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Abstract. We present an intuitionistic interpretation of Euler-Venn di-
agrams with respect to Heyting algebras. In contrast to classical Euler-
Venn diagrams, we treat shaded and missing zones differently, to have
diagrammatic representations of conjunction, disjunction and intuition-
istic implication. Furthermore, we need to add new syntactic elements
to express these concepts. We present a cut-free sequent calculus for this
language, and prove it to be sound and complete. Furthermore, we show
that the rules of cut, weakening and contraction are admissible.
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1 Introduction

Most visualisations for logical systems, like Peirce’s Existential Graphs [6] and
the Venn systems of Shin [16], are dedicated to some form of classical reasoning.
However, for example, within Computer Science, constructive reasoning in the
form of intuitionistic logic is very important as well, due to the Curry-Howard
correspondence of constructive proofs and programs, or, similarly, of formulas
and types. That is, each formula corresponds to a unique type, and a proof of the
formula corresponds to the execution of a function of this type. Hence, a visu-
alisation of intutionistic logic would be beneficial not only from the perspective
of formal logic, but also for visualising program types and their relations.

Typical semantics of intuitionistic logic are given in the form of Heyting
algebras, a slight generalisation of Boolean algebras, and an important subclass of
Heyting algebras is induced by topologies: the set of open sets of a topology forms
a Heyting algebra. In particular, it is well known that intuitionistic formulas are
valid, if and only if, they are valid on this subclass of Heyting algebras [15].
Hence, for a visualisation, a formalism that uses topological relations to reflect
logical properties seems to be a natural choice. Due to these reasons, we will
study how such a formal system of diagrams, Euler-Venn diagrams, can be used
to visualise constructive reasoning based on intuitionistic logic.

Euler-Venn circles are known to be a well-suited visualisation of classical
propositional logic. In previous work [9], we have presented a proof system in
the style of sequent calculus [5] to reason with Euler-Venn diagrams. There, we
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speculated that, similar to sentential languages, restricting the rules and sequents
in the system would allow for intuitionistic reasoning with Euler-Venn diagrams.
However, further investigation showed that such a simple change is not sufficient,
due to the typical use of the syntax elements of Euler-Venn diagrams.

Consider for example the diagrams in Fig. 1. In the classical interpretation,
these diagrams are equivalent: the shaded zone in Fig. 1a denotes that the situa-
tion that a is true and b is false is prohibited, which is exactly what the omission
of the zone included in the contour a, but not in b in Fig. 1b signifies as well.

a b

(a)

b a

(b)

Fig. 1. Euler-Venn diagrams

That is, shading a zone and omitting it is equiv-
alent in classical Euler-Venn diagrams. Addition-
ally, we can interpret these two diagrams in two
ways: Fig. 1a may intuitively be read as ¬(a∧¬b):
we do not allow for the valuations satisfying a, but
not b. Fig. 1b, however, is more naturally read as
a→ b: whenever a valuation satisfies a, it also sat-
isfies b. While classically, these two statements are

indeed equivalent, they are generally not equivalent in an intuitionistic interpre-
tation (see the examples in Sect. 2). Hence, we want to treat missing zones and
shaded zones differently. Since typically, proof systems for Euler diagrams allow
to transform missing zones into shaded zones [9,7,17], this implies a stronger
deviation from our sequent calculus rules than anticipated.

We want to emphasise a constructive approach to reasoning. In particular,
instead of emphasising a negative property by prohibiting interpretations of the
diagrams, we will treat shading as a positive denotation. While this would not
make a difference in a classical system, negation in intuitionistic systems is much
weaker, and hence not suited as a basic element for the semantics of a language.

In this paper, we present an intuitionistic interpretation of Euler-Venn di-
agrams that takes the preceeding considerations into account. To that end, we
will distinguish between pure Venn, pure Euler and Euler-Venn diagrams, and
present semantics of these diagrams based on Heyting algebras. Pure Venn dia-
grams are diagrams similar to Fig. 1a, containing all possible zones of a set of
contours, and shadings of some of the zones. Pure Euler diagrams only repre-
sent topological relations, for example, whether a contour is inside of another. In
particular, they do not allow for any shading of zones. Hence, Fig. 1b could be
seen as a pure Euler diagram. However, we will need to distinguish pure Euler
diagrams from diagrams using both topological relations and (possibly) shaded
zones, called general Euler-Venn diagrams. To achieve such a distinction, we
draw contours with dotted lines in pure Euler diagrams, With this convention,
Fig. 1b is a general Euler-Venn diagram, and not a pure Euler diagram.

Subsequently, we present a proof system in the style of sequent calculus, which
we prove to be sound and complete. Furthermore, we show that the structural
rules of weakening, contraction and cut are admissible. Due to space limitations,
we refer for most of the proofs to the extended version of this paper [10].

Related Work. For existential graphs, there exist several visual reasoning systems
for non-classical variants. For example, Bellucci et al. defined assertive graphs [1],
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including a system based on rules for iteration and deletion of graphs, among
others. This logical language reflects intuitionistic logic, but the rules manipu-
late only single graphs, while sequent calculus systems manipulate sequents of
diagrams. Ma and Pietarinen presented a graphical system for intuitionistic logic
[12] and proved its equivalence with Gentzen’s single succedent sequent calculus
for intuitionistic logic. To that end, they translate the graphs into sentential
formulas. They also extended their approach to existential graphs with quasi-
Boolean algebras as their semantics [11]. Legris pointed out that structural rules
of sequent calculi can be seen as special instances of rules in the proof systems
for existential graphs, to analyse substructural logics [8]. de Freitas and Viana
presented a calculus to reason about intuitionistic equations [4]. However, we are
not aware of any intuitionistic reasoning system using Euler-Venn diagrams. Fol-
lowing this introduction, we briefly recall the foundations of intuitionistic logic
and its semantics in terms of Heyting algebras in Sect. 2. In Sect. 3, we define
the system of Euler-Venn diagrams, followed by the graphical sequent calculus
system, as well as soundness and completeness proofs, in Sect. 4. Finally, we
discuss our system and conclude the paper in Sect. 5.

