay. Data are represented as the percentage change 
relative to 0µM. *p<0.05, **p<0.01, ***p<0.001 versus vehicle, One-way ANOVA 
followed by Dunnett’s test, mean ± SEM, N=3-4, n=3. 
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3.2.6 Bosutinib decreases cell-cell adhesion strength in Caco-2 cells 

Increased paracellular permeability suggests decreased intercellular junctional integrity, and 

therefore a simple cell-cell adhesion strength assay (Takeichi, 1977) was performed with 

Caco-2 cells after 24 h TKI treatment (0.1μM – 10μM). In this assay, cells were dispersed by 

pipetting either in the absence or presence of EGTA, after the addition of TKI. Cell dissociation 

index was calculated by dividing the number of cell clumps in the absence of EGTA (NTC) by 

the number of clumps when EGTA was present (NTE). EGTA causes all the cells to completely 

dissociate and thus NTE is equal to the total cell number. Monolayers with weaker cell-cell 

adhesions will be more sensitive to cellular dispersal resulting in a greater number of clumps 

(higher NTC); therefore, cell dissociation index is inversely proportional to cell-cell adhesion 

strength. Sub-apoptotic concentrations of TKIs were tested as cell death would naturally 

weaken cell-cell adhesion leading to false positive data. 

Cell dissociation index was significantly increased by bosutinib (1μM and 10μM) and 

dasatinib (10μM) (Fig 3.11 A, C; Dunnett’s test, p<0.05). Imatinib and gefitinib (10μM), 

however, did not cause a decrease in cell-cell adhesion strength (Fig 3.11B, D; Dunnett’s test, 

p>0.05). Consistent with permeability data (Fig 3.3A, 1.5A), bosutinib demonstrated the most 

significant increase in cell dissociation index. 
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Figure 3.11. Effect of TKIs on cell-cell adhesion strength. Caco-2 cells were dosed with 
up to 10μM bosutinib (A), imatinib (B), dasatinib (C) and gefitinib (D) for 24 h with or 
without EGTA, then dispersed by pipetting. The cell dissociation index, which is 
inversely proportional to cell-cell adhesion strength, was calculated by dividing the 
number of clumped cells in the presence of calcium (i.e. absence of EGTA, NTC) by the 
number of clumped cells in the presence of EGTA which is equivalent to the total cell 
number (NTE). *p<0.05, **p<0.01, ***p<0.001 versus vehicle, One-way ANOVA 
followed by Dunnett’s test, mean ± SEM, N=3, n=3. 
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3.2.7 Bosutinib, dasatinib and gefitinib decrease protein levels of intercellular 

junction proteins in Caco-2 cells 

To determine the mechanistic basis of TKI-induced increase in paracellular permeability in 

Caco-2 cells, changes in the levels of intercellular junction proteins – ZO-1, E-cadherin and 

occludin – were investigated. E-cadherin is found in AJs, whilst occludin is present in TJs, and 

ZO-1 is a cytosolic protein present in both AJs and TJs. It has previously been shown that 

erlotinib, an EGFR TKI, decreases levels of E-cadherin at both the mRNA and protein level in 

rat intestinal epithelial cells (IEC-6) (Fan et al., 2014), whilst gefitinib has also been shown to 

decrease expression of both E-cadherin and ZO-1 in IEC-6 cells (Hong et al., 2014). 

Caco-2 cells were dosed for 3 h with up to 100μM TKIs and protein levels of ZO-1, E-cadherin 

and occludin were analysed by Western blotting and normalised to β-actin. Bosutinib at 

50μM after 3 h treatment significantly decreased E-cadherin and occludin (Fig 3.12A, E, G; 

Dunnett’s test, p<0.05) by ~25% and ~75%, respectively. Bosutinib-induced decreases in ZO-

1 protein levels approached significance (Fig 3.12A, C; One-way ANOVA, p<0.1). Twenty-five 

micromolar bosutinib also induced a significant decrease in occludin (Fig 3.12A, G; Dunnett’s 

test, p<0.05), while levels of E-cadherin and ZO-1 remained unaltered at this concentration. 

ZO-1 and E-cadherin protein levels were not affected by imatinib or dasatinib (Fig 3.12B, D, 

F; Fig 3.13 A, C, E; One-way ANOVA, p>0.05); however, dasatinib (100µM) significantly 

decreased occludin levels by ~50% (Fig 3.13A, G; Dunnett’s test, p<0.01). Imatinib at 

concentrations up to 100µM had no effect on occludin levels (Fig 3.12B, H; One-way ANOVA, 

p>0.05). 

One hundred micromolar gefitinib significantly decreased E-cadherin and occludin levels by 

about 20%, and 85%, respectively (Fig 3.13B, F, H; Dunnett’s test, p<0.05). Gefitinib also 

induced a dose-dependent reduction in ZO-1; however this decrease was not significant (Fig 

3.13D; One-way ANOVA, p>0.05). 
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Figure 3.12. Effect of bosutinib and imatinib on levels of tight junction and adherens 
junction proteins. Caco-2 cells were treated with bosutinib (A, C, E, G) or imatinib (B, D, 
F, H) for 3 h. Expression of ZO-1 (C, D), E-cadherin (E, F) and occludin (G, H) was analysed 
by Western blot and normalized to actin. Data are represented as the percentage change 
relative to vehicle. Dotted lines represent where membranes have been cropped from 
the same blot. *p<0.05, **p<0.01 versus vehicle, One-way ANOVA followed by Dunnett’s 
test, mean ± SEM, N=4. 



115 
 

 

Figure 3.13. Effect of dasatinib and gefitinib on levels of tight junction and adherens 
junction proteins. Caco-2 cells were treated with dasatinib (A, C, E, G) or gefitnib (B, D, 
F, H) for 3 h. Expression of ZO-1 (C, D), E-cadherin (E, F) and occludin (G, H) was analysed 
by Western blot and normalized to actin. Data are represented as the percentage change 
relative to vehicle. Dotted lines represent where membranes have been cropped from 
the same blot. *p<0.05, **p<0.01 versus vehicle, One-way ANOVA followed by Dunnett’s 
test, mean ± SEM, N=4. 
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Changes in levels of E-cadherin, ZO-1 and occludin over a 24 h time course after addition of 

25μM bosutinib or imatinib were also assessed by Western blotting. Bosutinib caused a time-

dependent decrease in E-cadherin and ZO-1 protein levels to about 70% and 60%, 

respectively, by 24 h (Fig 3.14A, C, E; One-way ANOVA, p<0.05). Bosutinib also significantly 

decreased levels of occludin (Fig 3.14A, G; One-way ANOVA, p<0.05). A possible explanation 

for the discrepancy in protein expression at 16 h is explained above (see 3.2.5 Bosutinib is 

cytotoxic to Caco-2 cells). Imatinib (25μM) treatment however did not modulate ZO-1 or E-

cadherin protein levels (Fig 3.14B, D, F; One-way ANOVA, p>0.05). Surprisingly occludin levels 

were increased by imatinib (25μM) over time; however, this increase was not significant (Fig 

3.14H; One-way ANOVA, p>0.05). 



117 
 

 

Figure 3.14. Effect of bosutinib and imatinib on levels of tight junction and adherens 
junction proteins over 24 h. Caco-2 cells were incubated with 25μM bosutinib (A, C, E, 
G), imatinib (B, D, F, H) for up to 24 h.  The expression of ZO-1 (C, D), E-cadherin (E, F) 
and occludin (G, H) was analysed by Western blot and normalized to actin. Data are 
represented as the percentage change relative to 0h time point. *p<0.05, **p<0.01 
versus vehicle, One-way ANOVA followed by Dunnett’s test, mean ± SEM, N=4. 
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3.2.8 Bosutinib alters levels of TJP1 and OCLN mRNA in Caco-2 cells 

CDH1 (E-cadherin), TJP1 (ZO-1) and OCLN (occludin) gene expression was then determined 

over a 24 h period after treatment with bosutinib or imatinib (25μM). Neither bosutinib (Fig 

3.15C; One-way ANOVA, p>0.05) nor imatinib (Fig 3.15D; One-way ANOVA, p>0.05) caused a 

significant change in CDH1 mRNA levels. Bosutinib, however, induced a significant transient 

decrease in TJP1 mRNA levels at 5 h and 8 h (Fig 3.15A; Dunnett’s test, p<0.05). The mRNA 

expression data for imatinib are consistent with Western blotting data confirming imatinib 

does not alter levels of ZO-1, E-cadherin or Occludin. Bosutinib increased mRNA levels of 

OCLN (Fig 3.15E, One-way ANOVA, p<0.05) with this increase becoming significant by 16 h 

treatment (Fig 3.15E, Dunnett’s test, p<0.05). A similar trend was seen with imatinib but this 

was not significant (Fig 3.15F, One-way ANOVA, p>0.05). 
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Figure 3.15. Effect of bosutinib and imatinib on tight junction and adherens junction 
mRNA levels over 24 h. Caco-2 cells were incubated with vehicle for 24h or 25μM 
bosutinib (A-C), imatinib (D-F) for up to 24h. The mRNA levels of TJP1 (ZO-1), CDH1 (E-
cadherin) and OCLN (Occludin) was analysed by RTqPCR and normalized to 
housekeeping gene B2M. Data are represented as the percentage change relative to 
0h time point. *p<0.05 versus vehicle, One-way ANOVA followed by Dunnett’s test, 
mean ± SEM, N=4, n=4. 
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3.2.9 Bosutinib induces re-localization of junction proteins in Caco-2 cells 

In addition to altered epithelial junction protein levels, re-localization of these proteins is 

often associated with increased permeability (Samak et al., 2014, 2015). 

Immunofluorescence was used to assess potential redistribution of ZO-1, E-cadherin and 

occludin. Analysis of images using ImageJ confirmed changes in protein levels after 3 h TKI 

(25μM) treatment. 

Bosutinib induced re-localization of ZO-1 away from the plasma membrane, with more 

diffuse staining being seen at the cell-cell contacts relative to imatinib, dasatinib, gefitinib 

and vehicle treated cells (Fig 3.16, 2a). Imatinib, dasatinib and gefitinib showed no difference 

from the vehicle (Fig 3.16, 3-5a). Raw integrated density analysis showed none of the TKIs 

induced changes in ZO-1 protein levels at 25μM after 3 h incubation (Fig 3.19A; One-way 

ANOVA, p>0.05), which is consistent with Western blotting data (Fig 3.12A, C, B, D; Fig 3. 13A, 

C, B, D). 

Bosutinib caused E-cadherin to aggregate within the cytoplasm and re-localize away from the 

plasma membrane (Fig 3.17, 2a). Similar patterns were observed with the other TKIs tested, 

but to a lesser extent. Total levels of E-cadherin, as determined by raw integrated density, 

only decreased upon treatment with bosutinib (Fig 3.19B; Dunnett’s test, p<0.05). However, 

it is important to note that the marked decrease in E-cadherin shown in Fig 3.17 (2a) was not 

observed consistently across the entire Caco-2 monolayer. 

Bosutinib, dasatinib and gefitinib appeared to decrease levels of occludin present at the cell-

cell contacts and, as with E-cadherin, the protein formed punctate structures within the 

cytoplasm (Fig 3.18). Occludin protein expression levels analysed by raw integrated density 

were consistent with Western blot data (Fig 3.12A, G, B, H; Fig 3.13A, G, B, H) demonstrating 

bosutinib, dasatinib and gefitinib (Fig 3.19C; Dunnett’s test, p<0.05), but not imatinib (Fig 

3.19C; Dunnett’s test, p>0.05), significantly decreased levels of occludin. 
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Figure 3.16. Effect of TKIs on localization of ZO-1. Caco-2 cells were incubated with 
vehicle (1) or 25μM bosutinib (2), imatinib (3), dasatinib (4) or gefitinib (5) for 3 h.  
The localization of ZO-1 (a, green, left column) and nuclei (b, blue, middle column) 
were analysed by immunofluorescence x40 magnification. Composite images 
shown in right column (c). Images are representative of 3 independent 
experiments, and 3 fields of view were taken per experiment. 
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Figure 3.17. Effect of TKIs on localization of E-cadherin. Caco-2 cells were 
incubated with vehicle (1) or 25μM bosutinib (2), imatinib (3), dasatinib (4) or 
gefitinib (5) for 3 h. The localization of E-cadherin (a, red, left column) and nuclei 
(b, blue, middle column) were analysed by immunofluorescence x40 magnification. 
Composite images shown in right column (c). Images are representative of 3 
independent experiments, and 3 fields of view were taken per experiment. 
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Figure 3.18. Effect of TKIs on localization of occludin. Caco-2 cells were incubated 
with vehicle (1) or 25μM bosutinib (2), imatinib (3), dasatinib (4) or gefitinib (5) for 
3 h. The localization of occludin (a, yellow, left column) and nuclei (b, blue, middle 
column) were analysed by immunofluorescence x40 magnification. Composite 
images shown in right column (c). Images are representative of 3 independent 
experiments, and 3 fields of view were taken per experiment. 
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3.2.10 Bosutinib causes cytoskeletal rearrangement and cellular retractions in 

Caco-2 cells 

The cytoskeleton plays a key role in maintaining intestinal barrier integrity (López-Posadas et 

al., 2017); therefore the effect of TKIs on the actin cytoskeleton was assessed. Treatment of 

Caco-2 cells with 25μM bosutinib for 3 h caused changes in the actin cytoskeleton (Fig 3.20B) 

and cell morphology (Fig 3.21B), whilst dasatinib, imatinib and gefitinib had no effect (Fig 

3.20C-E and 1.21C-E). 

Figure 3.19. Effect of TKIs on protein levels of junction proteins determined by 
immunofluorescence. Caco-2 cells were incubated with vehicle control or 25μM 
bosutinib, imatinib, dasatinib or gefitinib for 3 h. The levels of ZO-1 (A), E-cadherin (B) 
and Occludin (C) were determined by measuring raw integrated density (the sum of the 
pixel intensities) of immunofluroscence images in ImageJ, without DAPI channel. 
*p<0.05, **p<0.01 versus vehicle, One-way ANOVA followed by Dunnett’s test, mean ± 
SEM, N=3, n=3. 
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Bosutinib-treated cells became “spindle-like” (Fig 3.21B), and cells appeared to “pull-apart” 

from each other leaving empty spaces (Fig 3.20B and Fig 3.21B, arrow), resembling “cellular 

retraction”. Interdigitating finger-like projections were formed and other short actin filament 

structures were visible which may represent intracellular fibres or spikes/protrusions. 

Moreover, between detached cells, the formation of long actin fibres resembling retraction 

fibres could be seen (Fig 3.22B, arrows). These morphological changes were not observed in 

imatinib, dasatinib or gefitinib-treated cells (Fig 3.22C-E). 

Figure 3.20. Effect of TKIs on actin 
cytoskeleton. Caco-2 cells were 
incubated with vehicle (A) or 25μM 
bosutinib (B), imatinib (C), dasatinib (D) 
and gefitinib (E) for 3 h. F-actin was 
stained with Phalloidin-iFluor 594 and 
analysed using  immunofluorescence at 
x40 magnification. Images are 
representative of 3 independent 
experiments. Arrow indicates a gap in 
the monolayer due to cell-cell 
dissociation. 



126 
 

  

Figure 3.21. Effect of TKIs on cell 
morphology. Caco-2 cells were 
incubated with vehicle (A) or 25μM 
bosutinib (B), imatinib (C), dasatinib (D) 
and gefitinib (E) for 3 h. Gross changes 
in morphology were analysed by light 
microscopy at x40 magnification. 
Images are representative of 3 
independent experiments. Arrow 
indicates a gap in the monolayer due to 
cell-cell dissociation. 
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Figure 3.22. Effect of TKIs on the 
formation of retraction fibres. Caco-2 
cells were incubated with vehicle (A) 
or 25μM bosutinib (B), imatinib (C), 
dasatinib (D) or gefitinib (E) for 3 h. F-
actin was stained with Phalloidin-
iFluor 594 and analysed using  
immunofluorescence at x63 
magnification. Images are 
representative of 3 independent 
experiments. Arrow indicates fibres 
resembling retraction fibres. 
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3.2.11 Bosutinib induces re-localization of occludin when viewed using time-

lapse microscopy 

To assess the changes in occludin re-localization and actin rearrangement in real time, Caco-

2 cells stably expressing Occludin-mEmerald and mCherry-Lifeact were generated through 

lentiviral transduction. See Methods chapter for more details and Appendices (Fig A.3, 4) for 

plasmid maps. In brief, mCherry-Lifeact-7 and Occludin-C-14 plasmids, purchased from 

Addgene, were amplified to generate inserts containing Occludin-mEmerald and mCherry-

Lifeact genes, which we termed O1 and L1, respectively. Successful amplification of this insert 

DNA was demonstrated by gel electrophoresis (Fig 3.23). A second generation lentiviral 

vector construct plasmid, termed pLJM1 p2A, was restriction digested along with inserts L1 

and O1, and insert DNA and construct plasmid ligated. 

 

The newly formed vectors containing Occludin-mEmerald or mCherry-Lifeact, named pLJM1 

P2A-O1 or pLJM1 P2 A-L1, respectively, were transformed into bacteria by heat shock and 

grown on agar plates with carbenicillin selection. Positive colonies were identified in a colony 

screen (Fig 3.24). Bacterial transformation was high with plasmid PLJM1 P2A-L1 (6 out of 8 

colonies were positive) but low for plasmid pLJM1 P2A-O1 (2 out of the 15 colonies were 

positive). Generation of desired plasmid sequences for pLJM1-P2A-L1 (colony 5) and pLJM1-

P2A-O1 (colony 15) was confirmed by Sanger sequencing (see Appendices, Fig A.5, 6). 

Figure 3.23. Gel electrophoresis of PCR amplification products. PCR products 
generated from amplification of mCherry-Lifeact-7 to generate insert L1 (798 
bp, A) and mEmerald-Occludin-C-14 to generate insert O1 (2353 bp, B) were 
separated by gel electrophoresis on 1.5% and 0.75% agarose gels, respectively. 
PCR reactions were run in duplicate (n=2). 
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Lentivirus was generated by transfection of HEK-293T cells with pLJM1 P2A-L1 or pLJM1 P2A-

O1 plasmids along a second-generation lentiviral packaging plasmid and envelope plasmid. 

Caco-2 cells were transduced with lentivirus and presence of mCherry-Lifeact and Occludin-

mEmerald was confirmed by fluorescence microscopy (Fig 3.25). In the majority of cells 

Figure 3.24. Gel electrophoresis of products from colony screening. Bacterial 
colonies transformed with the pLJM1 P2A-L1 (A), pLJM1 P2A-O1 (B) underwent PCR 
screening reactions to identify positive colonies. PCR products were run on a 1.5% 
agarose gel. Expected fragment size were 401 bp and 531 bp for pLJM1 P2A-L1 and 
pLJM1 P2A-O1, respectively. 
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where Occludin-mEmerald was expressed, it could be seen to localize at the physiologically 

relevant location of cell-cell contacts (Fig 3.25D, F); however mCherry-Lifeact did not form 

actin-like filamentous structures and many globular structures can be seen, suggesting 

artefacts were present (Fig 3.25C, E), potentially due to off-target binding and fluorescent 

protein aggregation. 

 

Transduced Caco-2 cells were then treated with 25µM bosutinib or vehicle and live imaged 

for 5 h every 5 minutes using fluorescence microscopy with cells being kept under standard 

culture conditions (37˚C, humidified 5% (v/v) CO2 atmosphere). 

Figure 3.25. Caco-2 cells transduced with lentivirus particles. Caco-2 cells were seeded 
into 12-well plates at 2 x105 cells/well and transduced with 0µl (A,B), 50µl (C,D) or 100µl 
(E,F) of un-titred lentivirus containing mCherry-Lifeact (left column) or mEmerald-
Occludin (right column). Images were taken 4 days after transduction and are 
representative of 3 images at x40 magnification. 
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Dynamic movement of occludin is seen in both vehicle and bosutinib treated cells as expected 

(Fig 3.26 and 3.27, see flashdrive for Fig 3.27). Bosutinib caused occludin to rapidly form 

punctate structures which were internalized, concurrently with membrane invagination. This 

occurred rapidly ~1 h after drug dosing. These gross changes at the cell surface appear to 

resemble endo/pino-cytosis or reorganisation of the plasma membrane bilayer and lipid 

rafts. Cells then detached from one another ~3 h after drug addition, consistent with 

immunofluorescence data, whereas the monolayer remained intact in vehicle-treated cells. 

mCherry-Lifeact imaging is not shown due to the presence of many artefacts and potential 

off-target binding (Fig 3.25, C, E) (Flores et al., 2019). The decrease in fluorescent intensity 

seen in vehicle-treated cells is likely due to photo-bleaching, because Western blot data 

showed the vehicle did not decrease occludin protein levels. 

 

Figure 3.26. Effect of bosutinib on occludin re-localization determined by time-lapse 
imaging of Caco-2 cells stably expressing mEmerald-occludin (still images). Caco-2 
cells were seeded into 4-compartment glass bottom cell culture dishes and 
differentiated for 10 days. Vehicle (A) or 25µM bosutinib (B) was added. Cells were 
imaged every 5 min for 5 h under standard cell culture conditions (37˚C, humidified 5% 
(v/v) CO2 

atmosphere) using a Zeiss 710 Confocal Microscope at 40x magnification. 
Only images at hourly intervals are shown (for all images see video). Images are 
representative of 3 independent experiments. 
 

Figure 3.26. Continues onto the next pages 
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3.3 Summary of results 

The main findings from this chapter show that bosutinib was able to: a) increase intestinal 

permeability and decrease cell-cell adhesion strength at sub-cytotoxic concentrations (this 

effect was greater than that induced by other TKIs tested); b) decrease E-cadherin and 

occludin protein levels, most likely by post-transcriptional degradation, and decrease ZO-1 

protein levels by a mechanism likely involving decreased transcription; c) induce re-

localization of ZO-1, E-cadherin and occludin away from the plasma membrane and into the 

cytosolic compartment; and d) induces cellular retraction, cytoskeletal rearrangement and 

formation of contraction fibres. 

3.4 Discussion 

Intestinal permeability is likely to be a key player in the aetiology of cytotoxic chemotherapy-

induced diarrhoea. Chemotherapy-induced increases in paracellular permeability have been 

shown in vivo and in patients, in multiple independent experiments using a variety of 

different techniques. Increase in gut ‘leakiness’ – as determined by the lactulose-mannitol 

test – is seen in cancer patients treated with gefitinib (Melichar, Dvořák, et al., 2010) and 5-

FU (Inutsuka et al., 2003). Increased permeability has also been shown during methotrexate 

Figure 3.26. Continued 
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treatment in children with acute lymphoblastic leukaemia, by measuring urine levels of 

polyethylene glycol after oral administration (Lifschitz et al., 1989). Moreover, 5-FU, 

irinotecan and methotrexate increase intestinal permeability in both rats and mice (Horie et 

al., 1998; Maeda et al., 2010; Dong et al., 2014; Maioli et al., 2014; Forsgård et al., 2016). 

To test the hypothesis that increased intestinal permeability is important in BCR-ABL 

inhibitor-induced diarrhoea, we performed in vitro experiments using human Caco-2 

adenocarcinoma epithelial cells. These cells were exposed to BCR-ABL TKIs which cause 

diarrhoea to varying frequencies in CML patients: a) bosutinib (70-90%) (Keller et al., 2009; 

Pfizer, 2014); b) dasatinib (~20%); and c) imatinib (30-50%) (Fullmer et al., 2011; Cohen et al., 

2012). We also studied gefitinib, an EGFR inhibitor, as this chemotherapeutic agent has been 

previously shown to disrupt intestinal intercellular junctions in vitro (Hong et al., 2014). 

It was found that 25μM bosutinib, when administered apically to a Caco-2 cell monolayer, 

could rapidly increase paracellular permeability by both the ‘leak’ and the ‘pore’ pathways. 

The effect of bosutinib relative to imatinib appeared to mirror the rapid onset of diarrhoea 

in the clinic, which occurs within 2-3 days during bosutinib treatment, and after 43 days when 

patients are receiving imatinib therapy (Kantarjian et al., 2014; Brümmendorf et al., 2015). 

Bosutinib administered basolaterally at the therapeutically relevant Cmax plasma 

concentration of 400nM had no effect on TEER, suggesting bosutinib-induced increased 

permeability may be due to local rather than systemic effects. Consistent with this, it has 

been shown that females and males have similar GI toxicity levels, despite females having 

several-fold higher circulating plasma levels (Pfizer, 2014). 

