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Resolvent analysis to identify the unsteady aerodynamic response to harmonic forcing (in-
terpreted as higher-order non-linear terms in the governing equations or external) is presented
for three-dimensional infinite straight and swept wings without assumptions on spatial span-
wise homogeneity (so-called triglobal). This work continues the recent triglobal modal stability
analysis by He and Timme [1] and expands upon the elucidation of shock-buffet flow physics
presented earlier in Sartor et al. [2] for two-dimensional aerofoil flow. The flow conditions are
a freestream Mach number of 0.73 with a reference chord Reynolds number of 3.2 × 106 and
angles of attack describing pre- and post-onset shock-buffet conditions. The infinite wing is
modelled as a rectangular geometrywith a chosen aspect ratio of 3 and spanwise periodic bound-
ary condition imposed. The base flow is solved in the framework of steady Reynolds-averaged
Navier–Stokes equations with a closure using the negative Spalart–Allmaras turbulence model
and assumed to be spanwise parallel both for the infinite straight and swept wings. The novel
algorithm, following the work by Gómez et al. [3], without the need to evaluate the resolvent
operator explicitly enables the efficient computation of optimal forcing and response modes to-
gether with the amplification gain at arbitrary frequencies. At the flow conditions investigated,
a high amplification is found at a low Strouhal number of Yt ≈ 0.06 to 0.07 coinciding with
the well-known two-dimensional aerofoil shock-buffet mode, both on straight and swept wings.
Spanwise-periodic resolvent modes are observed at Yt < 0.03 for the straight wing and Yt = 0.1
to 1 for the swept wing. These results for the spanwise-periodic modes are consistent with re-
cent global stability studies on infinite wings. For yet higher Strouhal numbers, specifically
Yt = 1 to 5, another mode, resembling a Kelvin–Helmholtz shear-layer instability, is observed.
The results suggest, particularly for the subcritical flow, that resolvent analysis is a powerful
tool to detect modes of an imminent instability early when global stability analysis would fail.

Nomenclature

�! = lift coefficient
�? = pressure coefficient
2 = chord length
� = Jacobian matrix
" = Mach number
' = Resolvent operator
'4 = Reynolds number
(C = Strouhal number (C = l/(2c)
*ref = reference velocity perpendicular to leading edge
*∞ = freestream velocity
U = angle of attack (◦)
_ = eigenvalue of modal analysis (_ = f + 8l)
l = frequency of eigenvalue
f = growth rate of eigenvalue
Λ = sweep angle (◦)
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I. Introduction

Shock buffet brings a challenge to the wing design of modern large transport-type aircraft when flying in the
transonic regime. Shock buffet will exert additional low-frequency aerodynamic loads on the wing affecting the flight

performance and potentially causing damage to the structure. Jacquin et al. [4] documented a stable shock in the transonic
flow (" = 0.73, '4 ≈ 3×106) of a low aspect ratio (approximately 3) wing at an angle of attack U < 3◦. With increasing
angle of attack, the shock becomes unstable leading to a strong oscillation of the shock-wave/turbulent boundary layer
interaction, referred to as ‘shock buffet’, at about U = 3.5◦. After shock buffet initiates, a three-dimensional flow pattern
is formed in the separation zone behind the unsteady shock. It is similar to the so-called stall cells observed in the
flow of severe separation from low to high Reynolds numbers [5–9]. Numerical simulations on different aerofoils
at high Reynolds numbers featuring shock oscillations showed that the flow can be solved when using the unsteady
Reynolds-averaged Navier–Stokes (RANS) equations and an appropriate turbulence model [10, 11]. The prediction of
shock-buffet onset at flight conditions is nevertheless expensive regardless whether flight test, wind tunnel experiment
or time-stepping unsteady simulation is used, and a modal approach based on the linearised governing equations is a
powerful alternative method [12–14]. As such the transonic shock-buffet stability has been well documented numerically
in the two-dimensional flow using the NACA 0012 aerofoil [12] and more recently using other supercritical aerofoil
geometries [2, 15]. Three-dimensional shock buffet has also been studied on infinite wings and practical finite-wing
aircraft [9, 13–16]. Recently, fully three-dimensional infinite-wing flow without limitations on the spanwise flow
development (by removing the assumption of spanwise homogeneity) has been investigated by He and Timme [1].
Besides the nominal two-dimensional aerofoil mode often reported in literature, spanwise-periodic cellular modes are
identified on straight and swept wings of different aspect ratios.

