Work Function Evolution in Li Anode Processing



Etxebarria, Ane, Koch, Stephan L, Bondarchuk, Oleksandr, Passerini, Stefano, Teobaldi, Gilberto ORCID: 0000-0001-6068-6786 and Muñoz‐Márquez, Miguel Ángel
(2020) Work Function Evolution in Li Anode Processing. Advanced Energy Materials, 10 (24). p. 2000520.

Access the full-text of this item by clicking on the Open Access link.

Abstract

<jats:title>Abstract</jats:title><jats:p>Toward improved understanding and control of the interactions of Li metal anodes with their processing environments, a combined X‐ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) characterization of the effects that O<jats:sub>2</jats:sub>, CO<jats:sub>2</jats:sub>, and N<jats:sub>2</jats:sub>, the main gases in dry‐atmosphere battery production lines, induced on a reproducibly clean Li surface at room temperature is presented here. XPS measurements demonstrate that O<jats:sub>2</jats:sub> is ten times more effective than CO<jats:sub>2</jats:sub> at oxidizing metal Li. Notably, pure N<jats:sub>2</jats:sub> is shown to not dissociate on clean metal Li. UPS results indicate that decomposition of O<jats:sub>2</jats:sub> (CO<jats:sub>2</jats:sub>) reduces the work function of the Li surface by almost 1 eV, therefore increasing the reduction energy drive for the treated substrate by comparison to bare metallic Li. DFT simulations semiquantitatively account for these results on the basis of the effects of dissociative gas adsorption on the surface dipole density of the Li surface.</jats:p>

Item Type: Article
Uncontrolled Keywords: lithium metal anodes, lithium anode processing, lithium-ion batteries
Depositing User: Symplectic Admin
Date Deposited: 13 May 2020 09:40
Last Modified: 04 Sep 2023 12:25
DOI: 10.1002/aenm.202000520
Open Access URL: https://onlinelibrary.wiley.com/doi/full/10.1002/a...
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3087108