The apical administration of 25µM TKI was deemed to be pharmacologically relevant because 

the concentration of bosutinib in the stomach is estimated to be 3.8mM (Pfizer, 2014), which 

is much greater than the plasma concentration of 150-400nM (Pfizer, 2014).  Drug 

concentrations in the intestinal lumen are much higher than in the plasma because luminal 

exposure precedes first pass metabolism. At 25μM, bosutinib significantly increased 

permeability through the ‘leak’ pathway over the 24h time period studied, whilst 100µM 

imatinib was required to achieve similar effects. Both dasatinib and gefitinib up to 100µM 

failed to increase permeation through the ‘leak’ pathway. To our knowledge, no prior studies 

have assessed the effect of BCR-ABL inhibitors on intestinal epithelium permeability in vitro. 

However, studies have been performed on patients using gefitinib and imatinib. Gefitinib, 

given at 250mg or 500mg daily to patients with non-small cell lung cancer (NSCLC) or head 

and neck carcinoma, increases lactulose/mannitol and lactulose/xylose ratios suggesting 



134 
 

increased intestinal permeability through the size-selective pathway (Melichar, Dvořák, et 

al., 2010). However, patients with GI stromal tumours (GIST) treated with 400mg imatinib 

daily do not show an increase in lactulose/mannitol or lactulose/xylose ratio, suggesting no 

alterations in intestinal permeability (Melichar, Kasparova, et al., 2010). These findings are 

contradictory to our in vitro results and exemplify the common problem of translatability 

from bench to the patient. 

All TKIs tested increased permeation through the ‘pore’ pathway. This occurred at 

concentrations as low as 5µM for bosutinib, but higher concentrations were required for 

imatinib (50µM), dasatinib (50µM) and gefitinib (10µM). These observations fit with data 

suggesting that whilst the ‘pore’ pathway and the ‘leak’ pathway are interlinked, they can be 

controlled independently (Zihni et al., 2016). To our knowledge, this is the first time the effect 

of BCR-ABL and EGFR inhibitors on intestinal permeation through the charge-selective 

pathway in vitro has been assessed. 

We then wished to examine the processes leading to increased permeability. Initially we 

investigated the ability of TKIs to induce cell death; a potentially simple explanation for 

increased permeability, by causing cell barrier breakdown (Bojarski et al., 2001; Chen et al., 

2017). MTT and CellTitreGlo® assays showed bosutinib was the most potent inducer of cell 

death. However, MTT assays showed a significant, and unexpected, increase in viability at 

low drug concentrations for all TKIs tested. As Caco-2 cells form a differentiated quiescent 

cell monolayer which are therefore by nature ‘non-dividing’, this increase in viability cannot 

have arisen from an increase in cell number. The apparent increase in viability could be 

explained by the fact that the MTT assay is not specific for cell viability and is also affected 

by cellular metabolism. MTT is converted to formazan by the action of NADH-dependent 

oxidoreductase enzymes; therefore, it is possible these TKIs may increase cellular 

metabolism leading to an apparent increase in viability. Moreover, MTT assays have 

previously been shown to underestimate imatinib-induced changes in cell viability in breast 

and melanoma cell lines (Sims et al., 2009). The CellTitreGlo® assay measures the levels of 

ATP, and is therefore also affected by changes in cellular metabolism, which could explain 

the slight non-significant increase in viability seen at low concentration of bosutinib and 

imatinib. To appraise these techniques and determine whether they underestimate cell 

death, alternative non-metabolic cell death assays such as PARP cleavage, nuclear 

fragmentation and adenylate kinase release (measured by ToxiLight™ assay) were also 

examined. PARP cleavage and nuclear fragmentation occurred at concentrations where there 

was no significant change in viability determined by MTT, CellTitreGlo® or ToxiLight™ assays 
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suggesting these latter assays are less sensitive and/or inaccurate methods to determined 

change in viability. PARP cleavage and nuclear fragmentation occur slightly upstream to cell 

death which could explain the earlier detection of cell death initiation. Unlike MTT and 

CellTitreGlo® assays, the ToxiLight™ assay did not induce an apparent increase in viability 

suggesting a greater validity of this assay. 

Bosutinib significantly increased FD-4 flow across the cell monolayer relative to vehicle at a 

concentration of 25μM at 24 h which is predicted to be sub-cytotoxic by MTT, CellTitreGlo® 

and ToxiLight™ assay. However, DAPI staining and PARP cleavage indicated some low-level 

apoptosis at this concentration. These data allow us to postulate the involvement of 

apoptosis in bosutinib-induced increase in permeability through the size-selective pathway; 

however, the low level of cell death occurring at 25µM suggests other factors are involved. 

It is also reasonable to postulate that elevation of cell death markers may be a result of, 

rather than the cause of, increased permeability (Lugo-Martinez et al., 2009). Imatinib only 

increased FD-4 flux at 100μM, a concentration shown by CellTitreGlo® to be cytotoxic, 

suggesting a key mechanism for imatinib-induced increase in FD-4 permeability may be cell 

death. All TKIs tested decreased TEER at sub-cytotoxic concentrations, allowing us to 

conclude that cell death is unlikely to be the cause of TKI-induced increases in permeation 

through the ‘pore’ pathway. 

In addition to cell death, the pathomechanistic basis of increased permeability often involves 

dissolution of TJ and AJs (Buschmann et al., 2013). Bosutinib (25µM) markedly decreased 

occludin protein levels whilst ZO-1 and E-cadherin were only slightly decreased. Our data 

contradicts a study performed on the human colorectal cell line (DLD-1), where bosutinib 

was shown to increase E-cadherin levels by increasing interaction between E-cadherin and 

β-catenin (Coluccia et al., 2006). However, the concentration used in the Coluccia et al. study 

was 1.5µM, much lower than the concentration in our experiments which caused TJ and AJ 

disruption (25µM). 

Immunofluorescence data also showed bosutinib decreased levels of intercellular junction 

proteins and induced a re-localization of occludin. This was consistent with time lapse data 

collected on Caco-2 cells stably expressing mEmerald-Occludin. The mechanism of this re-

localization is unknown but pinocytosis and endocytosis have been postulated (Yu et al., 

2008). Decreased occludin plasma membrane levels provide a means through which 

bosutinib induces an increase in the size-selective pathway (Zihni et al., 2016). 
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Bosutinib was also capable of inducing cellular retractions and cytoskeletal rearrangement 

that were not seen with any of the other TKIs tested. This retraction phenotype may be a 

result of the “unzipping” of the monolayer; inherent tension in the monolayer could cause 

cells to “pull apart” as TJ and AJ proteins are degraded. In addition, or alternatively, bosutinib 

could be inducing actomyosin contractions leading to a retraction-like phenotype. This is 

explored further in chapter 4. 

Gefitinib significantly decreased E-cadherin and occludin levels. These findings are consistent 

with previous studies where gefitinib has been shown to decrease protein levels of TJ and AJ 

proteins ZO-1 and E-cadherin in IEC-6 cells (Hong et al., 2014). However, as occludin is 

involved in regulation of the size-selective pathway, it is surprising that 100μM gefitinib did 

not increase paracellular permeability via the size-selective pathway through increased FD-4 

flux. Similar observations were made with dasatinib, which decreased occludin levels at 

100µM but which failed to alter permeation through the ‘leak’ pathway. Imatinib did not 

alter levels of any of the intercellular junction proteins studied. To our knowledge, no 

literature is available on the effect of imatinib or dasatinib on levels of intestinal ZO-1, E-

cadherin or occludin, human or otherwise. 

It would be interesting to observe changes in claudins, proteins involved in controlling the 

charge-selective pathway (Watson et al., 2001), after addition of TKIs. Claudins form gated 

ion channels and can regulate permeability through channel opening (Krug et al., 2012), a 

process which can be studied by patch clamp analysis. Changes in levels of claudins can also 

alter permeability (Zihni et al., 2016). However, there are 26 known claudins (Zihni et al., 

2016) and due to time constraints we could not examine these by Western blot; however 

numerous claudin family members have been implicated in diarrhoea aetiology 

(Introduction, Table 1.5). 

To determine the mechanism of bosutinib-induced decrease in intercellular junction 

proteins, changes in mRNA and protein levels of TJ and AJ markers were assessed. Bosutinib 

(25µM) decreased protein levels of E-cadherin, ZO-1 and occludin. Bosutinib did not decrease 

mRNA levels of CDH1 and OCLN but transiently decreased TJP1 mRNA levels. This suggests 

the changes in protein levels of E-cadherin and occludin may occur through post-

transcriptional regulation, whereas transcriptional regulation may play a role in bosutinib-

induced decrease of ZO-1. It is interesting to note that bosutinib increased OCLN mRNA levels 

despite a fall in protein levels. This suggests a potential compensatory mechanism whereby 

transcription is increased in an attempt to increase occludin protein levels back to resting 
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physiological levels.  Taken together, our experiments suggest that BCR-ABL inhibitors can 

increase intestinal permeability and disrupt TJs and AJs integrity. 

3.4.1 Limitations and future work 
A major limitation of this project was the lack of information on luminal GI concentrations of 

the TKIs used here; however, plasma concentrations are known. During treatment of CML 

with daily imatinib at 400mg or 600mg, plasma concentrations are between 2 and 5μM (Peng 

et al., 2005; De Francia et al., 2013). Plasma concentrations of bosutinib, with comparable 

daily doses of 500mg are much lower than imatinib being between 150-400nM (Pfizer, 2014). 

Dasatinib-treated CML patients generally have a plasma concentration of ~100nM after the 

standard daily treatment of 100mg (Birch et al., 2013; Wang et al., 2013), whilst gefitinib-

treated NSCLC patients have plasma concentrations between 1.6-2.5µM when treated with 

250mg daily (Nakamura et al., 2010; Miura et al., 2014). 

Mathematical modelling to determine physiologically relevant intestinal concentrations 

would be beneficial, as it is currently not possible to measure drug concentrations in the gut 

lumen. Several models exist for predicting GI luminal concentrations, and concentrations 

within enterocytes (Ando et al., 2015). Parameters required for these models are frequently 

obtainable from the literature or can be predicted by experimentation on intestinal cell lines 

(Ando et al., 2015). Knowledge of the gut lumen concentrations of TKIs would enable greater 

confidence in the translatability of our in vitro work through the use of physiologically 

relevant concentrations. 

Another limitation of our work was the Caco-2 cell model itself. Caco-2 monolayers are 

commonly used absorption models in the pharmaceutical industry, partly due to ease of 

maintenance and their spontaneous differentiation into enterocytes (Antunes et al., 2013). 

Moreover, bosutinib drug importer OCT-1/SLC22A1 and exporters ABCB1/MDR1 and 

ABCG2/BCRP are expressed at a similar levels between Caco-2 cells and the human jejunum 

suggesting cellular drug transport in vitro would be similar to humans in vivo (Hilgendorf et 

al., 2007; Brück et al., 2017; Vaessen et al., 2017), in theory resulting in similar intracellular 

drug concentrations. However, the common monooxygenase metabolic enzyme CYP3A4 has 

a 871-fold lower expression in Caco-2 cells relative to human jejunum (Vaessen et al., 2017). 

Moreover, the cancerous origin of Caco-2 cells makes them a poor comparative model for 

healthy intestinal cells. Caco-2 cells are aneuploid (modal chromosome number of 96) and 

exhibit chromosome instability with modal chromosome number significantly changing after 

20-30 generations (Thompson et al., 2008); therefore a genetic divergence between our 
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Caco2 cell model and normal healthy cells exists which may limit the translatability of our in 

vitro work to patients. 

To overcome the limitations of the Caco-2 cell model, experiments would ideally have been 

performed on non-cancerous intestinal cells. Most appropriate would be the use of human 

primary cells but due to difficulty in obtaining human intestinal tissue and maintaining these 

cells in culture, non-cancerous cell lines would be a more achievable alternative. Cell lines 

such as FHs 74 Int (ATCC® CCL-241™) and HIEC-6 (ATCC® CRL-3266™) – which are adherent 

epithelial cell lines derived from human foetal small intestine – are commercially available. 

Whilst this model has other limitations, such as being relatively immature (as exemplified by 

a lack of keratin expression), it is reasonable to postulate that findings in this model are more 

likely to translate to healthy human intestinal epithelium. However, use of cell lines 

developed from healthy tissue would not overcome the lack of cellular heterogeneity that 

exists in a 3-dimensional in vivo system. Consequently, we assess whether our findings are 

translatable into 3-dimensional multicellular murine intestinal organoids in chapter 5. 

Finally, whilst these findings provide a potential mechanism which could lead to bosutinib-

induced diarrhoea, i.e. an increased permeability as a result of TJ and AJ disruption, no 

conclusions can be made regarding the processes leading to this observed cellular junction 

dissolution. Further work studying the upstream pathways are performed in chapter 4. 

 

 

 

 

 

 

 

 

 

 

https://www.lgcstandards-atcc.org/en/Products/Cells_and_Microorganisms/By_Tissue/Intestine_Small/CCL-241.aspx
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4.1 Introduction 

In the previous chapter, we demonstrated cancer drugs bosutinib, imatinib, dasatinib and 

gefitinib can increase paracellular permeability in Caco-2 cells. Bosutinib had the most 

prominent effect and was also capable of disrupting the actin cytoskeleton, inducing 

degradation of TJs and AJs, and causing cellular retractions. This chapter aims to elucidate 

the potential pathways initiated by bosutinib that led to these changes, paying particular 

attention to pathways involved in occludin degradation and cellular retractions. 

There are many signalling cascades involved in the dissolution of intercellular junctions and 

cellular contractions (both of which can lead to cellular retractions); however, there is 

significant cross-talk between these pathways and they often converge onto one or more 

downstream effectors (González-Mariscal et al. 2008). Whilst these pathways are not fully 

elucidated, several of the downstream effector proteins that alter TJ and AJs proteins by 

cleavage, ubiquitination, phosphorylation, dephosphorylation, endocytosis and degradation 

are relatively well-established (Fig 4.1) (Ma et al., 2000; Traweger et al., 2002; Rao, 2009; Al-

Dasooqi, 2014; Samak et al., 2014). 

Downstream effector proteins are known to include matrix metalloproteinases (MMPs), 

which are zinc-dependent endopeptidases produced as inactive zymogens and converted to 

active peptidases by cleavage (Al-Dasooqi, 2014). They have been shown to induce 

proteolysis and alter localisation of TJ and AJ proteins such as E-cadherin (Zuo et al., 2011), 

occludin (Vermeer et al., 2006; Gorodeski, 2007; Eum et al., 2014), claudins (Vermeer et al., 

2006) and ZO-1 (Vermeer et al., 2006; S. Jeong et al., 2012) in a multitude of epithelial cells, 

including vaginal (Gorodeski, 2007), kidney (S. Jeong et al., 2012), intestinal (Eum et al., 2014; 

Bein et al., 2015) and airway epithelium (Vermeer et al., 2006). Moreover, MMPs are 

responsible for the increase in permeability induced by chymase (Groschwitz et al., 2013) 

and an N-acylhomoserine lactone compound (Eum et al., 2014) in Caco-2 BBe and Caco-2 

cells, respectively. 

As well as cleavage, changes in the phosphorylation status of cellular junction proteins can 

lead to TJ and AJ disassembly (González-Mariscal et al. 2008). During TJ disruption occludin 

appears to be dephosphorylated on serine and threonine (Ser/Thr) residues and 

phosphorylated on tyrosine (Tyr) residues (Rao, 2009). Phosphatases such as protein 

phosphatase 2A (PP2A) can directly interact with the carboxyl tail of occludin located within 

the cytoplasm, and dephosphorylate serine and threonine residues (which are 

hyperphosphorylated in intact epithelium) leading to junction disassembly (Nunbhakdi-Craig 
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et al., 2002; Seth et al., 2007). Some of these phosphatases, such as PP2A, can also indirectly 

alter occludin phosphorylation, by altering the activity of protein kinase C (PKC) isoforms 

responsible for the direct phosphorylation of occludin (Fig 4.1, orange pathway) (González-

Mariscal et al. 2008). 

Many kinases also play an active role in TJ and AJ disruption, such as Src which is targeted by 

both dasatinib (Breccia et al., 2011) and bosutinib (Pfizer, 2014). Studies suggest c-Src can 

function as both a positive and negative regulator of intercellular junction disassembly. In 

Caco-2 cells, inhibiting focal adhesion kinase (FAK) on the c-Src activation loop increases 

intestinal permeability by displacing ZO-1 and occludin from cell borders (Ma et al., 2013). 

Whereas, direct tyrosine phosphorylation of occludin by c-Src can lead to ubiquitination by 

the E3 ubiquitin ligase, Itch, followed by degradation via the proteasomal pathway, in an 

array of epithelial cell lines including human colon HT-29 cells (Fig 4.1, red pathway) 

(Traweger et al., 2002; Chelakkot et al., 2017). 

As well as degradation by the proteasomal pathway, occludin can also be degraded via the 

lysosomal pathway (Fig 4.1). Evidence for this in Caco-2 cells includes occludin localizing with 

lysosomal markers, and increased cytoplasmic occludin levels following neutralization of 

lysosomal pH (Nighot et al., 2017). 

In addition to kinases and phosphatases, the actin cytoskeleton is a key regulator of TJ and 

AJ dynamics. Several cytosolic cell junction proteins, such as ZO-1 and α-catenin, interact 

directly with actin, connecting TJ and AJ plaques to the peri-junctional actomyosin belt (Zihni 

et al., 2016). Disruption to the cytoskeleton, through phosphorylation of myosin light chain 

(MLC) protein can lead to stress fibre formation and increased actomyosin contractility, 

resulting in TJ disassembly and increased intestinal permeability (Fig 4.1, teal pathway) (Ma 

et al., 2000; Samak et al., 2014). 

A common pathway that is frequently activated during TJ dissolution linked to cytoskeletal 

disruption is the Rho-ROCK pathway (González-Mariscal et al., 2008). Rho family GTPases are 

small GTP binding proteins which act as molecular switches, cycling between the active GTP-

bound form and the inactive GDP-bound form (González-Mariscal et al., 2008). Ras homolog 

family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac) and Cell division 

control protein 42 homolog (Cdc42) members are all involved in TJ barrier disruption. RhoA 

has a dominant role in activating Rho-associated protein kinase (ROCK) leading to 

phosphorylation of MLC (Zandy et al., 2007), actomyosin contractility and subsequent TJ 

opening (González-Mariscal et al., 2008). RhoA can be activated by pro-inflammatory 
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cytokines such as Interferon-gamma (INF-γ) (Utech et al., 2005). Activated myosin light chain 

kinase (MLCK) can also phosphorylate MLC leading to re-localization of TJ proteins (Clayburgh 

et al., 2004; Lapointe et al., 2011), and has been seen in tumour necrosis factor-alpha (TNFα)-

induced alterations in Caco-2 TJ barrier function (Ma et al., 2005). Phosphorylation of MLC 

due to either ROCK or MLCK activation leading to actomyosin contractility can lead to both 

cell junction dissolution and cellular contractions. 

 

Figure 4.1. Simplification of the signalling pathways involved in increased paracellular 
permeability. PI3K and Src are involved in phosphorylation of tyrosine occludin residues 
leading to TJ disruption, whilst phosphatases PP2A and PP1 are involved in 
dephosphorylation of serine and threonine residues, also leading to TJ disruption. 
Activation of FAK by Src has been shown to prevent TJ disassembly by an unknown 
mechanism. Secreted MMPs are involved in occludin cleavage. Occludin can be degraded 
by both the lysosomal and proteasomal pathway. Phosphorylation of MLC, for example 
due to RhoA/ROCK signalling, also disrupts TJs (through changes in acto-myosin 
dynamics). MAPK pathways have a more prominent role in decreasing gene expression of 
TJ and AJ protein.  Abbreviations: ABL, Abelson murine leukaemia viral oncogene homolog 
1 protein; FAK, focal adhesion kinase; MAPK(KK), mitogen-activated protein kinase (kinase 
kinase); MLC(K), myosin light chain (kinase); MMP, matrix metalloproteinases: ROCK, Rho-
associated protein kinase; P, phosphate; PI3K, phosphoinositide 3-kinase; PIP2, 
phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-triphosphate; 
PKC, protein kinase C; PP2A, protein phosphatase 2A; Ub, ubiquitin; TIMPs, tissue 
inhibitors of MMPs; Tyr, tyrosine residue; Ser/Thr, serine and threonine resides. Figure 
produced in Inkscape by S. French. 



143 
 

Another upstream pathway thought to regulate TJ opening is the mitogen-activated protein 

kinase (MAPK) pathway (González-Mariscal et al., 2008) (Fig 4.1, purple pathway). In this 

pathway, activation of small GTP binding proteins by growth factor receptors initiates 

sequential activation of several cytoplasmic Ser/Thr kinases called MAPKs, culminating in 

phosphorylation of many cytosolic and nucleic proteins (González-Mariscal et al., 2008). The 

Ras/Raf/MEK1&2/ERK1&2, MLK/MKK3&6/p38 and MLK/MKK4&7/JNK pathways are 

initiated in response to a vast array of stress stimuli, including oxidative stress and 

inflammatory cytokines, which can result in decreased barrier function (González-Mariscal et 

al., 2008). In most cases, this is through altered gene expression of TJ and AJ proteins 

(Youmba et al., 2012), and therefore not as relevant to our studies on occludin. However, 

studies in Caco-2 cells have shown activation of c-Jun N-terminal kinase 2 (JNK2) during 

calcium depletion or cyclic stretch (applying a biaxial repetitive strain to cells) causes 

redistribution of TJs and AJs proteins away from epithelial junctions (Samak et al., 2014, 

2015), providing an alternative mechanism through which the MAPK pathways may increase 

permeability. 

The PI3K/Akt pathway, which can converge onto MAPK pathways (Fig 4.1, green pathway) 

(Mendoza et al., 2011), is also involved in TJ regulation (González-Mariscal et al., 2008). In 

this pathway phosphoinositide 3-kinase (PI3K) converts phosphatidylinositol 4,5-

bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), causing the activation 

of Akt which is involved in the degradation of AJ protein β-catenin and reduced expression 

of TJ and AJ proteins (González-Mariscal et al., 2008). PI3K is associated with the carboxyl tail 

of occludin in human GI T84 and Caco-2 cells (Nusrat et al., 2000; Sheth et al., 2003). 

Activation of PI3K – as seen during addition of inflammatory cytokines, such as IFN-γ, (Boivin 

et al., 2009) or interleukins (ILs) (Ceponis et al., 2000; Suzuki et al., 2011), and oxidative stress 

(Sheth et al., 2003) – leads to increased permeability, decreased occludin levels and/or 

redistribution of occludin (Sheth et al., 2003; Boivin et al., 2009). 

In summary, effector proteins responsible for TJ and AJ disruption - such as MMPs, kinases 

and phosphatases - can be activated by several converging and diverging upstream pathways 

such as the MAPK, PI3K/Akt and Rho-ROCK pathways. These upstream pathways are 

activated in response to cellular stresses including ER stress, inflammation and oxidative 

stress which can occur during drug toxicity (González-Mariscal et al., 2008; Hetz, 2012). The 

small molecule BCR-ABL inhibitor drugs imatinib, dasatinib and nilotinib have been shown to 

cause oxidative stress (Baran et al., 2013; Damiano et al., 2018) and ER stress (Kerkela et al., 

2006; Nakatani et al., 2006; Bellodi et al., 2009; Lin et al., 2013; Lekes et al., 2016; Yang et al., 
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2018) and this may activate downstream pathways involved in TJ and AJ disruption. This 

could also result in a cellular retraction phenotype due to release of inherent tension within 

monolayers causing the cells to separate as cell junctions are degraded. Alternatively, or in 

addition, the cellular retraction phenotype could be a result of actomyosin contractions, that 

may be initiated through the Rho-ROCK or MLCK pathway, for example. 

In this chapter, we test the hypothesis that bosutinib-induced disruption of intercellular 

junctions in Caco-2 monolayers involves specific cellular stress pathways. The aims of this 

chapter were to: 

1. Assess the ability of bosutinib and imatinib to induce ER stress and TNF- release (a 

pro-inflammatory cytokine) 

2. Determine pathways involved in bosutinib-induced cellular retractions using 

inhibitors of ER stress, inflammation, oxidative stress, cell death, MMPs, ROCK 

signalling and MLCK activation 

3. Determine pathways involved in bosutinib-induced occludin degradation using 

inhibitors of ER stress, inflammation, oxidative stress, cell death, MMPs, ROCK 

signalling and MLCK activation 

4. To evaluate changes in levels of MMPs and TIMPs induced by bosutinib 

 

4.2 Results 

4.2.1 Bosutinib does not induce the release of TNFα 

A plethora of studies show TNFα, alone or in combination with other pro-inflammatory 

cytokines, increase Caco-2 monolayer permeability through re-localization and/or 

degradation of cell-cell junction proteins such as ZO-1 and occludin (Moran et al., 2012; Al-

Sadi et al., 2013; Contreras et al., 2015; Zhang et al., 2016). We therefore tested the 

hypothesis that bosutinib-induced occludin disruption involved TNFα by first assessing 

whether bosutinib could induce TNFα release. 

