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Abstract  
Tuberculosis infection is one of the leading causes of mortality worldwide and is caused by 
Mycobacterium tuberculosis (Mtb). With an upsurge of multidrug-resistant tuberculosis, it is a global 
threat. Therefore, development of new drugs need immediate attention, and this needs identification of 
potential drug targets. The cell envelope of mycobacteria is one such attractive drug target owing to its 
role in maintaining the structural integrity and pathogenicity of the bacterium. The LytR-CpsA-Psr (LCP) 
family of proteins in Mycobacterium spp. have been shown to catalyze the coupling of arabinogalactan 
and peptidoglycan and possess pyrophosphatase activity.  

The four LCP protein homologues present in Mycobacterium smegmatis (Msmeg), MSMEG_0107, 
MSMEG_1824, MSMEG_5775 and MSMEG_6421, have not been extensively investigated with the 
focus on the existence and interplay of multiple LCP proteins. In this study with this non-pathogenic 
model organism, all four LCP homologues were shown to possess pyrophosphatase activity, with a 
significant higher activity displayed by MSMEG_0107 and MSMEG_5775. In order to further study the 
role of the LCP proteins on the physiology of the bacterium, single and double deletion strains lacking 
of the three non-essential lcp genes were created along with the respective complemented strains. All 
the generated mutants showed different phenotypes in the different assays, but usually not very severe. 
However, the double-deletion lcp mutant, ΔΔ(0107+5775) was the most affected mutant strain and 
displayed a disrupted cell envelope as evident from deprived growth rate, slower cellular aggregation, 
diminished biofilm formation on air-liquid interface, altered morphology, as well as an increased 
susceptibility to surface detergent, lysozyme and a wide range of antibiotics. Thus, the loss of both 
MSMEG_0107 and MSMEG_5775 exhibited profound effects on the mycobacterial cell envelope, and 
therefore could be further investigated as a possible combined drug target by extending these studies 
in Mtb. A novel approach in this study is the detection of exposed mycobacterial Galf moieties of 
arabinogalactan by EB-A2 monoclonal antibody, in the double lcp deletion mutant ΔΔ(0107+5775). 
Transcription profiling of all the lcp genes in the wild type strain and the mutants exhibited differential 
expression of these genes under both standard and stress conditions. A loss of MSMEG_5775 resulted 
in an upregulation of the other three lcp genes in comparison to the wild type strain under standard 
conditions. Under both acid and lysozyme stress, the loss of MSMEG_5775 downregulated all other lcp 
genes while loss of MSMEG_6421 upregulated these genes. Lastly, an in silico approach led to the 
identification of putative transcriptional factors in mycobacteria and related species which could be 
further investigated and experimentally confirmed. This study helped to understand the role of the lcp 
homologues in Msmeg better. From the differential expression studies, role of regulator(s) might be a 
significant approach to understand this family of proteins much better. 
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Chapter-1

General Introduction 

 

1.1. Tuberculosis is a burden on global health 

Tuberculosis (TB) infection is one of the leading causes of mortality and morbidity worldwide 

resulting from a single infectious agent (WHO, 2018). This persisting infection is even more 

facilitated by the co-occurrence of Human Immunodeficiency Virus (HIV)/ Acute 

Immunodeficiency Syndrome. According to the World Health Organization (WHO) Global TB 

Report 2018, an estimated 1.3 million deaths were reported among HIV-negative people in 

2017, due to TB infection, whereas, about 0.3 million deaths were accounted in the HIV-

positive population. It has been estimated that, the global occurrence of TB infection in 2017 

was about 10 million. A total of 30 countries appeared on WHO’s list of high TB burden 

countries, accounting for 87% of the total global cases (Fig 1.1). 

Apart from increasing susceptibility of the HIV-infected population, the multidrug-resistant 

(MDR), extensively drug-resistant (XDR) and more recently, totally drug-resistant (TDR) TB 

strains have led to a public health crisis (WHO, 2018). MDR-TB accounts for TB infection that 

is resistant to first-line drugs such as rifampicin (RIF) and isoniazid (INH). XDR-TB accounts 

for the TB infection, which is resistant to any fluoroquinolones and second-line antibiotics such 

as streptomycin and ciprofloxacin, in addition to INH and RIF resistance. TDR-TB accounts 

for the infection which is completely resistant to all kinds of drugs. In 2017, about 0.56 million 

incidents were reported to be resistant to rifampicin (RR-TB), the most potent first line drug for 

TB and, 82% of these cases had MDR-TB (WHO, 2018). According to this report, India (24%), 

China (13%) and the Russian Federation (10%) have been accounted for about half of the 

global cases of MDR/RR-TB (Fig 1.2). 
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Fig 1.1. Global map representing the TB incidence rates in 2017 (WHO, 2018). The map has been adapted from the 
Global Tuberculosis Report, 2018. The 30 high TB burden countries have been represented with different color codes 
according to the incidence rates per 100,000 population per year. The number of incidence rates have also been indicated 
beside the color codes. 

Fig 1.2. Global map representing percentage of new TB cases with MDR/RR-TB (WHO, 2018). The map has been 
adapted from the Global Tuberculosis Report, 2018. The figures are based on the most recent year for which data have 
been reported that varies among countries. Data covers the period 2002-2018. 
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1.2. Taxonomy of mycobacteria 

The genus Mycobacterium consists of various members of Mycobacterium tuberculosis 

complex (MTBC) such as Mycobacterium tuberculosis (Mtb), Mycobacterium bovis, 

Mycobacterium bovis BCG, Mycobacterium leprae, Mycobacterium canettii, Mycobacterium 

africanum and Mycobacterium pinnipedii (Brosch et al., 2002). Around 100 species have been 

found in the genus Mycobacterium amongst which a majority are saprophytic soil species 

(Brown-Elliott et al., 2002) and the rest few are human pathogens such as Mtb that causes TB 

and M. leprae that causes leprosy. Additionally, other species such as Mycobacterium avium 

complex (MAC), Mycobacterium fortuitum and Mycobacterium kansasii cause infection and 

mortalities in immunocompromised individuals (Kiehn et al., 1985). Recent studies have also 

established a novel genus Mycolicibacterium, into which the basonym Mycobacterium 

smegmatis (Msmeg) has been classified (Gupta et al., 2018, Yamada et al., 2018). Species 

within the Mycobacterium genus exhibit different growth rates and are categorized into slow 

or rapid growers (Lewin & Sharbati-Tehrani, 2005). Mtb and M. leprae exhibit a very slow 

growth rate and fastidious culturing processes, a distinct feature of this highly pathogenic 

species. The Mtb bacilli divides every 15 to 20 hours thus requires between 4-6 weeks to 

obtain visual colonies. This makes it an extremely slow grower compared to other bacteria, for 

instance Escherichia coli (E. coli) which has a doubling time of 20 minutes (Lewin & Sharbati-

Tehrani, 2005) and Msmeg with a doubling time of approximately 3 hours, producing visible 

colonies in 3-5 days. The Mycobacteriaceae family that includes the genus Mycobacterium, is 

placed in the suborder Corynebacterineae, which is in turn included in Actinomycete taxon. 

Corynebacterineae is comprised of Corynebacterium, Rhodococcus and Nocardia all of which 

are Gram-positive, non-motile, aerobic and rod-shaped bacteria, and has characteristically 

high proportions of guanine and cytosine in their genomes. The most significant feature of 

Corynebacterineae is the existence a unique β-hydroxy-α-alkyl branched long chain fatty acids 

called mycolic acids (Minnikin & Goodfellow, 1980), which are the specific constituents of the 

cell envelope (Daffe & Draper, 1998, Dover et al., 2004). 

 

1.3. Virulence of Mtb 

Mtb, the causative agent of TB, is considered as the world’s most successful pathogen 

(Hingley-Wilson et al., 2003), because it has infected a huge population globally, and has 

evolved with an ability to evade the host immune response and proliferate within the host. TB 

infection is primarily a pulmonary disease where the lungs are affected. It is instigated by the 

accumulation of Mtb present in aerosol droplets onto alveolar surfaces of the lung. This 

manifestation also affects the central nervous system and bones causing skeletal deformities. 
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The severity of the disease depends mainly on the efficacy of the host immune response. The 

virulence of Mtb infection is described in terms of “mortality” and “morbidity” (Smith, 2003). 

Mortality refers to the number of deaths in an infected population per year, whereas morbidity 

refers to the incidence rates of the disease in a population per year. Apart from these, the 

bacterial load in an infected host after initial infection is considered to be an important 

parameter to determine virulence, as it determines the fitness of the bacteria to survive host 

immune responses during infection. In order to measure virulence, it is thus important to 

understand the pathogenesis of TB infection. 

 

1.4. Factors contributing to pathogenesis of Mtb 

The immune system is a defense mechanism within the host, comprising of numerous 

biological processes that provides protection against invading infectious agents such as 

bacteria, viruses and parasites. The tubercle bacilli enters the body via the respiratory tract 

through inhalation of droplet nuclei, which are quite small (1-2 µm or less), thus allowing 

passage to the lower respiratory tract (Riley et al., 1959). Large size droplets are barred from 

entering the lower respiratory tract quite efficiently by the physical barriers of nasopharynx and 

upper respiratory tract.  

The Mtb cells infect the lungs during the initial stages of infection, which involves the innate 

immune responses of the infected host (Cooper et al., 2011) (Fig 1.3). Mtb then propagates 

in lymph nodes which involves the adaptive immune response (Chackerian et al., 2002, Reiley 

et al., 2008, Wolf et al., 2008). This is followed by the presentation of the bacterial antigens by 

dendritic cells in the lymph nodes, leading to propagation of the antigen-specific T cells. These 

T cells subsequently differentiate into effector T cells that migrate to the infected lungs, and 

stimulate the formation of granulomas along with other leukocytes. Granulomas represent 

organized structures consisting of macrophages, lymphocytes and fibroblasts (Flynn et al., 

2011), and the activation of macrophages occur inside the granulomas. 

The receptor-mediated phagocytosis during the initial infection involves several host cell 

surface receptors such as, complement receptors, surfactant protein receptors, mannose 

receptors and scavenger receptors (Ernst et al., 1998). The bacilli remains active inside the 

phagosome following phagocytosis, after which it matures to form phagolysosome (Fig 1.4). 

The primary host defense system plays an important role during this process by attacking the 

bacilli with hydrolytic enzymes of the lysosome. In most cases, this leads to the destruction of 

the organism, however some bacilli may evade this defense mechanism by inhibiting the 

maturation process of the phagosome, thus altering the internal environment. This allows a 
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logarithmic bacterial growth, leading to immune cell lysis. The T-lymphocytes then inhibits the 

growth of bacteria under the influence of interleukin-8 and cause necrosis. The necrotic 

material which is highly acidic inhibits most of the bacterial growth, leaving a few that can still 

survive in the macrophage debris, which stimulates the cell-mediated immune response. The 

cytokines then activate the macrophages, which destroy the internal bacilli. In most cases, a 

granulomatous lesion called ‘tubercule’ is formed where the disease enters a latent period. 

 

 

Fig 1.3. TB pathogenesis (Nunes-Alves et al., 2014). The beginning of TB infection involves inhalation of aerosol 
droplets containing the Mtb bacilli. The primary infection stages comprises of the innate immune responses of the host 
where the inflammatory cells move to the lungs. Following Mtb bacilli propagation in the lymph node, the bacterial 
antigens are presented by the dendritic cells thus triggering the formation of T cells in the lung that are specific for the 
antigen. The T cells, B cells, activated macrophages and other leukocytes leads to granuloma formation that contains 
the Mtb bacilli. The infected individuals mostly acquire an asymptomatic latent infection. However, a minor fraction of 
these people progress towards an active disease, as the Mtb bacilli is released from the granulomas. Thus, when an 
active carrier of the disease coughs, infectious aerosol droplets are generated that transmits the infection. 
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Fig 1.4. Paradigms of protective immunity to TB (Nunes-Alves et al., 2014). a) The TB defense mechanism includes the 
CD4

+
T cells to generate interferon-γ (IFNγ) (T helper 1 (TH1) cells), which works in coordination with tumour necrosis factor 

(TNF; produced by the T cell or the macrophage). Both IFNγ and TNF function together to activate the macrophage 
antimicrobial activity to restrict Mtb growth. IFNγ activates two lytic pathways: the nitric oxide production and phagosome–
lysosome fusion. These pathways acidifies the bacterial phagosome and destroys the Mtb bacilli. b) T cell-mediated immunity 
involves the defense mechanism that recruits additional T cells such as CD4

+
T cells, CD8

+
T cells, γδ T cells, mucosal-

associated invariant T (MAIT) cells and CD1-restricted T cells which aids the T cells to kill the bacilli. Additionally, apoptotic 
cell death is contributed by cytokines such as granulocyte–macrophage colony-stimulating factor (GM-CSF), cytotoxic 
granules that deliver granzymes and granulysins, FAS ligand (FASL)–FAS mediated cytotoxic T lymphocyte (CTL) activity 
and TNF. Finally, the components of innate response such as interleukin-1 (IL-1) and vitamins, coordinate with the T cell 
generated cytokines. c) ‘Protective T cells and vaccination’ characterizes the defensive T cell responses. Vaccine-elicited 
memory T cells propagate faster to generate secondary effector T cells in order to undergo continuous proliferation following 
activation. Primary effector T cells are mainly expressed heterogeneously, however vaccination may result in more 
homogenous expression of effector functions during the memory response, making them more defensive. The primary effector 
and memory T cells efficiently move to the infection sites balanced with respect to T cell subsets thus limiting the potential for 
T cell exhaustion. 
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The effectiveness of this immune response is determined by several intrinsic factors such as 

the genetics of the immune system as well as extrinsic factors, e.g., damage to the immune 

system, improper nutritional balance and physiological state of the host. It is believed that 

immunosuppressed individuals like HIV-positive people infected with Mtb, have a 50% chance 

of developing reactivated TB infection at some time in their lives (Smith, 2003). In addition, 

higher incidence rates are found in places with lower nutrition status and healthcare. Thus, in 

order to combat this widespread infection, it is important for biologists to discover new drug 

targets and formulate new preventives or therapeutics, and to achieve this, an understanding 

of the mycobacterial structure and underlying mechanisms involved in host pathogenesis is 

inevitable. 

