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Abstract

This thesis explores some of the fundamental properties of a rather special class of
materials, the transparent conducting oxides. These ‘semiconductors’ combine the
usuallymutually exclusive properties of optical transparencywith high electronic con-
ductivity. Conventionally, TCOs are formed from metal-oxide structures doped with
an element from the right hand column in the periodic table of either the anion (e.g.
F in SnO2) or cation (Sn in In2O3).
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However, TCOs that use un-
conventional dopants (i.e. dopant
elements not from the subse-
quent column in the periodic
table) which display much im-
proved optoelectronic proper-
ties are quite frequently re-
ported in the literature. Most of-
ten, the host materials are doped
with transition metal elements
which can display unusual elec-
tronic configurations and many
common oxidation states, mak-
ing their properties as dopants

hard to predict and understand.
In this thesis, the properties of selected TCOs are presented in three case studies.

The first study is on a conventionally doped and commercially available TCO, F:SnO2,
in which the limitation of the electronic performance of the material is attributed to
extrinsic defects associated with the dopant element. The second is a comparison
between an In2O3 system doped with the transition metal Mo, and its conventionally
doped and commercially relevant counterpart Sn:In2O3. In this study, the system with
the novel dopant (Mo:In2O3) is shown to display much improved properties over the
conventionally doped system. This is explained in the context of the band structure
modifications due to choice of dopant. Finally, the surface properties of a relatively
novel oxide semiconductor system, β-Ga2O3, are investigated. β-Ga2O3 has gained
a lot of attention in the literature recently, and is a rare case of a III-VI oxide whose
properties are not well established. The natural surface electronic state of this material
is determined and the effect that surface H adsorption has on the surface space charge
is investigated.
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1
Introduction

1.1 Overview

Wide band gap materials by their very nature tend to be insulating, with many also

displaying a high degree of optical transparency in the visible range, take for example

silica glass. On the other hand, conducting materials such as bulk metals are optically

opaque to visible light, instead displaying a high degree of reflectivity. There do how-

ever, exist a few exceptions to this general rule, one such exception being the class of

materials known as the transparent conducting oxides (TCOs). The fortuitous combi-

nation of high transparency and electrical conductivity means TCOs have generated a

great deal of scientific interest since their discovery in 1902, where F. Streintz created

CdO as a pressed powder1. The first thin film was deposited by K. Bädeker in 19072,

since which thin film TCOs have found applications in a multitude of modern tech-

1



1.1. OVERVIEW

nologies. These include: acting as transparent contacts in solar cells3,4 allowing light

through to generate carriers in the active layer whilst also enabling current collection;

the infrared reflective layer in low emissivity (energy efficient) windows5, where the

high free carrier concentration aids in reflecting infrared light to minimise thermal

losses whilst a wide band gap allows visible light to pass; in conductance-type gas

sensors6,7, where atmospheric gases can interact with a sensor material through pro-

cesses such as surface adsorption, and cause a measurable resistivity variation; as the

transparent electrode in touch screen panels8, enabling a user interface while allow-

ing light through; and in electrochromic windows9, acting as an electro-active layer,

allowing an applied charge to modulate the properties of the electrochromic material,

to name but a few.

Since their inception over 100 years ago, it is clear TCOs have become common-

place in consumer electronic devices. However, these materials have the potential to

go beyond simply acting as transparent contacts. It is now commonly accepted that

silicon-based electronics are quickly approaching their physical and electronic limits10,

and new approaches are sorely needed. TCOs may well provide some breakthroughs

required in this area11–17. One such stride towards integrating TCOs into more far

reaching fields than simply invisible electronic contacts was made by Nomura et al.18

who fabricated an all-oxide transparent field-effect transistor, an impressive step to-

wards fully transparent electronics. It is also worth mentioning that despite commer-

cially produced TCOs typically being manufactured via scalable deposition methods

such as chemical vapour deposition (CVD) or magnetron sputtering which tend to cre-

ate large defect densities in the films, great progress has been made in controlling the

crystal growth of oxide semiconductors and oxide heterostructures. This was demon-

strated by Tsukazaki et al.19,20 who observed both integer and fractional quantum Hall

effect in all oxide heterostructures, a phenomena typically only seen in high-quality

2



1.1. OVERVIEW

semiconductor quantum wells. The extremely high mobilities seen by Tsukazaki et al.

in their heterostructures (up to 180 000 cm2V-1s-1) maybe be another way of opening

new avenues to high performance devices where traditional semiconductors have up

to now reined supreme.

Current Climate for Transparent Conducting Oxides

Currently TCOs are marketed primarily as transparent contacts, and so this thesis fo-

cuses on the materials used as such. Surprisingly, despite being a multi-billion pound

industry, the TCO market is dominated by only a few materials. This is due to a com-

bination of limiting factors which include the stringent properties expected of a new

TCO to give adequate performance and suitability for commercial devices, in addition

to some level of industrial reluctance to adopt new technologies. Whilst there is little

that can be done by the scientific community about the second point the second point,

it is possible to consider the first. Before even thinking about the physical properties

of a TCO, market forces have effectively screened the materials that can be used. The

largest market for TCOs is in consumer electronics and devices and so they are re-

quired to be non-toxic. This rules out materials such as CdO, which displays excellent

opto-electronic properties, but is hazardous to health. They also need to be low cost

in order to be picked up in the consumer market, and so more abundant elements are

preferable. Figure 1.121 shows the abundance of elements up to Z=83 available in the

earth’s crust (top) and in the sea (bottom). This does not account for the difficulty in

extracting these materials, the demand on these materials and the availability of them

to us. These things being very hard to quantify, considerations are often only given to

elemental abundances as a simple guide to availability. On top of this, a TCO needs to

be cheap to deposit as large quantities of TCOs are required in the modern market for

applications ranging from phone screens, where relatively small areas of coverage are

3
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Figure 1.1: Abundance of elements available in the world crust (top) and in the sea (bottom).21

required for one handset but many millions of handsets are made per year, to large

scale solar panels and solar farms which may require a single TCO to be deposited on

the order of square meters.

4



1.1. OVERVIEW

1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 51 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

I n 2 O 3

 d o p e d  S n O 2
 d o p e d  I n 2 O 3
 d o p e d  Z n O

Re
sis

tivi
ty 

(Ω
 cm

)

Y e a r

S n O 2

Z n O

Figure 1.2: The historical development of resistivity for doped SnO, In2O3 and ZnO thin films from 1972-2005.

Figure adapted from T.Minami.22

The market informs us on the practical information relevant to the consumer. The

actual physical properties required of a TCO are arguably more easily comprehensible

by comparison. A TCO requires a large optical band gap, Eoptg > 3eV, large enough

to allow for high optical transparency (>80%) but not too large that the material is

forced to be insulating. The transmission window is further limited by the relatively

diminished intensity of UV light compared to the visible in the solar spectrum. TCOs

also need to display good electrical properties, for example a resistivity on the order

of ∼ 10−4Ωcm. This is usually achieved through intentional inclusion of chemical

impurities (doping).

With all of this in mind, practically only a few TCOs that are non-toxic and rela-

tively inexpensive to produce are of industrial importance. The ‘major players’ are

highlighted in figure 1.2 (replicated from a figure by T. Minami22), which shows the
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historical development in resistivity of impurity doped In2O3, SnO2, and ZnO. Whilst

the values are slightly outdated, this figure nicely illustrates how the TCO market has

been split up for the past few decades. Sn-doped In2O3 (ITO) is the dominant TCOma-

terial, accounting for over 60% of the market23. Most often deposited via magnetron

sputtering, ITO boasts the best conductivities out of the commercial TCOs. However,

elemental indium is scarce (see figure 1.1) and displays high price volatility meaning

a replacement for this material is sorely sought after. F-doped SnO2 (FTO) has worse

opto-electonic properties by comparison, but is usually used as a cheaper alternative

for large scale requirements, such as PV or low emissivity glass. Cost effectiveness is

made even more prominent for FTO as it is most often deposited via chemical vapour

methods which do not require high vacuum, and it can be deposited on-line immedi-

ately after the float glass is made which takes advantage of the heat from the glass

furnace. ZnO has seen a growing research interest in recent years because Zn is far

more abundant than In and even Sn. This work has promoted a large increase in its

performance as a TCO (usually doped with Al), making ZnO a very promising ma-

terial for the future of TCOs. Difficulties still persist with depositing doped-ZnO in

a controlled manner, due in part to Zn being more chemically active in an oxidizing

atmosphere than both Sn and In22. These issues need to be addressed for ZnO to be

considered as a replacement for ITO.

1.2 Fundamentals of Transparent Conducting Oxides

The previous section specified the physical conditions that a transparent conductor

needs to fulfil to be successful. They are required to have a large optical gap Eoptg > 3eV,

and to display good resistivity on the order of ∼ 10−4Ωcm. Now this section will

specify how this is achieved in these materials. The following sections will have gen-

eral information relevant to essentially all semiconductors, as well as specific cases

6
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related to TCOs. This should give much of the background information and funda-

mental physics required to describe these materials. Hopefully, it will become clear

how all of the properties discussed below are inextricably linked, and are essential in

building an understanding of these materials.

1.2.1 Optical properties

The optical and electronic properties of materials are intimately linked. The important

parameters determined experimentally for TCOs are the transmission and reflection

(and therefore the absorption) of light in the ultraviolet (10 nm < λ < 400 nm, 124 eV >

E > 3.3 eV), visible (400 nm < λ < 740 nm, 3.3 eV > E > 1.7 eV), and infra-red (700 nm <

λ < 106 nm, 1.7 eV > E > 10−3 eV) spectral regions. Figure 1.3 displays a representation

of these properties for a typical TCO material.
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Figure 1.3: Representation of the transmission (T), reflection (R) and absorption (A) spectra of a typical TCO.

Figure adapted from Pasquarelli et al.24
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In the three spectra in figure 1.3, there are three characteristic regions of interest

for a TCO. Firstly, a TCO is required to be transparent over the visible spectrum (high-

lighted as an shaded box). Typically a transmission of around 80% over a wavelength

range of at least 400-750 nm is expected. This is achieved through the material having

a large band gap, low plasma energy allowing for low reflection and absorption over

this region. Secondly, at low wavelengths (high energy) light is absorbed causing

inter-band transitions. This is shown in figure 1.3 where a dramatic increase in ab-

sorption can be seen and the transmission drops off heavily. As previously suggested,

typical TCOs have a band gap greater than 3 eV and so the absorption onset occurs at

wavelengths < 410 nm (>3 eV). Finally, at higher wavelength typically around > 1550

nm (lower energy < 0.8 eV) another decrease in optical transmission is seen. This is

coupled with a large increase in the reflection signal.

The increase in reflection is related to the free carrier response to the electric field of

the incoming light in the degenerately doped TCO, where the free carriers are treated

as a free electron gas or plasma whose oscillatory motion with respect to the positive

ions in the fixed lattice is naturally counteracted by Coulombic forces. The charge den-

sity oscillates at a natural frequency called the plasma frequency (ωp). At frequencies

of light higher than the plasma frequency of the material (ωp < ω) the electric field os-

cillates too quickly for the electrons to respond and so light can propagate through the

material and the material is transparent. If the frequency of light matches the plasma

frequency (ωp = ω) the electron gas oscillation couples strongly to the excitation, os-

cillating in phase with the electric field component of the electromagnetic wave. The

imaginary component of the dielectric function has a maximum and the light is ab-

sorbed by the free carriers and the energy is dissipated as heat due to strong damping.

Finally, if the frequency of light is much below the plasma frequency (ωp > ω) the

electron gas easily follows the oscillations of the excitation. Because the oscillation

8
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amplitude is small, energetic losses due to damping are essentially negligible. The

electron gas is completely out of phase with the light’s electric field which cannot

penetrate into the material and so the light is reflected.

Interband transitions

Figure 1.4 shows some of the interband transition mechanisms that are displayed in

most common semiconductors. For a non-degenerate direct band gap semiconductor,

an interband excitation can occur between the two band extrema at wavevectors equal

to zero (k = 0). This is true also for an indirect band gap semiconductor where the

band extrema are offset in reciprocal space, but additional energy (e.g. a phonon) is

required to allow for the promotion of an electron to the conduction band. Under

heavy doping and in the case of degeneracy (as is the case for transparent conductors)

some of the states above the conduction band minimum (CBM) are already occupied.

The lowest energy allowed transition is therefore away from the zone centre, and so

do not occur between the band extrema (Burstein-Moss band filling). In this case the

fundamental band gap Eg is no longer the same as the optical band gap Eoptg .

Direct transition Band filling First allowed transition First allowed transition 
with band filling 

(a) (b) (c) (d)

Figure 1.4: Schematic representations of different interband transition processes. (a) a direct transition from the

valence bandmaximum (VBM) to conduction bandminimum (CBM), here Eg is equivalent to E
opt
G . (b) the effect of

band filling (Burstein-Moss shift) where the states at the CBM are occupied and so the transition is forced away

from the zone centre. (c) the fist allowed transition applies to semiconductors with symmetry forbidden transi-

tions between the VBM to CBM states. (d) the first allowed transition in a degenerate semiconductor displaying

band filling with symmetry forbidden transitions.

Finally, materials displaying certain crystallographic symmetry often have what
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is called a ‘forbidden’ electric dipole transition between the band extrema. More cor-

rectly these transitions can be described as forbidden by selection rules. An important

example of a TCO structure exhibiting this sort of transition is In2O3’s body-centred

cubic (bcc) bixbyite structures25. In In2O3, the VBM consisting of mixed O 2p and In

4d orbitals (Tg symmetry) does not have an allowed transition to the CBMwhich is pri-

marily formed from a mixture of In 5s and O 2s states (Ag symmetry). This is because

these two states share the same parity, and electric dipole transitions are only allowed

between states of opposing parity for these materials. Photon absorption through this

transition is extremely weak, and very hard to see experimentally. At ∼0.8 eV below

the VBM at the Γ-point the wave function character becomes more p like (Tu symme-

try), where strong optical transitions begin to occur25,26. This phenomena is discussed

more in Appendix A.

Burstein-Moss band filling and band gap renormalization

As discussed above the high density of n-type dopant incorporation in TCOs usually

leads to a high degree of degeneracy, where the Fermi level is pushed above the CBM

and so normally unoccupied states become filled. This results in a widening of the

optical band gap, the effect is known as the Burstein-Moss shift27,28. TheMott criterion

(the critical carrier density for the metal-insulator transition29) can be estimated by

adn
1/3
c ∼ 0.25 where the donor states effective radius ad is related to the Bohr radius,

ad = aB
ε(0)

m∗/m0
, where ε(0) is the static dielectric constant (ε(0) = 8.9 for In2O3

5). If

the effective mass of In2O3 is taken to be m∗ = 0.22m0
30,31 then the Mott criterion is

nc ∼ 1.6× 1018cm-3, much lower than the typical free carrier densities of doped In2O3

ranging from 1020cm-3 to over 1021cm-3.

In modelling the Burstein-Moss band filling, it is assumed that a direct band-to-

band transition takes place (phonon contributions are ignored), the lowest unoccupied

10
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Eg+ΔBM Eg+ΔBM-ΔRN

Figure 1.5: schematic representation of the CBM and VBM in a heavily doped semiconductor, where the effects

of Burstein-Moss band fillingΔBM and band gap renomalisationΔRN are included.

state is situated at EF (temperature effects are ignored), and that the valence band is

non-dispersive (a valid assumption in oxide semiconductors due to the non-dispersive

nature of the O 2p states at the VBM).The magnitude of the Burstein-Moss shift under

free electron theory in a parabolic band approximation is described by

ΔBM =
ℏ2

2m∗
vc

(
3π2n

)2/3 (1.1)

where n is the free electron concentration, and the reduced effective mass is given as
1

m∗
vc
= 1

m∗
v
+ 1

m∗
c
, taking the VBM and CBM effective masses into account. The observed

carrier dependence of the band gap is often much smaller than that expected from

equation 1.132–34. A band gap renormalization term was subsequently introduced to

account for this discrepancy33,35. The magnitude of this renormalization ΔRN is related

to many body effects: electron exchange, the attractive Coulomb interactions and

impurity scattering (i.e. interactions between electrons with themselves and with the

dopant ions redistribute states close to the band edges, pushing the VBM upwards and

the CBMdown). This effect can be seen demonstrated schematically in figure 1.5. Prac-
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tically, many people have adopted the methodology of Berggren and Sernelius33,35–37

which was originally introduced to account for band gap renormalization in degener-

ately n-type doped Si and Ge:

ΔRN = ℏΣv − ℏΣc. (1.2)

The shift in the band gap relative to the band edges is given by equation 1.2, where

Σv,c represents the self-energies associated with the many body interactions in the

valence and conduction bands. These can be further split into contributions from

electron-electron and electron-ion interactions in the valence and conduction band. A

useful limiting approximation for these values is that at zero frequency (again ignor-

ing thermal effects and phonons), sometimes referred to as the static approximation.

It should be noted that although the concept of band gap renormalization is widely

used in the literature, the origin of the phenomena has not been well explored and is

not well understood. This is in part due to the difficulty in deconvolving the weight

of the contributions ΔBM and ΔRN to the measured absorption onset38. Many attempts

at providing a quantitative description of the renormalization term have been pre-

sented32,35,36,39–41 but none have provided the necessary generality to be fully adopted.

Alternative band gap modelling approaches

While closed-form equations such as those mentioned above are desirable to describe

andmodel band filling and renormalization effects due to their ease of implementation,

often ab initio approaches are sought to capture more of the physics related to these

phenomena. These are most often performed through density functional theory (DFT)

approaches, which are discussed in more detail in section 3.2. Here, a comparison

between the results from such approaches are compared to the closed-form models,

highlighting the usefulness and customizability of the DFT method for this style of

12
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problem.

Recently, Walsh et al.38 carried out density functional calculations using the PBE

functional on undoped and doped In2O3 systems. They perform a correction to the

ground-state effective mass to account for exaggerated coupling between the valence

and conduction bands at the zone centre. It was found that conduction band non-

parabolicity had a large impact on the extent that renormalization affects the system

at high carrier densities. Furthermore, they show doping can further enhance the

amount of renormalization due to band hybridization.
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Figure 1.6: The effects of Burstein-Moss shift and band gap renormalization on Eoptg for doped In2O3. This figure

has been adapted from that of Feneberg et al.42 andWalsh et al.38. Data was taken from Feneberg et al. via spec-
troscopic ellipsometrymeasurements (green circles)42 andHamberg et al. through absorptionmeasurements33.

Figure 1.6 highlights two different approaches to modelling the evolution of the

optical gap with carrier density. Feneberg et al. adopted the analytical expressions

of Berggren and Sernelius35 described above, accounting for conduction band non-

parabolicity43,44 in their equation for the ΔBM (red curve) and ΔRN (blue curve) to pro-
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duce the total optical gap Eoptg = Eg + ΔBM − ΔRN (black curve). This approach is

in good agreement with their data at low carrier densities, only beginning to over-

estimate the extent of the Bursteen-Moss shift at very high densities n > 1021 cm-3.

Walsh et al. who predicted the band structure change through DFT calculations also

accounts for conduction band non-parabolicity in a similar way45. Only accounting

for non-parabolicity in their calculations produced the pink curve labelled DFT in fig-

ure 1.6. Whilst the shape of the curve reflects that of the one by Feneberg et al., the

calculated gaps are overestimated. This difference may be due to the free parameter C

used by Fenerberg et al. in his approximation for the conduction band non-parabolicty

allowing for a larger ΔRN term (∼50% greater), or possibly due to the simplistic ap-

proach used to replicate doping in the DFT calculation underestimating the effect on

the bands. More interestingly, the deviation taken by Walsh et al. from the standard

approach comes at high doping densities, where they attempt to account for the de-

pendence of the dopant chosen, something that the Berggren and Sernelius model

neglects. When including Sn as a dopant in their calculations (swapping an In atom

for a Sn atom in their unit cell), they show a great reduction in their calculated opti-

cal gaps (orange curve). This is in reasonable agreement with Sn-doped experimental

absorption data33. Ignoring the fact that the two experimental data sets do not agree

(a number of experimental uncertainties could possibly account for this, or this could

stem from the different ways the optical gaps are extracted form the raw data), both

fits seem in reasonable agreement at lower doping densities (n<3 × 1020cm-3). Walsh

et al. also displays a model taking Ge as the dopant and shows the ΔRN term is much

greater for Ge-doping which they attribute to dopant s-levels hybridizing with the

CBM, greatly affecting the band curvature at the CBM (Ge having more of a broaden-

ing effect than Sn). This dopant-dependent approach to optical modelling allows for a

more complete model, and should allow for a higher degree of accuracy in the model
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assuming the effects of each dopant can be accurately quantified.

Plasma freqency

Other than the band gap, the absorption and reflection of light by the free carriers in a

material places constraints on the limit to both the transparency and conductivity (or

carrier density) of doped systems. It is therefore important to have some appreciation

of the physics of free carriers in heavily doped semiconductors. Fortunately, it is

often possible to use simple oscillator models to describe the effects of free carriers

in these systems. This section follows on from the content in Appendix B, describing

the reflectivity of a free electron gas. The model used for a free electron gas can be

modified slightly to describe the reflectivity of a doped semiconductor to a fairly high

degree of accuracy. This is done by accounting for the fact that the free electrons are

moving in the conduction band which means each has an associated effective mass

m∗ instead of the free electron mass, and there is a contribution to the polarizability

from bound electrons.

Taking this into account, the frequency dependent dielectric function can bewritten

as

ε(ω) = ε(∞)− ne2

m∗ε0

1
ω2 + iγpω

(1.3)

where n is the density of free electrons, ω the frequency of incoming light, γp the

damping coefficient of the plasmons, and ε(∞) is the dielectric constant at the high

frequency limit. This equation is often written as

ε(ω) = ε(∞)

(
1−

ω2
p

(ω2 + iγpω)

)
(1.4)

where the plasma frequency is given as
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ω2
p =

ne2

ε(∞)ε0m∗ . (1.5)
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Figure 1.7: Reflectivity of free carriers in a semiconductor (one oscillator model) and free carriers and lattice

oscillations (two oscillator model).

The relative dielectric function given in equation 1.3 pertains to free carriers only

(ignoring the effects of the lattice vibrations i.e. phonons), but can be easily adjusted to

account for phonons (by simply summing the lattice and free carrier contributions46).

This can be described by the following equation

ε(ω) = ε(∞) +
(ε(0)− ε(∞))ω2

ph

ω2
ph − ω2 − iγphω

−
ε(∞)ω2

p

ω(ω+ iγp)
(1.6)

which accounts for the oscillations of phonons with resonant frequency ωph and damp-

ing γph, as well as free carriers. In general it seems reasonable to account for two os-

cillators when modelling the reflection edge of highly doped materials or metals, as

16



1.2. FUNDAMENTALS OF TRANSPARENT CONDUCTING OXIDES

reflection onset is usually in quite a narrow energy region. However, real materials

will have many oscillators which require models with multiple oscillators. Using the

formalism set out, it is intuitive to create a multi-oscillator model such as:

ε(ω) = ε(∞) +
∑
j

fj
ω2
j − ω2 − iωγj

−
ε(∞)ω2

p

ω2 + iωγp
(1.7)

where fj is the dipole strength (
∑

j fj = 1). Because the main concern is with ωp for

TCOs, and not the lattice effects etc. there is no need to go beyond equation 1.6 in this

thesis.

Electron oscillations may also occur at the surface of a material. Using Maxwell’s

equations, it can be shown that the ratio between the surface plasmon frequency and

the bulk plasmon frequency can be given as26

ωsp

ωp
=

[
ε(∞)

ε(∞) + 1

] 1
2

. (1.8)

Typically for metals ω(∞) = 1, so this ratio is ωsp =
ωp√
2
but is often larger for TCO

materials as ε(∞) is larger.

1.2.2 Effective mass

One of the most fundamental properties relating not only to the structure, but both

the electronic transport and optical properties of a material is the effective mass of the

electrons and holes. Here the focus is on the electron effective mass as this is most

relevant to n-type TCOs. When talking about the effective mass of an electron in a

crystal system it is important to be fully aware of which effective mass is being talked

about, and which effective mass is important to which physical situation.

When an electron is in the periodic potential of a crystal, it is accelerated relative

to the lattice by an external perturbation e.g. applied electric or magnetic field, tem-
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perature or stress. The properties of that semiconductor are very often determined by

the response of this electron to the external stimulus. The acceleration follows as if

the electron has a mass equal to the effective mass m∗. It can be shown using New-

ton’s second law (i.e. the acceleration of an object relates to its mass and the net force

acting upon it) and acknowledging that an electron can be treated as a wave and so a

group velocity can be determined, that the effective mass (which is both energy and

time dependent in the most general case) is given by47

1
m∗ =

1
ℏ2

d2E
dk2

=
1

ℏ2k
dE
dk

. (1.9)

where E is the energy and k the wavevector. Often a parabolic dispersion equation

(E(k) = ℏ2k2
2m∗ ) is sufficient to approximate the curvature (and so the effective mass) at

the band edge for many semiconductors. This can be determined assuming an energy

independent effective mass. Of course, this is a special case of band dispersion which

does not truly apply to any material, no band dispersion is ever truly parabolic. How-

ever, parabolic band dispersion can be a powerful approximation, and is extremely

effective at predicting m∗ very close to the Γ-point for many materials.

∝ (∂2E

∂k2(
-1

∝ (∂E
∂k(

-1
1
k ∝ (∂2E

∂k2(
-1

(( W∑ i

ii

Band edge Fermi level Density of states

Figure 1.8: Effectivemass approximations replicated fromWhalley et al.48: left- the effectivemass is inversely
proportional to the the curvature of the electronic dispersion for a parabolic band; middle- effectivemass is

inversely proportional to the gradient of the electronic dispersions; right- Density of states averaged effective

mass takes into account the average curvature.

Figure 1.8 shows how the different approximations give different masses. Equation
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1.9 is often used to approximate the band edge in relatively non-parabolic band struc-

tured materials. To be more generally applicable, non-parabolicity away from Γ must

be accounted for in the expression for E(k). In this case it is beneficial to consider the

energy and momentum dependence of the electron to give the curvature at a certain

Fermi energy:

1
m∗

F
=

1
ℏ2kF

∣∣∣∣dEdk
∣∣∣∣
k=kf

. (1.10)

Here the wavevector is equal to the Fermi wavevector kF. This is very important for de-

generate materials such as TCOs but depends heavily on the choice of approximation

for E(k).

Finally, there is one more variant of the effective mass that will be discussed here.

This is referred to as the density-of-states-averaged effective mass, or occasionally the

optical mass. This is important for materials displaying metallic behaviour, i.e. ma-

terials with free carriers. When exciting the collective free carriers, in a reflectance

measurement for example, the effective mass measured is a summation over all oc-

cupied states and so the relevant effective mass is that averaged over the occupied

states.49,50 Here, a simple carrier statistics model is chosen in the treatment of the

average effective mass given as

⟨m∗(E)⟩ =
∫
m∗(E)g(E)f(E, EF)dE

n(E)
=

∫
m∗(E)g(E)f(E, EF)dE∫

g(E)f(E, EF)dE
(1.11)

where f(E) is the Fermi-Dirac distribution function describing the distribution of fermions

in a system:

f(E, EF) =
1

exp(E−EF
kBT

) + 1
. (1.12)

Equation 1.11 shows the density-of-states (DOS) averaged effectivemass, where g(E) is
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the density-of-states above the CBM, f(E, Ef) is the Fermi-Dirac distribution function,

and n(E) is the energy dependent carrier density34. This is essentially the average

effectivemass per electron, whichwithin appropriate limits (k(0 → ∞)) can be limited

to all occupied states above the CBM to EF.
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Figure 1.9: Comparison between band edge effectivemass (m∗ = 0.22m0), density-of-states averaged effective
mass found using equation 1.11 and Lindard optical mass determined using equation 1.10.

It is worth noting that there exists some ambiguity over the correct formalism

for the optical effective mass51. Another definition of the optical mass is given by

Wooten50, as the wavevector dependent effective mass (equation 1.10) averaged over

all occupied states

1
⟨m∗(E)⟩

=
2
n

∑
l

occ.∑
k

1
m∗

l (k)
(1.13)

where l represents a given band with mass m∗
l . In the case of only one occupied

branch in an isotropic material at T=0 K it has been shown that this simplifies to equa-
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tion 1.1052, in agreement with the results of Inaoka et al.53 who used the Lindhard

dielectric function to arrive at the same optical mass formula. A comparison between

these expressions is shown in figure 1.9. Since the mass given by equation 1.11 is av-

eraged across the band structure, we expect this mass to become progressively lower

than that given by equation 1.11. Notice the similarity between the two curves, espe-

cially at low carrier density. Hence, it should not make a difference which formalism

is chosen so long as the carrier density is sufficiently small. Furthermore, in this thesis

equation 1.11 is used to describe the optical effective mass, which may give slightly

different results to that obtained using equation 1.10. However, this will prove incon-

sequential in this thesis as the analysis is only performed for the comparison of two

material systems, in which case it is highlighting a difference and not commenting on

the accuracy of the mass value obtained.

1.2.3 Electronic structure

Knowledge of the electronic structure of a material is extremely important, providing

information on both the optical and transport properties of a material. A powerful

tool for probing the electronic structure is through first principles calculationmethods,

such as density functional theory (DFT), which is discussed in section 3.2. For now it

is instructive to look at what the electronic structure of a TCO can tell us.

Taking In2O3 as our example again, figure 1.10 shows the unit cell of In2O3 (space

group Ia3̄, No. 206), which is a body centred cubic (bcc) bixbyite structure. The Bril-

louin zone of this structure is also seen in figure 1.10. The high symmetry points are

superimposed onto the Brillouin zone, connected by the paths of high symmetry.

The electronic structure from DFT calculations associated with this structure is

shown in figure 1.11. This figure shows the electronic density of states (a), calculated

band structure (b), a simplifiedmolecular orbital diagram (c), and finally the calculated
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Figure 1.10: Left: Unit cell of the bixbyite crystal structure of In2O3. Right: Brillouin zone associated with the bcc

lattice.

thermodynamic transition levels (in this thesis, thermodynamic transition levels and

defect formation energies are used interchangeably as they amount to the same thing)

associated with important defects in In2O3 (d).

The DOS allows for a visualisation of the orbital contributions to the band struc-

ture. This is shown for In2O3 in figure 1.11 (a) around the VBM (set to 0 eV here), with

the conduction band at positive energy. Orbital contributions from each atom are

displayed in colour and are usually referred to as the partial electronic DOS (PDOS).

These orbital contributions can be further split into the different directional compo-

nents (e.g. px, py, pz for an orbital), or it is also common to see the PDOS for each

orbital type grouped, i.e. In s and O s components summed to give one s-orbital com-

ponent. The summation of all the PDOS gives the total density of states or TDOS,

represented by the black line. Calculated DOS can be directly compared to photoems-

sion data after cross section-correction and broadening. This gives a good method to

verify the accuracy of calculations and help interpret experimental data.

The DOS is closely linked to the band structure of a material, which is shown for

In2O3 in figure 1.11(b). Whilst DOS is concerned with orbital contributions at par-
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Figure 1.11: (a) Calculated density of electronic states in In2O3. (b) Calculated band structure of In2O3. (c) Simpli-

fiedmolecular orbital diagram showing the prominent In s character with small O p contribution of the CBM and

large contribution from the non-bondingO p dominated VBM. (d) Calculated defect formation energies as a func-

tion of Fermi level position for In-rich/O-poor and In-poor/O-rich growth conditions for In2O3. The onset of the

orange box indicates the position of the conduction bandminima at 2.7 eV, with the conduction bands extended

to higher energies.

ticular energies, the band structure displays the distribution and evolution of energy

bands over wavevector k. In the ideal case the band structure would span the whole

of k-space, but this is extremely computationally expensive and so it is conventional

to plot the band structures along the high symmetry directions within the Brillouin

zone. High degrees of energy band degeneracy are displayed at high symmetry points
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and along high symmetry axis which is a consequence the translational symmetry of

the Bloch wave function, hence these high symmetry lines are extremely useful in

providing a less expensive representation of the whole Brillouin zone.54 In figure 1.11,

the conduction band states are coloured orange while the valence band states are blue.

The energy axis is aligned with that of the DOS in (a) so it is clear that the relationship

between the two is very close. In regions with highly dispersive bands, such as at the

CBM, a low intensity in the DOS is expected, and for low dispersion (such as the VBM)

higher DOS intensity is expected. The intensity of the DOS is inversely proportional

to the band dispersion. Some features of the band structure that are characteristic

and extremely important in TCO materials are: a large band gap (2.7 eV in the case of

In2O3) which allows the material to be transparent, a flat VBMwhich gives a high hole

effective mass, and a highly dispersed conduction band derived from In 5s and O 2p

states giving a low CBM effective mass. This configuration is shown schematically in

figure 1.11c as a molecular orbital diagram. This helps explain why TCOs are excellent

n-type conductors with highly mobile electrons.

Finally, TCOs are inherently n-type and are highly n-type dopable which is another

reason they display excellent electronic properties. This property is heavily influenced

by the intrinsic and extrinsic defects in the material. Figure 1.11(d) shows the thermo-

dynamic transition levels of the most important (lowest formation energy) defects in

In2O3 for two extreme material growth conditions, i.e. In rich/O poor and In poor/O

rich. The realistic scenario will be somewhere in between. The CBM in these diagrams

are represented by the onset of an orange box, with the VBM at 0 eV. Defects have

a certain charge state which is represented by the slope of the line (donors have pos-

itive slopes, neutral defects have zero gradient, and acceptors have negative slopes.)

In both cases in figure 1.11, the oxygen vacancy VO is a donor until the Fermi level

is in the conduction band, where it becomes neutral. In the In-poor case, the indium
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vacancy VIn which acts as an acceptor, crosses the VO line just below the CBM, where

it then begins to compensate the donor behaviours of the VO. If this point is close

enough to the CBM (kBT ∼ 0.03 eV) then electrons can be excited into the conduction

band at room temperature. This may not be the case in the In-poor regime, however

the realistic scenario is somewhere between the two regimes.

1.2.4 Conductivity in TCOs

Intrinsic Defects

Conductivity in TCO materials can be caused by intrinsic point defects, or most com-

monly for commercial application, by doping i.e. replacing host atoms with other

elements to modify the properties of the material, in this case to gain extra electrons.

A purely stoichiometric intrinsic material is expected to be insulating but due to high

non-stoichiometry and a great degree of size mismatch between anion and cation in

metal oxides (often associated with low defect formation energies), the native defects

cause n-type conductivity. Conventionally it was thought that oxygen vacancies were

the primary source of conductivity in undoped TCOs55–57, which were often based

upon indirect experimental observations of varying conductivity due to different oxy-

gen partial pressure. Hence, this claim has been disputed over the years and is still

a contentious issue today. Particle irradiation experiments have been previously per-

formed showing native defects can certainly increase the number of free carriers in a

oxide material58–61. However the nature of the native defect is very difficult to deter-

mine in these experiments and in reality a number of different defects likely contribute

to increased conductivity giving inconclusive results to whether VO are responsible for

conductivity in TCOs. With more advanced and accurate DFT calculation now avail-

able, large strides towards better understanding the conductivity in TCOs have been

made. It has been shown that the donor ([0/2+]) transition level is typically deep (well
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below the CBM) in many oxide semiconductors such as In2O3, SnO2 and ZnO, and so

unlikely to be the sole source of high conductivity in TCO materials62–64. VO may still

contribute to conductivity through the persistent photoconductivity model proposed

by Lany and Zunger65,66 whereby the excited V∗
0 state has a metastable conductive

state. They suggest an energy barrier prevents the immediate relaxation of excited

electrons from the resonant metastable state to the VB, giving enough time for the

store of conduction electrons to be constantly replenished. However, it is not clear

whether this energy barrier is in fact large enough to achieve persistent photoconduc-

tivity in reality67. Similarly, cation interstitials are too high in formation energy to

give the high carrier concentrations observed65,68.

Hydrogen is very difficult to remove from growth environments and so H defects

are present in materials from growth. H defects are particularly difficult to experimen-

tally observe due to the small size of the H atom amongst other things. However, it

has been shown that H interstitials acts as either a donor or acceptor in the 1+ or 1-

charge state, the neutral charge state not forming due to H0 always being higher in en-

ergy70. The transition level between H in the 1+ and 1- charge states (H(+/-)) for many

conventional semiconductors (e.g. GaN, GaAs, etc.) lies somewhere near the mid-

dle of the gap, meaning hydrogen will act as a compensating donor (acceptor) when

EF sits closer to the VBM (CBM). H(+/-) sits directly between the H(0/-) and H(+/0)

transitions as shown in figure 1.12. Therefore, in all conventional semiconductors H

counteracts the conductivity at a given EF. Conversely, TCOs display a H(+/-) tran-

sition near to or even above the CBM, meaning the donor H+ state dominates up to

this point. This suggests H is a source for conductivity in TCO materials69–71. Indeed,

this is supported by increased conductivity due to H diffusion in ZnO72,73, SnO2 and

In2O3
69. Subsequently, H is often used as a dopant or co-dopant in TCOs to achieve

enhanced electrical properties74. It should be noted that H defects can form on substi-
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Figure 1.12: Schematic for the formation energies for the interstitial H and the dominant native defects in con-

ventional semiconductors (left) and TCOs (right). Figure adapted fromKing et al.69

tutional or interstitial sites, may sit on multiple sites in the lattice and can also form

multiple defect complexes or multi-centre bonds, with some defect environments or

bonding configurations being far more thermally stable than others75–77. It is also

worth pointing out that in reality, whilst evidence suggests H defects are very impor-

tant for determining the conductivity in materials, it cannot be ruled out that other

dominant defects as the source. A more intuitive picture may be that many defects

actually contribute to conductivity, and the extent of their contribution is measured

by their relative energy of formation.
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At The Surface

Above, point defects in the bulk of materials are considered, but the behaviour of car-

riers at the surface of a material needs also be considered. This can be understood by

looking at the position of the charge neutrality level (CNL), branch point energy, or

Fermi level stabilisation (FLS) point in materials78,79 (for a more detailed discussion

about the history and significance of the CNL, see appendix F). At the material sur-

face, the electronic state exponentially decays into the vacuum due to the breaking of

translational symmetry at the terminated surface. This is in analogy to broken sym-

metry at a defect in an otherwise perfect lattice80,81. Because these states decay into

the vacuum, they have real energies but display complex wavevectors. In bulk ma-

terials, complex wavevectors are not meaningful as their Bloch wavefunctions grow

exponentially as z→ ∞. Because these surface states can have imaginary wavevec-

tors, they can exist in the band gap of a material, hence they are called virtual gap

states (ViGS). ViGS can occur wherever periodicity is broken in the lattice, such as

at defects, surfaces and interfaces. The ViGS have donor (acceptor) character closer

to the valence band (conduction band) and the charge neutrality level occurs at the

energy where equal donor and acceptor character occur. Free carriers actually rear-

range themselves in the vicinity of the surface in order to minimise energy and screen

the surface charge, leading to the well known space-charge regions where the car-

rier density varies dramatically compared to the bulk. For TCO materials, it has been

found that the common surface charge state displays electron accumulation, and so

downward surface band bending is seen. The Fermi level sits higher relative to the

band-edges at the surface compared to the bulk. The net negative charge from the ac-

cumulated carriers at the surface balances the net positive surface charge pinning the

Fermi level and maintaining charge neutrality. This has been shown to be the case for

In2O3
82 and CdO59 and is shown schematically in figure 1.12. Since the FLS is above
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the CBM, general material properties may be expected such as unintentional n-type

conductivity, high n-type dopability and difficulty in achieving p-type conductivity.
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Figure 1.13: Band lineup of important TCOmaterials with respect to the CNL. The H(+/-) transition levels are

shown in orange. Positions of the CNL relative to the band edges are taken from various sources.59,82–84

The CNL concept can be related back to H defects under the ViGS framework. Van

de Walle et al.70 suggested H creates a positive charge state when creating a cation

dangling bond (i.e. H+ bonding to the anion), or a negative charge state when creat-

ing an anion dangling bond (H− bonding to the cation). This H(+/-) is material specific

as it involves bond breaking, and the transition level between cation and anion dan-

gling bond formation (given as the Fermi level position where positive and negative

charge states have equal energy ϵ(+/-)70) may be expected to occur at the CNL59. This

is shown schematically in figure 1.12 where the top and bottom panels show the H

transition level and native defect levels respectively. This is generally quite a good

estimate of the CNL assuming the correct H bonding environment is selected in the

calculation. Figure 1.13 show band line ups for important TCO materials, displaying

the determined CNL and the calculated H(+/-) energy positions, which are in good

agreement. The CNL above the CBM means the donor ViGS remain the important
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defect even when EF is above the CBM.

The reason for the high CNL in TCO systems stem form the largemismatch between

anion and cation size, and high electronegativity of the oxygen (giving lowO 2s orbital

energy) meaning a very low-lying CBM state juts into the gap at Γ, while the VBM

states are not very dispersive. The ViGS are a result of defect centres that are localised

in real space and so are non-localised in reciprocal space, i.e. they are well spread

out in the Brillouin zone, not just localised at Γ. The energy gap averaged over the

Brillouin zone is larger than the VBM to CBM at the Γ-point in TCO materials and so

the CNL comes above the CBM71.

Impurity Doping

While intrinsic defects may cause a reasonably high level of conductivity in uninten-

tionally doped TCOs and can play an intricate but fundamental role in determining

the levels of dopability achievable in a material (for example through cation vacancies

acting as compensating acceptors), for most applications undoped TCOs are not con-

ductive enough to be of particular use. Dopant impurities in the form of substitutional

dopants are usually incorporated into TCO materials in order to increase the carrier

density and so the conductivity of the film or crystal. This is usually done using one

element to the right in the periodic table of one of the host elements, which usually

ensures a similar size atom substitutes the host (minimal disruption to the lattice), and

one extra electron is incorporated per dopant atom, giving the desirable conditions for

high conductivity. To achieve metallic like electrical behaviour, i.e. to dope past the

insulator-metal transition, the Mott criterion must be surpassed. It was already estab-

lished that nc ∼ 1.6 × 1018cm−3 for In2O3. However, there are many other factors to

consider when doping TCOs which include the solubility of the dopant atoms in the

lattice; the energy positions of the defect levels in comparison to the host CBM; any
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natural compensation mechanism inherent with the dopant; the charge state of the

impurity; the balance between doping and alloying and its affect on the material elec-

tronic and physical structure.85 Some of these properties are extremely dopant specific

while others depend as much on the host material.

Valence band

Conduction band

Shallow

Deep

Figure 1.14: Schematic diagram of the relative positions of different impurity dopant states relative to the band

edges in a TCO.

Figure 1.14 shows a schematic of different energetic positions that impurities or

dopants can take relative to the band edges in a TCO. A deep donor is one which is

usually considered to be energetically far from the CBM, and so takes toomuch energy

to thermally ionise. Hence, deep donors do not contribute to conduction. A shallow

donor sits no more than∼ 0.03 eV from the CBM and so can thermally ionize into the

conduction band, giving free carriers at room temperature.

For an n-type material, conductivity can be given by equation
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Figure 1.15:Mobility vs free carrier concentration for In2O3 with a range of dopants. Figure adapted from Frisch-

bier et al. including data taken for this thesis.86,87 The line labelled II represents themobility limit due to ionized
impurity scattering.