2 Intuitionistic Logic

In this section, we give a very brief overview of the aspects of intuitionistic logic
we will use. We present the underlying semantical model: Heyting algebras.

Definition 1 (Heyting Algebra). A Heyting algebra H = (H,t,u, 7→, 0, 1) is
a bounded, distributive lattice, where t is the join, u the meet, 0 the bottom and
1 the top element of the lattice. Observe that such a bounded lattice possesses a
natural partial order ≤ on its elements. The binary operation 7→, the implication,
is defined by u u s ≤ t if, and only if, u ≤ s 7→ t. That is, s 7→ t is the join of
all elements u such that u u s ≤ t. We will use the abbreviation −s for s 7→ 0.
Furthermore, we set

d
i∈∅ si = 1 and

⊔
i∈∅ si = 0 for any si.

We collect a few basic properties of Heyting algebras that we need in the
following. Proofs can be found, e.g., in the work of Rasiowa and Sikorski [15].

Lemma 1 (Properties of Heyting Algebras). Let H be a Heyting algebra.
Then for all elements s, t and u, we have

s u (s 7→ t) ≤ t (1) (s 7→ t) u t = t (2) s 7→ (t 7→ u) = (s u t) 7→ u (3)

As an example, consider the set H = {0, a, b, 1}, totally ordered by 0 < b <
a < 1, and where s u t = min{s, t} and s t t = max{s, t} for s, t ∈ H. Then, we
have a 7→ b = b, since b is the maximal element x such that x u a ≤ b. However,
we also have −b = b 7→ 0 = 0, and hence −(a u −b) = −(a u 0) = −0 = 1. So in
this Heyting algebra a 7→ b is not the same as −(a u −b).

As a different, more topological example, consider the Heyting algebra whose
elements are the open subsets of the reals, as defined by the standard topology,
and where the meet and join are given by the set-theoretic union and intersection
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operators. The bottom element is the empty set 0 = ∅, the top element is 1 =
R, and the implication operation is defined as a 7→ b = Int(ā ∪ b), where ā
denotes the complement of a and Int the interior operator. This implies that the
negation operation corresponds to −a = Int(ā). Now consider a = (−1, 1), the
open interval between −1 and 1. Then a t −a = (−1, 1) ∪ Int(ā) = (−1, 1) ∪
Int((−∞,−1]∪ [1,∞)) = (−1, 1)∪ (−∞,−1)∪ (1,∞) = R\{−1, 1} 6= R. So, this
is an example where a t −a 6= 1.

The syntax of propositional intuitionistic logic is similar to classical Boolean
logic, with the difference that the operators are not interdefinable. Hence, the
signs for conjunction, disjunction, and implication are all necessary as distinct
symbols, and cannot be treated as abbreviations. We will assume a fixed, count-
able set of propositional variables Vars.

Definition 2 (Syntax). Intuitionistic formulas are given by the following EBNF

ϕ : = ⊥ | a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ ,where a ∈ Vars .

We let > ≡ ⊥ → ⊥. The semantics of a formula is based on valuations,
associating each variable with an element of a given Heyting algebra.

Definition 3 (Semantics). Let H be a Heyting algebra and ν : Vars → H a
valuation, mapping variables to elements of H. We lift valuations to formulas.

ν(⊥) = 0 ν(ϕ ∧ ψ) = ν(ϕ) u ν(ψ)

ν(ϕ ∨ ψ) = ν(ϕ) t ν(ψ) ν(ϕ→ ψ) = ν(ϕ) 7→ ν(ψ)

A formula ϕ holds in H, if ν(ϕ) = 1. If ϕ holds for every valuation of H, we
write H |= ϕ. If H |= ϕ for every Heyting algebra H, we say that ϕ is valid.

3 Euler-Venn Diagrams

In this section, we present the syntax and semantics of Euler-Venn diagrams
with an intuitionistic interpretation. Generally, a diagram can be unitary or
compound. A unitary diagram consists of a set of contours dividing the space
enclosed by a bounding rectangle into different zones. Zones may also be shaded.
Depending on how the contours may be arranged, and whether zones may be
shaded, we distinguish between Venn diagrams, Euler diagrams, and Euler-Venn
diagrams. Compound diagrams are constructed recursively. Since the structure
of compound diagrams is the same, regardless of the type of unitary diagrams,
we present their syntax first.

Definition 4 (Compound Diagrams). A compound diagram is created ac-
cording to the following syntax, D ::= d | D ∧D | D ∨D | D → D, where d is a
unitary diagram.
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a b

b c

a

(a) Venn diagrams

b
a a b

(b) Pure Euler diagrams

a
b

c ab c

(c) Euler-Venn diagrams

Fig. 2. Examples of Euler-Venn Diagrams

Definition 5 (Compound Diagram Semantics). The semantics of com-
pound diagrams for a Heyting algebra H and a valuation ν is given as follows.