Linearised aerodynamics stability analysis requires the limiting assumption of small amplitudes and hence non-linear
effects are omitted. However, on the one hand, it has been demonstrated that non-linear effects based on the mean flow
can be analysed to obtain the correct perturbation frequency [17, 18]. On the other hand, the intrinsic non-linear effects
of the fluid or an external forcing can lead to high-amplitude responses [19], which can be systematically studied through
the resolvent analysis. Resolvent analysis has been successfully applied in various studies, such as in aerodynamic force
reconstruction [3] or turbulent-aerofoil flow control [20]. Sartor et al. [2] considered two-dimensional resolvent analysis
for the OAT15A aerofoil at " = 0.73 and '4 = 3.2 × 106 for the angle of attack range U = 2.5◦ to 7◦ (corresponding
to the aerofoil and flow conditions investigated herein). They identified the most amplified gain at Strouhal number
(C ≈ 0.07 for post-onset shock-buffet flow at U = 3.5◦, which corresponds to the therein also reported globally unstable
aerofoil mode. At higher frequencies, external forcing resulted in a Kelvin–Helmholtz-type mode in the shear layer
behind the shock. Besides the research mentioned above, to the authors’ knowledge, there are no resolvent studies
published for three-dimensional infinite-wing shock-buffet flow. In this spirit, recent advances in numerical algorithms
allow the investigation of fully three-dimensional problems without assumptions on the base flow.

In this paper, resolvent analysis is performed for infinite straight and swept wing flow, mainly focusing on the
condition near the onset of self-sustained shock-buffet unsteadiness, including globally stable and unstable flow. The
theory behind resolvent analysis is briefly introduced in Sec. II and the numerical setup is detailed in Sec. III. Section IV
presents results of the resolvent analysis of pre- and post-onset shock-buffet flow on straight and swept wings.

II. Theory
Resolvent analysis aims to investigate the optimal response to a harmonic non-linear and/or external forcing to a flow

system [21]. Define the state vector q containing the conservative variables, specifically q = (d, du, d�, dã)T, where d
is the density, du are the three momentum components, d� is the total energy and dã relates to the turbulence model.
For a given compressible flow field, q can be decomposed as q = q̄ + q̃, where q̄ is the non-linear steady base flow and q̃
is the perturbation, respectively. Then, the semi-discretised RANS equations coupled with a suitable turbulence model
can be linearised as

dq̃
dt
= �q̃ + f̃, (1)

where � is the linear operator (i.e. the Jacobian matrix) and f̃ represents either nonlinear terms of the governing equations
or an external forcing. Suppose the external forcing and resulting perturbation are harmonic, then

q̃ = q̂48lC , f̃ = f̂48lC (2)

where q̂ and f̂ describe complex spatial amplitudes and l is the forcing frequency. Equation (1) can be written as

q̂ = −'f̂, (3)
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where ' = (�− 8l�)−1 is the resolvent operator and � is the identity matrix. For a given forcing with angular frequencyl,
its optimal response is defined by the maximum amplification or gain

� = max
< q̂, q̂ >&

< f̂, f̂ >&

= max
q̂∗&q̂
f̂∗&f̂

= max
f̂∗'∗&'f̂

f̂∗&f̂
, (4)

where < u, v >& = u∗&v defines an inner product on arbitrary vectors u and v, with u∗ as the Hermitian transpose of u,
and & is a chosen positive definite diagonal matrix containing the discrete cell volumes herein. Other inner products
have been discussed in the literature [20, 22, 23]. The solution of the resolvent problem can be achieved by solving
the singular value decomposition of ' [3]. The left and right singular vectors then describe the optimal response
and forcing modes, respectively, while the singular values f9 describe the optimal gain. Alternatively, the largest
eigenmodes of '∗' and ''∗ give the same information, where '∗ is the adjoint resolvent operator defined through the
inner product, specifically, < u, 'v >&=< '

∗u, v >&. Importantly, with an appropriate iterative scheme, forming the
resolvent operator explicitly is not required to compute the dominant solution provided f1 > f9 for 9 = 2, ..., =. Here, =
denotes the dimension of the discretised fluid system.