 

1.5. Anti-TB drugs and treatment 

The most commonly used anti-TB drugs are the front-line drugs such as isoniazid (INH), 

ethambutol (EMB), rifampicin (RIF), streptomycin (STR) and pyrazinamide (PZA) (Table 1.1). 

However, the frontline anti-TB drugs may fail to cure TB for several reasons. For instance, 

relapse and spread of the disease contributes to the emergence of drug resistant TB bacilli. 

The emergence of MDR-TB is of great concern, because it is resistant to at least INH and RIF, 

and requires the use of second-line drugs that are difficult to obtain and are much more toxic 

as well as expensive than the frontline drugs (Espinal et al., 2001). Therefore, an important 

strategy to prevent the emergence of MDR-TB is to detect and treat the drug sensitive or single 

drug resistant TB (Masjedi et al., 2006). 

The second-line anti-TB drugs are sub-divided into two categories (Table 1.2): i) 

Fluoroquinolones such as Ofloxacin (OFX), levofloxacin (LEV), moxifloxacin (MOX) and 

ciprofloxacin (CIP). ii) Aminoglycosides (or, injectable anti-TB drugs) such as kanamycin 

(KAN), amikacin (AMK) and capreomycin (CAP). 
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Table 1.1: Commonly used anti-TB frontline drugs and their targets. Adapted from (Kremer 

& Besra, 2002, Nachega & Chaisson, 2003, Abrahams & Besra, 2016) 
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Table 1.2: Second-line anti-TB drugs and their targets. Adapted from (Nath & Ryoo, 2013) 
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1.6. Mycobacterial cell envelope structure 

The cell envelope is important for maintaining the structural integrity and the distinctive shape 

of a bacterial cell. It is found in both Gram-positive and Gram-negative bacteria, but differs 

largely owing to diverse biochemical and structural components. The mycobacterial cell 

envelope is a complex multi-layered structure and consists of three main components. The 

innermost layer is the plasma membrane composed of major phospholipids such as 

phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidylinositol (PI) (Puffal et al., 

2018). Except phosphatidylinositol mannosides (PIMs), which are specific to Actinomycetales, 

the lipid composition of the plasma membrane is similar to that of other prokaryotes, indicating 

that the general properties of lipid bilayers are applicable to mycobacteria. The outermost 

component is a loosely attached capsular-like structure outside the outer membrane of 

Mycobacterium that mainly consists of polysaccharides, proteins and solvent-extractable lipids 

(Lemassu & Daffe, 1994, Ortalo-Magne et al., 1995, Sani et al., 2010). The main capsular 

polysaccharide found in Mtb is α-glucan, a polymer of linear α-D-1–4-linked glucose units with 

core substitutions at position 6 on every 5 or 6 residues by α-D-1–4-linked oligoglucosides 

(Lemassu & Daffe, 1994, Dinadayala et al., 2008, Sambou et al., 2008). The surface-exposed 

lipids in the outer membrane also known as mycomembrane, is composed of trehalose 

monomycolates (TMM) and trehalose dimycolates (TDM), phthiocerol dimycocerosates 

(PDIM), sulfolipids (SL), diacyltrehaloses (DAT), polyacyltrehaloses (PAT) and phenolic 

glycolipids (PGL) (Jackson, 2014). In between the inner and outer membrane layers, a cell 

wall core is present that is comprised of peptidoglycan (PG) covalently attached to the 

heteropolysaccharide arabinogalactan (AG) via phosphoryl-N-acetylglucosaminosyl-

rhamnosyl linkage units (P-GlcNAc-Rha) (Fig 1.5). AG in turn is esterified at its non-reducing 

ends to α-alkyl, β-hydroxy long-chain (C70-C90) mycolic acids to form the bulk of the inner 

leaflet of the outer membrane. Intercalated within this mycomembrane, are the non-covalently 

linked lipids and lipoglycans such as PDIMs and PGLs which have varied roles in signaling 

events, pathogenesis, and immune response (Jackson, 2014). Several enzymes in 

biosynthetic pathways of the key cell-envelope glycolipids, such as PIMs, lipomannan (LM), 

and lipoarabinomannan (LAM) have been shown or predicted to be essential in Mtb (Goude 

et al., 2008, Griffin et al., 2011). Apart from this, alterations in the LM/LAM structures make 

both Mtb and nonpathogenic Msmeg susceptible to β-lactam antibiotics, which otherwise 

cannot cross the mycobacterial cell wall efficiently (Jarlier & Nikaido, 1990). These 

observations suggest that PIMs/LM/ LAM play important structural roles within the cell 

envelope to maintain the permeability barrier. Furthermore, PIMs/LM/ LAM are critical for 

virulence, with recognized host factor interactions (Vergne et al., 2014, Hmama et al., 2015, 

Ishikawa et al., 2017). Biosynthetic pathways of many cell envelope lipids and glycans start in 

the cytoplasm or the cytoplasmic side of the plasma membrane, followed by reactions taking 

place in the periplasmic space (Puffal et al., 2018). The complete structure is referred to as 
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the mycolyl-arabinogalactan-peptidoglycan complex (mAGP). The cell envelope of Mtb is 

associated with pathogenesis via its modulation of both bacillary and host cellular processes 

including permeability, phagosome maturation, neutralization of free radicals, and alteration 

of host immune responses (Smith, 2003). This is accompanied by its associated components 

like glycopeptidolipids (GPL) and free mycolic acids which are involved in the formation of 

mycobacterial biofilms, and have been implicated in tolerance to antibiotics in vitro (Recht & 

Kolter, 2001, Ojha et al., 2008). Thus, in order to understand these underlying mechanisms, it 

is important to understand the structure of the two major heteropolysaccharides AG and PG 

present in the mycobacterial cell envelope, and the interconnected biosynthetic pathways of 

various components present herein. 
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1.7. Biogenesis of Peptidoglycan (PG) and Arabinogalactan (AG) in 
mycobacteria 

The individual structures of PG and AG have been well studied before with a focus on the 

molecular genetics of their sub components and their individual role in cell wall assembly 

(Jankute et al., 2014).  

 

1.7.1. Peptidoglycan biosynthesis 

The synthesis of PG in mycobacteria is similar to that in other bacteria (Pavelka et al., 2014). 

The mycobacterial PG is comprised of alternating N-acetylglucosamine (GlcNAc) and 

modified muramic acid (Mur) residues, that are linked to each other in a β (1→4) configuration 

(Lederer et al., 1975). Its mesh-like structural organization contributes to the rigidity of the cell, 

thus providing it endurance to withstand osmotic pressure maintaining cell integrity and cellular 

shape (Vollmer et al., 2008). Unlike E. coli PG, in Mtb and Msmeg, the muramic acid residues 

contain a mixture of N-acetyl and N-glycolyl derivatives, whereby the N-acetyl function has 

been oxidised to a N-glycolyl function to form MurNGly (Mahapatra et al., 2005a, Mahapatra 

et al., 2005b, Raymond et al., 2005). These additional glycolyl residues provide extra hydrogen 

bonding that strengthens the mesh-like structure (Brennan & Nikaido, 1995) and also protects 

the bacilli from lysozyme degradation. Other unique features of the mycobacterial PG are the 

amidation of the carboxylic acids in the peptide stems (Mahapatra et al., 2005b) and additional 

glycine or serine residues (Vollmer et al., 2008). The tetrapeptide side chains in PG is 

composed of L-alaninyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine (Petit et al., 1969) 

that cross-links with identical short peptides of adjacent glycan chains (van Heijenoort, 2007). 

These cross-links consist of meso-diaminopimelic acid (DAP) and D-alanine bond, which are 

commonly found in most prokaryotes. Unlike E. coli, the PG in Mtb consists of muramic acid 

residues that serve as attachment sites for the galactan domain of the AG, while carbon-6 of 

some of the muramic acid residues form a phosphodiester bond and are linked to the α-L-

rhamnopyranose–(1→3)-α-D-GlcNAc(1→P) linker unit (LU) of AG (McNeil et al., 1990, 

Hancock et al., 2002). 

The mycobacterial PG biosynthesis has been summarized in Fig 1.6. The first step is the 

synthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc). This is catalysed by 

GlmU that exhibits acetyltransferase and uridyltransferase activities (Zhang et al., 2009). 

Here, the acetyl group from acetyl-CoA is transferred to glucosamine-1-phosphate (GlcN-1-P) 

to produce N-acetylglucosamine-1phosphate (GlcNAc-1-P). This is followed by the transfer of 

uridine-5′-monophosphate from UTP to GlcNAc-1-P to yield UDP-GlcNAc (Zhang et al., 2009). 

The absence of GlcN-1-P from humans makes the acetyltransferase domain a potential drug 
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target (Mio et al., 1998). The second step comprises of a sequential synthesis pathway that 

involves the formation of UDP-N-acetylmuramic acid (UDP-MurNAc)-pentapeptide, catalysed 

by the Mur ligases, MurA to MurF (Barreteau et al., 2008). MurA, a UDP-N-acetylglucosamine 

1-carboxyvinyltransferase, and MurB, a UDP-N-acetylenolpyruvoylglucosamine reductase, 

catalyze the synthesis of UDP-MurNAc from UDP-GlcNAc, by first transferring the 

enoylpyruvyl moiety of phosphoenolpyruvate (PEP) to the 3ʹ-OH of UDP-GlcNAc, followed by 

reducing to a lactoyl ether moiety via NADPH. During this period, the hydroxylation of the 

UDP-MurNAc to UDP-N-glycolylmuramic acid (UDP-MurNGlyc) occurs which is catalysed by 

NamH, a UDP-N-acetylmuramic acid hydroxylase (Mahapatra et al., 2005a). This unique 

structural variation in mycobacteria (and closely related species) is implicated in enhancing 

the intrinsic strength of PG, by potentially reducing the susceptibility to lysozyme and 

establishing sites for additional hydrogen bonding (Raymond et al., 2005). In the third step, 

the pentapeptide chain is integrated onto the UDP-MurNAc/Glyc substrates by the sequential 

addition of L-alanine, D-isoglutamate, DAP and D-alanyl-D-alanine (generated by the ligase 

Ddl), by the ATP-dependent Mur ligases C-F respectively (Munshi et al., 2013). This results 

in the formation of a muramyl-pentapeptide product, UDP-MurNAc/Glyc-L-Ala-D-isoGlu-m-

DAP-D-Ala-D-Ala, also known as the Park’s nucleotide (Kurosu et al., 2007). In the fourth 
step, MurX (also known as MraY) catalyzes the translocation of Park’s nucleotide to 

decaprenyl phosphate (C50-P), resulting in the formation of Lipid I (Kurosu et al., 2007). The 

fifth and the final step of PG synthesis is catalysed by the glycosyltransferase, MurG which 

leads to the generation of Lipid II, the monomeric building block of PG, via a β(1→4) linkage 

between GlcNAc (from UDP-GlcNAc) and MurNAc/Glyc of Lipid I (Mengin-Lecreulx et al., 

1991). The enzyme that catalyzes the translocation of Lipid II across the plasma membrane 

has still remained elusive. Currently, two different enzymes with flippase activity, MurJ and 

FtsW are considered for this translocation step (Mohammadi et al., 2011, Sham et al., 2014, 

Ruiz, 2015). After the translocation of Lipid II across the plasma membrane, the 

monofunctional and bifunctional penicillin-binding proteins (PBPs) polymerize the Lipid II 

(Sauvage et al., 2008). The bifunctional PBPs, PonA1/PBP1 and PonA2/PBP2 possess 

transglycosylase and transpeptidase activities. PonA1 forms a linkage between the 

disaccharide building blocks of Lipid II and the pre-existing glycan chains resulting in the 

release of decaprenyl pyrophosphate. With the cleavage of the terminal D-Ala, PonA2 

catalyzes the formation of (3→4) crosslinks, between m-DAP and D-Ala of the neighbouring 

pentapeptide chains. The monofunctional PBPs are involved in D,D-transpeptidation and D,D-

carboxypeptidation, both leading to cleavage of the terminal D-Ala located in the peptide stem 

(Goffin & Ghuysen, 2002). Mtb PG primarily consists of (3→3) cross-links between two 

tetrapeptide stems (Lavollay et al., 2008), whereas only 20% are (3→4) cross-links (Kumar et 

al., 2012).   
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1.7.2. Linker Unit biosynthesis 

The LU is covalently attached to the 6ʹ-OH groups of about 10-12% muramic acid residues of 

PG through a phosphodiester bond (Amar & Vilkas, 1973), followed by the addition of 

galactofuranose (Galf) and arabinofuranose (Araf) residues (Mikusova et al., 1996, Mikusova 

et al., 2000, Yagi et al., 2003) (Fig 1.7). The structural role of the LU in coupling AG to PG, as 

well as the presence of L-Rhamnose, a sugar absent in humans, makes the mycobacterial LU 

an attractive drug target (Ma et al., 2002). However, in Gram-positive bacteria, the LU is D-

ManNAc-(β1→4)-D-GlcNAc which is responsible for transferring AG to PG, and is slightly 

different with the presence of N- acetylmannosaminyl unit (Yokoyama et al., 1986). 

