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I Introduction

Already shortly after its introduction by Sharpe (1964), Lintner (1965), and Mossin

(1966), the unconditional Capital Asset Pricing Model (CAPM) was heavily challenged

by empirical studies, e.g., Black et al. (1972). However, even though the unconditional

CAPM seems to be rejected in the data, the model may well hold conditionally period-

by-period. The market portfolio may be on the conditional mean–variance frontier, but

not on the unconditional one (Hansen & Richard, 1987).

In this paper, we revisit the conditional CAPM. We use a large sample of more than

2,500 stocks with both daily and high-frequency data for the period from 1996 until 2014

to empirically test whether the conditional CAPM can explain asset-pricing anomalies.

We make several contributions to the literature. First, we perform a test of the con-

ditional CAPM following the approach of Lewellen & Nagel (2006) for our recent sample

period. We find that the conditional CAPM performs reasonably well when using daily

data. Examining the anomaly component portfolios, i.e., the portfolios of small, big,

growth, value, loser, and winner stocks, the model can explain the excess returns of 3 out

of these 6, namely those of the big, loser, and winner stocks. Overall, the conditional

CAPM is able explain the returns of the value (value minus growth) and momentum

(winners minus losers) anomaly portfolios, while it fails to explain the size (small minus

big) anomaly return.

Second, we go beyond the approach of the previous literature and estimate conditional

betas with high-frequency (30-minute) data. We find that with high-frequency data, the

conditional CAPM performs even better than based on daily data. The model can explain

the excess returns of 5 out of the 6 anomaly component portfolios, namely those of the

small, big, growth, value, and winner stocks. More importantly, the conditional CAPM

is able to explain the returns of the size anomaly, the value anomaly, and the momentum
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anomaly portfolios. Thus, our results suggest that the inaccurate measurement of (con-

ditional) betas weakens the empirical performance of the conditional CAPM. Once we

measure betas more accurately with high-frequency data, the model performs even better

than with betas based on daily data.

Third, we examine whether market-timing and volatility-timing biases documented in

the previous literature can account for the magnitudes of the unconditional alphas we

observe. Based on the calibrations of Lewellen & Nagel (2006) and Boguth et al. (2011),

we conclude that the magnitude of the failure of the unconditional CAPM is potentially

consistent with underconditioning biases.

Our main results are robust to several tests. When using different window lengths

between 1 and 12 months to estimate the conditional betas, alternative frequencies for the

high-frequency beta estimator, and when accounting for a potential bias based on the use

of ex-post betas we obtain qualitatively similar results. For the 6- and 12-month windows,

the conditional CAPM based on high-frequency data can even explain the returns of all

of the 6 component portfolios, along with those of the anomaly return portfolios.

In the final part of the paper, we examine the precision of high-frequency betas.

We compare the predictive ability of the high-frequency beta estimator for future betas

to that of the estimator based on daily data. We find that high-frequency betas have

superior predictive power for future realized betas. Sorting stocks into 5 portfolios, we

find that the root mean squared error (RMSE) is significantly lower for high-frequency

betas compared to betas based on daily return data. This pattern holds for each portfolio.

We find that high-frequency betas also yield a lower average RMSE than those based on

daily data for alternative realized beta estimators based on lag-adjusted high-frequency

or daily data. Furthermore, we find that high-frequency betas perform at the very least as

well as the option-implied approach of Buss & Vilkov (2012). We find that the predicted
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and realized betas line up very well when using high-frequency data, whereas the other

estimators tend to yield high prediction errors, especially for low-beta and high-beta

stocks. Furthermore, we obtain similar results when using coarser sampling frequencies.

We also confirm that betas based on high-frequency data outperform those based on

daily data in Mincer–Zarnowitz regressions and not only in the time-series but also in

the cross-sectional dimension. Finally, we obtain similar results when using the Mean

Absolute Error (MAE) criterion as an alternative statistical loss function.

Our work relates to a large literature that tests the CAPM. Black et al. (1972) and

Fama & French (1992) find that unconditional betas are unrelated to average stock re-

turns. However, Jagannathan & Wang (1996) argue that the CAPM may hold period-by-

period even if it does not hold unconditionally. That is, the market portfolio could be on

the conditional mean–variance frontier each period, but not on the unconditional mean–

variance frontier. In this vein, Jagannathan & Wang (1996), Lettau & Ludvigson (2001),

Lustig & Van Nieuwerburgh (2005), and Santos & Veronesi (2005) find empirical support

for the conditional CAPM with different conditioning variables. However, Lewellen &

Nagel (2006) use daily data recorded over short windows to directly test the conditional

CAPM and reject the model. We complement these studies by using betas estimated with

high-frequency data. Our results suggest that the more accurate measurement of betas

helps to improve the performance of the conditional CAPM.

Our paper is also related to Gilbert et al. (2014). The authors find that the CAPM

pricing errors are lower when estimating betas with quarterly data compared to using

daily data. However, by using quarterly data along with a long historical window of 5

years or more, one essentially gives up on trying to obtain a truly conditional estimate for

beta. Our results indicate that conditional betas estimated with intraday data outperform

those based on lower frequency data both economically and statistically.
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We also add to the literature on beta estimation. Buss & Vilkov (2012), Chang et al.

(2012), and Baule et al. (2016) propose different estimators that exploit the information

content of option prices. Hollstein & Prokopczuk (2016) compare these approaches and

find that the hybrid estimator of Buss & Vilkov (2012) outperforms the low-frequency

historical beta estimator as well as all other approaches that use options or daily return

data. We depart from these studies by exploiting high-frequency return data to more

accurately estimate beta. To the best of our knowledge, we are the first to compare

these approaches and show that high-frequency beta performs at least as well as the

option-implied approach. Furthermore, we add to Hollstein & Prokopczuk (2016) by

evaluating different beta estimators primarily from an economic perspective, by testing

the conditional CAPM.

This study uses the concept of realized beta in the spirit of Bollerslev & Zhang (2003),

Barndorff-Nielsen & Shephard (2004), Andersen et al. (2006), Bollerslev & Todorov

(2010), and Patton & Verardo (2012). Cenesizoglu et al. (2016) study the stocks that

make up the Dow Jones Industrial Average and show that beta measured with high-

frequency data yields statistically more accurate predictions than the historical estimator

based on daily or monthly return data. While our results are consistent with theirs, there

are important differences with our study. First, we focus on the asset-pricing implications

of high-frequency beta. Second, we study a much broader cross-section of stocks. Third,

we analyze the predictability for realized beta not only from a time-series perspective but

also in the cross-sectional dimension.

Finally, our paper belongs to a broader research area analyzing the benefits of high-

frequency data. Andersen & Bollerslev (1998) highlight the importance of intraday data

for accurately measuring realized volatility. Andersen et al. (2005b) demonstrate the

impact of measurement error in the variance of an asset on the classical Mincer–Zarnowitz
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regressions. Patton (2011) studies the impact of measurement error on the ranking of

different volatility forecasting models. Amaya et al. (2015) establish the importance of

intra-day data for the accurate measurement of skewness and kurtosis. We complement

these studies by showing that high-frequency data matter for the estimation of betas.

Based on this finding, our recommendation to the academic and professional literature is

to generally use high-frequency data for beta estimation whenever possible.

The remainder of this paper is organized as follows. Section II describes our data set

and methodology and presents summary statistics for the different beta estimators. In

Section III, we test the conditional CAPM. Section IV examines the precision of high-

frequency betas. Finally, Section V concludes.

II Data and Methodology

A Data

Our data set covers U.S. stocks for the sample period from January 1996 to December

2014. We use daily and monthly prices and returns as well as data on dividend pay-

ments and shares outstanding from the Center for Research in Security Prices (CRSP).

In addition, we collect high-frequency price data from the Thomson Reuters Tick His-

tory (TRTH) database.1 We use all stocks traded on the New York Stock Exchange

(NYSE), the American Stock Exchange (AMEX), and the National Association of Secu-

rities Dealers Automated Quotations (NASDAQ) that are classified as ordinary common

shares (CRSP share codes 10 or 11) and for which both daily and high-frequency data are

available. Following Amihud (2002) and Zhang (2006), we exclude very illiquid stocks.

To be more precise, we expunge firm–month observations with prices below 1 U.S. dollar
1The starting date of our study is determined by the need to have high-frequency data. The TRTH

database does not start until the beginning of 1996.
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or a market capitalization below 10 million U.S. dollars (Cohen et al., 2002; Hou & Loh,

2016). On average, the stocks for which high-frequency data are available represent 87%

of the entire market capitalization of eligible U.S. stocks.