ν(D1 ∧D2) = ν(D1) u ν(D2)

ν(D1 → D2) = ν(D1) 7→ ν(D2)

ν(D1 ∨D2) = ν(D1) t ν(D2)

where D1, D2 are compound diagrams. If ν(D) = 1, for all intuitionistic models
H and valuations ν then we call D valid.

Observe that we did not give the semantics for unitary diagrams in the previous
definition. First we present notations that are used for all types of diagrams
alike. Formally, a zone for a finite set of contours L ⊂ Vars is a tuple (in, out),
where in and out are disjoint subsets of L such that in ∪ out = L. We will also
write in(z) and out(z) to refer to the corresponding sets of contours in z. The
set of all possible zones for a given set of contours is denoted by Venn(L).

Venn Diagrams A Venn diagram is a diagram where all possible zones for a set
of contours are visible. For example, Fig. 2a shows two unitary Venn diagrams,
one with the contours a and b, and the other with contours a, b, and c. Formally,
a Venn diagram is of the shape d = (L,Venn(L), Z∗), where Z∗ is the set of
shaded zones and Z∗ ⊆ Venn(L). Hence the only diagrammatic elements that
may carry meaning are the presence of contours, and whether a zone is shaded.
For a given diagram d, we denote the set of shaded zones also by Z∗(d). We allow
for the diagrams ⊥ = (∅, {(∅, ∅)}, ∅) and > = (∅, {(∅, ∅)}, {(∅, ∅)}). A literal is
a Venn diagram for a single contour, with exactly one shaded zone. If the zone
(∅, {c}) is shaded in a literal, then we call it the negative literal for c, otherwise it
is the positive literal for c (see Fig. 3). Furthermore, if d is the positive literal for
c, then we call the negative literal for c the dual of d (and vice versa). Observe
that our notion of literals deviates from the original definition of Stapleton and
Masthoff [17] and from our previous work [9]. The main difference between our
presentation and classical Venn diagrams is the interpretation of shaded zones.

c c

Fig. 3. Literals

While in the traditional approach, shading denotes the empti-
ness of sets, we use shading as a marker of elements. That
is, the semantics of a diagram consists of the join of the ele-
ments denoted by the shaded zones. This is more in line with

a constructivist approach: instead of relying on a negative aspect (emptiness),
we construct the semantics out of their building blocks (the shaded zones).
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Definition 6 (Zone Semantics). Let H be a Heyting algebra, ν a valuation,
and z a zone. The semantics of z is given by ν(z) =

d
c∈in(z) ν(c) u

d
c∈out(z)−ν(c).

We can now define the semantics of a Venn diagram in general.

Definition 7 (Venn Diagram Semantics). For a Venn diagram d, a Heyting
algebra H and a valuation ν, the semantics of d are given by ν(d) =

⊔
z∈Z∗(d) ν(z).

Note that we have ν(>) = 1 and ν(⊥) = 0, for any valuation ν. Furthermore,
for a unitary diagram without shaded zones, i.e. d = (L,Venn(L), ∅), we have
ν(d) = 0. However, the semantics already diverge from the classical case for
a fully shaded diagram with one contour: if d = ({a},Venn({a}),Venn({a})),
then ν(d) = ν(a) t −ν(a), which in general is not equal to 1. This semantics
has one consequence in particular: a zone can be decomposed into an equivalent
compound diagram, and any Venn diagram into a disjunctive normal form.

Lemma 2. Let z be a zone for the contours L. Then the semantics of the com-
pound diagram dz =

∧
c∈in(z) c ∧

∧
c∈out(z) c equals the semantics of z, i.e.

ν(dz) = ν(z). For a Venn diagram d, we have ν(d) = ν(
∨

z∈Z∗(d) dz).

In particular, this implies that we cannot draw a unitary Venn diagram that
expresses intuitionistic implication.

Lemma 3. Let a and b be propositional variables. Then there is no unitary Venn
diagram d such that ν(d) = ν(a→ b) for all models and valuations.

Observe however that we can trivially define a compound diagram a → b .

Pure Euler Diagrams We need additional syntax if we want to express intuition-
istic implication diagrammatically. This new syntax needs to be directed (since
a → b is different to b → a). Observe that our notion of zones already contains
an asymmetry that we can understand as a direction: we distinguish between
contours the zone is inside of, and contours it is outside of. So, we may treat
a zone as directed from the “in”-contours to the “out”-contours. Furthermore, a
missing zone expresses topological information. Following these considerations,
we allow for missing zones in the diagrams. Consequently, we will now discuss
pure Euler diagrams. In contrast to Venn diagrams, the semantics of a pure Euler
diagram is the meet of the semantics of its missing zones.

Definition 8 (Pure Euler Diagrams). A pure Euler diagram is a struc-
ture d = (L,Z), where L is the set of contours and Z ⊆ Venn(L) the set
of visible zones of d. Furthermore, the set MZ(d) = Venn(L) \ Z is the set
of missing zones of d. The missing zone semantics of a zone z is given by

νm(z) =
(d

c∈in(z) ν(c)
)
7→
(⊔

c∈out(z) ν(c)
)

. Then, for a pure Euler diagram

d, we have ν(d) =
d

z∈MZ(d) νm(z).

