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Abstract 

The extraction and study of organic residues from ceramics has been a subject of interest for 

the last 50 years in archaeology and archaeological science. Lipids are among the best-

preserved organic substances in archaeological contexts and can provide information about 

the diets of ancient populations, as well as past environments. Here, we present a method 

which demonstrates significantly improved extraction of lipids from archaeological pots by 

replacing liquid organic solvents with supercritical fluids. Optimization of the procedure 

using response surface methodology (RSM) approach showed that, on our system, optimal 

conditions for supercritical extraction of lipids from synthetic fired clay ceramics could be 

achieved using carbon dioxide with 16 volume % of co-solvent EtOH:H2O (95:5 v/v) in 90 

minutes at a flow rate of 2.3 ml/min, for a pressure of 30 MPa and a temperature of 50°C. For 

all reference and archaeological samples included in this study, lipid yields obtained by 

supercritical fluid extraction under these optimal conditions were systematically higher than 

by conventional solvent extraction. This study also highlighted a variability of the ratio of 
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unsaturated versus saturated fatty acids depending on the extraction method. This can have 

important implications in the identification of the residue(s). The increased extraction 

efficiency provided by supercritical fluids, as well as their minimally destructive nature, 

enable new and refined approaches to residue analysis and dating of archaeological ceramics. 
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Archaeological investigations of lives and lifestyles of human populations in the past are 

based, almost exclusively, on studies of material remains—stone tools, ceramic vessels, glass 

or metal artefacts, textiles, and other organic substances (i.e. bone, wood, charcoal, seeds). 

Archaeologists have always relied on scientific methods to enrich their interpretations of 

these remains, and over the last few decades, techniques to characterise organic substances at 

a molecular level, have improved dramatically. This trend is seen clearly in the ever-

expanding application of analytical techniques based on the use of chromatography and mass 

spectrometry (e.g. High Performance Liquid Chromatography (HPLC) and Gas 

Chromatography / Mass Spectrometry (GC/MS))1. Although these techniques have many 

applications in archaeological science, the most common relates to the question of ancient 

diet and the analysis of ancient food residues preserved within the fabric of ceramic 

containers2-4. To exploit this valuable source of information, scientists conventionally 

pulverise fragments of pottery and apply a combination of liquid organic solvents such as 

chloroform or dichloromethane and methanol. The extracted residue is then characterised by 

GC/MS or GC-C-IRMS4. This is a time-consuming process which requires toxic solvents and 

is also destructive as the sherd needs to be crushed to increase the surface interface between 

ceramic and solvent. 

Over the last few decades, the field of analytical chemistry has seen substantial 

transformations such as with the development and application of new instrumentation using 

supercritical fluids (SFs) for extraction and chromatographic separation (SFE and SFC, 

respectively). In the field of archaeological science, the use of supercritical fluids has not yet 

been fully explored compared to other analytical techniques (e.g. GC/MS or FTIR). There are 

only few applications of SFE technology published. These examples mostly relate to 

cleaning, drying, and conservation of delicate archaeological artefacts: actively eroding iron 
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objects have been cleaned and stabilised using CO2
6, SFs have also been used to dry 

waterlogged corks7 or other wooden materials8,9 and to clean 18th century silk textiles10. Two 

other publications have focused on the use of supercritical fluids prior to radiocarbon 

dating11,12. Finally, an early publication, which lead to a patent, proposed the use of SC-CO2 

for the de-acidification of paper from historical records13. 

Ongoing research at the Oxford Radiocarbon Accelerator Unit seeks to explore the use of 

supercritical fluids to extract organic materials from a range of archaeological artefacts. Here, 

for the first time, we present the results of a pilot study to extract lipids from ceramic samples 

using supercritical fluids. 