The linear eigenvalue problem
(� − _�) q̂ = 0 (5)

is found, when the right-hand side forcing term of eqn. (1) is eliminated, where _ = f + 8l is the complex eigenvalue
with f as the growth rate.

III. Numerical Setup
The base flow is obtained by solving the steady RANS equations using the DLR–TAU solver, which is a second-order

finite-volume code capable of dealing with complex geometries [24], widely used in the European aerospace industry
and academia. For modelling the Reynolds stresses we make use of the Boussinesq approximation with eddy viscosity
provided through the negative version of the Spalart–Allmaras (S–A) turbulence model [25]. The inviscid fluxes of the
mean flow equations are discretised using a central scheme with matrix artificial dissipation, whereas a first-order Roe
scheme is used for those of the turbulence model. Gradients of flow variables are computed using the Green–Gauss
approach. As time-stepper for the steady-state solutions, we use an explicit Runge–Kutta scheme with local time-stepping
and geometric multigrid (normally on 3 grid levels) for convergence acceleration. For time-marching unsteady
simulations, we use standard second-order dual-time stepping, with the steady-state time-stepper employed on the
subiteration level of each physical time step.

A triglobal linearised aerodynamics tool, comprising the capability of global stability analysis and resolvent analysis,
has been implemented in the TAU code previously and its ability for stability studies demonstrated in [14, 16]. The
numerical approach follows a first-discretise-then-linearise matrix-forming philosophy, with a hand-differentiated
Jacobian matrix, using an iterative inner-outer solution scheme. The steady-state RANS solution fully coupled with the
turbulence model is used as base flow, around which the linearised system is formed. For stability analysis, we use the
implicity restarted Arnoldi method (provided by the ARPACK library) to approximate a few but relevant eigenmodes
in the outer iteration [26–28]. A preconditioned sparse iterative Krylov subspace solver is applied for the repeated
solution of arising large linear systems of equations. For the inner-outer iterative scheme of the resolvent analysis, we
adopted and adapted the algorithm presented in [3]. The established numerical strategy combined with an industrial
computational fluid dynamics solver means that even practical non-canonical test cases at high Reynolds number flow
condition can be investigated, provided a decoupling of scales between coherent large scale fluctuations, dominating the
flow dynamics, and the small scales of turbulence can be assumed.

Infinite-wing flow is investigated herein. A three-dimensional (3D) infinite straight wing geometry is generated by
extruding a two-dimensional (2D) OAT15A aerofoil in spanwise direction with 20 uniformly-spaced grid layers per
unit span. This aerofoil is well documented in previous studies [2, 4, 13]. Our focal infinite wing, with approximately
2.1 × 106 points in total and 35,000 points for the 2D mesh, has an actual aspect ratio ofA = 3 (see fig. 10), as it
describes the smallest span to allow a pair of stall cells to develop, cf. the discussion in [1]. Spanwise periodic boundary
condition is imposed in translation and viscous wall and far field are defined on the wing and the outer boundary,
respectively. Even though not shown, additional wings of different aspect ratios were scrutinised giving consistent
results to those analysed herein. A more detailed grid convergence and geometry study can be found in [1].