Treatment of Caco-2 cells for 24 h with 25µM bosutinib or imatinib did not induce the release 

of TNFα into media (Fig 4.2A, One-way ANOVA, p<0.05); however, 25µM dasatinib or gefitinib 

caused a slight increase in TNFα release (Fig 4.2A, One-way ANOVA, p<0.001). However, 

levels in the media were still very low, ~3.5pg/mL and ~5pg/mL, for dasatinib and gefitinib, 

respectively. It is important to note that these values were below the lower limit of 

quantification (lowest point on the standard curve, 15.6pg/mL, Fig 4,2B), and no positive 
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control was used for TNFα release from cells, meaning these results should be treated with 

caution. 

 

Figure 4.2. Effect of TKIs on TNFα release. Caco-2 cells were incubated with vehicle or 
25µM bosutinib, dasatinib, imatinib or gefitinib. Growth media was harvested after 24 h 
and TNFα concentrations determined by ELISA (A). TNFα protein standards (0-1000pg/ml) 
were added to growth media to generate a standard curve (B). Points are labelled with 
the TNFα concentration (pg/mL). Due to the logarithmic nature of the graph the optical 
density (492nm subtract 570nM) of 0pg/ml cannot be shown and was 0.0110. ***p<0.001 
versus vehicle, One-way ANOVA followed by Dunnett’s post-test, mean ± SEM, N=3-4, 
n=3. 
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4.2.2 Bosutinib does not induce ER stress 

ER stress contributes to E-cadherin decrease in intestinal cells treated with the TKI, erlotinib 

(Fan et al., 2014), and can decrease TEER in Caco-2 cells (Chotikatum et al., 2018). As it was 

found that bosutinib decreased E-cadherin levels and TEER in chapter 3, we investigated the 

ability of bosutinib and imatinib to induce ER stress. Two ER stress markers were investigated: 

- binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) (Cao, 2015). 

Tunicamycin (10μM, 24 h) a bona fide inducer of ER stress (Hao et al., 2012) was used as a 

positive control. Neither 25μM bosutinib nor imatinib treatment for up to 24 h increased 

levels of BiP (Fig 4.3, Dunnett’s test, p>0.05). BiP levels appeared slightly elevated after 24 h 

treatment with imatinib; however, this increase was not significant. CHOP was not detected 

in either bosutinib or imatinib treated samples. As expected, both BiP (Fig 4.3, Dunnett’s test, 

p<0.001) and CHOP expression was induced with tunicamycin treatment (Fig 4.3). 

 

Figure 4.3. Effect of bosutinib and imatinib on levels of ER stress related proteins. Caco-
2 cells were incubated with 25μM bosutinib (A, C), imatinib (B, D), positive control 10μM 
tunicamycin (TU) or vehicle for 24 h. The expression of BiP and CHOP was analysed by 
Western blot (A, B). Densitometry analysis was undertaken for BiP and results normalized 
to actin (C, D). Densitometry analysis was not performed for CHOP. ***p<0.001 versus 
vehicle, One-way ANOVA followed by Dunnett’s test, mean ± SEM, N=3-4. 
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4.2.3 Bosutinib-induced cytoskeletal rearrangement and cellular retractions 

do not involve MLCK 

MLCK is known to be involved in TJ reorganization and cytoskeletal rearrangement during 

cyclic stretch-induced (Samak et al., 2014) and Cytochalasin B-induced (Ma et al., 2000) 

increase in paracellular permeability in Caco-2 cells. Therefore, we tested whether inhibition 

of MLCK prevented bosutinib-induced cellular retractions and cytoskeletal rearrangement. 

Pre-incubation with MLCK inhibitor ML-7 (10µM) for 1h failed to prevent bosutinib-induced 

cytoskeletal rearrangement (Fig 4.4D) or bosutinib-induced cellular retractions (Fig 4.5B, t-

test, p>0.05). 

 

 

 

Figure 4.4. Effect of myosin light chain kinase (MLCK) inhibition on bosutinib-induced 
cytoskeletal rearrangement. Caco-2 cells were pre-treated with vehicle (A,B) or 10μM 
MLCK inhibitor ML-7 (C,D) for 1h then treated with vehicle (A,C) or 25μM bosutinib (B,D) 
for 3 h. Cells were stained for F-actin (red) and nuceli (blue) then analysed by 
immunofluorescence at 40x magnification. Images are representative of 1 biological 
experiment with no technical or biological replicates. Three fields of view were taken. 
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4.2.4 Bosutinib-induced cellular retractions do not involve Rho kinase 

activation 

A major mechanism of cellular contraction and retraction fibre formation is through RhoA 

activation leading to ROCK activation (Akhshi et al., 2014). Moreover, ethanol-induced 

increase in intestinal permeability, cytoskeletal and TJ reorganization is inhibited by Y-27632, 

a chemical ROCK inhibitor  (Elamin et al., 2018). We tested the hypothesis that this signalling 

pathway was involved in bosutinib-induced cellular retractions by the addition of 10µM Y-

27632, 1 h prior to treatment with 25µM bosutinib or vehicle. Pre-incubation with Y-27632 

did not attenuate bosutinib-induced cellular retractions (Fig 4.6, t-test, p>0.05). 

 

Figure 4.5. Effect of myosin light chain 
kinase (MLCK) inhibition on bosutinib-
induced changes in cellular retractions. 
Caco-2 cells were pre-treated with 10μM 
MLCK inhibitor (ML-7) or vehicle for 1 h then 
25μM bosutinib was added for 3 h. Light 
microscopy images were obtained and cell-
free area (extent to which cells had pulled 
apart i.e. cellular retractions) was 
determined using the free-hand draw tool in 
Image J. t-test, mean ± SEM, N=4, n=3. 
Abbreviations: AU, arbitrary units. There was 
no statistical significant difference in cell free 
area between ML-7 and vehicle pre-
treatment. 

Figure 4.6. Effect of Rho kinase inhibitor Y-
27632 on bosutinib-induced changes in 
cellular retractions. Caco-2 cells were pre-
treated with 10μM ROCK inhibitor (Y-27632) 
or vehicle for 1 h then 25μM bosutinib was 
added for 3 h. Three light microscopy images 
were obtained and cell-free area (extent to 
which cells had pulled apart i.e. cellular 
retractions) was determined using the free-
hand draw tool in Image J. t-test, mean ± SEM, 
N=4, n=3. Abbreviations: AU, arbitrary units. 
There was no statistical significant difference 
in cell free area between Y-27632 and vehicle 
pre-treatment. 
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4.2.5 Bosutinib decreases occludin levels by protein degradation 

Our data showed that bosutinib (25µM) decreases occludin protein levels as early as 3 h after 

treatment (chapter 3, Fig 3.13A and 3.14A), whilst mRNA levels were significantly increased 

over time (chapter 3, Fig 3.15C). This suggests post-transcriptional modulation of occludin 

levels by bosutinib, which could occur by decreased translation of the occludin transcript or 

protein degradation. To investigate this we assessed the turnover of occludin over 24 h using 

the protein synthesis inhibitor, cycloheximide. Treatment of cells with cycloheximide (10µM) 

did not decrease occludin levels (Fig 4.7) confirming that decreased mRNA levels, or even 

decreased translation, would not decrease occludin protein levels and that bosutinib must 

induce protein degradation of occludin. This contradicts a previous study which showed 

decreased occludin levels in Caco-2 cells around 6-9 h after cycloheximide treatment (Nighot 

et al., 2017); however, it is unclear whether the cells used were fully differentiated. 

 

Figure 4.7. Assessment of the half-life of occludin protein using cycloheximide. 
Caco-2 cells were pre-incubated with vehicle or 10µM cycloheximide (CHX) and 
protein collected at indicated time points. Expression of occludin was analysed by 
Western blot (A). Densitometry analysis was performed and results normalized to 
actin (B). Inhibition of protein synthesis by cycloheximide was confirmed by DC™ 
BioRad protein determination assay (C). N (biological repeats) = 1, n (technical 
repeats) = 1 
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4.2.6 Bosutinib-induced degradation of occludin does not involve the 

lysosomal or proteasomal pathway, but bosutinib-induced cellular 

retractions involve the proteasomal pathway 

Occludin can be degraded by the lysosomal and proteasomal pathway in Caco-2 and HT-29 

intestinal cell lines (Chelakkot et al., 2017; Nighot et al., 2017). To explore the mechanism of 

bosutinib-induced occludin degradation, Caco-2 cells were pre-treated with the lysosomal 

inhibitors, chloroquine (CQ) (50µM), bafilomycin (200nM) and 3-methyladenine (3-MA) 

(10mM), and the proteasomal inhibitor, MG-132 (50µM) for 1 h prior to 25µM bosutinib for 

3 h. MG-132 did not prevent the significant decrease in occludin (Fig 4.8, Dunnett’s test, 

p<0.01). CQ (Fig 4.8, Dunnett’s test, p<0.01), bafilomycin (Fig 4.9, Dunnett’s test, p<0.01) and 

3-MA (Fig 4.9, Dunnett’s test, p<0.001) also failed to prevent a decrease in occludin protein 

levels. 

 

Figure 4.8. Effect of lysosomal inhibitor chloroquine and proteasomal inhibitor MG-132 
on bosutinib-induced degradation of occludin. Caco-2 cells were pre-incubated with 
vehicle, 50μM lysosomal inhibitor chloroquine (CQ) or 50μM proteasomal inhibitor MG-
132 for 1 h then either vehicle control (-) or 25μM bosutinib (+) was added for 3 h. 
Expression of occludin was analysed by Western blot (A). Densitometry analysis was 
performed and results normalized to actin (B). Significant decreases with bosutinib 
treatment; **p<0.01, One-way ANOVA followed by Dunnett’s test, mean ± SEM, N=3-4. 
CQ and MG-132 pre-treatment did not significantly alter bosutinib-induced reduction in 
occludin relative to vehicle pre-treatment. 
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Although lysosomal and proteasomal inhibitors failed to prevent bosutinib-induced occludin 

degradation, it was hypothesized that bosutinib-induced cellular retractions may involve 

degradation of other cell-cell junction proteins via the proteasomal or the lysosomal 

pathway. A 1 h pre-treatment of Caco-2 cells with lysosomal inhibitors CQ (50µM), 

bafilomycin (200nM) or 3-MA (10mM), did not prevent bosutinib-induced changes in 

morphology i.e. cell-free area did not differ from respective vehicle pre-treatment (Fig 4.10, 

One-way ANOVA, p>0.05). However, 1 h pre-treatment with the proteasomal inhibitor MG-

132 (50µM) reduced the ability for cells to ‘pull apart’ in the presence of bosutinib (Fig 4.11, 

t-test, p<0.001). 

Figure 4.9. Effect of lysosomal inhibitors bafilomycin and 3-methyladenine on 
bosutinib-induced degradation of occludin. Caco-2 cells were pre-treated with vehicle 
(DMSO for bafilomycin, H2O for 3-MA), 10mM lysosomal inhibitor 3-MA or 200nM 
lysosomal inhibitor bafilomycin (BAF) for 1 h. Then either vehicle (-) or 25μM bosutinib 
(+) was added for 3 h. Expression of occludin was analysed by Western blot (A). 
Densitometry analysis was performed and results normalized to actin (B). Significant 
decreases with bosutinib treatment; *p<0.05, **p<0.01, ***p<0.001, One-way ANOVA 
followed by Dunnett’s test, mean ± SEM, N=3. Baf and 3-MA pre-treatment did not 
significantly alter bosutinib-induced reduction in occludin relative to vehicle pre-
treatment. 
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Figure 4.10. Effect of lysosomal inhibitor chloroquine and proteasomal inhibitor MG-
132 on bosutinib-induced cellular retractions. Caco-2 cells were pre-treated with 50μM 
chloroquine (CQ), 200nM bafilomycin (BAF), 10mM 3-Methyladenine (3-MA) or vehicle 
(DMSO for BAF and CQ, H2O for 3-MA), for 1 h prior to 3 h incubation with 25μM 
bosutinib. Light microscopy images were obtained and cell-free area (extent to which 
cells had pulled apart) was determined using the free-hand draw tool in Image J. One-
way ANOVA, mean ± SEM, N=3-6, n=3. There was no statistical significant difference in 
cell free area between CQ, BAF and vehicle (DMSO), nor between 3-MA and vehicle 
(H

2
O). 

Figure 4.11. Effect of proteasomal inhibitor MG-132 on bosutinib-induced in 
cellular retractions. Caco-2 cells were pre-treated with 50μM MG-132 or vehicle for 
1 h prior to 3 h incubation with 25μM bosutinib. Light microscopy images were 
obtained and cell-free area (extent to which cells had pulled apart) was determined 
using the free-hand draw tool in Image J. **p<0.01 versus vehicle, t-test, mean ± 
SEM, N=3, n=3. 
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4.2.7 Bosutinib-induced occludin degradation and cellular retractions do not 

involve ROS signalling 

Lipid peroxidation by reoxygenation or hydrogen peroxide (H2O2) treatment increases Caco-

2 monolayer permeability (Tomita et al., 2002), and in some studies this has been shown to 

involve re-localization of ZO-1 and occludin away from the plasma membrane (Martín-

Venegas et al., 2013; Catanzaro et al., 2015). Consequently, we also explored the role of 

reactive oxidative species (ROS) signalling in bosutinib-induced occludin degradation and cell 

morphology alterations. 

Inhibition of ROS signalling by a 2 h pre-treatment with the iron-chelating agent 

deferoxamine mesylate (DEF) (100µM) (Fig 4.12, Dunnett’s test, p<0.05) or the antioxidant 

N-acetylcysteine (NAC) (10mM) (Fig 4.12, Dunnett’s test, p<0.01) were unable to prevent 

bosutinib-induced (25µM, 3 h) occludin protein decrease. 

 

Figure 4.12. Effect of ROS inhibitors on bosutinib-induced degradation of occludin. 
Caco-2 cells were pre-treated with vehicle, 100µM ROS inhibitor deferoxamine (DEF) 
or 5mM ROS inhibitor N- acetylcysteine (NAC) for 2 h then either vehicle (-) or 25μM 
bosutinib (+) was added for 3 h. Expression of occludin was analysed by Western blot 
(A). Densitometry analysis was performed and results normalized to actin (B). 
Significant decreases with bosutinib treatment; *p<0.05, **p<0.01, One-way ANOVA 
followed by Dunnett’s test, mean ± SEM, N=4. DEF and NAC pre-treatment did not 
significantly alter bosutinib-induced reduction in occludin relative to vehicle pre-
treatment. 
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Deferoxamine pre-treated cells displayed slightly higher occludin levels (albeit not 

significant) after addition of bosutinib, compared to vehicle pre-treated cells (Fig 4.12, 

Dunnett’s test, p>0.05). Therefore, to investigate this further, cells were pre-treated for 2 h 

with increasing concentrations of deferoxamine (0.25mM to 15mM) to determine the 

possible contribution of ROS signalling in bosutinib-induced occludin degradation. Increasing 

concentrations failed to attenuate bosutinib-induced occludin decrease (Fig 4.13, Dunnett’s 

test, p<0.05). However, these results should be interpreted with caution as the bosutinib-

induced decrease in occludin was not significant with vehicle pre-treatment. 

 

Figure 4.13. Effect of high concentrations of ROS inhibitor deferoxamine on bosutinib-
induced occludin degradation. Caco-2 cells were pre-treated with vehicle or 
deferoxamine (0.25mM-15mM) for 2 h then either vehicle (-) or 25μM bosutinib (+) was 
added for 3 h Expression of occludin was analysed by Western blot (A). Densitometry 
analysis was performed and results normalized to actin (B). Significant decreases with 
bosutinib treatment; *p<0.05, **p<0.01, One-way ANOVA followed by Dunnett’s test, 
mean ± SEM, N=5. All concentrations of DEF did not significantly alter bosutinib-induced 
reduction in occludin relative to vehicle pre-treatment. 
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Consistent with findings regarding occludin protein levels, neither deferoxamine (100µM) 

nor N-acetylcysteine (10mM) pre-treatment prevented bosutinib-induced cellular 

retractions (Fig 4.14, One-way ANOVA, p>0.05). 

 

4.2.8 Bosutinib-induced occludin degradation and cellular retractions do not 

involve cell death pathways 

Unsurprisingly, apoptosis can induce an increase in epithelial permeability (Bojarski et al., 

2001). Our data showed that 25µM bosutinib can induce PARP cleavage and nuclear 

fragmentation after 3 h (chapter 3; Fig. 1.7A, 1.8). We therefore hypothesized that bosutinib-

induced occludin degradation and morphological changes may be linked to cell death. To test 

this hypothesis, the necroptosis inhibitor necrostatin-1 (50µM), oxidative-necrosis inhibitor 

IM-54 (20µM), ferroptosis inhibitor ferrostatin-1 (10µM) and pan caspase (apoptosis) 

inhibitor Z-VAD-FMK (30µM) were added to Caco-2 cells 1 h prior to the addition of 25µM 

bosutinib for 3 h. 

Figure 4.14. Effect of ROS inhibitors on bosutinib-induced cellular retractions. 
Caco-2 cells were pre-treated with 100μM deferoxamine mesylate (DEF), 10mM 
N-acetylcysteine (NAC) or vehicle for 2 h then 25μM bosutinib was added for 3 
h. Light microscopy images were obtained and cell-free area (extent to which 
cells had pulled apart) was determined using the free-hand draw tool in Image J. 
One-way ANOVA, mean ± SEM, N=3, n=3. There was no statistical significant 
difference in cell free area between DEF, NAC and vehicle. 
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Cells pre-treated with IM-54, ferrostatin-1 or Z-VAD-FMK maintained a significant decrease 

in occludin levels after bosutinib treatment (Fig 4.15, Dunnett’s test, p<0.05), whilst pre-

treatment with necrostatin-1 prevented a significant bosutinib-induced occludin decrease 

(Fig 4.15, Dunnett’s test, p>0.05). However, it is important to note that occludin levels 

following pre-incubation with necrostatin-1 differed little from the vehicle pre-treatment for 

both vehicle and bosutinib post-treatment (Fig 4.15, Dunnett’s test, p>0.05). 

 

 

Figure 4.15. Effect of cell death inhibitors on bosutinib-induced degradation of 
occludin. Caco-2 cells were pre-treated with vehicle, 50µM Necrostatin-1, 20µM IM-
54, 10µM Ferrostatin-1,  30µM Z-VAD-FMK (ZVAD) for 1 h then either vehicle (-) or 
25μM bosutinib (+) was added for 3 h. Expression of occludin was analysed by 
Western blot (A). Densitometry analysis was performed and results normalized to 
actin (B). Significant decreases with bosutinib treatment; *p<0.05, **p<0.01, One-
way ANOVA followed by Dunnett’s test, mean ± SEM, N=3-4. All cell death inhibitors 
did not significantly alter bosutinib-induced reduction in occludin relative to vehicle 
pre-treatment. 



157 
 

Furthermore, none of the cell death inhibitors were able to attenuate bosutinib-induced 

cellular retractions (Fig 4.16, One-way ANOVA, p>0.05). 

 

 

 

 

 

 

 

 

Figure 4.16. Effect of cell death inhibitors on bosutinib-induced cellular 
retractions. Caco-2 cells were pre-treated with vehicle, 10μM ferrostatin-1 (FER), 
20μM IM-54, 50μM necrostatin-1 (NEC), 30µM Z-VAD-FMK (ZVAD) for 1 h then 
25μM bosutinib was added for 3 h. Light microscopy images were obtained and 
cell-free area (extent to which cells had pulled apart) was determined using the 
free-hand draw tool in Image J. One-way ANOVA, mean ± SEM, N=3-5, n=3. There 
was no statistical significant difference in cell free area between cell death 
inhibitors and vehicle. 
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3.4.1 Bosutinib-induced cellular retractions, but not occludin degradation, is 

attenuated by MMP inhibitor GM6001 

MMPs are associated with colitis in rodent models and have a role in TJ modulation (Al-

Dasooqi et al., 2010; Trivedi et al., 2013; Ding et al., 2014). It has been shown Mmp-9-/- mice 

have decreased intestinal permeability and higher occludin protein levels than wild type mice 

(Nighot et al., 2015). Therefore, we assessed the effect of MMP inhibition on bosutinib-

induced occludin protein decrease. 

Pre-treatment with the pan-MMP inhibitor, GM6001 (10µM), for 1 h failed to prevent 

bosutinib-induced occludin decrease in Caco-2 cells (Fig 4.17, Dunnett’s test, p<0.05); the 

difference between occludin levels in bosutinib treated cells pre-treated with either vehicle 

or GM6001 was not significant (Fig 4.17, Dunnett’s test, p>0.05). 

  

Figure 4.17. Effect of MMP inhibitor GM6001 on bosutinib-induced degradation of 
occludin. Caco-2 cells were pre-treated with vehicle or 10µM GM6001 for 1 h then either 
vehicle (-) or 25μM bosutinib (+) was added for 3 h. Expression of occludin was analysed 
by Western blot (A). Densitometry analysis was performed and results normalized to actin 
(B). Dotted lines represent where membranes were cropped. Significant decreases with 
bosutinib treatment; *p<0.05, **p<0.01, One-way ANOVA followed by Dunnett’s test, 
mean ± SEM, N=6. GM6001 pre-treatment did not significantly alter bosutinib-induced 
reduction in occludin relative to vehicle pre-treatment. 
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To ensure maximal MMP inhibition, cells were treated with increasing concentrations of 

GM6001 (50µM - 200µM). Whilst pre-treatment with greater concentrations of GM6001 

increased occludin levels (relative to pre-treatment with vehicle) in the presence of 

bosutinib, these differences were not significant (Fig 4.18, Dunnett’s test, p>0.05). One 

hundred micromolar GM6001 pre-treatment prevented the decrease in occludin normally 

seen with bosutinib treatment (Fig 4.18, Dunnett’s test, p>0.05); however, this may be due 

to lower levels of occludin in 100µM GM6001 pre-treated cells relative to vehicle pre-treated 

cells in the absence of bosutinib. 

 

Figure 4.18. Effect of high concentrations of MMP inhibitor GM6001 on bosutinib-
induced occludin degradation. Caco-2 cells were pre-treated with vehicle or 50µM-
200µM GM6001 for 1 h then either vehicle or 25μM bosutinib was added for 3h 
Expression of occludin was analysed by Western blot (A). Densitometry analysis was 
performed and results normalized to actin (B). Significant decreases with bosutinib 
treatment; **p<0.01, ***p<0.001, One-way ANOVA followed by Dunnett’s test, mean 
± SEM, n=3. All concentrations of GM6001 did not significantly alter bosutinib-
induced reduction in occludin relative to vehicle pre-treatment (p>0.05). 
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We also assessed whether MMP inhibition could prevent bosutinib-induced cellular 

retractions. GM6001 (10µM) was added to cells 1 h prior to 25µM bosutinib treatment for 3 

h. Pre-incubation with GM6001 significantly attenuated bosutinib-induced increase in cell-

free area in Caco-2 cells (Fig 4.19, t-test, p<0.05). 

 

 

4.2.9 Bosutinib decreases levels of TIMP2 

As our data suggested MMP inhibition could prevent bosutinib-induced cellular retractions, 

and it has previously been shown chemotherapy, such as irinotecan, can increase MMP levels 

in rat intestine (Al-Dasooqi et al., 2010), we hypothesized that bosutinib would increase 

MMPs levels and/or decrease tissue inhibitor of metalloproteinase (TIMP) levels. An MMP 

array was used to assess changes in the levels of MMP-1, -2, -3, -8, -9, -10 and -13 as well as 

TIMPs-1, -2 and -4 in Caco-2 cells both extra-cellularly (i.e. secreted into the growth media), 

and intra-cellularly. Bosutinib (25µM) treatment for 3 h did not appear to drastically alter the 

levels of secreted MMP and TIMP proteins (Fig 4.20, n=1). However, intra-cellular TIMP-2 

levels were significantly decreased following bosutinib treatment (Fig 4.20, Dunnett’s test, 

p<0.001). 