σ = neμ (1.14)

where n is the number of free carriers in the material and μ the mobility of those free

carriers. The mobility relates to the electron effective mass as

μ =
e
m∗ τ̄ (1.15)

where τ̄ is the average scattering time of an electron. Equation 1.14 depends on both

the carrier density and the electron mobility and it is often assumed in the rigid band

model that the former is controlled by the amount of dopant incorporated into the ma-

terial whilst the latter is a property solely of the host material. There is some truth in
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this, the electron mobility is intimately linked with the effective mass which depends

on the curvature of the host conduction band. This helps explain why TCOs are such

good conductors, as the host conduction band typically displays a very low effective

mass and so has mobile carriers and a high conductivity. Whilst achieving a high

number of free carriers through doping is a successful route to higher conductivity,

issues do arise with increased free carrier absorption and reflection, and ionized im-

purity scattering which can limit the transparency and conductivity of a film. Hence,

maintaining a high electron mobility in a material may be a more favourable way to

achieve high conductivity in TCOs.

Figure 1.15 shows Hall mobilities as a function of free carrier concentration for a

number of In2O3 films with different dopants incorporation. It may seem surprising

that despite the host material remaining the same, the mobility at a given carrier den-

sity is very varied depending on the dopant. If it is assumed that the carrier scattering

time (i.e. the average time that the carrier is ballistically accelerated by an electric

field before colliding) is held constant, then the effective mass is the only property

that can vary the mobility. Classically, the band edge effective mass is a property of

the host band structure only and so will not change under doping. Variations in the

band structure in the context of TCO materials were first observed by Walsh et al.38

when discussing band gap renormalization in Ge and Sn doped In2O3, where Ge and

Sn modify the host band structure by different amounts when incorporated into the

material. However, comparative studies using different dopants are very much lack-

ing in the literature. This sort of electronic structure variability would have massive

implication to the electrical as well as optical properties in TCOs (as evidenced by fig-

ure 1.15), and greater understanding of the doping mechanisms and dopant selection

is greatly required if progress is to be made in creating better TCOs.

It is worth mentioning that it may not necessarily be the case that the average scat-
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tering time τ̄ is a constant, and in fact it seems likely that bothm∗ and τ̄ vary. Indeed, it

has been previously suggested that for materials such as Mo:In2O3
88 and La:BaSnO3

89,

where the dopant energy levels lie high in the conduction band, that the conduction

band wavefunction in the vicinity of the conduction electrons does not greatly overlap

with that of the dopant atom. This results in lower scattering from the ionized impu-

rity atoms, which are energetically remote. This situation is analogous to modulation

doping such as that seen in GaAs/AlxGa1-xAs superlattice structures90, whereby the

dopant atom is spatially separated from the donated conduction electrons. Because

the effects of either m∗ or τ̄ changing will have similar effects on the mobility, and it

is difficult to determine the extent to which each property is changed, for simplicity

here the main focus is on changes in the effective mass and the subsequent modifica-

tion of the conduction band in this thesis.

1.3 Organisation of this thesis

The remainder of this thesis aims to investigate the fundamental properties of TCO

materials, paying special attention to advancing the current understanding regarding

doping in commercially relevant or interesting TCOs. The next two chapters will dis-

cuss the basic experimental and theoretical methodology carried out which facilitated

this study. Techniques used throughout this thesis include photoemission, Hall effect,

optical spectroscopy and first principles calculations under the density functional the-

ory formalism. The main results chapters are split into three studies, chapter 4 giving

new results and understanding of an extremely commercially relevant TCO, fluorine-

doped tin dioxide (F:SnO2), looking at its electrical properties and highlighting issues

with a classical dopant approach. Chapter 5 gives a direct comparison of a novel doped

system and its conventionally dopant counterpart (Mo and Sn:In2O3), demonstrating

the electronic and optical gains possible by selecting non-conventional dopants. Fi-
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nally, chapter 6 investigates β-Ga2O3, a topical material which is currently generating

a lot of interest in the field of high power electronics research. Comparing photoe-

mission to DFT calculations allows for a full investigation into the electronic surface

properties of this not well understood material. The findings are related back to the

concept of the CNL and H transition level. Finally, the main findings of this work are

summarised in chapter 7.
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Experimental Techniques

Throughout this thesis the experimental techniques of photoemission spectroscopy,

optical spectroscopy including transmission, reflection and absorption spectroscopy,

and single-field Hall effect, were used extensively. These techniques lend themselves

nicely to studying the electronic structure and properties of materials. This chapter

presents an introduction to both the theoretical background of these techniques, and

also experimental and technical details general to the experiments performed. Since

so much of the experimental work performed during my PhD focussed heavily on

photoemission, it seems only fitting that much of this chapter is taken up by discussing

the subject.
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2.1 Photoemission Spectroscopy

Photoemission spectroscopy (PES) is a technique based around the photoelectric ef-

fect, whereby an electron is emitted from a solid upon light illumination, and its en-

ergy measured. Influenced largely by the work of Siegbahn91 for which he won the

1981 Nobel prize, PES has become an extremely powerful tool for studying electronic

properties, the electronic structure, and chemical environments present in a material.

It is also an attractive technique to the experimentalist due to its simplicity, and the

breadth of information available from a measurement. XPS is used throughout this

thesis, and the discussion regarding primary and secondary structure will be relevant

to all results chapters. Discussion of plasmon loss satellites will be of particular inter-

est for chapters 4 and 5. Finally, discussion regarding photoionization cross-sections

are relevant to all results chapters, and an example displaying how the are used is

shown at the end of section 2.1.4.

2.1.1 Principle and Theory

In the simplest terms, the photoemission process can be broken down into three stages92.

Firstly, photons of a characteristic energy hν (e.g. Al Kα sources give x-ray photons

of ∼1486.6eV) incident on a material, interact with electrons in atomic orbitals gener-

ating photoelectrons. Secondly, these electrons move through the sample to the sur-

face, most being subjected to various scattering processes which form the background

counts (known as the secondary electrons), while some do not suffer any inelastic

collisions (primary electrons, which result in distinct spectral features mirroring the

samples density of states). Lastly, electrons reaching the surface are then emitted

into the vacuum (overcoming the materials work function). In this simple picture, the

electrons are emitted from valence and core levels via the photoelectric effect, and if
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no other energy loss mechanisms occur they are liberated with some kinetic energy

(E′k), relating to the photon energy (hν), the binding energy of the orbital EB, and the

material work function (ϕs):

hν

Sample Analyser

EF

hν

Eb

ϕs
ϕA

EkE'k

E'vac

Evac

Figure 2.1: Schematic band alignment between sample and analyser in electronic contact in a PESmeasurement.

Energies are aligned to the Fermi level. The purple shaded region indicated occupied density of states just bellow

EF, and the uppermost dashed line represents the vacuum level.

E′k = hν− ϕs − Eb. (2.1)

All energies are referenced with respect to the Fermi level EF. The sample work

function can be described as simply the energy difference between the Fermi level EF

of a material, and the vacuum level. Physically this is the minimum energy required to

take an electron out of the material into vacuum, where the liberated electron is at rest.

This potential barrier exists due to contributions from the bulk inner potential of the

crystal under investigation, as well as the surface dipole due to the termination of the
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perfect crystal periodicity allowing the electron density to spill into the vacuum. This

means for photoemission the concept of the vacuum level is actually material specific

as it is defined near the sample surface and different materials display different surface

dipoles. This is in contrast to the vacuum level at infinite distance fom the sample

which is fixed.

When a sample is connected to an analyser (i.e. they share the same ground and so

are in electrical contact), the Fermi levels align and the situation displayed schemati-

cally in figure 2.1 is arrived at. Because the sample is connected to the analyser, and

the analyser has its own work function (ϕA), a contact potential is set up between the

sample surface and analyser (ϕA − ϕs), equation 2.1 can be written as

Ek = E′k − (ϕA − ϕs) = hν− Eb − ϕs − (ϕA − ϕs)

= hν− Eb − ϕA (2.2)

which is conventionally rearranged to give

Eb = hν− Ek − ϕA. (2.3)

Equation 2.2 is independent of the sample work function, and since the analyser

work function is a constant, it is possible to convert the measured electron kinetic en-

ergy to the more useful binding energy. In practice however, ϕA is difficult to evaluate

accurately, and so the energy axis requires calibration by other means. Fortunately

the Fermi energy of a metal surface (which has occupied density of states up to EF)

can be used to overcome this issue and calibrate the energy scale. If the measured

energy of the Fermi edge of a metal (in electrical contact to the analyser) is set to

Ek = hν and a shift of the entire spectrum is applied accordingly, then the binding
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energy scale becomes Eb = hν−Ek which is independent of ϕA, and makes EF the zero

of the binding energy scale. Subsequent to calibration, any sample can be measured

with a calibrated energy scale assuming the sample is electrically in contact with the

analyser (and does not charge).
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Figure 2.2: Schematic representation of a photoemission experiment showing the generation and path of a photo-

electrons through the experimental set-up, an energy level diagram showing the photoemission of electrons form

core and valence levels, and the geometry of the photoionization process with respect to the samples coordinate

system.

The experimental set-up for a photoemission experiment is shown in figure 2.2.

There are a few main features common in most PES experiments that will be dis-

cussed here. The first requirement is a photon source which typically takes the form

of a lab based x-ray gun, gas discharge lamp, or synchrotron source depending on

the required energies for the experiment (and the set-up available to the experimen-
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talist). A monochromating crystal (often (1010) oriented quartz in lab based systems)

is extremely common in the modern PES experiment. Whilst not strictly necessary,

this gives the benefits of avoiding satellite features due to multiple x-ray wavelengths

(not only Al Kα1), and improves on resolution as a result of a more narrow beam line

width (independent of the line width from the source, instead the crystal determines

the line width at the sample). A retarding electrostatic lens is then required to focus

electrons onto the entry slit of the analyser, as well as retard electrons to an energy

required to pass through the hemispherical analyser. The retarding input lens usu-

ally consists of multiple cylindrical electrostatic/magnetic lenses and apertures which

limit the beam angle minimising aberrations as well as improving on resolution. The

retarded electron beam enters a concentric hemispherical analyser, designed to filter

electrons using an applied potential called the pass energy between the two concen-

tric hemispherical plates, so that electrons with too great or low energy cannot make

it to the detector. By sweeping the retarding voltages put on the lenses, it is possible

to generate a spectrum with a constant energy resolution. By changing the potential

across the plates it is possible to change the pass energy and hence control energy

resolution and intensity of electrons measured. The counting process is done in the

detector which can consist of a channel and resistive plate combination giving amplifi-

cation and position sensitivity in the measurement, or a channeltron system utilising

many multichanneltron detectors for detection and spatial (angular) resolution.

2.1.2 Chemical Shifts

Because PES involves probing the occupied density of electronic states, a lot of infor-

mation regarding the chemical and bonding environments of different elements can

be obtained from the data. A change in the bonding environment of an element is

reflected in changes in the binding energy, peak width, peak shape, or a combination
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of all of the above. The binding energy of an electron is due to the electrostatic inter-

action between the electron and positive nucleus of the atom. Other electrons around

the atom may also contribute, causing a screening effect of the nuclear potential, thus

lowering the electron binding energy. A simple but reasonably goodmodel to describe

the shift in binding is given by the charge potential model93

Ei = E0
i + kqi +

∑
i ̸=j

qi
rij

(2.4)

where Ei and E0
i are the binding energies (for the sample and reference) of a core

level on atom i, kqi is the contribution due to the valence charge density (k ∼ 1
rv

the reciprocal of the valence shell radius kq =
∫ ρ(r)

r dr), and the final term
∑

i ̸=j
qi
rij

represents the potential on atom i due to point charges on atom j, closely related to

the Madelung potential.

This model assumes the atom is a hollow sphere with electrons on the surface of

the sphere, meaning the potential inside the sphere is the same at all points and given

by qi
rv
. Whilst simple, the power of this model can already be seen for describing the

PES experiment. For example, a change in valence electron charge (density) Δqi leads

to a change in the potential in the sphere by Δqi
rv
. Therefore the binding energy of all

core levels will change by this amount. In addition, if the radius of the valence orbital

rv increases, then the binding energy shift for a given Δqi will decrease. Indeed for

materials where the core-valence interaction is negligible, it is found that the binding

energy shifts decrease between equivalent compounds moving down the columns of

the periodic table (similar charges but rv increases).

ΔEi = k(q1
i − q2

i ) + (V1
i − V2

i ) = kΔqi + ΔVi (2.5)

Focussing on a core level of an atom i in two different chemical environments (1 and
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2) and simplifying equation 2.4 by coupling the summation term to Vi, gives equation

2.5, where the first term on the right hand side gives the contribution from changes in

valence charge while the second term is the Coulombic interaction between photoelec-

trons and the surrounding charged atoms. This model while instructive, is based on

many assumptions. Often a further term is included ΔR accounting for the relaxation

of the final state due to the polarizing effect from the core hole on the surrounding

electrons.

Nucleus
+

EB(0)

hν

Ek(0)

Nucleus
+

EB(+) > EB(0)

hν

Ek(+) < Ek(0)

Nucleus
+

EB(-) < EB(0)

hν

Ek(-) > Ek(0)

Nuclear 
Screening

SN(0) SN(+) <  SN(0) SN(-) >  SN(0)

Binding 
Energy

Metallic X0 Cation X+ Anion X- 

Figure 2.3: Schematic showing the effect of nuclear screening (SN) in different oxidation state chemical species
on the kinetic energy and so binding energy of liberated electrons. The elemental species displayed are ametal-

lic state with zero oxidation state (Χ0), a cation state with a positive oxidation (Χ+), and an anion state with a

negative oxidation (Χ−).

Figure 2.3 displays the origin of chemical shifts in XPS schematically (note that

XPS and PES are often used interchangeably throughout this thesis as XPS is the most

common PES experiment performed today). A metallic (oxidation state of 0) reference

element is shown on the left hand side, which is usually used as a baseline to compare

to elements in different chemical environments. A change in electron density around
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the atom changes the amount of nuclear screening as displayed in themiddle and right

hand panels of figure 2.3. Considering ionic bonding in solids, one atom is bonded to

another and one has a higher electronegativity (the anion). A charge transfer happens

from the cation to the anion, and so the cation has less electron density around the

atom. The loss of electrons causes the atom to have a positive effective charge, de-

creasing the nuclear screening and so increasing the binding energy of the electron

(measured electrons have a lower kinetic energy). The opposite applies to the case of

a more electronegative anion which gains charge density upon forming ionic bonds.

In general, the higher the oxidation state of the element around 0, the greater the

binding energy shift from the metallic case (positive oxidation meaning EB > E0
B and

lower oxidation meaning EB < E0
B). It is worth noting that these general rules are

quite oversimplified in the sense that other effects can contribute to chemical shifts,

and may counteract these effects. Final-state effects occur after the photoemission

process while initial-state effects are always present and can depend on the number

of bonds, crystal field effects or ionic potentials. These effects can complicate XPS

analysis.

2.1.3 Spectral Features

Primary Structure

XPS spectra are displayed as the intensity (number of electrons counted) as a function

of binding energy, which is a more useful quantity than kinetic energy. However, ki-

netic energy is customarily plotted from low energy to high, and since binding energy

is the negative analogue of kinetic energy it is the convention to plot binding energy

from high to low energy. A reference spectrum taken from a single crystal of In2O3 is

shown in figure 2.4 to provide an example.

In a spectrum, the well-defined peaks are known as core levels and originate from
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Figure 2.4: XPS survey spectrum from a single crystal In2O3 samplemeasured by the author. Core-level features

including spin-orbit split components where visible are indexed in black, while redmarks the Auger lines, and blue

the carbon contamination.

electrons which do not inelastically lose energy when they emerge from the sample.

These lines reflect the shell structure of the electrons around the atom are identified

using spectroscopic notation nℓȷ representing the principal (n), azimuthal or orbital

(ℓ), and total (ȷ) angular momentum quantum numbers. The total angular momentum

can be decomposed to ȷ = ℓ± s where s is the spin angular momentum and can take

two values s= 1
2 . The azimuthal quantum number is customarily represented by a let-

ter also (e.g. s, p, d…), which is displayed along with the quantum numbers in table 2.1.

For s levels (ℓ = 0), it is found that the observed peak is a singlet as there is only one

value of ȷ. For all other values of ℓ, two values of ȷ are obtained and so two peaks are

seen, referred to as a doublet. The two possible states are separated in energy by the

spin-orbit splitting, which originates from the unpaired electron left in an orbital after
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Occupancy Doublet
ℓ, letter ȷ = |ℓ+ s| (2ȷ+1) intensity ratio
0, s 1/2 2
1, p 1/2, 3/2 2, 4 1:2
2, d 3/2, 5/2 4,6 2:3
3, f 5/2, 7/2 6,8 3:4

Table 2.1: XPS spin-orbit doublet intensity ratios.

the photoionization process having two possible spin and orbital angular momentum

vector orientations, either parallel or anti-parallel.94 The magnitude of the spin-orbit

splitting ΔE is proportional to the spin-orbit coupling constant ξnℓ which depends on

the expectation value
⟨ 1
r3
⟩
of the involved orbital, where r is the orbital radius. There-

fore ΔE increases with increasing atomic number Z for a given subshell, and decreases

for increasing ℓ (if n is constant)94. An example of well defined spin-split peaks is the

In 3d3/2 peaks at∼ 445 eV in figure 2.4, which have a distinct energy separation of 7.6

eV. The relative intensity of the two peaks, the doublet intensity ratio, are determined

by the ratio of their occupancy, seen in table 2.1.

The valence levels are those with the lowest binding energy (usually ∼ 0 − 10 eV),

and these orbitals are involved in bonding. Therefore the spectrum for these levels

usually displays many broad feature reflecting the many closely spaced energy levels.

Because the valance band states are situated at low binding energy, they occupy a

relatively flat part of the continuum background, meaning they can quite accurately

be compared to the calculated electronic density of states. This type of comparison

will be a very important theme in this thesis.

Other than the electrons that do not suffer inelastic scattering on the way out of the

sample, i.e. those forming distinct peaks, there are the electrons that do lose energy on

the way to their departure. There is a finite probability of an inelastic scattering event

taking place and this forms the background counts seen in the spectra as a smoothly
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increasing level of counts (increasing as binding energy increases). The energy loss

processes are random and so the background forms what is called a continuous spec-

trum. The core levels then sit on this background level of counts. Noise is a spectral

feature that occurs due to the the counting process of electrons, and not instrumental

in origin. The signal-to-noise ratio is proportional to the square root of the counting

time.

Nucleus
+

hν

Nucleus
+

Photoemission Process Auger Process

K or 1s

L1 or 2s

L2,3 or 2p

Figure 2.5: The photoemissin process (left) for amodel atomwith incoming photon causing the ejection of a

photoelectron, and the relaxation or Auger process (right) showing the resulting emission of an electron after a

higher orbital has filled the core hole and transferred its energy.

Auger features are another spectral line, or more commonly a series of peaks, that

comes about from the de-excitation of an outer shell electron filling a core-hole state

following the photoemission process forcing the system into amore neutral state. This

releases a discrete amount of energy and can excite another electron which may be

emitted, see figure 2.5. The kinetic energy of the emitted electron from an Auger

process can be described using the following equation
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EKin = ECoreLevelB − E1
B − E2∗

B (2.6)

where ECoreLevelB is the energy level of the photoionized core level, E1
B is the binding

energy of the level fromwhich an electron moves to fill the hole, and E2∗
B is the binding

energy of the level from which the Auger electron is emitted (where * indicates this

level is also affected by the hole in level (1) and so not the same as E2
B in the ground

state). Auger spectroscopy traditionally used x-ray notation to denote the relevant

transition levels involved in the process, e.g. the KLL series involves the initial vacancy

in the K shell and final double vacancy in the L shell. The symbol V (such as in the

KVV Auger process) indicated the final vacancies are situated in the valence band.

Auger lines have a kinetic energy which is independent of the ionizing radiation used,

and so appear at different binding energies when different energy photon sources are

used (see equation 2.3). The indium MNN Auger feature for In2O3 can be seen in the

survey in figure 2.4 at ∼1075 eV. It is a wide set of features, with an energy expanse

of at least 30 eV, each peak much broader than typical core-lines. This is due to many

transitions occurring, as well as the different lifetimes of these transitions. Studying

the Auger spectra of an element in a material can provide complementary but unique

information to XPS core-level analysis.

Secondary Structure

Other than these features, many other physical phenomena can take place that cause

other peaks to occur, often referred to as secondary structure in a spectrum (the spec-

tral features already discussed making up the primary structure). A brief mention of

the most commonly seen features will be given here. Arguably one of the most im-

portant secondary spectral features relevant to TCO materials as well as metals are

plasmon loss lines95. These plasmon satellite features have fairly complex structures,
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so much so that the two physical phenomena that cause plasmon losses can hardly be

distinguished experimentally in many cases. These two phenomena are referred to as

“intrinsic” and “extrinsic” plasmons.

Extrinsic plasmons are excited by electrons travelling through the material, which

have a certain probability to interact with the free conduction electrons in a conductive

sample, exciting the free electron gas causing them to oscillate with a characteristic

frequency (energy), forcing energy loss in the photoelectrons which emerge with a

higher binding energy than the initial core level. To explain the intrinsic plasmon fea-

tures it is important to remember that in the photoemission process a positive photo-

hole is generated. The conduction electrons then act to screen the core-hole potential

that has been set-up by the photoemisison process, causing quantized excitations in

the conduction-electron system at a distinct energy. Since this excitation process is

an intrinsic property of the photoemission process these are known as intrinsic plas-

mon excitations. The generation of the photohole in a core level can be thought of

as an instantaneous switching on of a strong local potential, which forces a coupling

between the hole-electron system, whose interaction leads to excitations. It may be

expected that the smaller the energy transfer, the greater the coupling.

The distinct energy given to excite the collective oscillation of the conduction-electron

system is the plasma energy ωp given previously by equation 1.5 (the surface plasmon

energy, equation 1.8, is also important for surface electrons). In the case of extrinsic

plasmons, multiple loss events can occur from the same core level (or valence level) at

the same energy spacing from the peak involved, essentially generating a cascade of

loss features. In the case of intrinsic plasmons, several losses may be possible but due

to the quickly diminishing nature of the loss intensities a cascade of features is not

usually seen. Whilst energy loss features in metals can be as much as 20 eV from the

main core level, usually in TCO materials a much lower plasma frequency of around
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ωp ∼ 0.5 − 1.0 eV is observed, meaning the plasmon loss can overlap heavily with

the core level of interest easily causing confusion96. Usually only one, very strong

plasmon loss feature is seen in TCO spectra, which would suggest the intrinsic plas-

mon mechanism is dominant for these materials, consistent with the picture of low

energy transfer leading to strong features. Extrinsic plasmon losses still occur in di-

lute electron systems, however due to the much lower number of free carriers relative

to typical metals, these events are much less probable.

Plasmon loss features have proven extremely difficult to model in photoemission

spectra, even for simple metals. Metals benefit in a sense by having very high num-

bers of free carriers giving rise to large plasmon energies (meaning their plasmon loss

features are distinct and well separated), and allowing their losses to be understood by

treating the free electrons as a homogeneous electron gas97–101, i.e. quantized charge

density oscillations. One result of such works is that the core level in a metallic ma-

terial should contain a series of plasmon satellite peaks following a form of Poisson

distribution, whose intensities can be described by51,102–104

I(n) =
e−ββnp

np!
(2.7)

where np is the order of the satellite feature (n=0 is the elastic core peak, n=1, 2, 3…

are the 1st,2nd, 3rd plasmon loss peaks). The coupling constant β is give approximately

by

β =
1
6
rs
a0

=
1

6a0

(
3

4πn

) 1
3

(2.8)

where rs is the distance between conduction electrons and n is the carrier density.

In the weak coupling limit (β < 1) it is expected that the intensity of the plasmon

satellites will increase with decreasing carrier density. Indeed this is seen by plot-
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Figure 2.6: Top: The normalised intensity calculated using equation 2.7 as a function of the order of plasmon loss

features. Bottom: The coupling constant as a function of carrier density as calculated using equation 2.8.

ting equations 2.7 and 2.8 as seen in figure 2.6, which shows the intensities of a given

order plasmon for different carrier density materials, and the magnitude of the cou-

pling constant β as a function of carrier density. Beginning with an unphysically high

carrier density of n = 1 × 1026 cm−3, the intensity of the first order plasmon is only

around 4% of the elastic peak and the other orders can barely be discerned. Now at

n = 1 × 1022 cm−3 this ratio increases to around 90% with several orders observable.

This is consistent with work previously done on sodium tungsten bronzes101, which

have lower carrier densities than metals but display much stronger plasmon losses.

However, when we can no longer assume we are within the weak coupling limit (i.e.

β > 1) these equations fail to describe the physical scenario. This is clear in figure 2.6
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when the 1st, 2nd, and 3rd loss feature all have much higher intensity than the elastic

peak intensity, and infact if the density of carriers is reduced further the elastic peak

can disappear entirely. This is not seen in measurements of dilute electron systems

such as TCOs and so this model does not describe them well.

In low carrier density systems, the plasmon loss can be enveloped by the elastic

peak, making it very difficult to discern, and can reside at similar energies to chemi-

cally shifted components, making identification and quantification very challenging.

Furthermore, while metals typically display many loss features, low carrier density

systems may only have one loss satellite. It remains a large challenge to accurately

describe these loss features in TCO materials. R. Egdell et al. have performed some

in-depth investigations into this subject over many years. Focussing mainly on Sb-

doping of SnO2
105,106 they found that the core levels in more heavily doped systems

apparently shift by less energy than the VBM. This was described using the Kotani

screening model107, seen schematically in figure 2.7. This screening model describes

how different screening effects can be present in the final state when a core-hole is

created. This will be described briefly below.

In the model developed by Kotani, two competing final states are available after a

core-hole is created following the photoemission of a core level electron. Their model

system consisted of a metal with an incomplete shell (denoted as an empty level in

figure 2.7), which is forced below the Fermi level when a core hole is created after

photoemission as a mechanism to minimise energy. Then the two final states consist

of an electron from the (occupied) conduction band dropping into the vacant level

now below EF, or this level remaining vacant. In the former scenario, the level is neu-

tralised (hole is filled) and so the photohole is screened by the localised electron in the

now filled band, hence the designation of screened. In the second case, the system is

now in a two hole state, the local positive charge is screened by the contraction of the
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Figure 2.7: Schematic of the final states of the screened and unscreened atomic configurations according to the

Kontani-Toyazawa screeningmodel. Figure recreated fromBorgatti et al.108 and109. The unscreened final state

refers to that after relaxation when a localised state pushed below EF remains empty (meaning its electrical inter-
action with the core hole is stronger), while the screened states refers to when this hole is filled with a conduction

electron (having stronger electron-hole interaction). The difference in the two core level positions of these final

statesΔE are equal to the plasmon energyωp.

conduction electrons around the hole. The two scenarios differ in relaxation energy

which is reflected in the position of the photoelectron energy. Because the screen-

ing effect lowers the systems total energy, the escaping electron leaves with higher

kinetic energy, and so lower binding energy. In the language of the plasmon model,

the unscreened scenario gives the high binding energy peak due to energy transfer

to the free electron gas. The width of this peak reflects the plasmon lifetime. Egdell
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et al.105,106 found two component fits reflecting the screened (or no-loss component)

and unscreened (plasmon loss component) gave more than adequate fits to core level

data for Sb-doped SnO2 and Sn-doped In2O3 dilute electron systems. The difference in

energy shift between core levels and VBM for increasing carrier density systems was

explained using a redistribution of spectral weight, showing the baricentre of the two

peak model gave the same shift as the VBM.

Importantly, it was found that the energy distance between the two peaks was be-

tween the plasmon energy for the bulk ωp and surface ωsp of the material. It was also

found that different core levels were screened at different strengths, producing differ-

ent intensity plasmon loss peaks. This was loosely attributed in the case of Sb-doped

SnO2 to conduction states being mainly Sn 5s in character giving rise to more correla-

tion between the Sn core levels than O 1s level. Whilst Egdell et al. provide very useful

insights into the nature of the plasmons in TCOs, and give a reasonable approach to

plasmon satellite fitting taking into account important parameters such as energy po-

sition and FWHM, their model does not provide a robust quantitative description of

the satellite peaks, relying mainly of free fitting parameters to provide a least-squares

fit. The probabilistic nature of a plasmon loss event compared to a no-loss emission

of an electron is not considered. They describe their model as heuristic106 and suggest

some of their findings may be due to coincidence rather than design. The free param-

eter nature of their fits may mean quantitative information extracted from the peaks

may be less reliable. However, it seems clear from these works that, with knowledge

of ωp for a dilute electron density material, we are able to fix this as a fitting parameter

with confidence that this reflects the physical scenario, and so may be able to extract

some quantitative description from the peaks. It is also worth noting that different

core levels can display different plasmon intensities, which is not necessarily obvious

as the rate that plasmons are created by photoelectrons from different core levels do
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not differ significantly in the extrinsic case. Again, no quantitative description of this

was provided. While further work is still required to provide a predictive model of

the intensity and shape of plasmon loss satellites in photoemission of dilute electron

systems, the approach taken by Egdell et al. benefits from its simplicity and a very

similar one to this is adopted in this thesis.

It is also worth discussing a recent study by Borgatti et al.108 who combine the fit-

ting approach developed by Egdell et al. on Sb:SnO2 for high-energy XPS data, with

high level first principles calculations to help further discuss the nature of the plasmon

with a theoretical approach. Their calculations were performed at the GW level allow-

ing them to account for the many-body interactions associated with (among other

things) plasmon excitation. They show by calculating the spectral functions of the

Sn 4d and valence band regions, and comparing the quasipartical part (coherent part)

to the full spectral function, that the high binding energy component in these levels

is not present in the coherent part of the spectral function and so is not due to the

quasiparticle part of the spectrum, but instead the incoherent part of the calculated

spectrum (see appendix C for more details on spectral functions). They attribute this

to the collective oscillations of free carriers in the doped system. Then by varying

the carrier density in their theoretical material from undoped to highly doped, they

observe a further broadening in the incoherent high binding energy part of spectral

function with increasing carrier density. This is consistent with experimental obser-

vations105. However, they also observe a weakening of the satellite intensity as carrier

density is increased. This is not supported by experiment105, and more closely reflects

the predictions of the weak-coupling limit approximation used for metals. This may

be related to the method used to artificially introduce free electrons into the system.

By using a homogeneous free electron gas as the basis for doping, they cannot achieve

any local Kotani-like screening mechanism.
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Thegeneral trends in the data of both the Sn 4d core level and valence band are repli-

cated reasonably using the ab initio approach, although the effects of the plasmon loss

seem rather more muted in the theory. This approach shows how the satellite struc-

ture relates to coupling of core and plasma electrons. However, this requires a fairly

advanced level of theory which may be less accessible to most, and this work did not

provide new information regarding the fitting of experimental data (e.g. line shapes,

intensities, etc.), which is sorely needed to properly account for plasmon loss features.

In addition, their findings do not correctly predict the relationship between intensity

of the plasmon peak with carrier density, which will require further investigation to

determine. They also do not attempt any calculations of true core-levels, only semi-

core levels, and so we have no knowledge of how this level of theory extends to such

spectra.

Other spectral features which may be of interest include multiplet splitting and

shake-up lines. Multiplet splitting come about in systems with unpaired valence elec-

trons. For example, many transition metal elements have unfilled d-shells in a config-

uration such as nd5 with all spins aligned. If the ns2 level is then ionized, a single s

electron remains in this level which is unpaired and can have spin either parallel or

anti-parallel to that of the nd electrons. This sets up an exchange interaction whereby

the parallel spin state has lower energy than the anti-parallel, which splits the s level.

Clearly, for other orbitals apart from s-levels the structure can be more complex due

to multiple final states being available. Shake-up lines are those that result from the

finite possibility that after the photoemssion process occurs, the ion is left in an ex-

cited final state (a few eV above the ground state) with a valence electron promoted

to an empty conduction state. When this occurs, the kinetic energy of the outgoing

electron is reduced (its binding energy increases) which is seen as a satellite to higher

binding energy on the core level peak. This event is more likely in elements with un-
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paired electrons in the valence states. Similarly, shake-off features are those when a

photoelectron excite valence electrons out of the material. These can manifest in met-

als (with high densities of states at EF) as a continuum of shake-up features (as there

are a continuum of states above EF and no band gap to overcome). Therefore the core

line presents with an asymmetric tailing to the high binding energy side of the peak.

2.1.4 Inelastic Mean Free Path and Photoionization Cross–sections

XPS is primarily used to study the surface of materials, with the surface sensitivity

being determined by the escape depth of the generated photoelectrons and so mainly

by the inelastic scattering of electrons in a solid. Here the concepts involved with the

mean free path of electrons will be briefly introduced. The inelastic mean free path

(IMFP) is the most basic quantity for describing electron scattering, and it is defined as

the average distance that an electron with a given energy travels between successive

inelastic collisions. Although now outdated, the ‘universal curve’ originally provided

by Seah and Dench110 was an early attempt to model how the inelastic mean free path

varied with electron kinetic energy. Utilising a large database of material data, they

noticed general trends in the variation of the inelastic mean free path λ with energy.

At low energy < 15 eV, λ varies with Ek by a power law of the order E−2, while at

energies > 75eV the variation follows much closer to E
1
2 . Following this they propose

the empirical model of the form

λ =
A
E2 + BE

1
2 (2.9)

where A and B are constants related to the material class under investigation (some-

times seen related to a parameter a =
(

M
ρNA

) 1
3 where NA is Avogadro’s number, but

the relationship varies depending on whether the materials investigated are elemental

or compounds in nature, and if compounds, organic or inorganic.111). Equation 2.9 is
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Figure 2.8: The inelastic mean free path (IMFP) of electrons in solids as a function of kinetic energy and the theo-

retical ‘universal curve’.110.

plotted in figure 2.8 accompanied by some elemental data. Clearly this two component

fit takes account of the two general trends seen for low and high energies. However,

it has since been found that this empirical approach does not hold for all materials and

is quite limited for compounds. What is more, it is now believed that there is no uni-

versality between IMFP for all materials. More sophisticated models have since been

developed. One of these most commonly utilised is known as the TTP-2M equation

(after Tanuma, Powel, and Penn who proposed the model)112,113. Here they give the

electron inelastic mean free path of an electron of energy Ek = ℏ2k2
2m in a free electron

gas as

λ =

(
ℏk
m

)(
ℏ

2|MI(k)|

)
(2.10)

whereMI(k) is the imaginary part of the electron self-energy, a term related to the Lin-
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dard dielectric function which accounts for electric screening of electrons in a solid.

We will not discuss Lindhard theory in any detail here but just acknowledge it is a de-

scription of how an electron system reacts to a weak potential. This has many parallels

to the dielectric equations discussed in appendix B. Hence, the imaginary part of this

function is similar to the imaginary part of the dielectric function, which will account

for the loss of energy in the system through something similar to the Beer-Lambert

law.114–116 Utilising optical data for |MI(k)| they calculate the IMFP for a number of

elements, as well as organic and inorganic compounds as a function of energy. This

approach gave strong experimentally informed trends which they then developed the

TPP-2M model to fit.

Their model is based on a simplified form of the Bethe equation for the total cross-

section of inelastic scattering of electrons and is given as113,117

λ =
E

E2
p

[
βln(γE)−

(
C
E

)
+
(
D
E2
)] (2.11)

where

Ep = 28.8
(
Nvρ
M

) 1
2

(2.12)

is the free-electron plasmon energy in eV, Nv is the number of valence electrons per

atom or molecule, ρ is the density andM the atomic/molecular weight of the material.

The parameters β and γ are fitting parameters that require least squares analysis to

properly determine, designed to scale the energy dependence of λ. Additional parame-

ters (C and D) were included in the model to account for exchange effects (significant

at low energies), and other departures from the Born approximation, on which the

Bethe equation is based. Further information regarding the simplifying assumptions

to the Bethe equation and the empirical equation 2.11 can be found in references 118–
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120. However, it is sufficient to know that equation 2.11 is analytical and does not

arise from first principles. Tanuma et al. provided empirically determined equations

relating these parameters to physical material constants.

β = −0.10+ 0.944(E2
p + E2

g)
− 1

2 + 0.069ρ0.1

γ = 0.191ρ−
1
2

C =1.97− 0.91U

D =53.4− 20.8U

U =
Nvρ
M

=
E2
p

829.4
.

(2.13)
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Figure 2.9: IMFP for common TCOmaterials calculated using the TPP-2Mmodel from equations 2.11-2.13.

However, equation 2.13 are also not from first principles and so should not be confused

with true physical constants. Despite this, the empirical model has proved powerful,
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deviating by only around 10% from the optical measurements for elemental materials,

and 9% for organic compounds. Figure 2.9 shows a plot of the calculated IMFP of sev-

eral common TCO host materials. All of these materials display similar IMFP as they

all have not too dissimilar properties relevant to equation 2.13. Clearly, for electrons

in the energy range of ∼ 1000 eV, the IMFP is ∼ 1.8 nm, which is why the majority

of the electrons contributing to an XPS spectrum which do not undergo energy loss,

originate from the top few atomic layers of the sample.

It is clear that the IMFP has a large bearing on the surface sensitivity of PES exper-

iments. In fact, we can represent to a reasonable approximation that the intensity of

an inner shell photoelectron peak is given by121,122

I ∝ nσλς (2.14)

where n is the concentration of atoms, λ the inelastic mean free path, σ the photoion-

ization cross-section of a given subshell, and ς is used here here to represent the terms

that are specific to the spectrometer, any effects from the experimental geometry or

illumination area etc., experimental efficiencies and photon flux. These terms can be

coupled as they will be held constant in a PES experiment. Two important factors ex-

ist in equation 2.14, the IMFP λ which was discussed above, and the photoionization

cross-section σ which defines the probability of a specific photoemission event occur-

ring. This quantity is both orbitally and elementally specific. Common practice when

using photoionization cross-sections is to look at the elemental cross-sections of the

elements in the studied material. When investigating compounds this is not strictly

correct, but does seem to provide reasonable results. This simplification is used due

to the high complexity in calculating σ for orbitals in compounds.

Collective databases and tables for the theoretically determined cross-sections are

available123–127. The calculation of the total photoionization cross-sections for a given

61



2.1. PHOTOEMISSION SPECTROSCOPY

atomic shell involves describing the absorption of a photon by an electron. It is then

promoted from an occupied initial ground state to an unoccupied final state which is

far from the Fermi level (approximated as a free electron). The electrons are described

as moving in a Hartree-Fock-Slater central nuclear potential. If the transition rate

between two states of energy E1 and E2 for a photon energy of hν is described by

Fermi’s golden rule

W1→2 =
2π
ℏ
|M12|2δ(E2 − E1 − hν) (2.15)

then an appropriate choice of matrix elementM12 is required to describe the transition.

The simplest approach, as used in the formalism of Yeh and Lindau124, is the dipole ap-

proximation, see Ref. 128,129 for more information.* The total orbital photoionization

cross-section in the dipole approximation is given as128

σnℓ(hν) =
4π2α0a20

3
Nnℓ

2ℓ+ 1
hν
[
ℓR2

ℓ−1(Ek) + (ℓ+ 1)R2
ℓ+1(Ek)

]
. (2.16)

This is the same formalism adopted by many, although the powers of the constants

seem to vary in the prefactor from source to source131–134. Here α0 is the fine-structure

constant ∼ 1
137 , a0 is the Bohr radius, Nnℓ is the number of electrons in the nℓ subshell

(the occupation), Ek = hν − Enℓ is the kinetic energy of the ionized electron, Rℓ±1(Ek)

are the one-electron radial dipole matrix elements summed over the two (dipole al-

lowed) final continuum (ionic core plus unbound electron) energy states ϕEk,ℓ±1, avail-

able from the photoemission of a selected initial ground state ϕnℓ. These matrix ele-

ments have the form
*The dipole approximation looks at the matrix element M12 =

∫
ϕ∗
2H

′ϕ1d
3r where H′ is a per-

turbation by light given a value of H′ = e
m0
p · A. The vector potential A is approximated by

A = A0ei(k·r−ωt) ∼ A0 which is only valid at low photon energies where the wavelength of light
is sufficiently large. At higher energies more terms in the Taylor expansion of the exponent are re-
quired 123,130.
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Rℓ±1 =

∫ ∞

0
Pnℓ(r)rPEk,ℓ±1(r)dr (2.17)

where Pnℓ(r)
r and PEk,ℓ±1(r)

r are the initial and final radial wave functions ϕnℓ = Rnℓ(r)Ynl(θ, ϕ) =
Pnℓ(r)

r Ynℓ(θ, ϕ) with Ynℓ(θ, ϕ) being the spherical harmonics of the wavefunction. The

calculation in equation 2.16 requires a solution to the radial Schrödinger equations for

the initial and final state electron

(
d2

dr2
+ V(r) + Enℓ −

ℓ(ℓ+ 1)
r2

)
Pnℓ(r) =0(

d2

dr2
+ V(r) + Ek −

ℓ′(ℓ′ + 1)
r2

)
PEk,ℓ′(r) =0

(2.18)

where V(r) is there central potential for the nlth subshell and ℓ′ = ℓ± 1. It can be seen

therefore that Pnℓ(r) and PEk,ℓ±1 are solutions to equation 2.18, and the second part of

equation 2.18 has the same potential as the first, with a missing electron, a central

assumption to these calculations. These wave functions must also satisfy131,133,134

∫ ∞

0
= P2

nℓ(r)dr = 1

PEk,l limr→∞
(r) =

1

π
1
2E

1
4
k

sin
(
E

1
2
k r−

1
2
(ℓ± 1)π − E

− 1
2

k ln(2E
1
2
k r) + δℓ±1

) (2.19)

where δℓ±1 is a constant phase shift. By evaluating equations 2.18 the radial matrix

element of the wave function REkℓ can be obtained and so equation 2.16 can be solved

to give the total cross-section of a given orbital.

An example of this is shown in figure 2.10 for the carbon atom, looking at the pho-

toemission from the C 2p level. Some points of interest can be taken from figure 2.10.

Clearly the final continuum states have oscillatory functions according to equation
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Figure 2.10: Schematic of the radial wave functions P(r) = rR(r) for the occupied ground states of a carbon
atom (left), and the continuum states (ℓ + 1 and ℓ − 1) for a photoelectorn resulting from the excitation of the C

2p core level as a function of energy (right). Figure replicated fromGoldberg et al.131

2.19, but we also see they are energy dependent with changing Ek and so hν. As hν is

increased, the effective wavelength of the radial oscillations decrease and so the oscil-

lations penetrate more deeply into the region of non-zero Pnℓ(r) in the atom. There is

also a phase shift in equation 2.19, which will persist even when the δℓ±1 is set to zero

due to the different angular momentum quantum number term. For a given photon

energy, equation 2.17 is essentially determined by the wave function overlap between

the initial and two final continuum state wave functions. The two absorption chan-

nels are displayed in figure 2.10, but at high enough energies hν the ℓ + 1 transition

becomes more favourable meaning this transition dominated the cross section.
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Figure 2.11: (left) Schematic of radial wave function of ground state 3d level and the ℓ + 1 excited levels at elec-
tron kinetic energies of Ek = 0 and 81.6 eV for elemental Kr, (right) photoionization cross section for Kr as a

function of electron kinetic energy. Image reproduced fromManson et al.134

As another example, figure 2.11 shows the radial wave function PEℓ(r) for the 3d

initial state and the ℓ + 1 (f wave) state with two electron energies of Ek = 0 eV, and

81.6 eV (photon energies of hν = 96.6 eV and 178.2 eV which were the values used in

Ref.134) in Kr. These have been overlaid in figure 2.11 for comparison. For Ek = 0 eV,

the wave function has a long radius. Its intensity is far from the atom, which is due

to centrifugal repulsion134. Therefore it has very small overlap with the 3d orbital and

hence a small dipole matrix element and small cross section. With increasing energy

the wave function penetrates deeper into the core of the atom increasing the level of

overlap and hence increasing the cross section. In the case of figure 2.11, the Ek = 81.6

eV wave function overlaps far more with the 3d level that the Ek = 0 eV giving it a

higher cross section at this energy. There is also a small amount of cancellation due

to the negative wave function of the Ek = 81.6 eV at a radius of∼ 2a0. If the energy is

increased further, the cancellation becomes stronger, further decreasing the cross sec-

tion. This explains the shape of the cross section as a function of energy, it is common

to see an increase from Ek = 0 eV to a nodal point where the maximum overlap occurs,

before the cancellation increases and the cross section begins to decrease. Clearly, if

65



2.1. PHOTOEMISSION SPECTROSCOPY

the wavefunctions display more antinodes in a smaller radial range, or the initial wave

function has anti-nodal character, this smooth σ relationship can be altered, giving fur-

ther plateaus etc. Physically, the PEk,ℓ+1(r) wave function requires an energy similar

to that of the height of the potential barrier (V(r)) in equation 2.18 to penetrate deeply

into the atom134 and give a large cross section. If this barrier is too wide then the cross

section will only reach a maximum at high energy. This determines the position of

the nodal point in energy.
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Figure 2.12: One-electron photoionization cross sections as a function of photon energy for the valence states in

In2O3 using three different theoretical approaches
123,124,126.