Swept wings delay the formation of shock waves by increasing the critical Mach number normal to the leading edge
compared to straight wings. In order to simplify the swept-wing simulation setup, a sideslip velocity component is
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Fig. 1 Mesh around the wing withA = 3 (a) and swept flow definition (b).

added and the flow conditions normal to the leading edge of the wing are enforced to be the same as for the straight wing.
Figure 11 shows the definition of a flow past the wing with a non-zero sweep angle Λ. For an expository description of
the applied transformations, we have

*∞ =
*ref

cosΛ

√
1 − sin2U sin2Λ

'4∞ =
'4ref

cosΛ

√
1 − sin2U sin2Λ (6)

W = atan(tanU cosΛ)

where the parameters U,*ref and '4ref are the components of angle of attack, reference velocity and Reynolds number
perpendicular to the leading edge of the wing, respectively. These are visualised in the figure.

IV. Results

A. Base Flow
Preparing a steady transonic flow featuring shock buffet on a straight or swept wing for subsequent stability and

resolvent analysis is of pivotal importance. The flow condition is consistently defined in the plane perpendicular to the
leading edge. At a Mach number of " = 0.73 and a chord Reynolds number of '4 = 3.2 × 106, we investigate two
angles of attack U near the onset of self-sustained shock-buffet unsteadiness, specifically the subcritical U = 3.0◦ and the
supercritical U = 3.5◦. The surface pressure coefficient �? on both the straight and swept wings (with sweep angle
Λ = 20◦) of the steady RANS solution is shown in fig. 2. The base flow is naturally parallel in spanwise direction for the
straight wing without enforcing spanwise homogeneity. A strong shock is observed around the mid-chord location, and
a thin separation bubble forms at the foot of the shock and extends to trailing edge, as shown in the amplified subplot
in fig. 20. The result is obtained at a density-residual norm of about 10−8, which is well below typical convergence
levels used in industry. The flow will generate stall cells, even for the straight wing, when steady-state iterations are
continued to machine precision [1]. According to eqn. (6), freestream values are adjusted to form a flow over a wing
with Λ = 20◦ sweep angle. Since the flow conditions normal to leading edge are enforced to be equal (independent of
sweep angle), the flow in the GI−plane shows negligible difference to the straight-wing flow. The swept-wing flow in
spanwise direction is also parallel (see fig. 21).

The pressure coefficient at the mid-span of the two wings compared to the experimental results [4] is presented in
fig. 3. The difference between experimental and numerical angle of attack is well documented in the literature. In our
simulations, the so-called compressibility correction to the S–A turbulence model [29], first used in a NACA 0012
aerofoil transonic flow stability study [12], is not activated. This term shows a strong influence on the results, yielding a
reduction of onset angle of approximately 0.3◦ to 0.5◦ [15]. The experimental results suggest a steady flow for U = 3.0◦
due to the sharp shock, which becomes smeared for U = 3.5◦ suggesting shock motion of about 20% chord extent.
Consequently, our simulation results at U = 3.5◦ agree more closely to the experiment at U = 3.0◦.
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Fig. 2 Surface pressure coefficient Ip on (a) straight and (b) swept (with sweep angle � = 20◦) wings at
" = 3.5◦. Surface skin-friction lines and zero skin-friction line are highlighted by black and grey dashed lines,
respectively. The separation bubble is visualised in (a). The periodic boundary plane at ymin = 0 is shown.
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Fig. 3 Surface pressure coefficient Ip along mid-span, compared with experiments from [4]. Note that Ip for
swept wing has been normalised by reference values normal to leading edge rather than freestream values.

B. Overview of Previous Global Stability Results
In previous studies, see [1] for a detailed discussion, besides an aerofoil shock-buffet mode with angular frequency

of approximately l = 0.44 (corresponding to a Strouhal number of (C ≈ 0.07), several monotone (zero frequency)
unstable modes with spanwise-periodic cellular patterns were identified in supercritical spanwise-parallel base flow at
U = 3.5◦ on the straight wing (see fig. 40). These modes have the effect of distorting the shock front, when non-linear
saturation kicks in, and discretise the continuous band of modes observed in biglobal studies [9, 13, 15]. For the straight
wing, the most amplified spanwise-periodic mode is the one with wavelength 12 (i.e. three cells for theA = 3 wing).
The frequency of those spanwise modes grows as the sweep angle increases, e.g. to Λ = 20◦, and eventually exceeds the
aerofoil-mode frequency (see fig. 41). As shown in fig. 4, no unstable global mode is found at angle of attack U = 3.0◦,
neither for straight nor swept wing, with the chosen numerical setup.