  

Figure 4.19. Effect of MMP inhibitor 
GM6001 on bosutinib-induced cellular 
retractions. Caco-2 cells were pre-
treated  with 10μM GM6001 or vehicle 
for 1 h then 25μM bosutinib was added 
for 3 h. Light microscopy images were 
obtained and cell-free area (extent to 
which cells had pulled apart) was 
determined using the free-hand draw 
tool in Image J. *p<0.05 versus vehicle, 
t-test, mean ± SEM, N=4, n=3. 
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Figure 4.20. Effect of bosutinib on protein levels of MMPs and TIMPs. Caco-2 cells 
were treated with vehicle (A, C) or 25μM bosutinib (B, D) for 3 h. Whole-cell protein 
lysates and media were harvested to determine level of intracellular protein (A, B, F) 
and secreted protein (C, D, G), respectively. Protein levels were determined by MMP 
array (Membrane layout (E)). Densitometry analysis was performed and results 
normalized to positive control (Pos) after subtraction of background reading negative 
control (Neg) (F, G). Due to high levels of TIMP-2 secreted protein, a membrane which 
was not overexposed for TIMP-2 (not shown) was used to determine changes in TIMP-
2 secreted protein. ***p<0.001 versus vehicle, One-way ANOVA followed by Dunnett’s 
test, mean ± SEM, N=1 and 3 for media and protein, respectively. 
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Western blot analysis of 25µM bosutinib-treated Caco-2 cells was used to confirm this finding 

and to further assess changes in TIMP-2 levels over a 24 h time course. Bosutinib induced a 

transient ~50% decrease in intra-cellular TIMP-2 protein from 1 h of treatment, which 

became significant at 3 h (Fig 4.21, Dunnett’s test, p<0.05), and was not significant at later 

time points. 

 

Figure 4.21. Effect of bosutinib on TIMP-2 protein levels. Caco-2 cells were pre-
treated with 25μM bosutinib or vehicle for up to 24 h. Expression of TIMP-2 was 
analysed by Western blot (A). Densitometry analysis was performed and results 
normalized to actin (B). Data are represented as the percentage change relative to 0 
h. *p<0.05 versus vehicle, One-way ANOVA followed by Dunnett’s test, mean ± SEM, 
N=4. 
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4.3 Summary of results 

The main findings from this chapter showed that: a) bosutinib does not induce an 

inflammatory response through TNFα release; b) bosutinib and imatinib do not promote ER 

stress; c) bosutinib-induced cellular retractions may involve protein cleavage by MMPs and 

protein degradation via the proteasomal pathway; d) bosutinib induces occludin protein 

degradation through a pathway we were unable to identify using our array of pathway 

inhibitors; and e) bosutinib decreases levels of TIMP-2, an MMP inhibitor. 

4.4 Discussion 

Inflammation has a key role in chemotherapy-induced diarrhoea. Elevated levels of pro-

inflammatory IL-1β and TNFα are associated with diarrhoea in patients treated with many 

different forms of chemotherapy including capecitabine, 5-FU combination therapies, 

carboplatin and gemcitabine (Stringer et al., 2013). Moreover, rodent studies have shown 

elevated levels of intestinal cytokines including IL-1β and TNFα following administration of 

irinotecan, methotrexate or 5-FU (Logan, 2008; Logan et al., 2008, 2009; Melo et al., 2008; 

Sakai et al., 2013; Yasuda et al., 2013; Hamouda et al., 2017). In Caco-2BBe cells, occludin 

knockdown prevents TNFα-induced decrease in TEER, suggesting TNFα induces increased 

permeability through the degradation of occludin (Buschmann et al., 2013). We therefore 

hypothesized that bosutinib-induced degradation of occludin may involve TNFα release. In 

our study we did not detect TNFα release following 24h treatment with 25µM bosutinib or 

imatinib; however, TNFα levels were increased with dasatinib and gefitinib treatment 

(although increase was minimal). Our data is therefore complementary with findings in rat 

IEC-6 cells which show elevated levels of other pro-inflammatory cytokines, IL-6 and IL-25, 

following 24 h treatment with 20µM gefitinib (Hong et al., 2014). To date, no studies have 

assessed the direct effect of bosutinib, imatinib or dasatinib on intestinal cytokine levels in 

vitro, in vivo or in human tissue. 

It is possible that bosutinib may be capable of inducing TNFα release. However this was not 

detected in our in vitro model, possibly due to the absence of a co-culture system containing 

immune cells such as macrophages, dendritic cells and lymphocytes which are responsible 

for the majority of cytokine release in vivo (Peterson et al., 2014). For our experimental 

purposes we were interested in determining the mechanism by which bosutinib-induced cell-

cell junction rearrangement, as observed in chapter 3, and therefore we did not wish to alter 

our model. Moreover, Calatayud et al. demonstrated it is possible to detect TNFα release in 

Caco-2 cells by ELISA (Calatayud et al., 2014), providing support for the use of our in vitro 
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Caco-2 model without an immune co-culture system.  From these data we can conclude that 

TNFα release was not responsible for bosutinib-induced changes in permeability in our Caco-

2 model. 

Another potential mechanism for increased paracellular permeability is ER stress. 

Tunicamycin, an ER stress inducer, increases permeability in Caco-2 cells (Akiyama et al., 

2016); CHOP knockdown prevents E-cadherin degradation in rat IEC-6 cells (Fan et al., 2014), 

and genome-wide association studies (GWAS) have identified ER stress loci associated with 

IBD (Kaser et al., 2008; McGovern et al., 2010). Therefore, we hypothesized that bosutinib 

could induce ER stress in Caco-2 cells leading to increased paracellular permeability. 

We chose to assess ER stress by observing changes in the levels of ER stress markers CHOP 

and BiP. Both these proteins contain ER stress response elements within the vicinity of their 

transcription start site. Initiation of ER stress by any of the three main interlinking pathways 

(PERK, IRE1 and ATF4 pathways) leads to upregulation of these markers (Takayanagi et al., 

2013). 

It was surprising to find that neither imatinib nor bosutinib induced ER stress, considering an 

array of EGFR and BCR-ABL small molecule TKIs are capable of inducing ER stress. For 

instance, EGFR inhibitors gefitinib, erlotinib and icotinib (20µM, 24h) have been shown to 

cause ER stress in IEC-6 cells (Fan et al., 2014; Hong et al., 2014); and BCR-ABL inhibitors 

imatinib, dasatinib and nilotinib resulted in ER stress in non-intestinal epithelial cell types 

(Kerkela et al., 2006; Nakatani et al., 2006; Bellodi et al., 2009; Lin et al., 2013; Lekes et al., 

2016; Yang et al., 2018). These data suggest differing cell type sensitivity to BCR-ABL 

inhibitor-induced ER stress. 

In addition to ER stress, MLCK is another positive regulator of paracellular permeability. 

Expression of constitutively active MLCK in Caco-2BBe cells was seen to reorganize peri-

junctional actin along with increased paracellular permeability (Shen et al., 2006); and 

knockdown of MLCK in Caco-2 cells increases TEER (Clayburgh et al., 2004). However, in our 

in vitro model, MLCK inhibition using ML-7 could not prevent cytoskeletal rearrangements or 

cellular retractions associated with bosutinib treatment, suggesting that bosutinib does not 

induce MLCK activation. It is surprising that MLCK did not appear to play a role in bosutinib-

induced changes, because Src, which is inhibited by bosutinib, has a relatively well-

established role in MLCK regulation in colon cancer cells (Avizienyte et al., 2004, 2005; 

Khapchaev et al., 2016). 
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Cell junction disruption through RhoA-ROCK-mediated cellular contractions can be 

chemically inhibited by Y-27632 (Zandy et al., 2007). Zandy et al. (2007) reported inhibition 

of Abl family kinases, Arg and Abl (for example by imatinib), led to Rho activation, MLCK 

phosphorylation and AJ disruption in several epithelial cell lines including bladder-derived 

NBT-II cells and breast-derived MCF-10A cells. However, our data demonstrated that ROCK 

inhibition by Y-27632 failed to prevented bosutinib-induced cellular retractions suggesting 

bosutinib does not activate this pathway. 

Inhibition of MMPs and proteasomal degradation by MG-132 significantly attenuated cellular 

retractions. This supports the hypothesis that this retraction phenotype occurred due to the 

“unzipping” of the monolayer as TJ and AJ proteins were degraded and internalized. As 

neither ROCK or MLCK inhibitors prevented the change, it is unlikely that actomyosin 

contractions were involved in the cellular retraction phenotype, unless contractions are 

initiated by another pathway, for example, cytoskeletal changes induced by the RhoA-mDia 

pathway (Spiering et al., 2011). 

We then focussed on the potential signalling pathways involved in bosutinib-induced 

occludin degradation. Of the three cell-cell junction proteins we investigated, we decided to 

focus on occludin as we observed the greatest bosutinib-induced effect with this junction 

protein. The proposed mechanisms for occludin degradation included degradation via the 

lysosomal or proteasomal pathway, lipid peroxidation, cell death and proteolysis via MMPs. 

Intestinal occludin can be degraded by both the lysosomal and proteasomal pathway 

(Coëffier et al., 2010; Chelakkot et al., 2017; Nighot et al., 2017). We used several lysosomal 

inhibitors to reduce the possibility of false-negative data caused by compound off-target 

effects. For example, 3-MA, a well-known PI3K inhibitor (Wu et al., 2010) which suppresses 

early stages of autophagy by hindering formation of the autophagosome, has been shown to 

activate autophagy during nutrient-rich conditions, such as used in our cell model (Wu et al., 

2010). None of the lysosomal inhibitors tested – 3-MA, chloroquine or bafilomycin – 

prevented bosutinib-induced occludin degradation suggesting occludin was not being 

degraded by the lysosomal pathway. 

MG-132, a 26S proteasome inhibitor, which prevents protein degradation by the 

proteasomal pathway, also failed to prevent occludin degradation. Therefore, no data 

support the hypothesis that occludin is degraded by either the proteasomal or the lysosomal 

pathway during bosutinib treatment. 
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An alternative postulated mechanism for occludin degradation was damage by lipid 

peroxidation. In this pathway, free-radical lipid peroxides are generated which lead to cellular 

damage by covalent modification of proteins and DNA, as well as disruption of the cellular 

structural integrity, for example through oxidation of phospholipid membranes (Gaschler et 

al., 2017). To test this hypothesis, we used two ROS inhibitors: N-acetylcysteine, a 

glutathione (free radical scavenger) precursor (Sun, 2010); and deferoxamine mesylate, an 

iron chelator, which attenuates the generation of highly reactive OH- by preventing the 

oxidation of Fe2+ by H2O2 (Tomita et al., 2002). N-acetylcysteine has been shown to attenuate 

chenodeoxycholic acid and methotrexate-induced increased permeability in T84 cells and rat 

intestine, respectively (Maeda et al., 2010; Sarathy et al., 2017). 

Neither N-acetylcysteine nor deferoxamine mesylate could prevent bosutinib-induced 

degradation of occludin. This suggests either bosutinib does not induce lipid peroxidation or 

that this pathway is not involved in the permeability increase. To our knowledge no studies 

report small molecule BCR-ABL inhibitor-induced lipid peroxidation in the intestines to 

support our data. However, several studies show imatinib and dasatinib can cause lipid 

peroxidation in several cell types such as the CML cell line, K-562 (Baran et al., 2013; Damiano 

et al., 2018). 

A further possible mechanism for bosutinib-induced degradation involves cell death. Our 

data in chapter 3 showed 25µM bosutinib caused a small decrease in cell viability, and an 

increase in PARP cleavage and nuclear fragmentation, indicating low levels of cell death 

which could be important in bosutinib-induced degradation. As the mechanism of bosutinib-

induced cell death is unknown, several cell death inhibitors were used: a) necrostatin-1, 

which inhibits the necroptosis pathway by inhibiting a key necroptotic effector, receptor-

interacting serine/threonine-protein kinase 1 (RIPK1) (Galluzzi et al., 2017); b) ferrostatin-1 

which prevents ferroptosis, an iron-dependent cell death mechanism involving lipid 

peroxidation (Skouta et al., 2014); c) IM-54 which blocks oxidative-induced necrosis (Sodeoka 

et al., 2010); and d) apoptosis inhibitor Z-VAD-FMK, which irreversibly inhibits caspases by 

binding to their catalytic site (Ekert et al., 1999). Necrostatin-1 prevented the significant 

decrease in occludin after addition of bosutinib, whilst none of the other inhibitors had an 

effect. It is therefore enticing to conclude that necroptosis is involved in bosutinib-induced 

occludin decrease. However, there was no significant difference in occludin levels between 

cells pre-treated with vehicle or necrostatin-1 in the presence of bosutinib. This data suggests 

necrostatin-1 does not prevent occludin decrease and the lack of significance difference 
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between vehicle and bosutinib treated cells after necrostatin-1 pre-treatment is probably 

due to experimental variability. 

An array of studies have demonstrated the importance of MMPs in controlling intestinal 

permeability. Mmp-9-/-  and Mmp-7/13-/- mice have decreased sensitivity to dextran sodium 

sulphate (DSS)-induced and lipopolysaccharide-induced increase in intestinal permeability, 

respectively (Vandenbroucke et al., 2014; Nighot et al., 2015). MMP inhibitors can prevent 

increased permeability induced by chymase in Caco-2BBe cells (Groschwitz et al., 2013), a 

lactone produced by Gram-negative bacteria in Caco-2 cells (Eum et al., 2014) and ischemia 

in rats (Altshuler et al., 2014). MMPs have also been shown to be increased upon irinotecan 

treatment in rats (Al-Dasooqi et al., 2010). This led to our final hypothesis that occludin 

degradation involved protein cleavage by MMPs. The pan MMP inhibitor, GM6001, which 

reversibly complexes with the conserved zinc active site in MMPs (Levy et al., 1998), 

attenuated the bosutinib-induced decrease in occludin protein at high concentrations 

(however, this attenuation was not significant). From these results it was speculated that 

MMPs may be involved in the bosutinib-induced Caco-2 permeability increase. We tested 

this hypothesis further by assessing changes in levels of MMP and their endogenous 

inhibitors, TIMPs. It was found that bosutinib did not alter cellular levels of any of the MMPs 

tested but significantly decreased levels of TIMP-2. Decreased TIMP-2 levels were confirmed 

by a time course Western blot which showed a transient decrease in TIMP-2 at 1 and 3 h, 

occurring earlier than the occludin decrease seen at 3 h; this suggests the TIMP-2 decrease 

to occur upstream to occludin degradation. 

It is important to note that the MMP assay used detects changes in total MMP levels i.e. both 

active MMPs and inactive pro-MMPs. Therefore, whilst no changes in steady state levels of 

MMPs were found, changes in activation are likely, due to the decreased levels of TIMP-2, a 

broad-spectrum endogenous MMP inhibitor known to inactivate all of the 23 human MMPs 

(Brew et al., 2010). 

To our knowledge there have been no previous studies on the effect of bosutinib on intestinal 

TIMP-2 levels, nor on the role of TIMP-2 in intestinal permeability. However, several studies 

in skin, prostate and lung cancer cell lines have shown positive correlations between TIMP-2 

levels and TEER (Choi et al., 2011; Park et al., 2011; J. Jeong et al., 2012; Shin et al., 2013). 

Furthermore, administration of TIMP-1 to Caco-2 cells has been shown to increase occludin 

levels (Bein et al., 2015), suggesting a potential causal role of TIMPs in controlling intestine 

permeability. 
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Overall, our results provide support for a hypothesis suggesting that MMP activation through 

TIMP-2 down-regulation may have a role in bosutinib-induced cell junction degradation 

leading to increased permeability and a “retraction-like” phenotype. However, further work 

is needed to confirm, or refute, this hypothesis. 

4.2.10 Limitations and future work 

The major limitations of the general experimental setup, such as the bosutinib concentration 

and cell line model used, are discussed in chapter 3, whilst limitations and future work more 

specific to this chapter are highlighted below. 

We were surprised to find none of the inhibitors tested significantly prevented the bosutinib-

induced occludin decrease considering such a vast array of signalling pathways were 

assessed, including those involved in ER stress, inflammation, oxidative stress, cell death as 

well as pathways involving MMPs, ROCK and MLCK. Two possible explanations for this are 

lack of inhibitor activity or an ineffective concentration. To ascertain greater confidence in 

these inhibition studies, simultaneous experiments should have been performed to test 

inhibitor activity. For example, after the addition of ML-7, levels of phospho-MLCK could be 

probed for by Western blot. However, due to time constraints it was not possible to 

simultaneously perform these experiments. Alternative explanations are that these 

pathways may show functional redundancy meaning inhibition of a single pathway would be 

insufficient to prevent the effects of bosutinib, or bosutinib may activate pathways that were 

not explored. However, without further data it is only possible to speculate the potential 

reasons for such a large amount of negative data. 

Further to this, it would be useful to perform experiments with additional inhibitors to 

confirm findings and explore alternative pathways. For example, the JNK inhibitor SP600125 

or the formin inhibitor SMIFH2 could be used. It should also be assessed whether ML-7 and 

Y-27632 can prevent occludin degradation. 

Studies here focused on pathways involved in occludin degradation. It would also be 

interesting to explore the mechanism of bosutinib-induced occludin reorganization. Clathrin-

mediated endocytosis (Ivanov et al., 2004) and caveolae/raft-dependent endocytosis (Nighot 

et al., 2017) have been shown to be involved in cell junction remodelling in human intestinal 

T84 and Caco-2 cells, respectively. Through disruption to clathrin-coated pit assembly – for 

example by hypertonic sucrose, cytosolic acidification or phenylarsine oxide – and disruption 

to lipid rafts by cholesterol sequestration (for example using methyl-β-cyclodextrin), it should 
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be possible to determine the importance of these two pathways in bosutinib-induced 

occludin reorganization (Ivanov et al., 2004; Nighot et al., 2017). Co-localization studies 

assessing spatial-temporal overlap of occludin with caveolin-1 (a caveolae protein) and 

clathrin could also be performed to support findings from clathrin-coated pit and caveolae 

disruption (Ivanov et al., 2004; Nighot et al., 2017). 

Changes in phosphorylation levels of TJs and AJs proteins by Western blot should be 

assessed, as changes in the phosphorylation state of TJs and AJs protein can cause 

disintegration, re-localization, and degradation (Basuroy et al., 2005; Samak et al., 2014, 

2015). For example, phosphorylation of occludin due to calcium-depletion occurs during TJ 

disassembly (Seth et al., 2007). 

Our finding that bosutinib-induces a decrease in intracellular TIMP-2 suggests MMPs may be 

involved in bosutinib-induced increase in permeability. However, further data is required to 

confirm this. Firstly, it will be necessary to test the hypothesis that bosutinib induces MMP 

activation. Changes in MMP activity upon bosutinib treatment can be assessed by 

zymography (Groschwitz et al., 2013). In this technique, samples are run on an acrylamide 

gel containing an MMP substrate (such as gelatin or casein) and incubated to allow substrate 

digestion. Protein degradation activity, in this case MMP activity, is then determined by 

Coomassie staining to identify digested areas. Western blotting could then be undertaken to 

determine which specific MMPs are activated. It will also be necessary to determine whether 

secreted TIMP-2 levels are significantly decreased by repeating the MMP array assay to an n 

of 3, and the effect of TIMP-2 knockdown on occludin levels and MMP activation. 

Knockdown studies against known targets of bosutinib, such as Src and Abl, could also be 

performed and their effect on permeability, TJ protein levels and cytoskeletal rearrangement 

assessed. Imatinib and Arg/Abl knockdown studies in NBT-II and MCF-10A cells, and Arg/Abl 

overexpression studies in HeLa cells, provide evidence for a role of Arg/Abl in AJs formation 

and strengthening (Zandy et al., 2007). Furthermore, Abl has a C-terminal actin binding 

domain suggesting this protein may have some role in bosutinib-induced changes in the 

cytoskeleton (Shaul, 2000). Interestingly, this allows us to postulate that inhibition of Arg/Abl 

could be involved in bosutinib-induced cell junction dissolution; however, if this was the 

pivotal mechanism involved, we would expect AJ disruption to occur for the other BCR-ABL 

inhibitors tested (imatinib and dasatinib), which was not the case. 

There is more evidence for the involvement of Src than Abl in controlling epithelial cell 

junction assembly and dissolution, with Src acting as both a positive and negative regulator. 
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Most studies suggest Src inhibition would prevent TJ disassembly. For example, DSS-induced 

and cyclic stretch-induced increase in permeability and re-localization of TJ proteins in Caco-

2 cells, are prevented by PP2 (Src inhibitor) or Src siRNA (Samak et al., 2014, 2015). However, 

studies also suggest that inhibition of c-Src can also lead to increased intestinal permeability. 

For example, inhibiting FAK on the c-Src activation loop increases intestinal permeability by 

displacing ZO-1 and occludin from cell borders in Caco-2 cells (Ma et al., 2013). 

In conclusion, the cascades involved in cell junction disassembly form complex overlapping 

networks. The main pathways upstream of bosutinib-induced TJ and AJ disintegration remain 

unknown, but we have shown decreased TIMP-2 levels may be involved. Further studies, 

such as those discussed above, are required to elucidate these pathways. 
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5.1 Introduction 

TJ involvement in chemotherapy-induced gut toxicity was first hypothesized in 1997 when 

an increase in intestinal permeability — measured by rhamnose/lactulose permeation — was 

seen in patients receiving chemotherapy, which corresponded with the onset and duration 

of diarrhoea (Keefe et al., 1997). TJ disorganisation is now considered to be a common 

mechanism of chemotherapy-induced GI toxicity. Patients receiving gefitinib (Melichar, 

Dvořák, et al., 2010), 5-FU (Daniele et al., 2001) and methotrexate (Meng et al., 2016) have 

compromised barrier integrity. Furthermore, intestinal cell lines show increased permeability 

and cell-cell junction disruption upon treatment with 5-FU (Buhrmann et al., 2015), 

methotrexate (Beutheu et al., 2013) and small molecule EGFR inhibitors (Shi et al., 2013; 

Hong et al., 2014). 

In chapter 3, we found bosutinib, imatinib, dasatinib and gefitinib increased permeation 

through the charge-selective pathway in Caco-2 cell monolayers, but only bosutinib caused 

a large increase in flux through the size-selective pathway. Moreover, cell junction proteins 

E-cadherin, ZO-1 and occludin were degraded and re-localized to a much greater extent in 

bosutinib-treated cells; in imatinib-treated cells this effect was absent, and in dasatinib and 

gefitinib treated cells the effect was limited to occludin. These findings correlate well with 

clinical diarrhoea occurrence, i.e. the frequency of diarrhoea in bosutinib-treated patients 

(Kantarjian et al., 2014; Brümmendorf et al., 2015) is much higher than patients receiving 

imatinib (Kantarjian et al., 2010; Brümmendorf et al., 2015), dasatinib (Kantarjian et al., 2010) 

or gefitinib (Shi et al., 2013). However, the physiological relevance of these findings is 

unknown and difficult to interpret due to issues of translatability of cell line studies – 

preclinical cell line data are often inconsistent with patient sample data. 

Human immortalized cell lines were first developed in 1951 (Gey et al., 1952) and since then 

hundreds of somatic cell lines have been generated, including those modelling enterocytes, 

such as Caco-2 cells (Lea, 2015). These cell lines overcame several limitations associated with 

patient-based research, such as ethical concerns and limited access to patient material. 

However, the issue of translatability was often challenged and is still a common problem 

today. 

Low-level translatability is prevalent during GI toxicity in in vitro studies. GI models were 

generally developed for estimating oral drug absorption (Antunes et al., 2013; Li et al., 2013; 

Huang et al., 2014) and increasing understanding of GI physiology (Sung et al., 2011) and 

development (Kim et al., 2005; Spence et al., 2011; Feng et al., 2013; McCracken et al., 2014), 



173 
 

rather than studying toxicity. The lack of a reliable in vitro model is demonstrated by the fact 

that limited pre-clinical in vitro predictive GI toxicity screening is currently undertaken during 

drug discovery and development. However, alternative more complex and translatable 

models, called organoids, are under development and showing promise (Fatehullah et al., 

2016). 

Organoids are microscopic organ-like 3-dimensional cultures which resemble in vivo 

structure and recapitulate the multiple cellular tissue phenotype. Organoids contain stem 

cells which undergo self-renewal and differentiation into many of the cell types present in 

the primary tissue, with a similar cellular abundance to in vivo. Within intestinal organoids 

(which when developed from the small intestines are called enteroids), long-lived stem cells 

reside near the base of intestinal crypts which produce progenitor cells called transit-

amplifying cells. These cells migrate upwards towards the villus region and differentiate into 

epithelium cell types including enteroendocrine cells, enterocytes and goblet cells (Sato et 

al., 2009) (Fig 5.1), whilst Paneth cells migrate downwards towards the base of the crypt. 

Upon reaching the villus tip, cells are shed into the enclosed enteroid centre, which models 

the lumen. Organoids are most commonly developed from primary tissue or induce-

pluripotent stem cells (Zachos et al., 2016), and like cell lines, can be expanded and 

maintained in culture through routine passaging (Sato et al., 2011). 