The In 5s and O 2p orbitals that make up the conduction band of In2O3 behave

in a very similar way to those of the Pb 6s and O 2p in PbO, except the In 5s wave

radial function possesses one less anti-node that Pb 6s135. In this case the radial part

of the wave function for the O 2p orbital is relatively contracted close to the nucleus,

similar to the 1s peak in figure 2.10. The In 5s displays higher intensity further out
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and has both positive and negative radial intensity. Similar to that discussed above,

at low photon energies the O 2p orbital displays a higher cross section relative to the

In 5s as the overlap with the low energy continuum orbital is greater. Since the In

5s orbital has higher intensity further from the atom, the opposite is true at higher

energies, where the continuum wave function displays more rapid oscillations. This

explains why the In 5s levels are made relatively stronger in hard x-ray photoemission

spectroscopy (HAXPES) while O 2p levels become relatively more intense in standard

XPS.

As previously mentioned, a great deal of time and effort has been put into calculat-

ing the theoretical photoionization cross sections for a large range of elements and

photon energies, which have been published previously. Three examples are pre-

sented in figure 2.12 for the valence states in In2O3. The calculations of Yeh and Lindau

as discussed above, are non-relativistic124 while Schofield and Trzhaskovskaya include

relativistic effects in their calculations of the central field123,126. The basic one-electron

(corrected for the occupation of the orbital) cross sections for the valence states of

In2O3 are presented in 2.12, and despite any difference in the calculation method the

values of σ are essentially the same. It is worth noting however that Schofield only

provides the basic cross sections (although over a very large energy scale), while Yeh

and Lindau also calculate the asymmetry parameters using the dipole approximation.

Trzhaskovskaya extends this even further by using the quadrupole approximation of

thematrix element to calculate the non-dipole parameters. This is done by considering

the differential cross section

dσ
dΩ

=
4π2α0

ω
|M12|2. (2.20)

where ω is the photon frequency. The differential cross section takes into account

the angular distribution of emitted photoelectrons as well as the polarization of light
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Figure 2.13: Schematic of the conventional geometry for asymmetry corrections to photoionization cross sec-

tions. The directions of the emitted electron (e−), direction of photon propagation, and the photon polarization
direction (for linearly polarized light) are labelled, along with the solid angle of electron collection (dΩ), the an-
gle between the polarization and electron emission direction (θ), the angle between the photon propagation
direction and the (purple) plane containing the polarization and electron emission direction ϕ, and finally the
angle between the photon propagation direction and the electron emission direction θ . Figure adapted from J.

Cooper132.

depending on the choice of |M12|2. The conventional designation for the geometry used

for the photoemission process here is shown in figure 2.13. For unpolarised/circularly

polarised light (e.g. a lab source) and linearly polarized light equation 2.20 becomes136

dσ
dΩ

=
σ
4π

1− β
2
P2(cosθ)︸ ︷︷ ︸

dipolar

+
(γ
2
sin2θ + δ

)
cosθ︸ ︷︷ ︸

non−dipolar

 (2.21)

dσ
dΩ

=
σ
4π

1+ βP2(cosθ)︸ ︷︷ ︸
dipolar

+
(
γcos2θ + δ

)
sinθcosϕ︸ ︷︷ ︸

non−dipolar

 (2.22)
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where P2(x) = 1
2(3x

2− 1) is the second order Legendre polynomial and the angles and

defined in figure 2.13. β is the dipole asymmetry parameter, and γ and δ are the non-

dipolar parameters (associated with the electric quadrupole andmagnetic dipole terms

terms see Ref. 132,136 for more information). For lab based sources where unpolarised

light is used (equation 2.21), the energy is relatively low and so the unpolarised terms

can usually be ignored (see figure 2.14), returning us to the dipole approximation.
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Figure 2.14: Asymmetry parameters for the In 4d3/2 level
126.

In addition to this it is common for the geometry of a lab based XPS system to give

an angle between incident photon beam and electron emission vector of θ = 54.7◦

known as the “magic angle”, where the dipolar term goes to unity. Most lab based

systems adopt this geometry, including the lab system used for this work.

It is possible now to show how the variation in photoionization cross-section as

a function of energy seen in figure 2.12, impacts the valence band structure of In2O3.

This is demonstrated in figure 2.15. Applying the cross-sections at both 1486.6 eV (soft
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Figure 2.15: Photoionization cross-section corrected partial and total density of states for In2O3. Cross-sections

were taken from Schofield123.

x-rays) and 6000 eV (hard x-rays) calculated by Schofield123 to the DFT calculated

PDOS for In2O3, clear differences in spectral intensity can be seen. The In 5s level

at ∼ 5.5 eV in figure 2.15, is much stronger at hard energies relative to soft, while

conversely the In 4d level seen at the VBM, becomes far less intense. This is because

the In 4d cross section reduces much more quickly with energy compared to the In 5s,

demonstrated by it’s steeper gradient seen in figure 2.12. These differences have been

demonstrated experimentally by Körber et al.137

2.1.5 Spectral Calibration and Resolution

One of the factors affecting the resolution of the measurement system in an PES exper-

iment is the analyser that the system uses. For a hemispherical analyser, the resolution

is determined by the physical size of both the analyser and the slits. Due to their fi-

nite sizes, there is a small range of kinetic energies of photoelectrons that can pass
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through the analyser with different trajectories. The uncertainty in this gives rise to a

contribution to the peak widths as measured in the spectrum. This width is given as94

ΔEA = EP

(
w
2Rc

+ Δα2
)

(2.23)

where w is the average (exit) slit width of the analyser, Δα is the acceptance angle (or

sometimes called the aperture half angle) of the analyser, and Rc is the mean radius of

trajectory for an electron at a given pass energy EP calculated as the average radius

of the inner and outer hemispheres. Different kinetic energy electrons require differ-

ent pass energies in order to be accepted, and so the resolution would vary over the

spectrum if EP was changed during the experiment. Therefore in order to maintain a

constant resolution and also achieve good resolution with an analyser of reasonable

size (Rc needs to be small enough in a practical sense), the analyser is held at constant

EP and the electrostatic lenses are used to retard electrons to the right energies to pass.

Sweeping the retarding voltages across the range of energies required, generates a

spectrum of constant energy resolution.

Equation 2.3 would suggest that in order to convert measured photoelectron kinetic

energies into meaningful binding energy values, the work function of the analyser is

required. However, as previously mentioned, it is possible to calibrate the measured

energy scale using the alignment of the Fermi level of a metal in contact with the sys-

tem. In practice this is commonly performed using silver or gold due to their relative

inertness and ease of cleaning using Ar+ ion bombardment. A metal has an occupied

density of states right up to the Fermi level which when measured appears as a cutoff,

past which the intensity is zero. For a metal, by definition this cutoff occurs at EB = 0

eV, and so the Fermi edge of a metal is usually used for spectrometer calibration.

Figure 2.16 shows an experimentally measured Fermi-edge of an Ar+ sputtered poly-

crystalline silver metal foil. To determine the energy offset of the measured spectra, a
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Figure 2.16: Fermi-edge cutoff of a cleaned silver spectrum centred at 0 eV, fitted with a broadened Fermi-Dirac

distribution. This spectrumwasmeasured at room temperature using amonochromated x-ray source.

Fermi-Dirac distribution (equation 2.24) is used to model the cutoff

F(E) =
1

e
E−μ
KBT + 1

(2.24)

where kB is the Boltzman constant, T = 300 K at room temperature, and μ is the

total chemical potential which in this case ∼ EF which is situated at 0 eV in binding

energy. Equation 2.24 is seen as the brown curve in figure 2.16. Because instrumental

broadening smears the intensity, this is modelled as a Gaussian function (seen as a

green dotted line in figure 2.16) and is described by

Fg(E) =
1√
2πσ2

e−
E−μ
2σ2 (2.25)

where σ is the standard deviation measuring the variation in the recorded energies.
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The full width of the Gaussian is Γ = 2
√
2ln2σ and μ can be thought of as the central

energy value of the distribution. The two functions are convolved to express the effect

of the broadening of the Gaussian upon the Fermi-Dirac distribution. Convolution is

performed using

(F ∗ Fg)(E) =
∫

F(ξ)Fg(E− ξ)dξ (2.26)

where ξ is a fixed energy position to allow for a sequential energy shift in E to drag one

function over the other. This is plotted as a blue line in figure 2.24 which fits the data

well. By extracting the fitting parameter σ it is possible to evaluate the FWHM and

so the resolution of the instrument used. Note that the effects of Lorentzian broad-

ening are neglected here. While the Gaussian distribution is usually used to model

the distribution of spectral intensity due to the instrumental broadening, a Lorentzian

line shape is associated with the broadening due to the inherent core-hole lifetime

of an excited state. This contribution is ignored here as this adds extra parameters

to the fit, meaning the determined Gaussian width maybe skewed. If the core-hole

lifetime reflects the energy spread of the Lorentzian function through the Heisenberg

uncertainty principle ΔE = ℏ
2Δτ , then if the lifetime of a state at EF is sufficiently long

this assumption holds. Due to screening and the fact that there are no states above EF

to drop into the core hole, this assumption could be correct, although it is extremely

difficult to prove experimentally. Typically, the deeper the orbital, the shorter the

core-hole lifetime138. Similarly, as atomic number increases, so does the width, as

there are more valence electrons to fill the hole and so shorter lifetimes.

In addition, measuring the peak position andwidth of a strong core level of themetal

standard allows for a two-point calibration to be performed, and gives an additional

measure of resolution determination (assuming this has been performed using the

spectrometer previously) and allows a check of the linearity of the spectrometer, i.e.
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whether the binding energy scale has become stretched, resulting in incorrect binding

energies being measured. Once the broadening of the Fermi edge is determined one

is able to evaluate the overall peak width of a given core level (to first approximation)

from

ΔE =

√∑
j

ΔE2
j (2.27)

where ΔEj represents different contributions to the overall width, e.g. ΔEX is the natu-

ral line width of the excitation emission line, ΔEA is the analyser resolution, and ΔEω

represents phonon broadening (also referred to as Franck-Condon broadening), where

electronic states can couple to vibrational modes which can provide a large contribu-

tion to the peak width (of the order of ∼1 eV) in non-metallic oxide materials139,140.

Additional contributions to equation 2.27 can be made by further summing in quadra-

ture. Note that equation 2.27 applies only to the Gaussian components relevant to the

resolution, while the widths of convoluted Lorentzians (e.g. the line width ΔECL of the

core level being measured which is element, orbital and chemically dependent, mainly

being due to the lifetime of the core-hole) sum in a linear fashion.

2.1.6 Spectral Analysis

To extract useful information from the raw spectra, some analysis is required. This

does not necessarily involve applying a fit to the spectrum, but by applying synthetic

line shapes and least squares fitting, it is possible to simulate the spectra and extract

more information from the raw data.

Backgrounds

Prior to applying any peak mode, it is necessary to model the background intensity.

Any applied peak fit will then sit on top of this modelled background. There are nu-
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merous ways to model the backgrounds, but some are more physical than others. It

is worth pointing out that in reality, no background truly models the background per-

fectly which is probably indicated by the number of backgrounds available.
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Figure 2.17: The Linear, Shirley and Tougaard backgrounds demonstrated for anO 1s spectrum.

The most basic is the simple linear background (see figure 2.17), which is a line con-

necting the two end points of the region specified. This is attractive due to its simplic-

ity, however the background is made up of secondary electrons forming a continuum

and so is not actually linear in shape. Instead, two common background types are

usually adopted in core level fitting in XPS. The first is the Shirley background92,141,142

which attempts to use spectral information from the data to inform changes in the

simulated background.

Bi+1 = ks
imax∑
i=0

(Ii − Bi). (2.28)
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It is an iterative method which splits the region of interest into many energy steps

between the limits EB,max and EB,min defined by the analyst. The background intensity

Bi+1 is given by a fraction ks (sometimes called the Shirley factor) of the intensity in

the previous channel (Ii − Bi). ks is determined by the condition that at the region

edges I(EB,max) = B(EE,max) and I(EB,min) = B(EE,min) (demonstrated in figure 2.17). The

Shirley background is essentially a weighted average method making it computation-

ally easy to implement, but lacks a full physical basis, and does not account for the

fact that features have finite width and so often underestimates peak areas, especially

towards lower binding energy.

Bi =

∫ Ekmax

Ek

B(E′ − E)
[C+ (E′ − E)2]2︸ ︷︷ ︸

cross section term

I(E′)︸︷︷︸
spectral intensity

dE′ (2.29)

The Tougard background143 has a firm physical basis as it accounts for the initial

energy distribution function and inelastic electron scattering. In equation 2.29, Ekmax

is the high kinetic energy endpoint, where the background is equal to the measured

intensity. B andC are simply fitting parameters (B ∼ 681.2 eV2 andC ∼ 355.0 eV2 were

found to be appropriate for many elements). This background assumes an energy loss

cross section for the probability an electron at some energy offset E′ − E will undergo

a loss event and so appear as a contribution to the background.

The Tougaard background may be more physically realistic (a claim many would

debate), but even so it has drawbacks. A large energy range is required on the high

binding energy side to really achieve a reasonable fit. This is not always achievable.

Most commonly the Shirley background is chosen to represent the inelastically scat-

tered electrons under a peak due to its simplicity and ease of implementation.
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Core level Line Shapes

Because of the separate contributions from instrumental and core-hole lifetime broad-

ening, the peak line shape used to fit a core level is most simply represented by a

convolution between two line shapes. The Gaussian line shape is described in equa-

tion 2.25 while a Lorentzian is given as

FL(E)
1
π

1
2Γ

(E− μ)2 + ( 1
2Γ)2

(2.30)

where Γ = ΔE = ℏ
τ is the width of the peak. Using equation 2.26 it is possible to com-

bine these to give the convolution between a Gaussian and Lorentzian, usually called

a Voigt function. A simple Gaussian, Lorentzian and Voigt line shape can be seen in

figure 2.18. Convolution of many Gaussian and Lorentzian peaks can quickly become

cumbersome in practice, and so most fitting software available opt for the simpler

Gaussian-Lorentzian combination functions,144 which are much less computationally

expensive than the convolution procedure, and can provide accurate replication of the

line shape given by a convolution. It is worth pointing out at this point that all of the

photoemission spectral analysis done in this thesis was performed using the Casa XPS

software, which adopts Gaussian-Lorentzian combination functions. An example of

such a function (this particular function being the Gaussian/Lorentzian product form

of the combination function, but other forms do exist, such as the sum form) is given

by145

GL(x : F, E,m) =
e

(
(−4ln2)(1−m)

(x−E)2

F2

)

1+ 4m (x−E)2

F2

(2.31)

where x is the energy scale, E represents the peak centre, F its full width at hall maxi-

mum, and m is the Gaussian-Lorentzian mixing ratio.

In some cases there is further need for greater flexibility in the model lineshapes,
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Figure 2.18: Examples of line shapes that can be used to fit peaks in PES.

which demonstrates that the nature of core-levels are often not simple, and may re-

quire other considerations.94 One such example of this that is commonly encountered

is the line shape for metallic chemical species. Conducting samples tend to display

an asymmetric line shape towards the high binding energy due to the photoelectron

interaction with free electrons (as discussed in section 2.1.3). This is often modelled

using the Doniac-Sunjic line shape146

FDS(E) =
(1−αDS)cos

[
πα
2 +(1−αDS)tan−1

(
E0b−E
ΔE0
2

)]
[
(E0

b − E)2+
(ΔE0

2
)2] (1−αDS)

2

(2.32)

where E0
b is the binding energy of the core level, ΔE0 is the FWHM of the natural

(no loss) line shape, and αDS is the high binding energy asymmetry parameter (0 ≤

αDS ≤ 0.5 where αDS = 0 retains a Lorentzian-like lineshape). A Doniach-Sunjic
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lineshape is displayed in figure 2.18 for reference. The extent of the tailing is related

to the density of electrons and holes at the Fermi edge, as well as the probability

of the many-body interaction occurring. As already stated, this line shape is most

applicable to metals, where there is an obvious asymmetric tail to high binding energy.

However, one issue with this line shape is its asymptotic form means it integrates to

infinity. Therefore, the peak area that is extracted is very dependent on the defined

energy region. This peak shape could be replicated by a series of Voigt functions or

even greater freedoms are afforded by modified asymptotic peak models, all of which

need careful consideration when analysing data. Another downside to equation 2.32

is it is hard to extract information regarding the loss feature. A TCO is an awkward

material lying somewhere between a semiconductor and a metal, and the applicability

of equation 2.32 appears not to be very representative of the core levels of TCOs. As

to which line shape to use in which modelling situation, it likely requires a case by

case evaluation and really will be down to the analyst’s best judgement. It is entirely

possible that the correct line shape to accurately describe and quantify the core levels

and loss features of TCOmaterials has yet to be conceived. In this thesis, equation 2.31

is used in the all cases for spectral analysis.

2.2 Optical Measurements

Optical spectroscopies allow one to assess the optical performance of TCO materials.

This is extremely important as a TCO is defined by its level of transparency, as well

as its conductivity. Transmission of light in the IR, visible and UV spectrum is com-

monly used to evaluate this metric as well as provide information on the band gap

of the material, while IR reflection can be used to obtain information about the prop-

erties of the free electrons in TCOs as the plasma frequency (ωp) is usually in the IR

region. In this section, I show how these measurements are implemented using two
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simple experimental set-ups, Ultraviolet-visible-near infra-red spectroscopy (UV-Vis-

NIR) and Fourier transform infra-red spectroscopy (FTIR). In theory, both of these

measurements can be used to give the same information. However, in practice, the

experimental equipment may have different source or detector ranges limiting what

can be measured.

2.2.1 UV-Vis-IR Spectroscopy

The working principle of the UV-Vis-IR spectrophotometer is fairly simple, and gener-

ally the set-up of most modern spectrophotometers looks like the schematic in figure

2.19.

Integrating

sphere
detector

Sample

Mirror

Sample Beam

Reference beam

LampGratingSlit
Beam
Splitter

Figure 2.19: Simplified schematic of the typical experimental configuration used for optical measurements using a

spectrophotometer.

A light source (in our case the option of either a deuterium lamp or halogen lamp

could be chosen to cover a range of wavelengths from 240-∼300 nm and from ∼300

- 2600 nm respectively) is used to produce the full range of wavelengths of light re-

quired, which is directed to the monochromating diffraction grating. The white light

is diffracted and dispersed into its constituent spectral parts and a filter slit is used to

select the wavelength of light for each part of the measurement. A beam splitter (in
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this case a chopper mirror is used) is often used to give a reference beam with 100%

transmission, which the sample transmission signal is base-lined to. After passing

through the sample, the beam is directed to the integrating sphere detector, which

should allow for lower losses in the measured signal due to the diffuse samples. The

integrating sphere used here was equipped with three detectors, a photomultiplier

tube, an InGaAs detector and a PbS detector. This is simply to span the full spectral

range available from the lamps. The measured transmission is given as a function of

the wavelength of light.

2.2.2 Fourier transform infra-red spectroscopy
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Figure 2.20: Simplified schematic of the typical experimental configuration used for optical measurements using

an FTIR. (a) Beam path from lamp to toMichelson interferometer to sample compartment and finally to the detec-

tor. (b) One possible configuration in the sample compartment, using amovingmirror to collect both transmission

and reflection data. (c) Another possible configuration for specular reflection usingmovingmirrors to vary the

angle of the beam at the sample surface.

An FTIR measurement uses a broadband light source (usually alternating between

a mid and near IR source is necessary, depending on the energy range required in the

experiment), passing the light through a Michelson interferometer before reaching
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the sample. The Michelson interferometer consists of a beam splitter (often a half-

silvered mirror) which reflects 50% of the light towards a fixed mirror and transmits

50% towards a moving mirror. The light from the two separate paths then recombines

back at the beam splitter, before being directed towards the sample compartment and

subsequent detector.

When the moving mirror is at its equilibrium position, the path between it and the

beam splitter is equal to that of the fixed mirror to the beam splitter. After moving a

distance x, the path between the moving mirror and the beam splitter becomes longer,

giving a path difference between the two of 2x. This path difference gives a phase

difference of 2kx between the two beams, where k = 2π
λ is the wavevector. When the

path lengths are equal the phase difference is equal to zero, all of the light is directed

towards the sample, while for a phase difference of π destructive interference occurs

and no light is directed to the sample compartment due to wave interference. As

the phase difference varies with the motion of the mirror, an interferogram (plot of

interference) is generated which is measured at the detector as an intensity versus

mirror position.

A spectrum is then generated from the Fourier transform of this signal (the spatial

domain of the mirror x is converted into a wavenumber domain with units matching

that of 1
x which is easily related to energy). Because an FTIR samples all the frequen-

cies from the source at once, it is able to measure much more quickly and achieve a

much greater flux per measurement than standard UV-Vis instruments (this is known

as the Fellgett’s advantage). This means better signal-to-noise can be achieved and

much faster scans performed. Also, the position of the mirrors can be determined

very accurately using a laser and very good resolution can be achieved by increasing

the maximum optical path difference (OPD). The resolution is equal to the reciprocal

of the maximum OPD. However, great care must be taken when obtaining data with
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an FTIR, as not to introduce additional spectral features. FTIR is a single beam mea-

surement and so sample spectra need to be referenced to the experimental set-up with

the sample removed, or to a perfect mirror for reflection measurements to account for

the effects that the instrumental set-up (e.g. any energy dependence of the source,

beam splitter or variation in detector performance), or the atmosphere in the FTIR etc.

have on the spectrum. Of course in reality a perfect mirror does not exist, and so most

often either aluminium, gold, or silver mirrors are utilized in practice, which display

extremely high reflectance (>90%) for much of the infrared spectrum. Additionally,

appropriate choice of beam splitter and detector must be made to cover the spectral

range of interest.

2.2.3 Absorption Coefficient for Degenerate Semiconductors

In this section, the basic theory for calculating the absorption coefficient for direct

transitions in semiconductor materials is introduced, and a simple method based on

the linear extrapolation of an α2 vs. ℏω plot is discussed. Here the specific case rel-

evant to degenerately doped semiconductors is discussed, and an easy-to-implement

analysis is introduced, based on the works of Hamberg et al.5,33 and Dolgonos et al.147,

is presented. This model is utilized in chapter 5 in for optical analysis.

One large assumption made in this analysis is that the bands have parabolic char-

acter. This was suggested by Hamberg et al. in their analysis for Sn-doping of In2O3
33

which displays conduction band non-parabolicity. However, assuming parabolic bands

simplifies the expressions enough to allow for simple analysis to be performed, i.e. no

complicated modelling need be applied which is necessary for the adoption of an an-

alytical method by the majority in the field. Therefore, we will also assume parabolic

bands here, acknowledging that the physical case is not best represented this way.

Starting from the transition rate for optical transitions between initial |i⟩ and final
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Figure 2.21: Illustration of the band filling and renormalisation process in a doped semiconductor. Left: Direct

transition between parabolic bands. Right: Transition fromVB to lowest unoccupied CB state for degenerate

systemwith parabolic bands after renormalistion effects. Figure adapted fromHamberg et al.33

|f⟩ states we can write33

R =
2
ℏ2

∑
i,f

|⟨i|V|f⟩|2 τ−1

(ω − ωfi)2 + τ−2 (Pi − Pf). (2.33)

This expression is essentially the same as in equation D.11 but a broadening term

(given by τ) has been added to account for the broadening of the initial and final states,

and a occupation probability P of each of the initial and final states is also included,

which is important for a degenerate system, and ωfi =
Ef−Ei
ℏ . In the limit of τ → ∞

equation 2.33 goes to the usual Fermi’s golden rule expression. The valence band is

expected to be filled while the conduction band is only partially filled in a degenerate

system. Using an approach similar to that discussed in appendix D, it can be shown

that this transition rate can be given as
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R ∝
∫ ∞

x0
(x+ ℏω −W)

1
2

Γ
x2 + Γ2 (1− Pc)dx (2.34)

where x = ℏ2k2
2m∗

vc
+W − ℏω, while x0 = ΔEBMg +W = ℏω (with ΔEBMg = ℏ2

2m∗
vc
(3π2ne)

2
3 ),

and Γ = ℏ
τ . The minimum energy separation between the valence and conduction

band in the doped material is given as

W ≈ Eg0 + ℏΣc(kf)− ℏΣv(kf) (2.35)

which is shown in figure 2.21. The term Pc can be represented by a Fermi-Dirac distri-

bution at kF

Pc =
1

e
E0c−μ
KBT + 1

(2.36)

where μ is the chemical potential.

To obtain an expression for the absorption coefficient, it is necessary to acknowl-

edge that α ∝ R (see appendix D). Hamberg et al. proposed that, if Γ is small, the

Lorentzian part of equation 2.34 is a sharp peaked function, and therefore the square-

root expression is considered as slowly varying and taken outside of the integral. This

simplifies to33

α ∝(ΔEBMg )
1
2

∫ ∞

x0

Γ
x2 + Γ2 (1− Pc)dx

∝

(
1− 2

π
tan−1

(
W+ ΔEBMg − ℏω

Γ

)) (2.37)

With a series expansion of equation 2.37, and replacingW+(ΔEBMg )
1
2 with Eg, ignoring

higher order terms, we see

α ∝ 1−
2
πΓ

(Eg − ℏω) (2.38)
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Equation 2.38 tells us that, contrary to what is commonly done for degenerate mate-

rials, where a linear extrapolation of α (usually to some power depending on whether

the transition is predicted to be direct or not) against ℏω is expected to give an estimate

of Eg, it in fact gives Eg − πΓ
2 . Performing another series expansion of α2 in equation

2.37 we see

α2 ∝ 1−
4
πΓ

(Eg − ℏω) (2.39)

is determined and so the linearly extracted value of α2 with ℏω is Eg− π
4Γ . Extrapolation

from both α and α2 can be combined to find the value of Eg in the method shown in

figure 2.22 for a degenerate semiconductor.
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Figure 2.22: Schematic of the difference between the two extrapolationmethods for α and α2 to ℏω. The differ-
ence between the two intercepts can be calculated and added to the α2 intercept to give an estimate of Eg. Figure
replicated fromDolgonos et al.147

This method of determining the band gap from optical data of a degenerate system

is easy to implement and based on good physical backing. However, many simplifica-
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tions are taken in the expansion of the above equations to finally arrive at equations

2.38 and 2.39 (such as ignoring all higher order terms in the expansions). Therefore, it

seems possible this approach can obtain an estimate for the optical gap of a degenerate

semiconductor which is more accurate than the Tauc method in the case of degener-

ate materials. However, it is unlikely to perfectly match the actual optical gap due to

the assumptions made and information disposed of in the simplifications. Hence, in

reality both the Tauc method and the one presented here are both flawed for differ-

ent reasons and so either can be used with this knowledge in mind when applied to

degenerate systems.

2.2.4 Transfer Matrix Method for Optical Modelling

When investigating the optical properties of multilayer stacks it is often most conve-

nient to use the transfer matrix method to determine optical coefficients, rather than

the long hand ray tracing method. Commercial products incorporating TCOmaterials

most often consist of at least two layers (a TCO deposited on glass for example), and

so the ray tracing method quickly becomes cumbersome and inefficient. In this thesis,

the transfer matrix method formalism set out by Katsidis and Siapkas is used.148 This

method is described schematically in figure 2.23.

The superscript on the electric field amplitudes E+/− denotes the direction of travel

of the electric field (the prime symbol E′ denotes a wave directly on the right of an

interface), ni denotes a medium with a new dielectric constant, and the numbers un-

derneath the interfaces represents the interfaces between two medium. In figure 2.23

there is an arbitrary number of layers N which is specific to the stack being investi-

gated.

The amplitude of the electric field on the left E+/−
m−1 and right E+/−

m of an interface can

be related by the dynamical matrix that describes both reflection and transmission at
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Figure 2.23: Schematic multilayer structure with arbitraryN number of layers andN + 1 interfaces. The corre-
sponding field amplitudes are shown.

the interface. If thewaves reflected and transmitted from a boundary betweenmaterial

m− 1 and m can be described as a linear combination of two plane waves

E+m = tm−1,mE+m−1 + rm,m−1E−m and E+m−1 = rm−1,mE+m−1 + tm,m−1E−m (2.40)

here rm−1,m and tm−1,m are the Fresnel equations that can be written for both s and p

polarised light149

rsm−1,m =
nm−1cosθm−1 − nmcosθm
nm−1cosθm−1 + nmcosθm

(2.41)

tsm−1,m =
2nm−1cosθm−1

nm−1cosθm−1 + nmcosθm
(2.42)

rpm−1,m =
nmcosθm−1 − nm−1cosθm
nmcosθm−1 + nm−1cosθm

(2.43)
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tpm−1,m =
2nm−1cosθm−1

nmcosθm−1 + nm−1cosθm
. (2.44)

θ i is the angle of incidence/transmission in medium i = m− 1,m. Now solving equa-

tion 2.40 leads us to

 E+m−1

E−m−1

 =
1

tm−1,m

 1 −rm,m−1

rm−1,m tm−1,mtm,m−1 − rm−1,mrm,m−1

 E+m

E−m

 (2.45)

This equation can be simplified using Stokes relations†

 E+m−1

E−m−1

 =
1

tm−1,m

 1 rm−1,m

rm−1,m 1

 E′+m

E′−m

 = D−1
m Dm+1

 E′+m

E′−m

 . (2.46)

The effect of the bulk on the field amplitudes of the wave are accounted for in the

propagation matrix

 E′+m

E′−m

 =

eiδm 0

0 e−iδm

 E+m

E−m

 = Pm

 E+m

E−m

 . (2.47)

where δm is the phase change of light travelling through the medium m of thickness

dm, given by Snell’s law

δm =
2π
λ
nmdmcosθm. (2.48)

For a multi-layered system, repeated application of equations 2.46 and 2.47 for N

layers and N+ 1 interfaces gives the product of N+1 2× 2 matrices, and allows for the
†Stokes relations are derived using time-reversal arguments and are given as rr+tt′ = 1 so tt′ = 1−r2

and tr′ + rt = 0 so r = −r′.
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determination of the total transfer matrix T

 E+0

E−0

 = T

 E′+N+1

E′−N+1

 =

T11 T12

T21 T22

 E′+N+1

E′−N+1


= D−1

0

[
N∏

m−1
DmPmD−1

m

]
DN+1

 E′+N+1

E′−N+1


(2.49)

The total (complex) reflection and transmission coefficients of the multi-layered sys-

tem are given by the terms in the transfer matrix elements Tij as

r = r0,N+1 =
E−0
E+0

∣∣∣∣
E′−N+1=0

=
T21

T11
(2.50)

t = t0,N+1 =
E′+N+1

E+0

∣∣∣∣
E′−N+1=0

=
1
T11

(2.51)

r′ = rN+1,0 =
E−N+1

E+N+1

∣∣∣∣
E+0 =0

= −T12

T11
(2.52)

t′ = tN+1,0 =
E−0
E+N+1

∣∣∣∣
E+0 =0

=
detT
T11

(2.53)

where detT = T11T22 − T12T21. The total front and back reflectance and transmittance

can be determined from the square of the magnitudes of r, r′, t, and t′ respectively.

For unpolarised light the total reflectivity is the averahe of the incoherent polarised

reflection coefficients

R =
1
2
(Rs + Rp) =

1
2
(|rs|2 + |rp|2). (2.54)

If the multi-layer structure contains a layer with a rough interface it is relevant
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to include partial coherences into the transfer matrix model. This is done through

modifying the Fresnel coefficients of the rough interface. The modification represents

the phase difference in the reflected and transmitted beams. The modified coefficients

for a rough mth layer take the form of

rm−1,m = r(0)m−1,me
−2(2πZnm−1k)2 (2.55)

rm,m−1 = r(0)m,m−1e
−2(2πZnmk)2 (2.56)

tm−1,m = t(0)m−1,me
− 1

2 (2πZk)
2(nm−nm−1)2 (2.57)

tm,m−1 = t(0)m,m−1e
− 1

2 (2πZk)
2(nm−1−nm)2 (2.58)

where (0) represents the smooth interface Fresnel coefficient, k is the wavenumber,

and Z is the root-mean-square height of the roughness.

Finally, in the case of complete incoherence, such that would be found for very

thick layers (e.g. a thick glass substrate) where light can reflect from the sides of the

substrate, we can treat the incoherent layer similarly to before, with a modification to

the transfer matrix. If there is incoherence in layer m, one layer in an N layer system,

the transfer matrix up to this layer and beyond this layer is

T0,m =
1

t0,m

 1 −r0,m

r0,m t0,mtm,0 − r0,mrm,0


Tm,N+1 =

1
tm,N+1

 1 −rm,N+1

rm,N+1 tm,N+1tN+1,m − rm,N+1rN+1,m

 .

(2.59)
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These are then converted to intensity matrices by squaring

Tint
0,m =

1
|t0,m|2

 1 −|r0,m|2

|r0,m|2 |t0,mtm,0|2 − |r0,mrm,0|2


Tint
m,N+1 =

1
|tm,N+1|2

 1 −|rm,N+1|2

|rm,N+1|2 |tm,N+1tN+1,m|2 − |rm,N+1rN+1,m|2

 .

(2.60)

The total transfer matrix is given by

Tint = Tint
0,mP

int
m Tint

m,N+1 (2.61)

where

Pintm =

|eiδ i |2 0

0 |e−iδ i |2

 . (2.62)

is the intensity propagation matrix of the incoherent layer. Essentially this treats the

coherent parts surrounding the incoherent layer as separate, and then includes the

intensity of the propagation matrix directly. Splitting the matrices this way allows for

the representation of multiple reflections inside a thick substrate. The reflectivity in

this case is given as R =
Tint21
Tint11

.

2.3 Hall Effect

Hall effect measurements are used for determining carrier densities and electrical

properties for a material. Therefore this technique is extremely useful in the field

of TCO materials, where the electronic properties often determine the commercial

relevance of the material.
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A schematic of the experimental set-up of a Hall effect measurement of a simple

conducting bar is shown in figure 2.24. In a Hall experiment, an electric field E⃗x is

applied to the material in the x-direction, causing a current to flow jx. A magnetic

field B⃗z is applied in the z-direction resulting in the Lorentz force. As electrons build

up in the −y-direction against the side of the sample, an electric field E⃗y builds in the

y-direction to oppose the electrons motion and try to stop further accumulation of

charge.

F = q(E+ v ×B) (2.63)

jxEx

Bz

d

x

y

z

++++++++++++   ++++++++++++++

------------------------------------

Ey

VH

-

Figure 2.24: Illustration of the Hall effect. E⃗i and B⃗i represent the electric andmagnetic field vectors in the direc-
tion of i = x, y, z, the current density is given by j⃗i, the hall voltage byVH, and d represents the sample thickness.

where q is the charge on the particle and v is the particle velocity. The Lorentz force
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acts to deflect electrons in the direction of −y. Hence, in equilibrium, the E⃗y field

balances the Lorentz force, and electrons will flow in the x-direction only. To extract

valuable information from this, the motion of an electron in a magnetic field needs to

be considered.

The equation of motion for an electron in a magnetic field (electrons are chosen

here as the most relevant case to TCOs) being acted upon also by friction, which is

represented by collisions at a rate 1
τ , is given by Newton’s equations as47,150

m
(
d
dt

+
1
τ

)
v = −e (E+ v ×B) (2.64)

where m is the effective mass of the carrier, and τ its scattering rate. If the magnetic

field is in the z-direction then equation 2.64 becomes

m
(
d
dt

+
1
τ

)
vx =− e (Ex +Bvy)

m
(
d
dt

+
1
τ

)
vy =− e (Ey −Bvx)

m
(
d
dt

+
1
τ

)
vz = −eEz.

(2.65)

In the steady-state in a static electric field the time derivatives dv
dt is equal to zero

and so we can write

vx = −eτ
m
Ex − ωcτvy; vy = −eτ

m
Ey + ωcτvx; vz = −eτ

m
Ez (2.66)

where ωc =
eB
m is the cyclotron frequency. Hence, equation 2.66 can be written as

vy(1+ ω2
cτ

2) = −eτ
m

(Ey − ωcτEx) . (2.67)
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Now in a Hall measurements as in figure 2.24, the Hall field E⃗y is in the direction j×B

where current j is flowing from left to right in our diagram. If the current cannot

flow out of the material in the y-direction then a scenario where δvy = 0 is achieved.

Therefore, equation 2.67 becomes

Ey = −ωcτEx = −eBτ
m

Ex. (2.68)

The Hall coefficient is given by

RH =
Ey

jxB
(2.69)

where jx is the current density given by jx = nevx = neμEx = ne2τEx

m . Equation 2.69

can thus be evaluated using equation 2.68 as

RH = − 1
ne

. (2.70)

Note that in a similar way, the Hall coefficient for either a p-type semiconductor, or

one where contributions form holes and electrons are important, can be given as

RH =
1
pe
; RH =

pμ2
h − nμ2

e

e(pμh + nμe)2
(2.71)

where p is the concentration of holes and μ are the carrier mobilities.

Electrical (conducting) probes are required to measure the electronic properties of

a material, which are attached to the surface of the sample. This means that, in reality,

the measurable quantities in a Hall effect measurement are the current and the Hall

voltage, rather than the current density and the Hall field. Therefore, an areal carrier

density is actually determined from the measurement. This is then converted to a

volume density through division of the film/sample thickness.
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Some useful quantities are given from j = nev = ne2τE
m such as the conductivity (σ)

and the resistivity (ρ). Using this expression it is found that j = ne2τE
m = σE = E

ρ .

Therefore, it is seen that σ = 1
ρ = ne2τ

m and if the mobility, which is simply the ratio of

the drift velocity to an external electric field, is given by μ = eτ
m we can write

σ = nμe ρ =
1

nμe
. (2.72)

These quantities are frequently used when describing electrical conduction in TCO

materials. Note also that in the above it is assumed that all electrons have the same

properties. However, the scattering probabilities are not really energy independent

and electrons will have a distribution of energies. This means RH is not exactly equal

to − 1
ne . This has the impact of the mobility obtained from a Hall measurement, the

Hall mobility μH has to be distinguished from the actual drift mobility μ = eτ
m defined

above. They are related by a quantity known as the Hall scattering factor μ =
μH
rH

where rH = ⟨τ2⟩
⟨τ⟩2 and is usually 1 ≤ rH ≤ 2. In the same way n = rHnH and RH = − rH

ne .

Fortunately, for TCOs as well as other degenerate materials (where τ = τ(EF)), it

is generally seen that rH ≈ 1 at high carrier density, as shown for In2O3 in figure 2.25.

Because rH is dependent on the scattering time τ , each scattering mechanism will in

theory have an independent rH parameter. The scattering times are combined using

Mathiessen’s rule

1
τ
=

1
τ impurities

+
1

τ lattice
+

1
τdefects

+ · · · (2.73)

and since ionized impurity scattering is usually the dominant scattering mechanism

in degenerate materials at high carrier concentrations, and its rH is ≈ 1 for TCOs152

this explains why we can neglect this term when analysing Hall data for TCOs.
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Figure 2.25: Hall scattering factor for In2O3 for singly charged donors. Figure replicated from Preissler et al.151

2.3.1 Van der Pauw Geometry

Whilst the Hall bar configuration shown in figure 2.24 is perfect for illustrating the

Hall effect simply, and is the simplest way of measuring important electrical proper-

ties, it is not the preferred geometry for the measurement. Instead, we opt for what is

known as the van der Pauw geometry, named after its founder L. J. van der Pauw.153,154

This measurement geometry is popular as it allows the measurement of the electrical

properties of a solid of arbitrary shape, so long as the solid is much thinner than it is

wide, and is homogeneous, isotropic, possesses no holes, and the electrodes placed at

the perimeter connected as point contacts on the surface (at least an order of magni-

tude between the dimensions of the sample and contact).

Figure 2.26 shows the typical van der Pauw geometry for electrical measurements.

A current I12 can be passed between contacts 1 and 2 and a voltage V34 measured across

97



2.3. HALL EFFECT

V
A

A

V
1

2
3

4
1

2
3

4

Film Arbitrary shape
A

V
1

2

3

4

Figure 2.26: Schematic of the van der Pauw geometry for Hall effect measurements. Left: typical set-up for mea-

suring films. Right: a set-up for materials with arbitrary dimensions.

contacts 3 and 4. The resistance can be calculated as R12,34 =
V34
I12

. If what is measured

at the contacts is then switched, another resistance can be determined according to

the equation

Rij,kl =
Vkl

Iij
(2.74)

where the current enters contact i and leaves j, and the voltage is measured as Vkl =

Vk − Vl. Van der Pauw showed using geometrical arguments that that the sheet

resistance (Rs = ρ
t which is a measure of the resistance along (parallel to) a two-

dimensional film, not to be confused with resistance through (perpendicular to) a film

R = ρ
t
L
W where t, L and W are the thickness, length and width of the film) relates to

the these measured resistances in equation 2.74 by

e−
πR12,34

Rs + e−
πR23,41

Rs = 1. (2.75)

In addition, the reciprocity theorem gives153,154

Rij,kl = Rkl,ij (2.76)

meaningmany quantities can bemeasured and averaged just by switching the contacts

to give amore accurate measure of the sheet resistance, helpingminimize the effects of

offset voltages such as those due to magnetoresistance. Further improvement is made
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by switching the polarities of the current source and voltage meter. The measured

resistances become

Rvertical =
R12,34 + R34,12 + R21,43 + R43,21

4

Rhorizontal =
R23,41 + R41,23 + R32,14 + R14,32

4
.

(2.77)

Rs can still be determined from equation 2.75 replacing the resistances with those in

equation 2.77.

In a similar way, the Hall voltage can be determined more accurately using the

reciprocity theorem. If, for example, a current is applied between contacts on oppo-

site corners, e.g. I13, and the magnetic field polarity is flipped and the measurement

repeated, the Hall voltage measured will be V±
24 where ± denotes the magnetic field

polarity. The average Hall voltage is then

VH =
V+

13 + V−
13 + V+

24 + V−
24 + V+

31 + V−
31 + V+

42 + V−
42

8
. (2.78)

By combining the sets of currents and voltages, the Hall voltage and sheet resistance

can be determined as well as the Hall sheet carrier density ns = IB
e|VH| and Hall mobility

μH = 1
ensRs

in terms of measurable quantities.‡

2.3.2 Electrical Transport

The final part of this section is concerned with scattering theory and electrical trans-

port. This is essentially an approach to understanding the results of transport measure-

ments, i.e. why majority carriers behave the way they do under the application of an
‡Note that if the velocity of a carrier is v = − I

nAe then in the steady-state E = vB = − IB
nAe . If the

Hall voltage is simply the electric field multiplied by the width of the material VH =
∫ W
0 Edl = EW then

VH = − IBW
enA = − IB

ent = − IB
ens

, therefore ns = IB
e|VH| . Finally, since the sheet resistance is defined as Rs = ρ

t

and ρ = 1
neμ we obtain the majority carrier mobility μH = 1

ensRs
= |VH|

IBRs
= |VH|t

IBρ .
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external field to the material. It is most useful to be able to compare the measured mo-

bilities to a model based on the band structure, and parameters such as the dielectric

constant, as then our understanding of the material is informed by the measurement.