 

Experimental 

Supercritical Fluid Extraction apparatus 

Supercritical fluid extraction tests were performed on a Semi-Prep SFC- SP-2086 instrument 

from Jasco® equipped with UV detector and fraction collector. The system was modified 

with support from the company in order to run extractions and not only chromatographic 

separations in supercritical phase. A new line was installed to bypass the autosampler and the 

extraction vessel was installed in the oven in place of the column to control the extraction 

temperature. The extraction vessel was a 10 mL cylindrical extraction vessel provided by 

Jasco®. Samples were kept in the centre of the vessel by filling it up with solid-glass beads of 

2 mm diameter (Sigma Aldrich, UK). Tests were also performed, for comparison, on a 

Waters® MV10 system with 5 mL extraction vessels fitted on 10 parallel lines. The 

comparative tests did not show any significant differences and therefore results obtained with 

both instruments are discussed together in this article. Samples were collected in glass vials 

with cyclone inserts provided by Jasco® to increase the recovery of the co-solvent containing 

the extracted analytes. Volumes of co-solvent recovered were monitored and compared with 

the theoretical volume calculated based on the % of co-solvent and the flow rate. All 

glassware and solid-glass beads were baked at 500°C for 3 h to eliminate any 

possible contaminants. 

 

Experimental Design 

Ceramic pellets (fired kaolinite) impregnated with olive oil were used for the optimisation of 

the SFE parameters (preparation of the pellets described in S-1). A number of parameters can 

be adjusted in SFE including the nature of the solvent and the co-solvent, their relative 

proportions, the flow rate, the pressure, the temperatures in both the vessel and back pressure 
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regulator (BPR) and the extraction time. Extractions were performed at the highest 

temperature (50 °C) and pressure (30 MPa) achievable with the equipment to maximise the 

extraction yields as reported in the literature14. The extraction time for SFE, can vary 

considerably from few minutes up to several hours15. Various tests performed on the system 

(data not reported here) demonstrated that an extraction of 90 minutes is sufficient to remove 

up to 95 % of the olive oil from the clay samples with a large proportion being extracted 

during the first 30 minutes. It was therefore decided to extract all samples for 90 minutes. The 

other parameters (polarity of the co-solvent, the proportion of co-solvent and the flow rate) 

were adjusted using the Response Surface Methodology (details in the S-3). The values tested 

for optimisation of flow rate, polarity and proportion of co-solvent were chosen based on data 

reported in literature for the extraction of lipids. The total flow rate (CO2 + co-solvent) was 

varied from 1, 2 and 3 mL/min with 10, 15 or 20 vol. % of co-solvent. As each parameter 

needs to be expressed by numerical values, the nature of the solvent was defined by its 

polarity: 5.2 (100 % ethanol), 5.39 (ethanol + 5 % water) and 5.58 (ethanol + 10 % water). 

By determining the maximum of the response function, the following set of ‘optimal’ 

parameters was identified: 16 V% of EtOH:H2O (95:5) in CO2 at a total flow rate (CO2 + 

modifier) of 2.3 mL/min (Details in S-4 and S-5).  

 

Total Lipid Extraction 

For comparison, the ceramic pellets were also analysed after a conventional extraction 

procedure. The samples (± 250 mg accurately measured) were crushed using mortar and 

pestle and then extracted by 3 mL of a mixture trichloromethane : methanol (2:1 v/v). A 

standard consisting of 5 µL of tridecanoic acid solution in iso-octane (1.87 x 10-6 mol/µL) 

was also added to assess the extraction efficiency. The solution was vortexed for a few 

seconds and then sonicated for 30 minutes at 50 °C. The suspension was then centrifuged for 

10 minutes at 2500 rpm. The supernatant was transferred in a separate 2 mL vial and blown 

down under nitrogen. This extraction process was repeated 3 times in total (with the 

supernatant always being blown down into the same 2 mL vial). 

 

Characterisation by GC/MS 

All extracts were derivatised and analyses were performed using an Agilent 7820A gas 

chromatograph equipped with a Restek Rxi-5ms column (30 m length x 0.25 mm ID x 0.25 m 

film thickness, 5% diphenyl / 95% dimethylpolysiloxane stationary phase). The mass 

spectrometer was an Agilent 5975 quadrupole mass spectrometer, operated in electron 
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ionization mode (70 eV) and the scan range was m/z 50-650 u.m.a. Detailed analytical 

conditions are reported in the Supplementary Information (S-2). 