 

 

 

Several enzymes involved in the formation of the LU during AG synthesis have been 

previously reported in Mtb (Angala et al., 2014). For instance, the gene Rv1302 encoding a 

WecA-like transferase aids the transfer of GlcNAc 1-phosphate to decaprenyl phosphate 

resulting in the formation of Dec-P-P-GlcNAc (Jin et al., 2010). Subsequently, a rhamnosyl 

residue from deoxythymidine diphosphate-rhamnose (dTDP-Rha) gets attached to the 3-

position of GlcNAc of GL-1, forming glycolipid 2 (GL-2). This reaction is catalysed by WbbL1 

(Rv3265c) resulting in the formation of the LU, i.e., Dec-P-P-GlcNAc-Rha (Mills et al., 2004). 

Moreover, in Msmeg, WbbL1 (MSMEG_1826) has been highlighted essential for bacterial 

viability (Mills et al., 2004). The product of WbbL1 utilises the nucleotide donor dTDP-

rhamnose for the formation of GL-2, therefore the rhamnosyl biosynthetic pathway and several 

inhibitors in this pathway have been investigated by many researchers (Babaoglu et al., 2003, 

Fig 1.7. The Rha-GlcNAc linker unit in Mycobacterium (Grzegorzewicz et al., 2016). The LU is the conduit 
between AG and PG. The reducing end of AG consists of the terminal sequence →5)-D-Galf-(1→4)-L-Rhap-
(1→3)-D-GlcNAc, attached to muramyl-6-P. 
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Kantardjieff et al., 2004, Ma et al., 2001). The synthesis of dTDP-Rha is a 4-stage linear 

pathway that utilizes the gene products of rmlABCD. 

At first, RmlA (Rv0334) converts dTTP + α-D-glucose 1-phosphate to dTDP-glucose + PPi 

(Ma et al., 1997). The product of RmlA activity is then transferred through three successive 

reactions which is catalysed by dTDP-D-glucose 4,6-dehydratase (Rv3464, RmlB), dTDP-4-

keto-6-deoxy-D-glucose 3,5 epimerase (Rv3465, RmlC) and dTDP-Rha synthase (Rv3266, 

RmlD) (Hoang et al., 1999, Ma et al., 2001, Stern et al., 1999). The essentiality of RmlB and 

RmlC genes for mycobacterial growth was shown by Li and colleagues (Li et al., 2006). 

 

1.7.3. Arabinogalactan biosynthesis 

The mycobacterial AG biosynthesis has been summarized in Fig 1.8. The formation of LU is 

followed by AG synthesis where the synthesis of galactan is instigated in the cytoplasm on a 

decaprenyl phosphate (Dec-P) carrier lipid, where GlcNAc-phosphate is transferred from 

UDP-GlcNAc, forming C50-P-P-GlcNAc, referred to as glycolipid 1 (GL-1) (Mikusova et al., 

1996). Two bi-functional galactosyltransferases (GlfT1 and GlfT2) encoded by Rv3782 and 

Rv3808c respectively, are involved in adding Galf residues to the LU (Alderwick et al., 2008). 

GlfT1 first transfers Galf from UDP-Galf to the C-4 position of L-Rha, and then adds a second 

Galf residue to the C-5 position of the primary Galf, thus forming C50-P-P-GlcNAc-L-Rha-Galf2 

(Mikusova et al., 2006, Alderwick et al., 2008, Belanova et al., 2008). This is followed by the 

sequential transfer of Galf residues to the growing galactan chain with alternating β(1→5) and 

β(1→6) glycosidic linkages, catalysed by GlfT2 (Kremer et al., 2001, Rose et al., 2006). The 

galactan chains consists of ∼30 Galf residues, forming C50-P-P-GlcNAc-L-Rha-Galf30 (Daffe 

et al., 1990).  

The arabinosylation of AG occurs in the plasma membrane on its periplasmic side, which is 

catalysed by membrane-associated Dec-P arabinose-dependent glycosyltransferases 

(Angala et al., 2014). The arabinan domain is a highly branched network built on a backbone 

of α(1→5) linked sugars with a number of α(1→3) linked residues forming 3,5-Araf branch 

points (Daffe et al., 1990). Further α(1→5) linked Araf sugars are attached subsequently to 

this branch point with the non-reducing ends terminated by β(1→2) Araf residues. The 

concluding structural motif is the characteristic hexa-arabinoside (Ara6) present as (Araf-

β(1→2)-Araf-α(1-)2 → 3,5-Araf-α(1→5)-Araf-α(1→5), of which two-thirds are mycolated 

(McNeil et al., 1994). A family of glycosylphosphoprenols which are associated with the 

plasma membrane, have been identified that operate as sugar donor substrates for several 

TB glycosyltransferases. For example, activated forms of D-ribofuranose (Wolucka et al., 
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1994, Wolucka & de Hoffmann, 1995), D-mannopyranose (Takayama & Goldman, 1970) and 

D-arabinofuranose (Wolucka et al., 1994, Wolucka & de Hoffmann, 1995) have been 

acknowledged. 

Araf residues are directly transferred onto C50-P-P-GlcNAc-L-Rha-Galf30 from the lipid donor 

decaprenylphosphoryl-D-arabinose (DPA) (Wolucka et al., 1994). The synthesis of DPA 

occurs sequentially in the cytoplasm and originates solely from phospho-α-D-ribosyl-1-

pyrophosphate (pRpp). PrsA, a pRpp synthetase catalyses the transfer of pyrophosphate from 

ATP to C-1 of ribose-5-phosphate, resulting in pRpp (Alderwick et al., 2011). This is followed 

by the addition of a decaprenyl moiety by UbiA (decaprenol-1-phosphate 5-

phosphoribosyltransferase) leading to the formation of decaprenol-1-monophosphate 5-

phosphoribose (Alderwick et al., 2005, Huang et al., 2005, Huang et al., 2008). A putative 

phospholipid phosphatase encoded by Rv3807c, catalyses C-5 dephosphorylation, thus 

forming decaprenol-1-phosphoribose (DPR) (Jiang et al., 2011). In the final step, a two-step 

oxidation/reduction activity of the decaprenylphosphoribose-2′-epimerase consisting of 

subunits DprE1 and DprE2, catalyzes the epimerization of ribose C-2 hydroxyl, resulting in the 

formation of DPA (Mikusova et al., 2005).  

The sole donor of Araf residues involved in the biosynthesis of arabinans in the 

Actinomycetales involves β-D-arabinofuranosyl-1-monophosphodecaprenol (DPA) (Wolucka 

et al., 1994, Xin et al., 1997, Alderwick et al., 2005), and the reaction is catalysed by a set of 

arabinofuranosyltransferases known as embCAB and AftA proteins (Wolucka et al., 1994, Lee 

et al., 1997), consisting of 13 transmembrane domains (Telenti et al., 1997). This is a 

characteristic feature found only in Corynebacterianeae (Huang et al., 2005, Mikusova et al., 

2005, Alderwick et al., 2006a). AftA (Rv3792) is the first arabinofuranosyltransferase (AraT), 

to prime the galactan backbone by addition of arabinose from DPA onto the galactan chain 

(Alderwick et al., 2006b), signifying that DPA is the only donor in the related organism C. 

glutamicum (Alderwick et al., 2005). Apart from this, all the glycosyltransferases that are 

involved in the biosynthesis of both AG and LAM arabinans are integral membrane proteins, 

and hence classified as members of the glycosyltransferase family C (GT-C) (Berg et al., 

2007). The priming of the galactan backbone is followed by the attachment of α(1→5) linked 

Araf residues. These reactions are catalysed by arabinofuranosyltransferase activities of 

EmbA and EmbB respectively (Telenti et al., 1997, Radmacher et al., 2005) which finally 

results in the formation of mature AG with the Ara6 motif.  EmbC, on the other hand is required 

for the elongation of the arabinan domain of LAM (Zhang et al., 2003). The anti-TB drug 

ethambutol (EMB) specifically known to inhibit the embCAB locus in Mtb (Telenti et al., 1997). 

AftC (Rv2673/MSMEG_2785) transfers the Araf residues from DPA to the arabinan domain 

resulting in the internal branching of AG by α(1→3)-linked Araf residues. This forms a 
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branched arabinan domain which is distal to the non-reducing terminal Ara6 motif specifically 

found in mycobacterial AG (Birch et al., 2008). Finally, AftB (Rv3805c) catalyzes the transfer 

of Araf residues from DPA to the arabinan domain to form terminal β(1→2) linked Araf residues 

that represents the “end-point” for AG arabinan biosynthesis before attachment with mycolic 

acids (Seidel et al., 2007). Recently, a fourth member of this GT-C family of AraTs known as 

AftD (Rv0236c), which is essential for the viability and growth in Msmeg (Skovierova et al., 

2009), was reported to function as an α(1→5) arabinofuranosyltransferase responsible for 

elongation of the α(→3) primed bifurcation strands of the arabinan found in AG (Alderwick et 

al., 2018).  

The transfer of succinyl and D-GalN residues to the inner arabinan units marks the 

accomplishment of the primary structure of AG. This is followed by the formation of polyprenol-

P-D-GalNAc from polyprenyl-P and UDP-GalNAc, which is catalysed by PpgS, a polyprenyl-

phospho-N-acetylgalactosaminyl synthase. The polyprenol-P-D-GalNAc is then translocated 

across the membrane (Skovierova et al., 2010, Rana et al., 2012). The transfer of D-GalN to 

AG at the C-2 position of 3,5-branched Araf residue is then catalysed by the 

glycosyltransferase, encoded by Rv3779. The arabinosylation of AG is followed by the 

formation of 1-O-phosphoryl linkage by the transfer of GlcNAc of the LU of mature AG to the 

6-position of a MurNAc residue of PG (Yagi et al., 2003). This transfer reaction is believed to 

occur in the presence of newly synthesized PG undergoing concomitant cross-linking 

(Hancock et al., 2002). However, in Staphylococcus aureus (S. aureus), the wall teichoic acid 

(WTA, a major cell wall polyanionic polymer replacing AG) precursors has been found to 

attach only to uncrosslinked PG which implies that transfer of these precursors by WTA ligases 

occur only at an early stage of cell wall biosynthesis (Schaefer et al., 2018). On the other hand, 

in C. glutamicum, neither AG arabinosylation nor its mycolylation are required for its 

attachment to PG (Alderwick et al., 2005, Alderwick et al., 2006a). The final stage of AG 

biosynthesis involves the attachment of AG to PG. Until recently, the enzymes responsible for 

coupling AG to PG were unknown. However, the seminal paper by Kawai and co-workers 

strongly suggested a role for members of the so-called LCP protein family (Kawai et al., 2011). 

Further investigations in Mtb and C. glutamicum led to the discovery of the enzyme Lcp1 

(Rv3267) (Grzegorzewicz et al., 2016, Harrison et al., 2016) and Cg0847 (Baumgart et al., 

2016) respectively, that catalyzes this essential ligation. 
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1.8. LytR-CpsA-Psr (LCP) proteins 

Novel therapeutic agents and vaccines to complement and/or substitute the existing first-line 

treatment procedures are thus an immediate prerequisite to combat the threat of this disease. 

Keeping this in mind, substantial effort has been made to investigate the structure of 

mycobacterial cell envelope and its biosynthesis, to identify attractive drug targets. One such 

interesting target that has been studied by many researchers recently is the LCP family of 

proteins. The LCP proteins are found across all Gram-positive bacteria and in a few Gram-

negative bacteria (Hubscher et al., 2008). They are responsible for maintaining the structural 

integrity of the bacterial cell wall (Kawai et al., 2011), thus promoting bacterial survival and 

propagation in the host organism. The Gram-positive bacterial genome often encodes several 

LCP proteins (in some cases, up to 11) (Baumgart et al., 2016). Homologues of actinobacterial 

LCP proteins have been identified in the genomes of Mtb, Mycobacterium marinum (M. 

marinum), Mycobacterium leprae (M. leprae), Mycobacterium bovis (M. bovis), Msmeg and 

C. glutamicum (Table 1.3 and Fig 1.9). 

 

Table 1.3: Orthologues of lcp genes across selected actinobacterial species 

M. smegmatis M. tuberculosis M. marinum M. leprae M. bovis C. glutamicum 

      

MSMEG_0107 Rv3484 MMAR_4966 ML2247 Mb3514  - 

      

MSMEG_1824 Rv3267 MMAR_1274 ML0750 Mb3295 Cg0847* 
(Cgl0740)** 

      

MSMEG_5775 Rv0822c MMAR_4858 ML2187 Mb0845c Cg3210* 
(Cgl2902)** 

      

MSMEG_6421 Rv3840 MMAR_5392  - Mb3903  - 
 

*The annotation of the genes as in Baumgart et al., 2016; **The annotation of the genes as in UNIPROT database 

(https://www.uniprot.org/)

https://www.uniprot.org/
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Fig 1.9. Evolutionary relationship of LCP proteins in Msmeg and other Gram-positive and 
actinobacterial species. Neighbor-Joining tree of the LCP proteins in various Gram positive organisms and 
actinobacterial species. The tree is constructed using ClustalW algorithm with a PAM protein weight matrix and 
a divergent cutoff of 70% in MEGA7 software (Kumar et al., 2016). The four LCP homologs in Msmeg are in 
red. 

aa- amino acid 
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The LCP proteins are named after the representatives of the family that were reported 

separately - LytR (Lazarevic et al., 1992), CpsA (Cieslewicz et al., 2001) and Psr (Ligozzi et 

al., 1993). The role of LytR in Bacillus subtilis (B. subtilis) was initially described as an 

attenuator of both itself and the adjacent genes (Lazarevic et al., 1992). However, this was 

later described to be misannotated, and instead suggested these proteins to be enzymes 

required for transferring wall teichoic acids and capsular polysaccharides onto PG (Kawai et 

al., 2011, Chan et al., 2014). CpsA, on the other hand was first studied in Streptococcus 

agalactiae (S. agalactiae), and proposed to have a role in transcription activation of the 

synthesis of capsular polysaccharides (Cieslewicz et al., 2001). Initially Psr was suggested as 

a repressor of penicillin-binding protein 5 (PBP5) synthesis in Enterococcus hirae (Ligozzi et 

al., 1993), however the effect of this protein on PBP5 synthesis, autolysis or β-lactam 

resistance could not be confirmed (Sapunaric et al., 2003). 