In order to process the final high-frequency data set, we follow the data-cleaning steps

outlined in Barndorff-Nielsen et al. (2009). First, we use only data with a time stamp

during the exchange trading hours, i.e., between 9:30AM and 4:00PM Eastern Standard

Time. Second, we remove recording errors in prices. To be more specific, we filter out

prices that differ by more than 10 mean absolute deviations from a rolling centered median

of 50 observations. Afterwards, we assign prices to every 5-minute interval using the most

recent entry recorded that occurred at most one day before. Finally, we follow Bollerslev

et al. (2016) and supplement the TRTH data with data on stock splits and distributions

from CRSP to adjust the TRTH overnight returns. To guard against the potential effects

of non-trading in smaller stocks (Gorodnichenko & Weber, 2016), for our main tests we

rely on a 30-minute frequency for our main analysis.

The Options data set comes from IvyDB OptionMetrics. We obtain data from the

Volatility Surface that directly provides implied volatilities over standardized times to

maturity for certain levels of delta.2 We select out-of-the-money (OTM) options, namely

puts with deltas larger than −0.5 and calls with deltas smaller than 0.5. To compute the

model-free option-implied moments, we use the formulas provided by Bakshi et al. (2003).

A more detailed outline of the procedure is provided in the Technical Appendix. Data on

the interest rate term structure come from the IvyDB zero curve file.

We collect balance sheet data from the Compustat database. The book equity of each

stock is computed as stockholders’ equity plus balance sheet deferred taxes and investment
2IvyDB uses a kernel smoothing algorithm that generates standardized options only “if there exists

enough option price data on that date to accurately interpolate the required values”. For more details
refer to the IvyDB technical document.
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tax credit plus post-retirement benefit liabilities minus the book value of preferred stock.

Data on the risk-free (1-month Treasury Bill) rate are from Kenneth French’s data library.

B Beta Estimation

Historical Beta We consider historical estimates (HIST) following, e.g., Fama &

MacBeth (1973), regressing an asset’s daily excess return on a constant and the (contem-

poraneous) market excess return:

βHIST
j,t =

cov(rj − rf , rM − rf )
var(rM − rf )

, (1)

where βHIST
j,t denotes the estimator for the historical beta of asset j using data from time

t − k to t. k is the length of the estimation window. rj is the vector of returns on

asset j, rM denotes the return-vector of the market, and rf is the vector of the risk-free

rate. All returns are observed up to time t. Alternatively, HIST(l) denotes a Dimson

(1979)-adjusted historical estimator, which we obtain through the following regression:

rj,τ − rf,τ = αj,t + β
(0)
j,t (rM,τ − rf,τ ) + β

(1)
j,t (rM,τ−1 − rf,τ−1) (2)

+β
(2)
j,t

(
l∑

n=2

rM,τ−n − rf,τ−n

)
+ εj,τ .

We incorporate l = 1 up to l = 4 lagged returns. In the case l = 1, the term associated

with β(2)
j,t drops. The estimator for beta is then βHIST(l)

j,t =
∑min(2,l)

i=0 β
(i)
j,t , where min(·) is

the minimum operator.

Realized Beta Following Andersen et al. (2006), we use realized beta (HFfreq).

We utilize intra-day high-frequency (log-)returns, sampled at intervals of freq minutes to
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estimate:3

βHF
j,t =

∑N
τ=1 rj,τrM,τ∑N
τ=1 r

2
M,τ

, (3)

where rj,τ and rM,τ refer to the return of asset j and the market return at time τ , re-

spectively. N is the number of high-frequency return observations during the time period

under investigation. Note that we use realized beta both as estimator for high-frequency

historical beta (HFfreq) and for the ex-post evaluation of estimators (βR
j,t,T = βHF

j,t , using

data between t and T = t+m, with m denoting the length of the evaluation horizon).

An important point relates to the sampling frequency (freq). As Patton & Verardo

(2012) point out, there is a delicate trade-off. On the one hand, using low-frequency data

could result in noisy estimates of beta (Andersen et al., 2005a). On the other, pushing the

analysis to a very high frequency introduces a number of microstructure issues (Scholes

& Williams, 1977; Epps, 1979). We focus our main analysis on a sampling frequency of

30 minutes. One might worry that the sampling frequency we use is quite high and that

stocks may not have synchronous trading times, introducing a bias in the estimation of

beta. To address this concern, we also use an estimator that accounts for lag effects, as in

Dimson (1979).4 In addition, we use several alternative sampling frequencies, including

75 and 130 minutes and obtain similar results.

Hybrid (Option-Implied) Beta We also consider the hybrid estimator of Buss &

Vilkov (2012) (BV), which has been shown by Hollstein & Prokopczuk (2016) to yield the
3Note that the formula for realized beta makes use of the expanded formula for the variance, neglecting

both the drift term and the risk-free rate. Andersen et al. (2006) note that the effect of the drift term
vanishes as the sampling frequency is reduced which effectively “annihilates” the mean. This view is
supported by empirical facts, e.g., the average 30-minute return of the S&P 500 index amounts to only
0.0017%. Similarly, the average daily riskless interest rate during our sample period amounts to 0.01%,
which is equivalent to an average risk-free rate as low as 0.0007% over 30-minute intervals, indicating
that it can indeed be neglected.

4In this case, we compute the realized beta with respect to several lagged market returns and simply
sum up the contemporaneous and lagged realized betas.
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most accurate predictions among models relying on daily or monthly return data. Essen-

tially, the approach combines model-free option-implied volatilities and historical correla-

tions to estimate beta. Buss & Vilkov (2012) use (i) the identity that the implied variance

of the market index has to be the same as the implied variance of the value-weighted port-

folio of all index constituents and (ii) a technical condition that maps physical correlations

(ρPji,t) into risk-neutral correlations (ρQji,t), namely ρQji,t = ρPji,t − αt(1− ρPji,t).5 Combining

these two relations and solving for αt, the authors recover implied correlations. Thus, a

beta estimate under the risk-neutral probability measure is obtained by:

βBV
j,t =

σQ
j,t,T

∑N
i=1 ωi,tσ

Q
i,t,Tρ

Q
ji,t

(σQ
M,t,T )2

, (4)

where σQ
j,t,T and σQ

M,t,T denote the option-implied volatilities at time t from options of asset

j and the market index, respectively. The implied volatilities needed for the approach are

extracted from options whose time to expiration T − t matches the evaluation horizon m.

Thus, for our main tests, we use options with a time-to-maturity of 30 days. ωi,t denotes

the weight of asset i in the market index at time t. We use all daily returns observed in

the measurement period to obtain the correlations needed for the standard BV estimator.

We also use high-frequency correlations, estimated with 30-minute data, combined

with option-implied volatility (BV30). By comparing BV and BV30 we can shed light

on the value of high-frequency data for the hybrid estimator. Notice that because of

condition (i), we need the full correlation matrix of all index constituents. Therefore, it is

not clear whether using high-frequency data is beneficial since the problem of infrequent

and non-synchronous trading is likely much more severe than for the historical realized
5The technical condition is motivated by several points. First, the correlation needs to be between

−1 and 1. Secondly, the correlation matrix must be positive (semi-) definite. Thirdly, the correlation
risk premium must be consistent with empirical observations, namely that implied correlations are higher
than realized correlations and that the correlation risk premium ρPji,t − ρ

Q
ji,t is higher for stocks with low

correlations under the physical measure. For more details, refer to Buss & Vilkov (2012).
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beta estimator where for each stock only one correlation, i.e., that of an asset with the

market, has to be estimated.

C Summary Statistics and Correlation Analysis

Table 1 reports summary statistics on the different beta estimation approaches.6 The

number of total observations is substantially higher for all historical and high-frequency

estimators compared to BV and BV30 mainly because the hybrid estimator can only be

implemented for the constituents of the S&P 500 index at each point in time, while we

can estimate the historical and high-frequency betas independently of whether the stock

is part of a market index or not.

We first examine the value-weighted average beta over all stocks (Meanvw). This

quantity should be equal to 1 when examining a complete market index. Since we do not

examine a full market index, but a much broader universe than the S&P 500 stocks, this

condition is not binding, but it can serve as a reference value to assess whether the beta

estimates are reasonable. We find that the value-weighted averages for all approaches are

close to 1. For HIST, for example, the value-weighted average beta is 1.00. Adding lags

in HIST(1) and HIST(2), the value-weighted average increases slightly to 1.02. However,

adding lags increases the standard deviation and decreases the AR(1) coefficient. Both

observations indicate that adding lagged betas substantially increases the measurement

error in HIST. Noise in the estimator naturally increases the standard deviation and

creates an attenuation bias in the AR(1) coefficient. Since the value-weighted average of

HIST is 1.00, there is little evidence to suggest that HIST is systematically biased. Thus,

we focus our main discussion on the estimator without lag-adjustment.
6Note that to keep the presentation manageable, we select only one estimation window length for

the estimators. That is, according to the optimization that becomes relevant in Section IV.A we use 12
months for all HIST estimators and 6 months for the HF and BV estimators. The summary statistics for
alternative sampling windows are very similar.
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On the other hand, the value-weighted average beta from high-frequency estimators

is just under 1. For our main estimator HF30, the value-weighted beta reaches 0.95. For

the lower 75-minute and 130-minute frequencies, this quantity amounts to 0.96. These

figures deliver some indication that infrequent and non-synchronous trading may bias beta

toward zero for some stocks. On the other hand, adding only one lag to HF30 (HF(1)
30 ),

the value-weighted average rises to 0.99. With 5 lags (HF(5)
30 ), the value-weighted average

is 1.02. Similar to HIST, when adding lags, the standard deviation of HF30 increases

and the AR(1) coefficient decreases, which points toward increased measurement error

when adding lags. Nevertheless, since it is possible that there is a bias in HF30, we focus

our main discussion on both HF30 and HF(1)
30 . Overall, the potential downward-bias in

high-frequency betas does not seem to be a big issue, but we are careful to examine the

robustness of all our main results to using lag-adjusted estimators.