Amongst the many difficulties in transport modelling, determining the important scat-

tering mechanisms involved in carrier transport and deciding the appropriate ways to

model them may be paramount. This is emphasized in figure 2.27 displaying a num-

ber of scattering mechanisms relevant to semiconductors. Electronic transport and

scattering has a very long history of works aimed at accurately describing processes,

both classically and quantum mechanically. Since equations of a closed form are of-

ten desirable for their ease of applications, great effort has been paid to providing

simple equations describing the transport relationships for a given scattering mecha-

nism. One example of this, which is very important for degenerate TCOs is ionized

impurity scattering, and carrying on from the formalism set out in appendix E, the

transport equation for this mechanism will be provided as an example. This is used in

chapters 4 and 5.

Scattering Mechanisms

  Defects 
Scattering

Crystal
Defects 

Impurity Alloy

Neutral Ionized

Carrier-Carrier
   Scattering

  Lattice
Scattering

Intravalley   Intervalley

Acoustic Optic Acoustic Optic

Deformation 
  Potential

 Piezo-
electric

Nonpolar Polar

Figure 2.27: Various carrier scatteringmechanisms possible in semiconductors. Figure reproduced fromB. R.

Nag155.

As previously stated, one difficulty in calculated transport coefficients is deciding

which scattering mechanisms are most important, and which can be neglected. It is

necessary to neglect some mechanisms simply due to the shear quantity of scattering
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types, some of which are shown in figure 2.27. For example, in heavily degenerate

systems (n > 1018 cm-3), the effects of electron-electron scattering can be ignored

according to Bate et al. due to screening effects156,157. Arguably the most important

scattering mechanism relevant to TCOmaterials is that due to ionized impurities. This

is because at the high carrier densities (n > 1020cm-3) present in doped TCOs, there

is significant interaction between free carriers and ionized dopant atoms. Hence, this

mechanism will be used as an example to get a better understanding of how electrical

transport data is modelled.

The discussion begins with a general solution to the Boltzmann equation for carrier

scattering by defects. The scattering rate under the relaxation-time approximation(
df
dt

)
collision

= f(k)−f0(k)
τ , (where f(k) is the distribution function describing the occupa-

tion of electrons with equilibrium distribution function f0(k), and τ is the relaxation

time, a similar formula is given in equation E.28), is given by

1
τ ii

=
Vc

(2π)3

∫
k

2π
ℏ
|M(k,k′)|2(1− cosθ)δ(Ek − Ek′)dk′ (2.79)

where M(k,k′) is the matrix element described by

M(k,k′) =

∫
Ω
ϕ∗
k′(r)ΔVϕk(r)dr. (2.80)

Here the integration is performed over the unit cell volume Ω, and ϕ(r) may be de-

scribed as a Bloch function with wave vector k and k′ before and after the scattering

event respectively. Vc is the crystal volume, 1
(2π)2 is the density of states in k′ space, θ

is the angle between k and k′, and δ(Ek−Ek′) is the Dirac delta function ensuring en-

ergy conservation. For Ionized impurities scattering, electrons are scattered by their

interaction with the screened coulomb potential of the impurity. In this case we may

write our perturbing potential as
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ΔV =
Ze2

4πεre
− r

λD (2.81)

where Ze is the ionic charge, ε the dielectric permittivity, r is a point in space, and λD is

the Debye screening length which essentially sets the length scale that the potential

drops off at. The screened potential comes about from the electrons responding to

an applied electric field, effectively screening the potential. Without the screening

length included, the potential has an infinite distance range. Other approaches to deal

with this issue include the predecessor by Conwell and Weisskopf158 who essentially

use a cut-off distance (the average seperation between two atoms) much in the same

thinking as with Rutherford scattering, rather than a smoothly transitioning one159.

The matrix element from equation 2.80

M(k,k′) =
1
Vc

∫
Ω
ϕ∗
k′(r)

Ze2

4πεre
− r

λD ϕk(r)dr. (2.82)

Solving this using the orthogonality of the Bloch wave functions (see appendix D,

equation D.8) gives155,160,161

M(k,k′) =
1
Vc

∫
Ω
u∗k′(r)e−i(k′·r) Ze

2

4πεre
− r

λD u∗k(r)e
i(k·r)dr

=
Ze2

εVc

1
|k′ − k|2 + λ−2

D

.

(2.83)

The conservation of momentum for an electron scattering event is pictured in figure

2.28. Because we have the delta function in equation 2.79 this would imply conserva-

tion of energy and so k = k′.

This leads us to the relation

|k′ − k|2 = 2k2 − 2k2cosθ. (2.84)
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Figure 2.28: Schematic of the conservation of momentum in a scattering event.

Plugging equations 2.84 and 2.83 into equation 2.79 we arrive at

1
τ ii

=
2π
ℏ

Z 2e4

ε2Vc

1
(2π)3

∫ 1− cosθ(
2k2(1− cosθ) + λ−2

D

)2 δ(Ek − Ek′)dk′

=
2π
ℏ

Z 2e4

ε2Vc

1
(2π)3

∫ 1− cosθ(
2k2(1− cosθ) + λ−2

D

)2 δ(Ek − Ek′)k2dk′sinθdθdφ.
(2.85)

The total potential requires the number of impurities NI over the volume of the crytal

giving ΔVtot = NIVcΔV and so equation 2.85 becomes

1
τ ii

=
2π
ℏ

Z 2e4

ε2
NI

(2π)3

∫ 1− cosθ(
2k2(1− cosθ) + λ−2

D

)2 δ(Ek − Ek′)k2dk′sinθdθdφ. (2.86)

integration over φ gives a factor of 2π and we can apply a simple parabolic bandmodel

(the mathematics becomes more involved for non-parabolic bands but this has been

previously performed, see for example Zawadzki et al.162,163), where dk′ = m∗

ℏ2kdE
′ to

give

1
τ ii

=
Z 2e4

ℏ3ε2
NI

8π
m∗

k3

∫ π

0

(1− cosθ)(
(1− cosθ) + 1

2k2λ2D

)2 sinθdθ. (2.87)
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This integration can be solved by substitution to give

1
τ ii

=
Z 2e4

ℏ3ε2
NI

8π
m∗

k3

[
ln(1+ 4k2λ2

D)−
4k2λ2

D

1+ 4k2λ2
D

]
(2.88)

which can be given as

1
τ ii

=
Z 2e4

ℏ3ε2
NI

8π
m∗

k3

[
ln(1+ b)− b

1+ b

]
= a−1

ii k
−3
[
ln(1+ b)− b

1+ b

]
(2.89)

Equation 2.89 is formally known as the Brooks-Herring-Dingle model for ionized

impurity scattering164,165. The mobility associated with this model is given by

μii =
e⟨τ⟩
m∗ =

e
m∗

∫∞
0 τ iiE

3
2
df0
dE dE∫∞

0 E
3
2
df0
dE dE

(2.90)

where f0 = 1

e
E−μF
KBT +1

is the Fermi-Dirac distribution, and μF can be equated with EF.

In the case of non-degenerate statistics, df0
dE ∝ − 1

KBT
e−

E
KBT , which leads to the classic

Brooks-Herring-Dingle model for ionized impurity limited mobility, which is heavily

temperature dependent. However, for degenerate carrier statistics we see that df0
dE can

logically be treated as a delta function df0
dE ≈ δ(E − EF) and so equation 2.90 simply

collapses down to the usual expression for mobility

μii =
eτ ii
m∗ =

eaiik3

m∗

[
1

ln(1+ b)− b
1+b

]
. (2.91)

Again, simplifying for a parabolic band the wave vector at the Fermi level is given

by

k2 ≈ k2F ≈
2m∗EF
ℏ2 ≈ (3π2n)

2
3 . (2.92)
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Inserting this into equation 2.89 and 2.91, we arrive at

μii =
24π3ε2ℏ3n

NIZ2e3m∗2
[

1
ln(1+b)− b

1+b

] . (2.93)

Now all that is required to have a closed-form equation for ionized impurity scattering

in degenerate semiconductors, is an equation for the screening length λD. In the case of

non-degeneracy this is simply the Debye screening length e2n
εKBT

− 1
2 , but for degenerate

statistics, theThomas-Fermi screening length is used, which for a parabolic density of

states is given as

λD =
2
3
εEF
e2n

=
επ

4
3ℏ2

(3n) 1
3 e2m∗

(2.94)

giving a screening parameter of b = 4(3π8n)
1
3 εℏ2

e2m∗ to be used in equation 2.93. A very simi-

lar expression for ionized impurity limited mobility was given for a non-parabolic den-

sity of states (α-approximated band structure in the Kane formalism) by Zawadzk162,163,

and was later simplified by Pisarkiewicz44. The main difference is dE
dk is retained in the

expression.

In the above, the focus has been on the scattering of electrons due to ionized im-

purities as an example of how analytical expressions can be derived for the mobility

limits. However, there are many scattering mechanisms relevant to semiconductors

and a wealth of information is available in the literature on these subjects. The main

challenges are to derive an expression for the scattering probability appropriate to

the mechanism under investigation (which chiefly involves finding a form for the

perturbing potential), and relating this expression in the collision term of the Boltz-

mann transport equation to the scattering time (through an approximation such as

the relaxation-time approximation).
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2.4 Thin Film Growth

A number of materials were investigated during the course of this thesis. The thin

films deposited on glass investigated in chapters 4 and 5 were deposited by some vari-

ant of the chemical vapour deposition (CVD) process, while the bulk crystals in chap-

ter 6 were grown using the edge-defined film-fed growth method166. The materials

in chapter 4 and 6 were donated and purchased from NSG Group and Novel Crys-

tal Technology, Inc. respectively, and so were not directly grown as a result of the

work presented here. Hence, no more information regarding the deposition of these

materials will be presented here, further information should be obtained from theman-

ufacturer. However, the materials in the study presented in chapter 5 were designed

and deposited specifically for this project by S. Sathasivam in the group of I. Parkin at

University College London. Therefore, the deposition of these films will be discussed

in some more details.

2.4.1 Chemical Vapour Deposition

CVD is a technique which is used for depositing gas phase precursors onto a solid to

produce a thin solid film. This is different to physical vapour deposition (PVD) meth-

ods such as sputtering and pulsed laser deposition, as CVD uses volatile precursors

which react or decompose onto a substrate, while PVD relies on converting a source

material into its gas phase and subsequently condensing this onto a substrate. There

are advantages and disadvantages associated with both CVD and PVD methods, but

for large scale deposition relevant to many TCO applications, the cost effectiveness

(not requiring high vacuum) of CVD is extremely attractive.

CVD takes place in some sort of reactor, a typical design is shown schematically in

figure 2.29. This simple schematic shows many of the important components required
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Figure 2.29: Schematic of a typical CVD reactor.

by a CVD reactor, including gas inlet and outlet to allow reactant gas into the chamber

and waste gases to escape, a quartz tube to house the substrate and gasses which is

both chemically inert and has a high melting point, and some form of heating element

to allow for the reaction to take place.

The conventional CVD process can be broken down into a few steps shown schemat-

ically in figure 2.30: i) Transportation of precursor molecules to substrate, which is

often done using an inert carrier gas such as nitrogen. ii) The gaseous precursors

undergo chemical reactions either on the surface of the substrate, or in the gas phase

itself, facilitated by some form of environmental catalyst e.g. heat. iii) Physisorption of

precursors onto the substrate surface is followed by decomposition of the molecules,

allowing for the formation of the desirable material and by-product waste material

which is removed from the chamber. iv) Adatoms diffuse on the substrate surface to

find the lowest energy sites. These then act as nucleation sites, which promote film

growth167.

There are many variations on the conventional CVD process, one of which was

adopted in chapter 5 to deposit films of In2O3 doped with Mo and Sn. The process

used is called aerosol-assisted chemical vapour deposition (AACVD), which uses the

same basic principle discussed above with some important differences. Unlike during

conventional CVD, precursors are first dissolved in solvent and an aerosol is formed
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Figure 2.30: Schematic of the conventional CVD process. Figure replicated fromMarchand et al.167
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Figure 2.31: Schematic of the AACVD process. Figure replicated fromMarchand et al.167

with use of a humidifier (see figure 2.31). This aerosol is transported into the CVD

reactor using a carrier gas, often N2 is used. The solvent undergoes evaporation when

the the aerosol reaches the heated substrate, leaving the precursor in its gas phase.

Finally, the precursor gas vapour can take two routes to form the final film. It can

decompose in the gas phase, forming an intermediate product which adsorbs to the

substrate surface. This undergoes further decomposition and heterogeneous reaction

to form the desired film. Alternatively, decomposition and chemical reaction can occur

predominantly in the gas phase (usually if the substrate is too hot), which leads to

homogeneous nucleation of particles. However, the absorption of these preformed
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2.4. THIN FILM GROWTH

particles will often lead to higher levels of film porosity. AACVD has some benefits

over conventional CVDmethods, including a highmass transport rate meaning higher

deposition rates, and AACVD does not require volatile precursors meaning there is far

greater choice in the available precursor options.
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3
Theoretical Background

TCOs display non-parabolic conduction bands and electronic degeneracy and so ex-

pressions for the band structure should reflect this. We also rely heavily on the insights

gained from density functional theory, where calculations can be complicated by large

complex unit cells and dopants breaking perfect translational symmetry. Furthermore,

surface electronic space charge properties can be understood by solving the Poisson

equation within the surface layer of the material. All of the above will be discussed in

this chapter, with the emphasis on the underlying fundamentals of the theory, with

occasional insight into its application to the field of TCOs.
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3.1. ELECTRONIC STRUCTURE CALCULATIONS

3.1 Electronic structure calculations

3.1.1 Band Structure Approximations

The electronic band structure can be approximated from a solution of the Schrödinger

equation, with the Hamiltonians26,161 :

H1eΦn(r) =

(
p2

2m + V(r)
)

Φn(r) = EnΦn(r) (3.1)

whereH1e is the one-electron Hamiltonian, Φn(r) is the wave function of an electron

in eigenstate n, p is the momentum operator for the electron, V(r) is the periodic po-

tential of the Bravais lattice, and En is the energy of that electron. Equation 3.1 is a sim-

plified version of the full many-bodied atomic Hamiltonian. Simplifying assumptions

include grouping non-valence electrons with the ion cores, the Born-Oppenheimer

approximation (ions are essentially spatially fixed as they are much heavier than elec-

trons), the one-electron approximation (where the electron-electron interaction is av-

eraged providing a constant repulsive potential to the Hamiltonian), and the mean-

field approximation (which assumes every electron experiences the same average po-

tential V(r)). It can be shown using the translational symmetry of the lattice, that for

a crystal with periodic potential V(r) = V(r+R), the eigenstates to equation 3.1 are

Bloch functions26,47,161

Φnk(r) = unk(r)eik·r (3.2)

where n labels the band, k the wave vector of the electron in the first Brillouin zone,

and unk(r) is a function with the same periodicity as the crystal lattice and so the full

translational symmetry
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3.1. ELECTRONIC STRUCTURE CALCULATIONS

unk(r+T) = unk(r) (3.3)

where T is a translation vector of the lattice. So the eigenstates of equation 3.1 take

the form of a plane wave multiplied by unk(r). This is known as Bloch’s theorem.

Even with all of the simplifications, a solution to the Schrödinger equation given

in equation 3.1 over the whole Brillouin zone is still very complicated. Another sim-

plifying approximation can be made, as often for transport or optical problems it is

the energy dispersion close to the band extrema that is most important. These states

are the first to become occupied and so play a pivotal role in many semiconductor

properties. For a direct band gap semiconductor, where the CBM and VBM are coinci-

dent in k-space (most often at the zone centre, the Γ-point), the energy dispersion can

be approximated by a Taylor expansion about |k− k0|, where k0 is the wave vector

where the extrema occurs

E(k− k0) = E(0) + A|k− k0|2 + B|k− k0|4 + ... (3.4)

Setting k0 = 0 for an extrema at the Γ point and ignoring terms other than the first

two (higher power terms contribute negligibly), we see we have a constant and a term

dependent on the wave vector squared. This is analogous to the case of a free electron

where V(r) = 0 in equation 3.1, noting that the momentum operator is p = −iℏ▽k.

Hence, the parabolic dispersion relation is give by

Ee,h(k) = Ee,h(0)±
ℏ2k2

2m∗ (3.5)

where m∗ is the effective mass of the carrier, Ee,h(0) is defines the zero of the energy

scale, and the ± signifies the different direction the dispersion can take.

This approximation is quite useful for direct band gap semiconductors, where the
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3.1. ELECTRONIC STRUCTURE CALCULATIONS

band edges are at the zone centre, and weak or negligible interaction occurs between

the valence and conduction band, typically in wide gap semiconductors. However, de-

spite the wide gaps of TCOmaterials, heavy degeneracy can cause strong interactions

between the valence and conduction bands, so often non-parabolicity is considered a

better choice for band structure modelling.

3.1.2 k · p Perturbation

Amore accuratemethod of band structure calculation is thek · p perturbationmethod,

which allows for the inclusion of non-parabolic bands. By inserting the Bloch function

in equation 3.2 into the Schrödinger equation 3.1, utilising the momentum relation

p = −iℏ▽k acting upon the Bloch function, the Schrödinger equation becomes168

[
H0 +

ℏ
m
k · p+ V

]
unk(r) = Enkunk (3.6)

whereH0 =
p2

2m+V0(r), magnetic effects may be included through V by the summation

of terms such as the spin-orbit potential VSO and crystal-field potential VCr, and Enk =

En(k)− ℏ2k2
2m . At the Γ-point (k = (0, 0, 0)) equation 3.6 reduces down to

[H0 + V] unk(r) = En0unk (3.7)

whose solutions form an orthonormal set. Therefore, the wave functions at any value

of k around the Γ-point and their energy eigenvalues can be expressed by treating the

k · p interaction between the valence and conduction bands as small perturbations

unk(r) = un0(r) +
ℏ
m

∑
n′ ̸=n

⟨un0|k · p|un′0⟩
En0 − En′0

un′0

Enk(r) =En0(r) +
ℏ2k2

2m +
ℏ2

m2

∑
n′ ̸=n

|⟨un0|k · p|un′0⟩|2

En0 − En′0
.

(3.8)
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Information regarding the materials crystal symmetry is contained within the ma-

trix element as knowledge of the eigenvalues of the Bloch function un0 are required

to determine its value. This is usually approached using group theory, much in the

same way as we set out in appendix A. Also we may see more bands coming into play,

and the degeneracy of some bands means the spin-orbit interaction may need to be

considered169.

It is far from trivial to solve equation 3.6 for a given point group as anisotropic ef-

fects often need to be considered, and there is still much experimental information

lacking about the band structure for many materials. However, simple isotropic cu-

bic systems have been investigated thoroughly over the years26,54,155,161,169–172, and in-

clude many III-V materials and some II-VI including CdO. Many experiments such

as cyclotron resonance and optical spectroscopes have informed band structure cal-

culations for these materials, and the systems should hold a lot of relevance to many

oxide systems as both possess degenerate valence bands of prominent p-orbital char-

acter, and a non-degenerate conduction band extrema of almost entirely s-character.

Kane171 considered a 4-band model (3 degenerate valence bands and a conduction

band) for Zincblende structures. One of the useful results to come from this analysis is

that if spin-orbit splitting is neglected, and the system is simplified to only two bands,

it is possible to arrive at

Ec(k) =
1
2

(
−Eg +

√
E2
g + 4k2P 2

)
+ Ek (3.9)

where Kane’s matrix element is given by

P2 =
ℏ2

2m∗

(
1− m∗

m

)
Eg. (3.10)

Whilst the theory proposed by Kane is for zincblende structures, it is often applied as
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3.1. ELECTRONIC STRUCTURE CALCULATIONS

a more general model to account for conduction band non-parabolicity.

Finally, it is often of use to refer back to equation 3.4 of the expansion of E(k) as the

above discussion may inform to give a better approximation the coefficients required.

To a good approximation

ℏ2k2

2m∗ ≈ E(1+ αE+ βE2) (3.11)

where

α =
1
Eg

(
1− m∗

m

)2

and β = − 2
E2
g

m∗

m

(
1− m∗

m

)
. (3.12)

These parameters can be found by expanding the square-root term in a Taylor expan-

sion161. If the cube term is dropped then this equation is known as the α-approximation.

If the α term is dropped then the parabolic band structure is retained. These approxi-

mate forms of the bands structure are often used when performing analysis requiring

non-parabolic conduction bands.

Figure 3.1a shows the conduction band structure for a material with an effective

mass of 0.22m0 and band gap of Eg = 2.9 eV (such as In2O3) calculated using the

parabolic structure, two-band k · pmethod, and the expanded approximations to first

and second order (α and β approximations). The non-parabolicity of the conduction

band is evident at wave vectors past 0.1 Å-1, where the parabolic curve diverges from

the others. The effect of this can be seen on both the density of states, and carrier

concentrations, seen in figure 3.1b and c. These can be calculated using the general

expressions

g(k) =
k2

π2

(
dE(k)
dk

)−1

(3.13)

and
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states from the approximations used above. (c) calculated carrier density for the approximations used above.

n =

∫ ∞

0
f(E)g(E)dE (3.14)

where f(E) is the Fermi-Dirac distribution function
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3.2. DENSITY FUNCTIONAL THEORY

f(E) =
1

1+ e
E−μ
KBT

. (3.15)

Note that the carrier dependent electron effective mass can also be evaluated from

these calculations using

m∗(E) = ℏ2k
(
dE(k)
dk

)−1

. (3.16)

3.2 Density Functional Theory

Whilst extremely powerful, band structure approximations such as those seen above

are not always sufficient to provide an adequate description of the material under

investigation. Sometimes information is required across the whole Brillouin zone,

or occasionally we want to consider remote bands which would be ignored via other

methods. To the electron spectroscopist, the ability to deconvolve the density of states

into orbital contributions is extremely valuable, or it may be informative when consid-

ering doped materials to determine the effects of dopants on the host material struc-

ture. Many of these considerations can be accounted for using more sophisticated

approaches, and likely the most successful of these to date is density functional the-

ory (DFT). DFT is a large topic with a multitude of applications. Hence, only a brief

discussion of the subject will be given here. Whilst DFT calculations have been invalu-

able to the work in this thesis, these were all done on a collaborative basis here, and

so other sources should be sought for more information (see for example Martin173).

In DFT, the electron density can be represented by

n(r) = ⟨Φ(r)|Φ(r)⟩ (3.17)

which is treated as the central variable when solving the Schrödinger equation, rather
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3.2. DENSITY FUNCTIONAL THEORY

than the many-body wave function itself. The first big strides toward modern DFT

were taken by Hohenberg and Kohn174, who showed that for a system of interacting

particles under the influence of an external field (Vext), the total energy of the system

can be described by

EHK[n] = FHK[n] +
∫

Vext(ri)n(ri)d3r (3.18)

where FHK[n] is known as the Hohenberg-Kohn universal functional. The ground state

energy is found by minimizing the functional, corresponding to the ground state elec-

tron density EHK[n0]. If we known the form of FHK[n] then we know the exact ground

state energy of the system. The form of FHK[n] is actually very complicated and Ho-

henberg and Kohn gave no guidance on how to construct the correct functional.

The next step in the development ofmodernDFTwas provided byKohn and Sham175

shortly after the Hohenberg-Kohn model was proposed, with the goal of providing an

approach to compute an approximate functional F[n(r)]. They suggested that an in-

teracting many-body system could be replaced by a different, simpler system. They

assume the auxiliary system has the same ground state density n0(r) as the interacting

many-body system, but the new system is made up of non-interacting electrons.

The Kohn-Sham model for the full interacting many body system can then be writ-

ten as

EKS[n(r)] = TKS[n(r)] + Vee[n(r)] +
∫

Vext(r)n(r)dr+ Exc[n(r)] (3.19)

where Vee[n(r)] is the classical Coulomb interaction energy of the electron density

with itself, TKS[n(r)] is the kinetic energy of the non-interacting particles, and Vext is

the external potential due to the nuclei and any other external field. All of the difficulty

in many-body calculations are contained within the exchange-correlation functional
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3.2. DENSITY FUNCTIONAL THEORY

Exc[n(r)], which is the sum of the non-classical electron-electron interactions and the

correction to TKS which accounts for the non-classical interactions (therefore giving

the total T). The universal function is

FKS[n(r)] = TKS[n(r)] + Vee[n(r)] + Exc[n(r)]. (3.20)

The exchange-correlation functional is the only unknown in the Kohn-Sham ap-

proach to DFT. If this function were known then the Kohn-Sham equation could be

solved for independent particles using the self consistent variational theorem173. How-

ever, only approximate forms of the exchange-correlation functional have been pro-

posed.

The electron exchange interaction is due to the wave function of indistinguishable

particles being subject to exchange symmetry, either remaining unchanged (symmet-

ric) or changing (antisymmetric) when two particles are exchanged, interchanging

their spin and spatial coordinates. Fermions must have antisymmetirc wave functions

under exchange due to the Pauli exclusion principle. Electron correlation was a term

coined by P-O Löwdin176 but may have been studied much earlier177. It has its phys-

ical origins in the effect that all of the electrons in an interacting many-body system

have on the movement of a single electron. An exact wave function may not be able

to be represented by single determinants, which may miss important physics such as

the Coulomb correlation of the system. While Hatree-Fock theory (which attempts to

solve the Schrödinger equation using many single electron wave functions178,179) pro-

vides an exact formalism for exchange as it uses the Slater determinant to describe the

wave function, it does not include correlation effects and so is always higher in energy

than the exact energy. For this reason, it usually preferable to make approximations

to both the correlation and exchange functionals in the Kohn-Sham formalism, which

is less computationally heavy than the Hartree-Fock method.
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Figure 3.2: Theoretically calculated band gaps using different functional approaches versus experimentally mea-

sured gaps. Graph replicated from data in Heyd et al. with data relevant to TCO related semiconductors taken

from other sources.31,69,180–184

Many attempts to describe the exchange-correlation functional have been suggested

in the literature. However, most typically either the local density approximation174,175

(essentially assuming a homogeneous electron gas system), the generalized gradient

approximation185,186 (using gradients of the density to gain more information around

the electrons), or hybrid functionals187–189 (combining the exact exchange formalism

of Hartree-Fock theory with the approximate exchange and correlation calculated

through DFT) are employed. Figure 3.2 shows a comparison of how well the different

functionals perform at predicting the band gap of different semiconductors. TCO re-

lated semiconductors are highlighted as empty data points. Clearly hybrid functionals

perform by far the best, in many cases matching the experimentally determined band

gaps. Note that the particular functionals used are not specified here.

Finally, to show the difference in band structure calculation methods, figure 3.3

shows different approximations for the conduction band of In2O3. The non-parabolic
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and indeed even the parabolic approximate bands reproduce the DFT calculated con-

duction band reasonably well around the Γ-point. However, away from this the ap-

proximations clearly struggle, especially after ∼ 0.2Å−1. Much of the time this will

not be an issue in optical or transport calculations, as the Fermi level is likely to be

much lower in energy than this point, ∼1 eV above the CBM. The benefit of a much

more simple calculation will often outweigh the inaccuracy. However, the true benefit

of DFT cannot be realised by this simple comparison. Even, in figure 3.3 we see extra

bands calculated through the DFT method which will have some interaction effect on

the band of interest near the zone edges. This could be included in the k·p method but

at greater cost. Amuch broader wealth of information is offered using the DFT approx-

imations, while models for the band structure including the k·p method, are usually

informed by experiment, ab initio or first principles calculations do not require such

information, and are usually tested against experiment (as in figure 3.2).
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3.3 Space Charge Calculations

3.3.1 Poisson’s eqation

Chapter 6 gives results on the band bending properties of β-Ga2O3, and how this is in-

fluenced by atoms adsorbed onto the surface. At the surface, translational symmetry

of the crystal is broken, allowing evanescent gap states to exist within the semicon-

ductor band gap. These have either donor or acceptor character dependent upon their

position relative to the charge neutrality level of the semiconductor. Where ionized

surface states exist, charge neutrality is attained by band bending. These ionized sur-

face states set up the near surface space-charge. For n-type materials, ionized donor-

like (acceptor-like) surface states will result in downward (upward) band bending at

the surface, and the formation of an electron accumulation (depletion) layer (see fig-

ure 3.4). Hence, the space charge layer is a distribution of carriers close to the surface.

The charged surface induces an electric field, which in turn is screened by the rear-

rangement of the charges (or carriers) at the surface over a distance approximately

equal to the Thomas-Fermi screening length leading to either carrier accumulation or

depletion at the surface.
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Figure 3.4: Schematic representation of the band bending and associated charge profiles for the case of inversion,

depletion, flat bands, and accumulation space-charge layers in an n-type semiconductor. In the plots of the carrier
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In order to investigate the space-charge layers in this material, a model is required

that incorporates the space-charge potential (V(z)) and the electron density as a func-

tion of depth in a given sample. This can be described using Poisson’s equation, which

in the one-dimensional case is given by

d2V
dz2

= − e
ε(0)ε0

[
N+
D − N−

A − n(z) + p(z)
]

(3.21)

where ε(0) is the static dielectric constant, N+
D (N

−
A ) is the bulk ionised donor (accep-

tor) concentration, and n(z)(p(z)) is the depth dependent electron (hole) density. The

potential V(z) satisfies the boundary conditions V(z) → 0 and dV(z)
dz → 0 as z → ∞

and there is no band bending in the bulk of the material, and dV
dz

∣∣
z=0 =

e
ε(0)ε0Nss, where

Nss is the surface state density.

In order to obtain the potential V(z) and the carrier density, Poisson’s equation

has to be solved self-consistently with the one-electron Schrödinger equation. This is

achieved by using a trial potential V(z) with an iterative method to obtain a single so-

lution190,191. However, this quickly becomes non-trivial or computationally expensive

for non-parabolic bands.

3.3.2 Modified Thomas-Fermi Approximation

To simplify the problem, Paasch and Übensee192 suggested using a modified Thomas-

Fermi approximation (MTFA) where the potential is calculated by solving the Poisson

equation subject to the boundary conditions discussed above. The carrier densities

correspond to the conduction band and valence bands, which are calculated from

n(z) =
∫ ∞

0
gc(E)f(E)fMTFA(z)dE

p(z) =
∑
i

∫ −∞

EVi

gvi(E)[1− f(E)]fMTFA(z)dE
(3.22)
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respectively, where the sum over i denotes the sum over a number of valence bands,

and g(E) is the density of states for a band (which may be non-parabolic for many

semiconductors). f(E) is the simple Fermi-Dirac distribution function including the

potential dependence

f(E) =
1

1+ e
E−EF+V(z)

KBT

(3.23)

and fMTFA(z) is the MTFA factor which accounts for the potential barrier at the sur-

face192,193

fMTFA(z) = 1− sinc
[
2z
L

(
E

KBT

) 1
2
(
1+ E

Eg

) 1
2
]

(3.24)

where for non-degenerate semiconductors L is the thermal length L = ℏ√
2m∗

0KBT
, or in

degenerate semiconductors it is the Fermi-length L = 1
kF

where kF is the Fermi wave

number, and sinc(x) = sin(x)
x . This correction factor represents the interference of

incident and reflected wave functions due to the potential barrier at the surface, and

thus causes the carrier concentration to tend smoothly to zero at the surface.

Numerical solutions of equations 3.21 and 3.22 are found by using a trial potential,

followed by an interval bisection method to converge to an approximate solution of

the one-electron band-bending potential that satisfies the boundary conditions, and

the carrier density profiles as a function of depth. Note that for doped materials it is

usually assumed that only themajority carrier type is required for an accurate approxi-

mation of the potential in equation 3.21 (i.e. n(z) andN+
D for an n-type semiconductor).

Examples of solutions for n-type semiconductors are seen in figure 3.4. In figure 3.4 it

is assumed that the band bending experienced by the valence and conduction bands

is equal, an assumption that is carried throughout this thesis. However, this is not

necessarily the case, as was shown previously for several materials including CdO194
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and In2O3
30. The origin of this difference in the level of band bending experienced be-

tween the two band extrema for materials displaying surface electron accumulation,

is attributed to many-body effects (band gap renormalization) in the accumulation

layer, which is predominant in degenerate materials with high carrier densities in the

accumulation layer relative to the bulk of the material. Due to the confining potential

well that is set up from the extent of the downward band bending, the host conduc-

tion band states become quantized into subbands displaying dispersion in the surface

plane. This can be further investigated using techniques such as angle-resolved pho-

toemission spectroscopy (ARPES), in conjunction with coupled Poisson-Schrödinger

type calculations194. This style of study would help to further inform the results of

chapter 6, and could be suitable for future investigation. However, due to the low sur-

face carrier density seen in β-Ga2O3, information regarding the quantized conduction

band states may be very difficult to accurately determine.
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4
Self-Compensation in F-Doped SnO2

Chemical vapour deposited F-doped SnO2 samples were obtained from NSG group. F

ion implanted SIMS standards were prepared by Nianhua Peng at Surrey Ion Beam

centre. Secondary ion mass spectrometry measurements were performed by Mark

Farnworth at Pilkington Technology Centre and data analysed by the author. Den-

sity functional theory calculations were carried out and analysed by Benjamin A. D.
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4.1 Introduction

FTO is a TCO consisting of a stannic oxide (SnO2) framework with heavy donor in-

corporation of the fluorine dopant, maintaining a rutile structure195,196. A number of

thin-film deposition methods are regularly used to prepare FTO, including spray py-

rolysis197, chemical vapour deposition198, pulsed laser deposition199, and magnetron

sputtering200. Commercial FTO is most commonly deposited via atmospheric pressure

chemical vapour deposition (APCVD) in an on-line coating process where the man-

ufacturing of the glass substrate and deposition of the TCO films are performed in a

continuous process. An example of these products is the TEC™ glass range produced

by Nippon Sheet Glass (NSG)201.

FTO possesses a fundamental electronic direct band gap of Eg=3.6 eV202,203, and an

optical band gap that can often exceed 4 eV depending on the level of fluorine incor-

poration199,204. This contributes to achieving optical transmission in the visible region

commonly around 80%205. In these materials it is generally assumed that fluorine acts

as a substitutional, singly-charged donor occupying an oxygen site. This is often as-

sumed because oxygen and fluorine have nearly the same atomic radii and similar

bond energies with tin which should assist in fluorine being easily incorporated into

the material196,206. Fluorine doping of tin dioxide can result in very low resistivity FTO

films, regularly less than 4× 10−4 Ωcm201,207,208.

Intuitively, it is expected that the more fluorine atoms that are incorporated into

the tin dioxide matrix, the more free electrons become available for conduction196. If

this is the case, the amount of fluorine incorporated is only limited by the trade-off

between optical and electrical properties - as the carrier density is increased, there

is a corresponding increase in conduction electron plasma frequency and associated
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plasma reflectivity that limits the infrared transparency209–211. However, one interest-

ing observation reported many times over the years is that the resistivity of FTO will

initially decrease as carrier concentration increases and then begin to increase when

carrier concentrations become sufficiently large207,212–216. While the initial decrease in

resistivity is relatively simple to explain, being due to the extra free carriers contribut-

ing to conduction introduced into the material by the fluorine dopant, the origin of the

eventual increase in resistivity at high doping levels is a much more debated issue. A

number of phenomena have been suggested, with a general underlying theme of the

fluorine interstitial playing a major role195,196,214. However, only very limited evidence

is available supporting this claim, mainly based on x-ray diffraction studies212–214,217,218.

This study uses a combination of Hall effect measurements and modelling, and theo-

retical calculations based on density functional theory (DFT) to determine the factors

limiting the carrier mobility in APCVD-deposited FTO films on soda lime glass. This

information is then related to quantitative chemical analysis using x-ray photoemis-

sion spectroscopy (XPS) backed by secondary ion mass spectrometry (SIMS). These

results point to a self-compensation mechanism occurring in FTO at high doping lev-

els. With the aid of DFT formation energy calculations and XPS results it is possible

to infer the likely defect species.

4.2 Experimental and Theoretical Methods

Fluorine-doped tin dioxide (FTO) thin films deposited on glass by APCVD were ob-

tained fromNSGGroup. Samples consisted of amulti-layer structure with an undoped

SnO2 layer ∼ 25 nm deposited directly on the glass substrate providing a rough sur-

face for the subsequent layers to adhere to. A SiO2 layer follows of thickness∼ 25 nm

acting as a sodium diffusion barrier, and finally the electrically active F:SnO2 layer is

deposited on top of this. The tetragonal rutile structure associated with the SnO2 was
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confirmed via x-ray diffraction (not shown here). The samples are polycrystalline in

nature and no impurity phases were present. Samples were prepared for measurement

by mechanically cleaning the surface with laboratory wipes and isopropyl alcohol to

remove large particulates, as well as being treated in an ultrasonic bath submerged in

diluted surface cleaner (decon 90 surface cleaning agent) and then isopropyl alcohol,

and rinsed in deionized water.

Time-of-flight secondary ion mass spectrometry (SIMS) combined with profilome-

try allowed the thickness of the FTO films to be determined. Film thickness of the

FTO layers ranged from 300 to 750 nm. Fluorine concentrations in the films were

determined from XPS peak areas of the main core levels of the constituent elements,

taking into account the atomic sensitivity factors (ASF) provided by Moulder et al.122,

which ensure measured peak areas are corrected to account for photoionization cross

sections. It should be noted that the ASF also depend on some factors specific to the

measurement instrument used such as the analyser transmission function. The ASF

taken from Moulder et al. are not specific to our XPS system and so the uncertainty

associated with the determination of compositions can be considered sizeable. The

fluorine concentration of the samples varied from around 0.7% (atomic percentage)

to 1.7%. Time of flight (ToF) SIMS measurements were made, using the IonTof TOF-

SIMS 5 instrument. Pulsed Bi3+ analysis ions were used to bombard the sample surface

while a 1 keV Cs source was used as the sputtering beam. Analysis was performed on

a 50.8 × 50.8μm2 sputter area. The CsF2
+ ion intensity versus erosion time were con-

verted to fluorine concentration versus depth. To make standards for quantitative

depth profiling using SIMS, undoped SnO2 samples were deposited on glass via radio

frequency magnetron sputtering, and fluorine ions were implanted into the materi-

als at an energy of around ∼ 100 keV. This corresponded to an implantation depth

of ∼ 114 nm. Three standards were deposited in total, with ion fluences of 1 × 1016,
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5× 1015, and 1× 1015 cm-2. All ion implantation in this study was performed at Surrey

Ion Beam centre.

Hall effect measurements were performed using the standard van der Pauw config-

uration at a field strength of 0.8 T to determine the free carrier concentration (n) and

transport mobility (μ) of FTO samples. Measurements were performed at room tem-

perature on the samples, all of which displayed n-type conductivity. The measured

free carrier concentrations across the sample range varied from (1.81 ± 0.01) × 1020

cm−3 to (5.48 ± 0.04) × 1020 cm−3 and electron mobilities varied from 27.3 ± 0.2

cm2/V·s to 38.2± 0.1 cm2/V·s. Samples which displayed high carrier concentrations

and low mobilities corresponded to those of high fluorine content. Temperature de-

pendent Hall effect was also performed on some samples, with sample temperature

being varied from 10 to 300 K (±0.5 K) (see Figure 4.2).

High resolution XPSmeasurements were performed using a SPECSmonochromatic

Al Kα (hv = 1486.6 eV) X-ray source operated at 300W. Photoelectrons were analysed

using a PSP Vacuum Technology hemispherical electron-energy analyser, with mean-

radius of 120 mm operated at a pass energy of 10 eV. The spectrometer was calibrated

using a polycrystalline silver foil which had been Ar+ sputtered to achieve a clean

surface. The silver 3d5/2 and Fermi edge were measured for energy position and peak

width calibration. For more information on the calibration process and estimated un-

certainties of peak measurements made with this spectrometer see Ref. 219. All core

level positions were referenced to the Fermi level of the FTO. While under ultra-high

vacuum conditions, further surface treatment was performed to remove surface con-

taminants. This was done via Ar+ ion bombardment while monitoring the C 1s peak

and Sn 3d peaks at regular intervals. Sn 3d5/2 to C 1s peak ratios were compared be-

tween sputter cycles in order to assess the level of surface cleanliness achieved. It

should be noted that due to the small quantity of fluorine present in the samples and
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the relatively low cross section for photoionisation of F 1s photoelectrons, obtaining

reasonable signal-to-noise on the fluorine 1s region takes 10-50 hours of data acquisi-

tion. This is consistent with what has been seen previously.198,220,221

Infrared (IR) reflectance measurements were performed using a Bruker Vertex 70v

Fourier-transform infrared spectrometer at 11° angle of incidence (with respect to the

normal of the sample surface). A CaF2 beam splitter and DLaTGS detector were used.

Spectra were recorded over an energy range of 0.10 to 0.75 eV in order to completely

encompass the plasma resonance cut-off. FTIR measurements were performed under

vacuum (∼ 2 mbar) to minimise the effect of atmospheric water vapour and carbon

dioxide vibrational modes on the recorded spectra. The reflectance was simulated us-

ing the transfermatrixmethod148. The simulation accounted for both s and p-polarized

reflectance, considering a five layer (vacuum/F:SnO2/SiO2/SnO2/soda-lime glass) strat-

ified medium, assuming complete incoherence in the thick glass substrate. The simula-

tion uses a two-oscillator expression for the dielectric function to allow for determina-

tion of optical parameters. Transmittance was measured with a Shimadzu UV-Vis-IR

3700 spectrophotometer over an energy range of 1 to 5 eV.

Ab initio calculations were performed using DFT implemented using the periodic

code, VASP.222–225 The projector‐augmented wave method226,227 was used to describe

the interaction between the core electrons (Sn[Kr], O[He], and F[He]) and the valence

electrons. The hybrid functional PBE0 developed by Adamo and Barone189,228, was

used in order to combat the self‐interaction error and thus allowed for an accurate

description of the band gap of SnO2. Hybrid functionals were consistently shown to

provide improved calculations of both geometry and electronic structure,229–236 and

PBE0 was shown to predict these properties for tin‐based TCOs with a high degree of

accuracy.89,237–243 PBE0 incorporates 25% of exact Fock exchange to the PBE (Perdew,

Burke, and Ernzerhoff)186 formalism.
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The intrinsic defects and extrinsic dopants were simulated using a 2×2×3 supercell

containing 72 atoms together with a Γ‐centred 2 × 2 × 2 k‐point mesh and a 400

eV plane wave energy cutoff. All the defect calculations were spin‐polarized. The

individual systems were deemed to be converged when the forces on all the atoms

were less than 0.01 eV per atom.

4.3 Results and discussion

4.3.1 Transport Mobility

Transport mobilities of the FTO samples as a function of carrier concentration, as

measured primarily by Hall effect, are shown in figure 4.1. For degenerately doped

semiconductors, such as transparent conducting oxides, the dominant carrier scatter-

ing/mobility reducing mechanism in the majority of cases is ionised impurity scat-

tering244,245. To simulate this effect, the degenerate form of the Brooks-Herring for-

mula164,246 has been implemented (equation 2.93, as discussed in section 2.3.2), labelled

ionized impurity (II) in figure 4.1. All donors are assumed to be ionized and have a

charge state of ZD = 1, corresponding to substitutional fluorine, FO. Other scatter-

ing mechanisms have been taken into account and are shown in figure 4.1. These

are acoustic deformation potential (ADP)57,247, longitudinal polar-optic phonons (LPO)

(using the formalism set out by Low and Pines248 and adapted by Fonstad and Rediker

for SnO2
57, however a number of other approaches do exist249,250) and grain boundary

scattering for both degenerate251 (IG(Deg)) and non-degenerate252 (IG) systems. The

effects of neutral impurities, and other phonon effects were found to be negligible.