In contrast to Venn diagrams, pure Euler diagrams do not allow for any
shading. To distinguish pure Euler diagrams from Venn diagrams (and Euler-
Venn diagrams, see below), we draw them with dotted contours. Even with



Intuitionistic Euler-Venn Diagrams 7

this additional syntax, we are not able to express every implication. A simple
example would be a → a, since we cannot have a zone ({a}, {a}). However, for
this particular example, we do not lose expressivity, since a → a ≡ > for all a.
But we have a diagram equivalent to a → b, as shown in the left diagram of
Fig. 2b. The right diagram in Fig. 2b denotes (a u b) 7→ 0, which is −(a u b).
Observe that in contrast to Venn diagrams without shaded zones, a pure Euler
diagram without missing zones denotes 1, i.e., for d = (L,Venn(L)), we have
ν(d) = ν(>) = 1. Furthermore, the diagram without any contours and zones
denotes 0, since ν((∅, ∅)) = νm((∅, ∅)) =

d
c∈∅ ν(c) 7→

⊔
c∈∅ ν(c) = 1 7→ 0 = 0.

In the following, we will need to identify zones that are divided by a contour c
abstractly.

Definition 9 (Adjacent Zone). Let z = (in, out) be a zone for the contours in
L and c ∈ L. The zone adjacent to z at c, denoted by zc is (in ∪ {c}, out \ {c}),
if c ∈ out and (in \ {c}, out ∪ {c}) if c ∈ in.

Now we can define a way to remove contours from a pure Euler diagram d.
This contrasts to our previous work, where we allowed that the diagram to be
reduced contains shading [9].

Definition 10 (Reduction). Let d = (L,Z) be a pure Euler diagram and c ∈
L. The reduction of a zone z = (in, out) is z \ c = (in \ {c}, out \ {c}). The
reduction of d by c is defined as d\c = (L\{c}, Z\c), where Z\c = {z\c | z ∈ Z}.

Lemma 4 (Properties of Reduction). We have z \ c = zc \ c. Furthermore,
for each z′ ∈ MZ(d \ c) and z with z \ c = z′, we have z ∈ MZ(d). In particular,
both z ∈ MZ(d) and zc ∈ MZ(d).

If each missing zone in a pure Euler diagram d has a missing adjacent zone,
then the reduction of d by any contour is contained in the semantics of d. In
particular, the meet of all reductions equals the semantics of d. This will allow
us to show soundness of some rules of the sequent calculus in Sect. 4.

Lemma 5. Let d = (L,Z) be a pure Euler diagram, where for each z ∈ MZ(d),
there is a contour ` ∈ L such that z` ∈ MZ(d). Furthermore, let L′ = {c |
MZ(d \ c) 6= ∅}. Then

d
c∈L′ ν(d \ c) = ν(d).

As an example, consider diagram d∗C of Fig. 4. Intuitively, this diagram

a
b

c
b
a a c b c

d∗C dc db da

Fig. 4. Example of a reduction.

contains the information that contour c is
disjoint from both a and b, and that a is
contained in b. Now, if the diagram satis-
fies the precondition of the previous lemma,
then we can reduce d∗C to diagrams reflecting
exactly these properties. The set of missing

zones of d∗C is MZ(d∗C) = {({a}, {b, c}), ({a, c}, {b}), ({b, c}, {a}), ({a, b, c}, ∅)},
and indeed, each of these missing zones has at least one adjacent missing
zone. For example, if z = ({a}, {b, c}), then zc = ({a, c}, {b}). So, d∗C can
be reduced according to the lemma. The set of visible zones is Z(d∗C) =
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{(∅, {a, b, c}), ({c}, {a, b}), ({b}, {a, c}), ({a, b}, {c})}. Reducing this diagram by
the contour c yields the set Z(dc) = {(∅, {a, b}), ({b}, {a}), ({a, b}, ∅)}, which is
visualised in Fig. 4 as the pure Euler diagram dc. Similarly, it can be checked
that reducing d∗C by b indeed yields db, and respectively for da. By Lemma 5,
the conjunction of these three diagrams is equivalent to the original diagram d∗C .

Euler-Venn Diagrams In this section, we combine pure Euler diagrams with
shading. Our main idea is as follows: we treat the information given by a pure
Euler diagram as a condition for the construction of the combinations of atomic
propositions denoted by the shading. That is, whenever we have constructions
as indicated by the spatial relations of contours in a diagram d, we also have a
construction of the elements denoted by the shaded zones of the diagram. Since
we use the syntactic elements of pure Euler diagrams and Venn diagrams, we
will subsequently call such diagrams Euler-Venn diagrams. Figure 2c shows two
Euler-Venn diagrams that omit some of the possible zones and contain shading.

The abstract syntax of Euler-Venn diagrams is similar to Venn diagrams. A
diagram is a tuple d = (L,Z,Z∗) consisting of a set of contours L, a set of visible
zones Z over L, and a set of shaded zones Z∗ ⊆ Z. We will often need to refer to
the pure Euler or Venn aspects of an Euler-Venn diagram separately. Hence, we
introduce some additional notation. For an Euler-Venn diagram d = (L,Z,Z∗)
we will write Venn(d) = (L,Venn(L), Z∗) for the Venn diagram with the same
set of shaded zones as d, and Euler(d) = (L,Z) for the pure Euler diagram with
the same set of visible zones as d. Similarly to pure Venn and Euler diagrams, we
will refer to the missing zones of d by MZ(d) and to its shaded zones by Z∗(d).

Definition 11 (Euler-Venn Diagram Semantics). The semantics of a uni-
tary Euler-Venn diagram for a valuation ν is ν(d) = ν(Euler(d)) 7→ ν(Venn(d)).