Table 1 also presents the average firm-level correlation coefficients for different esti-

mators. We observe a correlation of 0.78 between the historical daily and the 30-minute

high-frequency estimator. These figures indicate that the two estimators may to some

extent contain different information. Since for BV and BV30 only the input to obtain

correlations differs, the correlation of BV and BV30 is higher and amounts to 0.89.

III The Conditional CAPM Revisited

A Empirical Setup

We start our main empirical analysis by exploring the ability of the conditional CAPM

to explain the main empirical asset pricing anomalies. Specifically, we set out to examine

the following questions: Can the new high-frequency beta estimates allow us a second look

at the conditional CAPM? Can high-frequency estimates of beta help explain why small
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firms generally outperform large firms? Can we explain the value effect when using high-

frequency betas? Can the conditional CAPM explain why past winner stocks generally

outperform past loser stocks?

To perform the analysis, we follow the approach suggested by Lewellen & Nagel (2006)

and use direct estimates for conditional betas. Along with each conditional beta estimate,

we obtain an estimate for the conditional alpha. We thus partition the entire sample used

for unconditional tests allowing for time-variation in betas. For our main empirical tests,

we use quarterly non-overlapping windows. For each of these quarterly windows, we

obtain conditional alphas and betas for each of the anomaly portfolios. Using the time-

series of conditional alphas, we can perform a direct test of the conditional CAPM by

testing whether the average alpha is significantly different from zero or not. We assess

the statistical significance using robust Newey & West (1987) standard errors with 4 lags.

We test the model for different anomaly portfolios. For all anomaly portfolios, we

utilize NYSE breakpoints and obtain the conditional alphas and betas as value-weighted

averages of the respective conditional alphas and betas of the stocks in that portfolio. We

construct size and value portfolios following Lewellen & Nagel (2006). In order to obtain

the book-to-market ratio for each stock, we use the firm’s most recent observation for the

book value (assuming the book equity from the previous year becomes available at the

end of June in the current year) and divide it by the market capitalization at the end

of December of the previous fiscal year. Thus, the book-to-market ratio changes at the

end of June each year using new information both on the book equity and the market

capitalization for the previous fiscal year. Each month, we sort the stocks independently

into 25 size-B/M portfolios and base our tests on combinations of these portfolios: S

(Small) is the average of the 5 low-market-cap portfolios and B (Big) is the average of

the 5 high-market-cap portfolios while S–B is their difference. Similarly, G (Growth) is
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the average of the 5 low-book-to-market portfolios and V (Value) is the average of the

5 high-book-to-market portfolios. V–G is the difference between the Value and Growth

portfolios. For momentum, we sort the stocks into 10 portfolios based on their prior 12-

month return, while skipping the most recent 1 month (Jegadeesh & Titman, 1993). L

(Losers) and W (Winners) are the bottom and top deciles. W–L is the difference between

the Winners and Losers portfolios.

B The Unconditional CAPM

We present the empirical results in Table 2. To set the stage, we first present the results

of the unconditional CAPM. That is, we regress the monthly portfolio excess returns on a

constant and that of the S&P 500 market index. We find that the portfolio of small stocks

has a significant alpha of 0.65% per month. Thus, the unconditional CAPM is not able to

explain the return on small stocks. For big stocks, the model works substantially better:

the portfolio of big stocks has an alpha of 0.01%, which is not statistically significant. We

observe an unconditional size effect with a S–B alpha of 0.63%, which is significant at 5%.

Thus, the unconditional CAPM fails to explain the return of the size anomaly portfolio.

For the value anomaly, we find a significant alpha for the growth portfolio of 0.46% and

an insignificant alpha for the value portfolio of 0.42%. Thus, the unconditional CAPM can

explain the return of the portfolio of value stocks, but not that of growth stocks. In total,

there is no significant difference between the value and growth alphas. For momentum, we

detect an insignificant alpha of –0.57% per month for the loser portfolio and a significant

alpha of 0.49% for the winner portfolio. Thus, the unconditional CAPM can explain the

return of the portfolio of loser stocks, but fails with the portfolio of winner stocks. Finally,

there is a significant alpha of momentum anomaly portfolio of 1.06% per month.

The significant size effect is consistent with results in the previous literature (e.g.,

13



Banz, 1981 and Fama & French, 1992). The results for the value anomaly are also con-

sistent with the recent empirical literature, showing that the value effect is substantially

attenuated for the more recent period (e.g., Hou et al., 2015; Bollerslev et al., 2016; Hou

et al., 2018). The positive momentum effect is consistent with Jegadeesh & Titman (1993)

and Goyal & Jegadeesh (2018), among many others.

To further validate that the results of our sample are reasonable and representative

for the full NYSE/AMEX/NASDAQ sample, we compute the correlations of the hedge

portfolio returns resulting from our sorts and those that result from using the correspond-

ing portfolio returns available from Kenneth French’s webpage. That is, we use the 25

Fama–French portfolios sorted on size and book-to-market as well as the 10 portfolios

sorted on momentum to obtain full NYSE/AMEX/NASDAQ sample hedge portfolio re-

turns in a similar vein as for our main results. We obtain a correlation of 71% between

S–B based on the Fama–French portfolios and our S–B returns and a correlation of 87%

between H–L based on the Fama–French portfolios and our H–L portfolio return. For

momentum, we obtain a correlation of 96% with the W–L hedge portfolio return based

on the Fama–French portfolios. Thus, even though we limit our sample to stocks with

available high-frequency data, the constructed portfolios do not seem to be materially

different.

C The Conditional CAPM With Daily Data

Second, we test whether the conditional CAPM based on daily data is able to explain

the size, value, and momentum anomalies. The results of this analysis are also presented

in Table 2. For HIST, we detect a statistically significant alpha for the portfolio of small

stocks of 0.79% per month. The conditional CAPM with daily data is thus not able to

explain the return on small stocks. For the portfolio of big stocks, the alpha amounts to
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0.10% per month, which is not statistically significant. Hence, small stocks seem to pose

a much stronger challenge for the model than do big stocks.

For the S–B portfolio, we detect a significantly positive alpha of 0.69% per month.

The results for the Small, Big, and S–B portfolios are broadly consistent with those of

Lewellen & Nagel (2006). In Table 3 of their paper, for example, the alpha of the S–B

portfolio with quarterly windows amounts to 0.42% per month with a standard error of

0.22. These numbers correspond to a t-statistic of 1.91, which is marginally insignificant

at 5% (the criterion for boldface printing in their table), but it is clearly significant at

10%. For our sample, the size anomaly is even somewhat stronger and the conditional

CAPM cannot explain this anomaly when using daily data.

Turning to the value anomaly, we obtain a statistically significant alpha of 0.60%

per month for growth stocks. For the portfolio of value stocks, the corresponding figure

amounts to 0.52% per month, which is also statistically significant. Thus, the conditional

CAPM with daily data cannot explain the returns of both growth and value stocks. The

V–G portfolio has an insignificant alpha, consistent with that of the unconditional CAPM.

In this case, the results for our sample period differ from those of Lewellen & Nagel (2006),

who find a significant V–G alpha of the conditional CAPM for the 1964–2001 period.7

Finally, examining the momentum anomaly, we find that for HIST neither the loser

nor the winner portfolio generate a significant alpha. Thus, the conditional CAPM can

explain the returns of both past losers and past winners when using daily return data.

The alpha of the W–L portfolio amounts to 0.16% per month, which is not statistically

significant.

Thus, overall, we find that the conditional CAPM works quite well for the recent

sample period. With daily data, the conditional CAPM can explain the returns of big,
7Using the same stocks and sample period as in Lewellen & Nagel (2006), we obtain similar results

as the original authors.
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loser, and winner stocks, as well as the value and momentum anomaly portfolios, but it

fails to explain the returns of small, growth, and value stocks, as well as the size anomaly

portfolio.

Adding lags in the estimation of beta does not alter these conclusions. HIST(1) and

HIST(2) yield statistically significant alphas in exactly the same cases as HIST. With daily

data and a lag-adjustment in the beta estimation, the conditional CAPM can explain the

value and momentum anomalies, but not the size anomaly.