How this infinite parallel flow itself responds to the external forcing, e.g. noise or active flow control, needs to be
scrutinised. It is possible to investigate this point through the resolvent approach.

C. Resolvent Analysis
The resolvent results are presented in figs. 5 through 8. Figures 5 and 6 present the optimal gain � due to harmonic

forcing at a given Strouhal number, at both pre- and post-onset shock-buffet conditions, for the infinite straight and
swept wings, respectively. The magnitude of the unsteady lift, |�̂! |, integrated from the pressure distribution of the
response mode is shown therein as well. The corresponding spatial structures of forcing and response resolvent modes
are shown in figs. 7 and 8. For a given forcing frequency, the inner-outer solution scheme typically requires between 10
and 30 outer iterations, converging the norm of the forcing-vector update by four orders of magnitude. On each outer
iteration, the inner iterations of the forward and adjoint solutions are converged seven orders of magnitude in about
600 iterations each. Note, in contrast to the work in e.g. [16, 30], our forcing is within the fluid system rather than
through the domain boundary (such as the deflection of a control surface or a moving wing).

5



−0.2 −0.1 0.0 0.1 0.2
σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ω

0.00

0.04

0.08

0.12
S
t

α = 3.0◦

α = 3.5◦

(0)

−0.2 −0.1 0.0 0.1 0.2
σ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ω

0.0

0.2

0.4

0.6

S
t

α = 3.0◦, Λ = 20◦

α = 3.5◦, Λ = 20◦

(1)

Fig. 4 Eigenspectra for (a) straight and (b) swept wings at two angles of attack around onset of shock buffet.

The optimal gain in figs. 50 and 60 suggests that there are three distinct Strouhal-number regions for the straight
and swept wings at pre- and post-onset shock-buffet conditions. In fig. 50, for the straight-wing resolvent analysis
in supercritical flow at U = 3.5◦, the first region is at very low Strouhal numbers (C < 0.03, followed by a distinct
peak at (C ≈ 0.06 and a third region in the range (C ≈ 1 to 5. The forcing at very low frequencies results in a strong
resonance with the monotone modes observed in the stability analysis. It can be demonstrated that the resolvent operator
is very close to the inverse of the Jacobian matrix because the term 8l� approaches zero. In the pre-onset condition of
shock buffet at U = 3.0◦, the gain is nearly constant at these low frequencies and much lower than that at the higher
angle of attack, which is consistent with the global-stability findings (see fig. 40), where no unstable monotone modes
are observed. In the range (C ≈ 1 to 5, the optimal gain has a similar trend for both angles of attack. Importantly, a
high peak of the optimal gain can be observed at (C ≈ 0.07, corresponding to the aerofoil shock-buffet mode excited
through an appropriate forcing, for both angles of attack. Similar behaviour is observed for the swept-wing case in
fig. 6a, albeit regions 1 and 2 (for the straight wing) swapping positions for the swept wing. The key difference is in the
Strouhal-number region (C ≈ 0.1 to 1.0, which now shows higher gains, while the low-frequency excess gains seem to
vanish. For instance for supercritical angle of attack U = 3.5◦, a highly concentrated peak is observed at (C ≈ 0.5 to 0.6,
which agrees with the spanwise-periodic modes closest to the imaginary axis in fig. 41. The resolvent discussion reveals
that, on the one hand, the dominant modes from the global stability analysis are identified, even in subcritical flow, and,
on the other hand, an additional higher-frequency mode is present, similar to previous aerofoil studies [2]. The impact
of the inherent non-normality in the governing equations, in contrast to the trivial distance between eigenvalue and
forcing frequency, |_ − 8l|, particularly for the subcritical flow, requires a more thorough investigation [22].