Observe that with this definition, the semantics for the case MZ(d) = ∅ and
Z∗(d) 6= ∅ yields ν(d) = 1 7→

⊔
z∈Z∗(d) ν(z) =

⊔
z∈Z∗(d) ν(z). Furthermore, we

get ν(⊥) = 1 7→ 0 = 0 and ν(>) = 1 7→ 1 = 1. The language of compound Euler-
Venn diagrams can be seen as a subset of intuitionistic logic. In particular, we
can translate every diagram into a formula, which we call its canonical formula.
This translation is very similar to the translation of spider diagrams into monadic
first-order logic with equality [18].

Definition 12 (Canonical Formula). The canonical formula of any diagram
is given by the following recursive definition. We start with the definition of the
canonical formula of shaded and missing zones.

χz(z) =
∧

c∈in(z)

c ∧
∧

c∈out(z)

−c χm(z) =
∧

c∈in(z)

c→
∨

c∈out(z)

c

For a pure Euler diagram de, a Venn diagram dv, an Euler-Venn diagram d and
compound diagrams D and E, the canonical formula is given as

χ(de) =
∧

z∈MZ(de)

χm(z) χ(dv) =
∨

z∈Z∗(dv)

χz(z)

χ(d) = χ(Euler(d))→ χ(Venn(d)) χ(D ⊗ E) = χ(D)⊗ χ(E) ,⊗ ∈ {∧,∨,→}
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Remark 1. Observe that according to Def. 12, we get χ( c ) = c ∧ > and
χ( c ) = > ∧ −c. However, for simplicity, we will assume that the canonical
formula construction omits superfluous occurences of > and ⊥. Hence, χ( c ) =
c and χ( c ) = −c. Similarly, e.g., χm((∅, L)) =

∨
c∈L c.

4 Sequent Calculus

Sequent calculus, as defined by Gentzen [5] is based on sequents, which are
composed by rule applications. In the following, we will define a multi-succedent
version of sequent calculus for Euler-Venn diagrams called EDim, inspired by the
work of Dragalin [3], but following the modern presentation of Negri and von
Plato [13].

Definition 13 (Sequent). A sequent Γ ⇒ ∆ consists of multisets Γ and ∆ of
Euler-Venn diagrams, where Γ (∆) is the antecedent ( succedent, respectively).

If Γ (∆) is the empty multiset, we write ⇒ ∆ (Γ ⇒, respectively). Axioms
are sequents of the form p, Γ ⇒ ∆, p where p is a positive literal. A sequent
D1, . . . , Dk ⇒ E1, . . . , El is valid, if, and only if, ν(D1)u . . .u ν(Dk) ≤ ν(E1)t
. . . t ν(El) for all valuations ν in all Heyting algebras. We will often abbreviate
ν(D1) u . . . u ν(Dk) by ν(Γ ) and ν(E1) t . . . t ν(El) by ν(∆).

A deduction for a sequent Γ ⇒ ∆ is a tree, where the root is labelled by
Γ ⇒ ∆, and the children of each node are labelled according to the rules defined
below. If the validity of the premisses of a rule imply the validity of its conclusion,
we call the rule sound. A deduction where the leaves are labelled with axioms,
or instances of L⊥ and R>, is called a proof for Γ ⇒ ∆. We will write ` Γ ⇒ ∆
to denote the existence of a proof for Γ ⇒ ∆. In all rules, we call the diagram
in the conclusion that is being composed the principal diagram. For example, in
L∧, the principal diagram is D∧E, and in the rule Ls it is d. For a given proof of
Γ ⇒ ∆, its height is the highest number of successive proof rule applications [13].
We will write `n Γ ⇒ ∆ if Γ ⇒ ∆ is provable with a proof of height at most n.

We now turn to define and explain the rules of EDim. The rules to treat
compound diagrams, shown in Fig. 5, are directly taken from sequent calculus for
intuitionistic logic and can be proven sound by adapting the proofs by Ono [14].

Lemma 6 (Soundness). The rules for sentential operators are sound.

Remark 2. If we take the placeholders D, E and F as formulas according to
Def. 2 and both Γ and ∆ as multisets of such formulas, then the rules of Fig. 5
together with axioms p, Γ ⇒ ∆, p form the sentential sequent calculus G3im [13].
Provability in G3im is equivalent to provability in Gentzen’s system LJ. The
system LJ is sound and complete [14]. Hence, G3im is sound and complete as
well. Furthermore, the structural rules of weakening, contraction and cut are
admissible [13]. Observe that we treat L⊥ as a rule, and not as an axiom.



10 Sven Linker[0000−0003−2913−7943]

D,E, Γ ⇒ ∆
L∧

D ∧ E,Γ ⇒ ∆

D,Γ ⇒ ∆ E,Γ ⇒ ∆
L∨

D ∨ E,Γ ⇒ ∆

Γ,D → E ⇒ D E,Γ ⇒ ∆
L→

D → E,Γ ⇒ ∆

Γ ⇒ ∆,D Γ ⇒ ∆,E
R∧

Γ ⇒ ∆,D ∧ E
Γ ⇒ ∆,D,E

R∨
Γ ⇒ ∆,D ∨ E

D,Γ ⇒ E
R→

Γ ⇒ ∆,D → E

L⊥
Γ,⊥ ⇒ ∆

Fig. 5. Proof Rules for Sentential Operators

Rules for Venn Diagrams. The rules in Fig. 6a let us reduce negative to positive
literals. Observe that we may introduce arbitrary sets of formulas into the succe-
dent. Rule R> lets us finish a proof similarly to L⊥. Let d, d1 and d2 be Venn
diagrams with the same contours such that |Z∗(d)| > 1, and Z∗(d) = Z∗(d1) ∪
Z∗(d2). Then the rules Ls and Rs in Fig. 6b separate d into d1 and d2. These
rules are closely related to the Combine equivalence rule for Spider diagrams [7].
For a Venn diagram d with Z∗(d) = {z}, where z = ({n1, . . . , nk}, {o1, . . . , ol}),
the rules Ldec and Rdec of Fig. 6c decompose the single zone z. .