LCP proteins are involved in maintaining the structural integrity of the cell envelope in many 

Gram-positive bacteria, and strains devoid of these proteins have been associated with cell 

wall defects (Chan et al., 2013, Chan et al., 2014, Wang et al., 2015). Apart from the effects 

of lcp genes on the cell envelope of Gram-positive organisms, the impacts have also been 

recently studied in actinobacteria including some species of mycobacteria. For instance, a 

conditional mutant of an essential lcp gene Cg0847, in C. glutamicum was shown to have 

severe morphological alterations, growth defects as well as reduced mycolic acids and AG, all 

of which indicates their role in structural integrity (Baumgart et al., 2016). In M. marinum, a 

CpsA transposon mutant was shown to have altered bacterial colony morphology, sliding 

motility, cell surface hydrophobicity, cell wall permeability (Wang et al., 2015). Here, the 

mutant also exhibited a decreased AG content, suggesting the role of CpsA in cell wall 

assembly. In Mtb, a mutant of Rv3484 (orthologue of MSMEG_0107) was shown to be 

essential for growth of Mtb in mice (Malm et al., 2018). This mutant also showed higher 

resistance to lysozyme and other antibacterial compounds like meropenem/clavulanate that 

targets the PG synthesis. A different study on Rv3484 mutant demonstrated this LCP protein 

to aid Mtb from lysosomal clearance thus evading the host innate immunity (Koster et al., 

2017). Apart from the impact of these proteins on the cell envelope, their function as a ligase 

that couples AG to PG has also been recently described in many organisms such as C. 

glutamicum, Mtb and S. aureus (Baumgart et al., 2016, Grzegorzewicz et al., 2016, Harrison 

et al., 2016, Schaefer et al., 2017). Another study in B.subtilis, showed LCP proteins to anchor 

WTAs to PG in vitro (Gale et al., 2017). All these findings imply the involvement of LCP 

proteins in transferring the saccharide entities from a lipid-polyprenol carrier to PG. However, 

in spite of extensive studies on the structural components involved in tethering AG and PG in 

the mycobacterial cell envelope, the exact sequence of events to couple these two major 

heteropolysaccharides still remains elusive. 
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The LCP proteins generally share a common structural organization i.e., an N-terminal 

cytoplasmic domain, a transmembrane region and an extracellular region that includes the 

LCP domain (Hubscher et al., 2008). However, some do not have the transmembrane domain, 

such as Rv3840 in Mtb. The LCP domain is found predominantly in Firmicutes and 

Actinobacteria (Baumgart et al., 2016). Apart from the LCP domain, a complementary LytR_C 

domain of unknown function is found at the C-terminal of most actinobacterial LCP proteins 

and, both these domains either occur separately or in association (Baumgart et al., 2016). For 

instance, in Msmeg, all the three lcp genes except MSMEG_6421 have the LytR_C domain 

(Fig 1.10). 

 

1.9. Aims of the thesis 

Although two different recent studies in Mtb have already shown Rv3267 and Rv3484 to 

couple AG to PG (Grzegorzewicz et al., 2016, Harrison et al., 2016),  several aspects of the 

cell wall assembly involving this attachment during the final phase of AG synthesis have still 

remained elusive. Moreover, not all LCP homologues have been studied in depth in the non-

pathogenic model organism Msmeg, and the role of orthologues of MSMEG_6421 have not 

been reported in any species. In this PhD project, the following aims were considered: 

i) To better understand the participation of single or multiple LCP proteins in 

exhibiting the same enzymatic function of coupling AG to PG. 

ii) To investigate potential differences between essential and non-essential lcp genes 

in Msmeg. 

 

Hence, in this whole study, the function of all the four lcp genes in Msmeg were comprehended 

by measuring the pyrophosphatase activity exhibited by each of these four homologues. Apart, 

this is the first comprehensive study to report the impact on the mycobacterial cell envelope 

by creating both single and double lcp deletion mutants. Mycobacteria are known for its 

survival fitness due to its tough cell envelope that helps it to evade several environmental 

stress. Therefore, in combination to understand the role of all four lcp genes in Msmeg, the 

differential expression between these four homologues as well as the effects of different 

stressors on the fitness of these mutants were extensively investigated. Thus, this study would 

help us to understand the role of all the four LCP proteins in this non-tubercle bacilli, implicating 

their possible and related mechanisms in cell envelope biogenesis in Msmeg. 
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1.10. Outline of the thesis  

The main goal of this thesis was to gain insights into the functional aspects of the Msmeg lcp 

genes, and the necessity of the four homologues in this non-pathogenic model organism. 

In chapter 2, pyrophosphatase activity of the four LCP homologues in Msmeg is described, 

confirming what has been recently reported for LCP homologues in Mtb (Grzegorzewicz et 

al., 2016, Harrison et al., 2016) and C. glutamicum (Baumgart et al., 2016). This activity is 

based on the background that, in the presence of a generic substrate geranyl pyrophosphate 

(GPP) and Mg+2, the LCP proteins release inorganic phosphate, which is measured 

spectrophotometrically, to determine the extent of coupling between AG and PG by these 

proteins. MSMEG_0107 and MSMEG_5775 was found to release significantly higher amount 

of inorganic phosphate than the essential MSMEG_1824, indicating that both MSMEG_0107 

and MSMEG_5775 have higher pyrophosphatase activity during the ligation of AG and PG 

in Msmeg. 

In chapter 3, the impact of the lcp genes on physiology of Msmeg was studied by creating 

single and double deletion mutants of the non-essential lcp genes. Though a single deletion 

of these genes did not give profound effects in morphological features, however, the double 

deletion of MSMEG_0107 and MSMEG_5775 demonstrated a compromised cell envelope 

by exhibiting structural defects, slower growth rate, diminished biofilm on air-liquid interface, 

increased sensitivity to detergent and antibacterial agents like lysozyme and antibiotics, and 

lower aggregative properties. Finally, the exposed Galf residues of AG were identified by EB-

A2 Mab in the compromised cell envelope of the double lcp deletion mutant lacking both 

MSMEG_0107 and MSMEG_5775. 

In chapter 4, the effect of various environmental stresses on the mRNA expression levels of 

the four lcp genes in wild type and single and double-deletion mutants were investigated. For 

this study, quantitative RT-PCR method was used extensively to determine the differential 

expression of the lcp homologues in the Msmeg mutants at a late-log phase. Under standard 

conditions, ΔMSMEG_5775 exhibited an extraordinary upregulation of all the lcp genes than 

that in the wild type, suggesting MSMEG_5775 to play an important role in ligating AG and 

PG in Msmeg. Under stress conditions, such as in the presence of lysozyme and low pH, 

loss of MSMEG_5775 downregulated other available lcp genes in the Msmeg genome, 

whereas, loss of MSMEG_6421 upregulated them suggesting the role of a single bi-functional 

regulator or two different regulators. Finally, in silico investigation on the regulatory elements 

of lcp genes, revealed putative regulators which could be further investigated.  

In the general discussion, the results are summarized and further discussed.  
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Chapter-2 

All four LCP homologues in Mycobacterium smegmatis 
possess pyrophosphatase activity 

 

Abhipsa Sahu, Ziwen Xie, David Ruiz-Carrillo and Boris Tefsen 

Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, PR China 

 

2.1. Introduction 

The composition and the complex architecture of the mycobacterial cell envelope 

distinguishes it from other prokaryotes. The cell envelope comprises of many physiological 

features that makes it susceptible and/or resistant to many anti-TB drugs (Barry et al., 2007, 

Jackson et al., 2013). Therefore, several studies and overviews on the cell envelope structure 

have recently aimed to gain insights into the biosynthetic machinery of this organism, and 

identify attractive drug targets (Kawai et al., 2011, West et al., 2011, Jankute et al., 2012, 

North et al., 2014, Abrahams & Besra, 2016, Bhat et al., 2017). In the cell walls of 

mycobacteria, the PG is a crosslinked network of amino acids and glycans in which about 10-

12% of MurNAc residues are covalently substituted at their C-6 position with the 

polysaccharide AG (Yokoyama et al., 1986, McNeil et al., 1990). As AG is acylated with 

mycolic acids (Mikusova et al., 1996), these three different compounds thus form a complex 

network referred to as mAGP-complex (Jankute et al., 2015).  

The LCP family of proteins have paved way for many researchers to investigate their 

importance in cell envelope biogenesis in various Gram-positive pathogens. Recent advances 

have also shown the LCP proteins Rv3267 and Rv3484 in Mtb, and Cg0847 in C. glutamicum 

to be responsible for ligating AG and PG, in the later stages of cell wall biosynthesis (Baumgart 

et al., 2016, Grzegorzewicz et al., 2016, Harrison et al., 2016), however, their significance or 

functional role in the non-pathogenic model organism, Msmeg, have not been studied yet. 

Msmeg is a fast-growing species that is amenable to genetic manipulation, easy to cultivate 

and handle in the laboratories devoid of BSL-3 facilities. There are many similarities between 

Msmeg and the much more virulent pathogens, with more than 2000 homologous genes 

shared with Mtb. These properties make it a very useful model organism for Mtb and other 

mycobacterial pathogens. Interestingly, Msmeg cell envelope has four LCP homologues, while 

other organisms can survive with only two or even one AG-PG ligase.  
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The aims of the study described in this chapter were to understand whether all four 

orthologues in Msmeg viz., MSMEG_0107, MSMEG_1824, MSMEG_5775 and 

MSMEG_6421 possess the same pyrosphosphatase activity as described for Rv 3267, 

Rv3484 and Rv0822c in Mtb (Grzegorzewicz et al., 2016) and Cg0847 in C. glutamicum 

(Baumgart et al., 2016). First, the LCP and LytR_C domains of mycobacterial and non-

mycobacterial species were mapped via an in silico approach, with the goal of providing an 

understanding of the conservative nature of the LCP protein family in mycobacteria and other 

related organisms. Moreover, structural predictions of the four homologues were made using 

SWISS MODEL webserver. Finally, transmembrane-less variants of all four LCP homologues 

were purified and the enzymatic activity determined. Not only was it confirmed that 

MSMEG_0107, MSMEG_1824 and MSMEG_5775 possess the expected pyrophosphatase 

activity, but also MSMEG_6421, the least studied LCP homologue, was able to hydrolyze 

pyrophosphate at a comparable rate under the conditions tested. The dependency on Mg2+ 

was shown for all four enzymes and a mutation in an arginine residue in the suspected enzyme 

active site of MSMEG_1824 was shown to diminish the pyrophosphatase activity by 1.6-fold. 

 

2.2. Materials and methods 

 

2.2.1. Bacterial strains, plasmids and growth conditions 

All bacterial strains and plasmids used in this chapter are listed in Table 2.1. All the reagents 

were purchased from Sigma-Aldrich, China unless otherwise stated. Msmeg wild-type strain 

mc2155 was grown in 7H9 medium (Difco) supplemented with 10% (v/v) Albumin Dextrose 

Saline (ADS, 50 g of albumin, 20 g of dextrose and 8.5 g of sodium chloride in 1 liter of water), 

0.5% glycerol (v/v) and 0.05% Tween-80 (v/v) (Solarbio, China). Plasmid propagation was 

performed using E.coli DH5-α (Tiangen Biotech Beijing Co. Ltd., China), genotype: F-, φ80, 

lacZΔM15, Δ (lacZYA-argF) U169 endA1, recA1, hsdR17 (rk-, mk+) supE44, λ-, thi-1, gyrA96, 

relA1, phoA. For expression of fusion proteins with pGEX4T1 and pET21a vector constructs, 

E.coli BL21 (DE3) (Tiangen Biotech Beijing Co. Ltd., China) strain was used, genotype: F- 

ompT hsdSB (rB- mB-) gal dcm (DE3) pLysS Camr. In liquid culture, E. coli strains were grown 

in LB broth for 16-20 hours at 37°C and shaking at 200 rpm. In solid culture, E. coli strains 

were grown on LB agar plates for 16-20 hours at 37°C, and the plates stored at 4°C for up to 

one month. For long term storage of E. coli strains, fresh cultures in mid-log phase (optical 

density measured at 600 nm (OD600) of 0.6 - 0.8) were frozen in 50% glycerol and stored at -

80°C. Media was autoclaved for 15 min at 121°C and cooled to below 50°C prior to addition 
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of the appropriate antibiotic (in this chapter, all cultures were supplemented with a final 

concentration of 0.1 mg/mL of ampicillin), unless otherwise stated. 