 

Figure 5.1. Schematic of an intestinal organoid. Figure showing the major intestinal 
cell types present within small intestinal organoids developed from both rodent 
models and humans. Diagram produced in Inkscape by S. French. 
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The use of these complex multi-cellular models gives scope to develop a deeper 

understanding of drug-induced intestinal pathogenesis, because the pathophysiological 

mechanism of drug-induced GI injury involves cross-talk between many cell types (Sultani et 

al., 2012), something which cannot be modelled in cell line monocultures. Moreover, gene 

expression studies, including those examining drug metabolism and transporter genes,  have 

shown that the profiles in GI organoids are similar to that in normal tissue in vivo (Bijsmans 

et al., 2017; Lu et al., 2017), whereas in Caco-2 cells, this is not the case (Vaessen et al., 2017). 

Whilst the capability of intestinal organoids to predict and model GI toxicity needs further 

evaluation, several studies suggest intestinal organoids may be a more effective in vitro tool 

for studying GI toxicity than cell lines. In human, rat, mouse and canine intestinal organoids, 

toxicity IC50 values for common colorectal chemotherapies reportedly correlate well with 

species-matched in vivo and clinical data. For example, human organoids showed greater 

sensitivity to irinotecan than oxaliplatin, which are associated with up to 40% and 4% grade 

3/4 diarrhoea within the clinic, respectively (Hoyle et al., 2016, 2018). Treatment of mouse 

enteroids with xenobiotic nuclear receptor agonists causes induction of genes linked to 

metabolism and transport, a finding translatable from mouse in vivo studies  (Lu et al., 2017). 

Moreover, a study by Peters et al. (2019) exemplified how non-cancerous and multi-cellular 

models are more translatable than cell line models. In this study it was found that a 

multicellular co-culture model of the intestinal epithelium containing human epithelial 

primary cells seeded onto a transwell containing fibroblasts, could more accurately predict 

the diarrhoeagenic capability of drugs, and had more physiologically relevant TEER values 

than a Caco-2 transwell model (Peters et al., 2019). 

In 2009, a relatively simple organoid culturing system was developed in the Clevers’ 

laboratory in The Netherlands, which recapitulated the endogenous intestinal stem cell niche 

through use of Matrigel supplemented with growth factors Noggin, R-spondin and EGF, 

which allowed the maintenance, growth and propagation of intestinal organoids (Sato et al., 

2009). Since then the number of publications on organoid research has increased 

exponentially (Davies, 2018). 

The Clevers’ group also developed a simple assay to carry out drug screening for chloride 

secretion activity, specifically cystic fibrosis transmembrane regulator (CFTR) current activity, 

in organoids (Dekkers et al., 2013). In this assay, human and mouse intestinal organoids were 

found to swell upon addition of forskolin, a CFTR activator, and this was prevented by 

addition of CFTR inhibitors. Through measuring forskolin-induced current changes on human 
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rectal sample biopsies using a micro-Ussing chamber, it was concluded that forskolin-induced 

swelling indicated in vivo chloride secretion and represented a translatable model for 

measuring chloride secretion. 

We therefore used this organoid culture system to determine whether our data on Caco-2 

cells in chapter 3 were translatable into an enteroid model, and to test the physiological 

relevance of our in vitro findings. We also aim to evaluate the ability of TKIs to induce ion 

secretion, a common diarrhoea pathogenesis mechanism, using the assay developed by 

Dekkers et al. (Dekkers et al., 2013). 

In this chapter, we test the hypothesis that BCR-ABL inhibitors bosutinib, imatinib and 

dasatinib, and EGFR inhibitor gefitinib, increase permeability and ion secretion in mouse 

enteroids. The aims of this chapter were to: 

1. Validate our enteroid model by confirming the presence of major intestinal cell 

types. 

2. Assess the cytotoxicity of bosutinib, imatinib, dasatinib and gefitinib in the enteroid 

model. 

3. Evaluate the effect of bosutinib, imatinib, dasatinib and gefitinib on enteroid 

permeability and localization of cell-cell junction protein. 

4. Determine the ability of bosutinib, imatinib, dasatinib and gefitinib to induce 

enteroid ion secretion. 

5.2 Results 

5.2.1 The BALB/c mouse enteroid model expresses relevant epithelial cell 

types 

To determine the translatability of findings from a two-dimensional Caco-2 monolayer model 

into a 3-dimensional more physiological model, experiments were performed on organoids 

generated from the proximal intestine of male BALB/c mice aged between 8 and 12 weeks. 

Firstly, the suitability of the enteroid model was assessed by confirming the presence of 

principal intestinal cell types by immunohistochemistry. Positively stained cells, as indicated 

by black arrows, were seen for all four cell-type markers tested: a) Paneth cells stain positive 

for the anti-microbial peptide, lysozyme (Ho et al., 1989) (Fig 5.2A); b) goblet cells stain 

positive for the mucosal secretory protein trefoil factor 3 (TFF3) (Langer et al., 1999) (Fig 

5.2B); c) enteroendocrine cells stain positive for the neuroendocrine secretory protein 

chromogranin A (CgA) (Ho et al., 1989) (Fig 5.2C); and d) tuft cells stain positive for the 
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microtubule-associated kinase double cortin like kinase 1 (DCLK1) (Gerbe et al., 2011) (Fig 

5.2D). 

 

 

 

Figure 5.2. Epithelial cell types present in the mouse enteroid model. Male BALB/c 
mouse proximal intestinal organoids were treated with vehicle for 4 h then 3 3’ 
Diamino-benzidine (DAB)-stained for Paneth cell marker lysozyme (A), goblet cell 
marker TFF3 (B), enteroendocrine cell marker CgA (C) and tuft cell marker DCLK1 (D) 
and counter stained with haematoxylin. Black arrows indicate positive stained cells. 
Cells within the enteroid lumen represent shedded cells. Data are representative of 
3 independent experiments where 3-6 enteroids were imaged per experiment. 
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5.2.2 Bosutinib increases permeability in mouse enteroids 

Firstly, we wished to determine whether TKI-induced increase in paracellular permeability in 

Caco-2 cells (chapter 3; Fig 3.3, 3.4) also occurred in our organoid model. 

Murine enteroids, were injected with 4kDa FITC-dextran (FD-4) and the ability of TKIs to 

induce leakage was assessed over 4 h by measuring the mean fluorescence intensity 

remaining within the organoid lumen (Fig 5.3). Due to technical constraints, it was not 

possible to simultaneously inject TKIs and FD-4 into the enteroid lumen, to dose the enteroids 

at the apical surface. Instead, TKI drug exposure was restricted to the basal aspect of the 

enteroid, through addition of drug into the growth media, thus mimicking systemic drug 

exposure. Enteroids were monitored for 4 h, rather than 24 h as in the Caco-2 experiments, 

because higher levels of basal FD-4 leakage resulted in decreased assay sensitivity beyond 4 

h (Thompson, 2019). EGTA was used as a positive control (Leslie et al., 2015). 

 

Bosutinib (10μM) and EGTA (2mM) significantly increased enteroid permeability (Fig 5.4, 

Dunnett’s test, p<0.001) as determined by comparing the area under the curve (AUC) to the 

vehicle. Imatinib (10μM) and gefitinib (10μM) treatment had no effect on enteroid 

permeability (Fig 5.4B, D; Dunnett’s test, p>0.05). Leakage of FD-4 from dasatinib-treated 

(10μM) enteroids was slightly increased relative to the vehicle, however, this difference only 

approached significance (Fig 5.4C, Dunnett’s test, p=0.067). 

Figure 5.3. Enteroid lumen injected with FITC-dextran. Representative image 
of a BALB/c mouse enteroid injected with 10mg/mL 4kDa FITC-dextran as 
viewed under bright field microscopy (A) and fluorescence microscopy (B). 
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Figure 5.4. Effect of TKIs on paracellular permeability. Male BALB/c mouse enteroids 
were injected with 10mg/mL 4kDa FITC-dextran (FD-4). Enteroids were incubated with 
vehicle, 10μM bosutinib (A), 10μM imatinib (B), 10μM dasatinib (C), 10μM gefitinib (D) 
or 2mM EGTA (positive control). Over time, luminal fluorescent intensity of enteroids 
was measured to determine the percentage of FD-4 leakage. ***p<0.001 versus 
vehicle, One-way ANOVA followed by Dunnett’s post-test of area under the curve, 
mean ± SEM, N (biological repeats) = 3-5, n (enteroids per biological repeat) = 2-5. 
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5.2.3 Bosutinib is cytotoxic to mouse enteroids  

Similarly to the Caco-2 in vitro experiments, TKI-induced changes in viability were assessed 

in enteroids to determine whether increases in permeability were due to cell death. 

Cell death was initially assessed using ToxiLight™ assay that semi-quantitatively measures 

enteroid adenylate kinase release, an end-point marker of cell death. Incubation of enteroids 

with bosutinib or imatinib (0.1-10μM) for 4 h did not induce the release of adenylate kinase 

(Fig 5.5A, B; One-way ANOVA, p>0.05). Dasatinib and gefitinib treatment for 4 h caused a 

slight increase in adenylate kinase release but this was not significant (Fig 5.5C, D; One-way 

ANOVA, p>0.05). Enteroids were also treated for 24 h to allow direct comparison to the 24 h 

Caco-2 ToxiLight™ assay data (chapter 3, Fig 3.10). In our enteroid model, 10μM bosutinib 

and gefitinib significantly increased cell death at 24 h (Fig 5.5A, D); and dasatinib-induced cell 

death from 0.1μM in a dose-dependent manner (Fig 5.5C). Imatinib did not induce cell death 

at any of the concentrations tested at 24 h (Fig 5.5B). 

 

 

Figure 5.5. Effect of TKIs on cell viability determined by ToxiLight™ assay after 4 and 
24 h. Male BALB/c mouse enteroids were treated with vehicle or 0.1-10µM bosutinib 
(A), imatinib (B), dasatinib (C) or gefitinib (D) for 4 h or 24 h. Cell viability was 
determined by ToxiLight™ assay, which measures adenylate kinase (AK) release, and 
normalised to area occupied by all enteroids as determined in ImageJ. **p<0.01, 
***p<0.001 versus vehicle, One-way ANOVA followed by Dunnett’s post-test, mean ± 
SEM, N (biological repeats) = 3-4.
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Changes in enteroid circularity were also assessed as a crude measure of cell death. It has 

previously been shown that circularity positively correlates with caspase-3 activation, a 

marker of cell death (Fig 5.6) (Jones et al., 2019). Moreover, disruption to organoid 

morphology is a validated method for studying cell death (Grabinger et al., 2014). 

 

 

 

 

Figure 5.6. Correlation between enteroid death determined by caspase-3 activation 
and enteroid circularity. Male C57BL/6 mouse enteroids were dosed with 100ng/mL 
TNFα for up to 24 h. Presence of active caspase-3 positive cells was determined by 
immunochemistry (representative image not shown). Percentage of active caspase-3 
positive intestinal epithelial cells (active caspase-3+ve IEC) was calculated as the 
number of positive stained cells divided by the total number of cells within the 
epithelium. Circularity was determined by drawing around enteroids in ImageJ, as 
shown by the yellow lines (A). Circularity was correlated against active caspase-3+ve 
IEC (B). R2 = 0.5962, Spearman’s rank correlation coefficient N (biological repeats) = 1, 
n (enteroids per biological repeat) = 17. Figures were obtained from Jones et al., 2019, 
with permissions for use being granted by Dr. Duckworth, University of Liverpool. 



181 
 

 

Consistent with ToxiLight™ data, bosutinib, imatinib and gefitinib (10μM) did not significantly 

increase circularity after 4 h treatment (Fig 5.7, Dunnett’s test, p>0.05). However, dasatinib 

(10μM) induced an increase in circularity (Fig 5.7, Dunnett’s test, p<0.05) at 4 h. 

 

Figure 5.7. Effect of TKIs on cell viability determined by circularity after 4 h. Male 
BALB/c mouse enteroids were treated with vehicle or 10μM bosutinib, 10μM 
imatinib, 10μM dasatinib or 10μM gefitinib for 4 h. Light microscopy images were 
obtained (A) and enteroid death determined by change in enteroid circularity 
assessed in Image J, as a percentage relative to time zero (B).  *p<0.05 versus 0 h, 
One-way ANOVA followed by Dunnett’s post-test, mean ± SEM, N (biological repeats) 
= 3-6, n (enteroids per biological repeat) = 4-7. 
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After 24 h treatment, imatinib still failed to increase circularity (Fig 5.8C, Dunnett’s test, 

p>0.05) whereas a significant increase in circularity was observed with 10µM bosutinib (Fig 

5.8B, Dunnett’s test, p>0.01), 0.1-10µM dasatinib (Fig 5.8D, Dunnett’s test, p<0.01), and 1-

10µM gefitinib (Fig 5.8E, Dunnett’s test, p<0.05) in a dose-dependent manner. 

 

Figure 5.8. Effect of TKIs on cell viability determined by circularity after 24 h. Male 
BALB/c mouse enteroids were treated with 0.1-1µM bosutinib, imatinib, dasatinib, 
gefitinib or vehicle for 24 h. Light microscopy images were obtained (A, only shown for 
10µM) and enteroid death determined by change in enteroids circularity assessed in 
Image J, as a percentage relative to time zero for bosutinib (B), imatinib (C), dasatinib (D) 
and gefitinib (E). *p<0.05, **p<0.01, ***p<0.001 versus 0 h, One-way ANOVA followed by 
Dunnett’s post-test, mean ± SEM, N (biological repeats) = 3-6, n (enteroids per biological 
repeat) = 6-10. 
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To validate the circularity assay as an assessment of cell death, data from the ToxiLight™ 

assay and circularity assay were plotted against each other to assess correlation strength. 

The 24 h time point was chosen rather than the 4 h time point, because a greater degree of 

cell death was seen with this time point. A strong positive correlation was seen between 

adenylate kinase release and circularity (Fig 5.9, Spearman’s rank correlation coefficient, R2 

= 0.8462) with 1µM and 10µM gefitinib appearing to be slight outliers. 

 

 

 

Figure 5.9. Correlation between enteroid death determined by ToxiLight™
 

assay and enteroid circularity. Male BALB/c mouse enteroids were dosed 
with up to 10µM bosutinib, 10µM imatinib, 10µM dasatinib, 10µM gefitinib 
or vehicle 24 h (Fig 3.7E). Enteroid death was determined by percentage 
circularity increase (drawing round enteroids in image J), and adenylate 
kinase (AK) release (ToxiLight™ assay). R2 = 0.8462, Spearman’s rank 
correlation coefficient, mean (SEM not shown for clarity), N (biological 
repeats) = 3-6, Spearman’s rank correlation coefficient. 
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Active caspase-3 staining of enteroids treated with 10μM bosutinib and imatinib for 4 h was 

also undertaken to assess cell death, and more specifically apoptosis. Inconsistent with 

circularity and ToxiLight™ results, bosutinib treatment significantly increased active caspase-

3 levels; ~8% of cells were active caspase-3 positive, compared to ~0.5% of cells in vehicle 

treated enteroids (Fig 5.10B, D; Dunnett’s test, p<0.01). Imatinib treatment did not increase 

caspase-3 cleavage and was similar to vehicle control (Fig 5.10C, D; Dunnett’s test, p>0.05). 

 

Figure 5.10. Quantification of the number of apoptotic cells in bosutinib and 
imatinib treated enteroids using active caspase-3 staining. Male BALB/c mouse 
enteroids were treated with vehicle (A), 10μM bosutinib (B) or 10μM imatinib (C) 
for 4 h. Enteroids were 3 3’ Diamino-benzidine (DAB)-stained for active caspase-3 
and counterstained with haematoxylin. The percentage of cells staining positive for 
active caspase-3 within the epithelium was determined relative to the total number 
of cells (D). Cells within the enteroid lumen (shedded epithelial cells) were not 
included in the analysis. **p<0.01 versus vehicle, One-way ANOVA test followed by 
Dunnett’s post-test, mean ± SEM, N (biological repeat) = 3, n (enteroids per 
biological repeat) = 5-8. 
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Haematoxylin and eosin (H&E) staining was undertaken to assess for gross morphological 

changes and barrier disruption. Epithelial layer disruption occurred in some (Fig 5.11D), but 

not all (Fig 5.11C), 10µM bosutinib-treated enteroids, whilst all enteroids treated with 10µM 

imatinib (Fig 5.11B) appeared indistinct from vehicle treated enteroids (Fig 5.11A). 

 

 

  

Figure 5.11. Effect of bosutinib and imatinib on enteroid epithelium layer 
integrity. Male BALB/c mouse enteroids were treated with vehicle (A), 10μM 
imatinib (B) or 10μM bosutinib (C and D) for 4 h and gross changes were assessed 
by haematoxylin & eosin staining. Images are representative of three independent 
experiments where 3-6 enteroids were imaged per experiment. 
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5.2.4 Bosutinib does not alter levels of intercellular junction proteins 

TJ and AJ proteins are very important in controlling paracellular permeability (Zihni et al., 

2016). In Caco-2 cells, bosutinib (at concentrations which significantly increased 

permeability) decreased levels of a) cytosolic TJ and AJ protein, ZO-1; b) AJ transmembrane 

protein E-cadherin; and c) TJ transmembrane protein, occludin (chapter 3, Fig 3.13, 3.14). 

However, imatinib did not induce this change (chapter 3; Fig 3.13, 3.14); therefore, the levels 

of these proteins were assessed after the addition of bosutinib or imatinib in enteroids to 

determine whether the mechanistic basis of bosutinib-induced gut ‘leakiness’ was 

translatable. 

Neither treatment of bosutinib nor imatinib (10µM) for 4 h altered levels of occludin, E-

cadherin or ZO-1 (Fig 5.12, One-way ANOVA, p>0.05). However, large variability between 

biological repeats was seen, as indicated by the large SEM bars. 

 

Figure 5.12. Effect of bosutinib and imatinib on tight junction and adherens 
junction protein levels. Male BALB/c mouse enteroids were incubated with 10μM 
bosutinib, 10μM imatinib or vehicle for 4 h. Expression of ZO-1, E-cadherin and 
occludin was analysed by Western blot (A). Densitometry analysis was performed 
and results normalized to actin (B). One-way ANOVA followed by Dunnett’s post-
test, mean ± SEM, N (biological repeats) = 3. 
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5.2.5 Bosutinib induces the re-localization of occludin  

In addition to altering protein levels, it was previously shown that bosutinib induces re-

localization of ZO-1, E-cadherin and occludin away from cell-cell contacts in Caco-2 cells 

(chapter 3, Fig 3 .16-3.18); therefore, the translatability of these results into enteroids was 

assessed. Enteroids were treated with bosutinib or imatinib (10µM) for 4 h and localization 

of the above-mentioned junction proteins were viewed using immunofluorescence. In 

vehicle-treated cells, E-cadherin and occludin were mainly observed at plasma membrane. 

No detectable changes in E-cadherin localization were observed after treatment with either 

TKI (Fig 5.13); however, occludin re-localized away from the plasma membrane in some 

bosutinib-treated enteroids (Fig 5.14). It is important to note that this change was not 

consistent across all bosutinib-treated organoids, as in some bosutinib-treated organoids no 

change was seen. In the majority of cells, ZO-1 staining does not appear to localize to cell-cell 

contacts even in vehicle treated organoids (potentially due to off-target binding), making the 

effect of bosutinib and imatinib on ZO-1 localization difficult to interpret (Fig 5.15). 

 

Figure 5.13. Effect of bosutinib and imatinib on localization of E-cadherin. Male BALB/c 
mouse enteroids were incubated with vehicle (1), 10μM bosutinib (2) or 10μM imatinib 
(3) for 4 h. Localization of E-cadherin (a, red) and nuclei (b, blue) were analysed by 
immunofluorescence. Composite images shown in the lower panel (c). Images are 
representative of 3 independent experiments where 3-4 enteroids were imaged per 
experiment. 
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Figure 5.14. Effect of bosutinib and imatinib on localization of occludin. Male BALB/c 
mouse enteroids were incubated with vehicle (1), 10μM bosutinib (2) or 10μM imatinib 
(3) for 4 h. Localization of occludin (a, red) and nuclei (b, blue) were analysed by 
immunofluorescence. Composite images shown in lower panels (c). Images are 
representative of 3 independent experiments where 3-4 enteroids were imaged per 
experiment. 

Figure 5.15. Effect of bosutinib and imatinib on localization of ZO–1. Male BALB/c 
mouse enteroids were incubated with vehicle (1), 10μM bosutinib (2) or 10μM imatinib 
(3) for 4 h. Localization of ZO-1 (a, green) and nuclei (b, blue) were analysed by 
immunofluorescence. Composite images shown in lower panels (c). Images are 
representative of 3 independent experiments where 3-4 enteroids were imaged per 
experiment. 
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5.2.6 Tyrosine kinase inhibitors do not induce enteroid swelling, an indicator 

of ion secretion 

It has previously been shown that ion secretion causes enteroid swelling leading to an 

increase in enteroid volume, measured as area in a 2-dimensional imaging system (Dekkers 

et al., 2013). To assess whether TKIs induce ion secretion in enteroids, swelling was assessed 

by measuring enteroid area of still images obtained by bright-field microscopy, initially over 

a 30 min time period. Bosutinib, imatinib, dasatinib and gefitinib (10μM) and vehicle 

treatment did not cause organoid swelling (Fig 5.16, One-way ANOVA, p>0.05), indicating the 

TKIs tested do not initiate chloride secretion. Forskolin, a known activator of the cystic 

fibrosis transmembrane regulator (CFTR) which induces cAMP-dependent chloride secretion 

(Dekkers et al., 2013), was used as a positive control. Forskolin (5μM) rapidly induced 

enteroid swelling (Fig 5.16, One-way ANOVA, p>0.05). 

 

Figure 5.16. Effect of TKIs on enteroid swelling after 30 min. Male BALB/c mouse 
enteroids were incubated with vehicle, positive control 5μM forskolin, 10μM gefitinib, 
10μM dasatinib, 10μM imatinib or 10μM bosutinib. Static images were obtained by 
light microscopy at 0 min and 30 min time points (A). Enteroid swelling was assessed 
by percentage area increase, in ImageJ, relative to 0 min time point (B). ***p<0.001 
versus 0 min, One-way ANOVA followed by Dunnett’s post-test, mean ± SEM, N 
(biological repeats) = 3, n (enteroids per biological repeat) = 5-8. 
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Chloride ion secretion is hypothesized to be a key mechanism in EGFR inhibitor-induced 

diarrhoea (Van Sebille et al., 2015), and the kinetics of chloride secretion varies between 

secretagogues (Van Sebille et al., 2015); therefore, swelling of enteroids treated with 

gefitinib, an EGFR inhibitor, was assessed over a longer period of time (Fig 5.16). 

 

Again forskolin (5μM) was used as a positive control and was seen to significantly increase 

enteroid area, relative to time zero, at 15 and 90 min (Fig 5.17C, Dunnett’s test, p<0.05). Area 

was not significantly increased beyond 180 min of treatment (Fig 5.17C, Dunnett’s test, 

Figure 5.17. Effect of gefitinib on enteroid 
swelling over 24 h. Male BALB/c mice 
enteroids were incubated with vehicle (B), 
positive control 5μM forskolin (C) or 10μM 
gefitinib (D) for 0-24 h. Static images were 
obtained by light microscopy at indicated time 
points (A) and enteroid swelling was assessed 
by area increase, in ImageJ, relative to 0 h time 
point. *p<0.05 versus 0 h, One-way ANOVA 
followed by Dunnett’s post-test, mean ± SEM, 
N (biological repeats) = 3, n (enteroids per 
biological repeats) = 5-8. 
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p>0.05). Gefitinib (10μM) did not significantly increase organoid area at any of the time 

periods studied (Fig 5.17D, One-way ANOVA, p>0.05). However, after 24 h (1440 min) 

treatment with gefitinib, the enteroid lumen appeared enlarged, although no increase in area 

was seen (Fig 5.17A). Area of enteroids treated with vehicle was significantly increased after 

24 h (Fig 5.17D, Dunnett’s test, p<0.05); however, this is likely to represent organoid growth 

rather than swelling. 

5.3 Summary of results 

The main findings from this chapter was that bosutinib induced an increase in FD-4 flux 

through the size-selective permeation pathway that was translatable from the human Caco-

2 in vitro model into the mouse enteroid ex vivo model. The underlying mechanism of 

permeability increase was only partially translatable from the Caco-2 model to the enteroid 

model: rearrangement of occludin was seen in both models, but bosutinib failed to alter 

protein levels of cell-cell junction proteins or localization of E-cadherin and ZO-1 in the 

enteroid model. It was also shown that Caco-2 cells and mouse enteroids had different 

relative sensitivities to cell death induced by different TKIs, with the enteroid model being 

more sensitive overall. Finally, it was shown that bosutinib, imatinib and dasatinib did not 

cause enteroid swelling suggesting these TKIs do not induced chloride ion secretion, whereas 

further studies are required to determine whether gefitinib elicits chloride secretion. 