To make sure that these results are not driven by the use of a subsample, which relies

on stocks for which we have high-frequency data, in untabulated results, we also repeat

the previous analysis for the full NYSE/AMEX/NASDAQ sample of eligible stocks for our

sample period. We obtain very similar results. The S–B unconditional return is slightly

smaller, but the conditional CAPM based on daily data cannot explain the size anomaly.

The S–B alpha of HIST amounts to 0.69% per month. However, the conditional CAPM

using daily data can explain the value and size anomalies. The V–G and W–L alphas are

of similar magnitude as for our sample. Similar to our main sample, the average alphas

and betas change only marginally when using lag-adjusted betas.

D The Conditional CAPM With High-Frequency Data

In a next step, we examine the performance of the conditional CAPM when using betas

based on the potentially more informative high-frequency data. We present the analysis

also in Table 2. With betas estimated from high-frequency data (HF30), the alpha of the

portfolio of small stocks amounts to only 0.13% per month, which is substantially smaller

than the 0.79% observed for HIST. The alpha of the portfolio of big stocks amounts to

–0.06% per month. Thus, using high-frequency data, the conditional CAPM can explain

the returns of both small and big stocks.
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The average alpha of the combined S–B portfolio is 0.19% per month, which is also not

statistically significant. Hence, the conditional CAPM based on high-frequency data can

explain the size anomaly. HF30 seems to substantially better capture the time-variation

in betas of small and big stocks.

One may argue that it is not very surprising that HF30 can explain the size anomaly

since the betas of small and infrequently traded stocks are likely biased downward when

using high-frequency data because of asynchronous trading times with the market. How-

ever, this argument does not square well with the empirical evidence. The literature,

and also our tests based on HIST, typically detects an outperformance of small over big

stocks. If small stocks tend to have lower betas when using high-frequency data this, in

turn, would imply that these stocks have higher conditional alphas on average. However,

what we find is the exact opposite. The small stock portfolio has a substantially lower

average conditional alpha for HF30 compared to HIST. Thus, it is very unlikely that a

potential downward-bias in high-frequency betas drives these results. Thus, the fact that

the conditional CAPM can explain the size anomaly with high-frequency but not with

daily data points toward a superior information content of high-frequency betas.

The alpha of the portfolio of growth stocks amounts to 0.01% per month and that

of value stocks to 0.13% per month. Both alphas are smaller in magnitude for HF30

than for HIST and are not statistically significant. Thus, as opposed to when using daily

data, with high-frequency data, the conditional CAPM can explain the returns of growth

and value stocks. We also find that the conditional CAPM with high-frequency data is

able to explain the return of the value anomaly portfolio: the V–G alpha amounts to an

insignificant 0.12% per month.

Finally, for momentum, we detect a monthly alpha for the loser portfolio of –0.86% per

month, which is significant at 10%. Thus, the conditional CAPM with high-frequency data
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has problems in explaining the returns of past loser stocks. For the winner portfolio, the

alpha is –0.38% per month, which is not statistically significant. Thus, in explaining the

returns of past winner stocks, the conditional CAPM with high-frequency data performs

similarly well as with daily data. The W–L portfolio yields an insignificant alpha of

0.48% per month. Hence, with high-frequency data, the conditional CAPM can overall

also explain the return of the momentum anomaly portfolio.

Using a lag-adjustment for the high-frequency betas does not qualitatively change our

results. The conditional CAPM with HF(1)
30 and HF(5)

30 can explain the returns of the size,

value, and momentum anomaly portfolios.

E Underconditioning Bias

Following Lewellen & Nagel (2006) and Boguth et al. (2011), we now examine the

potential bias that could be introduced by underconditioning, i.e., by using the uncondi-

tional CAPM instead of the conditional CAPM when betas indeed vary over time. Boguth

et al. (2011) show that if the conditional alphas are uncorrelated with the market excess

return, the bias in unconditional alphas, i.e., the difference between the unconditional

alpha (αunc
j ) and the average conditional alpha (ᾱcond

j ), can be described as:

αunc
j − ᾱcond

j =

(
1 +

R̄2
M

σ2
M

)
cov (βj,t,Et (RM,t))−

(
R̄M

σ2
M

)
cov
(
βj,t,Et

(
R2
M,t

))
︸ ︷︷ ︸

market−timing bias

−
(
R̄M

σ2
M

)
cov
(
βj,t, σ

2
M,t

)
︸ ︷︷ ︸

volatility−timing bias

, (5)

where RM,t denotes the market excess return, i.e., rM,t − rf,t, R̄M is the average market

excess return and σ2
M is the unconditional variance of the market excess return and σ2

M,t

is its conditional expectation.
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The underconditioning bias thus consists of a market-timing and a volatility-timing

bias. The market-timing bias results from the covariation of conditional betas with the

expected market excess return or the expected squared market excess return and reflects

the fact that betas likely vary with the business cycle (Jagannathan & Wang, 1996).

The volatility-timing bias results from the negative covariation of conditional betas with

the conditional volatility of the market, which appears to be particularly pronounced for

momentum, where the current market return predicts both future betas and future market

volatility (Grundy & Martin, 2001; Boguth et al., 2011).

Lewellen & Nagel (2006) argue that the market-timing bias is small in magnitude.

They examine this bias for different sets of parameters and obtain a bias that is “typically

less than 0.20%” per month “with a maximum of 0.35%”. Boguth et al. (2011) find that

the volatility-timing bias can be substantially larger than the market-timing bias. For

the parameter sets used in their paper, the volatility timing bias reaches values between

0.10% per month and 1.01% per month. For the portfolios in our sample, the alphas in

absolute terms range between 0.01% per month for the portfolio of big stocks and 1.06%

per month for the momentum anomaly portfolio, while most returns are below 0.7% per

month in absolute terms. Thus, the magnitude of the unconditional returns we observe is

potentially consistent with an underconditioning bias. For the most extreme parameter

calibrations, even an unconditional alpha as high as the 1.06% for the momentum anomaly

portfolio is still within a possible range.8

F Alternative Window Lengths

For the main tests of the conditional CAPM in Sections III.C and III.D, we use a

3-month window to estimate conditional alphas and betas. However, the window length
8Unfortunately, it is not possible to pin down the bias for one portfolio to exact numbers since the

factors that drive these biases are latent and not observable.
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involves a trade-off: on the one hand, a shorter window might improve the model’s per-

formance because it allows for greater variation in beta. On the other, longer windows

could increase the precision of the conditional alpha and beta estimates and improve the

model performance in this way.

Hence, we examine alternative window lengths of 1 month, 6 months, and 12 months

in Table 3. We only report the results for our main estimators HIST, HF30, and HF1
30.

As the table shows, these changes do not affect our main conclusions.

G Alternative Frequencies

Next, we examine the impact of alternative sampling frequencies of the high-frequency

estimator on our results. In Table 4, we examine estimators based on 5-, 75-, and 130-

minute data with and without lags. For all these estimators, we obtain qualitatively

similar results as for HF30: the conditional CAPM based on high-frequency data can

explain the size, value, and momentum anomalies.

H Alternative Conditioning Approaches

Boguth et al. (2011) caution that one might introduce a bias in the analysis since

the beta estimates used for the computation of the conditional alpha are not available to

investors ex-ante, before they invest. To check whether our results are affected by such a

bias, we repeat the previous analysis using 3 different alternative approaches. First, we

simply use lagged betas as proxies for future betas. Second, we estimate a regression of

the form:

βj,t = aj + bjβj,t−1 + εj,t, (6)
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where βj,t is the beta for time t of one approach. We then use βinstr
j,t = âj + b̂jβj,t−1 instead

of βj,t to compute the conditional alphas. We use two variations of this approach: one

that uses the full sample as in Boguth et al. (2011) and one that would be implementable

in real-time and uses only data up to time t with an expanding window initialized with a

36-month window.

We present the results of these approaches in Table 5. The results are very similar

to our benchmark findings. We find that the conditional CAPM based on high-frequency

data still explains the size, value, and momentum anomalies in all three cases.

IV The Precision of High-Frequency Betas

Section III shows that the use of high-frequency data can improve the performance of

the conditional CAPM. This section explores whether high-frequency betas provide more

accurate forecasts for future betas than those based on daily return data. We examine this

by evaluating the predictability of HIST and HF30 for future realized betas. We start the

analysis by picking the optimal estimation period for the estimators and then examine

the estimation accuracy using root mean squared prediction errors, Mincer–Zarnowitz

regressions, as well as cross-sectional tests.

A Estimation Period

We perform an out-of-sample evaluation of beta estimation precision. At the end of

each month, we use all observations available during the measurement period to obtain

estimates for beta and evaluate these estimates in a separate evaluation period. We use

a 1-month evaluation period. In order to conduct a fair comparison, we first identify

the best estimation window for each estimator. By taking this step, we ensure that the
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competing models are put on an equal footing.9 We consider various estimation windows

of 1, 3, 6, and 12 months. We then proceed as follows. We examine the average RMSEs

of the estimators for each measurement window. We obtain the RMSE as follows:

RMSE =

√√√√ 1

n

n∑
t=1

(βR
t,T − βt)2, (7)

where n is the number of out-of-sample observations. βRt,T is the realized beta in the period

ranging from t to T , and βt denotes an estimate for beta. For HIST, we find that the

lowest average RMSE is obtained for a 12-month estimation window. For HF30, BV, and

BV30, a 6-month estimation period turns out to be best. Thus, in the following we stick

to these measurement periods for our estimators.