 

2.2.2. Phylogenetic analysis of LCP proteins  

The nucleotide and amino acid sequences of the lcp genes of Msmeg mc2155 strain and other 

organisms were taken from the NCBI database (accession numbers in Table 2.2) and 

UNIPROT Knowledgebase. The sequences were aligned with the Clustal W algorithm 

(Thompson et al., 1994, Thompson et al., 1997) in the MEGA7 software (Kumar et al., 2016) 

using a PAM protein weight matrix and with a divergent cutoff of 70%. The amino acid 

sequence homology and divergence was determined using DNASTAR (version 15.3.0.66) 

program package (DNASTAR, Inc., USA) and the phylogenetic analysis was performed using 

MEGA7 software (Kumar et al., 2016). The evolutionary history was inferred using the 

Neighbor-Joining method (Saitou & Nei, 1987) with confidence limits of the branching pattern 

evaluated by bootstrapping of 10,000 replicates of the original data sets. The evolutionary 

distances were computed using the p-distance method (Nei & Kumar, 2000) and are in the 

units of the number of amino acid differences per site. The rate variation among sites was 

modeled with a gamma distribution (shape parameter = 10). The analysis involved 29 amino 

acid sequences. All ambiguous positions were removed for each sequence pair. 

 

2.2.3. Structural prediction of LCPΔTM proteins 

For structural prediction, the primary full length sequences of the four LCP proteins in Msmeg 

were submitted for homology modelling in SWISS-MODEL available at 

https://swissmodel.expasy.org/. The models were built on the basis of their higher Global 

Model Quality Estimation (GMQE) scores instead of QMEAN scores. QMEAN (Benkert et al., 

2011) is a composite estimator based on different geometrical properties and provides both 

global (i.e. for the entire structure) and local (i.e. per residue) absolute quality estimates on 

the basis of one single model whereas, GMQE is a quality estimation which combines 

properties from the target–template alignment and the template search method. The resulting 

GMQE score is expressed as a number between 0 and 1, reflecting the expected accuracy of 

a model built with that alignment and template and the coverage of the target. Higher numbers 

indicate higher reliability. Once a model is built, the GMQE gets updated for this specific case 

by also taking into account the QMEAN score of the obtained model in order to increase 

reliability of the quality estimation. After protein homology modelling, PYMOL v. 2.3 was used 

to map the LCP domain and the conserved residues of the LCP proteins.

https://swissmodel.expasy.org/
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Table 2.1: Strains and plasmids used to study pyrophosphatase activity in Msmeg LCP 
proteins 

Strain or plasmid Description  Source or 
reference 

    
E. coli      
DH5-α strain used for general cloning procedures    
    
BL21 (DE3) host for protein expression    
       
Msmeg      

mc2155 wild-type laboratory strain; DNA used as PCR 
template 

 (Snapper et 
al., 1990) 

       
Plasmids      

MSMEG_0107ΔTM AmpR; transmembrane-less MSMEG_0107 cloned in 
pGEX-4T1 

 This study 

    

MSMEG_1824ΔTM AmpR; transmembrane-less MSMEG_1824 cloned in 
pGEX-4T1 

 This study 

    

mut-MSMEG_1824-
R225AΔTM 

AmpR; transmembrane-less MSMEG_1824 with amino 
acid substitution R→A at position 225 of the full length 
protein cloned in pGEX-4T1 

 
This study 

    

MSMEG_6421ΔTM AmpR; transmembrane-less MSMEG_6421 cloned in 
pGEX-4T1 

 This study 

    

MSMEG_5775ΔTM AmpR; transmembrane-less MSMEG_5775 cloned in 
pET21a 

 This study 

 

AmpR- ampicillin resistance 
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Table 2.2: Strains and their Genbank IDs used for phylogenetic analysis  

Organism Strain Genbank ID 
   
Mycobacterium smegmatis  mc2155 CP000480.1 
Mycobacterium tuberculosis  H37Rv AL123456.3 
Mycobacterium marinum M CP000854.1 
Mycobacterium leprae TN AL450380.1 
Mycobacterium bovis AF2122/97 LT708304.1 
Bacillus subtilis 168 AL009126.3 
Staphylococcus aureus NCTC7887 UHAH01000002.1 
Streptococcus pneumoniae N CRBU01000005.1 
Rhodococcus fascians D188 NZ_CP015235.1 
Corynebacterium glutamicum ATCC 13032  BX927147.1 

 

 

2.2.4. Extraction of genomic DNA from Msmeg 

Genomic DNA was extracted from Msmeg wild-type strain mc2155 for use as template to 

amplify the lcp genes for cloning purposes. The bacteria were grown until OD600 reached 1, 

followed by centrifuging at 16,000 g for 5 min, and the medium discarded. The pellet was 

resuspended in 500 µL of lysis buffer (40 mM Tris-HAc pH 7.8, 20 mM NaAc, 1 mM EDTA, 

10% Sodium dodecyl sulfate) and the cells were broken in a mini bead-beater (Biospec 

products) for a min using about 1 g of 5 mm sized glass beads. The broken cells were then 

treated with 300 µL of 5 M NaCl and centrifuged for another min at 16,000 g. The supernatant 

containing the nucleic acids was moved to another tube and treated with 800 µL of 

trichloromethane (Sinopharm Chemical Reagent Co. Ltd., China) and centrifuged for a min at 

16,000 g. The supernatant was then treated with two volumes of 96% ethanol (Sinopharm 

Chemical Reagent Co. Ltd., China) and kept standing at room temperature for 30 min followed 

by centrifuging at 16,000 g for a min. The supernatant was then discarded and the pellet 

washed with 500 µL of 70% ethanol and centrifuged at 16,000 g for 2 min. After removal of 

the supernatant, traces of remaining ethanol were drained by inverting the tube and tapping 

on a paper towel followed by drying on air for about 10-15 min. The dried pellet was dissolved 

in 50 µL double-distilled water and used as a template. The genomic DNA concentration was 

measured using NanoDrop 2000 spectrophotometer (Thermo Scientific, China). 



  

32 
 

2.2.5. Cloning of lcp genes devoid of transmembrane domain 

 

2.2.5.1. In silico cloning of lcpΔTM in expression vector 

The transmembrane domains are highly hydrophobic in nature that tend to interfere during 

protein expression, hence Msmeg lcp genes were cloned devoid of their N-terminal 

transmembrane domain. The transmembrane spanning region in the amino acid sequence 

was predicted using the TMHMM server available at the Expasy Bioinformatics Resource 

Portal website. The recombinant lcpΔTM plasmids were constructed using SnapGene 

software (from GSL Biotech; available at snapgene.com, San Diego, California, USA) and all 

the molecular features namely, promoter sequence, antibiotic resistance marker, primer 

recognition sites and restriction sites were marked in the construct (Fig 2.1). The recombinant 

lcpΔTM genes, MSMEG_0107ΔTM (corresponding to amino acid residues 51-533 of the total 

protein), MSMEG_1824ΔTM (corresponding to amino residues 25-493 of the total protein), 

MSMEG_5775ΔTM (corresponding to amino acid residues 222-722 of the total protein) and 

MSMEG_6421ΔTM (corresponding to amino acid residues 332-623 of the total protein) were 

constructed using the primers mentioned in Table 2.3. These primers harbor an N-terminal 

glutathione S-transferase (GST) tag, hexahistidine (6XHis) tag and a human Rhinovirus 3C 

(HRV3C) protease site. Restriction sites were added to the 5ʹ end of the primer sequence. 

 

2.2.5.2. Polymerase Chain Reaction and agarose gel electrophoresis 

For cloning, a two-step PCR was performed. In the first PCR, primer sets MSMEG_0107-F-

pGEX4T1 and MSMEG_0107-R-SmaI were used to amplify MSMEG_0107ΔTM. In the 

second PCR, the gel purified PCR product from the first PCR was used as a template, using 

primer sets MSMEG_0107-F-EcoRI and MSMEG_0107-R-SmaI. Similarly, other lcpΔTM 

genes were amplified. A typical 50 µL reaction mixture contained 1X Q5 Reaction buffer, 300 

µM of dNTPs, 0.5 µM of each primer, 1X Q5 GC enhancer, 0.008 U/ µL Q5® High-Fidelity 

DNA Polymerase (NEB) and 0.5-1 µg of template DNA. PCRs were performed using a Veriti 

96 well Thermal cycler (Applied Biosystems, Thermo Fisher Scientific, China) with cycling 

conditions: 35 cycles of denaturation, annealing and extension at 95°C, 70°C and 72°C for 10 

sec, 30 sec and 1 kb/min respectively. 

PCR products were confirmed by agarose gel electrophoresis using 0.8-1% agarose in 1X 

TAE (40 mM Tris-acetic acid, 10 mM EDTA pH 8.0) buffer containing 0.01% Gel-Red 

(Beyotime, China) and a 1 kb DNA Ladder (Takara Bio Inc., China) was used as DNA marker. 
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The gel loaded with samples and marker was run for about 1 hour at 100 volts, until an 

appropriate resolution was achieved. The gel was then imaged using a UV transilluminator 

system (Bio-Rad Gel DocTM XR+ Imaging System, China). 

 

 

 

 

 

 

  

Fig 2.1. Construction of all the four recombinant LCPΔTM proteins in Msmeg. Transmembrane (TM) of lcp genes were 
predicted using TMHMM webserver. The subsequent transmembrane-less (ΔTM) gene sequences were used to construct in 
silico cloned maps of the lcpΔTM proteins. An HRV3C cleavage site and a 6Xhis-tag was cloned at the N-terminal of 
MSMEG_0107ΔTM,  MSMEG_1824ΔTM and MSMEG_6421ΔTM in pGEX 4T-1 plasmid in such a way that the Tac promoter 
and GST-tag already present in the plasmid is located in the N-terminal of the his-HRV3C-lcpΔTM protein. In case of 
MSMEG_5775ΔTM, pET21a plasmid was used for cloning and, the 6Xhis-HRV3C-MSMEG_5775ΔTM was cloned with the 
T7 promoter in the N-terminal. An additional 6XHis-tag from the plasmid is located at the C-terminal of the fused protein. The 
primers used for sequencing the recombinant plasmid have been marked at specific location of the construct. 
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2.2.5.3. Gel extraction of DNA 

DNA fragments of appropriate length were cut with a scalpel under a UV trans-illuminator 

ULTRA-LUM (Carson, USA) and purified using QIAquick Gel Extraction Kit (Qiagen, China) 

following the manufacturer’s instructions. Samples were eluted in 30-50 µL of double-distilled 

water. 

 

2.2.5.4. Restriction digestion, ligation and transformation 

All restriction enzymes used were purchased from NEB. Typically, 1 µg of the appropriate 

purified expression vector and the entire purified PCR product were digested with the 

appropriate 10X NEB buffer and 10 U each of the corresponding restriction enzymes for 

double digestion, in a final reaction volume of 50 µL, according to the manufacturer’s 

instructions. The digested vector and the insert DNA were then resolved on agarose gel, and 

the desired DNA fragments were excised and purified by gel extraction (section 2.2.5.3). 

 

2.2.5.5. Ligation of insert DNA into expression vector 

Ligation reactions of the digested vector and the insert DNA were performed using 0.5 µL T4 

DNA ligase (NEB) and 1 µL of 10X ligase buffer, in a 10 µL reaction. A typical ligation reaction 

consisted of 3:1 molar ratio of insert to vector. Reactions were mixed well before incubating at 

room temperature (approximately 25°C) for 1 hour. Negative control reactions were devoid of 

the target gene insert. 
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Table 2.3: Primers used for cloning and sequencing the recombinant plasmids for subsequent 
pyrophosphatase assay 

Primer name Sequence (5ʹ - 3ʹ) 
  
Cloning primers  
  
MSMEG_0107-F-pGEX4T1 GGGCCCGACGGCATCACGACGTCCAA 
  
MSMEG_0107-R-SmaI  CGGCCCGGGTCATTTCACGCACGGGATGCC 
  
MSMEG_0107-F-EcoRI CTCGAATTCCACCATCATCATCATCATCTTGAGGTTCTTTTCCAGGGGCCCGACGGCATCACGACGTCCAA 
  
MSMEG_1824-F-pGEX4T1 GGGCCCCGGTCGTTCGAGTCCGGTATC 
  
MSMEG_1824-R-NotI CGGGCGGCCGCTCAGTTCACGCACTGCGG 
  
MSMEG_1824-F-EcoRI CCGGAATTCCACCATCATCATCATCATCTTGAGGTTCTTTTCCAGGGGCCCCGGTCGTTCGAGTCCGGTATC 
  
MSMEG_5775-F-pET21a GGGCCCCAGTCGTCGAAGAACGACTC 
  
MSMEG_5775-R-HindIII CGGAAGCTTTCATTCGCAGGTGGCGTC 
  
MSMEG_5775-F-EcoRI CTCGAATTCCACCATCATCATCATCATCTTGAGGTTCTTTTCCAGGGGCCCCAGTCGTCGAAG 
  
MSMEG_6421-F-pGEX4T1 GGGCCCGACACGTCACTGCAACG 
  
MSMEG_6421-R-EcoRI  CGGGAATTCTCAATTGACGGCATTTTCCAGG 
  
MSMEG_6421-F-BamHI CTCGGATCCCACCATCATCATCATCATCTTGAGGTTCTTTTCCAGGGGCCCGACACGTCACTG 
  

MSMEG_1824-R225A-F GCGTTGAGCTTCGTGGCCCAGCGCCACGGCCTG 

  
MSMEG_1824-R225A-R CAGGCCGTGGCGCTGGGCCACGAAGCTCAACGC 
  

Sequencing 
primers 

 

  
pGEX-F-seq GGGCTGGCAAGCCACGTTTGGTG 
  

pGEX-R-seq CCGGGAGCTGCATGTGTCAGAGG 
  

T7-F-seq TAATACGACTCACTATAGGG 
  

T7-R-seq GCTAGTTATTGCTCAGCGG 
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2.2.5.6. Transformation of vector constructs into E. coli  

10 µL of the ligation mixture was mixed with 20 µL of competent DH5-α and incubated on ice 

for 30 min, 90 seconds at 42°C on a heat block, and on ice for 3 min before adding 500 µL of 

LB broth. The cells were incubated at 37°C for 1 hour, centrifuged at 16,000 g for 1 min and 

50 µL of the media resuspended with the pellets were plated onto LB agar plates 

supplemented with ampicillin and were incubated at 37°C overnight. 