5.4 Discussion 

Findings in several models are more likely to translate into humans than those in a single 

model; for example toxicity predictions based on in vivo studies in both non-rodent and 

rodent models show higher concordance with human toxicity than those on rodents alone 

(Olson et al., 2000). Therefore, in this chapter we used a second, arguably more 

physiologically relevant model, to ascertain an indication of the translatability of our in vitro 

findings. 

Proximal small intestinal organoids were chosen to assess translatability from Caco-2 cells. 

The Caco-2 cell line differentiates into a monolayer of absorptive enterocytes as found in the 

small intestines, despite being derived from colorectal cancer cells (Hidalgo et al., 1989), and 

therefore small intestinal organoids (enteroids) were deemed most appropriate. A mouse 

model was used due to limited access to patient samples; however, mice intestinal 

development and immune response is comparable to humans making them a relatively good 

model for GI studies (Jiminez et al., 2015). Furthermore, mouse enteroids have previously 



192 
 

been shown to contain the major relevant cell types of the intestinal epithelial layer (Sato et 

al., 2009). 

Before our translatability studies were undertaken, the validity of our model was assessed 

by probing for several intestinal epithelial cell type markers using immunohistochemistry. 

Consistent with previous studies the presence of Paneth, goblet, enteroendocrine and tuft 

cells was confirmed (Sato et al., 2009). 

In enteroids, bosutinib induced an increase in paracellular permeability through the size-

selective pathway; a result which was translatable from our Caco-2 cell model. Lower 

concentrations of bosutinib were capable of inducing an increase in permeability in the 

enteroid model (10µM) than in the Caco-2 model (25µM), potentially due to the non-

cancerous origin of the former model. Gefitinib failed to significantly increase permeability 

in enteroids, consistent with findings in Caco-2 cells. Imatinib was also unable to significantly 

increase permeability at 10µM in enteroids, in concordance with sub-apoptotic 

concentrations (10µM – 50µM) in Caco-2 cells failing to increase permeability. Dasatinib-

induced increase in FD-4 leakage approached significance in enteroids. This finding was 

inconsistent with our Caco-2 cell studies, where concentrations as high as 100µM failed to 

increase size-selective paracellular permeability. 

To our knowledge there are no reported studies assessing the effect of TKIs on enteroid 

permeability, and, as discussed in chapter 3, no published data regarding the effect of BCR-

ABL inhibitors on intestinal epithelial cell permeability. However, oral administration of 

bosutinib, imatinib and dasatinib were seen to increase gut endothelial permeability in 

C57BL/6J mice, with these changes being significant with dasatinib only (Kreutzman et al., 

2017). Some studies have been performed using EGFR inhibitors: erlotinib increases 

intestinal permeability in rat IEC-6 cells; and gefitinib can decrease levels of E-cadherin and 

ZO-1, again in IEC-6 cells, at similar concentrations used in our experiment (Fan et al., 2014; 

Hong et al., 2014). Whilst our study did not assess change in levels of E-cadherin and ZO-1 

upon gefitinib treatment, it can be postulated that decreases in these proteins did not occur 

in our enteroid model, because no changes in permeability were seen. 

As with the Caco-2 cell model, it was then determined whether concentrations which caused 

an increase in enteroid permeability induced cell death, and therefore contributed to the 

mechanism of this permeability increase. The concentration of bosutinib causing a significant 

increase in enteroid permeability, 10µM, caused low-level cell death that was detectable in 

some enteroid assays. The ToxiLight™ assay and circularity assay failed to detect changes 
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whereas a significant increase in caspase-3 cleavage by immunohistochemistry was detected. 

This could be explained by the differences in assay sensitivity; for example, both the 

ToxiLight™ and circularity assay measure endpoint cell death whereas caspase-3 cleavage 

occurs upstream of this pathway. 

Circularity is a novel method to measure small intestinal organoid cytotoxicity (Dr Carrie 

Duckworth, unpublished data); therefore, the validity of this assay was investigated through 

comparison to results from the ToxiLight™ assay. A strong positive correlation was seen 

between circularity and adenylate kinase (AK) release, across different TKIs using a range of 

drug concentrations. However, increase in circularity is not specific to cell death. For 

example, luminal swelling, such as that induced by forskolin (Dekkers et al., 2013), would 

lead to increased circularity. However, in this assay gross morphological signs of apoptosis 

can be assessed, such as loss of crypt architecture and a “grainy-like” opaque appearance, to 

give greater confidence that the cause of circularity increase is enteroid death. However, for 

this reason, circularity score should not be used as a standalone method to quantify cell 

death. 

From these cell death assays, we can conclude bosutinib (10μM) induces a low level of cell 

death and this may have some involvement in increasing enteroid permeability. This is 

consistent with our findings in the Caco-2 model. 

However, unlike in the Caco-2 model, in the enteroid model, dasatinib was the most cytotoxic 

TKI (whereas, in the Caco-2 model, bosutinib caused the greatest level of cell death). There 

are many possible reasons for these differences in drug response between our Caco-2 and 

enteroid models including: a) species-specific differences; b) differences in drug sensitivity 

between cancer and non-cancer cells; c) apical versus basolateral administration; d) 

homogenous versus a heterogenous mix of cell types; and e) a 2-dimensional versus a 3-

dimensional growth system. Unsurprisingly, and consistent with the permeability studies, 

lower TKI concentrations were required to induce cell death in the enteroid model compared 

to the Caco-2 model. 

In the Caco-2 model it was found that decreased cell junction protein levels and re-

localization away from the plasma membrane occurred, likely contributing to increased 

permeability; therefore, we assessed whether these findings were translatable into our 

enteroid model. However, differences in levels and localization of TJ and AJ proteins between 

biological repeats made results difficult to interpret for both immunofluorescence and 

Western blot data. This is potentially due to differences in the maturity level and size of 
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enteroids between biological repeats and wells – which can affect levels and localization of 

cell junction proteins (In et al., 2016). Immunofluorescent staining illustrated that some 

organoids only expressed these proteins at the cell-cell contacts, indicative of maturation, 

whereas others expressed these proteins along the entirety of the plasma membrane, 

demonstrating enteroid variability. However, in some biological repeats, bosutinib induced a 

clear re-localization of occludin away from the plasma membrane that was not seen with 

imatinib. Densitometry analysis of Western blot data revealed high variability in relative 

protein levels between biological repeats with no overall trend being observed. From these 

results it is possible to speculate that TJ re-localization and the low level of cell-death 

observed may contribute to bosutinib-induced increase in enteroid permeability, but it is not 

possible to draw conclusions on changes in protein levels. This is the first time the effect of 

BCR-ABL inhibitors on AJ and TJs has been investigated, and consequently these findings 

cannot be compared to others. 

Overall, these data show our major permeability findings in Caco-2 cells were translatable 

into enteroids with some differences in toxicity sensitivity. Studies highlighting the role of 

permeability in other forms of chemotherapy-induced diarrhoea, such as 5-FU and 

methotrexate, have been translatable from Caco-2 monolayers (Youmba et al., 2012; Wang 

et al., 2015) into rodent in vivo models (Southcott et al., 2008; Maioli et al., 2014) and cancer 

patients (Daniele et al., 2001; Meng et al., 2016), giving greater confidence that our findings 

may be relevant to TKI-treated patients. 

Diarrhoea is often multi-factorial; therefore, next we wished to assess whether an alternative 

mechanism to increased permeability was involved. Secretion is important in removal of 

toxins and maintaining appropriate fluidity for motility in normal gut function (Barrett et al., 

2000). However, excess secretion, or decreased absorption, causes an accumulation of ions 

such as Na+, Cl- and HCO3
- within the intestinal lumen resulting in secretory diarrhoea, due to 

movement of fluids into the intestinal lumen (Field, 2003; Thiagarajah et al., 2015). 

A simple assay developed by Dekkers et al. investigating personalized medicine approaches 

for cystic fibrosis (Dekkers et al., 2013), can be adapted to identify compounds that may 

induce secretory diarrhoea. Dekkers found that forskolin caused swelling of human intestinal 

organoids, due to chloride channel activity, and that patient-matched organoids could 

potentially be used as a model to predict sensitivity to CFTR-restoring drugs. Hence, we 

ascertained the ability of TKIs to act as secretagogues, through their ability to activate 

enteroid swelling. None of the BCR-ABL inhibitors tested induced swelling over the 30 min 
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period studied and, to our knowledge, no previous studies have assessed the ability of TKIs 

to induce secretion in organoids. However, Src, which is inhibited by bosutinib and dasatinib 

(Keller et al., 2009; Fullmer et al., 2011), is involved in chloride secretion. INF-γ and H2O2 

attenuate secretagogue-induced chloride secretion in human colonic T84 cells through 

activation of Src (Uribe et al., 2002; Chappell et al., 2008), and Src inhibition potentiates 

carbachol-induced chloride secretion in T84 cells (Keely et al., 2000). Therefore, it was 

surprising that bosutinib and dasatinib had no effect on organoid swelling. However, 

herbimycin A – which, similarly to bosutinib and dasatinib, inhibits both c-Abl and c-Src – 

does not increase chloride secretion in T84 monolayers (Illek et al., 1996). 

Several studies have suggested a role for ErbB, a family of four tyrosine kinase receptors 

including EGFR (ErbB1), in inhibition of chloride secretion, which has led to the chloride 

secretion hypothesis for EGFR inhibitors (Van Sebille et al., 2015). Direct activation of EGFR 

by TGFα or EGF can inhibit carbachol-induced chloride secretion in T84 colonic epithelial cells 

(McCole et al., 2007) and EGF pre-treatment inhibits carbachol- or forskolin-induced ion 

transport changes in mouse colon ex vivo (McCole et al., 2005). Indirect activation of EGFR 

can also inhibit chloride secretion (carbachol initially activates chloride secretion but a 

negative feedback loop is subsequently initiated, involving Src-induced EGFR transactivation, 

leading to inhibition of apical calcium-dependent chloride channels in T84 colonic epithelial 

cells) (McCole et al., 2007). Moreover, several studies have shown inhibition of EGFR can lead 

to chloride secretion. Lapatinib, an EGFR and ErbB2 TKI, leads to reduced serum chloride 

levels in rats, suggestive of intestinal chloride secretion (Bowen et al., 2012). Genistein, an 

EGFR inhibitor, prevents EGF-induced inhibition of calcium-activated chloride secretion in 

colonic epithelial cells (Uribe et al., 1996; Keely et al., 1999). 

Due to the array of evidence pointing towards the involvement of EGFR in chloride secretion, 

we tested whether the EGFR inhibitor, gefitinib, could elicit secretion over a longer time 

period (after initial data found no evidence for chloride secretion after 30 min). No increase 

in area was observed upon treatment over a 24 h window which is consistent with findings 

that the EGFR inhibitors, tyrphostinA23, tyrphostinA51 and erbstatin, do not increase 

chloride secretion in T84 monolayers (Illek et al., 1996). However, the increased luminal size 

seen after 24 h treatment suggests gefitinib may initiate slow, low-level chloride secretion, 

even though enteroid area did not increase. Further experimentation, discussed below, will 

be necessary to determine whether gefitinib can cause chloride secretion. To our knowledge 

no previous studies have assessed the effect of bosutinib, imatinib, dasatinib or gefitinib on 

intestinal secretion in vitro or in enteroids. 
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5.4.1 Limitations and future work 

In addition to the limitations discussed in chapter 3 – such as the paucity of knowledge on 

gut luminal drug concentrations – the enteroid model used in this chapter has several 

limitations. Although enteroids contain the epithelial cell types derived from the crypt stem 

cells (Zachos et al., 2016), they lack a diverse array of cell types – such as myofibroblasts, 

smooth muscle cells, stromal, enteric immune and neural cells, as well as an intestinal 

microbiota – which are present in the intestine in vivo. Enteroids are also deficient in true 

villus structures, exemplified by mRNA profiles containing many more crypt-specific genes 

than villus-specific genes (Middendorp et al., 2014), and form a non-physiological closed 

spherical structure. 

The closed spherical morphology of enteroids is not only problematic in terms of its non-

physiological structure, it also makes luminal administration of drugs technically challenging. 

In our experiments test drugs were applied to the basolateral side, mimicking systemic drug 

exposure. However, small molecule TKIs are given orally (Kantarjian et al., 2010; Shi et al., 

2013; Brümmendorf et al., 2015), which would result in an initial luminal exposure, followed 

by a systemic exposure (at lower concentration) once absorbed across the GI epithelium into 

the blood stream. This distinction is important because application of drugs to the apical or 

basolateral side can induce different effects. For example, basolateral administration of 

carbachol to xenografts can increase ion secretion but apical administration cannot 

(Bertelsen et al., 2004); whilst only basolateral administration of PAR-2 activating peptides 

can increase chloride secretion in intestinal cells (van der Merwe et al., 2018). However, 

carbachol and PAR-2 activating-peptides exhibit their effects extracellularly, whilst bosutinib, 

imatinib, dasatinib and gefitinib induce their effects intracellularly; therefore, it is not 

unreasonable to suggest apical and basolateral administration of these TKIs could lead to 

comparable changes, assuming similar uptake at both apical and basal aspects. To overcome 

the limitations of basolateral drug administration non-spherical GI micro-tissue could be 

utilised. This has previously been implemented by culturing organoids on scaffolds within a 

transwell format (Wang et al., 2017). This would also enable changes in the charge-selective 

permeation pathway to be assessed by TEER measurements, which to our knowledge is 

unfeasible in organoids, due to the closed-spherical structure preventing micro-electrode 

access to the lumen (Kim et al., 2018). 

We confirmed the presence of Paneth cells, goblet cells, enteroendocrine cells and tuft cells 

in our model, giving us some confidence of the validity of our model. However, the presence 
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of Lrg5+ stem cells, absorptive enterocytes and M-cells was not assessed. To our knowledge, 

it is possible to detect Lrg5+ stem cells by PCR and RNA in situ hybridization (Foulke-Abel et 

al., 2016; Chandra et al., 2019), however it can be assumed that these cells exist owing to the 

continued growth of the enteroids, with differentiated cell types, in culture. The presence of 

absorptive enterocytes may be confirmed using antibodies against sucrose-isomaltase 

(Saxena et al., 2016), but were assumed to be present in our model. Finally, previous studies 

using mature M-cell maker such as GP2 (Glycoprotein 2) have shown that mouse enteroids 

rarely contain these cells (Wood et al., 2016). Whilst the presence of several relevant cell 

types was identified in our enteroid model, the species-origin of these organoids – mouse 

rather than human – restricts translatability. 

There is a paucity of studies on the concordance between toxicities in human and animal 

models, especially rodent models. The limited literature suggests in vivo animal models 

(including rodent and non-rodent combined) as a whole are good predictors of GI toxicity, 

correlating with 62-85% of human toxicity data (Olson et al., 2000; Tamaki et al., 2013). 

However, rodent models alone are a much poorer model of this form of toxicity; only 46% of 

drugs inducing GI toxicity in humans also induce toxicity in rodents (Olson et al., 2000). This 

is exemplified by the high rate of GI-related adverse events seen in Phase I (23%) and Phase 

III (67%) human trials (Redfern et al., 2010). Moreover, mouse and human intestinal 

organoids developed from the same intestinal segments have disparities in gene expression 

profiles (Middendorp et al., 2014). Overall this suggests findings in mouse enteroids may not 

be applicable to human enteroids; however, positive results were found in our human cell 

line in chapter 3, providing confidence that our findings are relevant to humans. 

In addition to the enteroid model, some of the assays performed have limitations. For 

example, the enteroid ‘swelling’ assay used may not be sensitive to low level increases in 

secretion, and requires an intact epithelial layer to allow luminal accumulation of water. We 

showed that bosutinib, and to some extent dasatinib, increased enteroid permeability and 

therefore this assay may be unsuitable to assess chloride ion secretion for these drugs. Not 

all time points studied showed a significant area increase upon treatment with positive 

control forskolin (potentially due to organoid bursting as luminal pressure increased). This – 

along with the fact that chloride secretion has variable kinetics (through the Ca2+-dependent 

delayed mechanism or and the cAMP-dependent rapid mechanisms) (Van Sebille et al., 2015) 

– highlights the importance of examining changes in area at regular time intervals with this 

assay. As well as observing multiple time points, assay sensitivity could be improved through 
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fluorescently labelling live cells using calcein and measuring changes in luminal area, rather 

than the whole enteroid area, by confocal microscopy (Dekkers et al., 2013). 

Alternative assays to measure changes in ion transport in organoids may be explored, 

especially for compounds known to compromise epithelial integrity. Changes in intracellular 

pH using two-photon microscopy with a pH-sensitive dye such as SNARF-4F, can provide 

information on H+ exchange particularly for apical NHE3 activity, a transporter which absorbs 

Na+ and extrudes H+ (Foulke-Abel et al., 2016). Microelectrode analysis can also be 

undertaken to determine changes in membrane potential at the basolateral membrane (Liu 

et al., 2012). Finally, observing shrinkage of individual cells observed under high-level 

magnification can give an indication of chloride ion efflux (Liu et al., 2012). 

We attempted to perform a colorimetric chloride secretion assay developed by Tang et al. 

(Tang et al., 2004) in Caco-2 cells (data not shown) to ascertain the translatability of our 

findings in enteroids. However, due to the very high variability between replicates, we were 

not able to optimize the assay; therefore, we cannot make a comparison between our cell 

line and enteroid model. 

In addition to further studies on ion secretion, future experimentation on TJ and AJ protein 

levels and localization are required. To overcome the effect of variability, many biological 

repeats would be required, or experimentation could be performed on organoids developed 

from single Lgr5+ stem cells before passage (rather than enteroids developed from crypts 

and passaged, as in our model) to prevent differences in maturity. It would also be interesting 

to determine changes in the actin cytoskeleton upon bosutinib treatment, to ascertain 

whether the finding of bosutinib-induced actin rearrangement in Caco-2 cells was 

translatable to enteroids. Instead of immunofluorescent staining, which appeared to show 

some off-target fluorescence, organoids could be generated from transgenic mice expressing 

fluorescently-labelled AJ and TJ or cytoskeletal proteins to observe changes in real-time. This 

has previously been performed to allow lineage tracing by labelling Lgr5+ cells with green 

fluorescent protein (GFP) (Sato et al., 2009). Alternatively, organoids could be transfected 

with fluorescently labelled proteins using electroporation or liposome-mediated techniques. 

This technique has been successfully performed using bacterial artificial chromosomes 

containing GFP-labelled proteins (TUBB5 and H2A) (Schwank et al., 2013). 

Finally, it will be necessary to appraise findings by assessing translatability into other models. 

A protocol developed by Sato et al. enables the robust culturing of human enteroids and 
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colonoids (Sato et al., 2011); however, due to lack of access to patient samples we are unable 

to perform experiments using human organoids. 

Next, we will determine the relevance of our research in a BALB/c mouse in vivo model. Mice 

will be dosed with bosutinib (250-1000mg/kg) by oral gavage for 4 h, and after culling, small 

intestine and colon will be harvested. Experimentation will involve observing apoptosis 

induction through staining for active caspase-3, assessing gross pathological changes by H&E 

and determining changes in localization of TJs and AJs by immunohistochemistry. Changes in 

intestinal permeability can be assessed by detecting plasma or urine levels of orally 

administration of markers such as FITC-dextran (Dong et al., 2014), phenol red (Nariya et al., 

2009), iohexol (Forsgård et al., 2016) or lactulose and mannitol (Southcott et al., 2008). 

Alternatively changes in intestinal permeability can be measured ex vivo using an Ussing 

chamber (Dong et al., 2014) or by the FITC-dextran permeation everted sac method (Maeda 

et al., 2010). Positive findings in vivo would enable greater confidence of the clinical 

relevance of our data. 
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CHAPTER 6: A GENOME-WIDE 

ASSOCIATION STUDY (GWAS) TO 

IDENTIFY GENETIC MARKERS OF 

DASATINIB-INDUCED DIARRHOEA 
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6.1 Introduction 

There is a large degree of evidence suggesting single nucleotide polymorphisms (SNPs) are 

involved in susceptibility to diarrhoea, including chemotherapy-induced diarrhoea (Table 6.1 

and 6.2) and diarrhoeal diseases, such as irritable bowel syndrome with diarrhoea (IBS-D) 

(Beyder et al., 2014), ulcerative colitis (Silverberg et al., 2009) and Crohn’s disease (Barrett 

et al., 2008). 

The majority of genetic factors associated with chemotherapy-induced diarrhoea have been 

characterized through candidate gene studies focusing on transporters, metabolizing 

enzymes and targets specific to the drug of interest (Table 6.1). For example, candidate gene 

studies have shown that the frequency of gefitinib-induced diarrhoea is affected by 

polymorphisms within the gefitinib drug exporter, ATP-binding cassette super-family G 

member 2 (ABCG2), (Cusatis et al., 2006; Lemos et al., 2011) and the gefitinib drug target, 

epidermal growth factor receptor (EGFR) (Rudin et al., 2008; Giovannetti et al., 2010).  

However, two genome-wide association studies (GWAS) have been undertaken, which 

identified genetic markers associated with diarrhoea induced by chemotherapy treatment 

(Table 6.2). These studies, unlike candidate gene studies, allowed identification of novel 

genes with previously unknown links to the pharmacokinetics or pharmacodynamics of the 

drug. 

Han et al. (2013), identified three loci previously unknown to be associated with irinotecan-

induced diarrhoea (grade 3) in patients with non-small-cell lung cancer (NSCLC) (Han et al., 

2013).  Chromosome 8 open reading frame 34 (C8orf34), which encodes a protein similar to 

cyclic AMP (cAMP)-dependent protein kinase regulators, was identified. Whilst no previous 

studies have implicated C8orf34, in the pathogenesis of diarrhoea, cAMP is a well-known 

intracellular regulator of intestinal ion secretion (Field, 2003) and further studies identified 

cAMP accumulation as a potential mechanism of irinotecan-induced secretory diarrhoea 

(Moon et al., 2015). FLJ41856 also associated with the diarrhoea phenotype; a poorly 

annotated pseudogene with weak similarity to carcinoembryonic antigen-related cell 

adhesion molecule 5, a clinical biomarker for GI cancers involved in tumour development and 

cell adhesion (Beauchemin et al., 2013). Finally, phospholipase C-β1 (PLCB1), a gene encoding 

an intracellular signal transducer previously shown to be associated with severe ulcerative 

colitis (Haritunians et al., 2010), also associated with irinotecan-induced diarrhoea. 
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Table 6.1. Summary of a literature search identifying SNPs significantly associated with chemotherapy-induced diarrhoea in candidate gene studies. Abbreviations: ABCG2, ATP-binding cassette subfamily G member 2; 
ABCB1, ATP-binding cassette subfamily B member 1; CCND1, Cyclin D1; CES1, Carboxylesterase 1; CYP1A2, Cytochrome P450 1A2; CYP3A5, Cytochrome P450 3A5; DPYD, Dihydropyrimidine dehydrogenase; ERCC2, Excision 
repair 2; EGFR, Epidermal Growth Factor Receptor; MTHFR, Methylenetetrahydrofolate reductase; NSCLC, Non-small-cell lung cancer;  UGT1A, Uridine diphosphate glucuronosyltransferase; UMPS, Uridine monophosphate 
synthetase. *denotes where ancestry is inferred by study location. 