Representative spatial structures within these three distinct regions are presented in figs. 7 and 8, for straight
and swept wing, respectively. While fig. 7 is for the supercritical U = 3.5◦, we chose to visualise the subcritical
results on the swept wing in fig. 8. We observed little change in the underlying modal structures when crossing the
critical condition of global instability onset. Together with the gain, spatial structures can be interpreted as the energy
distribution of the optimal forcing and its corresponding response modes in the flow system. Take the resolvent results
at a frequency close to the origin ((C ≈ 0.001), the forcing and response modes (visualised by the real part of the
energy fluctuation R{ d̂�}) are shown in fig. 70 and 1. The five-cell spanwise-periodic response mode has a structure
similar to the monotone mode closest to the origin in the eigenspectrum in fig. 40, cf. also the modal visualisation
in [1]. In fig. 82 and 3, the Strouhal-number region (C = 0.1 to 1 represents spanwise-periodic structures, similar to the
one shown in fig. 70 and 1, albeit the obvious effect of the sweep angle. The modal structures in the region around
the peak at (C = 0.06 feature two-dimensional dynamics, which is in excellent agreement with the two-dimensional
aerofoil [2] and infinite straight wing [1]. In the optimal forcing mode, a distinct oblique line impinges at the core of the
shock-wave/boundary-layer interaction where the boundary layer separates (see fig. 72 and also fig. 82), which is similar
to the adjoint mode presented in a previous aerofoil study [2], where a detailed explanation is provided. In essence,
Sartor et al. [2] explained this behaviour by the theory of characteristics, pointing towards the fundamental importance
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Fig. 5 Straight-wing results showing (a) optimal gain M and (b) magnitude of lift coefficient |̂IR |.
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Fig. 6 Swept-wing results showing (a) optimal gain M and (b) magnitude of lift coefficient |̂IR |.

of the shock foot on the boundary layer separation, and the whole flow field in general, and the travel of information in
supersonic flow along characteristic lines. For the third region, forcing and response modes are shown in figs. 74 and 5
and 84 and 5 . The modal structures are reminiscent of a Kelvin–Helmholtz shear-layer instability downstream of the
shock-wave/boundary-layer interaction. The important message here is that clear modal structures can be identified even
in subcritical flow, and such information can hence be used as a predictive method of imminent instability.

Finally, integrating the unsteady pressures gives the lift coefficient, the magnitude of which is shown in figs. 51
and 61. In principle, its distribution agrees with the discussion on the optimal gain, albeit featuring two rather than three
distinct peaks. These peaks result from the spatial distribution of the surface pressure, inferred also from the total energy
fluctuations. A strong lift response requires a strong chordwise pressure variation with an overall low spanwise variation,
as observed for the modes describing the aerofoil shock-buffet and Kelvin–Helmholtz behaviour. The spanwise-periodic
modes, on the other hand, seem to cancel out the pressure fluctuation resulting in low lift variation overall.

D. Mean Flow Approach
The resolvent analysis in the previous section starts from a steady-state RANS solution, called base flow. When it is

difficult to obtain such a base flow, especially at high Reynolds numbers, mean flow could be an alternative option,
as reviewed by Mettot et al. [18]. In the current work, a mean flow on the straight wing is obtained by running a
time-marching unsteady RANS simulation at angle of attack U = 3.5◦. The chosen non-dimensional time-step size is
ΔC = 0.0001 with 50 to 200 subiterations per physical time-step, and the unsteady run is initialised with a well-converged
RANS solution at a density-residual norm of 10−12. The flow grows exponentially until approximately C = 0.4, when
non-linear saturation starts to dominate, and enters into a stable limit-circle oscillation at C ≈ 0.8 (see fig. 90). The
mean-flow calculation is started at C = 1 for about 8 cycles. The pressure coefficient of the mean flow gives similar result
to the base flow, as expected for such a benign angle of attack (see fig. 91). The shock wave appears slightly smeared
indicating a shock motion of about 10% chord extent. Comparison of the subsequent resolvent analyses is presented in
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Fig. 7 Real partR{̂1K} of unit-length optimal (a, c, e) forcing and (b, d, f ) response modes at Yt ≈ 0.001 (top),
0.06 (middle) and 2.75 (bottom) on straight wing at " = 3.5◦.
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Fig. 8 Real part R{̂1K} of unit-length optimal (a, c, e) forcing and (b, d, f ) response modes at Yt ≈ 0.06 (top),
0.29 (middle) and 3.66 (bottom) on swept wing at " = 3.0◦.