The shorter optimal estimation window for HF30 delivers a first indication that high-

frequency data can help resolve the trade-off between conditionality of the estimates and

a large sample which improves the statistical properties of the estimator. For example

for HIST, we need a longer estimation window to reduce the measurement error in the

estimates and thereby inevitably lose conditionality.

To ensure a fair comparison, for each of the following analyses, we only use stock–

month observations that are available for all estimators considered in that analysis.

B Estimation Accuracy

To perform the analysis, we follow the approach of Fama & MacBeth (1973) and

Hollstein & Prokopczuk (2016). Hence, we first sort stocks into 5 portfolios according

to their estimate of HIST 12 months ago, thereby ensuring that we do not sort on the
9We thank an anonymous referee for suggesting this.
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current measurement error of either of the approaches.10

To examine the out-of-sample estimation accuracy of the different approaches, we use

the RMSE criterion of Equation (7), a loss function commonly applied in the literature.

We rely on the RMSE criterion since it is shown that it is robust to the presence of (mean

zero) noise in the evaluation proxy while other commonly employed loss functions are

not (Patton, 2011). In Section IV.F, we also examine the Mean Absolute Error (MAE)

criterion as an alternative.

We test for significance in RMSE using the modified Diebold–Mariano test as proposed

by Harvey et al. (1997) and for significance in root median squared error (RMedSE)

employing the non-parametric Wilcoxon signed rank test.11 The results are provided in

Panel A of Table 6. In parentheses, we report the share of portfolios, for which a difference

in RMSE or RMedSE is statistically significant at 5%. In general, the results for the

RMedSE and its significance are similar to those for the RMSE. Hence, in discussing our

results, we mostly focus on the RMSE.

We find that HIST yields an average RMSE of 0.135. The corresponding figure for

HF30 is lower by almost one third, amounting to 0.095. The RMSE of HF30 is significantly

lower than that of HIST for each of the 5 portfolios. Thus, the superior economic value of

HF30 appears to be linked to its superior predictive power for future realized betas. For

both HIST and HF30, the lag-adjustments increase the RMSE.

One might argue that the realized beta based on 30-minute data, which we use in

Panel A, could be downward-biased without lag-adjustment. Therefore, we repeat the

previous analysis using realized beta with 1 lag (Panel B of Table 6) and with realized
10For the stocks, for which we do not have an estimate of HIST 12 months ago, we set the quantity

to 1 (Hollstein & Prokopczuk, 2016).
11Strictly speaking, the Wilcoxon signed rank test incorporates the joint null hypothesis of zero median

in the loss differentials as well as a symmetric distribution. We stick to this test instead of an alternative
only testing on zero median, like the simple sign test, since the Wilcoxon signed rank test turns out to
be more powerful in many applications (Conover, 1999).

23



beta based on daily data (Panel C of Table 6). In the former case, we find that HF30

still yields a substantially lower RMSE than HIST. In this setup, however, the high-

frequency estimator with 1 lag (HF(1)
30 ) yields the overall lowest RMSE. When realized

beta is estimated with daily data, we obtain the same pattern, the average RMSE of HF30

is lower than that of HIST. Due to the increased noise introduced by measurement error in

the daily realized beta, however, only few of the differences in this panel are statistically

significant. Nevertheless, we believe that the results of this analysis are meaningful in that

if HF30 was systematically biased, it would also be systematically biased in comparison

to the realized beta based on daily data used in this analysis. Thus, in this case it would

be very unlikely that we observe that HF30 yields a lower average RMSE than HIST.

We find that in general the average RMSEs increase for all estimators when moving

from 30-minute realized betas to those with lag-adjustments or those based on daily data,

while the general ranking among the estimators largely prevails. The higher RMSEs of

Panels B and C of Table 6 indicate that the corresponding realized betas are contaminated

by higher measurement error. Therefore, in the following we will focus the main discussion

on the 30-minute realized beta, while examining the robustness to this choice for all the

main tests.

To shed further light on the predictability of the 5 portfolios, Figure 1 shows scatter-

plots of the predicted and realized betas for each estimation approach. We find that HIST

and HIST(1) spread relatively widely from the 45-degree line. Especially for portfolios with

high and low predicted betas, the approaches produce large forecast errors. For HF30 and

HF(1)
30 , in contrast, the dots are much closer to the 45-degree line. The predictions and

realizations match very well, independently of the magnitude of the predicted betas.

However, HIST might not be the optimal alternative estimator for beta. Taken to-

gether, the studies of Buss & Vilkov (2012) and Hollstein & Prokopczuk (2016) show that
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the BV estimator outperforms all other approaches based on daily data both statistically

and economically. Therefore, we also add this estimator as a second benchmark. At each

point in time, the BV estimator is only available for the stocks that are currently in the

S&P 500. Thus, to be able to compare the results and assess their statistical significance,

we repeat the previous analysis only including the constituents of the S&P 500 at each

point in time.

We present these results in Table 7. Using a high-frequency realized beta in Panel A,

we find that HF30 clearly outperforms all other models, including BV and BV30. When

using high-frequency realized beta with lag-adjustment in Panel B, we find once more that

HF(1)
30 yields the lowest average RMSE. However, that of HF30 and BV is only marginally

and not statistically significantly higher. Using realized beta based on daily data (Panel

C), HF30 again yields a lower average RMSE than HIST. Interestingly, for the S&P 500

stocks, the outperformance of HF30 over HIST is even more pronounced, indicating that

high-frequency data are particularly useful for the large stocks which are traded most

frequently among those in our total sample.

Comparing HF30 and BV, we find that HF30 performs at least as well as BV. Finally,

another interesting observation relates to the comparison of BV and BV30. We find that

BV yields lower average RMSEs than BV30 for every specification. Thus, the use of high-

frequency data does not appear to be beneficial for this estimator. This finding is likely

caused by the need to estimate the full correlation matrix and not only one bivariate

correlation as for HF30, where the issue of non-synchronous trading is severely amplified.

We have also generated scatterplots, similar to that in Figure 1 for BV and BV30

(not shown). We find that both approaches tend to underestimate the betas of low-beta

portfolios and overestimate those of high-beta portfolios. For beta estimates around 1,

the approach works reasonably well. The scatterplots for HIST and BV are comparable
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to those in Buss & Vilkov (2012).

C Alternative Frequencies

In Table 8, we present the results for high-frequency beta estimators based on alter-

native sampling frequencies of 5 minutes, 75 minutes, and 130 minutes, both with and

without lag adjustment. All results are very similar as before for the 30-minute frequency.

The high-frequency estimators for coarser frequencies outperform HIST throughout. For

our entire sample, the 5-minute frequency appears to be a little too high. Especially for

realized beta with lag adjustment or daily data, the 5-minute frequency leads to high

average RMSEs.

D Information Content

An alternative way to evaluate the performance of ex-ante estimates is to use Mincer

& Zarnowitz (1969) regressions. We regress the 1-month (ex-post) realized beta on the

different predictions for beta:

βR
t,T = a+ bβt + εT , (8)

where βt denotes one beta estimate in univariate regressions or a vector of several beta

estimates in encompassing regressions. βRt,T is as previously defined.

The regression model in Equation (8) is designed to test for the informational efficiency

and unbiasedness of different estimators. We stick to level Mincer–Zarnowitz regressions

instead of logarithmically transforming our variables since beta is theoretically unbounded

and can also take negative values. Hansen & Lunde (2006) show that level Mincer–

Zarnowitz regressions are robust to (mean zero) errors in the evaluation proxy.
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We test for unbiasedness in univariate regressions using a Wald test, which imposes the

joint hypothesis that a = 0 and b = 1. If the model is unbiased, i.e., it adequately describes

the data, we will not be able to reject this hypothesis. We test for informational efficiency

in encompassing regressions by restricting the slope parameters of alternative estimators

to 0. This test determines whether an estimator contains information beyond that of

a baseline model. If an estimator adds value, its encompassing slope estimate must be

significant (and positive) and the explanatory power must rise compared to the restricted

model. We perform a Wald test to assess whether an estimator fully subsumes all the

information contained in another estimator. To do this, we test the null hypothesis that

adding an estimator does not increase the explanatory power compared to the (restricted)

univariate models.

Table 9 presents the results of the Mincer–Zarnowitz regressions. In Panel A, we

present the univariate regressions. Note that for univariate regressions the t-statistics of

the slope coefficients, as part of the unbiasedness hypothesis, test the hypothesis of b = 1

and not, as is usually done, b = 0. Since we expect a positive relationship between the

expected and realized beta, in multivariate regressions we consider a one-sided test of

b = 0 against b > 0. All t-statistics and Wald tests use robust Newey & West (1987)

standard errors with 4 lags.