 

Results and Discussion 

A total of 12 archaeological samples were selected for residue analysis as part of this pilot 

study. 7 of these ceramic sherds (samples CFS2, LDS2, SRS4, CFS3, LDS4, SRS3 and 

SRS2) are from the site of Bobartia Road Midden which is a coastal shell midden near 

Betty’s Bay, southwestern Cape, South Africa16. The remaining 5 samples come from 3 

different prehistoric sites in Eastern Siberia, Russian Federation: Ust’ Karenga (Ust2, Ust5), 

Popovskii Lug (PL2, PL4) and Shamanka II (SHAMII). The first two sites, located within the 

Upper Vitim and Upper Lena Basins (respectively), are considered as seasonal settlements 

for hunter-gatherers17,18. The final site is a cemetery complex on the southern shore of Lake 

Baikal where individuals were buried along with rich material inventory, including ceramic 

vessels19. These 12 samples were selected not only as representative of a wide range of 

geographical, archaeological and chronological contexts, but also as spanning a variety of 

mineralogical compositions and specific storage histories. Unusually, these samples were 

available in sufficient quantities to perform both SFE and TLE extractions. This enabled a 

direct comparison of these methods to establish the absolute lipid yield, as performed in the 

optimisation procedure, for both the entire residue and for individual organic molecules. 

Before extraction, all archaeological sherds were first “cleaned” using an electric drill to 

remove the first mm of the surface, thus eliminating contaminations by soil and handling. 

Drill heads were cleaned in both milliQ water and acetone by sequentially sonicating them 

for 15 minutes. 

For SFE, the “cleaned” sherds were directly extracted without any further pretreatment. For 

the extraction using conventional organic solvents, the “cleaned” sherds were powdered using 

mortar and pestle. In both cases around 250 mg of ceramic, precisely weighed, was used. 

The archaeological samples analysed in this study mainly yielded free fatty acids which can 

be related to plant and/or animal lipids (Peak identification in S-6). The total amount of free 

fatty acids recovered per gram of sherd was also calculated for the 12 archaeological samples. 

In Figure 1, we plot the total FFA yields for archaeological samples by SFE and TLE. The 

results show that SFE is systematically more efficient than TLE. Similarly, improved 

efficiencies are also noted for olive oil extraction from reference samples (not shown). We 

use a logarithmic scale, since the amount of preserved organics varies by several orders of 

magnitude between the archaeological sherds. This variability can be explained by several 
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factors. First, the amount of organics is related to the original function of the ceramic. For 

example, some ceramics may have been used to cook food extremely rich in lipids while 

others may have been used to store dry food such as cereals. Second, different sherds of the 

same ceramic object may exhibit heterogeneity which is related to complex mineralogical and 

thermal variation (e.g. in the case of earthenware pottery used for cooking). Finally, 

differential degradation of organic residues during burial may result in variability between the 

amount extracted from different sherds. These factors may explain why the increase of 

extraction yield with SFE is not identical across the 12 sherds. When we checked SFE using 

the Waters apparatus, with identical experimental parameters, we observed a similar pattern 

to the Jasco system, whereby SFE yielded systematically higher yields than TLE. This 

suggests that the higher extraction efficiencies of SFE are a genuinely reproducible effect, 

notwithstanding heterogeneities due to differential organic content and preservation. 

 

Figure 1. Comparison of the free fatty acid yields from archaeological pottery from Lake 

Baikal (left) and southwestern Cape, South Africa (right) by SFE and by TLE showing 

systematic higher yields by SFE for all pottery samples. Note that for samples CFS3, LDS4, 

SRS3 and SRS2 we tested SFE using a different apparatus, with identical experimental 

parameters. 