Gene SNP Disease Ancestry Treatment 
Association 

(Diarrhoea grade) 
Odds Ratio P-value Reference 

ABCG2 
rs7699188 NSCLC Majority Caucasian*  Gefitinib Grades 2-3 Not stated <0.01 (Lemos et al., 2011) 

rs2231142 NSCLC Caucasian Gefitinib Any grade Not stated 0.0046 (Cusatis et al., 2006) 

ABCB1 

rs1045642 

Colorectal cancer Majority Caucasian* Irinotecan Any grade 0.177 0.01 
(Cortejoso et al., 

2013) 

Breast cancer Majority Asian* Docetaxel and Doxorubicin Grade 3-4 3.3 0.017 (Kim et al., 2015) 

Small-cell lung cancer North American ancestry  Irinotecan and Cisplatin Grade ≥3 3.9 0.01 (Lara et al., 2009) 

rs1128503 
Predominantly colon 

cancer 
Majority Caucasian* Capecitabine Grade ≥3 Not stated 0.018 

(Garcia-Gonzalez et 
al., 2015) 

rs2032582 

rs1045642 

rs3749438 
Colorectal cancer Canadian Irinotecan Severe 0.43 0.001 (Chen et al., 2015) 

rs10937158 

CCND1 rs9344 Rectal cancer Majority Chinese* 
Capecitabine with or without 

oxaliplatin 
Severe 1.66 0.038 (Qiao et al., 2013) 

CES1 rs2244613 
Metastatic colorectal 

cancer 
Majority Caucasian 

Irinotecan, 5-fluorouracil and 
Leucovorin 

Grades 2-3 0.29 <0.05 (Teft et al., 2015) 

CYP1A2 rs2069521 Advanced NSCLC Chinese ancestry  Erlotinib, Gefitinib or Icotinib 
Digestive tract 

injury 
 0.0585 (Ruan et al., 2016) 

CYP3A5 rs776746 
NSCLC, head and neck 
cancer, ovarian cancer 

Majority North 
American ancestry* 

Erlotinib Any grade 3.77 0.07 (Rudin et al., 2008) 

DPYD 

rs7548189 
Colon or rectum cancer Caucasian 

Capecitabine with or without 
bevacizumab 

grade 0-1 vs grade 2 
vs grade 3-4 

1.18 1.54 x 10-5 (Rosmarin et al., 
2015) rs12022243 1.18 1.11 x 10-5 

rs1801265 
Metastatic 

gastroesophageal cancer 
Majority Caucasian* 

Epirubicin, Cisplatin and 
Capecitabine 

Grades 1-3 Not stated 

0.023 

(Joerger et al., 2015) rs17376848 0.058 

rs67376798 0.028 

rs67376798 Stage II colon cancer Mixed population 
5-fluorouracil combination 

therapies 
Grade ≥3 Not stated 0.003 (Lee et al., 2014) 

rs3918290 Colorectal cancer Majority Chinese* 
5-fluorouracil, Leucovorin 

and Oxaliplatin 
Grade 3-4 Not stated 0.04 (Cai et al., 2014) 
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Table 6.1 Continued 

DPYD 

rs56038477 

Colorectal cancer Majority Caucasian* Capecitabine Grade 3-4 Not stated 

0.006 

(Deenen et al., 
2011) 

rs3918290 0.01 

rs1801160 0.02 

rs67376798 0.02 

ERCC2 rs13181 Colorectal cancer Majority Caucasian* Irinotecan Any grade 19.4 0.033 
(Cortejoso et al., 

2013) 

EGFR 

rs712829 
NSCLC, head and neck 
cancer, ovarian cancer 

Majority North 
American ancestry* 

Erlotinib Any grade Not stated 
0.009 

(Rudin et al., 2008) 
rs712830 0.008 

rs712830 

NSCLC Caucasian Gefitinib 
Grade 0-1 vs Grade 

2-3 
Not stated 

<0.01 
(Giovannetti et al., 

2010) 
rs712829 <0.01 

rs11543848 0.02 

hsa-mir-

4751 rs8667 
Acute lymphoblastic 

leukaemia 
Spanish Children 

Spanish standard LAL-SHOP 
94/99/2005 

Grade 2-4 12.83 0.0005 
(Umerez et al., 

2018) 

MTHFR 

rs1801131 
Metastatic colorectal 

cancer 
Majority Caucasian* Capecitabine Grade 3-4 Not stated 0.041 

(Van Huis-Tanja et 
al., 2013) 

rs1801133 
Metastatic colorectal 

cancer 
Majority Caucasian 

5-fluorouracil, Leucovorin 
and Oxaliplatin 

Grade 3-4 Not stated 0.02 (Chua et al., 2009) 

rs1801133 
Acute lymphoblastic 

leukaemia 
Egyptians Children Methotrexate Grade 3-4 Not stated <0.0001 

(Tantawy et al., 
2010) 

UGT1A9 rs17868320 Solid tumours Majority Caucasian Sorafenib Grade ≥2 14.33 0.015 
(Boudou-Rouquette 

et al., 2012) 

UGT1A1 rs3064744 Colorectal cancer Caucasian Irinotecan Severe 1.84 0.002 (Iyer et al., 2002) 

UMPS rs1801019 Advanced rectal cancer Asian 
Tegafur-uracil and 

Leucovorin 
Grade ≥2 10.76 0.018 (Kim et al., 2017) 
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The study by Takahashi et al. (2014) identified potassium voltage-gated channel subfamily 

KQT member 5 (KCNQ5), a gene encoding a channel which controls GI motility (Schwake et 

al., 2003), to be associated with irinotecan-induced diarrhoea. Whilst this locus did not attain 

genome-wide significance, it is biologically plausible because selective KCNQ4/5 blockers 

have been shown to increase intestinal motility and KCNQ4/5 suggested to be a therapeutic 

target for constipation predominant irritable bowel syndrome (IBS-C) (Jepps et al., 2009).  As 

irinotecan activates acetylcholine signaling (Hyatt et al., 2005) and KCNQ5 is inhibited by 

acetylcholine (Pérez et al., 2010), Takahashi suggested irinotecan inhibited KCNQ5, through 

activation of this pathway. These two studies exemplify how GWAS can aid mechanistic 

understanding and identify novel avenues to be further explored. 

 
 

In addition to furthering our mechanistic understanding, identification of prognostic genetic 

factors aids personalized health care. Variants with high sensitivity and specificity can be used 

in a clinical setting to predict individuals at risk of severe to life-threatening adverse drug 

reactions. For example, pre-emptive testing for UGT1A1*6 and UGT1A1*28 is recommended 

by the Pharmaceuticals and Medical Devices Agency in Japan prior to irinotecan treatment, 

to identify individuals at increased risk of severe adverse drug reactions (ADRs), such as high-

grade diarrhoea. Individuals with these polymorphisms undergo slower degradation of the 

active irinotecan metabolite, SN-38, and require dose-reduction (Etienne-Grimaldi et al., 

Table 6.2. Summary of a literature search identifying SNPs significantly associated with chemotherapy-induced diarrhoea 
in genome-wide association studies. 95% CI show 95% confidence intervals. Abbreviations: C8orf34, Chromosome 8 Open 
Reading Frame 34; CEACAM22P, Carcinoembryonic antigen-related cell adhesion molecule 2 (pseudogene); PLC-β1 
Phospholipase C beta 1; KCNQ5, Potassium voltage-gated channel subfamily KQT member 5; NSCLC, Non-small cell lung 
cancer. 

Gene SNP Disease Ancestry Treatment Association 
Odds 
Ratio 

(95% CI) 
P-value Reference 

C8orf34 rs1517114 

Advanced 
NSCLC 

Korean 

Discovery 
and 

replication 
cohort: 

Irinotecan, 
with Cisplatin 

or 
Capecitabine 

Grade 3 
diarrhoea 

4.1 
(2.1-8.0) 

8.5 x10-6 

(Han et 
al., 2013) 

FLJ41856 rs1661167 
4.0 

(2.0-7.9) 
1.9 x10-5 

PLCB1 rs2745761 
4.8 

(2.3-
10.0) 

6.4x10-6 

KCNQ5 rs9351963 
Cancer 

(type not 
stated) 

Japanese 

Discovery 
cohort: 

Irinotecan 
monotherapy 

Replication 
cohort: 

Irinotecan 
monotherapy 
or combined 

therapy 

Grade ≥ 2 
diarrhoea 

3.1 
(1.8-5.6) 

3.31x10-5 
(Takahashi 

et al., 
2014) 
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2015). However, to our knowledge, there are currently no widely used genetic tests to 

determine the likelihood of drug-induced diarrhoea within the UK. 

Similar to the genetic variants discussed above, variants associated with ADRs are often 

specific to the pharmacological action of the drug. In this way, associated variants from one 

class of chemotherapy are unlikely to be applicable to other classes of chemotherapy. This – 

along with the complex multi-mechanistic basis of chemotherapy-induced diarrhoea and lack 

of standardized phenotypes – means the large majority of genetic factors contributing to GI 

ADRs remain unknown. For example, no genetic determinants of Bcr-Abl inhibitor-induced 

diarrhoea are currently known. 

By identifying genetic polymorphisms associated with dasatinib-induced diarrhoea, it may be 

possible to gain a greater understanding of the mechanism(s) of diarrhoea induced by Bcr-

Abl inhibitors. In this chapter, the hypothesis that there are genetic determinants which 

significantly alter the likelihood of dasatinib-induced diarrhoea in patients with chronic 

myeloid leukaemia (CML) was tested. The aims of the chapter were to: 

1. Perform a GWAS to identify SNPs associated with dasatinib-induced diarrhoea using 

a discovery cohort of 145 patients from the SPIRIT2 trial. 

2. Assess imputation accuracy of suggestive or genome-wide significant imputed SNPs 

using PCR-based genotyping. 

3. Validate GWAS discovery cohort findings in a replication cohort of a further 137 

SPIRIT2 trial patients using PCR-based genotyping. 

4. Analyse the biological plausibility of candidate SNPs by literature searches. 

 

6.2 Results 

6.2.1 Patient characteristics 

Patients within the discovery and replication cohort were from the SPIRIT2 trial and received 

100mg oral dasatinib daily (chapter 2, Section 2.6). Demographic data for the 145 discovery 

cohort patients used in the GWAS are summarised in Table 6.3, along with demographics of 

the 137 patients studied in the replication cohort. Patients within the replication cohort did 

not overlap with those in the discovery cohort. Patient ethnicity was not catalogued, but as 

the study was conducted in the UK the subjects were largely considered to be Caucasian. 

Patients with non-Caucasian genomic ancestry were excluded from the discovery cohort 

through principal component analysis (n=16). Neither age (t-test, p=0.403), gender (Chi-
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squared test, p=0.132) nor body mass index (BMI) (t-test, p=0.497) showed univariate 

association with the diarrhoea phenotype in the discovery cohort. Within the replication 

cohort neither gender (Chi-squared test, p=0.5031) nor BMI (t-test, p=0.399) were 

significantly associated with diarrhoea; however, age (t-test, p=0.0325) was significantly 

associated with this phenotype. 

  

6.2.2 SNPs significantly associated with dasatinib-induced diarrhoea in the 

discovery cohort 

Genome-wide association analysis identified five SNPs associated with dasatinib-induced 

diarrhoea at the genome-wide level (Fig 6.1, p<5x10-8). All five SNPs were imputed. 

rs187843272 was located within the intronic region of the gene coding for aminoadipate-

semialdehyde dehydrogenase (AASDH) on chromosome 4q57.2 (Fig 6.2B, p=9.85 x 10-9). The 

other four variants – rs12422992, rs201379970, rs12424256 and rs61708525 – were located 

as a cluster on chromosome 12q94.6 within the intronic region of plexin C1 (PLXNC1). 

rs12424256 exhibited the lowest p-value (Fig 6.2A, p= 4.22x10-9) and is in linkage 

disequilibrium with rs61708525 (r2=0.61, D'=0.93).  

Table 6.3.  SPIRIT2 trial patient demographics of the discovery and replication cohorts.  
Patients within the discovery and replication cohort received 100mg dasatinib daily.  
Patient information on age, gender and body mass index (BMI) was collected and 
occurrence and grade of diarrhoea were logged according to the Common Terminology 
Criteria for Adverse Events (CTCAE) system. 
 

Discovery cohort Replication cohort 

Patient number, n  145 137 

Median age years (range) 56 (18-88) 52 (21-89) 

Gender 

Male, n (%) 

Female, n (%) 

 

89 (61%) 

56 (39%) 

 

90 (66%) 

47 (34%) 

BMI,  mean  (range) 27.6 (19.2 – 44.2) 26.5 (18.5 – 43.9) 

Diarrhoea incidence, n (%) 40 (28%) 33 (23%) 

Diarrhoea grade, n (%) 

1 

2 

3 

4 

Unknown 

 

27 (68%) 

8 (20%) 

1 (3%) 

0 (0%) 

4 (10%) 

 

24 (73%) 

8 (24%) 

1 (3%) 

0 (0%) 

0 (0%)  
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Figure 6.1. Genome-wide Manhattan plot showing SNPs linked to dasatinib-induced diarrhoea. -log
10

P values of SNPs 

plotted against their chromosomal location for the genome-wide association study performed on the discovery cohort. 
Horizontal red line indicates genome-wide significance (p-value = 5 x 10-8) and horizontal blue line indicates suggestive 
significance (p-value = 1 x 10-5). The genes in which the SNPs that reached genome-wide significance reside are labelled 
in green. 
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Figure 6.2. Regional association plots and recombination rates for chromosomal 
regions showing associations with dasatinib-induced diarrhoea at the genome-wide 
significance level. SNP towers appearing in Manhattan plot on chromosome 12 (A) and 
4 (B) are shown. Each circle represents an imputed SNP, whilst each square represents 
a genotyped SNP. The index SNP is shown in purple. The extent of linkage 
disequilibrium (r2) is colour graded as shown in the top left box. Blue lines represent 
the genetic recombination rate (cM/Mb) and the lower box indicates the genes coded 
for at this chromosome location. 
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SNPs reaching suggestive significance levels (p<1x 10-5) were seen in several other regions. 

Those with clear ‘towers’ in the regional plots were located on chromosome 2q1.8, 3q46.2, 

6q2.9, 7q153.8 and 13q109.5 (Fig 6.3A-E). On chromosome 2q1.8, an intronic SNP 

(rs6760938) within myelin transcription factor 1 like (MYT1L) was the most significant SNP 

(p=2.74 x 10-6, Fig 6.3A). On chromosome 3q46.2 the most significant SNP was rs35636998 

which resides within the intronic region of C-C chemokine receptor type 3 (CCR3) (p=2.52 x 

10-6, Fig 6.3B). rs73718779 reached highest significance within the 6q2.9 chromosomal region 

and is located within the intronic region of serine protease inhibitors (serpin) family B 

member 6 (SERPINB6) (p=3.97 x 10-6, Fig 6.3C). On chromosome 7q153.8, rs6975293, a SNP 

located within a non-coding transcript exon region of dipeptidyl peptidase like 6 (DPP6) was 

the most significant (p=2.52 x 10-6, Fig 6.3D). Finally, rs9559427 located within the intronic 

region of myosin XVI (MYO16) reached highest significance on chromosome 13q109.5 

(p=2.35 x 10-6, Fig 6.3E). 

A summary of the most significant SNP within each ‘tower’ found to associate with dasatinib-

induced diarrhoea at the suggestive (p<1x10-5) and genome-wide significance (p<5x10-8) 

levels is shown in Table 6.4. Of the seven SNPs highlighted in the regional plots above, 

rs187843272 on chromosome 4q57.2 is not shown in the table and was not investigated 

further because the ‘stand-alone’ nature of this SNP (low correlation with neighbouring SNPs) 

suggests it is a false positive (Fig 6.2B). 
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Figure 6.3. Regional association plots and recombination rates for 
chromosomal regions showing associations with dasatinib-induced diarrhoea 
at the suggestive significance level. SNP towers appearing in Manhattan plot 
on chromosome 2 (A), 3 (B), 6 (C), 7 (D) and 13 (E) are shown. Each circle 
represents an imputed SNP, whilst each square represents a genotyped SNP. 
The index SNP is shown in purple. The extent of linkage disequilibrium (r2) is 
colour graded as shown in the top box. Blue lines represent the genetic 
recombination rate (cM/Mb) and the lower box indicates the genes coded for 
at this chromosome location. 

 
Figure 6.3 continues onto next page   
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Figure 6.3 continues onto next page 
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Figure 6.3 continued 
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Table 6.4. Index SNPs associated with dasatinib-induced diarrhoea at suggestive (p<1x10-5) and genome-wide (p<5x10-8) significance levels. 
Base pair (bp) position and location are based on human genome build GRCh37. Chr denotes chromosome number. MAF denotes minor allele 
frequency in cases (patients experiencing diarrhoea) and controls (patients not experiencing diarrhoea). INFO score is a prediction score of 
imputation accuracy. Imputed SNPs were analysed in dosage format. P-value indicates the SNPs association with dasatinib-induced diarrhoea. 
*MAF based on imputed dosage is close to zero therefore it is likely there were no carriers of this minor allele. 

SNP Chr BP position Gene Location Effect 
(minor) 

allele 

Reference 
(major) 
allele 

MAF Allelic 
odds 
ratio 

P-value of 
association 

INFO 
score 
(%) 

Cases 

(n=40) 

Controls 

(n=105) 

rs12424256 12 94654057 PLXNC1 intron T C 0.525  0.159  5.0956 4.22 x 10
-9

 97.6 

rs9559427 13 109512417 MYO16 intron T C 0.0001* 0.15 0.00027 2.35 x 10
-6

 97.9 

rs35636998 3 46272723 CCR3 intron G A 0.325 0.130 3.373 2.52 x 10
-6

 95.2 

rs6975293 7 153791767 DPP6 Non-
coding 

transcript 
exon 

G C 0.288  0.524 0.44484 2.52 x 10
-6

 48.6 

rs6760938 2 1834745 MYT1L intron C T 0.590 0.272 3.5792 2.74 x 10
-6

 93.0 

rs73718779 6 2969278 SERPINB6 intron T C 0.025 0.143 0.15389 3.97 x 10
-6

 98.8 
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6.2.3 Validation of imputed SNPs in the discovery cohort using PCR-based 

genotyping methods 

The six SNPs with the most significant p-value of association within each ‘tower’ (index SNPs) 

were imputed (Table 6.4); therefore, patients from the discovery cohort were genotyped for 

these specific SNPs by Taqman™ or KASP™ assay, to assess imputation accuracy. 

All genotyped SNPs were in Hardy-Weinberg Equilibrium (HWE) (Table 6.5, p > 1x10-3), and 

showed clear genotype clusters (example plot in chapter 2, Fig 2.5) with relatively high call 

rate (>95%); suggesting accurate genotyping. SNPs with high INFO score (Table 6.4), a 

prediction of imputation accuracy, exhibited high concordance between the imputed and 

genotyped SNPs (Table 6.5). rs6765293 had a low INFO score (48.6%) indicating poor 

imputation, which was reflected in the low concordance between genotype predicted by 

imputation and genotype determined by PCR-based genotyping (47.6%) (Table 6.4). 

Moreover, rs6975293 is a palindromic SNP which codes for a G to C nucleotide change with 

a MAF of 49%, causing difficulty in differentiating between the forward and reverse strands 

which can lead to errors in SNP assay design. 
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Table 6.5. Confirmation of imputation accuracy of the discovery cohort using Taqman™ or KASP™ genotyping. MAF denotes minor allele frequency 
in cases (patients experiencing diarrhoea) and controls (patients not experiencing diarrhoea). P-values were calculated by performing logistic 
regression in PLINK assuming an additive mode of inheritance. Concordance with imputation was calculated as the percentage of matching patient 
genotypes predicted by imputation and determined by PCR-based genotyping. 

SNP Call rate 
(%) 

Effect 
(minor) 

allele 

Reference 
(major) 
allele 

MAF Allelic odds 
ratio 

P-value of 
association 

Concordance 
with imputation 

(%) 

HWE         
P-value 

Cases 

(n=40) 

Controls 

(n=105) 

rs12424256 95.6 T C 0.474 0.159 4.803 3.46 x 10-6 95.6 0.2532 

rs9559427 96.2 T C 0 0.141 N/A N/A 98.1 0.0387 

rs35636998 96.9 G A 0.302 0.125 4.21 2.48 x 10-4 93.2 0.0765 

rs6975293 97.5 G C 0.275 0.485 0.4225 2.75 x 10-3 47.6 0.3085 

rs6760938 97.6 C T 0.600 0.304 3.409 3.18 x 10-5 93.3 0.3765 

rs73718779 97.5 T C 0.025 0.142 0.1481 1.087 x 10-2 100 0.6802 
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Odds ratios were similar between the genome-wide association study and our validation 

study (Table 6.4 and 6.5). However, p-values were different for rs9559427, rs25636998, 

rs73718779. This is probably due to the different statistical tests performed: in the genome-

wide association study, genotypes are used in dosage format due to imputation, rather than 

absolute genotype values which are generated from PCR-based genotyping methods. 

All six SNPs, excluding rs955942, reached significance at the p<0.05 level (Table 6.5) and were 

therefore taken forward into the replication cohort. It was not possible to calculate the odds 

ratio or p-value of association for rs955942, because none of the diarrhoea cases carried the 

T allele. However, as the minor allele frequency (MAF) of control patients was 0.141 and 

much greater than control patients, this SNP was taken forward into the replication cohort. 

6.2.4 Validation of SNPs in the replication cohort failed to confirm findings in 

the discovery cohort 

The significance of SNPs identified and validated in the discovery cohort was investigated 

through a replication study using the replication cohort; 137 dasatinib-treated patients from 

the SPIRIT2 trial which were not used in the discovery cohort. The demographic 

characteristics of these patients were similar to those in the discovery cohort (Table 6.1); 

however, slightly fewer patients experienced diarrhoea (23% in contrast to 28%). 

  

Table 6.6. Assessment of selected associated SNPs in replication cohort. MAF denotes minor 
allele frequency in cases (patients experiencing diarrhoea) and controls (patients not 
experiencing diarrhoea). P-values and odds ratios were calculated by performing a logistic 
regression in PLINK assuming an additive mode of inheritance with age, which significantly 
associated with the diarrhoea phenotype, set as a covariate. 

SNP Call 
rate 
(%) 

Effect 
(minor) 
allele 

Reference 
(major) 
allele 

MAF Allelic 
odds 
ratio 

P-value of 
association 

HWE 
p-

value Cases 

(n=33) 

Controls 

(n=104) 

rs12424256 98.5 T C 0.166 0.191 0.9301 0.8416 0.3995 

rs9559427 97.1 T C 0.129  0.092 1.508 0.3620 0.3823 

rs35636998 98.6 G A 0.125 0.122 1.189 0.6970 0.6931 

rs6975293 95.9 G C 0.411 0.455 0.9005 0.6996 0.0435 

rs6760938 92.8 C T 0.266  0.320  0.7527 0.4054 0.8284 

rs73718779 98.5 T C 0.125 0.106 1.330 0.4927 0.2065 
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Patient DNA was genotyped using the Taqman™ or KASP™ assays as described for the 

discovery cohort. Genotype call rates for all SNPs were relatively high (>90%), clear clusters 

formed (example plot in chapter 2, Fig 2.5) and all passed HWE (p>1x10-3) (Table 6.6) 

suggesting accurate genotyping. 

No SNP associations were confirmed for diarrhoea versus non-diarrhoea patients in the 

replication cohort. The allelic odds ratio for all six SNPs (rs12424256, rs9559427, rs35636998, 

rs6975293, rs6760938, rs73718779) were close to 1, and P-values were not significant 

(p>0.3) (Table 6.6). 

6.3  Summary of results 

The genome-wide association study performed in this chapter identified 4 SNPs, within the 

intronic region of the PLXNC1 gene, significantly associated with dasatinib-induced diarrhoea 

at a genome-wide significance level (p<5x10-8). The same genome-wide association study 

identified SNPs — within MYO16, CCR3, DPP6, MYT1L and SERPINB6 genes — associated with 

dasatinib-induced diarrhoea at the suggestive significance level (p<1x10-5). SNPs with the 

lowest p-value of association from each chromosomal region were taken forward into the 

replication cohort; however, we failed to find significant associations within this cohort. 

6.3.1 Discussion 

GWAS and candidate gene studies have identified many genetic variants associated with 

chemotherapy-induced diarrhoea (Table 6.1 and 6.2). However, to our knowledge this is the 

first report of a GWAS to identify genetic determinants of susceptibility to diarrhoea induced 

by the tyrosine kinase inhibitor, dasatinib. 

Our study identified SNPs within PLXNC1 (plexin C1), a protein-coding gene, to be significantly 

associated with dasatinib-induced diarrhoea at the genome-wide significance level. This 

semaphorin 7A receptor is involved in controlling adherence (Tamagnone et al., 1999; Scott 

et al., 2008, 2009; Konig et al., 2014) and inflammation (Comeau et al., 1998; Morote-Garcia 

et al., 2012; Konig et al., 2014), and is expressed on many inflammatory cells – T cells, B cells, 

monocytes, dendritic cells, neutrophils and platelets (Konig et al., 2014). However, whilst 

both plexin C1 and its cognate ligand sema7A, are expressed at the protein level in the gut 

(Uhlen et al., 2015), to date no studies have assessed the role of plexin C1 in the gut. It has 

been shown, however that DSS treatment to model colitis in BALB/c mice induces an increase 

in sema7a (Cho et al., 2015); however, the extent to which this contributed to the colitis 

phenotype was not explored. 
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Five other regions within protein coding genes were also identified as significantly associated 

with dasatinib-induced diarrhoea at the suggestive significance level. These genes were 

MYT1L, CCR3, SERPINB6, DPP6 and MYO16. It was interesting to note that no SNPs within 

dasatinib transporters or metabolism genes were found to be associated with dasatinib-

induced diarrhoea. This could reflect the limitations of the study (see section below). 

Transporter and metabolism gene polymorphisms are frequently associated with adverse 

events (Table 6.1), likely due to higher intracellular drug concentrations. 