c , Γ ⇒ c
Lneg

c , Γ ⇒ ∆

c , Γ ⇒
Rneg

Γ ⇒ ∆, c
R>

Γ ⇒ ∆,

(a)

d1, Γ ⇒ ∆ d2, Γ ⇒ ∆
Ls

d, Γ ⇒ ∆

Γ ⇒ ∆, d1, d2
Rs

Γ ⇒ ∆, d

(b)

n1 , . . . , nk , o1 , . . . , ol , Γ ⇒ ∆
Ldec

d, Γ ⇒ ∆

Γ ⇒ ∆, n1 . . . Γ ⇒ ∆, nk Γ ⇒ ∆, o1 . . . Γ ⇒ ∆, ol
Rdec

Γ ⇒ ∆, d

(c)

Fig. 6. Rules for Unitary Venn Diagrams

Lemma 7. The rules shown in Fig. 6 are sound.

Rules for pure Euler Diagrams. Now let d = (L,Z) be a pure Euler diagram,
where for each z ∈ MZ(d) there is a contour ` ∈ L, such that z` ∈ MZ(d).
Furthermore, let {c1, . . . , ck} ⊆ L be the maximal set of contours such that
MZ(d \ ci) 6= ∅ for every i ≤ k. Then we can reduce d according to the rules Lr
and Rr shown in Fig. 7a. Let d = (L,Z) be a pure Euler diagram with more than
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one missing zone, i.e., |MZ(d)| > 1, and let d1 = (L,Z1) and d2 = (L,Z2) be two
pure Euler diagrams such that Z1 ∩ Z2 = Z. Then the rules LMZ and RMZ of
Fig. 7b separate the diagram z at its missing zones. If d is a pure Euler diagram
with a single missing zone, i.e. MZ(d) = {z} and z = ({n1, . . . , nk}, {o1, . . . , o`}),
then the rules of Fig. 7c decompose z into literals.

d \ c1, . . . , d \ ck, Γ ⇒ ∆
Lr

d, Γ ⇒ ∆

Γ ⇒ ∆, d \ c1 . . . Γ ⇒ ∆, d \ ck
Rr

Γ ⇒ ∆, d

(a)

d1, d2, Γ ⇒ ∆
LMZ

d, Γ ⇒ ∆

Γ ⇒ ∆, d1 Γ ⇒ ∆, d2
RMZ

Γ ⇒ ∆, d

(b)

d, Γ ⇒ n1 . . . d, Γ ⇒ nk o1 , Γ ⇒ ∆ . . . ol , Γ ⇒ ∆
LIdec

d, Γ ⇒ ∆

Γ, n1 , . . . , nk ⇒ o1 , . . . , ol
RIdec

Γ ⇒ ∆, d

(c)

Fig. 7. Proof Rules for pure Euler Diagrams

Lemma 8. The rules shown in Fig. 7 are sound.

Rules for Euler-Venn Diagrams. Let d be an Euler-Venn diagram. Then the
rules Ldet and Rdet of Fig. 8 detach the spatial relations from the shading.

d, Γ ⇒ Euler(d) Venn(d), Γ ⇒ ∆
Ldet

d, Γ ⇒ ∆

Euler(d), Γ ⇒ Venn(d)
Rdet

Γ ⇒ ∆, d

Fig. 8. Proof Rules For Euler-Venn Diagrams

Lemma 9. The rules shown in Fig. 8 are sound.

By an induction on the height of proofs, we get the soundness theorem for
EDim, using Lemma 6, 7, 8, and 9.

Theorem 1 (Soundness). If Γ ⇒ ∆ is provable in EDim, then Γ ⇒ ∆ is
valid.

A rule is height-preserving invertible, if whenever we have a proof of height
n for its conclusion, its premisses are provable with a proof of at most height n.
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Lemma 10 (Inversions).

1. All of the rules L∧, R∧, L∨, R∨ Ldec, Rdec, Ls, Rs, Lr, Rr, LMZ, and
RMZ are height-preserving invertible.

2. If `n d, Γ ⇒ ∆ for an Euler-Venn diagram d, then also `n Venn(d), Γ ⇒ ∆.
3. If `n d, Γ ⇒ ∆ for a pure Euler diagram with one missing zone z =

({n1, . . . , nk}, {o1, . . . , ol}), then also `n oi , Γ ⇒ ∆ for all 1 ≤ i ≤ l.

Invertibility is used in the following lemma, where we connect provability of a
sequent Γ ⇒ ∆ within EDim with the provability of the sequent χ(Γ ) ⇒ χ(∆)
consisting of the canonical formulas of the antecedent and the succedent.

Lemma 11. Let Γ ⇒ ∆ be a sequent of compound diagrams. Then Γ ⇒ ∆ is
provable in EDim if, and only if, χ(Γ )⇒ χ(∆) is provable in G3im.