Individual carrier scattering mechanisms are modelled and displayed in Figure 4.1

alongwith the combined transport mobility calculated according toMatthiessen’s rule.

This approach assumes the scattering mechanisms are independent of each other. All
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Figure 4.1: Transport data and simulation for Hall mobility versus carrier concentration of FTO. (a) displays all

theoretical curves calculated over a wide carrier concentration rangewhilst (b) shows only the combined theoret-

ical model, the effect of compensation and the experimental data over the carrier concentration range relevant

to the data. Model curves of dominant scatteringmechanisms result from successive addition viaMatthiessen’s

rule. The scatteringmechanisms displayed are longitudinal polar-optical (LPO), acoustic deformation potential

(ADP), grain boundary for both the degenerate (IG(Deg)) and non-degenerate case (IG), ionized impurity (II), and

the effect due to compensation in the system.

curves have been calculated using a band-edge effective mass of mr = 0.27m0
253 and

a relative static dielectric constant of ϵ(0) = 12.2254. The band-edge effective mass

and dielectric constants are assumed to be isotropic for these polycrystalline films57.

The non-parabolicity of the conduction band was also accounted for using a carrier
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density-dependent effective mass43.

As shown in Figure 4.1, ionized impurity scattering becomes the dominant mobility

limiting mechanism in SnO2 above a carrier density of ∼ 5 × 1019 cm−3. This holds

well with the predictions made by Martinez et al.255 Our data points reside well above

this threshold, indicating the heavily limiting effects of grain boundaries are negligible

for our films. However, even in this regime the theoretical mobilities calculated are

roughly three times higher than those measured. This relationship is supported by

the modelling of temperature dependent Hall effect which can be seen in Figure 4.2.

The results agree well with the work of Haitjema et al.256 who suggest their calculated

theoretical mobility is four times greater than that found experimentally. We attribute

this to the effects of self-compensation in these samples. Self-compensation arises by

the formation of acceptor defects that counter the dopant impurity properties245. The

effects of self-compensation can be included in the transport model utilising a factor

termed the ‘compensation ratio’ (K = NA
ND

), which is simply defined as the ratio of the

number of acceptors to donors present in the material257. This modifies the mobility

limit due to ionized impurities as μII = μII(0)
ZD−|ZA|K
Z2
D+Z2

AK
where μII(0) is the unattenuated

ionized impurity mobility limit and ZD and ZA are the charge state of donors and

acceptors respectively258. If the charge state of the acceptor defect is assumed to be

ZA = −1, this equation reduces to μII = μII(0) 1−K
1+K . Incorporating the compensation

ratio into the model fit (the brown dash-dot curve labelled combined scattering in

figure 4.1) the level of compensation is determined for a singly charged acceptor to be

K ∼ 0.48.

For degenerately doped systems, the carrier concentration is not expected to vary

with temperature due to all carriers being ionized in the temperature range recorded.

This is supported in figure 4.2(a), a straight line has been plotted with the data to act

as a guide for the eye. The same transport model was applied as in figure 4.1, which

134



4.3. RESULTS AND DISCUSSION

1.5x1020

2.0x1020

2.5x1020

3.0x1020

3.5x1020

4.0x1020

4.5x1020

50 100 150 200 250 300
30

35

40

45

C
ar

rie
r c

on
ce

nt
ra

tio
n 

(c
m

-3
)

(a)

(b)

M
ob

ilit
y 

(c
m

2 V
-1
s-1

)

Temperature (K)

Figure 4.2: Temperature dependent carrier transport determined via Hall effect. (a) Carrier concentration as a

function of temperature in the range of 10-300K. (b) Free carrier mobility as a function of temperature.

accounts for ionized impurity scattering, acoustic deformation potential, longitudinal

polar-optic phonons and grain boundary scattering has been plotted in (b). Ionized im-

purity scattering is the dominant scatteringmechanism as expected, and does not vary

with temperature because all carriers are ionized at all temperatures. Above∼125K the

effect of longitudinal polar optical carrier scattering becomes much more important

than at low temperatures which is evident in the downward curvature of the simula-

tion lines.

Resistivity can be determined from carrier density (via either Hall effect) and mo-

bility (obtained via Hall effect) measurements by ρ = 1
neμ . Using both the data points

and model curves from figure 4.1, resistivity is plotted as a function of carrier concen-

tration seen in figure 4.3. The combined scattering curve (brown dashed curve) is de-

termined via Matthiessen’s rule, combining the main scattering mechanisms present

for degenerate FTO, i.e. ionized impurities, grain boundaries and phonon effects. This

represents the theoretical minimum resistivity possible for FTO. The solid red curve

displays the compensated curve fitted to the data. The compensated curve accounts
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Figure 4.3: Transport data and simulation of resistivity and carrier density as determinedvia Hall effect and SIMS.

The uncompensatedmodel is shown as a dashed curvedwhilst the compensated (K=0.48) curve is solid.

for the effects of compensating acceptor defects determined to be due to the fluorine

interstitial. These defects limit the mobility at a given carrier concentration, negating

the intended effects of heavy dopant incorporation.

4.3.2 Theoretical Prediction of Defects

Hybrid density functional theory calculations have been performed to determine the

formation energies of a range of likely intrinsic and extrinsic defects states in tin diox-

ide as a function of the Fermi level position. The defect species considered in this

study are substitutional fluorine (FO), interstitial fluorine (Fi), a fluorine substitutional-

interstitial pair ([F-F]O) together with the dominant intrinsic donor and acceptor de-

fects in SnO2 such as the oxygen vacancy (VO) and the tin vacancy (V Sn). All of these

defects are displayed in Figure 4.4 for both Sn-Rich/O-Poor (left) and Sn-Poor/O-Rich

(right) which are at the ‘extremes’ of the chemical potentials, i.e the formation of Sn

metal under Sn-Rich/O-Poor conditions and O2 gas under Sn-poor/O-rich conditions
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and thus the experimental situation is expected to lie somewhere between these two

regimes. In each plot the valence band maximum (VBM) is set to EF = 0 eV and the

onset of degeneracy occurs from the conduction band minimum (EF = 3.6 eV) indicated

by the graded orange area.
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Figure 4.4: The calculated formation energies as a function of Fermi level position for Sn-Rich/O-Poor (left), at
900K and 1 atm (middle) and Sn-Poor/O-Rich (right) growth conditions. In each regime the VBM is set at 0 eV and

the conduction band is denoted by the orange area with the CBM at 3.6 eV. The dashed black line shown in the

middle plot (900K, 1 atm) represents the Fermi energy at the point where the F+O and F−i lines cross. The solid

dots indicate the transition levels from charge state q to q′, ε(q/q′).

Under both growth regimes the oxygen vacancy (VO) acts as the lowest formation

energy intrinsic donor, behaving as a ‘deep’ defect with a negative-U behavior (the

2+/0 transition level occurs ∼ 0.76 eV below the conduction band minimum (CBM))

meaning that VO is unlikely to be a source of conductivity in SnO2 which has been

seen in previous theory62,237,238 and experimental71 studies alike. Oxygen vacancies

have been identified as the intrinsic defect present in undoped TCOs such as In2O3,

ZnO and SnO2 via positron annihilation spectroscopy.259 The neutral charge state for

the tin vacancy (V Sn) in each of the growth regimes has a very high formation energy

and thus will not form or will form in negligible quantities. Under conditions which

favour p-type defects (Sn-Poor/O-Rich) where the formation energy is ∼8.37 eV. This

defect lies ultra deep in the band gap where the 0/1- lies ∼1.75 eV above the VBM.

Under Sn-Rich/O-poor conditions substitutional fluorine (FO) is the lowest forma-
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(a) (b)

Figure 4.5: The calculated partial charge densities of (a) F+O and (b) F−i down the {010} and {001} directions re-

spectively. The Sn (grey) andO (black) atoms are depicted using a stick model for clarity, whilst the F atoms are

coloured red (FO) and pink (Fi) corresponding to the defect colour used in Figure 4.4. Charge densities of 0.001

eVÅ−1 and 0.02 eVÅ−1 were used for (a) and (b) respectively.

tion energy donor and is shallow with the 1+/0 transition occuring ∼0.76 eV above

the CBM and the 0/1- level occuring∼2.09 eV above the CBM. Figure 4.5a displays the

partial charge density of FO in the neutral charge state (F0
O) showing the delocalisation

of electron density in the conduction band, consistent with the resonant nature of sub-

stitutional F. There is also negligible distortion to the SnO2 lattice as shown in Figure

4.5a giving rise to the low formation energy of FO. The 1- charge state in this case does

not act as an acceptor but the extra electron is instead donated to the conduction band.

Interstitial fluorine (Fi) was found in the calculations to distort from the ‘perfect’ inter-

stitial site towards a lattice oxygen site causing a displacement of the oxygen (Figure

4.5b). Figure 4.5b also shows that the electron density is highly localised in a p-orbital

on the Fi and on the two opposing O p-orbitals, thereby trapping charge. This defect

was found to be a very deep donor state as the 1+/0 transition occurs ∼2.30 eV below

the CBM. At Fermi energies above the CBM, V Sn begins to compensate FO (∼1.7 eV
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above the CBM) thus negating the extra electrons and trapping the Fermi level at this

point. Another species, the fluorine substitutional-interstitial pair which have been

postulated theoretically at high concentrations and seen experimentally via simple

changes in lattice parameters has also been calculated alongside FO and Fi.214,217,260

The [F-F]O defect possesses a relatively high formation energy and acts as an ultra

deep donor with the 1+/0 charge state lying 3.2 eV below the CBM.

Under Sn-Poor/O-Rich conditions, the formation energy of FO is raised and those of

Fi and V Sn are lowered. Under these conditions, the F−i and F+O defect states cross at

∼ 0.03 eV above the CBM trapping the Fermi energy at this point; this ‘self-compensation’

mechanism has been seen to occur in anatase TiO2 also229. At higher Fermi energies,

V 4−
Sn crosses the F+O line at ∼ 0.23 eV above the CBM potentially causing further com-

pensation. The formation energies of the [F-F]O defect charge states remain the same

over the chemical potential range and the neutral charge state occurs at a lower for-

mation energy than FO under Sn-poor/O-rich conditions.

Themiddle plot in Figure 4.4 represents the realistic growth conditions underAPCVD

at a temperature of ∼900 K and a pressure of 1 atm. These conditions lie somewhere

between the extremes of the chemical potentials discussed previously and as such, the

defect landscape transitions accordingly. The crossing point of the F+O and F−i defect

states now occurs at ∼ 0.55 eV above the CBM (shown by the dashed black line at

EF=4.15 eV) and above this point, compensation occurs.

In addition to the DFT calculations, we have calculated the partial charge densities

for both the F+O and the F−O defect charge states. Here it is shown that the electron

density is delocalised when the F substitutes an oxygen and is localised when F is

in an interstitial position. F−i also displays the relatively sizeable lattice distortion

caused by the localisation of two electrons on the F atom and two adjacent O atoms.

This depicts interstitial F as a deep acceptor (F−i ), leading to the decrease in mobility
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seen when self-compensation occurs for a Fermi level of ∼4.1eV above the valence

band maximum.

The inset of Figure 4.8 (see section 4.3.3) shows the absorption coefficient, α, which

is calculated from the transmission data and film thickness. The optical gap is deter-

mined to be 4.2 eV from linear extrapolation of α2 versus photon energy. Accounting

for the valence band dispersion, the Fermi level is found to be EF = 4.1 eV above the

valence band maximum (VBM) corresponding to the point where F+O begins to be com-

pensated by F−i which is in excellent agreement with the theoretically calculated value

of 4.15 eV at 900 K, 1 atm. The charge state of Fi in this regime is ZA = −1, justifying

the initial assumption applied in the transport model and the compensation ratio of

K = 0.48.
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Figure 4.6: Experimental and theoretical total density of states (TDOS) for the valence band spectrum of FTO.

The feature at∼ 3 eV is associated with Sn(II) lone-pair distortion261, which forces splitting of the energy levels

according to the revised lone pair-model262. Because this represents a sub-stoichiometric coordination of the Sn,

this is not predicted in the calculation.

Because the substrate is made from soda lime glass, the optical transmission spectra

may be affected by absorption from the substrate around 4 eV, very close to the absorp-

tion edge of SnO2. To give confidence in the measured optical gap, the valence band
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maximum to Fermi-level position was measured using XPS also (Figure 4.6). Despite

the material being a degenerate semiconductor, there are not enough occupied con-

duction band states to see conduction band emission (hard XPS may assist in this as

the s states of the CBMwill be relatively stronger. However, no HAXPES valence band

spectrum was recorded for FTO in this thesis). Cross-section effects may contribute

to the reduction of the intensity of this state. However, due to its highly conducting

nature, we expect no charging issue and so the zero of the binding energy scale should

align with the Fermi-energy. A linear extrapolation to the leading valence band edge

shows a valence band onset at 3.7 eV. However, this does not account for the resolution

of the analyser, or the lifetime of the states. Instead, the theoretical total density of

states (DOS) after broadening and cross-section correction is superimposed. Because

the DOS is calibrated for the VBM at 0 eV, a shift of 4.2 eV was required to match it to

the data. This indicates a VBM to Fermi-level gap of 4.2 eV (XPS samples all occupied

electronic states so no dispersion correction was required as was applied to the optical

data). This is in excellent agreement with the gap determined from the optical data,

and the theoretically determined Fermi-level pinning point.

4.3.3 Core-Level XPS and Optical Reflectivity

In order to probe experimentally for evidence of Fi, high-resolution core-level XPS

spectra of the Sn 3d5/2, O 1s and F 1s regionswere recorded for degenerately doped FTO

(n= 4.27× 1020 cm−3). All of these spectra were recorded after a low energy Ar+ sput-

ter to remove surface contamination. The level of contamination was monitored by

taking survey spectra between sputter cycles. A noticeable reduction of a high binding

energy component of the F 1s was also observed after sputtering. We attribute this to

surface contamination associated with fluorine bonded to carbon, consistent with the

large shift to higher binding energy seen for fluorocarbon species elsewhere122,263,264.
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Heavily-dopedwide band-gap semiconductors such as TCOs display almostmetallic-

like properties in the sense that they possess a large density of free carriers. This needs

to be considered in the fitting of the core-level spectra, but is often ignored. At the

high doping levels (n > 1020cm−3) present in our samples, plasmon loss features are

commonly observed which manifest as a high binding energy component, represent-

ing the fraction of photoelectrons that have lost energy to the collective excitations of

the free electron gas during photoemission from the material. However, interpreting

these loss peaks in XPS is notoriously difficult due to their complex nature, with many

different approaches having been employed265.
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Figure 4.7: XPS spectra of the Sn3d5/2 andO1s core levels of FTO (n= 4.27 × 1020cm−3) measured after argon
plasma sputtering to remove surface contaminants. Two peaks are used to fit the data in each spectrum, a low

binding energy component representing the un-attenuated peak and a high binding energy component represent-

ing the energy loss of the core-level to the collective free carrier gas.

Here we employ the fitting procedure of Egdell et al.105,106 who base their analysis

on the Kotani-Toyazawa screening model107. A comprehensive discussion regarding

the merits and drawbacks surrounding this approach can be found in section 2.1.3,

and in the literature109,266. Using this approach, both the Sn 3d5/2 and O 1s core-level

peaks (figure 4.7) are fitted using two symmetric Voigt functions, one component at

lower binding energy for the photoelectrons with no energy loss to plasmons, and

plasmon-loss component at higher binding energy. A Shirley background is also used
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in the fitting141.

In order to achieve a meaningful fit to the data, the energy separation between

the plasmon loss peak and the no loss component is required. This separation is

determined by the free carrier plasmon frequency. The surface plasmon frequency

can be determined from high resolution electron energy loss spectroscopy (HREELS)

and dielectric theory simulations267,268, or the bulk plasmon frequency from infra-

red reflectivity measurements and modelling269. IR reflectivity spectra of the FTO

(n = 4.27× 1020 cm−3) is displayed in figure 4.8.
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Figure 4.8: IR reflectivity data (circles) and optical model simulation (solid line) of FTO (n = 4.27 × 1020cm−3)
deposited on a glass/SnO2/SiO2 substrate. The inset plot displays optical absorption data with a linear extrapola-
tion estimating the absorption onset. This shows an optical gap of 4.21 eV, corresponding to a Fermi level position

4.10 eV above the VBM.

The transfer matrix method-simulated reflectivity spectrum seen in figure 4.8 al-

lows for the determination of the plasmon energy ωp. The extracted plasmon energy

is ωp = 0.50 eV, with a corresponding damping parameter of γp = 77.0 meV. The

equation for the plasmon energy is given as ωp =
√

ne2
m∗ϵ0ϵ(∞)

with the surface plas-
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mon energy varying only by a factor of
√

ϵ(∞)
ϵ(∞)+1 . Using a relative high frequency

dielectric constant of 3.9, this results in a surface plasmon energy of ωsp = 0.45 eV as

determined from the simulated plasmon energy. As emitted photoelectrons originate

from up to 10 nm from the surface, the separation between screened and unscreened

components is expected to lie in the region of 0.45 eV ≤ ΔEp ≤ 0.50 eV.

Utilising this information, the fitting procedure for the Sn 3d5/2 and O 1s core lev-

els in figure 4.7 involved simply constraining the no loss peak to plasmon loss peak

energy separation to the determined plasmon energy range and allowing parameters

to be optimised in the fitting procedure in order to achieve the best least squares fit.

As can be seen from figure 4.7 there is excellent agreement between the fit and the

experimental data. Both the Sn 3d5/2 and O1s peaks display sizeable plasmon loss

components at 0.5 eV higher than the no loss peak. Attenuated peaks are situated at

486.9eV and 530.9eV for Sn 3d5/2 and O 1s respectively, in good aggreement with other

reported binding energy values255,270,271.

The full width at half maximum (FWHM) of the core-line components for the Sn

and O are both under 1.0 eV. The full-widths of the high-binding energy components

are broader than this owing to the finite plasmon lifetime broadening which has to

be considered in addition to the natural line width and instrumental broadening of

the core level peak. The plasmon loss peaks display greater Lorentzian character than

the low binding energy peaks. It is evident when the plasmon loss mechanism is

accounted for in the XPS fitting that only a single Sn-O chemical environment can

be discerned in the Sn 3d5/2 and O 1s spectra. This is expected given the bonding

structure of SnO2. Whilst a Sn-F bond peak could be expected in the Sn 3d5/2, the

fluorine content in these samples is low and so it is not possible to distinguish it here

in the presence of the strong Sn-O signal. The asymmetric peak shape of the tin and

oxygen regions is commonly seen in reports on FTO205,207,220,221,272, although they are
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very rarely associated with plasmon loss events taking place.

Turning attention now to the F 1s core level region, the same constraints are ap-

plied as with the Sn 3d5/2 and O 1s core levels, the data for which is shown in figure

4.9. A much reduced fluorocarbon species is still present, which is likely a result of

the low sputtering energy used (as not to damage the structure of the FTO) not fully

removing the surface carbon, although carbon incorporation into the bulk cannot be

ruled out. Taking this into account, a single no loss core-level peak and associated

plasmon loss peak pair (and additional high binding energy contaminant peak) pro-

vided an extremely poor fit to the data. The shoulder component could not be fitted

well under these constraints. This suggests there is another species of fluorine present

within the material, in addition to the expected substitutional fluorine. In order to fit

the F 1s spectra with two fluorine species present, a similar fitting procedure was used

to that of the Sn 3d and O 1s core-levels. However, in the case of the fluorine it is

acknowledged that both fluorine core-lines will produce plasmon loss features and in

fact it is possible to further constrain the area ratios of the loss feature to its corre-

sponding core-line because electrons originating from these two fluorine species will

experience the same screening from the free electron gas. Carbon at the surface will

not have an associated plasmon loss as electrons originating from the surface will not

interact with the free electron gas in the bulk.

The loss features are again constrained to ωsp ≤ ΔEp ≤ ωp from the respective core-

line peaks. The substitutional peak and the peak labelled interstitial F in figure 4.9 are

constrained to have the same FWHMas each other. The two loss peaks are constrained

to have the same FWHMas each other, but it is allowed to differ from that of the no loss

components. The binding energy positions of the substitutional and interstitial peaks

are determined to be 684.9eV and 685.7eV respectively. As expected, the loss peaks

take on a more Lorentzian character with a larger FWHM than the other components.
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Figure 4.9: XPS spectra for the F 1s core level of FTO (n= 4.27 × 1020cm−3) measured after argon plasma
sputtering to remove surface contaminants. Four peaks were used to fit the data representing substitutional

fluorine (FO), interstitial fluorine (Fi), and two further symmetric peaks representing the energy loss of each of the

core levels to the collective free carrier gas. Additionally a small fluorocarbon species is seen at higher energy.

The fitting is again in good agreement with the data. Multiple data sets from a range

of FTO coatings with varying fluorine content have been fitted using the same fitting

parameters and procedure. The fitting parameters for the XPS data from these other

coatings are consistent with the ones from the spectra shown (see Figure 4.10).

The peak areas of the substitutional and interstitial F 1s peaks are extracted from

the fit and the ratio of the two calculated. This ratio for this particular sample is found

to be Aint
Asub

= 0.47. For six samples analysed with 1.8 × 1020 cm−3 < n < 5.5 × 1020

cm−3, this peak area ratio is found to lie in the range 0.47 to 0.53 (see Figure 4.10). The

peak areas are representative of the concentration of the given species of the material

present in the sample, and hence it is possible to deduce the fraction of the fluorine in-

terstitial is∼0.5 of the substitutional fluorine incorporated into thematerial. This ratio

is remarkably close to the compensation ratio of K = NA
ND

= 0.48 found from transport
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Figure 4.10: Ratio of interstitial to substitutional F as a function of free carrier concentration for a number of FTO

samples as determined using XPS andHall effect.

modelling in Fig. 4.1. Therefore, the experimental XPS evidence strongly supports the

hypothesis of a compensating defect, and is consistent with the proposed defect of the

fluorine interstitial determined as the lowest formation energy compensating defect

by the DFT. This finding is also supported by higher energy photoemission measure-

ments (6450 eV), although contributions from Na-F contamination, likely originating

from the glass, also contribute heavily to the line shape, see Figure 4.11. Despite this,

the narrower line shape demonstrates the asymmetry caused by multiple peaks better

in the HAXPES data.

The fluorine interstitial acting as a singly charged compensating acceptor has been

a well established hypothesis196,212,213,217,260 for FTO, with researchers even providing

similar evidence from XPS measurements such as Suffner et al.214 on FTO nanopar-

ticles. However, Suffner et al. did not include the effects of plasmon losses in their

fitting and no transport properties of the material were reported. To our knowledge,

nobody has yet made the connection, quantitatively or otherwise, between the trans-
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Figure 4.11: HAXPES spectra of F 1s core level region for FTO (n=4.27×1020 cm-3).

port compensation behaviour and the XPS chemical analysis that we have performed

for FTO in this work. In addition to this, the DFT defect chemistry analysis has been

clearly instructive in both the transport modelling and XPS fitting, proving to be a

powerful tool in the determination of the likely defect species and in understanding

the charge state of the defect which directly relates to the transport modelling. It is

also worth reiterating that the effects of plasmon losses in FTO as seen in XPS anal-

ysis have been scarcely touched upon in the literature. This could easily lead to the

misassignment of spectral features.

From the above, it can be inferred that the carrier density of these FTO films is

heavily compensated, with the measured free carrier concentration being about one

third of the total fluorine incorporation - for every two substitutional F donors, there

is approximately one interstitial F acceptor, resulting in roughly one free electron for

every three F atoms. Or, more precisely, for our range of substitutional to interstitial F

1s area ratios of 0.47 to 0.53, there are on average between 2.9 and 3.1 F atoms per free
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electron. Indeed, this is supported by comparing the F contents estimated from XPS

with the free electron densities from Hall effect. From XPS, the F content in the FTO

films is estimated to be in the range 0.7-1.7 atomic % (but with considerable uncertainty

in the absolute atomic % values). Considering the atomic density of SnO2 of 8.4× 1022

cm−3, this corresponds to F concentrations in the range of around 5.9 × 1020 to 1.4 ×

1021 cm−3. Comparing this to the Hall carrier concentration range of 1.8–5.5 × 1020

cm−3 reveals between 2.5 and 3.3 F atoms per free electron, in agreement with the

expectation of the F concentration being about three times the carrier density.

While the XPS provides a reasonably strong indication of the presence of intersti-

tial fluorine, the physical interpretation is muddied somewhat due to the presence of

plasmon losses etc. To provide additional evidence of this finding with greater accu-

racy than XPS and without the limitations of the surface sensitivity of XPS, ToF SIMS

was used. F-ion implanted standards were used in combination with profilometry (for

depth calibration) to obtain the atomic concentration of F. SIMS was performed on

typical FTO samples with a Hall carrier concentration of n = 4.05× 1020cm−3 and n =

4.27 × 1020 cm−3 (corresponding to the sample from which the data was recorded in

figure 4.9). Figure 4.12 shows the SIMS data of the samples and a F-implanted standard.

The y-axis in Figure 4.12 was scaled so that the area under the curve corresponding to

the fluorine ion implanted film is 1× 1016cm−2. This enabled the fluorine concentration

as a function of depth to be determined. The depth-averaged total concentration of F

determined by calibrated SIMS was found to be [F] = (1.08±0.11) × 1021 cm−3 and [F]

= (1.06±0.11) × 1021 cm−3 respectively. The uncertainty is estimated by considering

the uncertainties in the thicknesses obtained from profilometry (±25 nm), the implan-

tation doses (±2%) and the possible matrix effects due to F concentrations in excess

of 1 atomic %. This indicates about 2.5-2.7 F atoms per free electron. This confirms

that the total F content is approximately 3 times greater than the free electron density,

149



4.3. RESULTS AND DISCUSSION

n. Note that the FTO spectra in figure 4.12 display a wavy nature, which is due to

the non-uniformity in the doping method used during deposition. Uniform doping is

assumed in the transport model for simplicity, and because the analysis of the SIMS

is based on an integration over depth, the non-uniformity will not have a bearing on

the total fluorine content.
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Figure 4.12: Calibrated secondary ionmass spectrometry (SIMS) data of the atomic fluorine signal from a typical

FTO sample (nHall= 4.05 × 1020cm−3 and nHall=4.27 × 1020cm−3 corresponding to the XPS data) and a fluorine-

implanted standard (1016cm−2). The x and y-axes have been calibrated to depth (nm) and concentration(cm-3)

respectively.

This additional F content has the effect of reducing the achievable mobility from

a maximum of around μtheory = 120 cm2/V · s to under μexperiment = 40 cm2/V · s

for a carrier density of n ∼ 4 × 1020 cm−3. This has strong implications for the

material performance. With this in mind, it is demonstrated that FTO possesses in-

trinsic limitations on its mobility and carrier density due to this self compensation.

Although these materials display excellent transparency and conductivity properties,

in order to improve industrial-scale TCOs, alternative dopants need to be identified

and their defect chemistry explored in order to find dopants which do not exhibit this
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self-compensating phenomenon inherent to fluorine doping of SnO2. One example of

such a novel dopant (which is the subject for chapter 5), is Mo in In2O3 which gives

higher mobilities than Sn in In2O3 (see Ref. 88). Another example is Ta doping of SnO2,

where for films grown by pulsed laser deposition, mobilities as high as 83 cm2/V · s

have been reported for carrier densities of around 3 ×1020 cm−3 273. Such values are

consistent with the transport modelling for the uncompensated case shown in Fig. 4.1,

but have yet to be realised using a scalable deposition method. It is also noted that the

mobility of molecular-beam epitaxy-grown Sb-doped SnO2 with free electron density

of 2.6 × 1020 cm−3 is limited to 35 cm2/V · s even though calibrated SIMS indicates

an Sb concentration of 2.8 × 1020 cm−3, suggesting negligible compensation from Sb-

related defects274. For the Sb-doped case, other mobility-limiting mechanisms may be

present, such as hybridization of Sb-orbitals with the Sn-dominated conduction band

states, leading to increased electron effective mass and reduced mobility.

4.4 Conclusion

Heavily n-type fluorine-doped tin dioxide (n> 1× 1020 cm−3) deposited on soda-lime

glass via APCVD has been shown to exhibit inherent self-compensation, limiting the

achievable free electron density, mobility and resulting conductivity. Modelling of mo-

bility versus carrier density data from Hall effect measurements indicates ionized im-

purity scattering dominates and the mobility is limited to<40 cm2/V·s by the presence

of acceptors, with a compensation ratio of K = 0.48. Density functional theory forma-

tion energy calculations determined interstitial fluorine in the -1 charge state to be the

lowest formation energy acceptor defect for degenerately doped FTO. Core-level XPS

measurements and analysis were performed on FTO, including paying particular at-

tention to the modelling of plasmon loss components of core level lines which result

from energy loss to the collective excitations of free carriers in degenerately-doped
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semiconductors. A high binding-energy shoulder component was found in the F 1s

core level-region and attributed to interstitial fluorine, Fi. This component has half

the intensity of that due to substitutional donor fluorine, FO, consistent with the deter-

mined compensation ratio. This quantitative connection between fluorine chemical

analysis and transport modelling has not previously been made. Hence, new evidence

of the fluorine interstitial being the defect responsible for FTO falling well short of

the theoretical ionized impurity scattering-limited mobility of>100 cm2/V·s has been

provided. Quantitative analysis on F concentrations of samples made through Hall

effect, XPS and SIMS provides further evidence of compensation in FTO. With this in

mind, it is clear that novel dopants are required to avoid these inherent limitations to

conductivity seen in FTO.
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5
Replacing Sn:In2O3 with Mo:In2O3 -

Resonant doping in oxide

semiconductors

Films were grown via AACVD by S. Sathasivam in the group of I. Parkin at University

College London. S. Sathasivam also performed SEM measurements. Density func-

tional theory calculations were carried out and analysed by B. A. D. Williamson in

the group of D. O. Scanlon at University College London. Undoped-In2O3 films were

sputtered by T. J. Featherstone (University of Liverpool) and ion implanted at Surrey

Ion Beam Centre by N. Peng. Secondary ion mass spectrometry measurements were

performed byM. Farnworth at Pilkington Technology Centre and data analysed by the

author. HAXPES measurements were performed by the author, T. J. Featherstone, H.
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J. Edwards (University of Liverpool) and A. Regoutz (University College London), at

IO9 beamline, Diamond light source with the expertise of beamline scientists D. Dun-

can and T-L. Lee. The HAXPES data was analysed by the author. XAS measurements

were performed at beamline 23-ID of the National Synchrotron Light Source II, by Z.

W. Lebens Higgins in the group of L. F. J. Piper at Binghamton University, who also

performed the analysis of this data set. The results presented here are published as:

J. E. N. Swallow, B. A. D. Williamson, S. Sathasivam, M. Birkett, T. J. Featherstone,

P. A. E. Murgatroyd, H. J. Edwards, Z. W. Lebens-Higgins, D. A. Duncan, M. Farn-

worth, P. Warren, N. Peng, T-L. Lee, L. F. J. Piper, A. Regoutz, C. J. Carmalt, I. P.

Parkin, V. R. Dhanak, D. O. Scanlon and T. D. Veal, Resonant doping for high mo-

bility transparent conductors: the case of Mo-doped In2O3. Mater. Horiz., 2019, DOI:

10.1039/C9MH01014A.

5.1 Introduction

The global TCO market is predicted to have an annual growth rate exceeding 17%,

reaching $8.04 billion by 202223. The demand for higher conductivities and the volatile

and high price of indium has led to the search for new TCO materials.275,276 However,

as shown in Fig. 5.1, alternative indium-free transparent conductors such as graphene,

carbon nanotubes and oxide/metal/oxide layers have failed to surpass or even reach

ITO’s performance276–278; ITO continues to account for 60% of the transparent conduc-

tor market and 60% of global indium use.

Given this failure of the alternative transparent conductors, it is remarkable that

In2O3 doped instead with molybdenum, giving double the conductivity of ITO, has
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Figure 5.1: Sheet resistances and optical transmittances of transport conducting electrodes. a Sheet resistance

Rs as a function of film thickness for different transparent conducting films276: PEDOT-PSS279; ITO films280,281;

SWNTs280; Ag nanogrid280; oxide/Ag/oxide films282; and graphene280. This Figure is based on Ellmer’s276 with

data points for IMO added and highlighted by the red ellipse. The IMOfilms have the lowest sheet resistances.

The dotted diagonal lines denote constant resistivity values. b Spectral transmission of different transparent

electrode films: single walled carbon nanotubes (SWNT) (23Ω/□), Ag nanowires (24Ω/□), aluminium-doped

ZnO (AZO, 50Ω/□), ITO (12Ω/□),282 SnO2/Ag/SnO2 (7Ω/□),283 comparedwith ourmeasurements of IMO

(2Ω/□), ITO (3.2Ω/□), and fluorine-doped SnO2 (FTO, 15Ω/□). All materials which approach IMO’s sheet

resistance havemuch inferior infrared transparency.

not been adopted by industry in spite of first being suggested over 15 years ago. Re-

ports of Mo-doped In2O3 have been sporadic and have contained little insight into the

origins of its superior performance. In fact, reports of IMO showing promising per-

formance seem to have been treated merely as a curiosity, and thus IMO was never

identified as a research direction deserving of further detailed investigation. Perhaps

this lack of research and dearth of understanding has prevented industry overcom-

ing its inertia to substitute an established high performing material for a significantly

better one. Here, a comprehensive explanation is presented of why IMO outperforms

ITO. This work opens the pathway for immediate commercial adoption of IMO, and

for the development of other high performing TCOs.
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5.2 Experimental and Theoretical Methods

Material characterisation

Films were deposited on SiO2 coated glass soda lime glass (NSG) via AACVD. This

methodology is described elsewhere.88 Film durability was tested and compared to

that of AACVD ITO and commercial ITO coated glass which proved comparable. IMO

film thicknesses ranged from 670–800 nm while ITO films ranged from 700—1600 nm.

Film thickness was determined by cross sectional scanning electronmicroscopy (SEM)

using a JEOL JSM-6301F field emission SEM at an accelerating voltage of 5 kV. Cross-

sectional images were taken from unmasked samples. X-ray diffraction (XRD) mea-

surements were performed using a Rigaku SmartLab instrument, and patterns col-

lected over 20◦ < 2θ < 65◦ with a step size of 0.02◦. The patterns shown in figure 5.2

confirm the presence of In2O3 of the cubic bixbyite phase. The films grew with a (100)

preferred orientation, as indicated by the strong peak from the fourth order reflection

from the (100) planes seen in figure 5.2.

Hall effect measurements (for the determination of resistivity ρ, charge carrier mo-

bility μ and free carrier concentration n) were performed at room temperature with a

Keithley 2182A nanovoltmeter and 6220 current source at a maximum field strength

of 0.8T in the van der Pauw geometry. Time of flight secondary ion mass spectrome-

try (ToF-SIMS) was performed on a IonTof TOF-SIMS 5 instrument to determine the

dopant concentration as a function of depth. Pulsed Bi3+ analysis ions were used

to bombard the sample surface while a 1 keV Cs source was used as the sputtering

beam. Analysis was performed on a 50.8 × 50.8μm2 sputter area. The SIMS data

was calibrated using ion implanted standards, implanted at Surrey Ion Beam centre.

Undoped sputtered In2O3 was ion implanted with Sn at 1.8 MeV (corresponding to a

depth of∼406 nm), and Mo at 1.5 MeV (corresponding to a depth of∼402 nm). Doses
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Figure 5.2: X-ray diffraction patterns of ITO and IMO.

of 3.57 × 1014cm-2, 3.57 × 1015cm-2, and 3.57 × 1016cm-2 were selected here. Mo was

relatively difficult to detect at the dopant concentrations in the films in SIMS, with

negligible signal being detected from our IMO films for Mo+ and CsMo+ ions. How-

ever, a clear but noisey signal could be obtained from CsMoO+ and CsSnO+ ions, and

so these were used to determine the elemental contents which were averaged over the

depth of each film.

Infrared (IR) reflectance measurements were performed using a Bruker Vertex 70v

Fourier transform infrared spectrometer. All measurements were performed at 45◦

angle of incidence, utilising the Pike Veemax II accessory, and S-polarising filter. All

FTIR measurements were performed with a near-IR light source, CaF2 beam splitter

and DLaTGS detector. Transmission measurements were obtained with use of a Shi-

madzu UV-Vis-IR 3700 spectrophotometer with an integrating sphere detector. Hard

x-ray photoelectron spectroscopywas performed at the I09 beamline at Diamond Light
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source. Measurements were performed at both 6.45 keV and 2.15 keV for different

depth dependence, and to probe the different orbitals through the variation of their

photoionization cross sections. Photoelectrons were collected and analysed using a

SCIENTA EW-4000 electron energy analyser. The sample was irradiated in grazing

incidence geometry, that is an angle of ∼ 3◦ between x-ray beam and sample surface.

The energy calibration and resolution of the system were determined from a polycrys-

talline Au foil. The energy resolution was determined by fitting a Gaussian-Fermi

function convolution to the Fermi edge, and was found to be 300 meV. Inverse photoe-

mission spectroscopymeasurements were performed using a PSP VacuumTechnology

BaO cathode dispenser electron source and an isochromat NaCl photon detector, both

at 45◦ to the sample normal. Energy calibration was performed using the known en-

ergy position of the lowest occupied molecular orbital of multilayer C60 deposited in

situ and the spectrometer resolution determined from a polycrystalline Au foil was

1.27 eV. The IMO and ITO samples were annealed to 300◦C for 2 hours in preparation

for IPES measurement.

Theoretical and modelling methods

Hybrid density functional theory (DFT) calculations were carried out on In2O3 us-

ing a plane-wave basis within the periodic code, VASP.222,223,284,285 Screened non-local

exchange-correlation density functional (HSE06) is used.286 The projector augmented

wavemethod (PAW)287 was used to describe the core and valence electrons interaction.

The band unfolding code BandUp was used to obtain a primitive cell representation

of the band structure288,289.

Sample plasma energies were extracted from IR reflectivity measurements utilizing

a two-oscillator dielectric model,290 (see equation 1.6) and transfer matrix method for

optical simulation148. This methodology is described in detail in section 2.2.4. A four

layer (vacuum/In2O3/SiO2/soda-lime glass) stratified medium was used in the model,
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with complete incoherence being assumed in the glass substrate and partial incoher-

ence in the vacuum/In2O3 interface. The absorption spectra were calculated from the

transmission spectra of the samples using the Beer-Lambert relation. Optical gaps

were extracted from the absorption spectra using a method proposed by Hamberg33,

illustrated by Dolgonos et al.147 which better accounts for degeneracy in materials

compared to the more common Tauc analysis (see section 2.2.3). A carrier statistics

model was used in order to relate optical gap and plasma energy through the density-

of-states average effective mass, see equation 1.11.

5.3 Results and Discussion

5.3.1 Transport and Material Properties
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Figure 5.3: Transport properties. aResistivity versus free carrier concentration for polycrystalline ITO and IMO

films. Inset shows a photograph of ITO and IMOfilms. bHall mobility versus free carrier concentration. Data

from this work are circles. Data plotted as stars are taken from the literature for IMO88,291–295 and ITO88,296–301

films. In this carrier concentration regime, the electronmobility is limited by ionized impurity scattering.

Comparing Mo and Sn dopants in In2O3 (Fig. 5.3), it is found that higher mobilities
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and lower resistivities are universally obtained with Mo. Fig. 5.3, which shows the

Van der Pauw resistivity and mobility as a function of carrier concentration, includes

data from chemical vapour-deposited films from this work as well as those from other

studies of polycrystalline IMO and ITO. Film thickness varied from 670–800 nm for

IMO and 700–1600 nm for ITO as determined by cross-sectional scanning electron

microscopy (Fig. 5.4).

Figure 5.4: Typical cross-sectional SEM image for both IMO (top) and ITO (bottom), used to determine film thick-

ness for the range of films in this study.

Calibrated secondary ion mass spectrometry (Fig. 5.5) indicates that the dopant con-

centrations are the same as the free electron densities, implying that within the uncer-

tainty there is one free electron per Mo atom in IMO and Sn atom in ITO. The dopant

concentrations averaged over the depth of each film are compared with the Hall effect
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electron concentrations in the inset of the figure. Previously published Sn concentra-

tions versus electron densities for ITO films are also shown for comparison. While

many of the data points fall close to the dashed line corresponding to equal dopant

and electron concentration, many of the ITO data points at high dopant concentration

lie to the right of the line, indicating significantly higher dopant concentration than

electron density. Therefore, while compensation can be present in ITO films partic-

ularly at very high dopant densities (over 1021cm−3), our SIMS and Hall effect results

indicate that significant compensation due to excess density of dopant atoms is not

present in our films.
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Figure 5.5: Dopant concentration versus depth for IMO and ITO films determined by secondary ionmass spec-

trometry. TheMo and Sn concentrations are calibrated usingMo and Sn ion implanted standards. The inset

shows the dopant concentration from SIMS versus electron concentration fromHall effect measurement for our

IMO (red) and ITO films (blue). This indicates that, to within themeasurement uncertainty, there is one electron

per dopant atom. Previously published data on ITO films is also shown for comparison.302

For IMO, a resistivity as low as 0.8×10-4 Ωcm has been achieved, almost half of the

1.4×10-4 Ωcm for ITO. This is enabled by IMO’s extremely high mobilities displayed

in Fig. 5.3b. Mo clearly outperforms Sn as a dopant, with IMO films having mobilities
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of up to 150 cm2V-1s-1 compared with the 80 cm2V-1s-1 for ITO. Table 5.1 provides

further details of electronic and optical properties. From all available results, a trend of

twice the conductivity for IMO over ITO of the same carrier concentration is apparent.

Therefore only half the amount of indium is required for IMO films with both better

optical properties and improved conductivity over ITO, giving the potentially huge

savings in materials and costs.

Table 5.1: Important physical parameters for the series of IMO and ITO films used in this study. These are carrier

density (n), free carrier mobility (μ), resistivity (ρ) and sheet resistance (RS) as determined by four point probe
andHall effect measurements, thickness (d) as determined by cross sectional SEM and confirmed by IR reflec-

tivity modelling, optical transmission at 550nm (T550), the Haacke figure of merit (ΦH) determined fromRS and
the optical transmission at λ = 550nm, and the plasma frequency from infrared reflectionmeasurements and

modelling.

n μ ρ RS d T550 ΦH ωp

(1020cm−3) (cm2V−1s−1) (10−4Ω cm) (Ω/□) (nm) (%) (10−3Ω−1) (eV)
IMO 2.2 94.8 3.0 3.7 800 73.6 12.6 0.51

3.2 110.8 1.8 2.3 750 72.2 16.7 0.63
3.7 122.7 1.4 2.1 670 69.9 13.3 0.65
5.0 107.3 1.2 1.7 700 67.7 12.0 0.69
4.1 99.4 1.5 2.3 670 52.4 0.8 0.71

ITO 2.4 52.0 5.1 3.2 1600 57.7 1.3 0.61
7.0 29.5 3.1 2.8 1100 54.6 0.8 0.82
5.7 28.9 3.8 2.4 1600 51.9 0.6 0.70
6.3 31.5 3.1 2.4 1300 59.5 2.3 0.82
8.3 16.0 4.7 3.9 1200 62.8 2.5 0.87
10.7 9.2 6.3 7.0 900 66.0 2.2 0.93
11.5 16.4 3.3 3.7 900 68.8 6.4 0.93
5.4 24.7 4.7 6.7 700 75.6 9.1 0.68

5.3.2 Optical Properties

The main factor that limits the properties of TCOs is the trade-off between doping

for increased conductivity and consequential decrease in optical transparency due to

band tailing and the raised conduction electron plasma energy. Optical transmission

spectra of IMO and ITO (Fig. 5.6a) show that IMO generally has greater transmission
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at 550 nm (2.25eV), where the human eye is most sensitive (see also Table 5.1). Op-

tical reflection and absorption spectra of IMO and ITO (Fig. 5.7) show similar optical

band gaps (via the method of Dolgonos et al.147), yet the conduction electron plasma

edge from infrared reflectivity lies at strikingly lower energies in IMO, greatly en-

hancing transparency (see also Fig. 5.6a). Plasma frequencies were extracted using a

two oscillator dielectric model and the transfer matrix method for optical simulation.