fig. 10. It is shown that the mean-flow approach still predicts the underlying features corresponding to the aerofoil mode
and shear-layer instability. In contrast, in the low-frequency region for (C < 0.03, the optimal gain is flatter and an order
of magnitude lower than that computed from the base flow. Figure 11 shows a three-cell spanwise-periodic resolvent
mode for the mean flow at (C ≈ 0.001, much like the most amplified 12-wavelength mode presented in [1]. The resolvent
results suggest that these spanwise-periodic monotone modes discovered in the base flow are much less amplified in the
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Fig. 9 Straight-wing mean-flow results showing (a) history of lift coefficient and (1) pressure coefficient.
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Fig. 10 Comparison of resolvent analysis using both base-flow and mean-flow approach, showing (a) optimal
gain M and (b) magnitude of lift coefficient|̂IR | on straight wing at " = 3.5◦.
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Fig. 11 Real part R{̂1K} of unit-length optimal (a) forcing and (b) response mode for the mean-flow with
Yt ≈ 0.001 on straight wing at " = 3.5◦.

mean flow, but this observation requires further scrutiny. Concerning the lift response, there is no significant difference
between the two approaches, due to the aforementioned spatial distribution of the unsteady pressure.

V. Conclusions
Three-dimensional resolvent analysis on infinite straight and swept wings at a Mach number of 0.73 and a chord

Reynolds number of 3.2 × 106 near the onset of self-sustained transonic unsteadiness, referred to as shock buffet, is
discussed. The focus for the swept wing is a 20◦ sweep angle. Infinite wings are modelled by extruding the OAT15A
aerofoil to a given aspect ratio and imposing a spanwise periodic boundary condition. The base flow is a solution
to the steady Reynolds-averaged Navier–Stokes equations coupled with the Spalart–Allmaras turbulence model. An
inner-outer iterative algorithm is adopted to solve the resolvent problem for the optimal forcing/response modes at a
given frequency. We identify three distinct modal features in the transonic flow near shock-buffet onset, and the results
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suggest that resolvent analysis can be used to identify an imminent aerodynamic instability even before dominant modes
can be clearly identified with global stability tools.

The two-dimensional aerofoil shock-buffet mode, previously reported in the literature, featuring a Strouhal number
of (C ≈ 0.06 can be identified both in the straight and swept wing flow. The associated distinct amplification of
the optimal gain even in subcritical, globally stable flow is caused both by an emerging eigenvalue and the inherent
non-normality of the governing equations, the individual contribution of which needs to be quantified further. The
spanwise-periodic monotone modes corresponding to a low Strouhal number ((C < 0.03) give a high amplification
in the supercritical shock-buffet flow on the straight wing, but at the same time this region is less dominant in the
subcritical flow. For the swept wing, the highly amplified spanwise-periodic modes shift to higher Strouhal numbers of
(C ≈ 0.1 to 1. These results are in good agreement with findings in recent global stability work. Additionally, a mode
describing a Kelvin–Helmholtz-type shear-layer instability is found for Strouhal numbers of (C ≈ 1 to 5. In general, the
resolvent modes in subcritical flow have a similar topology compared to the post-onset shock-buffet flow. A preliminary
resolvent analysis on the straight wing using mean flow reveals that the same aerofoil and Kelvin–Helmholtz modes can
be identified. In contrast, a change in behaviour is observed concerning the spanwise-periodic, monotone modes.

In the next step, richer routine data analysis of the current results is required in general, and application of the
resolvent analysis to a practical test case would be useful to demonstrate the tool capability.
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