 

2.2.6. Colony PCR, restriction analysis and sequencing 

Several single transformed colonies were resuspended with a 10 µL PCR reaction mix, using 

the reaction components and cycling conditions as mentioned in section 2.2.5.2. The 

presence of an inserted gene was confirmed by agarose gel electrophoresis. Restriction 

analysis of a positive transformant was performed as in section 2.2.5.4 using 10-20 ng of the 

extracted recombinant plasmid DNA, and the presence of insert was confirmed by agarose 

gel electrophoresis. Sequencing reactions for the recombinants were done by Sangon Biotech 

Co. Ltd, Shanghai, China. The sequences were retrieved and the insert confirmed using 

Chromas Lite, version 2.6.6. (Technelysium Pty Ltd, South Brisbane, Australia). 

 
2.2.7. Site-directed mutagenesis for construction of mut-MSMEG_1824- 
R225AΔTM 
For cloning mut-MSMEG_1824-R225AΔTM, primers MSMEG_1824-R225A-F and 

MSMEG_1824-R225A-R were used for PCR, using MSMEG_1824ΔTM plasmid DNA as the 

template. The primers were designed in such a manner that both of them contain the desired 

mutation in the middle with 15 nucleotide bases of correct sequence on both sides (Fig 2.2) 

and, terminating one or more C or G bases (Table 2.3), desired mutations are in red). PCR 

reaction was performed using Q5® High-Fidelity DNA Polymerase (NEB) as described in 

section 2.2.5.2. Typical PCR cycling conditions for site-directed mutagenesis had 18 cycles 

of denaturation, annealing and extension at 95°C, 60°C and 68°C for 20 sec, 10 sec and 1 

min/kb of plasmid length respectively. 

Following PCR, 20 U of DpnI restriction enzyme (NEB) was added directly to the PCR 

amplified product, resuspended well and incubated immediately for 1 hour at 37°C, to digest 

the parental (i.e. the non-mutated) supercoiled double stranded DNA. 2 µL of this digested 

product was then transformed in DH5-α (section 2.2.5.6) and plated on LB agar supplemented 

with ampicillin. Colony PCR, restriction analysis and sequencing were done as in section 

2.2.6. 
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2.2.8. Small-scale expression of truncated LCP proteins 

Expression vectors containing the lcpΔTM genes were transformed in BL21 (DE3) following 

the same protocol as for DH5-α (section 2.2.5.6), followed by small-scale expression of the 

LCPΔTM proteins. For this, a single colony was picked from the BL21 (DE3) transformants 

and cultured overnight in 5 mL of LB broth supplemented with 0.1 mg/mL ampicillin, at 37°C 

and shaking at 200 rpm. For small-scale expression, 200 µL of the overnight culture was 

inoculated into 5 mL of fresh LB broth supplemented with ampicillin and, cultured at 37°C and 

shaking at 200 rpm, for about 1.5 hours or, until the OD600 reached 0.6. Then, the cells were 

induced with Isopropyl β-D-1-thiogalactopyranoside (IPTG) at a final concentration of 0.2 mM 

and grown further for 3 hours. Then, 1.5 mL of the induced culture was taken, centrifuged at 

16,000 g for a min and then the supernatant discarded. Protein samples were then prepared 

by dissolving the bacterial pellet in 100 µL of 1X Laemmli sample buffer (12 mM Tris-HCl pH 

6.8, 0.4% SDS, 2% glycerol, 1% β-mercaptoethanol, 0.002% OrangeG dye) and incubated in 

a heat block at 95°C for 10 min. The samples were then cooled on ice prior to separation by 

SDS-PAGE (section 2.2.9).  

 

Fig 2.2. Site-directed mutagenesis in mut-MSMEG_1824-R225AΔTM. The amino acid stretch from residues 218-232 
of the full length protein is represented with the mutated residue (bold and underlined). The corresponding nucleotides 
containing the mutation are depicted in bold and underlined. The primer sequences are in bold. The arrows represent the 
orientation of the primers. 
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2.2.9. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE) 

The protein samples were separated on 10% (v/v) acrylamide gels by SDS-PAGE under 

denaturing and reducing conditions using the Mini-Protean® Tetra Gel System (Bio-Rad, 

China). The resolving gel contained 375 mM Tris-HCl pH 8.8, 10% (v/v) acrylamide (30% 

acrylamide: Bis-acrylamide (29:1) (Beyotime, China), 0.1% (w/v) SDS, 0.1% (w/v) ammonium 

persulphate (APS) and 0.1% N,N,N´,N´-Tetramethylethylenediamine (TEMED). The stacking 

gel consisted of 187.5 mM Tris-HCl pH 6.8, 4.95% (v/v) acrylamide, 0.1% (w/v) SDS, 0.1% 

(w/v) Ammonium persulfate (APS) and 0.1% TEMED. The SDS-PAGE running buffer 

consisted of 25 mM Tris-base, 192 mM glycine and 1% (w/v) SDS. PageRuler™ Prestained 

Protein Ladder (10-180 kDa) (ThermoFisher Scientific, China) was used as protein marker. 

Gel was run at 100 V for approximately 90 min or, until the visible pre-stained protein marker 

was properly resolved. For direct visualization, SDS-PAGE gels were stained with Coomassie 

blue staining solution R250 (Beyotime, China) for 20 min at room temperature, on a mildly 

shaking platform. This was followed by destaining the gel overnight at 4°C with 40% (v/v) 

methanol and 10% (v/v) acetic acid, to get rid of excess dye from the non-binding regions. 

 

2.2.10. Large scale expression and His-LCPΔTM fusion protein purification 

A single colony from a freshly transformed lcpΔTM in BL21 (DE3) was cultured overnight in 

500 mL of LB broth supplemented with ampicillin. 100 mL of the overnight culture was 

inoculated in each of four flasks with 1 L of fresh LB broth and ampicillin, and cultured until 

OD600 reached 0.6, followed by inducing with 0.2 mM IPTG. The induced culture was further 

grown overnight, at 16°C and shaking at 200 rpm and the overexpressed culture was 

centrifuged at 6000 g for 20 min at 4°C, followed by resuspension of the pellets in 120 mL of 

ice cold lysis buffer (50mM Tris-HCl pH 8.0, 500 mM NaCl and 10% glycerol) supplemented 

with 0.1 mM DNaseI (40 mM Tris-HCl pH 8.0, 10 mM MgSO4, 1 mM CaCl2) (Promega) and 4 

mL of 1X EDTA-free protease inhibitor cocktail (BBI Life Sciences). The cells were disrupted 

by sonicating the lysates on ice for 3 min at amplitude: 30, pulse-on: 5 sec and pulse-off: 10 

sec (QSonica, China). The lysed cells were then centrifuged at 40,000 g for 45 min at 4°C. 

The supernatant containing the protein of interest was filtered through a 0.22 µm filter 

(Millipore) and subjected to affinity chromatography using (Nickel-nitrilotriacetic acid) Ni-NTA 

agarose beads (Bio-Rad, China). Subsequently, 2 mL of the 50% slurry of beads were first 

washed with molecular biology grade water and equilibrated with 20 mL elution buffer (50 mM 

Tris-HCl pH 8.0, 250 mM NaCl, 150 mM immidazole and 5% glycerol). The column was 

equilibrated with 20 mL lysis buffer. The filtered protein lysates were run through the column 
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and the flow through collected in 50 mL falcon tubes. The column was washed thrice with 10 

mL of lysis buffer each time, with the final wash in lysis buffer containing 0.15 mM n-dodecyl 

β-D-maltoside (BBI Life Sciences, China) (Grzegorzewicz et al., 2016). The protein was then 

eluted with 10 mL of elution buffer and concentrated to half the volume using a 10 kDa cut-off 

Ultra-15 Centrifugal Filter Unit (Amicon®, China). The 5 mL concentrated protein was further 

purified using a HiLoadTM 16/600 SuperdexTM 200 pg Fast Protein Liquid Chromatography 

(FPLC) column coupled to the ÄKTAprime plus design system (GE Healthcare Life Sciences, 

China). The eluted fractions containing the protein of interest were determined by the 

chromatogram at 280 nm and confirmed by SDS-PAGE (Section 2.2.9). Then, the eluted 

fractions containing the desired protein were pooled and concentrated prior to storing at -80°C. 

 

2.2.11. Enzymatic activity of LCPΔTM proteins 

The pyrophosphatase activity of the truncated LCP proteins was determined using Geranyl 

pyrophosphate (GPP) as a substrate. The inorganic phosphate released was determined by 

PiperTM phosphate assay kit (Molecular Probes) (Grzegorzewicz et al., 2016) (Fig 2.3). The 

LCPΔTM reaction mixture contained 50 mM Tris-HCl pH 8.0, 20 mM MgCl2, 270 µM GPP and 

1 µM of purified LCPΔTM proteins and incubated at 37°C for 16 hours, in a 96-well plate. 

Sterilized Tris buffer, MgCl2 and double-distilled water was used for this purpose. Inorganic 

pyrophosphatase from yeast (NEB) at a final concentration of 0.002 U was used as a positive 

control, and incubated at 25°C for equal incubation time periods as that of LCPΔTM proteins. 

For negative control, gel filtrated 6XHis-tagged prolyl oligopeptidase (POP) was used (a kind 

gift from Dr. David Ruiz Carrillo), which is a cytosolic serine peptidase involved in the 

maturation and degradation of peptide hormones and neuropeptides isolated from Msmeg. 

After the 16 hour incubation period, phosphate standards ranging from 0-250 µM were 

prepared in duplicate for calculating the calibration curve. The Amplex detection reagent was 

then prepared as per the manufacturer’s instructions (Fig 2.3), protected from light, and added 

to all wells containing the samples and standards. Since this detection assay is continuous, 

the absorbance was measured at 560 nm at several time points (0 min, 30 min, 1 hour and 2 

hour) after addition of the Amplex detection reagent (see Fig 2.9). Such continuous assays 

are particularly helpful to study enzyme kinetics. However in this study, only a single 

concentration of the GPP substrate was used [as in (Grzegorzewicz et al., 2016)] for the sole 

purpose of identifying the pyrophosphatase activity exhibited by all the four LCP proteins in 

Msmeg. Future studies could determine the enzyme kinetics of these proteins by using 

different concentrations of the substrate, as well as different incubation times. As indicated in 

the manufacturer’s manual of the detection assay, the ideal time of incubation was required to 
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be established, and T=2h was shown as the optimal time point to determine the Pi values in 

our hands, since longer incubation times gave a drop in values (data not shown). Hence in 

our study, we used T=2h to estimate the pyrophosphatase activity of all the Msmeg LCP 

proteins. 
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2.3. Results and discussion 

 

2.3.1. Phylogenetic analysis of LCP protein family  

The LCP family of proteins has been previously described to have four homologues in Msmeg 

(Harrison et al., 2016). The four Msmeg homologues viz., MSMEG_0107, MSMEG_1824, 

MSMEG_5775 and MSMEG_6421 correspond to the four homologues of Mtb (Table 1.3 and 

Fig 1.9). In this study, the focus was on the domains of the Msmeg LCP protein viz., LCP and 

the Lytr_C domain, as these domains are highly conserved and have been concurred to 

possess catalytic activity of the LCP protein (Kawai et al., 2011, Baumgart et al., 2016, 

Grzegorzewicz et al., 2016, Harrison et al., 2016).  

In this study, the amino acid sequences of the LCP and LytR_C domains across various 

mycobacterial and non-mycobacterial species were retrieved from UNIPROT and aligned. 

The non-mycobacterial organisms were selected from a previous phylogenetic study on the 

LCP family of proteins (Hubscher et al., 2008). Almost 75% of LCP domain was found to be 

conserved in Msmeg, and six residues (S103, P105, R106, D107, R225 and R227 of 

MSMEG_1824 full length protein sequence) were completely conserved in all the species (Fig 

2.4), which is in congruence with the findings in S. pneumoniae (Kawai et al., 2011) and Mtb 

(Grzegorzewicz et al., 2016). The three positively-charged arginine residues amongst these 

conserved residues have been found to interact with the pyrophosphate head group of the 

octaprenyl pyrophosphate in S. pneumoniae (Kawai et al., 2011). Apart from this, absence of 

three charged residues that interact with the pyrophosphate head group of the polyprenyl-

pyrophosphate is also observed in Rv3840, viz., D218, R221 and Q225 of the sequence in 

the alignment (Fig 2.4). 