A four layer (vacuum/In2O3/SiO2/soda-lime glass) stratified medium was used in the

model, with complete incoherence being assumed in the glass substrate and partial

incoherence in the vacuum/In2O3 interface. Due to the nature of specular reflection

by non-flat as-grown films, there is a dip in the intensity of the reflection spectra. This

phenomena has been observed previously and does not shift the plasma edge303,304.

Figure 5.6: Optical transmission and associated properties. aOptical transmission of IMO and ITO films (on 3.6

mm-thick soda lime glass) with a range of carrier concentrations, and a nominally undoped In2O3 film, revealing

greatly enhanced transparency in IMO due to plasma edges lying at lower energies. bOptical gap versus plasma

edge energy of IMO and ITO films, the steeper gradient for IMO indicates a (highly desirable) reduced conduction

bandminimum effectivemass with respect to that of ITO.Model curve lines are calculated using Fermi statistics

with a density-of-states averaged effectivemass. c Schematic representation of the band structure of ITO (left)

and IMO (right) with the same carrier concentration. The IMOhas a narrower conduction band dispersion with

lower band edge effectivemass than ITO and so a higher Fermi level is required to obtain the same number of

states as in ITO. In IMO, the resonant andmidgapMo 4d bands are shown, respectively, by the dashed and solid
red lines. No Sn state is shown in the ITO band structure schematic as the Sn 5s states mix with the states of the
conduction band.

Plasma frequency relates to carrier density and effective mass as ω2
p ∝ n/⟨m∗⟩ and

so these data indicate an inherent difference in the effective masses of conduction elec-

trons between In2O3 doped with Sn and Mo, diverging from the commonly accepted
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rigid band model of doping.
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Figure 5.7: Optical measurements and data extractionmethods. a. Infrared-reflectivity measurements as a

function of photon energy for both IMO and ITO filmswith a range of carrier densities: (1) 2.23×1020 cm−3,
(2) 3.20×1020 cm−3, (3) 5.02×1020 cm−3, (4) 4.14×1020 cm−3, (5) 2.36×1020 cm−3, (6) 6.94×1020 cm−3, (7)
8.29×1020 cm−3, (8) 1.07×1021 cm−3. Dotted lines represent model fit curves used to extract the film plasma

frequency. A dip in each of the spectra comparedwith themodel curves is associated with surface roughness. b.

Typical absorption spectra for IMO (n=4.14×1020cm−3) and ITO (n=6.94×1020cm−3) films. The displayed data
sets exhibit similar energy gaps but very different carrier densities. Both the absorption coefficient α and α2 are
plotted and the optical gaps extracted using themethods originally derived byHamberg et al.33, illustrated by

Dolgonos et al.147

The red-shifted IMO plasma edges are understood after plotting optical gap versus

plasma energy in Fig. 5.6b. Both the IMO and ITO optical gaps increase monotonically

with plasma energy due to band filling; however, the steeper IMO curve indicates a

desirably reduced electron effective mass (a similar dependence holds between optical

gap and carrier density in Fig. 5.8a). This effect is modelled in Fig. 5.6b using carrier

statistics. The plasma frequency is given by

ω2
p =

ne2

ε0ε∞⟨m∗(E)⟩
(5.1)
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where ⟨m∗(E)⟩ is the density of states averaged effective mass accounting for oscilla-

tions of free electrons in the conduction band below the Fermi level EF,

⟨m∗(E)⟩ =
∫∞
0 g(E)m∗(E)f(E, EF)dE∫∞

0 g(E)f(E, EF)dE
(5.2)

where the denominator is equal to the free electron density, n, and f(E, EF) is the Fermi-

Dirac function and g(E) is the non-parabolic density of states derived from the non-

parabolic dispersion relation

E
(
1+ E

Eg

)
=

ℏ2k2

2m∗ (5.3)

The optical gap of a degenerately doped semiconductor is usually determined by the

lowest energy direct transitions between the valence band maximum (VBM) and the

Fermi level in order to account for the conduction band filling. This is complicated for

In2O3 by the transitions from the highest lying valence band states being dipole for-

bidden.25 So to model the observed optical transitions, it was necessary to included an

additional 0.8 eV energy separation between the VBM and the highest valence bands

for which transitions are dipole allowed.

The conduction band minimum (CBM) or band edge effective mass used is 0.22me

as determined previously from angle resolved photoemission and density functional

theory (DFT) calculations.30,31,38 Modelling of the ITO data required a deviation from

the rigid band model by increasing the band edge effective mass incrementally with

Sn-content from 0.22me to 0.40me (in excellent agreement with previous theoretical

predictions in Ref. 38). The carrier density-dependence of the effective mass for IMO

and ITO is shown in Fig. 5.8b. The correspondingly different conduction band dis-

persions in heavily doped IMO and ITO are shown schematically in Fig. 5.6c. The

increasing band edge effective mass in ITO is consistent with the additional decrease
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Figure 5.8: aOptical gap as a function of carrier density for IMO and ITO films. Themodel curves are shown as

dashed lines, and are calculated in the sameway as that for Fig. 5.6 using equation 5.2. bCalculated band edge

and density-of-states averaged effectivemasses for IMO and ITO. The ITO values deviate from those of IMO at 2

× 1020 cm−3 as this is the lowest carrier density of ITO studied here. We expect that a smooth transition to occur

between IMO and ITO values will occur in the 1019 cm−3 carrier density range as the Sn concentration increases
and themixing between Sn 5s and CBM states increases. cMobility as a function of carrier density. Measure-

ments presented from this work are displayed as circles whilst data taken from the literature for IMO88,291–295

and ITO88,296–301 samples deposited via variousmethods are stars. Model curves are calculated using the degen-

erate form of the Brooks-Herringmodel for ionized impurity scattering, taking into account conduction band

non-parabolicity44,305.

in mobility as carrier concentration increases seen in Fig. 5.3b and modelled in fig-

ure 5.8c. In contrast to ITO, the IMO data in Fig. 5.6b is well reproduced using a fixed

band edge effective mass of 0.22me for all Mo concentrations.

Figure. 5.8b shows the calculated band edge and DOS-averaged effective masses for

IMO and ITO using equation 5.2. Under Mo doping there is negligible hybridisation

between the CBM and Mo 4d dopant states and this means that the band edge effec-

tive mass is constant over the whole carrier concentration range. In contrast, as Sn

dopants are incorporated into In2O3, the hybridisation between Sn 5s states and the

host conduction band around the CBM increases. For ITO, as doping increases, a sharp

change is seen in the band edge effective mass, consistent with calculations by Walsh

et al.38 Here, a carrier density for the onset of hybridisation of n = 2 × 1020 cm−3 is

arbitrarily assigned as we have no Sn doped samples below this carrier density.

Above the Mott criterion (n ∼ 2× 1018 cm−3), the DOS averaged mass increases for

both IMO and ITO. Again they diverge at n = 2 × 1020 cm−3 from which the band

edge effective mass of ITO is rapidly increased in order to model the data. Free carrier
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mobilities as a function of carrier concentration are plotted in figure 5.8c. Theoretical

scattering limits are calculated using the degenerate Brooks-Herring model, modified

by Zawadzki162,163,305 to account for conduction band non-parabolicity, and simplified

by Pisarkiewicz et al.44 (see section 2.3.2). The band edge effective mass variation

determined for ITO is applied. From this it is possible to calculate the non-parabolic

Fermi level effective mass43 (as it is the carriers at the Fermi level that are important

in scattering events). The theoretical curves reproduce well the divergence of ITO and

IMO mobility data at high carrier densities.
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Figure 5.9: Plasmon damping coefficient γp as a function of plasma frequencyωp (top) and carrier density (bot-

tom).

It is worth at this point discussing the damping parameters γp extracted from the

model fits, which are displayed as a function of plasma frequency and carrier den-

sity in figure 5.9. Plasmon damping affects the width of the reflection spectra seen

in figure 5.7a, and is related to the lifetime of the plasma electron as γp = 1
τ , and

electron mobility as μ = eτ
m∗ = e

m∗γp
. Figure 5.9 indicates that ITO displays higher

damping parameters that IMO over the carrier density range available, which in turn
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Figure 5.10: Effectivemass extracted from the plasmon damping parameters in figure 5.9 and equation 1.15 using

the hall mobilities as a function of carrier density, and Hall mobility versus this effectivemass.

means a lower plasmon lifetime and so lower electron mobility. This may well re-

late to the idea of modulation doping discussed in section 1. Because the effective

mass and scattering lifetime are related parameters, it is very difficult to disentangle

the extent to which both of these parameters impact electron mobility in the films.

Using the electron mobilities determined from Hall effect measurements and these

damping parameters, a carrier effective mass can be extract from μ = eτ
m∗ = e

m∗γp
.

This is plotted in figure 5.10. Clearly, at extremely high carrier densities, the effective

mass from ITO samples diverge greatly from m∗ = 0.22m0, and is even far above the

effective mass predicted by the carrier dependent model including non-parapolicity,

modelled by equation 1.10 shown in figure 1.9. This supports the assignment of strong

hybridization of the dopant level in ITO. At lower doping densities the effectivemasses

extracted for ITO are more similar to those for IMO. This would indicate that the dif-

ference in mobilities (also shown in figure 5.10) is not entirely due to hybridization,

and has some relation to the longer carrier lifetimes seen in IMO. However, due to the

complication of the dip in the reflection spectra giving rise to a large uncertainty in

the fitting, the rest of the focus of this chapter will be on the impact of the effective

mass variation on the mobility. Even so, it must be acknowledged that this variation in
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plasmon damping seen in figure 5.9 will also have an impact on the electron mobilities

in the films. This should be investigated further with materials with more comparable

carrier densities, and using films with much lower surface roughness.

5.3.3 Electronic Structure

Figure 5.11: Band structures and partial charge densities. a and bBand structures for undoped In2O3 and for
IMO, including both spin components, with theMo donor in the ionized 1+ charge state. The zero of the energy

scale is the VBM. c, d and e show the partial charge densities for IMO corresponding to the resonant state in the

conduction band, at the CBM and for the two states in the band gap respectively. f The partial charge density at

the CBM is also shown for ITO. TheMo24dIn atom is green, the Sn8bIn atom is red and the In2O3 lattice is portrayed

using a wireframe. For the resonant state and themidgap states, theO and In atoms are shown by black and

grey spheres and the ‘bonds’ on the In2O3 lattice are removed in order to clearly visualise theMoO6 distorted
octahedra.

The undoped In2O3 and IMO band structures calculated using density functional

theory (DFT) are shown in Fig. 5.11a and 5.11b. Mo 4d levels in IMO are energetically

separated from the CBM and do not mix readily with the In 5s-O 2p-dominated CBM.

The Mo 4d levels can be seen as mid-gap states and as a donor state resonant in the
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conduction band in the calculated band structure (Fig. 5.11b). Mo states mix minimally

with those of the In2O3 CBM; in contrast Sn states strongly perturb the CBM. This is

supported by figures 5.11c–f, which depict the DFT-calculated partial charge densities.

At the CBM, whilst the IMO electron density is delocalised across the lattice, minimal

density exists near theMo (green) atom (figure 5.11d); in contrast, considerable density

exists across the ITO lattice, including around the Sn (red) atom (Fig. 5.11f). The Sn 5s

states hybridize with the In 5s/O 2p character CBM.

Figure 5.12: Spectroscopy of electronic structure. a Schematic diagram ofMo 4d t2g states and their correspond-
ing orbitals (depicted in green), splitting into the upper state, dxy, resonant with the conduction band (orange

shading), the two lower states, dxz and dyz, in the band gap and the valence band (blue shading). The splitting re-

sulting from tetrahedral elongation Jahn-Teller distortion of theMoO6 octahedron is shown for comparison with
the highly distortedMo24dIn depicted in Fig. 5.11. b Inverse photoemission data from ITO (blue) and IMO (red),

showing extra intensity in the IMOdata, corresponding to an unoccupiedMo 4d state resonant with the conduc-
tion band. Also shown is high energy photoemission data of the conduction band emission, Mo 4dmidgap states
and valence band onset of IMO. The features in part a of the figure are aligned to the corresponding peaks in

the spectra. c Schematic band diagram, showing wavevector (vertical axis) versus energy (horizontal axis) repre-

senting the conduction bands of similarly doped IMO (red) and ITO (blue) aligned to the Fermi level. Below are

background subtracted HAXPES spectra displaying conduction band emission from IMO (red, n = 5.0 × 1020

cm−3) and ITO (blue, n = 6.3 × 1020 cm−3). The spectra are normalised to the In 5s-dominated valence band
peak at -9 eV. The shaded regions emphasise the additional intensity of the ITO peak and additional width of the

IMOpeak.

The Mo 4d states are depicted schematically in Fig. 5.12a and are observed in the

photoemission and inverse photoemission spectra shown in Fig. 5.12b. Conduction

band photoemission shown in Fig. 5.12c directly evidences the different conduction
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band dispersion for IMO and ITO discussed above (see also figures 5.13). While the

midgap states might be thought to impair transparency, this is shown not to be the

case from the transmission data in Fig. 5.6. This is because optical transitions to and

from the midgap Mo 4d states have only minimal dipole intensity.

a b c

Figure 5.13: aHAXPES VB spectra for several ITO and IMOfilms. bConduction band spectra for IMO and ITO. c

Background subtracted conduction band spectra. Spectra are normalised to the In 5s feature at -9 eV.

Figure 5.13 shows hard x-ray photoemission spectra for a range of different dopant

concentrations in ITO and IMO films. These spectra can be used to further investigate

the dependence of the conduction band density-of-states on the carrier concentration.

The spectra are normalised to the In 5s-dominated peak at a binding energy of -9

eV. Immediately it can be seen that samples with higher carrier concentration have a

greater intensity (figure 5.13b) just below the Fermi level (zero of the binding energy

scale). The spectra from ITO films have more intense peaks than those from IMO, even

for films of similar carrier density. By subtracting the background from the conduction

band states (due to the Mo 4d states in IMO and Sn-Sn disorder-related states in ITO),

it is possible to directly compare the energy widths of the density of states, showing

that IMO has lower band edge effective mass, giving lower density of states per energy

interval and so greater Burstein-Moss shift than for similar carrier density ITO.

High energy x-ray photoemission spectra of the Sn 3d and Mo 3d core levels are

displayed in figure 5.14. Both plots display data taken using photon energies of 6450
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Figure 5.14: HAXPES spectra of the Sn 3d andMo 3d core levels in ITO (n = 6.3 × 1020 cm−3) and IMO (n =
5.0× 1020 cm−3) respectively recorded using photon energies of 6450 eV (top) and 2150 eV (bottom).

eV and 2150 eV, enabling discrimination between bulk and surface features. Spectra

have had a Shirley background subtracted and are fitted with Voigt functions. All

doublet peak areas have been constrained to a 3:2 ratio consistent with d-orbitals, and

doublet separations have been constrained (8.4 eV for Sn 3d and 3.15 eV forMo 3d). The

full-width at half maximum of 3d5/2and 3d3/2 peaks from the same chemical species or

plasmon loss feature have been constrained to be the same. The binding energy scale

is referenced to the Fermi level.

Sn 3d5/2 and 3d3/2 core-level peaks were fitted with two components each. The com-

ponent at 486.7 eV is due to Sn in the Sn(IV) oxidation state, consistent with other

measurements219. There is no lower binding energy peak and so there is no Sn present

in the Sn(II) oxidation state. Hence, the HAXPES data are consistent with Sn acting
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as a one electron donor in ITO. The component at 487.5 eV is a plasmon loss feature

which arises from energy loss of photoelectrons to the free electron gas in conduc-

tive materials.137,306 The positions of the plasmon loss features are constrained to the

plasma frequency, ωp, determined for each film by infrared reflectivity. The plasmon

loss component has marginally larger relative intensity when 6450 eV photons are

used. It is a general observation that the lower energy component is larger relative

to the plasmon peak taken with HAXPES compared to XPS137. However, the differ-

ence is usually only negligible at such high carrier concentrations and any difference

seen could easily be within the uncertainty of the fitting. Hence, no claims are made

here regarding the relative intensities of the plasmon loss and no loss peaks under

illumination from different photon energies.

Mo 3d5/2 and 3d3/2 core-level spectra are also displayed in figure 5.14. The lower

2150 eV photon energy data was fitted with three peaks. The first is at 231.2 eV, cor-

responding to Mo in the Mo(IV) oxidation state. The second is a plasmon loss peak

associated with the Mo(IV) component, lying at higher binding energy by the plasma

frequency, ωp ≈ 0.6 eV, measured by infrared reflectivity. The third component is

at 232.5 eV. The substitutional Mo has a binding energy very close to that of MoO2

of 231.0 eV,307 confirming the Mo(IV) oxidation state of the Mo dopant in IMO. The

highest energy component is attributed to Mo in the Mo(VI) oxidation state of MoO3

at the surface.307 This peak is much smaller than the Mo(IV) and is negligibly small in

the high photon energy data, confirming the surface oxide assignment. This interpre-

tation is consistent with that presented previously for Mo 3d data from IMO, but with

the improved signal-to-noise ratio and resolution here enabling the identification of

the plasmon loss feature associated with the Mo(IV) component. Photoelectrons from

the surface MoO3 exit the sample without passing through the IMO and so do not lose

energy to the free carrier plasma and so have no associated plasmon loss feature.
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Photon Energy (eV)

Figure 5.15: OK-edge XAS of IMO and In2O3 and IPES spectra of IMO on a common energy scale. The resonant

Mo 4d state is seen in both spectra at∼ 2.3 eV above the Fermi level.

X-ray absorption spectroscopy (XAS) can be used to probe the unoccupied states

of a material above the Fermi level. This technique is employed here in this study

to provide support for the assignment of the Mo 4d states in our IPES spectra. O

K-edge absorption spectra of IMO and nominally undoped In2O3 were recorded in

partial electron yield mode. The photon energy was calibrated using a TiO2 reference,

which was then aligned with the Fermi level using the O 1s peak from our HAXPES

measurements with the inclusion of a 1 eV core hole correction.308 This is plotted in

figure 5.15 along with the IPES spectra for IMO and undoped In2O3 films (from figure

5.12) which is energy referenced to the known energy position of the lowest occupied

molecular orbital of multilayer C60 deposited in situ, giving the Fermi energy. The

oxygen partial density of states in the XAS plot has a much higher intensity at around

∼2.3 eV, in excellent agreement with the Mo 4d feature seen in the IPES.This is indica-

tive of some hybridization of the Mo 4d states with the oxygen states. The alignment

of these features after independent charge referencing supports the identification of

the unoccupied Mo 4d state as the donor in IMO films (note that differences in inten-

sity, resolution and indeed the states that are being measured are among the things
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that may mean spectral alignment and interpretation may be more complicated than

first thought. Indeed XAS probes a convolution of initial and final states making the

understanding of the spectra a rather complicated task even in simple systems). While

supportive, the complex nature of the bonding in Mo in In2O3 means it is not obvious

how the XAS spectra should differ between the two samples. Indeed, XAS and IPES

being excited state measurements means simple ground state DFT cannot compute

the electronic density of states very accurately and so some of the more nuanced fea-

tures such as the modification of the O 2p DOS are hard to predict. We do not show

this here therefore. However, a clear difference is evidenced in figure 5.15, and so

whilst correlation does not imply causation, it is satisfying to see this trend in the two

spectra.

5.3.4 SnIn and MoIn

SnIn acts as a low formation energy resonant donor under both In-rich/O-poor and In-

poor/O-rich conditions with formation energies for the neutral charge state of 0.42 eV

and 0.99 eV respectively (see figure 5.16). Sn preferentially sits on the 8b Wyckoff

site in correlation with previous theory results.137,309 The 1+/0 transition level occurs

around 0.85 eV above the CBM which allows for very high carrier concentrations as

seen in experiment, and through Burstein-Moss shifts of∼0.85 eV.137 Under In-poor/O-

rich conditions, SnIn is compensated for by V 3−
In around 0.55 eV above the CBM trap-

ping the Fermi level just below this point.

Due to Mo possessing three additional valence electrons to In, two spin states were

modelled: a high-spin (denoted ‘HS’ and involves three electrons in the spin-up (α)

component) and a low-spin (denoted ‘LS’ and involves two electrons in the spin-up

and one in the spin-down (β) component). The two inequivalent In sites (correspond-

ing to 24d and 8b Wyckoff positions) were also assessed in this study for each spin
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Figure 5.16: The thermodynamic transition levels for In2O3 under In-rich/O-poor and In-poor/O-rich conditions.
The Fermi level ranges from the VBM (0 eV) to the CBM (2.63 eV). The substitutionalMo (MoIn) defects are split

into the 24d site (green) and the 8b site (purple) in the high-spin configuration (HS) which was found to be the

lowest energy configuration for both sites.

configuration.

From the HSE06 relaxations it was shown that the high-spin configurations for the

neutral charge state possessed the lowest formation energies for both the 8b and 24d

sites by ∼ 0.87 eV and ∼ 0.31 eV respectively. These results are in keeping with a pre-

vious study by Xu et al. who predict this as the ground state configuration of sub-

stitutional Mo in the In2O3 lattice. Mo8b
In acts as a deep defect with a 1+/0 transition

level occurring around 0.08 eV below the CBM.310 The neutral charge state possesses a

formation energy of 0.02 eV and 0.86 eV under In-rich/O-poor and In-poor/O-rich con-

ditions respectively, making Mo on this site a highly soluble dopant. Two further

transition levels occur within the band gap: a 2+/1+ and 3+/2+ transitions around

0.70 eV and 1.59 eV below the CBM respectively. Mo24d
In on the other hand acts as a reso-

nant one-electron donor with the 1+/0 transition level occurring around 0.64 eV above

the CBM. Despite the neutral charge state of Mo24d
In possessing a formation energy of
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0.42 eV and 1.25 eV under In-rich/O-poor and In-poor/O-rich conditions respectively,

this charge state is only reached at Fermi levels far above the CBM. From figure 5.16,

the ionised charge state (1+) possesses a lower formation energy at the CBM and thus

it can be rationalised that Mo24d
In is the dominant dopant species to be present in the

In2O3 lattice. As with the 8b site, the 2+/1+ and 3+/2+ transition levels occur deep

within the band gap around 0.74 eV and 1.35 eV below the CBM.

5.3.5 Molecular orbital description of IMO

To explain why Mo in In2O3 has two occupied 4d states within the band gap and one

donor state resonant with the conduction band, consider the electronic structure and

crystal field environment of Mo in In2O3. Mo and Sn have respective electron config-

urations of [Kr]4d 55s1 and [Kr]4d105s25p2, while bixbyite cubic In2O3 has two distinct

indium sites: the 8b and 24d Wyckoff sites, with respective regular and tetragonally-

distorted octahedral crystal environments. At an indium site, three electrons partic-

ipate in bonding, leaving Sn or Mo respectively in a [Kr]4d105s1 or [Kr]4d 3 configu-

ration, that is one Sn 5s or three Mo 4d as the outermost electrons. At Fermi levels

matching experiments (around VBM+3.3 eV) Sn or Mo preferentially substitute on the

respective 8b or 24d sites (each donating one conduction electron), whilst Mo8b
In has

a neutral charge state (donating no carriers), see Fig. 5.16. The Jahn-Teller-like dis-

tortion at the 24d site splits the three-fold degenerate t2g levels (valid for octahedral

symmetry), shifting the dxy orbital up in energy to the vicinity of the CBM, and dxz

and dyz down into the gap, as shown in the unfolded band structures for the neutral

charge state (Mo24d
In , q=0) in Fig. 5.17. If all Mo 4d states lie below the CBM (as reported

elsewhere from calculations),310 then no effective doping would occur at room temper-

ature; the experimental results shown in Fig. 5.3 clearly rule this out. If the highest

occupied Mo 4d state lies just above the CBM (reported elsewhere),88 it may merge
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with the occupied CBM (although this will be dictated by the orbital wave function

overlap), increasing the electron effective mass and reducing mobility, and the Fermi

level would be pinned by the partially occupied 4d state.

Both previous works fail to consider Mo atoms in a +1 charge state,88,310 which in-

creases the distortion of the octahedra and the splitting of the t2g-derived 4d energy

levels, making the dxy orbital resonant with the conduction band. This contributes a

conduction electron without detrimental hybridization with the CBM states; whilst

the singly-occupied dxz and dyz orbitals are stabilized by the bond length contraction

and pushed deeper into the band gap (see Mo24d
In q=+1 in Fig. 5.17). A schematic rep-

resentation of this t2g level splitting is shown in Fig. 5.12a along with partial electron

densities for the dxy, dxz, and dyz orbitals (full schematic molecular orbital diagrams for

MoO6 octahedra are shown in Fig. 5.18). Indeed, the calculated partial electron charge

densities around the Mo atom at the resonant Mo level (Fig. 5.11c) and two mid-gap

levels (Fig. 5.11e) show clear similarities respectively to the schematic dxy, and a com-

bination of the dxz and dyz orbitals of Fig. 5.12a. This picture of theMo 4d state energies

in IMO is further corroborated by additional confidence in the calculated results com-

ing from comparisons of the bond lengths from calculations and those determined

from previous extended x-ray absorption fine structure measurements (see Fig. 5.19

and related discussion).

The unfolded bandstructures relating to the undoped host, MoIn on the 24d and 8b

sites (HS) and SnIn were calculated and are shown in figure5.17. Both the neutral (q=0)

and ionised (q=1+) charge state for each dopant was calculated to compare the elec-

tronic structure arising from the structural changes upon relaxation. In the high-spin

configurations, the dopant states occur in the spin-up (α) component (in the energy

range -1–6 eV) and as such the spin-down (β) component is not shown in this com-

parison. From the HSE06 calculations, the density of states at the CBM is found to
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Figure 5.17: The unfolded band structure comparison for the undoped host, Mo24dIn , Mo8bIn , Sn
8b
In defects. Each

dopant state is represented in the neutral (q=0) and ionised (q=1+) charge state and is represented by the spin-up

(α) component. The spectral weight of each state is presented by the brightness of the curve.

be around 3% Sn s character. This hybridisation has the effect of raising the electron

effective mass by reducing the dispersion. This effect is seen in previous band struc-

ture calculations containing corrections to enable a more reliable description of the
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effective mass changes for In2O3 with a change in band edge effective mass upon Sn

doping from 0.22me to 0.40me (Ref. 38). The Sn 5s atomic orbital level lies directly

between the O 2p and In 5s levels, resulting in strong hybridization with the In 5s-O

2p-dominated CBM. The partial charge density of the CBM in figure 5.11f displays

the electron density delocalised over the In s, O p and Sn s states. This hybridisation

explains the perturbation of the CBM dispersion upon Sn-doping which leads to the

increased band edge effective mass.

InMo-doped In2O3, the two different InWyckoff sites give rise to different electronic

structures. In the neutral charge state, Mo24d
In displays negligible Mo hybridisation at

the CBM and instead two filled bands of Mo 4d character exist in the band gap around

2.11 eV and 2.33 eV above the VBM respectively. A further empty band occurs around

2.98 eV above the VBM (∼ 0.31 eV above the CBM) also of ∼ 73% Mo 4d character.

In its ionised form (q=1+), Mo(IV) oxidation state, Mo24d
In displays an enhanced split-

ting of the Mo bands with the two filled bands lowering in energy in the band gap to

around 1.66 eV and 1.67 eV above the VBM. These are depicted in a partial charge den-

sity plot in figure 5.11. The Mo 4d band above the CBM is raised to 4.25 eV above the

VBM (1.58 eV above the CBM) and is depicted in figure 5.11b. These results correspond

well to the inverse photoemission spectra, with the unoccupied Mo 4d being observed

only about 0.5 eV higher than calculated by DFT. This also highlights the short com-

ings of the findings of Xu et al.310 who do not take into account the ionised dopant

state for any of their transition metal-doped TCO calculations. Without considering

the ionised dopant state, the calculation of the dopant d energy levels is erroneous and

so it is impossible to determine reliably whether a particular dopant will perform well.

The fact that their neutral charge state calculations give a d level close to the CBM ex-

plains why they suggest Mo will not produce good electrical properties in In2O3. This

is despite previous experimental evidence to the contrary which is now rationalised
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by our theoretical results giving the donor d level far above the CBM for the 1+ Mo

charge state.
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Figure 5.18: The schematic molecular orbital diagrams for theMoO6 octahedra on the 8b site, the 24d site in

both the q=0 and 1+ charge states. This diagram depicts the Jahn Teller-like distortion that occurs within the

In2O3 lattice, giving rise to the splitting of the degenerate non-bonding t2g state on theMo. The valence band and

conduction bands are represented by the blue and orange regions respectively. Only the electrons corresponding

to the t2g site are shown, depicted by the small green circles.

As there is negligible Mo d state contribution at the CBM, Mo does not perturb

the CBM dispersion, allowing IMO to retain the host In2O3 band edge effective mass,

resulting in the high electron mobilities seen in this work and previous literature.88

Figure 5.11d depicts the CBM for the Mo (24d)-doped In2O3 cell showing the absence

of any electron density contribution from Mo. The cause of the Mo 4d splitting can be

attributed to the Jahn-Teller-like distortion Mo24d
In in the neutral charge state which,

in the 1+ charge state increases due to the further contraction of the bond lengths

further splitting the levels. This can be rationalised using crystal-field splitting seen
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in the simplified molecular orbital diagram for MoO6 octahedra in figure. 5.18.

When doped on the 8b site, MoIn possesses three filled Mo 4d bands in the band gap

at 2.23 eV, 2.31 eV and 2.31 eV respectively. As the 8b In site is only slightly distorted

from the perfect octahedral (Oh) symmetry, a slight splitting of the degenerate non-

bonding t2g levels is expected (see figure 5.18). As the Mo–O bond lengths are uniform

with little distortion around theMoIn in the neutral charge state (see figure. 5.18), three

occupied non-bondingMo 4d bands are seen in the band gap. Mo can therefore be seen

to exist as Mo(III) in this configuration. As with the 24d site, Mo8b
In undergoes a further

splitting of the t2g bands in its ionised form due to a similar Jahn-Teller distortion.

Here, the two 4d states in the band gap appear at 1.51 eV and 1.59 eV above the VBM

respectively whilst the third unoccupied band exists around 3.57 eV above the VBM

(∼ 0.89 eV above the CBM).

a b

Figure 5.19: a The two differentWyckoff indium sites within the In2O3 supercell. The 8b and 24d sites are de-

picted in purple and green respectively, whilst the oxygens and indium atoms are shown by the black and grey

spheres. The ‘bonds’ are only shown on the highlighted sites for clarity. b TheM–O octahedra (whereM=In, Mo,

Sn) for the different In-Wyckoff positions (24d and 8b) and different charge states (q=0 and 1+) showing the dif-

ferent calculated bond lengths. Each dopant site is colour coordinated to the thermodynamic transition levels in

ExtendData Fig. 5.16 whilst the black spheres correspond to oxygen. The expected configuration based on the

defect thermodynamics (forMo and Sn) is shown underlined.
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Figure 5.19 displays the calculated bond lengths present in the In2O3 lattice as a set

of MO6 (where M=In, Mo or Sn) octahedra relating to the 8b and 24d In sites. For

undoped In2O3 the average In–O bond lengths (for both 8b and 24d sites) are 2.19Å

which correspond well to EXAFS studies on In2O3 which quote values in the range of

2.16–2.18Å 88,311,312 which are within 1.5% of the HSE06 calculated values. The Sn–O

bond lengths contract uniformly to around 2.09Å in both the neutral and 1+ charge

state (ionised). These values are in keepingwith experimental EXAFS values of∼ 2.05–

2.08Å for ITO.311

In Mo-doped In2O3 the 24d site shows a contraction of the bond lengths from the

neutral (q=0) to the ionised (q=1+) charge states (figure 5.19b with an average bond

length of 2.12Å and 2.06Å respectively. For the 24d site, Mo will be ionised within

the In2O3 lattice, therefore the relaxed q=1+ structure is likely to be seen and matches

well with EXAFS measurements of 2.05Å for Mo–O.88 Further analysis of the Mo–In

bond lengths gives rise to two (average) values of 3.38Å and 3.84Å which are in ex-

cellent agreement with the EXAFS values of 3.36Å and 3.82Å .88 When incorporated

on the 8b In site, the Mo–O bonds contract uniformly compared to the In–O bond

lengths, giving rise to an average bond length of 2.13Å. In the 1+ charge state, Mo8b
In

undergoes a further contraction of the bond lengths, however non-uniformly, with

a Jahn-Teller distortion occurring (equatorial Mo–O:2.03–2.04Å , axial Mo–O:2.10Å ).

Although the average bond lengths correspond to 2.05Å which matches the EXAFS

literature values, as Mo8b
In is a thermodynamically deep defect. It is expected to exist

in the neutral charge state at Fermi levels at and above the CBM.

5.3.6 Durability of IMO

This research shows that IMO has fundamentally better optoelectronic properties than

ITO. As it is also a cost effective replacement for ITO, from these considerations, it
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should take its place in the transparent conductors market. However, any replace-

ment for ITO must also be at least as durable - it must withstand the wear and tear

and environmental conditions it is likely to be exposed to in typical uses. ITO is pre-

dominantly used as an electrode in modern electronic devices, such as touch screens

and televisions. Hence, these films are nearly always encapsulated in a device which

offers the film a lot of protection. The conditions ITO is exposed to our arguably less

harsh than those experienced by FTO in low emissivity window coatings and in so-

lar cells. Nevertheless, here simple lab-based tests are performed in order to simulate

some different environmental stresses on the IMO and ITO films, and on a commer-

cially available product (Ossila ITO film on glass substrate, d = 100nm, Rs = 20Ω/□)

for comparison.
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Figure 5.20: Durability testing: a) Relative change in sheet resistance between pre and post-test samples. b)

Relative change in optical transmission between pre- and post-test samples. c) Optical micrograph of pre-test

(top) and post-scratched (bottom) samples.

All durability tests were repeated several times to enable the uncertainty in the
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change of sheet resistance and transmission to be given as the standard deviation in

the results. Sheet resistance of films was determined using a CMT-SR2000 4-point

probe system and transmission was measured using a Shimadzu UV-Vis-IR 3700 spec-

trophotometer. Sheet resistance values were averaged over a number of measure-

ments across each sample. Transmission valueswere taken atwavelengths of λ =500nm,

700nm, and 1250nm to give a reasonable representation of the whole spectrum. Fi-

nally, the relative values of both the sheet resistance and transmission were found by

dividing the measured value post-test by that of a pre-test sample (i.e. a relative sheet

resistance >1 indicates the test increased the sheet resistance).

Optical Microscopy was performed using a Nikon Eclipse LV100 microscope in

bright field setting at ×20 optical zoom. Optical measurements were performed af-

ter each test, although little difference was noticeable except subsequent to scratch

testing when the obvious imprint of the scratch could be seen.

The scotch tape test was performed using Intertape LA-26 Polyester Laminate Tape.

Adhesive tape was pressed onto films and left to set. Subsequent removal of the tape

allows a measure of film de-lamination. None of the films showed any signs of de-

lamination as indicated in figure 5.20a and b.

The scratch test was performed using an Elcometer 3092 sclerometer which has

a tungsten carbide tip and a maximum 20N force spring which was utilised for all

measurements. Fig. 5.20a shows some changes to the sheet resistance following the

scratch test, with a slight increase for ITO and small decrease for IMO. However, the

statistical uncertainty on these measurements was greater than after the tape test, in-

dicating that the differences are not significant. The optical transmission post scratch

test was unchanged, as shown in figure 5.20b. The optical micrographs shown in Fig-

ure 5.20c clearly demonstrate the difference is morphology of the three films (top row)

and the effect that the tungsten carbide tip has on the films. The commercial ITO is
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thinner than our films and has a lower degree of surface roughness which is apparent

in the micrograph, appearing less opaque and less granular (less light scattering from

the surface). The scratch applied to the commercial ITO does not seem to penetrate

deep, likely due to the film being much thinner. Our films seem to be penetrated more

deeply with a noticeable difference in depth of field. However, this again does not

appear to have greatly affected the electronic or transmissive properties and so is of

little concern.

Films were heated in a furnace in ambient at 250℃ for three hours to simulate the

effects of heat expelled from components in an electronic device. Figure 5.20a and

b again demonstrate all films performed well in the tests in terms of electronic and

optical properties.

Finally films were immersed in dilute sulfuric acid for three hours. The acid had a

pH of around 3.5, slightly more acidic than acid rain or sweat which are the most likely

acids to come into contact with the films in applications. No appreciable sheet resis-

tance or optical losses were noticeable post treatment, as can be seen in Figure 5.20a

and b.

These tests demonstrate that AACVD IMO can withstand general wear and tear and

environmental conditions as well as both a commercially produced ITO film and ITO

deposited using the same technique. This indicates that, subject to more extensive

industrial durability testing, there are no barriers to the widespread adoption of IMO

as a superior replacement for ITO.

5.4 Conclusion

Beyond having a transformative impact by replacing the ubiquitous ITO with better

and cheaper IMO, this work enables design criteria for other high mobility TCOs to

be established: (1) transition metal dopants are required so that their donor d states
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hybridize minimally with the host cation s states of the CBM, avoiding problems in-

herent with conventional s level dopants; (2) the transition metal dopant atoms must

possess d orbital energy levels such that the dopant is a singly charged donor to min-

imize mobility-reducing ionized impurity scattering; and (3) the donor level must be

resonant within the conduction band to avoid a high effective mass, low mobility d

state at or close to the CBM.

IMO is an optically and electronically superiormaterial to the commercially-dominant

transparent electrode, ITO. This makes IMO not only more suited for the many di-

verse applications that ITO is currently used for, but also implies enormous potential

for industrial cost savings as much thinner films of IMO can be produced with prop-

erties equal to or better than ITO of the same carrier concentration. A combination

of theory and experiment have been used to explore the reasons for the drastic differ-

ences between these two In2O3-based TCOs. The rigid band model fails to describe the

variation of optoelectronic properties of ITO with doping concentration. For heavy

Sn-doping, the role of the Sn 5s states in perturbing the host In2O3 conduction band

and increasing the band edge effective mass must be included to describe both the

evolution of optical gap and mobility with doping. Having identified this shortcom-

ing of ITO, it has been shown that this is avoided by instead using Mo as the dopant.

The different energetic position and atomic orbital character of Mo states compared

with those of Sn means that negligible hybridization between Mo states and the CBM

occurs. These findings provide a new immediately viable and durable alternative to

ITO, the industry standard TCO.While Mo and Sn are similarly priced, IMO films with

half the thickness offer huge cost savings over ITO films of the same sheet resistance.

Moreover, the understanding presented will enable the design of other TCO materials

and dopants with improved transparent conducting properties.
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6
Surface properties of novel oxide

semiconductor: Ga2O3

Bulk single crystals of (2̄01) β-Ga2O3 were purchased from Novel Crystals Technol-

ogy, Inc., Tamura Corporation. Density functional theory calculations were carried

out and analysed by J. B. Varley at Lawrence Livermore National Laboratory. Band

bending calculations were performed by T. Veal at the University of Liverpool. The

results presented here were published as:

J. E. N. Swallow, J. B. Varley, L. A. H. Jones, J. T. Gibbon, L. F. J. Piper, V. R. Dhanak,

and T. D. Veal, Transition from electron accumulation to depletion at β-Ga2O3 surfaces:

The role of hydrogen and the charge neutrality level. APL Materials 7, 022528 (2019).
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6.1 Introduction

Beta phase gallium oxide (β-Ga2O3) is a transparent, oxide semiconductor material

that has attracted a large amount of interest in recent years due in part to its wide

band gap (∼ 4.7 eV at room temperature),313,314 gas adsorption-tunable conductiv-

ity, and high breakdown field (8 MVcm−1). These properties mean that β-Ga2O3 is a

promising material for a large range of applications, such as solar-blind ultraviolet

photodetectors315, gas sensing devices,316 and high power electronic devices.317 De-

spite the suitability of this material for such a large range of applications, there is a

distinct lack of spectroscopic information on its surface electronic behaviour. Unlike

other oxide semiconductors, such as In2O3 [Ref. 59], SnO2 [Ref. 318], CdO [Ref. 319]

and ZnO [Ref. 320], the surface electronic behaviour has not been well understood in

the case of Ga2O3, which is an important factor for gas sensing devices and electronic

contacts.

Semiconductorswith the greatestmismatch between their cation and anion in terms

of atomic size and electronegativity, such as CdO [Ref. 59,319] and In2O3 [Refs 59,

321] and InN [Ref. 322,323], appear to only exhibit surface electron accumulation,

as opposed to the electron depletion present at the surface of the majority of n-type

semiconductors.71 The slightly less mismatched materials such as ZnO [Refs 324–327]

and SnO2 [Refs 328,329] can have either of these two types of surface space charge,

depending on how the surface is treated. Indeed, it has been proposed recently that

electron depletion is the inherent space charge property of the ZnO surface.326,327

As the Ga cation is smaller and has higher electronegativity than Zn, such a trend

suggests that Ga2O3 may behave, in terms of surface space charge properties, more

like ZnO than In2O3. Upward surface band bending and electron depletion is assumed

in Ga2O3 due to the difficulty in achieving Ohmic contacts with low conductivity mate-
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rial,330 consistent with similar observations for ZnO. In this context, recent x-ray pho-

toemission spectroscopy (XPS)331–333 and angle resolved photoemission spectroscopy

(ARPES)334–336 has been interpreted as indicating surface electron depletion and up-

ward band bending. However, previous analysis of XPS valence band spectra em-

ployed the method of linear extrapolation of the leading valence band edge which

underestimates the surface valence band maximum (VBM) to Fermi level separation.

This is because, just as in the case of In2O3,59 the top of the valence band has very little

dispersion and a high effective mass, leading to a very rapid onset of the density of

states. Instrumental broadening in XPS introduces a significant slope to the measured

onset of the valence-band photoemission, leading to the aforementioned underesti-

mation. In the case of the previous ARPES data where the resolution is higher, the

broadening is lower and so a higher surface VBM to Fermi level separation has been

reported of about 4.9–5.0 eV. However, the presence of electron depletion was still

incorrectly inferred due to a band gap of about 4.9 eV being assumed, higher than the

measured room temperature value, some 0.2 eV or so lower.334–336

Further, the space charge layer of the ZnO surface has been shown to be highly de-

pendent on surface properties,324,325 especially the effects of H adsorption.337 Whilst

H doping in the bulk has been considered in recent years for Ga2O3 both experimen-

tally338 and theoretically,339,340 its influence on the surface has mainly been considered

from a gas sensing perspective in terms of changes to the measured conductivity,341,342

rather than in photoemission studies. Here we report the surface electronic behaviour

and band bending of β-Ga2O3, and contrast our interpretation of XPS data with that

contained in other recent reports.
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6.2 Experimental and Theoretical Methods

Bulk single crystalline (2̄01) β-Ga2O3 (from Novel Crystal Technology, Inc., Tamura

Corporation) grown using the edge-defined film-fed growth method166 was used in

this study. Sn-doped samples were used to make them sufficiently conducting to avoid

sample charging effects during photoemission measurements. The net donor density

(N+
D−N−

A ) was determined by themanufacturer via capacitance-voltagemeasurements

to be 6× 1018 cm−3 and the free electron density was confirmed to be n∼ 6× 1018 cm−3

using Hall effect measurements. Optical transmittance was performed using a Shi-

madzu UV-Vis-IR 3700 spectrophotometer which employs a photomultiplier detector

to reach energies up to 6.5 eV, enabling the absorption onset of β-Ga2O3 to be deter-

mined. XPSwas performed using a SPECSmonochromatic Al Kα (hν =1486.7 eV) x-ray

source operated at 250 W. A PSP Vacuum Technology hemispherical electron-energy

analyzer with a 120 mm mean radius was employed to detect photoelectrons, oper-

ated at a pass energy of 10 eV (50 eV for survey scans). The XPS system is described in

detail elsewhere.343 Binding energies are stated throughout with respect to the Fermi

level. Binding energies are calibrated using the Fermi edge of an Ar+-ion bombarded

polycrystalline silver sample, also enabling the resolution of 0.4 eV to be determined.