 

The SFE procedure was able to extract in higher quantities the same molecules extracted by 

TLE but also other molecules such as small free fatty acids which were probably present in 

quantities too low to be detected after TLE (S-6). Comparing results obtained by SFE and 

TLE also revealed interesting information regarding the unsaturated free fatty acids. It 

appears that, for a majority of the samples analysed, the ratio unsaturated / saturated free fatty 

acids increases with SFE (Table 1, Figure 2). In other words, extracts obtained with 

supercritical fluids contain more unsaturated free fatty acids than those obtained by TLE. Our 

hypothesis is that unsaturated free fatty acids, richer in electrons, are more likely to 
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chemically bind at vacant sites within the thermally-altered clay mineral matrix and form 

stable organo-metallic complexes. Supercritical fluids are perhaps more efficient at breaking 

these complexes and increase the extraction of the free fatty acids, relative to TLE. However, 

not much is currently known about the complex interactions between ceramics and organics, 

and more investigation is warranted. The identification of unsaturated free fatty acids is very 

important in understanding the nature of the residue such as differentiating between plant and 

fish oils20,21. The lower efficiency of TLE may therefore result in a misinterpretation of the 

function of the ceramics. 

 

Table 1. Amount of saturated and unsaturated free fatty acids (in µg/g of ceramic) extracted 

with the two different methods (SFE and TLE) on 12 archaeological sherds. 

Sample 

Total 

Saturated 

FFA  

by TLE 

Total 

Saturated 

FFA  

by SFE 

Total 

Unsaturated 

FFA  

by TLE 

Total 

Unsaturated 

FFA  

by SFE 

UST2 71.43 317.45 14.96 105.50 

UST5 141.78 223.50 85.92 86.07 

PL2 102.95 519.99 55.56 155.92 

PL4 37.19 173.11 5.39 56.96 

SHAMII 24.94 123.92 10.90 20.85 

CFS2 0.57 27.13 0.00 0.58 

LDS2 5.31 7.66 1.07 0.62 

SRS4 1.48 5.97 0.00 0.15 

CFS3 4.07 15.64 1.48 0.41 

LDS4 0.00 2.85 0.00 0.22 

SRS3 4.26 6.32 0.00 0.29 

SRS2 0.10 3.77 0.00 0.17 

 

 

Figure 2. Comparison of the Total Ion Chromatograms showing the free fatty acids identified 

after a) TLE and b) SFE for the sample PL4. Same amounts of ceramic sherd were used for 

the two extractions. 
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Since SFE gives much higher yields, we expect that sufficient quantities may be extracted for 

(compound specific) radiocarbon dating, which would provide a more reliable way of dating 

pottery22. The ability of SFE to extract lipids, but also other molecules, as demonstrated for 

our archaeological samples, also makes this technique a good candidate for decontamination 

of archaeological samples prior to dating. For radiocarbon dating of bones, the presence of 

exogenous carbon can substantially affect the obtained date (leading to younger ages if ‘new’ 

carbon is incorporated) and therefore this carbon must be removed23. Finally, for 

rehydroxylation (RHX) dating of ceramics the presence of any carbon can significantly affect 

the dating. Removing organics using SFE would then help with the application of the RHX 

technique24,25. 

 

 

Conclusions 

The present work aimed at offering a more efficient alternative to conventional lipid 

extraction, as performed in archaeology for the last 50 years. This alternative is based on the 

use of supercritical fluids, rather than chloroform and methanol (or other similar solvents), to 

perform the extraction. 

Ceramic reference samples were produced in the lab in order to optimise the parameters for 

the supercritical fluid extraction of lipids. When applying those optimised conditions to both 

lab-made reference samples and archaeological samples, the data generated demonstrated that 

SFE is a more efficient extraction technique than TLE both in terms of yield and time 

required for the extraction. The higher yield achieved by SFE can help refine the 

interpretation of the function of ceramic containers but also raises the possibility of 

reproducible radiocarbon dating of single compounds from archaeological pottery. As shown 

in this study, in some cases, the increased yields also allow for some markers to be identified 

which would remain undetected by TLE. Furthermore, the use of water and ethanol as co-

solvent instead of chloroform and methanol, used in TLE, makes it a less toxic and cheaper 

high-throughput alternative. 
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