The LCP and the LytR_C domains have been found to occur separately as well as in 

combination, suggesting the presence of LytR_C is not an absolute requirement within LCP 

protein family members (Baumgart et al., 2016). For instance, in MSMEG_6421, only the LCP 

domain is found, exactly like in its Mtb orthologue, Rv3480. The other Msmeg and Mtb LCP 

proteins have both the domains. While the LCP domain has been found to be abundantly 

distributed amongst Firmicutes, the LytR_C domain has been found widely in Actinobacteria 

(Baumgart et al., 2016) suggesting the LytR_C domain to play an important role in Msmeg 

and other mycobacterial species. In a recent study in Mtb, Rv2700 that contains only LytR_C 

domain but not LCP domain, was found to exhibit decreased growth rate, increased sensitivity 

to PG-targeting antibiotics and increased envelope permeability thus proposed to be involved 

in cell integrity and virulence (Ballister et al., 2019). Given that both the domains together 
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might be important for LCP function in C. glutamicum (Baumgart et al., 2016), five highly 

conserved residues were found in the LytR_C domain across all species (Fig 2.5). The C-

terminus CXN motif of the LCP protein (Baumgart et al., 2016) was found to be conserved in 

MSMEG_1824, however in MSMEG_0107, the asparagine residue was found to be replaced 

by a lysine residue (N533→K533 of the full-length amino acid sequence of MSMEG_0107). The 

other two Msmeg lcp genes were found to be devoid of this motif. Though the loss of the C-

terminal are shown to have no effect on the enzymatic activity of the protein in C. glutamicum, 

however phenotypic changes have been associated with it (Baumgart et al., 2016). On this 

note, further investigations are a definite necessity to determine the function of the LytR_C 

domain and the C-terminus of LCP proteins in Msmeg. 

 

2.3.2. Structural prediction of Msmeg LCP proteins  

Homology based modelling for all the four LCP proteins of Msmeg is shown in Fig 2.6. Only a 

part covering the LCP domain was retrieved from the reference model, in all cases to build 

the models in Msmeg. The six residues that are conserved in the LCP domain across all 

species has been mapped on to the three-dimensional structure. Though higher QMEAN 

scores are generally considered for reliability during homology modelling, however, not all 

LCP proteins of Msmeg gave a QMEAN score. The focus was to map the LCP domain and 

the six residues that are highly conserved in the LCP domain, in these 3D predictions. These 

two intended features were conserved for all the LCP proteins in Msmeg hence, the GMQE 

scores were considered for LCP protein structure modelling. The MSMEG_0107 model was 

built based on a reference model of S. pneumoniae serotype 2 strain D39 LCP family protein 

Cps2A containing a bound octaprenyl monophosphate lipid, with PDB ID 4DE8 and GMQE 

score 0.3. MSMEG_1824 was homologous to Cps2A (PDB ID 2xxq) from S. pneumoniae 

serotype 2 strain D39 with a GMQE score 0.34. The LCP domain in MSMEG_5775 was 

mapped using the LCP family protein Cps2A of S. pneumoniae with PDB ID 3TEP and GMQE 

score 0.18 whereas, the structural modelling MSMEG_6421 was done using PDB ID 3PE5 

from Clostridium leptum strain DSM 753 with a GMQE score 0.23. It was interesting to notice 

that in MSMEG_6421, the residues R503 and R505 are distinct and further away from rest of 

the residues, in comparison to other LCP proteins, where all the six residues are adjacent to 

each other. We assume that this difference could be a reason for MSMEG_6421 to display 

lower pyrophosphatase activity (Section 2.3.4), as there might be less stable interaction with 

the pyrophosphate head group.   
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Fig 2.4. Global alignment of the LCP domain of LCP proteins. The six conserved residues in the LCP domain of the LCP 
proteins are highlighted in yellow. Amino acid numbering in this figure starts at the first residue of the LCP domain, which is 
identical to residue 83 in MSMEG_1824 shown in Fig 1.10. The mutated conserved arginine residue in mut-MSMEG_1824-
R225AΔTM is indicated with a red arrow and represents position 225 of the full length amino acid sequence of MSMEG_1824. 
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Fig 2.5. Global alignment showing the fully conserved residues in the LytR_C domain of LCP proteins. The fully 
conserved residues in the LytR_C domain are highlighted in yellow. The partially conserved C-terminus motif is highlighted in 
blue. 
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2.3.3. Overexpression and purification of lcpΔTM genes in Msmeg 

The Msmeg lcpΔTM genes were cloned successfully into appropriate vectors and the 

presence of insert in the recombinants were confirmed by agarose gel electrophoresis (Fig 

2.7). The full-length nucleotide sequences of the lcp genes, viz., MSMEG_0107, 

MSMEG_1824, MSMEG_5775 and MSMEG_6421 are 1602 bp, 1482 bp, 2169 bp and 1872 

bp, respectively. A single transmembrane (Fig 1.10) helical structure in each of the four LCP 

proteins was predicted in all the Msmeg lcp homologues. While MSMEG_0107 and 

MSMEG_1824 have their transmembrane domains at their N-terminal, MSMEG_5775 and 

MSMEG_6421 have their transmembrane domains approximately in the middle of the protein. 

Interestingly, in contrast to Msmeg, the orthologue of MSMEG_6421 in Mtb i.e., Rv3840 

doesn’t possess a transmembrane domain (Baumgart et al., 2016). Since the presence of a 

transmembrane helix decreases the solubility of proteins due to its hydrophobic attributes, it 

becomes quite difficult to extract such proteins after bacterial lysis. On the other hand, the N-

terminal domain of LcpA protein in C. glutamicum (orthologue of MSMEG_1824) does not 

seem to carry a pyrophosphatase function (Baumgart et al., 2016), which implies that the 

sequence upstream of the transmembrane domain are not required to demonstrate 

pyrophosphatase activity in LCP proteins. Hence, the transmembrane domain and N-terminus 

were excised for subsequent overexpression of all Msmeg LCP proteins, using a similar 

approach as described previously (Grzegorzewicz et al., 2016). The resulting 

transmembrane-less lcp genes, were thus resized to 1449 bp, 1407 bp, 1503 bp and 876 bp, 

respectively. After introducing the N-terminal 6XHis tag and HRV3C cleavage site to the 

transmembrane-less protein, the full length transmembrane-less proteins were termed 

LCPΔTM proteins i.e., MSMEG_0107ΔTM, MSMEG_1824ΔTM, MSMEG_5775ΔTM and 

MSMEG_6421ΔTM and were 1503 bp, 1458 bp, 1521 bp and 894 bp respectively (Fig 2.7). 

The recombinant proteins were further fused to an N-terminal GST-tag, which has a size of 

26 kDa, thus the recombinant proteins produced were predicted to be 81 kDa, 79 kDa, 82 kDa 

and 59 kDa, respectively, which was confirmed by SDS-PAGE after gel filtration (Fig 2.8). 

Initially the HRV-3C cleavage site was cleaved to obtain LCPΔTM, and subsequent 

pyrophosphatase activity was determined however, these cleaved proteins were found to 

degrade rapidly even after storing at -80°C. The fused proteins were then opted and it was 

found that, not only they produced enzymatic activity but, could also be stored longer. Hence, 

the fused GST-tagged LCPΔTM were used for determining the enzymatic activity in all 

experiments. 

It is also interesting to note the oligomerization of MSMEG_0107ΔTM, MSMEG_1824ΔTM 

and MSMEG_5775ΔTM, a feature shown for LcpA in C. glutamicum as well (Baumgart et al., 
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2016). This phenomenon is identified by the presence of multiple peaks during gel filtration 

chromatography (Fig 2.8). However, MSMEG_6421ΔTM has a single well-defined peak and 

apparently lacks this oligomerization ability. In C. glutamicum, ∆TMCps2A for instance, has 

been reported to be monomeric (Baumgart et al., 2016). Considering the fact that Cps2A lacks 

a LytR_C domain, it is possible that this domain is involved in dimerization or oligomerization. 

 

  

 

 

 

Fig 2.7. Agarose gel electrophoresis of PCR-amplified recombinant Msmeg 
lcpΔTM plasmids. The cloned genes were confirmed using PCR prior to 
sequencing. Lane 1: 1 kb DNA ladder. Lane 2: MSMEG_0107ΔTM - 1503 bp, 
Lane 3: MSMEG_1824ΔTM -1458 bp, Lane 4: MSMEG_5775ΔTM -1521 bp and 
Lane 5: MSMEG 6421ΔTM - 894 bp 
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Fig 2.8. A-E. Fast Protein Liquid Chromatography (FPLC) of the GST-tagged LCPΔTM proteins in Msmeg. Ni-NTA 
columns were first used to purify the crude protein lysates by affinity chromatography. 10 mL of the protein eluent of each sample 
was further concentrated to half the volume, using a 10 kDa cut-off Ultra-15 Centrifugal Filter Unit. The 5 mL concentrated protein 

was further purified using a HiLoad
TM

 16/600 Superdex
TM

 200 pg Fast Protein Liquid Chromatography (FPLC) column coupled 
to the ÄKTAprime plus design system. The FPLC-eluted fractions containing the protein of interest were determined by the 
chromatogram at 280 nm and confirmed by SDS-PAGE. The square block on the peak represents the fractions used for SDS-
PAGE that were subsequently pooled for use in the pyrophosphatase assay. Fractions 32-36, 38-40, 36-39, 48-53 and 46-49 
are seen in the SDS-PAGE of MSMEG_0107∆TM, MSMEG_1824∆TM, mut-MSMEG_1824∆TM, MSMEG_5775b∆TM and 
MSMEG_6421∆TM. The corresponding GST-tagged LCPΔTM proteins are shown along with their molecular weight. 
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2.3.4. LCP proteins in Msmeg show pyrophosphatase activity in vitro 

Previous studies in Mtb (Grzegorzewicz et al., 2016, Harrison et al., 2016) have demonstrated 

that the LCP proteins display pyrophosphatase activity on the artificial substrate geranyl 

pyrophosphate (GPP). LCP proteins are believed to transfer decaprenyl phosphate-linked 

intermediates of glycopolymers to C-6 hydroxyl of MurNAc residues of PG. This process is 

known as phosphotransferase reaction which releases the decaprenyl phosphates by 

cleaving the pyrophosphate group. This enzyme activity of the LCP proteins is Mg2+ 

dependent and has been demonstrated previously in selected orthologues across different 

organisms (Kawai et al., 2011, Baumgart et al., 2016). The amino acids responsible for binding 

to the pyrophosphate functional group, octaprenyl phosphate chains and the magnesium ions 

(Kawai et al., 2011, Grzegorzewicz et al., 2016) were found to be conserved in the primary 

sequences of all the LCP proteins in Msmeg (Fig 2.4). In this enzymatic reaction, absorbance 

of the inorganic phosphate release was measured at 560 nm using the PiperTM phosphate 

assay kit as has been previously described (Grzegorzewicz et al., 2016). The mechanism of 

the enzymatic reaction using this kit depends on the amount of free inorganic phosphates 

released after incubating the LCPΔTM proteins at 37°C for 16 hours with GPP, MgCl2 and 

Tris-HCl buffer pH 8. The inorganic phosphate released during the reaction reacts with 

maltose to form glucose and glucose 1-phosphate in the presence of maltose phosphorylase. 

The glucose is converted to gluconolactone and hydrogen peroxide (HRP) in the presence of 

glucose oxidase. In the final step, the HRP as a catalyst, reacts with the non-fluorescent 

Amplex Red reagent to generate a highly fluorescent product, resorufin (Fig 2.3). The amount 

of fluorescence or absorption obtained is directly proportional to the amount of inorganic 

phosphate released. However, the time point to determine the enzymatic activity, after 

addition of the kit reagents, was not clear from the study by Grzegorzewicz and colleagues. 

According to our experiments, the absorbance values at OD560 to determine enzymatic activity 

was found to be negative at T=0h for all the sample proteins and controls. The Pi values 

gradually increased after T= 0h until T= 2h of adding the Amplex reagent mixture (Fig 2.9 a,b), 

after which the values started decreasing. This pattern was seen in the previous experiments, 

the data of which is not included in this study. Therefore, the time point T= 2h was considered 

the peak time for determining the pyrophosphatase activity at OD560.  

LCP proteins are known to have pyrophosphatase activity, which means that decaprenyl 

phosphate-linked glycopolymer molecules are transferred to C-6 hydroxyl of MurNAc residues 

within PG. This leads to the release of decaprenylphosphate. This release of inorganic 

phosphate by hydrolyzing the geranyl pyrophosphate is measured spectrophotometrically, to 

determine the enzymatic activity of LCP proteins. However, biochemical analysis of 



  

52 
 

recombinant Lcp1 in Mtb has demonstrated the co-purification of decaprenyl-1-

monophosphate (Harrison et al., 2016). Hence, the estimation of inorganic phosphate 

released in this assay might be the net amount accumulated after GPP cleavage and co-

purified decaprenyl-1-monophosphate. Overall, all the four LCP homologues in Msmeg was 

found to display pyrophosphatase activity in the range from 1.6-6.8 nmoles of released Pi/µM 

protein/minute (Fig 2.10), suggesting that all four proteins participate in releasing the newly 

bound AG from the Dec-P-P carrier lipid to form mature AG (Harrison et al., 2016). The 

LCPΔTM proteins, MSMEG_0107ΔTM and MSMEG_5775ΔTM displayed about 1.4- and 2-

fold higher pyrophosphatase activity on GPP than the MSMEG_1824ΔTM however, 

MSMEG_6421ΔTM showed about 2.2-fold lesser enzymatic activity than this essential LCP 

protein (Fig 2.10). In Mtb, Rv3484 (MSMEG_0107) showed the highest pyrophosphatase 

activity of the three LCP proteins tested (Grzegorzewicz et al., 2016) whereas, in C. 

glutamicum, Cg0847/LcpA (MSMEG_1824) was shown to have pyrophosphatase activity 

(Baumgart et al., 2016). These findings indicate that, perhaps different species use a specific 

set of these LCP proteins to aid the formation of mature AG after the release of premature AG 

from Dec-P-P carrier lipid. Therefore in this study, this might suggest that, MSMEG_0107 and 

MSMEG_5775 are involved in generating abundant mature AG compared to MSMEG_1824 

or MSMEG_6421. 