This resolution includes broadening due to the x-ray source, the electron analyser and

thermal effects. The uncertainty in stated binding energies is ±0.05 eV. All measure-

ments were performed at room temperature. Prior to in-situ cleaning, the Ga2O3 was

investigated in its as-received form. In-situ surface cleaning was performed via sam-

ple annealing at between 200 and 800◦C for 30 min cycles332,344,345 and a final 2 hour

cycle at 800◦C. All annealing steps were performed consecutively on the same crystal.

The DFT uses the HSE06 screened hybrid functional346,347 and projector-augmented

wave (PAW) approach348 as implemented in the VASP code.224,225 The semi-core Ga 3d
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states are explicitly included as valence electrons and adopted a fraction of 32% exact-

exchange in the hybrid functional. These choices lead to an excellent description of

the lattice and electronic structure, with a 0 K direct gap of 4.87 eV (indirect of 4.86

eV).349 Temperature effects lead to a decrease of ∼ 0.2 eV between 0 K and room

temperature according to recent measurements.350 The treatment of the Ga d states

leads to slightly improved lattice parameters as compared to experiment (12.21, 3.03,

and 5.79 Å for the a, b, and c lattice parameters, and a β angle of 103.8 degrees), and

most importantly for this study, an improved description of orbital interactions that

can influence the valence band features observable via photoemission spectroscopy.

While the primitive unit cell was used for the bulk electronic structure calculations,

defect calculations of Hi defects were performed in 120-atom supercells for the Ga2O3

and 216-atom supercells for SnO2 and corrected for finite-size effects following the

approach of Freysoldt et al. as described elsewhere.339,351,352

6.3 Results and Discussion

6.3.1 X-ray Photoemission Spectroscopy

In order to determine the band bending at the surface of β-Ga2O3 and its evolution

with annealing, XPS has been used to measure the valence band and core level spectra

at each annealing stage. The valence band spectra give the surface VBM to Fermi

level separation. The bulk CBM to Fermi level separation can be determined using

semiconductor statistics from the bulk carrier density and, with knowledge of the

band gap, this gives the bulk VBM to Fermi level separation. The difference between

the bulk and surface VBM energies with respect to the Fermi level thus provides the

sign and magnitude of the surface band bending. Changes in the band bending as a

function of annealing result in changes to the VBM binding energy with respect to
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the Fermi level and can be confirmed by observing the corresponding shifts of the

core level peaks. The core levels provide additional information about contamination

via both peaks due to adsorbed species and chemical shifts of the elements of the

semiconductor.

The valence band spectra for β-Ga2O3 are shown in Fig. 6.1 for the sample (a) be-

fore surface cleaning, (b) after an 800◦C anneal for 2 hours, and (c) the evolution of

the valence band over the whole cleaning procedure. The calculated hybrid DFT va-

lence band density of states (VBDOS) are compared to the XPS valence band spectra.

Photoionization cross-section corrections taken fromRef. 123 have been applied to the

calculated VBDOSwith the result shown in Fig. 6.1 with and without instrumental (0.4

eV full width at half maximum (FWHM) Gaussian) and lifetime broadening (0.45 eV

FWHM Lorentzian). The calculated and thus corrected VBDOS is in extremely good

agreement with the experimental data.

Themethodology of extracting the valence band position is demonstrated in Fig. 6.1(a)

and (b) which involves shifting the broadened calculated VBDOS until it aligns with

the spectral features of the XPS data. The leading edge of the unbroadened VBDOS is

then taken as the VB-edge position (relative to the Fermi level aligned to zero). This

method of determining the VBM energy with respect to the Fermi level is well estab-

lished353 but not widely used and the much simpler method of linear extrapolating the

leading edge is generally preferred and has been widely used for the analysis of Ga2O3

XPS data.332,354,355 However, as discussed above, for materials with very flat valence

bands, with a correspondingly sharp onset of the VBDOS, the linear extrapolation

method underestimates the VBM to Fermi level separation due to the instrumental

broadening. Comparing the green dotted linear extrapolations in Fig. 6.1(a) and (b)

to the red lines of the aligned unbroadened DOS onset, enables us to determine that

linear extrapolation underestimates the VBM position by ∼ 0.5 eV. All the calculated
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Figure 6.1: Valence band photoemission spectra andDFT valence band total DOSwith andwithout instrumental

and lifetime broadening applied for β-Ga2O3 (a) as entered, and (b) after annealing at 800
◦C for 2 hours. (c) the

evolution of valence band spectra under subsequent annealing cycles at increasing temperatures.

VBDOS features match very well with the Ga2O3 data, giving good confidence that

the VB position is well represented. For materials, such as ZnO, where the valence
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band onset is more gradual, the two methods for determining the VBM position are

in much closer agreement with each other.

Focusing now on Fig. 6.1(c), it is apparent that after each annealing step the VB

edge shifts to lower binding energy. From the valence band spectra, the surface VBM

to Fermi level separation is found to vary from 4.95±0.10 eV after no surface prepara-

tion to 4.45±0.10 eV after surface cleaning using the highest temperature annealing

(800◦C).

6.3.2 Surface Band Bending

3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4

[102]

4.69eV
4.68eV

2  (a
rb

. u
ni

ts
)

Energy (eV)

[010]

Figure 6.2: Optical absorption as a function of photon energy for β-Ga2O3 with the [010] plane upward (red) and

alternately the [102] plane facing the incoming light (black).

As mentioned above, to use photoemission to determine the sign and amount of

band bending at the polar β-Ga2O3 (2̄01), it is important to have a measure of the

band gap of the material investigated. Fig. 6.2 shows two absorption spectra of β-

Ga2O3 derived from transmission data, with the second spectrum taken with the crys-

tal oriented perpendicular to its own long axis in the first measurement (schemati-

cally shown in inset). A linear extrapolation indicates the onset of optical absorption

is at 4.68 eV. This is consistent with other optical measurements350, energy loss spec-

troscopy355 and the calculation results mentioned above. This allows a conservative
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estimate of the band gap of∼4.7±0.2 eV when excitonic effects and optical anisotropy

are considered.313,356 It also is worth noting the relative independence of band gap on

carrier concentration up to∼ 1019cm−3 displayed in Ref. 350. TheMott criterion given

by n1/3
c aB ≈ 0.25 where aB is the effective Bohr radius (given by a0

ϵ(0)
m∗/m0

) and nc the

critical carrier density357 gives nc around 3× 1018cm−3, meaning our absorption onset

only minimally deviates from the fundamental band gap (from band filling effects). In-

deed, our semiconductor statistics calculations, assuming a band edge effective mass

of 0.28m0 [Refs 358–360] and a nonparabolic conduction, band191 indicate that for

Ga2O3 with a carrier density of 6× 1018 cm−3 the Fermi level is about 30 meV (0.03 eV)

above the conduction bandminimum (CBM).That is, the bulk CBM is essentially at the

Fermi level. Therefore, given the measured band gap of about 4.68 eV, this indicates

β-Ga2O3 (2̄01) goes from downward to upward surface band bending as a function of

in situ annealing. That is, the as received β-Ga2O3 (2̄01) surface exhibits an electron

accumulation layer which transforms into an electron depletion layer as the annealing

treatment progresses. In order to illustrate the band bending and charge density as

a function of depth quantitatively, the Poisson equation has been solved within the

modifiedThomas-Fermi approximation (MTFA),361,362 with a nonparabolic conduction

band, as described in chapter 3.190,191

Fig. 6.3(a) and (b) shows the calculated band bending before and after annealing for

the β-Ga2O3 (2̄01) surface, and the associated electron density plots as a function of

depth respectively. For the unannealed β-Ga2O3, the 0.24 eV downward band bending

is associated with a corresponding accumulation of electrons in the near-surface re-

gion with a sheet electron density of 5× 1012 cm−2. For In2O3, weak conduction band

emission was observed below the Fermi level in photoemission spectra.30,59 However,

in that case the surface sheet density was an order of magnitude higher than observed

here for Ga2O3, explaining the absence of this feature in Fig. 6.1. This is also supported
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Figure 6.3: Poisson-MTFA calculations of (a) the band bending and (b) carrier density profiles in the electron

accumulation (blue) and depletion (red) surface layers for β-Ga2O3 before and after cleaning. (c) The β-Ga2O3

surface band bending and the relative contribution of the hydroxyl component of theO 1s spectrum as a function

of annealing temperature. The annealing temperature of 20 on the upper x-axis represents the unannealed sam-

ple. The lines between points are a guide to the eye. (d) Band line-up with respect to the charge neutrality level

for β-Ga2O3 compared to that of other metal oxide semiconductors. The CNL for β-Ga2O3, In2O3,
59 ZnO83 and

CdO59 are determined from valence band offsets from particle irradiation studies of other materials363 and from

calculations for SnO2.
364 The CBM shown for CdO is for the Γ point rather than the indirect CBM at the the L

point. The ε(+/-) transition levels for Hi configurations which involve disrupting the cation-anion bond are shown

as dotted orange lines for β-Ga2O3 (0.51 eV below the CBM - this work), In2O3 (0.53 eV above the CBM),365 ZnO

(0.40 eV above the CBM),70 SnO2 (0.48 eV above the CBM for the bond disrupting H+
i configuration - this work),

and CdO (0.43 eV above the CBM).366 Also shown, as purple dotted lines, are the ε ’(+/-) transition levels for Hi
configurations that involveO lone-pairs capturing Hi which are the lowest formation energy for β-Ga2O3 (ε’(+/-)
at 4.90 eV above the VBM,367 corresponding to 0.22 eV above the CBM for our room temperature band gap of

4.68 eV) and SnO2 (ε’(+/-) at 1.53 eV above the CBM).339

in figure 6.4, where even at high energies there is no clear conduction band emission.

The other charge profile shown in Fig. 6.3(a) is for the 0.26 eV upward band bending

and surface electron depletion present after annealing at 800◦C for 2 hours. The cor-

responding acceptor surface state density is 3.8 × 1012 cm−2. The band bending as
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Figure 6.4: Valence band spectrum taking using hard (5921 eV) energy photons. Inset: shows a zoomed in picture

of the valence band edge, displaying clearly no conduction band emission.

a function of annealing treatment is shown in Fig. 6.3(c) and is also correlated with

the relative strength of the hydroxyl contribution to the O 1s spectrum, as discussed

below. The uncertainty in the absolute band bending values is ±0.22 eV due to the

aforementioned uncertainties in the band gap and in determining the VBM position.

However, the change in band bending is independent of the band gap and, between

the as-received surface and after 800 annealing, is 0.50±0.14 eV using the VBM posi-

tions with their ±0.10 eV uncertainty or 0.50±0.07 eV using the core-level positions

with their ±0.05 eV uncertainty. The uncertainty in the band bending value would be

much smaller than±0.22 eVwith a less conservative estimate of the band gap than the

±0.2 eV uncertainty stated here. Fig. 6.3(d) compares the natural band alignment and

bulk interstitial H transition levels of Ga2O3 with other metal oxide semiconductors

and will be discussed further below.

6.3.3 The Role of Hydrogen in Ga2O3

In order to confirm the changes in the surface electronic properties as a function of

annealing and to investigate their origin, core level XPS spectra were also recorded.

Fig. 6.5(a)-(d) shows XPS survey and core level spectra for β-Ga2O3 after successive in-
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Figure 6.5: β-Ga2O3 XPS spectra following thermal annealing steps at 200, 400, 600 and 800 for 30minutes and

finally for 2 hrs at 800 showing (a) wide survey scanwith visible peaks labeled. (b) C 1s core-level, (c) O 1s core-
level and (d) Ga 2p core level doublets, all demonstrating a binding energy shift to lower energy upon surface
cleaning up to 800◦C. The binding energy scale is referenced to the Fermi level.

situ thermal annealing steps were performed to remove surface contamination. Start-

ing from an unnannealed sample (black spectra), 200◦C temperature steps were per-

formed for 30 mins up to 800◦C, which was also done for 2 hours (red spectra). All

survey spectra possess only gallium, oxygen and carbon lines. No peaks related to

Sn could be discerned due to the low concentration of Sn in the samples (∼6×1018

cm−3), well below the detection limit. As successive annealing steps are completed,

Ga and O related peaks are seen to increase in intensity, whilst C related peaks are

greatly reduced, indicating the removal of contamination from the surface. This is

more clearly seen in the core level spectra in Fig. 6.5(b) C 1s, (c) O 1s and (d) Ga 2p.
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TheC 1s peak reduced in intensity after each annealing step up to 800◦Cwhere it could

not be reduced further. Annealing at a higher temperature (1000◦C) caused another

carbon species to develop on the surface, possibly as a result of carbon reacting with

Ga2O3. All core level peaks shifted to lower binding energy after each cleaning step,

indicating changes in the surface electronic properties of the material occurring as a

result of the surface cleaning.
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Figure 6.6: (a) O 1s and (b) Ga 2p3/2 XPS core level peaks and curve fitting for both unannealed (as entered) sam-
ples and following a 2 hour 800◦C annealing cycle.

This energy shift is investigated in more detail by peak fitting of the O 1s and Ga

2p core levels as shown for the unannealed and maximally annealed crystal in Fig. 6.6.

The O 1s spectra prior to cleaning (top) and after a 2 hour 800◦C cleaning cycle (bot-

tom) can be seen in Fig. 6.6(a). Both spectra were fitted using a Shirley background and

Voigt line shapes. The spectrum possessed a strong component with a high binding

energy shoulder. The main component is associated with O bonded to Ga at 532.2 eV,

with a shoulder component 1.3 eV higher in binding energy, which is commonly asso-

ciated with a hydroxyl (-OH) group.368–372 In this case, this is likely due to H adatoms

bonding to O atoms on the Ga2O3 surface. Subsequent annealing reduces and then

removes the shoulder component completely and a binding energy shift of ∼0.7 eV
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to lower energy (531.6 eV) is observed. The FWHM of the O-Ga O 1s component

remained the same (1.2 eV) before and after annealing, suggesting no new chemical

species is formed. The binding energy shift of the O-Ga peak is associated with the

change in the surface electronic properties resulting from the hydroxyl groups being

removed from the surface. This correlation between the relative intensity of the hy-

droxyl component of the O 1s peak and the band bending is apparent in Fig. 6.3(c).

This suggests that the downward band bending and electron accumulation is due

to the hydrogen on the surface. That is, the adsorbed hydrogen on the surface acts

as an extrinsic source of positively charged donor surface states which provide the

electrons in the accumulation layer. As the hydrogen is desorbed by annealing, the

surface donor density decreases along with the downward band bending, and all the

core levels shift accordingly. This effect has been seen previously in ZnO.326,327 Indeed

this is seen in Fig. 6.6(b) where the Ga 2p3/2 peak shifts after cleaning by the same

amount also (from 1119.3 eV to 1118.6 eV with no change in the FWHM of 1.5 eV).

As the annealing steps progress, the initial decrease in the amount of downward

band bending is followed by the development and then increase of upward band bend-

ing and surface electron depletion. The greatest upward band bending of 0.26 eV oc-

curs when the hydroxyl component of the O 1s spectrum is absent after annealing

at 800◦C. This type of behaviour has also been reported for polar ZnO surfaces.325–327

Despite the relative area between the hydroxyl and oxide components in figure 6.6a

being known, it is difficult to determine the fraction of surface sites that act as donors

from this as there may be many surface states that do not contribute to the space

charge. The surface states will have an associated distribution of energies. Only the

unoccupied donor surface states will be charged and contribute to the space charge by

donating electrons. Any below the Fermi level will be occupied, will not contribute

electrons, and be neutral. The proportion of OH-related surface states which con-
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tribute to conductivity thus depends on the position of the Fermi level within the

(unknown) distribution of surface states. This may explain why the relative intensity

can be quite high, while the sheet density of carriers is quite low (which only include

states that contribute to conductivity). Additionally, the OH species is expected to

reside directly at the surface, and so will not be as attenuated in the photoemission

process as subsequent layers which means this peak is made relatively more intense.

These results suggest that electron depletion is the ‘natural’ surface space charge state

of Ga2O3 surfaces. This corresponds to the presence of occupied negatively-charged

acceptor-type intrinsic surface states.

Having electron depletion at the surface of moderately doped n-type Ga2O3 with

roughly coincident bulk CBM and Fermi level, is consistent with the so-called charge

neutrality level (CNL) lying below the CBM. The CNL, otherwise referred to as the

Fermi level stabilization energy (of the amphoteric defect model373,374) or branch point

energy,375 is the energy at which the surface states change from being predominantly

donor-like below the CNL, to being predominantly acceptor-like above the CNL.59,323

Indeed, as shown in Fig. 6.3(d), the natural band alignments of the metal oxides indi-

cate that CNL lies about 0.6 eV below the CBM for Ga2O3. Such a position high in the

band gap and relatively close to the CBM for such a wide band gap material is consis-

tent with other reported properties of Ga2O3. These include its n-type dopability,376

the ability to form Schottky barriers at metal/Ga2O3 interfaces,376 the sensitivity of sur-

face conductivity to gas adsorption,341 and the decrease in conductivity upon particle

irradiation of already n-type material.377

However, a possible contradiction is presented by the bulk donor behaviour of in-

terstitial hydrogen, Hi, in n-type Ga2O3. If the Fermi level is above the CNL, it would

be expected that Hi would act as compensating acceptors. This is because for Hi con-

figurations that involve disrupting the cation-anion bond, the Hi ε(+/-) transition level,
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(a) (b)

Figure 6.7: Comparison of H+
i configurations used in the alignment for (a) rutile SnO2 and (b) monoclinic β-

Ga2O3. The top panels represents the bond-center (a) or anti-bonding (b) configurations that disrupt the host
bonding. The broken Ga-O bond in (b) is represented by a dashed line. The bottom panels represent the lowest

energy configurations for H+
i in these structures, but they do not probe the cation-anion bonds and instead oc-

cupy anion-derived lone-pairs.

corresponds to a transition between anion- and cation-derived dangling bond states

and so is very close to the CNL.59,69,70 But Hi have been shown to act exclusively as

shallow donors in Ga2O3 from theory367 and studies of the electronic analogue muo-

nium.338 This apparent contradiction is resolved when the very different nature of the

bonding of Hi in Ga2O3 compared to most other metal oxides is considered. The bond-

ing environment of the O atoms in Ga2O3 results in O lone-pairs that may capture

Hi and form favourable shallow donors without much influence on the lattice (bot-

tom panels of Fig. 6.7). This is a phenomenon also exhibited by SnO2. In the spirit

of the usual relationship between the CNL and the behavior of Hi in other materi-
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als, these lone-pair H+
i configurations for Ga2O3 and SnO2 do not probe anion- and

cation-derived dangling bond states and so their Hi transition level (denoted ε’(+/-) in

Fig. 6.3(d)) does not correspond to the CNL for these materials. But, if we instead con-

sider higher-formation energy H+
i configurations that disrupt the bonding and lead to

cation dangling bonds (top panels of Fig. 6.7), it is found that the Hi ε(+/-) transition

level70 falls 0.51 eV below the CBM for Ga2O3, in good agreement with the experimen-

tal findings here and the CNL depicted 0.6 eV below the CBM in Fig. 6.3(d). (For SnO2,

it is found that a bond-center H+
i configuration that probes Sn dangling bond energies

yields a Hi ε(+/-) transition level 0.48 eV above the CBM, which is also qualitatively

and quantitatively in good agreement with previous studies.364)

6.4 Conclusion

In conclusion, the type and magnitude of band bending at the (2̄01) surface of β-Ga2O3

was determined for the as-entered and annealed crystal from valence band and core

level XPS measurements combined with hybrid DFT valence band calculations. The

surface of the as-entered Ga2O3 crystal is found to be terminated byO-H groups, result-

ing in downward band bending of 0.24 eV and electron accumulation with a sheet den-

sity of∼5× 1012 cm−3. Cleaning the surface by annealing and removing the adsorbed

hydrogen results in a transition from electron accumulation to depletion with upward

band bending of 0.26 eV. The observation of electron accumulation at uncleaned and

even moderately annealed Ga2O3 surfaces has been previously overlooked and the

extent of depletion overestimated. This is due in different cases either to use of the

wrong band gap energy and/or to an over-reliance upon linear extrapolation of the

valence band leading edge for the determination of the VBM position with respect to

the Fermi level. These findings are consistent with the charge neutrality level lying

∼0.6 eV below the CBM, which is in line with other reported properties of Ga2O3 and
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also the calculated ε(+/-) transition level for bond disrupting Hi configurations.
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7
Summary and Future Work

7.1 Summary

This thesis has primarily focussed on the electronic properties and structure of a class

of ‘semiconductors’ known as transparent conducting oxides (TCOs). Of the wide and

varied selection of materials that make up the TCOs, only two have seen major com-

mercial success. These are SnO2 and In2O3 which are most commonly doped with F

and Sn respectively. Understanding the role of the dopant in these materials is key

to improving on the performance of current and indeed all TCOs. This task is com-

plicated both experimentally, by very low quantities of the dopant being present, and

theoretically, by the breaking of translational symmetry at a dopant centre. Much of

the work in this thesis has been an attempt to advance our understanding regarding

the effects of doping in TCOs, and provide new insights and ideas regarding both posi-
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tive and negative effects of intentionally introducing dopant defects in these materials.

A common rule of thumb that has endured for TCOs is that an element in the column

on the right-hand-side of the host atom in the periodic table (be it anion or cation) is

the natural choice of dopant. Whilst logical and clearly effective in many cases, there

are numerous other choices of dopant element which have either gone unexplored, or

in cases where their performance has been shown to be superior to the conventional

dopingmethod, themechanism for this has been left unexplained. Thework presented

here helps explain some of the considerations necessary to improve upon the overly

simplified assumptions of the conventional doping method.

Chapter 4 looks at the conventional doping route in SnO2 doped with F (FTO).

Through a combination of theoretical defect formation energy calculations, Hall ef-

fect measurements and modelling, infrared reflectivity modelling, and quantitative

evidence from XPS and SIMS measurements, the fluorine interstitial was proposed as

the likely compensating mechanism for free carriers in FTO. This extrinsic compen-

sating mechanism limits the dopability of FTO, and reduces the mobility meaning the

conductivity is self limiting.

In chapter 5, molybdenum is shown, to be a superior dopant in In2O3 than the con-

ventional tin, as evidenced through a combination of Hall effect data and optical mea-

surements. Optical modelling gives evidence of lower effective masses in IMO com-

pared to ITO, which explains the relatively high carrier mobilities recorded for IMO,

while the mobility of ITO for the same carrier density is much more limited. The tran-

sition metal Mo improves upon the carrier mobility in In2O3, and this is determined

to be due to the minimal hybridization at the CBM of Mo dopant states. Sn dopant

levels sit close in energy to the CBM states, and the Sn 5s dopant states share orbital

character with the In 5s states at the CBM meaning they hybridize readily. This was

determined using HAXPES and IPES measurements, in conjunction with DFT calcula-
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tions. Mo has 4d dopant levels which due to structural and Coulombic distortion, are

energetically remote and do not mix well with the CBM states in In2O3. This level of

understanding would not be attainable using only the conventional doping method,

as all dopant levels share orbital character with the host in this case.

Additionally, there is growing interest in a particular oxide semiconductor material,

Ga2O3, which may find uses in high power electronic devices amongst other things.

Because interest in Ga2O3 is in its relative infancy, many of the fundamental properties

of this material have not been fully explored. Amongst these, the surface electronic

properties had not been well understood.

In chapter 6 it is determined that Ga2O3 displays electron accumulation when the

surface is terminated by O–H groups resulting in downward band bending. After

surface cleaning, the direction of band bending is reversed andGa2O3 displays electron

depletion at the surface. This observation is explained by invoking the theory of the

charge neutrality level, which was determined to be ∼0.6 eV below the CBM. This

is supported by the determination of the ε(+/−) transition level for H interstitials,

which unlike the materials previously studied, do not disrupt the bonding in Ga2O3,

but are captured by O lone-pairs in the crystal forming favourable shallow donors.

7.2 Future Work

7.2.1 Transparent Conductor Design

The obvious progression of the work presented here is to look for other dopants in

TCOs that improve upon the optoelectronic properties of the host relative to the con-

ventional doping route. Luckily, many of these have been screened, albeit often unin-

tentionally, with examples including Ce, Zr, Hf and W in In2O3 and Ta in SnO2. How-

ever, the simplistic approach of selecting a transition metal with the correct oxidation
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state as a dopant seems to give sporadic success, both in terms of run-to-run varia-

tion in material properties and vast variation of materials between research groups,

indicating there is still more to be understood.

Indeed looking back to figure 1.15, varying levels of success can be seen in achieving

both high mobility and high carrier densities using different dopants in In2O3. While

some transition metals give very high mobility films, some appear to be heavily lim-

ited in how easily incorporated into the material they are, limiting the free carrier

density, e.g. see Ce in In2O3 in figure 1.15. Why are some dopants more easily incor-

porated into materials than others? Logically, the size of the atom could play a role

in dopability. Larger (or smaller) dopants than the host atom will probably distort the

lattice more, which will hence have an increasing effect on the electronic structure as

more dopant is incorporated. It is not surprising then that the conventional doping

route is so successful at producing films with extremely high carrier densities, as the

atom directly on the right of the cations (or anion) will have a very similar atomic

size and so will not add much strain to the crystal structure. In fact the higher dopa-

bility is precisely the reason why ITO has become the industry standard, achieving

high enough carrier density to offset the poorer mobility in many cases. It seems that

careful selection and understanding of the precise nature of a dopant in a material is

imperative for improved material design, and the general ‘rules of thumb’ may give

some success, but are ultimately limited in their application.

With this in mind, figure 7.1 gives a schematic representation of how I believe the

work presented in this thesis can be extended and improved upon. This visualises

the research framework used during this work, and incorporates both theoretical and

experimental approaches harmoniously. Starting from the top of figure 7.1, a good un-

derstanding of structural information is imperative for all materials, but is especially

important when considering doping behaviour, and impact of the dopant on the crys-
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ElectricalOptical

Structural
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Properties

Applications

Figure 7.1: Flow diagram of all the considerations necessary for improved TCOs.

tal structure. This can often have a large impact on the electronic properties of the

material, as has been shown throughout this thesis. On the next row, knowledge of

the electronic structure is important. A great deal of papers report the electronic struc-

ture of doped TCO materials, but very few consider the effect on the band structure

when the dopant level is ionized. It has been demonstrated that this is an important
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consideration that should hopefully be accounted for in future works. Even simple

considerations, such as how many dopant atoms per unit cell are required to achieve

a realistic free carrier density, are ignored. Very much related to this, consideration

of the limiting defects is extremely important also, dictating the behaviour of the ma-

terials, both electronically and optically. Only by considering all of these properties

for each new material studied do we hope to improve upon, or explain the limitations

of, the existing TCO materials. This should then directly feed into improving the

the materials used, making them more functional or even creating new applications.

These improvements can be evaluated experimentally through optical and electronic

measurements, the results of which will back-inform the assumptions and predictions

made in the previous parts of the schematic. Finally, the improved product can be

incorporated in existing applications or new technologies.

7.2.2 Further Investigations into Ga2O3

It may seem strange that the focus of the final results chapter of this thesis was quite

different from the others. Whilst undeniably true, the reason I wanted to include these

results in this thesis was because β-Ga2O3 is a very exciting material to work with

currently. Its commercial utilization is in its infancymainly because themost common

material of choice for power electronics is currently Si. However, there is a large push

to replace Si (which performs quite poorly due to its low breakdown voltage), with

wide-band gap semiconductors. Out of these, β-Ga2O3 offers superior high power

device performance (due to greater band gap and higher breakdown voltage) and the

possibility of gains in cost effectiveness over its rival materials including GaN and SiC,

suggesting that β-Ga2O3 is a good candidate for power switching. Indeed there are in

fact diodes made from SiC commercially available, showing the demand for such high

power devices is high.
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One important factor that needs to be considered when forming devices using β-

Ga2O3 is the electronic behaviour at the surface or interfaces. This was demonstrated

in chapter 6 for the simplest case of unintentional contamination of the crystal surface.

However, further investigation needs to be carrier out to get a better understanding of

the how the surface of β-Ga2O3 behaves. Questions such as i) how does an atomically

clean crystal surface behave when forming a device relative to a contaminated one ii)

what happens to the surface properties when dosing the surface with other gases (or

in a more controllable way such as using pure H2 or H2O for example) iii) does the

crystal orientation make a difference to this iv) how to properly determine the level

of band bending when a β-Ga2O3-semiconductor (or metal) interface is created in a

device, are just some examples of works that could be carried out in the future for this

exciting material.
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A
Selection rules for electric dipole

transitions

It was previously touched upon in chapter 1 that the optical transitions between the

VBM and CBM in In2O3 are forbidden, and that the first allowed transition in this

material originates from a valence band ∼ 0.8 eV below the VBM to the CBM. This

information is often still not known for this material, despite it now being quite well

evidenced by experiment. However, we can perform a similar analysis to that sug-

gested at by Walsh et al.25 to show this is the case for In2O3.

In2O3 usually adopts the body centred cubic bixbyite structure, which has space

group Ia3̄, No. 206 (international point group symbol: m3̄, Schoenflies space group

symbol: T7
h). The character table for the m3̄ point group (Schoenflies point group Th)

is as follows378:
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Table A.1: Character table for Th point group, note: w= exp
( 2iπ

3
)

Th(m3̄) E 4C3 4(C3)
2 3C2 i 4(S6)5 4S6 3σh functions

Mult. 1 4 4 3 1 4 4 3 -
Ag 1 1 1 1 1 1 1 1 x2 + y2 + z2
1Eg 1 w w2 1 1 w w2 1 (2z2 − x2 − y2,
2Eg 1 w2 w 1 1 1 w2 1 x2 − y2)
Tg 3 0 0 -1 3 0 0 -1 (xy, yz, xz)
Au 1 1 1 1 -1 -1 -1 -1 -
1Eu 1 w w2 1 -1 −w −w2 -1, -
2Eu 1 w2 w 1 -1 -w2 -w -1 -
Tu 3 0 0 -1 -3 0 0 1 (x, y, z)

The rate of optical interband transitions at the Γ-point depends upon themomentum

matrix element pif which can be represented by

pfi =

∫
Ψ∗

f (r)pΨi(r)dr (A.1)

where Ψi and Ψf are the initial and final wave functions respectively. As the elec-

tron momentum operator p is a vector quantity, its three components (px, py and pz)

must belong to the irreducible representation Tu (note that in non cubic systems com-

ponents of p may transform as one or two-dimensional irreducible representations

rather than a single three-dimensional irreducible representation). The twowave func-

tions Ψi and Ψf have their own parities, which when multiplied will give the parity

of their product. The selection rules rely on the constraints imposed on the matrix

elements of the electric-dipole operator. The important rule here is known as the

matrix-element theorem and states that the matrix element between an operator p

and two wave functions Ψi and Ψf can differ from zero only when the direct product

of the representations of p and Ψi contains an irreducible representation of Ψf. The

electric-dipole operator has odd parity, and so its matrix element is zero between two

states of the same parity.
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In representation theory, the transformation properties in equation A.1 are handled

through what is called the direct product, allowing us to expand the integrand into

irreducible representations of the point group54:

Γequiv = Γfinal state ⊗ Γoperator ⊗ Γinitial state. (A.2)

Focussing on transitions at the zone centre, we can consider the irreducible rep-

resentations of the VBM (Tg) and CBM (Ag). The electric dipole operator transforms

with the irreducible representation Tu which allows us to define our selection rules

through the direct product:

Γequiv = Ag ⊗ Tu ⊗ Tg (A.3)

allowing us to determine the following characters for the equivalent representation

of the integrand in equation A.1

Table A.2: Character table for the equivalent representation Γequiv of the Th point group.

E 4C3 4(C3)
2 3C2 i 4(S6)5 4S6 3σh

Γequiv 9 0 0 3 -9 0 0 -3

The orthogonality theorempresented in equationA.4 gives the basic orthonormality

relations used to set up character tables.

∑
k

χ i(Ck)
∗χ j(Ck)Nk = hδ ij (A.4)

where h is the order of the group (h = 24 in this case), Nk is the number of elements

of the class Ck (or the multiplicity), χ i,j are the characters for the selected irreducible

representations of a particular class and δ ij is the Kronecker delta. This equation has

a delta function which relates to the orthogonality of the irreducible representations
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(i.e. the characters of an irreducible representation form a set of orthogonal vectors in

group-element space). If a representation is reducible then the characters will gener-

ally not obey this orthogonality relation. In our case, where we may have constructed

a reducible representation in table A.2, we need to adjust equation A.4 slightly to ac-

count for the possibility of this representation not being orthogonal to the irreducible

representations.

∑
k

χ(Ck)
∗χ j(Ck)Nk = ha. (A.5)

Here we replace the character associated with an irreducible representation from

table A.1 with one from our equivalent representation χ(Ck) and replaced the delta

function with a constant a that can take any integer value, which essentially accounts

for the number of instances that a selected irreducible representation is found in the

reducible representation. Using equation A.5, the Th character table, and the charac-

ters for the equivalent representation above in table A.2 we see that the sum does not

contain the totally symmetric irreducible representation Ag, i.e. this electric-dipole

transition is forbidden by selection rules. If instead of the initial state selected (being

Tg) we select the state with irreducible representation Tu and perform the same anal-

ysis, we find the equivalent representation contains the totally symmetric irreducible

representation Ag, hence this transition is allowed. This is in agreement with the re-

sults of Walsh et al.25 One useful table to refer to for selection rules is known as the

multiplication table of irreducible representations378.

This table shows the irreducible components of the direct product between irre-

ducible representations.
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Table A.3:Multiplication table of irreducible representations of the Th point group

Th(m3̄) Ag Au
1Eg 1Eu 2Eg 2Eu Tu Tg

Ag Ag Au
1Eg 1Eu 2Eg 2Eu Tu Tg

Au - Ag
1Eu 1Eg 2Eu 2Eg Tg Tu

1Eg - - 2Eg 2Eu Ag Au Tu Tg
1Eu - - - 2Eg Au Ag Tg Tu
2Eg - - - - 1Eg 1Eu Tu Tg
2Eu - - - - - 1Eg Tg Tu

Tu - - - - - - Ag +
1 Eg +2 Eg + 2Tg Au +

1 Eu +2 Eu + 2Tu

Tg - - - - - - - Ag +
1 Eg +2 Eg + 2Tg
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B
Plasma reflectivity in a free electron gas

and the dipole oscillators

Much of the content of this section comes from undergraduate text books. In Particu-

lar I refer to the book on optical properties of solids by M. Fox129. This should provide

the basic structure for creating a more complicated oscillator model applicable to semi-

conductor systems.

Free electron gas

We begin by giving some useful definitions. The response of a dielectric medium to

an external electric field is characterized by three vectors. The electric field strength

E, the polarization P and the electric displacement D. The polarization is defined as

the net dipole moment per unit volume which comes from the application of a field
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on the medium producing polarization by forces exerted on the positive and nega-

tive charges of the atoms. The field can force positive and negative charges apart and

induce a dipole parallel to the field direction in atoms with no permanent dipole mo-

ment, else the field applies a torque to align the dipoles parallel to the field if they are

naturally randomly oriented. Either way this generates a net dipole moment within

the dielectric and hence a polarization

P = ε0χE. (B.1)

Equation B.1 defines the polarization, which is parallel to E, ε0 is the electric permit-

tivity of free space and χ the electric susceptibility of a medium. We assume in these

equations an isotropic medium. The electric displacement is given as

D = ε0E+P = ε0εrE (B.2)

where the relative dielectric constant εr = 1 + χ . The microscopic response of a

material is mostly determined from theP, which then allows us to determine εr which

determines the optical properties of a material.

The equation of motion for free electron in an AC field (E(t)) is given by:

m0
d2x
dt2

+m0γp
dx
dt

= −eE(t) = −eE0e−iωt (B.3)

Here the first term represents the acceleration of the free electron, while the second

term is the frictional damping force of the medium (γp is the damping rate), and the

final term is the driving force exerted by the light. Since the electric field of an AC

electric field varies sinusoidally we can choose a solution to this equation of a similar

sinusoidal form x(t) = x0e−iωt giving a solution to equation B.3:
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x(t) =
eE(t)

m0(ω2 + iγpω)
. (B.4)

This is the displacement of an electron from its equilibrium position and so the polar-

ization of a free electron gas is now given as P = −Nex where N is the number of

electrons per unit volume. Using equation B.2, we know for a free electron system:

D = ε0εrE = ε0E−
Ne2E

m0(ω2 + iγpω)
(B.5)

and therefore

εr(ω) = 1− Ne2

ε0m0

1
ω2 + iγpω

(B.6)

which is usually written as

εr(ω) = 1−
ω2

p

ω2 + iγpω
(B.7)

where the plasma frequency ωp is given as

ωp =

(
Ne2

ε0m0

) 1
2

. (B.8)

We can relate the relative dielectric constant of a material to the complex refractive

index. the refractive index can be described by

ñ = n+ ik (B.9)

where n is the refractive index and k is the extinction coefficient. Because the dielectric

function can be complex we can write this as

ε̃r = ε1 + iε2. (B.10)
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ε1 and ε2 are the real and imaginary parts of the dielectric function. These two equation

are related through Maxwell’s equations to give

ñ =
√

ε̃r. (B.11)

Combining equations B.9, B.10 and B.11 gives

ε1 = n2 − k2

ε2 = 2nk

n =
1
√
2

(
ε1 + (ε21 + ε22)

1
2

) 1
2

k =
1
√
2

(
−ε1 + (ε21 + ε22)

1
2

) 1
2
. (B.12)

Finally to relate these functions to an experimental observable we use the equation

R =

∣∣∣∣ ñ− 1
ñ+ 1

∣∣∣∣2 = (n− 1)2 + k2

(n+ 1)2 + k2
. (B.13)

For context, a lightly damped system (i.e. inserting γ ∼ 0 in equation B.7) displays a

reflectivity and dielectric response as shown in figure B.1. Because γ = 0 the dielectric

constant ε̃r becomes negative only when ω < ωp (ñ becomes imaginary), and takes

a positive value when ω > ωp. At ω = ωp the refractive index and the dielectric

function are zero. Physically this means the reflectivity is 100% for frequencies below

ωp (ñ has a large imaginary part), and approaches zero when ω >> ωp. This idealized

case of an undamped free electron gas can be adjusted for many real physical systems.
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Figure B.1: Reflectivity, the real ε1 and imaginary ε2 parts of the relative dielectric constant, and the refractive
index n and extinction coefficient k of an undamped free electron gas.

The dipole oscillator model

In a very similar approach to that used above, we can create a model for the dielec-

tric constant of an atom with bound electron with a single resonant frequency ω0.

Equation B.3 becomes

m0
d2x
dt2

+m0γ
dx
dt

+m0ω2
0x = −eE(t) = −eE0e−iωt. (B.14)

Notice how this is exactly the same equation of motion as in equation B.3, only with

an extra term representing the restoring force between a dipole oscillator (is this is

now a bound system). Oscillating dipole can lose energy in collision processes which

in solids is typically through a phonon interaction. Note that we assume the mass of
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the electron is far less than the nucleus, i.e. the nucleus is essentially motionless. Now

by following the exact same procedure outlined above, only with the extra resonant

term in equation B.4 we can arrive at the relative dielectric constant

εr(ω) = 1+ χ − Ne2

ε0m0

1
ω2 + iγω − ω2

0
. (B.15)

Taking the limits to the two extremes, i.e. ω → 0 (the static case) and ω → ∞ (the

high frequency case) we find

εr(0) = 1+ χ − Ne2

ε0m0ω2
0

(B.16)

εr(∞) = 1+ χ (B.17)

and so we can write

εr(0)− εr(∞) =
Ne2

ε0m0ω2
0
. (B.18)

giving

εr(ω) = εr(∞) +
(εr(0)− εr(∞))ω2

0
ω2 + iγω − ω2

0
. (B.19)

Figure B.2 shows the dielectric response for a dipole oscillator. The resonant fre-

quency can be seen at the peak position of ε2, corresponding to a drop in reflectivity

(increased absorption) around ω0. ε1 increases from the static regime ε(0) approach-

ing ω0 and then drops to a negative value at ω0, before being restored at the high

frequency regime ε(∞). The width of ε1 and ε2 is determined by the damping γ , i.e.

damping of the oscillators causes line broadening in reflectivity spectra.
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Figure B.2: Energy dependence of the Reflectivity, the real and imaginary parts of the dielectric constant and

refractive index for a dipole oscillator around resonance.
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C
Theory of Photoemission

Since the theory of PES is deeply seated in the physics of quantum mechanics and

many-body interactions, it may be instructive to discuss these ideas here. The theory

is applicable on a much grander scale than simply PES, but this gives a very good

platform for direct application. Hopefully this chapter should provide a short but

thorough introduction into the quantum mechanical description of PES, which may

inform some of the discussion in chapter 2.1.1. Much of this discussion is based on

that of Hüfner95 and much of this chapter is mainly for the interested reader (as I am

myself), and may not reflect directly onto the work carried out.

The transition probability of an electron being photo-excited from an initial state ϕi

to final state ϕf is given by Fermi’s golden

W ∝ 2π
ℏ
|⟨ϕf|H

′|ϕi⟩|
2δ(Ef − Ei − hν) (C.1)
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where H′ is a small perturbation produced caused by the light interaction which is

evaluated by classical electromagnetism as the effect of the electromagnetic field on

the atom. This can be related to the Hamiltonian of the electron before the field was

applied H0 =
p2

2m0
+V(r) (here V(r) is the potential energy of the electron in the atom).

The Hamiltonian of the electron in an electric field which is given by

H =
1

2m0
(p+ eA)2 + V(r)

= H0 +
e

2m0
(A · p+ p ·A) +

e2

2m0
A ·A

(C.2)

where A is the vector potential and p = iℏ▽ is the momentum operator, and the

change in momentum due to the applied field is given as p → p− eA. Therefore the

perturbation due to the light interaction can be given as

H′ =
e

2m0
(A · p+ p ·A) +

e2

2m0
A2. (C.3)

If A2 is neglected (ignoring the the two photon interaction as it is weak), then

because the first two terms in equation C.2 commute we can write A · p = p ·A and

using the definition of p = −iℏ▽ for an arbitrary function f(r) we see (p · Af(r) =

A · (−iℏ▽f)+ (−iℏ▽ ·A)f). Now using the fact that ▽ ·A = 0 in the Coulomb gauge,

we can write

H′ =
e
m0

(p ·A). (C.4)

This returns us to the dipole approximation discussed briefly in chapter 2.1.1, where

A = A0ei(k·r−ωt) = A0(1+ i(k · r) + 1
2(ik · r)2 + ...) ∼ A0 for long wavelengths. So to

evaluate the transition probability of a photoemission event we need to evauluate the

matrix element in equation C.1 which is now described by
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M12 =
e
m0

|⟨ϕf|p ·A0|ϕi⟩| (C.5)

as well as knowledge of the initial and final wave functions of the electrons. * In the

one electron view, the final state of the system is down a single electron so the matrix

element consists of a product of a one-electron matrix element and an (N-1)-electron

system. In the frozen orbital approximation, assuming that the initial and final state

of the atom are the same ΦN−1 (the initial φi and final φf states of the photoemitted

electron are treated explicitly only), that is no rearrangement takes place in the atom

after photoemission, then the binding energy of the electron is equal to the orbital

energy of the electron, sometimes known as Koopmans’ theorem EB ∼ −Eorb.. This

approximation is obviously too simplistic as relaxation must occur to minimise energy

after photoemission, but is still useful to aid in basic understanding.