Proof. Let Γ ⇒ ∆ be provable in EDim. By Theorem 1, the sequent is valid,
and hence the sequent χ(Γ )⇒ χ(∆) is valid as well. Since G3im is complete (cf.
Remark 2), the sequent is provable in G3im.

For the other direction, we proceed by induction on the height n of the proof
of χ(Γ ) ⇒ χ(∆). If n = 0, then χ(Γ ) ⇒ χ(∆) is an axiom p, Γ ′ ⇒ ∆′, p or an
instance of L⊥. In the first case, since the only diagram D with χ(D) = p is a
positive literal, Γ ⇒ ∆ is an axiom as well. The second case is trivial.

The induction step is mostly straightforward. We partially present one of
the cases, and refer to the extended version for the full proof [10]. If the last
rule is R → then the sequent is of the form χ(Γ ) ⇒ χ(∆′), χ(D), where D
is either a compound diagram D = E → F , a pure Euler diagram D = de
with a single missing zone, an Euler-Venn diagram with missing zones and
shaded zones D = d, a single negative literal for a contour c, or D = >. The
first case is straightforward. For the case where d is an Euler-Venn diagram,
we have χ(d) = Euler(d) → Venn(d). and hence the premiss of the last step
is χ(Euler(d)), χ(Γ ) ⇒ χ(Venn(d)). By the induction hypothesis, we get that
Euler(d), Γ ⇒ Venn(d) is provable, and by applying Rdet, Γ ⇒ ∆, d as well.
Now assume that the principal diagram is a pure Euler diagram de with a sin-
gle missing zone z = ({n1, . . . , nk}, {o1, . . . , ol}). Hence, the premiss of the last
step in G3im is

∧
1≤i≤k ni, χ(Γ )⇒

∨
1≤i≤l oi. Since both L∧ and R∨ are height-

preserving invertible, the sequent n1, . . . , nk, χ(Γ )⇒ o1, . . . , ol is provable with
height less than n. Since the canonical formula is only atomic for diagram lit-
erals, we have that n1 , . . . , nk , Γ ⇒ o1 , . . . , ol is provable by the
induction hypothesis, and hence by applying RIdec also Γ ⇒ ∆, de. The other
cases are proven using suited applications of Rneg and R>. ut

Since every valid sequent is derivable in G3im, we get the completeness result
for EDim directly from Lemma 11.

Theorem 2 (Completeness). If Γ ⇒ ∆ is valid, then Γ ⇒ ∆ is provable.

We show that some rules are admissible. To that end, we define the weight
of diagrams, to order them by the number of their syntactic elements.
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Definition 14. The weight ω(d) of a diagram is defined inductively. The base
cases are given by ω(⊥) = 0, ω( c ) = 0, and ω( c ) = 1. Otherwise we set

ω(d) =


|Z∗(d)|+ 1 , if d is a Venn diagram

|MZ(d)|+ 1 , if d is a pure Euler diagram

ω(Euler(d)) + ω(Venn(d)) + 1 , if d is an Euler-Venn diagram

ω(d1) + ω(d2) + 1 , if d = d1 ⊗ d2 for ⊗ ∈ {∧,∨,→}

Lemma 12 (Structural Rules).

(1) For any diagram D, the sequent D,Γ ⇒ ∆,D is provable in EDim.
(2) Weakening:

i) If `n Γ ⇒ ∆, then also `n D,Γ ⇒ ∆.
ii) If `n Γ ⇒ ∆, then also `n Γ ⇒ ∆,D.

(3) Contraction:

i) If `n D,D, Γ ⇒ ∆, then also `n D,Γ ⇒ ∆.
ii) If `n Γ ⇒ ∆,D,D, then also `n Γ ⇒ ∆,D.

(4) Cut: If ` Γ ⇒ D,∆ and ` D,Γ ′ ⇒ ∆′, then ` Γ, Γ ′ ⇒ ∆,∆′.

Proof. (1) can be proven by a straightforward induction on the weight of D.
Items (2), and (3) can be proven by induction on the height of the proofs using
Lemma 10 and arguments similar to Negri and von Plato [13]. For (4), we use
soundness and completeness of EDim. If both sequents are provable, they are also
valid, by soundness. So choose an arbitrary valuation ν. Then ν(Γ ) ≤ ν(D)tν(∆)
and ν(D)uν(Γ ′) ≤ ν(∆′). Now we have ν(Γ )uν(Γ ′) ≤ (ν(D)tν(∆))uν(Γ ′) =
(ν(D) u ν(Γ ′)) t (ν(∆) u ν(Γ ′)) ≤ ν(∆′) t (ν(∆) u ν(Γ ′)) ≤ ν(∆′) t ν(∆).
This is due to the first premiss, distributivity, the second premiss and the fact
aub ≤ a. Since ν was arbitrary, Γ, Γ ′ ⇒ ∆,∆′ is valid, and due to completeness,
Γ, Γ ′ ⇒ ∆,∆′ is provable. ut

Remark 3. It is also possible to prove cut admissibility with a purely syntactic
argument by adapting the inductive proof for the system G3im [13].