If an approach yields noisy estimates of beta, the slope coefficient of the Mincer–

Zarnowitz regression will be biased downwards. As a result, the intercept estimate is

biased upwards. Comparing the average slope coefficients of HIST and HF30, we find

them to be substantially closer to 1 (0.77 vs. 0.88) for the high-frequency estimator. The

intercept is substantially smaller for HF30 while the average adjusted R2 increases from

0.64 to 0.73 when moving from HIST to HF30. These results are consistent with the

notion that using high-frequency data reduces the measurement error in historical beta.
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For HIST, we can reject the unbiasedness hypothesis for each portfolio, while for HF30,

we cannot reject this hypothesis for 3 out of 5 portfolios. For the approaches that include

lag-adjustments, we find qualitatively similar results with somewhat smaller adjusted R2s.

We next examine the results of the encompassing regressions in Panel B of Table 9.

In a joint regression with HIST and HF30, we find that the slope coefficient on HIST is

−0.01 on average while that on HF30 is 0.88. Thus, HF30 appears to subsume most of the

information contained in HIST.

E Cross-Sectional Predictability

Up to this point, we focus on the time-series dimension of prediction errors. However,

a good approach for estimating beta should do well both in the time-series and in the

cross-section, i.e., the stocks should be properly ranked and the expected cross-sectional

differences in beta should line up well with the realized cross-sectional differences. This

insight motivates two additional tests. First, we examine the average of the cross-sectional

Spearman rank correlations of the estimates of each approach with the realizations of

beta. For an approach to work well, the rank correlation should be close to 1. Secondly,

to capture the magnitude of cross-sectional predictability, we use Fama & MacBeth (1973)

cross-sectional regressions of realized beta on the estimates of each approach. That is,

each month, we fit the following cross-sectional regression model:

βR
j,t,T = aT + bTβj,t + εj,t,T , (9)

where aT and bT denote the time T regression intercept and slope, respectively. All other

variables are as previously defined. To estimate Equation (9), we follow the IV-GMM

approach of Kim & Skoulakis (2016). A good model should have an intercept close to 0,
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a slope coefficient close to 1, and a high R2.

We present the results in Table 10. In Panel A, we examine the rank correlations. We

observe that high-frequency data are valuable for estimating beta in terms of ranking the

stocks. The average rank correlation of HF30 is 0.80, whereas for HIST the rank correlation

amounts to only 0.69. For HF(1)
30 and HIST(1) the rank coefficients are somewhat lower than

those for HF30 and HIST, respectively. For all approaches, the average p-value is close to

zero. Hence, all approaches appear to be able to significantly predict the cross-sectional

ranks of beta. Overall, the highest average rank correlation is obtained for HF30.

Panel B of Table 10 shows the results of cross-sectional regressions. We find that using

high-frequency data improves the cross-sectional predictability. Looking at the parameter

estimates for HF30, we can see that the slope coefficient is of a similar magnitude as that

of HIST. However, HF30 clearly yields the highest cross-sectional R2, with 0.66, which

indicates its superior cross-sectional predictability compared to all other approaches.

F Mean Absolute Error

Lastly, we test the robustness of our results to an alternative loss function, i.e., the

MAE:

MAE =
1

n

n∑
t=1

| βRt,T − βt |, (10)

where all variables are as previously defined. The results for 5 portfolios are presented

in Table 11. These are qualitatively similar to those using the RMSE criterion. Overall,

HF30 also yields the lowest average MAE.
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V Conclusion

This paper tests the conditional CAPM with betas based on daily and high-frequency

data. While with daily data, the model cannot explain the size anomaly and 3 of the 6

component returns of the 3 main anomalies, the conditional CAPM can explain the size,

value, and momentum anomalies, as well as 5 out of 6 of the component portfolio returns,

when using high-frequency data.

We find that the superior economic value of high-frequency betas is associated with a

superior predictability for future realized beta. Betas estimated from high-frequency data

are significantly more accurate than those estimated from daily return data. We find that

betas estimated from high-frequency data also outperform those based on daily data in

Mincer–Zarnowitz regressions and have a superior cross-sectional predictability.
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Technical Appendix: Model-Free Option-Implied Volatil-

ity

The hybrid beta estimation approach is based on option-implied moments. Therefore,

we build on the work of Bakshi et al. (2003) and compute the model-free option-implied

volatility. Similar to Chang et al. (2012), we first compute ex-dividend stock prices.

Next, we interpolate implied volatilities on a grid of 1,000 moneyness levels (K/S, strike-

to-spot), equally spaced between 0.3% and 300%, for any given stock and trading day.

We extrapolate implied volatilities outside the range of available strike prices using the

value for the smallest, respectively largest, available moneyness level (as in Jiang & Tian,

2005 and Chang et al., 2012). We use the interpolated volatilities to compute Black &

Scholes (1973) option prices for calls, C(·), if K/S>1 and puts, P (·), if K/S<1. We use

these prices to obtain the prices of the volatility (QUAD), the CUBIC, and the quartic

(QUART) contract (Jiang & Tian, 2005):

QUAD =

∫ ∞

S

2
(
1− ln

[
K
S

])
K2

C(T − t,K)dK (A1)

+

∫
S

0

2
(
1 + ln

[
S
K

])
K2

P (T − t,K)dK,

CUBIC =

∫ ∞

S

6 ln
[
K
S

]
− 3

(
ln
[
K
S

])2
K2

C(T − t,K)dK (A2)

+

∫
S

0

6 ln
[
S
K

]
+ 3

(
ln
[
S
K

])2
K2

P (T − t,K)dK,

QUART =

∫ ∞

S

12
(
ln
[
K
S

])2 − 4
(
ln
[
K
S

])3
K2

C(T − t,K)dK (A3)

+

∫
S

0

12
(
ln
[
S
K

])2
+ 4

(
ln
[
S
K

])3
K2

P (T − t,K)dK.

We approximate the integrals using a trapezoidal rule (Dennis & Mayhew, 2002). The

31



option-implied moments can be computed as:

µQ
t,T = erf,t(T−t) − 1− erf,t(T−t)

2
QUAD− erf,t(T−t)

6
CUBIC− erf,t(T−t)

24
QUART, (A4)

(σQ
t,T )2 = erf,t(T−t)QUAD− (µQ)2, (A5)

where rf,t denotes the risk-free rate and T − t the time to maturity of the contract. (σQ)2

is the option-implied variance.
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Figure 1: Predicted Beta vs. Realized Beta – Scatterplots

This figure shows the scatterplots of predicted and realized beta. Each month, we sort the stocks
into 5 portfolios according to their estimate for HIST 12 months before. For each of the portfolios,
we compute the value-weighted average predicted beta as well as the realized beta over the next
month, using 30-minute returns. We plot the realized quintile betas vs. the predicted portfolio
betas for each quintile, month, and estimation methodology. Each figure includes a 45° line, a
fitted regression line, as well as the adjusted R2 of the regression.
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Table 6: Prediction Errors

This table presents the out-of-sample prediction errors of different approaches. Each month, we sort

the stocks into 5 portfolios according to their estimate for HIST 12 months before. We obtain value-

weighted average betas for each portfolio and approach and measure the realized beta of each portfolio

using 30-minute returns over the subsequent month. The first row reports the average RMSE across all

portfolios. The lowest average error is indicated by italic font. The remainder of the table reports the

differences in prediction errors. The upper triangular matrices report the differences in RMSE, averaged

over all portfolios. Similarly, the lower triangular matrices report the average differences in RMedSE. We

report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of portfolios for which the difference is

significant at 5% (e.g., 0.4 indicates that the difference is significant for 40% of the portfolios). Figures

printed in bold indicate that the differences are significant for all portfolios. We test significance with

the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign of the number in parentheses indicates the direction of the significant

differences.