If the final state of the N-1 electron system has a number m of available excited

states with wave function Φm
f (N − 1) of energy Em(N − 1) then the transition matrix

element is given by the overlap integral of the initial states, and the sum of that of the

final states

⟨ϕf|r|ϕi⟩ = ⟨φEk
f |r|φi,k⟩

∑
⟨Φm

f,k(N− 1)|Φi,k(N− 1)⟩

= ⟨φEk
f |r|φi,k⟩

∑
C(N− 1).

(C.6)

Here we explicitly include the orbital k from where the photoelectron originates.

|C(N− 1)|2 is the probability that after the removal of an electron from orbital k of the

N-electron system, the excited state of the system is left in the state m represented by
*note that using the commutation relations we can say ⟨ϕf|A · p|ϕi⟩ ∝ ⟨ϕf|A▽ · V|ϕi⟩ ∝

⟨ϕf|A · r|ϕi⟩. We can write the transition matrix element as the overlap integral of the initial and
final states of the photoemitted electron, and the N-1 electron system ⟨ϕf|r|ϕi⟩ = ⟨φf|r|φi⟩⟨Φf(N −
1)|r|Φi(N− 1)⟩.
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Φm
f (N− 1). For some systems |C(N− 1)|2 ∼ 1 (i.e. Φf(N− 1) ∼ Φi(N− 1) meaning the

state k = m) so there is only one available excited state and only one peak is observed,

while for some other systems (such as strongly correlated ones) there are many non-

zero values of |C(N− 1)|2 and so many satellites are observed as well as the main peak

when m = k. From here we can write the intensity (or photocurrent) of a core-level

from equation C.1 and C.6 as

I ∝
∑

|⟨φEk
f |r|φi,k⟩|

2
∑

|C(N− 1)|2δ(Ef − Ei − ℏω) (C.7)

where Ef and Ei are the final and initial energy states of the system (Ef being comprised

of the kinetic energy of the photoemitted electron and the final state (N-1) atomic

system, while Ei is simply the N electron system). The photocurrent of core levels

therefore relies heavily on the number of final statesmaking up
∑

|C(N−1)|2, which in

turn will determine the number of satellites also. This term is often called the spectral

function. When looking at the valence states in photoemission we find heavy wave

vector dependence of the states (as there are many hybridized lines, some displaying

very parabolic behaviour with very de-localized electrons). The expression for the

photocurrent in this case is given as

I ∝
∑∣∣Mif

∣∣2 δ(Ef − Ei − ℏω)δ(E− Ef + φ)δ(ki +G− kf ). (C.8)

For equation C.8 we make use of the periodicity of the Bloch function with respect

the the reciprocal lattice vector G. Here the first delta function ensures conservation

of energy, as it did in equation C.7. The second delta function is added simply to

ensure only electrons eith energy above the vacuum level (the work function φ is

accounted for) are detected. Finally, the last delta function ensures conservation of

momentum up to the reciprocal lattice vector. Due to the Fresnel equations we can
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separate the momentum conservation term to conserve parallel momentum to the

surface if desired.

I ∝
∑∣∣Mif

∣∣2δ(ki|| +G|| − kf ||)δ(Ef − Ei − ℏω)

δ(E− Ef + φ)δ(ki +G− kf ).
(C.9)

This geometric consideration leads to interesting physics such as being able to describe

the angle resolved photoemission process, where the band structure can be mapped

over the perpendicular electron momentum. This will not be considered here however.

Also, further terms can be considered in equation C.9 to account for the probability of

photoelectrons scattering, or not penetrating the sample surface etc. These are ignored

here.

The last consideration we will make to gain a full description of the basic photoe-

mission precess is that of the many-body interactions. Electrons in a solid interact

with one-another, which means the created core-hole state from the photoemission

process can exist in one of them final states of the system. Returning to the definition

of the spectral function

A(k, E) =
∑
m

∣∣⟨Φm
f (N− 1)|Φi(N− 1)⟩

∣∣2 (C.10)

we can rewrite this equation in terms of the annihilation operator a− which in the

language of second quantization acts to remove a single electron from the ground

state system

A(k, E) =
∑
m

∣∣⟨Φm
f (N− 1)|a−1|Φi(N)⟩

∣∣2 . (C.11)

Equation C.11 describes the probability of an electron being liberated from a system
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in the ground state.

The spectral function is integral in describing the electronic behaviour of a many-

body system. It is also convenient to write in terms of the single-particle greens func-

tion G(k, E), used to describe the probability that an electron at a position r1 at time

t = 0 will be found at position r2 at a later time t. In terms of energy and momen-

tum, it is equivalent to say the Green’s function decribes the probability of an electon

in state k1 is found in k2 if the a scattering process occurs with energy transfer E.

The imaginary part of the Green’s function can be shown to be equal to the spectral

function95

A(k, E) =
1
π
|ImG(k, E)| (C.12)

For a non-interacting system when Φf(N− 1) = Φi(N− 1) and the spectral function

is described by a delta function at E = E0(k), the one-electron energy of the system

(A0(k, E) = 1
π δ(E− E0(k)).† This is another representation of Koopman’s energy.

Now the electron-electron interaction can be accounted for by adding to the single-

particle electron energy E0(k)withwhat is known as the self energy Σ(k, E) describing

the renormalized structure

G(k, E) =
1

E− E0(k)− Σ(k, E) (C.13)

and the spectral function is now

A(k, E) =
1
π

ImΣ(k, E)
(E− E0(k)− ReΣ(k, E))2 + (ImΣ(k, E))2 . (C.14)

This reflects equation 2.30 not by coincidence. The lifetime of the electronic state

is given by τ = 1
2ImΣ(k,E) which gives rise to the finite width of the spectral feature

†The one-electron Green’s function is given by G0(k, E) = 1
E−E0(k)−iδ where E0(k) = ℏ2k2

2m0
.
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through the uncertainty principle Γ = ℏ
τ . If the self energy is small (for a weakly

interacting system), the Green’s function in equation C.13 can be decomposed into

two parts, the coherent and incoherent parts.

A(k, E) =
1
π

ZkIm(E1(k))

[E− Re(E1(k))]2 + [Im(E1(k))]2︸ ︷︷ ︸
coherent part

+(1− Zk)Ainc︸ ︷︷ ︸
incoherent part

(C.15)

where Zk is a normalisation constant and E1(k) = E0(k) + Σ(k, E1(k)). The corre-

sponding Green’s function looks like

G(k, E) =
Zk

E− (Re(E1(k)) + iIm(E1(k)))︸ ︷︷ ︸
coherent part

+(1− Zk)Ginc︸ ︷︷ ︸
incoherent part

(C.16)

The coherent part equation C.16 resembles that of the one electron greens function

G0 width a slightly renormalizedmass. The electrons in the interacting systemmove as

if free electrons with a renormalized energy, hence these are known as quasi-particles.

The coherent part is approximated as the main emission line. The incoherent part of

the equation makes up the satellite features (e.g. plasmons).
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D
Optical transitions and the absorption

coefficient

D.0.1 Absorption in Semiconductors

As with the photoemission process, some of the basic physical principles associated

with optical spectroscopy should be discussed. This is in keeping with some previous

section, and in fact many parallels between the photoemission process and photoab-

sorption can be made. As in the photoemission process, where an electron is pho-

toexcited from a ground state to one outside of the material, in optical absorption an

incoming photon excites a ground state electron into an unoccupied final state in the

conduction band, usually just above the band gap. This is most commonly seen when

looking at the transmission of light, which reduces greatly when the energy of incom-

ing photons exceeds the band gap and absorption starts to occur. Many of the details
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of this section can be found in text books such as Hamagucie168, Basu379 and Yu and

Cardona26, as well as a detailed account given in the PhD thesis of M. Birkett380.

Much in the same treatment as in appendix C (because of its significance here we

will reiterate some of what is discussed in appendix C), we can make use of the one-

electron Hamiltonian in the presence of an a perturbation from electromagnetic radi-

ation. The unperturbed Hamiltonian is

H0 =
p2

2m + V(r) (D.1)

where p is the electron momentum operator, and V(r) is the one-electron potential. A

perturbation due to the interaction of light can be included by adjusting the momen-

tum of the electron*. This gives the perturbed Hamiltonian as

H =
1

2m (p+ eA)2 + V(r) (D.2)

which we showed in appendix C to be equal to

H = H0 +
e
m
A · p = H0 + H′. (D.3)

Now we need to evaluate the transition probability, which involves evaluating the

transition matrix element for a transition between an initial valence state to final con-

duction state given as

Mfi = ⟨f|H′|i⟩ =
( e
m

)
⟨f|A · p|i⟩ (D.4)

To evaluate the transition rate and hence determine the absorption coefficient for

a given material we are therefore required to evaluate |⟨f|A · p|i⟩|2. We can do this
*This is done by introducing the scalar and vector potentials φ(r, t) and A(r, t). Due to gauge

invariance, we are bale to choose the Coulomb gauge which is mathematically most convenient here
so that φ = 0 and ▽ · A = 0.
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under two assumptions. Firstly, we assume the forms of the initial (valence) and final

(conduction) wave functions to be Bloch functions (which is already assumed when

describing the interaction of light)

|i⟩ = 1√
V
ui,ki(r)e

i(ki·r)

|f⟩ = 1√
V
uf,kf(r)e

i(kf ·r).

(D.5)

Secondly we need to assume the form of the vector potential A. This can be done by

writing A as Aê where ê is a unit vector in the direction of A.

A =
A0

2
(
ei(q·r−ωt) + e−i(q·r−ωt)) ê (D.6)

where A0 is related to the amplitude of the incident electric field and q is the wavevec-

tor of the electromagnetic field. The two exponential terms essentially describe the

same physical process in reverse, the first giving the absorption process, while the lat-

ter the stimulated emission process (an electron dropping from the conduction band

to an unfilled state in the valence band, emitting a photon. The energy ℏω has a dif-

ferent sign in the delta function in equation D.7 as ωt does in equation D.6). Now

substituting this into the equation for Fermi’s golden rule which describes transition

rates, allows us to determine the transistion probability per unit time for a transition

from state |i⟩ to |f⟩ as

R =
2π
ℏ

∣∣∣⟨f | e
m
A · p|i⟩

∣∣∣2 δ(Ef − Ei − ℏω)

=
2π
ℏ

e2

4m2 |A
2
0|
∣∣⟨f |eiq·rê · p|i⟩∣∣2 δ(Ef − Ei − ℏω)

(D.7)

where we have completely neglected the stimulated emission term in equation D.6 as
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our results are for the ground state only. Normalising to the crystal volume (V) the

matrix element can be written as

⟨f |eiq·rê · p|i⟩ = 1
V

∫
V
uf,kf(r)

∗e−i(kf ·r)ei(q·r)ê · pui,ki(r)ei(ki·r)d3r. (D.8)

Now since p = −iℏ▽ we see pui,ki(r)ei(ki·r) = [pui,ki(r)] ei(ki·r) + ui,ki(r)
[
ℏkiei(ki·r)

]
and using the translational periodicity of the Bloch function (allowing us to rewrite r

asR+ r, whereR is a primitive lattice vector and r is a unit cell vector), equation D.8

can be rewritten as an integration over the unit cell of volume Ω given by

⟨f |eiq·(r+R)ê · p|i⟩ = 1
V

∑
R

ei(ki−kf+q)·R
∫
Ω
ei(ki−kf+q)·ruf,kf(r)

∗ê · (p+ ℏki)ui,ki(r)d
3r.

(D.9)

The summationwith respect toR is zero for all except when (ki−kf+q) is equal to the

reciprocal lattice vectormG (m is an integer), asRwill cancel with the corresponding

−R†. If we assume umklapp processes will not occur as both electron wave vectors lie

within the first Brillouin zone then we see that atmG = 0 the integration in equation

D.9 goes to unity. This means that if the photon wavevector q is much smaller than

that of the electron wave vectors ki and kf , then we can ignore the photon wavevector

part and see ki - kf = 0 so that ki = kf , i.e. we require a direct transition to conserve

momentum. Electrons require the same k to perform an optical transition.

Using the above assumptions and due to the orthogonality of the Bloch wave func-

tions uf,kf(r)∗ui,ki(r), the integral with respect to ℏk disappears. So equation D.9 can

be massively simplified to give
†The summation

∑
R ei(ki−kf+q)·R can be treated as a delta function δ(ki − kf + q) ensuring

conservation of momentum.
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⟨f |eiq·(r+R)ê · p|i⟩ ≈
1
Ω

∫
Ω
uf,k(r)∗ê · pui,k(r)d3r = ê · pfi (D.10)

In equation D.8 we have relabelled ki and kf in the subscripts for simply k in the ex-

pressions for the Bloch waves u(r) as taking the Taylor series of uf,kf = uf,ki+q =

uf,ki +q ·▽kuf,ki + ... and we assume q is small. The crystal volume is also replaced by

the unit cell volume Ω = V
N due to the sum over N unit cells.

Finally, inserting equation D.10 into D.7 gives the transition rate per unit volume

R =
πe2

2m2ℏ
A2

0

∑
k

|ê · pfi|2δ(Ef(k)− Ei(k)− ℏω)

=
πe2

2m2ℏ
E2
0

ω2

∑
k

|ê · pfi|2δ(Ef(k)− Ei(k)− ℏω)
(D.11)

where the Maxwell’s relationships ▽× E = −∂B
∂t and B = ▽×A were used to give

E = −∂A
∂t and so E0 = ωA0.

The absorption coefficient

The transition rate is intimately connected to the absorption coefficient (the fraction

of power of incident light absorbed in a unit length of a medium) in the Beer-Lambert

law, which describes the attenuation of light intensity as a function of propagation

length through a medium I = I0e−αx. Rearranging this formula gives

α(ℏω) ≈
− δI

I

δx
(D.12)

where − δI
I is the fraction of absorbed light intensity at a position δx. If the total inci-

dent intensity is given by the time averaged Poynting vector, which for an electromag-

netic field described as a plane wave can be shown to be equal to ⟨S⟩ = E20
2μ0μrc

n129,381
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(n is the dielectric constant) and the power loss is given as ℏω · R, then the absorption

coefficient can be given by combining equations D.11 and D.12 to give

α(ℏω) =
ℏω · R(ℏω)
⟨S(ℏω)⟩)

=
πμre

2

ωε0m2cn

∑
k

|ê · pfi|2δ(Ef(k)− Ei(k)− ℏω) (D.13)

If we assume that the matrix element ê ·pfi varies slowly, i.e. is not strongly k depen-

dent then this term may be moved outside of the summation in equation D.13

α(ℏω) =
πμre

2

ωε0m2cn
|ê · pfi|2

∑
k

δ(Efi − ℏω) (D.14)

where Efi = Ef(k)−Ei(k). Because the summation in equation D.14 is over all available

paired states k, we can write this as an integration over all available states (over the

joint density of states)

α(ℏω) =
πμre

2

ωε0m2cn
|ê · pfi|2

∫
g(Efi)δ(Efi − ℏω)d3Efi. (D.15)

D.0.2 Joint Density of States

Equation D.15 gives a convenient model for the absorption coefficient of a semicon-

ductor. It does however, require knowledge of form of the joint density of states gfi.

Therefore, we introduce the concept of the joint density of states, and give the sim-

plest example of the form of equation D.15 for a direct transition for a material with

parabolic and spherically symmetric valence and conduction bands.

In the same way the density of states g(E) counts the number of states in a given en-

ergy interval (most often per unit volume) for a single band, the joint density of states

takes into account that both the initial and final electron states lie within continuous

bands, with energy seperation Efi = Ef − Ei. For electrons in a band the density of
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states per within a given energy range E+ dE is given as

g(E)dE = 2g(k)dk (D.16)

where the factor 2 accounts for the two spin states of the electron for each allowed k

state. It follows that

g(E) =
2g(k)

dE
dk

. (D.17)

g(k) can be determined as the number of k-states in the incremental volume element

between two constant energy surfaces separated by dE, see figure D.1 for a schematic

guide.

E=const.

E+dE

dk

dS

Figure D.1: Schematic derivation of the joint density of states between two constant energy surfaces E and
E + dE. The volume element in k-space is defined by the product of the surface area dS and the distance dk
perpendicular to the constant energy surface.

The number of states in this region per unit volume is given as

dN =
dVk

(2π)3 . (D.18)
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In three dimensions we write dE
dk = |▽kE|, and the definition of the unit volume

element pictured in figure D.1 is given as the infinitesimal surface area element (of a

surface with constant energy) dS in k-space, multiplied by the perpendicular wavevec-

tor k; dV = dS · dk. Combining all of the above and integrating over the surface gives

the density of states (including the two spin sates)

g(Efi) =
2

(2π)3

∫
S

dS
|▽kEfi|

. (D.19)

As indicated by the no uniform shape of the energy surface in figure D.1, this expres-

sion is valid for any band (we liberally use E and Efi interchangeably here). Singular-

ities exist for equation D.19, when |▽kEfi| = 0, i.e. the bands are parallel. This leads

to a maximum probability for optical transitions. These points can exist in multiple

places in the Brillouin zone, and were originally classified by van Hove382, so they are

known as Van Hove singularities. Expanding equation D.19 as a Taylor series around

k = k0 gives

Efi(k) = Efi(k0) + (k− k0) · ▽kEfi(k0)︸ ︷︷ ︸
=0

+
1
2
((k− k0) · ▽k)

2 Efi(k0) + ... (D.20)

It is common to ignore the higher order terms and note the first-order term is zero due

to the condition ▽kEfi = 0.

Van Hove wrote an equation similar to

Efi(k) =Efi(k0) +
3∑
i=1

aik2i + ...

=Efi(k0) +
3∑
i=1

ℏ2k2i
2μi

+ ...

(D.21)
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where 1
μ = 1

m∗
e
+ 1

m∗
h
is the reduced mass. Van Hove singularities are classified by the

number of negative coefficients ai which is essentially the sign of the reduced mass,

and in three dimensional space there are four kinds of Van Hove singularity. The

two extremes when all ai are either -1 or 1 correspond to band extrema (minimum

or maximum), while when one of the coefficients is opposite sign to the others, it

represents one of two saddle points. These are conventionally labelled M0 and M3 for

the two extrema, andM1 andM2 for the saddle points. The joint density of states for a

a simple cubic lattice is shown in figure D.2 to illustrate this.

E

g(E)

M0

M1 M2

M3

Figure D.2: VanHove points for a cubic lattice with Efi(k) = (Efi(k0)+3γ)−γ(cos(kxa)+cos(kya)+cos(kza))
taken from ref. 168.

To find an analytical expression for the joint density of states we will consider the

M0 (all ai > 0) critical point with parabolic and spherically symmetric valence and

conduction bands. The effective masses of such bands are given as m∗
v and m∗

c . The

joint density of states transition energy from equation D.20 is therefore
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Efi = (Eg + Ef)− Ei == Eg +
(ℏk)2

2m∗
e
+

(ℏk)2

2m∗
h

= Eg +
(ℏk)2

2μ . (D.22)

Inserting equation D.22 into D.19, given the area element S in spherical coordinates is

given by k2sinθdθdφ and ▽kEfi = ℏ2k
μ we can write the joint density of states as

g(Efi) =
2

(2π)3

∫
S

dS
ℏ2k
μ

=
kμ

4π2ℏ2

∫ π

0
sinθdθ

∫ 2π

0
dφ =

√
2μ3

π2ℏ3

√
Efi − Eg (D.23)

where we have rearranged equation D.22 to give k2 =
2μ(E−Eg)

ℏ2 . Inserting this into

equation D.15 we see

α(ℏω) =
μre

2

πℏ3ωε0m2cn
|ê · pfi|2

√
2μ3(ℏω − Eg) ∝

√
ℏω − Eg. (D.24)

Equation D.24 tells us that for a direct transition between bands with parabolic nature

α2 ∝ ℏω − Eg which is why you will often see linear extrapolations used to predict

the band gap, the so called Tauc analysis.

Of course many optical processes can occur that are not described by this simple

model. Without going into toomuch details, another very important optical transition

is that of an indirect band gap. In these transitions a photon is required to conserve

momentummeaning the delta function from equation D.13 becomes δ(Ef(k)−Ei(k)±

ℏq− ℏω) where ± allows for absorption or emission of a photon with wavevector q,

so kf = ki ∓ q. The occupation and therefore absorption coefficient of phonons has

to be considered using Bose-Einstein statistics. It can be shown in a similar (but more

taxing) manner to what we have shown for a direct transition that the transition rate

and absorption coefficient can be given as26,168
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Wif =
2π
ℏ

∣∣∣∣∣∑
m

⟨f|H|m⟩⟨m|H|i⟩
Ei − Em

∣∣∣∣∣
2

δ(Ei − Ef) (D.25)

α i(ℏω) ∝ (ℏω ∓ ℏq− Eig)2 (D.26)

where the transition take place from an initial state i to a final state f through a virtual

state m, and α is calculated in the vicinity if the indirect gap.
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E
Electronic Transport

This section lays the ground work for what follows in section 2.3.2. Whilst the natural

order would be to read this section first, like much of this thesis the content proved too

in-depth a topic to fit concisely in a few pages in the main sections. Hence, I decided

to separate it in the hopes of doing the subject justice, whilst acknowledging it is not

necessary to fully understand the content in order to follow the procedures carried

out in the main thesis. I aim on providing the tools to find analytical solutions to the

Boltzmann equation, allow allow us to give one such solution as an example.

E.0.1 The Boltzmann Transport Eqation

Most often the important transport coefficients are calculated by solving the Boltz-

mann transport equation. To discuss this we need to introduce the distribution func-

tion f(r,k, t) which gives the probability of occupation of a state by an electron at
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position r and wave vector k at time t. If for the moment we assume no scattering

events take place then, after a time interval dt an electron is changed into a new state

with position r+ ṙdt and wave vector k+ k̇dt. The change in the distribution function

in the time interval dt can be written as

(
df
dt

)
drift

=
f(k− k̇dt, r− ṙdt, t− dt)− f(r,k, t)

dt
(E.1)

where the first term on the right hand side is essentially the distribution function for

the initial electron state which transitions to the second term on the right hand side.

Equation E.1 represents that for continuous flow of electrons since no scattering take

place, hence this is called the drift term. By expansing f(k− k̇dt, r− ṙdt, t− dt)) in a

Taylor series and keeping only the terms to first-order, it can be shown that equation

E.1 becomes155,168

(
df
dt

)
drift

= −
[
k̇ · ▽kf+ v · ▽rf+

∂f
∂t

]
. (E.2)

Where we have used ṙ = v. Now using the fact that k̇ = F
ℏ we can write

(
df
dt

)
drift

= −
[
1
ℏ
(F · ▽kf) + v · ▽rf+

∂f
∂t

]
. (E.3)

Now we can introduce scattering (collision) which changes an electrons state. We

can define the rate of vhange in the distribution function due to collision as
(

df
dt

)
collision

and since the distribution function has to satisfy the equilibrium (steady-state) condi-

tion

(
df
dt

)
drift

+

(
df
dt

)
collision

= 0 (E.4)

giving us
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∂f
∂t

+
1
ℏ
F · ▽kf+ v · ▽rf =

(
df
dt

)
collision

. (E.5)

Equation E.5 is probably the most common form of the Boltzmann equation.

E.0.2 Scattering Theory

The scattering rate (probability of transition per unit time) of an electron transitioning

from state k to k′ due to some perturbation (ΔV) is described by the familiar Fermi’s

golden rule

Wk,k′ =
2π
ℏ
|M(k,k′)|2δ(Ek − Ek′) (E.6)

where

M(k,k′) =

∫
Ω
ϕ∗
k′(r)ΔVϕk(r)dr. (E.7)

Defect scattering events tend to affect the wave function of the electron being scat-

tered. Hence, we can only consider the bloch wavefunction of the electron

φk(r) = Uk(r)eik·r. (E.8)

The perturbing potential can be written as a Fourier series

ΔV =
∑
q

A(q)eiq·r. (E.9)

Therefore, we can write equation E.7 as
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M(k,k′) =
∑
q

∫
Ω
U∗
k′(r)e−ik′·rA(q)eiq·rUk(r)eik·rdr

= A(k′ − k)

∫
Ω
U∗
k′(r)Uk(r)dr

= A(k′ − k)I(k,k′)

(E.10)

where Ω is the unit cell volume, the last two lines were allowed by setting q = k′ − k

(conservation of momentum), and I(k,k′) is known as the overlap integral. Scattering

with lattice atoms is more complicated as changes in the lattice need to be accounted

for. For the sake of brevity, this will not be discussed here, but can be seen in text

books on the subject, such as Nag155 and Look160.

E.0.3 The Collision Term

The total transition probability of an electron being scattered from wave vector k to

k′ can be calculated as a sum over all states that an electron can scatter from k to

P(k,k′) =
Vc

(2π)3

∫ 2π
ℏ
|M(k,k′)|2δ(Ek − Ek′)dk′

=
Vc

(2π)3

∫
Wk,k′dk′

(E.11)

where Vc is the crystal volume, and the factor 1
(2π)3 accounts for the density of states

in k′-space. Note that the spin is not (necessarily) altered in the scattering process so

there is no factor of 2 required here. If we now want to know the number of scattered

electrons per unit time from k to k′, i.e. the scattering out rate we need to multiply

equation E.11 by the number of states both occupied and available giving
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(
df
dt

)
out

=

[
2Vc

(2π)3 f(r,k, t)dk
]

︸ ︷︷ ︸
scattered electrons

[
Vc

(2π)3{1− f(r,k′, t)}dk′
]

︸ ︷︷ ︸
available states

P(k,k′) (E.12)

Notice the factor of 2 in the term describing electrons to be scattered. This is because

either spin state can be scattered, but the available state will be filled by an electron

with matching spin. Likewise, electrons can be scattered into the state k, with a scat-

tering in rate of

(
df
dt

)
in
=

[
2Vc

(2π)3 f(r,k
′, t)dk

] [
Vc

(2π)3{1− f(r,k, t)}dk′
]
P(k′,k) (E.13)

The net scattering rate into dk is given by the sum of equations E.12 and E.13

− Vc

(2π)3
2Vc

(2π)3

∫
k′
[f(k)(1− f(k′))P(k,k′)− f(k′)(1− f(k))P(k′,k)] dkdk′ (E.14)

where we have written f(r,k, t) = f(k) and f(r,k′, t) = f(k′) as short-hand. The

integration is carrier out over all k and k′ to account for any transition to and from

bfk.

Equation E.14 is related to the collision term as − 2Vc
2π3

(
df
dt

)
collision

dk which describes

the change in the nuber of electrons per unit volume with wave vectors in the volume

element dk around k. Hence we arrive at

(
df
dt

)
collision

= − Vc

(2π)3

∫
k′
[f(k)(1− f(k′))P(k,k′)− f(k′)(1− f(k))P(k′,k)] dk′.

(E.15)
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Equation E.15 is often called the collision integral

E.0.4 Relating scattering and relaxation times

We will now try an find a solution to the Boltzmann equation which we write here

for convenience, as well as to reaffirm its importance (we substitute our expression in

equation E.15 into E.5)

∂f
∂t
+

1
ℏ
F · ▽kf+ v · ▽rf =

− Vc

(2π)3

∫
k′
[f(k)(1− f(k′))P(k,k′)− f(k′)(1− f(k))P(k′,k)]dk′.

(E.16)

Because equation E.15 is a non-linear integral, equation E.16 becomes an integro-

differential equation and so impossible to analytically solve. Hence, simplifications

are required to provide an approximate solution to this. This is done by linearising

the Boltzmann equation.

To begin, in the absence of any external field, and at thermal equilibrium the distri-

bution function of the electrons is a Fermi-Dirac distribution

f0(k) =
1

e
Ek−μF
KBT + 1

. (E.17)

In the absence of accelerating and diffusive forces the Boltzmann equation reduces

to the steady-state form
(

df
dt

)
collision

= 0, meaning the Fermi function must make the

collision integral equal to zero (as many electrons scattered in and out of k is balanced)

f0(k)(1− f0(k′))P(k,k′)− f0(k′)(1− f0(k))P(k′,k) = 0 (E.18)

Now, we switch on the electric field which forces a change in the distribution func-

tion. The electric field accelerates the electrons (and their distribution function) oppo-
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site to the direction of the field. The distribution function can be given as a Legendre

polynomial series, and if the external force is weak, we can approximate the function

to the first two terms

f(k) =
∑
n

fn(k)Pn(cosθ) ≈ f0(k) + f1(k)cosθ (E.19)

where Pn(cosθ) is the Legendre polynomial of order n and θ is the angle between

the electron wave vector k and the applied electric field E. We see the distribution

function is made up of the equilibrium distribution function and a small perturbation.

Substituting equation E.19 into E.5 and assuming terms involving f1(k)f1(k′) are

negligible, we see

(
df
dt

)
collision

=− Vc

(2π)3

∫
k′

[
f0(k)(1− f0(k′))P(k,k′)− f0(k′)(1− f0(k))P(k′,k)

]
+
[
f1(k)cosθ (P(k,k′){1− f0(k′)}+ f0(k′)P(k′,k))

− f1(k′)cosθ ′ (P(k′,k){1− f0(k)}+ f0(k)P(k,k′))
]
dk′.

(E.20)

We can split this equation into two parts relating back to equation E.16. If we assume

that the semiconductor sample is homogeneous ▽rf = 0, and that the accelerating

forceF experienced by the carriers is due to an electric field onlyB = 0, under steady

state conditions ∂f
∂t = 0, the equation E.16 becomes

e
ℏ
E · ▽kf =

(
df
dt

)
collision

. (E.21)

Because at E = 0 we know f1 = 0, i.e. we retain our equilibrium distribution f0, we

can expect f1 ∝ E. Hence, f1E ∝ E2 and so is negligible at low E, we relate the
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Δf1 term with the first integration in equation E.20 which is equal to zero160,383 in the

limit of low field as this is just the equation when E = 0 where we know
(

df
dt

)
= 0

(steady-state). Therefore, under these assumptions we see

e
ℏ
E · ▽kf0 =− Vc

(2π)3

∫
k′

[
f1(k)cosθ (P(k,k′){1− f0(k′)}+ f0(k′)P(k′,k))

− f1(k′)cosθ ′ (P(k′,k){1− f0(k)}+ f0(k)P(k,k′))
]
dk′.

(E.22)

Now if we decide that P(k,k′) = P(k′,k) which is essentially to say P(k,k′) =

P(|k′,k|) i.e. the magnitude of |k′,k| is the important parameter to P, not the orienta-

tion of k and k′, then using this and equation E.18 above, we can make the simplifica-

tion

(
df
dt

)
collision

= − Vc

(2π)3 cosθ
∫
k

P(k,k′)

[
f1(k)

1− f0(k′)

1− f0(k)
− cosθ ′

cosθ
f1(k′)

f0(k)
f0(k′)

]
dk′.

(E.23)

Now we can simplify further using the relation cosθ ′ = cosθcosθk − sinθsinθkcosβ

where θk is the angle between k and k′, β is the angle between the directions of k → k′

and k → E. If the integration over β between 0 and 2π forces those terms to zero, we

are left with

(
df
dt

)
collision

= − Vc

(2π)3 cosθ
∫
k

P(k,k′)

[
f1(k)

1− f0(k′)

1− f0(k)
− cosθkf1(k′)

f0(k)
f0(k′)

]
dk′.

(E.24)

Finally, we can use what is known as the relaxation-time approximation

(
df
dt

)
collision

≈ f(k)− f0(k)
τ

=
f1(k)cosθ

τ
(E.25)
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giving

1
τ
=

Vc

(2π)3

∫
k

P(k,k′)

[
1− f0(k′)

1− f0(k)
− cosθk

f1(k′)

f1(k)
f0(k)
f0(k′)

]
dk′. (E.26)

In the case of elastic scattering mechanisms such as ionized impurity scattering,

Ek ≈ Ek′ , so f0(k) ≈ f0(k′) and Ek = Ek′ , so f1(k) ≈ f1(k′) allowing equatoin E.26 to

be reduced to

1
τ
=

Vc

(2π)3

∫
k

P(k,k′) (1− cosθk) dk′. (E.27)

Substituting equation E.11 into E.27 gives the scattering time for a an electron col-

lision with a defect

1
τ
=

Vc

(2π)3

∫
k

2π
ℏ
|M(k,k′)|2 (1− cosθk) δ(Ek − Ek′)dk′. (E.28)

Note that for lattice scattering this equation is complicated by the different form of

E.11. Equation E.28 can be solved for any defect scattering mechanism provided that

|M(k,k′)|2 is known.
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F
The Charge Neutrality Level

This section is concerned with semiconductor surface space charge, and much of this

is based on the work of Mönch81. This is primarily of interest for section 6, where

the surface properties of Ga2O3 are investigated in the context of the CNL384. It was

already mentioned that wave functions related to surface states are evanescent, expo-

nentially decay into the vacuum and into the solid, and so exhibit real energies but

complex wave vectors. These surface states physically describe electronic levels that

are localized near the surface. We can obtain information regarding these states by

considering the complex band structure of a one dimensional lattice of nearly free

electrons81, see figure F.1. An electron of mass m0 in a constant potential V0 must

satisfy the one-electron Schrödinger equation

H0|φk(r)⟩ = E0
k|φk(r)⟩ (F.1)
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Figure F.1: Schematic of the wave function of surface states for a clean semiconductor, and onewith an adborbate

on the surface, both described by the one-dimensional lattice nearly free electron gasmodel. Figure reproduced

fromMönch81.

where H0 =
p2

2m0
+V0 as in equation 3.1 and E0

k = ℏ2k2

2m0
+V0. A small periodic potential

is introduced as a perturbation

H = H0 + H1 = H0 +
∑
G

V1e−iG·r (F.2)

where G is the reciprocal lattice vector (in the simplest case such as the linear one-

dimensional latticeG = 2π
a where a is the lattice parameter). Writing the Hamiltonian

in matrix form gives385

⟨φk′|H|φk⟩ = ⟨φk′|H0 + H1|φk⟩ = E0
k′δkk′ + ⟨φk′|H1|φk⟩ (F.3)

where the matrix elements are given by ⟨φk′|H1|φk⟩ =
∑

G V1
∫
e−ik′·re−iG·reik·rd3r,

which gives V1 for k = k′ +G and zero everywhere else. The energy eigenvalues are

then given by the secular equation
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∣∣∣∣∣∣
ℏ2k2

2m0
+ V0 − E(k) V1

V1
ℏ2(k−G)2

2m0
+ V0 − E(k)

∣∣∣∣∣∣ = 0. (F.4)

It is convenient to write wave vector with respect to the Brillouin zone edge κ = π
a −k

in one dimension. Solving F.4 gives

E(κ) = V0 + E1 +
ℏ2κ2

2m0
±

√
V 2

1 + 4E1
ℏ2κ2

2m0
(F.5)

where

E1 =
ℏ2

2m0

(
G
2

)2

. (F.6)
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Figure F.2: Complex band structure in the reduced zone scheme for a one-dimensional nearly free electron solid.

Within the band gap at the Brillouin zone edge, the imaginary component of the band structure is plotted. The

maximum component of the wave vector qmax occurs just belowmid gap.

Figure F.2 shows the familiar band dispersion for real wave vectors calculated using

equation F.5, displaying an energy gap of Eg = 2|V1| at the Brillouin zone boundary.
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This is only the band structure corresponding to real wave vectors however, and so

now we consider the evanescent states, with complex wave vectors but real energies,

i.e. those with negative κ2 in equation F.5. These wave functions are not normally

considered as in bulk materials, complex wave vectors mean the Bloch wave function

cannot be normalized (is infinite when z → ∞, see figure F.1). However, these wave

functions physically describe the energy state at the surface, which exponentially de-

cays into the vacuum and bulk of the solid due to the finite potential barrier at the

surface. Within this model surface states may also exist within the band gap. Consid-

ering the imaginary component of the wave vector q, where k = π
a + iq, the dispersion

becomes

E(q) = V0 + E1 −
ℏ2q2

2m0
±

√
V 2

1 − 4E1
ℏ2q2

2m0
. (F.7)

The dispersion calculated from equation F.7 is also plotted in figure F.2, where it clearly

exists within the gap of the semiconductor. Because these states are meaningless in

the bulk of the material, they are termed virtual gap states (ViGS) of the complex band

structure. The complex band structure is related to the conventional band structure,

only the periodicity (which is a boundary condition in conventional band structures)

is broken, giving rise to solutions with complex k. These solutions are local in space

and are occasionally referred to as edge states.

ViGS derive from the bulk band structure and so their character changes from pre-

dominantly donor-like near the VBM to acceptor like near the CBM. The energy at

which the have equal donor and acceptor-like character is termed the branch-point

energy Ebp. This happens when the decay length 1
q of the ViGS wave function is a min-

imum at qmax, usually somewhere close to mid-gap. In the one-dimensional lattice this

occurs at V 2
1

3E1 below the mid-gap energy. Since the ViGS are predominantly donor-like

below this energy, and acceptor like above (much like in the real band structure), this
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branch-point energy can also be identified as the charge neutrality level (CNL) in a

semiconductor78,79, the energy level at which there is equal probability of a state (or

defect) being a donor or an acceptor.

CNL

Figure F.3: DFT band structure and CNL of In2O3 according to King et al.
69

Because ViGS are spatially very localized in real space, they are very dispersive in

reciprocal space. Hence, their character is determined by contributions over a substan-

tial portion of the entire Brillouin Zone, not just at the Γ-point band edges. Therefore,

the branch point of the ViGS (CNL) will often be located around the mid-gap energy,

averaged over the whole Brillouin zone. This includes all direct and indirect gaps,

which explains why this point may often be located above the CBM in TCO materi-

als, which most often display a single, narrow low lying CB, but all other bands are

much flatter and CB and VB are much more greatly separated. This idea is displayed

for In2O3 in figure F.3, with the value of the CNL taken from King et al.69 Whilst this

may not be directly the band-edge average, the CNL in figure F.3 is extremely close to
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this value (deviations may arise due to a different band gap in the experimental work

from King at al.69 to that calculated here, Or possibly because we only have a sample

of the calculated Brillouin zone.) Clearly, the low lying, and not very dispersive CB

means the CNL is far from the middle of the band gap, and is infarct degenerate in the

CB.This explains why the pinning position varies between semiconductors, whilst the

CNL is thought to be universal for all materials when put on an absolute energy scale.

Many approaches have been taken to determine the CNL position in solids. Ter-

soff78,386–388 determined the band structures for a number of materials using the LDA

using the linearized augmented plane wave method (this is a way to approximate how

the potential and so the wave function changes throughout the unit cell, for example

within an atom to outside in the interstitial region389) in their calculations. Since they

used a low level of theory in the LDA, a rigid energy shift was applied to correct the

band gap. Tersoff determined the CNL to be the energy at which the valence and con-

duction band contributions to the real-space Green’s functions were equal*. They av-

eraged over 152 points within the Brillouin zone, which well represented the extended

k-space behaviour associated with the ViGS, but also increased the computational ex-

pense. Cardona and Christensen390, and Mönch391 employed the mean-value points

concept suggested by Baldereschi392 to lower the computational cost. This method

states that the value of any function which is periodic in wave vector, is representative

of the average value of the function across the whole Brillouin zone at the mean-value

point.

Mönch also showed that the energy gap at the mean-value point of the Brillouin

zone is equal to the dielectric gap, and that the branch point energy of the ViGS, cal-
*Here the Green’s function is given as G(R, E) =

∫
g(r, r+R, E)dr =

∑
nk

ei(k·R)

E−Enk
and

g(r, r+R, E) =
∑

nk
φ∗
nk(r)φnk(r

′)
E−Enk

where φ are Bloch wave functions of the band n, and Enk is the
energy of that band. R here is the lattice vector. As E increases Gv(R, E) decrease while Gc(R, E) in-
creases. In this sense it may be thought of analogous to the probability of finding an carrier at a given
energy, and where the two cross is where there is equal probability, i.e. the branch point energy.
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culated through an empirical tight-binding method, has a linear relation with the di-

electric band gap of the semiconductor393. The dielectric gap can be determined using

a damped oscillator dielectric model in the low frequency limit, where

ε∞ − 1 =
ℏωp

ℏωw
=

ℏωp

Edg
(F.8)

where Edg is the dielectric gap energy.
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Figure F.4: Calculated branch point energy of the ViGS above the VBM versus the dielectric band gap for several

materials. The dashed line is a linear fit with gradient 0.449. Figure adapted fromMönch391.

This relationship is displayed in Figure F.4. Hence, for these simple binary materials

investigated, the branch point energy is slightly below the mid gap, in agreement

to the 1-dimensional linear lattice model discussed above. Tersoff386 gave the semi-

empiracal formula E′mid = 1
2(E

′
V + E′C) where E′V = EV − 1

3Δso is the position of the

‘effective’ VBM in the absence of spin orbit splitting Δso, and E′C is the indirect CBM.

This give a very simple way to estimate the position of the CNL.
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F.0.1 Surface Electronic Properties

The physical origin of the ViGS for a clean semiconductor surface (i.e. the intrinsic

surface states) is the dangling bonds which are created when a surface is generated,

due to the termination of the bulk band structure. Because bonds are broken, each

surface atom has fewer nearest neighbours to bond to, which means the surface atoms

have to rearrange to minimize the energy lost by breaking said bonds. Hence, the

surface is structurally different to the bulk. Extrinsic surface statesmay also be formed,

which is when imperfections cause states to become localized at the surface. These

can be formed from adatoms or defects for example. Adatoms at the surface will form

bonds with surface atoms causing charge transfer to occurs, which is dictated by the

electronegativity between surface atom and the adatom.

The surface ViGS, be they intrinsic or extrinsic, will be either donor or acceptor-like

depending on whether they lie below or above the CNL. Additionally, they can display

positively charged (unoccupied donor-like), negatively charged (occupied acceptor-

like) or neutral (occupied donor-like/unoccupied acceptor-like) surface electronic be-

haviour, depending on the relative position of the Fermi level. When in the presence

of a charged surface, carriers in this near-surface region rearrange to screen the elec-

tric field induced by these states, with the length scale over which this occurs being

given by the Thomas-Fermi screening length. This length scale tends to be extremely

short in metals due to their high carrier density, but is much longer in semiconductors

leading to regions of charge redistribution known as space-charge regions. The total

charge due to the surface states Qss must be compensated by an equal and opposite

charge in the space-charge region Qsc

Qss = −Qsc. (F.9)
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As a result the Fermi-level shifts as a function of depth within the semiconductor.

This is conventionally seen as a shifting of the valence and conduction bands rather

than the Fermi level, which is known as band bending. The position of the surface

Fermi level is determined by the condition for charge neutrality, given by equation

F.9. In the case of an n-type semiconductor, where the surface Fermi level is located

above (below) the CNL, the surface states are negatively (positively) charged, requir-

ing an electron depletion (electron accumulation) layer near the surface to maintain

charge neutrality. This is achieved by upward (downward) band bending to decrease

(increase) the electron concentration at the surface with respect to the bulk. Figure 3.4

displays the types of band bending relevant to an n-type semiconductor. In certain sit-

uations there may be enough negatively charged surface states that the requirement

for charge neutrality means the Fermi level is actually pushed below the middle of

the band gap. This sets up a p-type surface, along with the n-type bulk, with the two

region separated by a depletion layer, which is known as band inversion. Conversely,

in some circumstances the Fermi level is directly at the CNL at the surface, and a flat

band situation is set up, where the bands are not required to bend to maintain charge

neutrality. Upward and downward band bending are also possible as displayed in

figure 3.4.
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