Π1

a
b

c
, dA ⇒ c

Π2

a
b

c
, dA, b ⇒

Rneg

a
b

c
, dA ⇒ b

Π3

a
b

c
, dA, a ⇒

Rneg

a
b

c
, dA ⇒ a

Rdec

a
b

c
,
a c

⇒ b c
a

Rdet

a c
⇒

a
b

c

Fig. 9. Proof using Euler-Venn diagrams
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A derivation that uses all three types of diagrams can be found in Fig. 9. We
explain parts of the proof from bottom to top. The last applied rule detaches the
pure Euler part from the Venn part of the succedent, so that we can then decom-
pose the single shaded zone into literals. This splits the proof into three branches,
which we treat in the sub-derivations Π1, Π2 and Π3, respectively (see Fig. 11).
For reasons of brevity, we use the abbrevations for diagrams as shown in Fig. 10.

a
b

c a
b

c a c

dC d∗C dA

Fig. 10. Diagram Abbreviations

Now, the two right proof branches contain
a negative literal in the succedent, which we
move to the antecedent with an application
of Rneg. Then, all three proof branches pro-
ceed similarly: we reduce the pure Euler dia-
gram d∗C into smaller diagrams, as explained

in Sect. 3. Π1 proceeds by detaching the Euler and Venn aspects of the diagram
dA, which immediately closes the left branch, due to Lemma 12 (1). The right
branch ends in an axiom after decomposing the single shaded zone in the an-
tecedent. Within Π2 there is a similar structure, denoted by the derivation Π ′1,
where the antecedent contains slightly different diagrams, but the application of
rules is similar. The other branches proceed similarly. This example shows how
the reduction rules lead to smaller diagrams, and how the rules of Lemma 12
may reduce the size of the proofs, here in the form of the generalised axioms.

Π1

b
a

,
a c

,
b c

, dA ⇒
a c

Lr

d∗C , dA ⇒
a c

d∗C , c , a ⇒ c
Ldec

d∗C ,
ca

⇒ c

Ldet

d∗C , dA ⇒ c

Π2

b
a

,
a c

, dA, b ⇒ b

Π ′1

b
a

,
a c

, dA, b ⇒ c

LIdec

b
a

,
a c

,
b c

, dA, b ⇒
Lr

d∗C , dA, b ⇒

Π3
b

a
,
a c

,
b c

, . . .⇒
a c

Lr

d∗C , dA, a ⇒
a c

d∗C , b
a

, c , a , a ⇒ a

Lneg

d∗C , b
a

, c , a , a ⇒
Ldec

d∗C , b
a

,
ca
, a ⇒

Ldet

d∗C , dA, a ⇒

Fig. 11. Auxiliary Derivations for Fig. 9



Intuitionistic Euler-Venn Diagrams 15

5 Conclusion

In this paper, we presented an intuitionistic interpretation of Euler-Venn dia-
grams, based on a semantics of Heyting algebras. We then defined a cut-free
sequent calculus EDim, which we have proven to be sound and complete with re-
spect to this semantics. Furthermore, we have shown that the structural rules of
contraction, weakening and cut are admissible. We deviated from classical Euler-
Venn diagrams in two ways: we did not treat missing zones and shaded zones as
equivalent, and we introduced the new syntactic element of dotted contours.

The first deviation is due to the basic restrictions of intuitionistic reasoning.
More specifically, intuitionistic implication cannot be treated as an abbreviation
of the other operators. To have a syntax explicitly for implications, we need
to increase the number of distinct syntactic elements of Euler-Venn diagrams.
Hence, distinguishing these two elements is a natural choice. Of course, it can be
argued that shading should be used to reflect implications. However, we think
that since the representation of missing zones (or rather their absence) introduces
a direction into the diagram, in the form of inclusions, this choice is justified.

The introduction of dotted diagrams is more debatable. Arguably, the need
for distinguishing pure Euler diagrams arises, since we interpret the missing zones
of Euler-Venn diagrams as a precondition for the construction of the elements
denoted by the shaded zones. That is, in the constructive interpretation of intu-
itionistic reasoning, an Euler-Venn diagram means that, given a construction as
indicated by the missing zones, we have another construction for the assertions
given by the shaded zones. Hence, there is an additional implication within the
semantics of Euler-Venn diagrams, as can also be seen in the rules of EDim to
detach the pure Euler from the Venn aspects of a diagram. These rules behave
similarly to the rules for implication in sentential intuitionistic sequent calculus.

However, the introduction of new syntactic elements is necessary, due to the
independence of the operators. Compare for example the intuitionistic systems
based on Existential Graphs (EGs). While the operations in classical EGs are
denoted by juxtaposition and cuts, reflecting conjunction and negation, respec-
tively, the assertive graphs [1] explicitly introduce notation for disjunction, and
also treat the “scroll” as a distinct element. Similarly, the intuitionistic EGs [12]
include the notion of n-scrolls for each n > 0. We think that our system stretches
the idea of Euler-Venn diagrams quite far. In particular, logics that need even
more independent operators, for example substructural logics, may not be well-
matched for such a diagrammatic system. While it may be possible to define
such an interpretation, the necessary syntax is far from obvious, if we want to
keep the diagrammatic structure of Euler-Venn diagrams. Of course, it is always
possible to add new operators to the compound part of the system, but we think
that such an addition misses the point of a diagrammatic reasoning system.

Still, there are future directions this work can be taken into. For example, our
sequent calculus resembles sentential sequent calculus, while typical Euler-Venn
reasoning systems work by adding syntax to single diagrams, and then removing
unnecessary parts [2]. It is interesting to see, if we can define such a system for
intuitionistic Euler-Venn diagrams. We assume that for the rules to introduce
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and remove contours, or to copy contours, the reduction of a pure Euler diagram
(cf. Def 10 and Lemma 5) will play a significant role.
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