Panel A. Realized Beta

HIST HIST(1) HF30 HF
(1)
30

Avg. RMSE 0.1352 0.1542 0.0949 0.1180

HIST −0.0190 0.0403 0.0172
(-1.00) (1.00) (0.40)

HIST(1) 0.0118 0.0593 0.0362
(1.00) (1.00) (1.00)

HF30 −0.0277 −0.0395 −0.0231
(-1.00) (-1.00) (-1.00)

HF(1)
30 −0.0064 −0.0181 0.0214

(−0.40) (−0.80) (1.00)
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Table 6: Prediction Errors (continued)

Panel B. Realized Beta With Lag-Adjustment

HIST HIST(1) HF30 HF
(1)
30

Avg. RMSE 0.1491 0.1587 0.1344 0.1276

HIST −0.0095 0.0147 0.0216
(−0.40) (0.20) (0.80)

HIST(1) 0.0060 0.0242 0.0311
(0.40) (0.40) (1.00)

HF30 −0.0011 −0.0070 0.0069
(−0.20) (−0.20) (0.60)

HF(1)
30 −0.0111 −0.0170 −0.0100

(−0.60) (−0.80) (−0.60)

Panel C. Daily Realized Beta

HIST HIST(1) HF30 HF
(1)
30

Avg. RMSE 0.1510 0.1561 0.1493 0.1466

HIST −0.0052 0.0017 0.0044
(−0.20) (0.00) (0.00)

HIST(1) 0.0061 0.0069 0.0096
(0.20) (0.20) (0.00)

HF30 0.0058 −0.0003 0.0027
(0.40) (0.20) (0.20)

HF(1)
30 0.0023 −0.0039 −0.0035

(0.00) (−0.20) (0.00)
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Table 7: Prediction Errors – S&P 500 Stocks

This table presents the out-of-sample prediction errors of different approaches. Each month, we sort

the stocks in the S&P 500 into 5 portfolios according to their estimate for HIST 12 months before. We

obtain value-weighted average betas for each portfolio and approach and measure the realized beta of

each portfolio using 30-minute returns over the subsequent month. The first row reports the average

RMSE across all portfolios. The lowest average error is indicated by italic font. The remainder of the

table reports the differences in prediction errors. The upper triangular matrices report the differences in

RMSE, averaged over all portfolios. Similarly, the lower triangular matrices report the average differences

in RMedSE. We report the error loss differential between the model [name in row] and the model [name

in column]. The absolute values of the numbers in parentheses indicate the share of portfolios for which

the difference is significant at 5% (e.g., 0.4 indicates that the difference is significant for 40% of the

portfolios). Figures printed in bold indicate that the differences are significant for all portfolios. We test

significance with the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrices, respectively. The sign of the number in parentheses indicates the direction of

the significant differences.

Panel A. Realized Beta

HIST HIST(1) HF30 HF
(1)
30 BV BV30

Avg. RMSE 0.1320 0.1421 0.0945 0.1163 0.1072 0.1145

HIST −0.0101 0.0375 0.0157 0.0247 0.0174
(−0.60) (1.00) (0.40) (0.60) (0.40)

HIST(1) 0.0107 0.0476 0.0258 0.0349 0.0275
(0.80) (1.00) (0.80) (0.60) (0.40)

HF30 −0.0215 −0.0322 −0.0218 −0.0128 −0.0201
(-1.00) (-1.00) (-1.00) (−0.40) (−0.60)

HF(1)
30 −0.0053 −0.0161 0.0162 0.0090 0.0017

(−0.20) (−0.80) (1.00) (0.20) (0.00)
BV −0.0114 −0.0221 0.0101 −0.0061 −0.0073

(−0.40) (−0.80) (0.60) (−0.20) (−0.60)
BV30 −0.0061 −0.0169 0.0154 −0.0008 0.0053

(0.00) (−0.20) (0.60) (−0.20) (0.40)
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Table 7: Prediction Errors – S&P 500 Stocks (continued)

Panel B. Realized Beta With Lag-Adjustment

HIST HIST(1) HF30 HF
(1)
30 BV BV30

Avg. RMSE 0.1511 0.1571 0.1301 0.1292 0.1294 0.1364

HIST −0.0060 0.0211 0.0220 0.0218 0.0148
(−0.40) (0.60) (0.60) (1.00) (0.60)

HIST(1) 0.0040 0.0271 0.0280 0.0278 0.0208
(0.40) (0.80) (1.00) (0.80) (0.60)

HF30 −0.0089 −0.0129 0.0009 0.0007 −0.0063
(−0.60) (−0.40) (0.00) (0.00) (0.00)

HF(1)
30 −0.0116 −0.0156 −0.0027 −0.0002 −0.0072

(−0.20) (−0.80) (0.00) (0.00) (−0.20)
BV −0.0126 −0.0166 −0.0037 −0.0010 −0.0070

(−0.60) (−0.60) (−0.20) (0.20) (−0.60)
BV30 −0.0044 −0.0085 0.0044 0.0071 0.0082

(−0.40) (−0.60) (0.00) (0.20) (0.60)

Panel C. Daily Realized Beta

HIST HIST(1) HF30 HF
(1)
30 BV BV30

Avg. RMSE 0.1550 0.1579 0.1431 0.1476 0.1416 0.1486

HIST −0.0029 0.0119 0.0074 0.0135 0.0065
(−0.20) (0.40) (0.20) (0.60) (0.40)

HIST(1) 0.0000 0.0148 0.0103 0.0164 0.0093
(0.20) (0.40) (0.20) (0.60) (0.60)

HF30 −0.0038 −0.0039 −0.0045 0.0015 −0.0055
(−0.40) (−0.40) (0.00) (0.20) (0.00)

HF(1)
30 −0.0027 −0.0027 0.0011 0.0061 −0.0010

(0.20) (0.00) (0.20) (0.20) (0.00)
BV −0.0116 −0.0116 −0.0077 −0.0089 −0.0070

(−0.40) (−0.40) (−0.40) (−0.60) (−0.40)
BV30 −0.0065 −0.0065 −0.0026 −0.0038 0.0051

(0.00) (−0.40) (−0.20) (−0.20) (0.80)
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Table 8: Prediction Errors – Different Frequencies

This table presents the out-of-sample prediction errors of different approaches. Each month, we sort

the stocks into 5 portfolios according to their estimate for HIST 12 months before. We obtain value-

weighted average betas for each portfolio and approach and measure the realized beta of each portfolio

using 30-minute returns over the subsequent month. The first row reports the average RMSE across all

portfolios. The lowest average error is indicated by italic font. The remainder of the table reports the

differences in prediction errors. The upper triangular matrices report the differences in RMSE, averaged

over all portfolios. Similarly, the lower triangular matrices report the average differences in RMedSE. We

report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of portfolios for which the difference is

significant at 5% (e.g., 0.4 indicates that the difference is significant for 40% of the portfolios). Figures

printed in bold indicate that the differences are significant for all portfolios. We test significance with

the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign of the number in parentheses indicates the direction of the significant

differences.

Panel A. Realized Beta

HIST HIST(1) HF30 HF
(1)
30 HF5 HF

(10)
5 HF75 HF

(1)
75 HF130 HF

(1)
130

Avg. RMSE 0.1353 0.1543 0.0949 0.1181 0.1012 0.1420 0.0980 0.1320 0.0995 0.1371

HIST −0.0190 0.0404 0.0172 0.0341 −0.0067 0.0373 0.0033 0.0358 −0.0018
(-1.00) (1.00) (0.40) (1.00) (−0.40) (1.00) (0.00) (1.00) (−0.20)

HIST(1) 0.0120 0.0594 0.0362 0.0531 0.0122 0.0563 0.0223 0.0548 0.0172
(1.00) (1.00) (1.00) (1.00) (0.20) (1.00) (0.60) (1.00) (0.40)

HF30 −0.0273 −0.0393 −0.0232 −0.0063 −0.0472 −0.0031 −0.0371 −0.0046 −0.0422
(-1.00) (-1.00) (-1.00) (−0.80) (-1.00) (−0.60) (-1.00) (−0.60) (-1.00)

HF(1)
30 −0.0060 −0.0180 0.0213 0.0169 −0.0240 0.0201 −0.0139 0.0186 −0.0190

(−0.40) (−0.80) (1.00) (0.80) (-1.00) (1.00) (-1.00) (1.00) (-1.00)
HF5 −0.0205 −0.0326 0.0067 −0.0145 −0.0409 0.0032 −0.0308 0.0017 −0.0359

(−0.80) (-1.00) (0.80) (−0.80) (-1.00) (0.40) (-1.00) (0.00) (-1.00)
HF(10)

5 0.0053 −0.0067 0.0326 0.0113 0.0259 0.0440 0.0100 0.0425 0.0050
(0.60) (−0.40) (1.00) (1.00) (1.00) (1.00) (0.60) (1.00) (0.40)

HF75 −0.0276 −0.0396 −0.0003 −0.0216 −0.0071 −0.0329 −0.0340 −0.0015 −0.0391
(-1.00) (-1.00) (0.20) (-1.00) (−0.20) (-1.00) (-1.00) (−0.20) (-1.00)

HF(1)
75 0.0036 −0.0084 0.0309 0.0096 0.0241 −0.0017 0.0312 0.0325 −0.0051

(0.40) (−0.40) (1.00) (1.00) (1.00) (−0.20) (1.00) (1.00) (0.00)
HF130 −0.0262 −0.0382 0.0011 −0.0202 −0.0056 −0.0315 0.0015 −0.0297 −0.0376

(-1.00) (-1.00) (0.20) (-1.00) (−0.20) (-1.00) (0.00) (-1.00) (-1.00)
HF(1)

130 0.0021 −0.0099 0.0294 0.0081 0.0226 −0.0032 0.0297 −0.0015 0.0283
(0.60) (−0.40) (1.00) (0.40) (1.00) (−0.20) (1.00) (0.00) (1.00)

47



Table 8: Prediction Errors – Different Frequencies (continued)