MYT1L, a cysteine-cysteine zinc finger transcription factor involved in neurogenesis 

(Vierbuchen et al., 2010) with incredibly low to no expression in small intestines and colon 

(Uhlen et al., 2015), lacked any obvious link to the pathogenesis of diarrhoea. MYO16 – a 

myosin protein, involved in brain development (Liu et al., 2015) – has not been detected in 

the GI tract (Uhlen et al., 2015) and also lacked any obvious biological plausibility. 

SERPINB6, however, is highly expressed in the intestines (Uhlen et al., 2015) and strong 

expression has been shown in colonic mast cells (Strik et al., 2004). SERPINB6 is a cytoplasmic 

protein which inhibits trypsin-like proteases, such as mast cell β-tryptase. It is thought that 

this inhibition aids neutralization of ectopic intracellular proteases, which can be released 

into the cytoplasm due to internalization and faults in degranulation. Mast cell degranulation 

leading to the release of proinflammatory mediators, such as histamine, can induce 

hypersecretion and hypermotility leading to diarrhoea (Ramsay et al., 2010). Moreover, 

several studies have shown an increase in mast cell number in patients with IBS-D and chronic 

intractable diarrhoea (Ramsay et al., 2010), suggesting biological plausibility of this locus. 

DPP6 is a peptidase protein (that lacks peptidase activity (Strop et al., 2004)) which physically 

associates with and increases cell surface expression of potassium voltage-gated channel 

subfamily D member 2 (KCND2 or Kv4.2) (Soh et al., 2008; Seikel et al., 2009). KCND2 is 

responsible for producing dendritic A-type currents, a current which is activated after 

hyperpolarization and regulates neuronal excitability (Amberg et al., 2003). Kv4.2, along with 

Kv4.3, are likely major contributors to the A-type currents within smooth muscle, including 

that within the GI tract (Amberg et al., 2003).  KCNQ5, another potassium voltage-gated 

channel, has been shown to be associated with irinotecan-induced diarrhoea (grade  ≥ 2) in 

a GWAS study (Takahashi et al., 2014), and it was suggested that this was through altered 

susceptibility to irinotecan-induced gut motility. 

CCR3 – a chemokine receptor expressed on inflammatory cells including T-helper cells – is 

known to have a role in the pathogenesis of diarrhoea. Three studies have shown genetic 
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variants within CCR3 are linked to celiac disease (Dubois et al., 2010; Trynka et al., 2011; 

Garner et al., 2014), and CCR3 overexpression occurs in ulcerative colitis (Manousou et al., 

2010). The minor allele variant of the index SNP (rs35636998), that was found to be 

associated with increased frequency of dasatinib-induced diarrhoea, increases expression of 

CCR3 and 2 in whole blood (GTEx-Consortium, 2013). T cell expansion has been linked to 

dasatinib-induced high grade diarrhoea (Mustjoki et al., 2009), and therefore, it could be 

hypothesized that rs35636998 may affect susceptibility to dasatinib-induced T-cell expansion 

thereby affecting the incidence of diarrhoea. 

Within each genetic region, the index SNP (that was identified in the GWAS discovery cohort) 

was not found to be significantly related to the incidence of dasatinib-induced diarrhoea in 

the replication cohort. This suggests either the initial results were false positives or that we 

failed to detect true associations in the second cohort, due to the limitations of the study 

(discussed below). 

From our results it is tempting to speculate that dasatinib-induced diarrhoea has a genetic 

component. For example, CCR3, DPP6 and SERPINB6 have biologically plausible links to 

diarrhoea pathogenesis, suggesting certain polymorphisms within this region could alter 

susceptibility to dasatinib-induced diarrhoea. However, this conclusion should be treated 

with caution as we were unable to validate these candidate SNPs in our replication cohort. 

6.4 Limitations and future work 

One of the main limitations of our study, which is common to GWAS, was the small sample 

size. Our discovery cohort consisted of 145 patients (40 cases and 105 controls), meaning the 

study likely had insufficient power to detect all genome-wide associations. Dasatinib-induced 

diarrhoea is likely a complex and multifactorial phenotype; the diarrhoeal mechanisms in one 

set of patients may be overlapping but distinct to another set, both within the same 

diarrhoeal grade and between grades. This decreases the power of the study, meaning a large 

sample size is especially important. Susceptibility to dasatinib-induced diarrhoea is also likely 

to be influenced by other non-genetic components, which it has not been possible to study, 

such as diet and microbiome. 

Another common problem, which was also true for our study, was the issue of phenotyping. 

Dasatinib-induced diarrhoea is not a clear-cut phenotype and the CTCAE, used to categorize 

diarrhoea into grades 1 to 5, is highly subjective. Further increasing subjectivity was the fact 

that the diarrhoea grade assigned was based on patient reporting. Moreover, in some cases, 
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it can be difficult to determine whether the adverse event is caused by the drug. Whilst we 

excluded patients for which diarrhoea was unlikely to be caused by dasatinib (due to patient 

co-morbidities, chapter 2, Fig 2.4), we cannot be absolutely confident that dasatinib was the 

cause of diarrhoea for the remaining patients. This lack of non-subjective standardized 

phenotyping can make replication between different cohorts and independent studies 

challenging. The requirement for more standardized phenotype definitions to identify 

genetic determinants of GI toxicity has been noted previously (Carr et al., 2017). 

A more objective approach, would include using a marker of GI epithelial damage, for 

example histological scoring of GI damage or faecal calprotecin levels (a biomarker for 

intestinal inflammation) (Manceau et al., 2017). This would increase the power of the study, 

however, would cause bias towards specific diarrhoeal mechanisms. For example, a GWAS 

for drug-induced GI damage would fail to detect genetic associations linked to diarrhoeal 

mechanism involved in secretion and dysmotility. However, using diarrhoea as the case 

phenotype enables a more generalised unbiased approach and is arguably more clinically 

relevant. 

An additional limitation is the lack of patient quality control with the replication cohort, 

despite patient quality control being performed in the GWAS. In this way, co-founding 

variables or population sub-structure could be present decreasing validity of results. 

Moreover, fewer patients experienced diarrhoea in the replication cohort, decreasing the 

power of this cohort. 

Future work should include sub-analysis of a larger cohort using higher grade diarrhoea only. 

The majority of candidate gene and GWAS studies which have successfully identified SNPs 

associated with chemotherapy-induced diarrhoea focused on higher grade toxicity (Table 6.1 

and 6.2). The use of high-grade diarrhoea only, will likely give the study greater power, as 

diarrhoeal mechanisms may differ between low and high grade (see section 1.4.4 

Inflammation and ER stress). Furthermore, SNPs associated with higher-grade diarrhoea will 

be of greater clinical relevance; enabling identification of patients who require alternative 

treatment due to the risk of potentially fatal chemotherapy-induced GI toxicities. The use of 

a larger sample size would give the study greater power and allow association tests to be 

performed only on patients with high-grade diarrhoea. 

The biological plausibility of any SNPs found to associate in both the discovery and replication 

cohort should be analysed thoroughly. For SNPs within or near genes, pathway analysis 

should be undertaken using web servers such as GeneMANIA (genemania.org) and STRING 
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(String-db.org). Analysis of metabolic pathways linked to genes could be examined using 

KEGG PATHWAY database (genome.jp/kegg/pathway.html) and PathCards 

(pathcards.genecards.org). Whether SNPs within 5’ untranslated and promoter regions affect 

gene expression and transcription factor binding should be analysed using RegulomeDB 

(regulomedb.org) and GTEx Portal (gtexportal.org). It would also be interesting to determine 

whether SNPs within intronic regions alter splicing, for example by using the online tool 

Human Splicing Finder (umd.be/HSF). For SNPs within protein coding exons, the effect on 

amino acid sequence should be determined. 
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CHAPTER 7: FINAL DISCUSSION 
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7.1 General discussion 

Diarrhoea is a common ADR in patients receiving oral anti-cancer TKIs (Keller et al., 2009; 

Fullmer et al., 2011; Cohen et al., 2012; Shi et al., 2013; Brümmendorf et al., 2015). This 

adverse event can be dose-limiting resulting in treatment discontinuation or dose-reduction, 

(Cortes et al., 2010; Kantarjian et al., 2014) which may lead to decreased treatment efficacy 

(Carr et al., 2017). 

Patients presenting with diarrhoea are treated with anti-diarrhoeal therapies which are 

decades old (Carr et al., 2017). The most commonly used treatments are antimotility agents 

which increase intestinal transit time, and hence increase sodium ion and water 

reabsorption. Loperamide, a μ-opioid receptor agonist, is an over-the-counter licensed 

antimotility drug used for mild diarrhoea. However, μ-opioid agonists have a narrow 

therapeutic index and potential side effects including nausea, vomiting and abdominal pain 

(Markland et al., 2015). 

Moreover, these commonly administered anti-diarrhoeal agents often do not target the 

mechanism through which diarrhoea is occurring (in many cases diarrhoea pathogenesis 

does not solely involve increased motility, see chapter 1); therefore, treatment can be 

ineffective (Cortes et al., 2010). The need for more definitive diarrhoeal treatments is 

recognised in the clinic and pharmaceutical setting, and more specific strategies are under 

development. These include NKCC1 inhibitors, K+ channel inhibitors and NHE3 agonists which 

are appropriate for the treatment of diarrhoea with a secretory mechanism (Thiagarajah et 

al., 2015). Specific anti-diarrhoeal therapies are already available in a few cases of drug-

induced diarrhoea. For example, crofelemer, a dual CFTR and CaCC inhibitor, is used to 

attenuate diarrhoea induced by HIV therapy (Thiagarajah et al., 2015). 

However, the paucity in mechanistic understanding of drug-induced GI toxicity, particularly 

for targeted chemotherapies, hinders the development and identification of more specific 

and effective management strategies. Therefore, this project aimed to investigate the 

mechanism of TKI-induced diarrhoea. 

In chapter 3 it was found that the TKIs bosutinib, dasatinib, imatinib and gefitinib induced 

barrier dysfunction and increased intestinal permeability in an in vitro model of the human 

intestinal epithelium (Caco-2 cells), with bosutinib inducing the greatest barrier disruption 

compared to the other TKIs tested. Bosutinib also caused degradation and rearrangement of 

TJ and AJ proteins, and this likely contributed to decreased barrier integrity. This loss of 
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intestinal barrier function has been shown to increase susceptibility to infection and bacterial 

translocation in chemotherapy-treated rats (Song et al., 2006; Nakao et al., 2012). Treatment 

with a non-specific anti-diarrhoeal, such as loperamide to increase transit time, would not 

protect from decreased barrier integrity, and the potential secondary effect of intestinal 

bacterial infection. This further highlights the need for targeted diarrhoea therapy. 

The differences in intestinal barrier responses to TKIs within the same class (i.e. BCR-ABL 

inhibitors used for CML treatment) – degradation and rearrangement of cell junction proteins 

occurred after addition of bosutinib but not imatinib – can be seen for other drug classes. For 

example, EGFR inhibitors gefitinib and erlotinib decrease ZO-1 and E-cadherin levels in rat 

IEC-6 cells, but icotinib at the same concentration has no effect (Fan et al., 2014; Hong et al., 

2014). This discrepancy is potentially due to the differing off-target proteins of drugs within 

the same inhibitor class, as well as the different IC50s that these drugs display towards their 

target protein. Bosutinib has a lower IC50 than imatinib and many more off-target proteins 

including the Src family kinases and MAPKs (Rix et al., 2009; Kitagawa et al., 2013). 

After identification of bosutinib-induced barrier dysfunction as a potential diarrhoea 

mechanism, we then examined the upstream pathways, to enable identification of possible 

drug targets. First, we assessed cell death; a common process in increased intestinal 

permeability (Bojarski et al., 2001; Chen et al., 2017) and cytotoxic chemotherapy-induced 

diarrhoea (Keefe et al., 2000; Sonis et al., 2004). Only low levels of cell death were seen at 

concentrations causing bosutinib-induced permeability increases, supporting the hypothesis 

that the predominant diarrhoeal mechanism of targeted chemotherapies, such as BCR-ABL 

inhibitors, is unlikely to involve direct intestinal damage (however this cannot be ruled out 

as a possible secondary effect) (Van Sebille et al., 2015). 

We therefore hypothesized that bosutinib was targeting specific pathways, by inhibiting off-

target or on-target kinases, involved in controlling TJ and AJ disassembly. To test this, a 

plethora of pathway inhibitors – including inhibitors of MMPs, ER stress, oxidative stress, 

cytoskeletal rearrangement, and proteasomal and lysosomal degradation – were 

investigated for their ability to prevent bosutinib-induced occludin degradation. None of 

these inhibitors significantly attenuated bosutinib-induced occludin degradation. However, 

we detected a significant and rapid decrease in TIMP-2 levels upon addition of bosutinib, 

enabling us to speculate involvement of the TIMP-MMP pathway (TIMPs are endogenous 

inhibitors of MMPs) in bosutinib-induced barrier disruption. This hypothesis was supported 

by the fact that a broad spectrum MMP inhibitor, GM6001, was able to prevent bosutinib-
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induced cellular retractions. There is also strong evidence for the involvement of MMPs in TJ 

and AJ degradation within the intestines – MMPs are involved in TJ modulation during 

intestinal permeability increases in rodent models (Al-Dasooqi et al., 2010; Trivedi et al., 

2013; Ding et al., 2014; Vandenbroucke et al., 2014; Nighot et al., 2015), and Caco-2 cells 

(Groschwitz et al., 2013; Eum et al., 2014). 

The fact that the pathways involved in bosutinib-induced barrier dysfunction were not fully 

elucidated exemplifies the high complexity of interlinking signalling pathways involved in TJ 

and AJ disassembly (González-Mariscal et al., 2008; Zihni et al., 2014, 2016). Some pathways 

may be redundant and only become activated when other pathways are inhibited, and 

certain proteins can act as both positive and negative regulators of cell junction disassembly 

(dependent on their phosphorylation status, conformational state and cellular environment). 

For example, activation of Src by dextran sulphate sodium (DSS) treatment (to model colitis) 

causes TJ disruption and increased permeability in Caco-2 cells (Samak et al., 2015), but 

inhibiting Src-induced FAK activation increases permeability in the same cell line (Ma et al., 

2013). 

This complexity is further exacerbated by the large number of off-target kinases inhibited by 

bosutinib (Rix et al., 2009), and the fact that kinase profiling has not been undertaken in 

intestinal cells. Further knowledge of the bosutinib intestinal kinase inhibition spectrum and 

bioinformatics analysis will likely be required to identify relevant targets to be tested for their 

involvement in bosutinib-induced barrier disruption. 

Next, we attempted to ascertain the physiological relevance of our findings in the two-

dimensional Caco-2 cell in vitro model by determining the translatability of our results into a 

3-dimensional multicellular intestinal organoid (enteroid) model. Human tissue was not 

available for this project; therefore, organoids were cultured from BALB/c mouse proximal 

small intestinal tissue. However, mouse enteroids, unlike Caco-2 cells, recapitulate an in vivo 

3-dimensional intestinal structure and contains the major cell types of the intestinal epithelial 

layer (Sato et al., 2009) making them more physiologically relevant in this regard. 

Using a previously developed enteroid permeability assay (Leslie et al., 2015), similar to the 

FITC-dextran permeability assay used on Caco-2 cells in this project, we demonstrated that 

the bosutinib-induced permeability increase was translatable to our enteroid model. The 

mechanism of this permeability increase was likely similar, but not identical, to that in the 

Caco-2 model. In both the Caco-2 and enteroid model, the permeability increase occurred at 

a concentration causing occludin rearrangement and a low level of cell death (that was only 
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detected in the more sensitive viability assays, such as active caspase-3 staining). However, 

unlike in the Caco-2 model, we failed to detect rearrangement of ZO-1 and E-cadherin or 

decreased cell junction protein levels in the enteroid model. Overall, results from this chapter 

show the majority of our findings in chapter 3 on the Caco-2 cell line are translatable into a 

model that was more physiologically relevant in terms of its non-cancerous origin, cellular 

heterogeneity and 3-dimensional structure. 

In chapter 6, a GWAS was performed as an unbiased approach to identify genes associated 

with dasatinib-induced diarrhoea, and therefore potentially develop a better mechanistic 

understanding of TKI-induced diarrhoea. Six SNPs were identified, two with biological 

relevance (within the DPP6 and CCR3 genes), in the discovery cohort at the suggestive 

significance level. DPP6 encodes a transmembrane protein that belongs to a family of serine 

proteases, and binds to and regulates the level of KCND2, a potassium channel involved in 

regulating neuronal excitability within the GI tract (Amberg et al., 2003). CCR3 codes for a 

chemokine receptor with strong links to diarrhoea-associated diseases including celiac 

disease (Dubois et al., 2010; Trynka et al., 2011; Garner et al., 2014), and ulcerative colitis 

(Manousou et al., 2010). Moreover, SERPINB6 encodes a serine protease inhibitor – 

expressed in mast cells, macrophages and activated neutrophils – that likely has a protective 

role against cell death induced by lysosomal leakage (Strik et al., 2004). This enabled us to 

hypothesise that dasatinib-induced diarrhoea may involve dysmotility and inflammation, 

providing further avenues which could be experimentally explored in vitro and in vivo. 

However, we were unable to confirm the associations of DPP6 and CCR3 with dasatinib-

induced diarrhoea in a replication cohort. This may be due to the lower incidence of 

diarrhoea seen in this replication cohort, thus giving this cohort relatively lower power to 

identify associations than the discovery cohort. Lack of replication could also suggest the trait 

(dasatinib-induced diarrhoea) has a highly complex and multi-factorial pathogenesis that 

may differ between patients and include non-genetic factors, such as diet and the 

microbiome, which could not be factored into the analysis. 

7.2 Future studies and implications 

Data presented here provides strong evidence for the involvement of barrier dysfunction in 

diarrhoea induced by bosutinib, and potentially other TKIs such as dasatinib and gefitinib. 

However, it will be necessary to assess the physiological and clinical relevance of findings in 

patients, by determining the translatability of increased paracellular permeability into 

patients. Several non-invasive techniques, such as the lactulose/mannitol test (Inutsuka et 
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al., 2003; Melichar, Dvořák, et al., 2010), exist for determining changes in intestinal 

permeability in patients. Permeability measurements in CML patients receiving TKIs should 

be correlated with the diarrhoea phenotype to give an indication of the contribution of the 

barrier dysfunction to the diarrhoea phenotype. 

To gain further support for the cellular junction dissolution mechanism, studies observing 

changes in cellular junction proteins should be performed on human intestinal organoids. 

Changes in localization of cell junction proteins may be observed in real time using organoids 

transfected with fluorescently-labelled TJ/AJ proteins; a technique which has been 

successfully employed in human organoids to generate intestinal organoids expressing 

fluorescently-labelled histone (specially histone H2A) (Schwank et al., 2013). Alternatively, 

immunofluorescence staining of TJs could be performed on human duodenal biopsies taken 

from patients before and after chemotherapeutic treatment (Karczewski et al., 2010). As 

human samples were not available for this project, we will undertake whole mouse in vivo 

work to further understand the translatability of our findings at a whole-systems level. Mice 

will be given TKIs by oral gavage and have their proximal small intestine examined for signs 

of tight junction dissolution by immunofluorescence staining, cell death using active caspase-

3 staining and changes in gross pathology by H&E staining. 

Whilst data presented here show that bosutinib is capable of disrupting Caco-2 monolayer 

and enteroid epithelial barrier integrity, the pathways leading to this remain largely 

unknown. However, our preliminary findings of decreased TIMP2 levels following bosutinib 

treatment, offers the suggestion of MMP pathway involvement. Further studies assessing 

the importance of MMP activation in this process will be essential to accept or refute our 

hypothesis of MMP-induced TJ and AJ disruption. 

Finally, assessment of compounds for their ability to prevent intestinal barrier dysfunction at 

the pre-clinical and clinical stages will be required. Currently no FDA-approved treatments 

exist to maintain barrier function, neither for the treatment of GI disorders nor the 

prevention of drug-induced GI toxicity (Odenwald et al., 2017). However, larazotide acetate 

has been shown to attenuate Caco-2 barrier dysfunction caused by gliadin and Vibrio 

cholerae zonula occludens toxin (Gopalakrishnan et al., 2012) and is currently in clinical trials 

for the treatment of coeliac disease (Leffler et al., 2015). Larazotide acetate prevents gluten-

induced release of zonulin (Khaleghi et al., 2016), a protein which initiates a signalling 

pathway leading to increased intestinal permeability; therefore, larazotide acetate is unlikely 

to be effective at preventing TJ and AJ dissolution initiated by other pathways. 
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Probiotics, however, have been shown to increase TJ and AJ protein levels under an array of 

different conditions (Bron et al., 2017). Administration of Lactobacillus plantarum, a bacteria 

found in fermented foods and the GI tract, to the duodenum by feeding catheter in healthy 

patients increases localization of ZO-1 and occludin to TJ structures (Bron et al., 2017). 

Several in vitro and in vivo models, including models of colitis, have demonstrated specific 

probiotics can have a beneficial effect on intestinal barrier function by increasing expression 

of TJ and AJ proteins such as occludin and E-cadherin (Bron et al., 2017). One study showed 

the probiotic Lactobacillus rhamnosus significantly decreased grade 3/4 diarrhoea in 

colorectal cancer patients treated with 5-FU (Touchefeu et al., 2014); however, strong 

evidence for probiotic-induced barrier repair is lacking due to inconsistent findings across 

studies (Touchefeu et al., 2014). 

It is also worth noting, as our data point towards a hypothesis whereby MMP activation leads 

to bosutinib-induced diarrhoea, that several MMP inhibitors are in clinical and pre-clinical 

trials for treatment of an array of cancer types, including breast and colorectal cancer (Winer 

et al., 2018). MMPs are well-known mediators of tumour growth and metastasis; however, 

the role of MMPs in barrier dysfunction also make them a candidate target for treatment of 

chemotherapy-induced diarrhoea (Al-Dasooqi et al., 2014). A recent study by Gibson et al. 

showed selective MMP-9/-12 inhibition using AZD3342 delayed diarrhoea onset and reduced 

tumour growth in methotrexate-treated Dark Agouti rats (Gibson et al., 2019), suggesting 

MMP inhibition should be explored further as a potential co-treatment to increase efficacy 

and decrease the incidence of lower GI ADRs. 

Taken together, our results support a hypothesis that bosutinib-induced diarrhoea is 

mediated by barrier dysfunction involving cellular junction dissolution and increased 

paracellular permeability, possibly through the MMP pathway, and this warrants further 

investigation in vitro, in vivo and in patients. 
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APPENDICES 

 

Figure A.1. Certificate of cell line authenticity for Caco-2 cells. Short tandem repeat 

profiling was undertaken at the Cell Line Authentication Facility, at the University 

of Liverpool for Caco-2 cells to verify cell line authenticity. 



260 
 

Figure A.2. Plasmid maps of mCherry-Lifeact-7 and mEmerald Occludin-C-14. 
Plasmids contain sequence coding for Lifeact labelled with mCherry (A, 544911) and 
Occludin labelled with mEmerald (B, 54211) were purchased from Addgene. These 
plasmids were used to generate inserts to generate the lentiviral vector construct 
plasmids. 
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Figure A.3. Plasmid map of lentiviral transfer plasmid pLJM1 P2A. Lentiviral transfer 
plasmid lacking gene of interest donated by Dr Nicholas Harper. Map shows relevant 
restriction digest sites for generation of both pLJM1 P2A-O1 and pLJM1 P2A-L1. 
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Figure A.4. Plasmid maps of second generation packaging plasmid psPAX2 and 
envelope plasmid pMD2.G. Packaging plasmid psPAX2 (A, 12260) and envelope 
plasmid pMD2.G (B, 12259) were purchased from Addgene. These plasmids were used 
along with lentiviral transfer plasmid containing gene of interest (pLJM1 P2A-L1 or 
pLJM1 P2A-O1) to generate lentiviral particles by transfection into HEK 293T cells. 
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Figure A.5. DNA sequence of mCherry-LifeAct within pLJM1 P2A-L1 plasmid. The 
section of the pLJM1 P2A-L1 plasmid containing mCherry-LifeAct was confirmed by 
Sanger sequencing using cPPT Rev primer. End of Eu enhancer (orange text), SFFV 
promoter (green text), LifeAct (blue text), mCherry (red  text) and start of cPPT (grey 
text). 
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Figure A.6. DNA sequence of mEmerald-occludin within pLJM1 P2A-O1 plasmid. The 

section of the pLJM1 P2A-O1 plasmid containing mEmerald-Occludin was confirmed 

by Sanger sequencing using SFFV Prom For (A) and cPPT Rev (B). End of SFFV promoter 

(green text), mEmerald (dark green text) and occludin (blue text). Overlap in 

sequencing between the two primers is shown in bold italics.  

Figure A.6. continues onto next page 
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Figure A.6. continued 