Panel B. Realized Beta With Lag-Adjustment

HIST HIST(1) HF30 HF
(1)
30 HF5 HF

(10)
5 HF75 HF

(1)
75 HF130 HF

(1)
130

Avg. RMSE 0.1492 0.1587 0.1343 0.1275 0.1512 0.1377 0.1299 0.1343 0.1307 0.1411

HIST −0.0095 0.0149 0.0217 −0.0020 0.0114 0.0193 0.0149 0.0185 0.0081
(−0.40) (0.20) (0.80) (0.00) (0.40) (0.80) (0.40) (0.60) (0.20)

HIST(1) 0.0060 0.0244 0.0312 0.0075 0.0210 0.0288 0.0244 0.0280 0.0176
(0.40) (0.40) (1.00) (0.00) (0.40) (0.80) (0.80) (0.60) (0.40)

HF30 −0.0001 −0.0061 0.0068 −0.0169 −0.0035 0.0044 −0.0000 0.0036 −0.0068
(−0.20) (−0.20) (0.60) (-1.00) (0.00) (0.60) (0.00) (0.40) (0.00)

HF(1)
30 −0.0114 −0.0174 −0.0113 −0.0238 −0.0103 −0.0024 −0.0069 −0.0032 −0.0137

(-1.00) (−0.80) (−0.60) (−0.80) (−0.60) (−0.20) (−0.40) (−0.40) (−0.80)
HF5 0.0098 0.0038 0.0099 0.0212 0.0135 0.0214 0.0169 0.0205 0.0101

(0.60) (0.20) (1.00) (0.80) (0.40) (0.80) (0.60) (0.80) (0.40)

HF(10)
5 −0.0028 −0.0089 −0.0027 0.0085 −0.0126 0.0079 0.0034 0.0071 −0.0034

(−0.40) (−0.40) (0.00) (0.60) (−0.40) (0.20) (0.40) (0.20) (−0.20)
HF75 −0.0042 −0.0102 −0.0041 0.0072 −0.0140 −0.0013 −0.0044 −0.0008 −0.0112

(−0.20) (−0.60) (−0.60) (0.00) (−0.60) (0.00) (−0.20) (−0.20) (−0.40)
HF(1)

75 −0.0045 −0.0105 −0.0044 0.0068 −0.0143 −0.0017 −0.0004 0.0036 −0.0068
(−0.20) (−0.60) (0.20) (0.20) (−0.80) (−0.20) (−0.20) (0.20) (−0.80)

HF130 −0.0034 −0.0094 −0.0033 0.0080 −0.0132 −0.0005 0.0008 0.0011 −0.0104
(−0.40) (−0.60) (−0.80) (0.60) (-1.00) (0.00) (0.20) (0.00) (−0.40)

HF(1)
130 −0.0025 −0.0085 −0.0024 0.0089 −0.0123 0.0003 0.0017 0.0020 0.0009

(−0.40) (−0.40) (−0.20) (0.60) (−0.60) (0.00) (0.20) (0.20) (0.20)

Panel C. Daily Realized Beta

HIST HIST(1) HF30 HF
(1)
30 HF5 HF

(10)
5 HF75 HF

(1)
75 HF130 HF

(1)
130

Avg. RMSE 0.1509 0.1561 0.1491 0.1464 0.1681 0.1588 0.1433 0.1432 0.1432 0.1495

HIST −0.0052 0.0018 0.0045 −0.0172 −0.0079 0.0076 0.0077 0.0078 0.0014
(−0.20) (0.00) (0.00) (−0.80) (−0.40) (0.20) (0.00) (0.20) (0.00)

HIST(1) 0.0058 0.0070 0.0097 −0.0120 −0.0027 0.0128 0.0129 0.0130 0.0066
(0.20) (0.20) (0.00) (−0.40) (−0.40) (0.20) (0.20) (0.20) (0.00)

HF30 0.0061 0.0002 0.0027 −0.0190 −0.0097 0.0058 0.0059 0.0060 −0.0004
(0.40) (0.00) (0.20) (-1.00) (−0.40) (1.00) (0.20) (0.80) (0.00)

HF(1)
30 0.0015 −0.0043 −0.0045 −0.0217 −0.0124 0.0031 0.0032 0.0033 −0.0031

(0.00) (−0.20) (0.00) (-1.00) (−0.60) (0.20) (0.00) (0.40) (0.00)
HF5 0.0171 0.0113 0.0111 0.0156 0.0093 0.0248 0.0249 0.0250 0.0186

(0.80) (0.80) (1.00) (1.00) (0.20) (1.00) (1.00) (1.00) (0.60)

HF(10)
5 0.0187 0.0129 0.0126 0.0172 0.0016 0.0155 0.0156 0.0157 0.0093

(0.60) (0.60) (0.40) (0.80) (−0.60) (0.80) (0.60) (0.80) (0.60)
HF75 0.0043 −0.0015 −0.0017 0.0028 −0.0128 −0.0144 0.0001 0.0002 −0.0062

(−0.20) (−0.20) (−0.60) (0.00) (−0.60) (−0.60) (0.20) (0.20) (−0.20)
HF(1)

75 0.0033 −0.0025 −0.0028 0.0018 −0.0138 −0.0154 −0.0010 0.0000 −0.0063
(0.00) (0.00) (−0.20) (0.00) (−0.80) (−0.60) (0.00) (0.00) (−0.40)

HF130 0.0023 −0.0036 −0.0038 0.0007 −0.0148 −0.0164 −0.0021 −0.0010 −0.0064
(−0.20) (−0.20) (−0.80) (−0.20) (-1.00) (−0.60) (−0.20) (0.00) (−0.20)

HF(1)
130 0.0072 0.0014 0.0012 0.0057 −0.0099 −0.0115 0.0029 0.0039 0.0049

(0.20) (0.00) (−0.40) (0.00) (−0.80) (−0.80) (0.20) (0.20) (0.00)
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Table 10: Cross-Sectional Predictability

This table presents results for the cross-sectional predictability of different approaches for 30-minute

realized beta over the horizon of 1 month. Panel A reports averages of cross-sectional rank correlations

of the approaches with ex-post realized beta in each period. ρ is the average rank correlation coefficient,

while p-value indicates the corresponding average p-value for the null hypothesis of zero correlation. Panel

B shows the results of cross-sectional Fama & MacBeth (1973) regressions, regressing realized beta on ex-

ante estimates. We estimate the coefficients and perform the inference following the IV-GMM approach

suggested by Kim & Skoulakis (2016). Const. and Slope denote the time-series averages of the regression

intercept and slope coefficients, respectively, while s.e. indicates the corresponding standard errors. The

row R2
adj presents the average adjusted R2s of the regressions. *, **, and *** indicate significance at the

10%, 5%, and 1% level, respectively.

Panel A. Rank Correlations

HIST HIST(1) HF30 HF
(1)
30

ρ 0.6937∗∗∗ 0.6308∗∗∗ 0.8034∗∗∗ 0.7700∗∗∗

(p-value) (0.0000) (0.0000) (0.0000) (0.0000)

Panel B. Cross-Sectional Regressions

HIST HIST(1) HF30 HF
(1)
30

Const. −0.0871∗∗∗ −0.0264 0.0411∗∗∗ −0.0602∗∗∗
(s.e.) (0.0221) (0.0251) (0.0125) (0.0161)
Slope 0.9547∗∗∗ 0.8352∗∗∗ 0.9670∗∗∗ 0.9662∗∗∗

(s.e.) (0.1654) (0.1377) (0.1106) (0.1371)
R2

adj 0.4903 0.3900 0.6613 0.5984
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Table 11: Prediction Errors – MAE

This table presents the out-of-sample prediction errors of different approaches. Each month, we sort

the stocks into 5 portfolios according to their estimate for HIST 12 months before. We obtain value-

weighted average betas for each portfolio and approach and measure the realized beta of each portfolio

using 30-minute returns over the subsequent month. The first row reports the average MAE across all

portfolios. The lowest average error is indicated by italic font. The remainder of the table reports the

differences in prediction errors. The upper triangular matrices report the differences in MAE, averaged

over all portfolios. Similarly, the lower triangular matrices report the average differences in MedAE. We

report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of portfolios for which the difference is

significant at 5% (e.g., 0.4 indicates that the difference is significant for 40% of the portfolios). Figures

printed in bold indicate that the differences are significant for all portfolios. We test significance with

the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign of the number in parentheses indicates the direction of the significant

differences.

HIST HIST(1) HF30 HF
(1)
30

Avg. MAE 0.1020 0.1183 0.0703 0.0919

HIST −0.0162 0.0318 0.0101
(-1.00) (1.00) (0.40)

HIST(1) 0.0118 0.0480 0.0264
(1.00) (1.00) (1.00)

HF30 −0.0277 −0.0395 −0.0216
(-1.00) (-1.00) (-1.00)

HF(1)
30 −0.0064 −0.0181 0.0214

(−0.40) (−0.80) (1.00)
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