It is very interesting that the number of LCP homologues differ from organism to organism. 

For example, Msmeg, Mtb and M. marinum each have four LCP homologues in their genome 

whereas, M. leprae and M. bovis have three each. C. glutamicum has the least with only two 

LCP proteins in its genome. There could be two possibilities behind this condition. i) The 

organism might require several LCP homologues at the same moment to perform its function 

most optimally, or ii) one LCP protein might compensate the function of the others, during 

various environmental stresses.  

A mutant of MSMEG_1824ΔTM was created by site-directed mutagenesis to detect a 

reduction in the pyrophosphatase activity. Here, the arginine amino acid that interacts with the 

pyrophosphate head group (represented by the red arrow in Fig 2.4) was substituted with an 

alanine residue i.e., R225A (Fig 2.2), corresponding to the R138A substitution in C. 

glutamicum (Baumgart et al., 2016) and R362 in B. subtilis, where it was found to interact with 

the available oxygen from the phosphate to form a positively charged groove on the protein 

surface (Kawai et al., 2011). This arginine amino acid is conserved across all LCP orthologues 

in Gram-positive organisms (Fig 2.4). The mutated MSMEG_1824ΔTM had a 1.6-fold lower 

enzymatic activity compared to the wild type 1824, however this difference was not significant 

(P=0.1). But our results are comparable to the lowered enzymatic activity levels seen in the 

R138A mutant in C. glutamicum in the presence of MgCl2 and GPP (Baumgart et al., 2016). 
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As described in C. glutamicum, this ariginine residue has a critical role in LCP function, as this 

mutant had a compromised growth (Baumgart et al., 2016). 

In order to confirm the magnesium-dependence of the LCP proteins, 0.1 M EDTA was added 

to chelate the Mg2+ ion. This inhibits the enzymatic activity of a cation-dependent protein, and 

this phenomenon is well observed in all the Msmeg LCP proteins in this study (Fig 2.10). The 

results on Mg2+-binding affinity of LCP proteins in this study is also in congruence with 

previous studies (Kawai et al., 2011, Grzegorzewicz et al., 2016). This suggests that the LCP 

proteins in both Mtb and Msmeg are Mg+2 dependent. However, the effect of EDTA in C. 

glutamicum LcpA exhibited an opposite effect though, and the enzymatic activity in all the wild 

type and mutants increased, after the addition of EDTA (Baumgart et al., 2016). Apart from 

this, several attempts were also made to crystallize the GST-tagged Msmeg LCP∆TM 

proteins, but they proved unsuccessful. 
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Fig 2.9. Detection of inorganic phosphate (Pi) at the corresponding OD560 using continuous Amplex 
detection assay. OD560 of the produced resorufin corresponding to the Pi released from the discontinuous 
pyrophosphatase assay is shown in the A) absence and B) presence of EDTA at various time points after addition 
of the Amplex detection reagent. The detection reagent was added to the 16h-incubated pyrophosphatase reaction 
mixture and the OD560 was measured continuously at four time points (T=0h, 30 min, 1h and 2h) in a microplate 
reader. There is a gradual increase in the OD560 from T=30 min until T=2h for the samples and controls, after which 
the OD560 value drops (data not shown). Hence in our study, T=2h is used to detect the maximum Pi in every 
condition as shown in Fig 2.10. The data shown here is an average of three independent experiments. 
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2.4. Conclusions 

The results presented in this chapter demonstrate that all the four LCP proteins in Msmeg, 

have pyrophosphatase activity in varied levels. This also indicates that all of the four Msmeg 

LCP homologues participate in releasing the newly bound AG from the Dec-P-P carrier lipid 

to form mature AG. However, there were noticeable variances in the enzymatic activity of the 

corresponding LCP homologues in Msmeg and Mtb, as compared with previous studies 

indicating either a lower activity in a non-pathogen or because of different purification 

methods. Although we have not used varied concentrations of the enzymes and the GPP 

substrate in the current study, such an approach could be considered in future to determine 

the enzyme kinetics. Since, the enzymatic role of the LCP proteins have not been previously 

studied in the non-pathogenic mycobacteria, our study contributes to understanding the role 

of these proteins in the non-tubercle bacterial cell wall biosynthesis. This study along with 

another previous study in LCP proteins have anticipated interesting role of LytR_C domain in 

protein oligomerization, and thus requires further investigation on this domain.   

Fig 2.10. Pyrophosphatase activity of the GST-tagged LCPΔTM proteins in Msmeg. The release of inorganic 
phosphate (Pi) upon hydrolysis of the pyrophosphate phosphoanhydride bond of GPP is determined by measuring the 
absorbance at 560 nm. Reaction mixtures contained 1 µM of the fused recombinant LCP∆TM protein and were incubated 
for 16h in the absence (black bars) or presence (red bars) of 10 mM EDTA. Inorganic pyrophosphatase from yeast is 
used as the positive control. Prolyl oligopeptidase is the negative control. The data represents the detected Pi at T=2h 
(see Fig 2.9. A,B). The HRV-3C cleaved proteins were found to degrade rapidly even after storing at -80°C hence in our 
study, GST-tagged LCP∆TM proteins have been used which had a longer storage period. The data represented is an 
average of three independent experiments. Error bars represent ±SD and asterisk represents statistical significance (P ≤ 
0.01). 
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3.1. Introduction 

TB, which is caused by the highly infectious human pathogen Mtb, proliferates within the host 

environment and evades its immune defense mechanism (Stanley & Cox, 2013). This, along 

with its attribute to developing resistance to anti-TB drugs, makes Mtb a highly successful 

pathogen. Therefore, it is of utmost importance that we extend our understanding of the 

pathogenicity and physiology of the tubercle bacillus in the hope of priming novel therapeutic 

approaches to combat the growing threat of TB infection. The characteristic feature of 

mycobacteria is its complex cell wall which is a well-recognized drug target. The lipid-rich 

mycolic acid layer and the carbohydrate-rich capsular, PG and AG layers of the cell wall (Fig 

1.5) not only serve as a permeability barrier, but also provides protection against hydrophilic 

compounds, and are essential in the pathogenesis and survival of Mtb. In this regard, the 

biosynthetic machinery and components of the cell wall assembly serve as attractive drug 

targets. One such family of proteins is the LCP family of proteins, which is widely distributed 

amongst many Gram-positive bacteria (Hubscher et al., 2008). 

LCP proteins are involved in cell envelope maintenance and bacterial virulence in many Gram-

positive bacteria, and their loss has been implicated with various defects in the cell wall 

structure. For instance, BrpA, an LCP protein of Streptococcus mutans, plays important roles 

in biofilm formation, autolysis, and cell division, and the loss of this protein considerably affects 

the acid and oxidative stress tolerance (Bitoun et al., 2012). CpsA in many pathogenic species 
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of Streptococcus is involved in the synthesis of capsular polysaccharides, protecting the 

organism from host defense mechanisms including phagocytosis, complement deposition, 

and clearance by mucus (Marques et al., 1992, Nelson et al., 2007, Beiter et al., 2008). ConR, 

an LCP protein in Anabaena sp., is involved in vegetative cell septum formation under specific 

growth conditions (Mella-Herrera et al., 2011). Apart from this, LCP proteins in S. aureus are 

essential for cell division, autolysis, and β-lactam resistance (Over et al., 2011). For instance, 

in S. aureus, β-lactam resistance was shown to be contributed by MsrR (Rossi et al., 2003), 

whereas both MsrR of S. aureus and Psr of Enterococcus faecalis were described to augment 

virulence in Caenorhabditis elegans (Bae et al., 2004, Maadani et al., 2007).  

In Actinomyces oris, these proteins are involved in protein glycosylation, i.e., transferring the 

glycan strands from a polyprenoid lipid coupled with glycan, to a glycosylated surface-linked 

protein A (GspA), before attaching to the cell wall (Wu et al., 2014). In S. aureus, the LCP 

proteins have shown to transfer the secondary cell wall polymers like teichoic acids onto the 

glycan strands of PG whereas in Streptococcus, capsular polysaccharides are transferred to 

C6-hydroxyl of MurNAc in PG (Chan et al., 2014).  

Mutants completely devoid of these proteins have been shown to release type 5 capsular 

polysaccharides and wall teichoic acids into the medium (Chan et al., 2013, Chan et al., 2014). 

In Streptococcus agalactiae and M. marinum, inactivation of CpsA has shown to be associated 

with substantial attenuation in zebrafish (Hanson et al., 2012, Wang et al., 2015). The 

inactivated CpsA in M. marinum resulting from a transposon insertion has shown to be 

involved with altered colony morphology, sliding motility, surface hydrophobicity, permeability 

and reduced AG content (Wang et al., 2015). A conditional mutant of an essential lcp gene in 

C. glutamicum has also been implicated with severe morphological alterations, growth defects 

as well as reduced mycolic acids and AG, all of which indicates their role in structural integrity 

(Baumgart et al., 2016).  

Apart from the effects of the lcp genes on the cell envelope of Gram-positive organisms, as 

described above, their function as a ligase that couples AG to PG has also been recently 

described in C. glutamicum and Mtb (Baumgart et al., 2016, Grzegorzewicz et al., 2016, 

Harrison et al., 2016). In chapter 2, this pyrophosphatase activity were also demonstrated for 

all the four LCP homologues found in Msmeg. However, the role and potential interplay of 

these LCP proteins was required to be addressed by examining the physiological changes in 

Msmeg mutants that are missing in one or more of the LCP proteins. Therefore in this study, 

a panel of single and double lcp deletion mutants was created, to understand the influence of 

these genes on the surface morphology and other physiological characteristics in Msmeg. 
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3.2. Materials and methods 

 

3.2.1. Bacterial strains, plasmids and growth conditions 

All bacterial strains and plasmids used in this chapter are listed in Table 3.1. All the reagents 

were purchased from Sigma-Aldrich, China unless otherwise stated. Msmeg wild type, mutant 

and complemented strains were grown in 7H9 medium (Difco) supplemented with 10% (v/v) 

ADS (50 g of albumin, 20 g of dextrose and 8.5 g of sodium chloride in 1 liter of water), 0.5% 

glycerol (v/v), 0.05% Tween-80 (v/v) (Solarbio, China) and appropriate antibiotics as 

mentioned below. For long term storage of Msmeg strains, fresh cultures in mid-log phase 

(optical density measured at 600 nm (OD600) of 1 - 1.5) were frozen in 50% glycerol and stored 

at -80°C. They were then grown overnight at 37°C, shaking at 200 rpm. The seed strains were 

stored at 4°C for a month. For every experiment, seed strain was inoculated in fresh 7H9 

medium at a dilution of 1:100, supplemented with Tween-80 and antibiotics. In solid culture, 

the bacterial strains were grown in 7H10 plates supplemented with 10% ADS, Tween-80 and 

antibiotics. Recombinant plasmid constructs were propagated using E. coli DH5-α. In this 

chapter, the marked double deletion mutants ΔΔ(0107+5775),  ΔΔ(0107+6421) and  

ΔΔ(5775+6421), as well as complemented strains of single deletion mutants viz., c-0107, c-

5775 and c-6421 were supplemented with 0.25 µg/mL of hygromycin (Hyg). The 

complemented strains of double deletion mutants, c-(0107+5775), c-(0107+6421) and c-

(5775+6421) were supplemented with a final concentration of 0.25 µg/mL of kanamycin (Kan). 

 

3.2.2. Preparation of Msmeg competent cells 

The mycobacterial cells were grown overnight in 7H9 medium supplemented with ADS, 

Tween-80 and antibiotics (wherever required) after which they were placed in ice for about 2 

hours. The cells were then centrifuged at 16,000 g for 10 min at 4°C and the pellet was washed 

twice with 10% glycerol. Finally, the cells were resuspended in 10% glycerol and stored in 

pre-cooled tubes at -80°C.  
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Table 3.1: Strains and plasmids used to study the impact of deletion mutants on cell 
envelope physiology 

Strain or plasmid Description Source or reference 

E. coli     
DH5-α strain used for general cloning procedures   
      
M. smegmatis     
mc2155 wild-type laboratory strain; DNA used as PCR template (Snapper et al., 1990)  
Δ0107 MSMEG_0107 single deletion mutant This study 
Δ5775 MSMEG_5775 single deletion mutant This study 
Δ6421 MSMEG_6421 single deletion mutant This study 

ΔΔ(0107+5775) HygR; MSMEG_0107-MSMEG_5775 double deletion mutant This study 

ΔΔ(0107+6421) HygR; MSMEG_0107-MSMEG_6421 double deletion mutant This study 

ΔΔ(5775+6421) HygR; MSMEG_5775-MSMEG_6421 double deletion mutant This study 

c-0107 HygR; MSMEG_0107 complemented strain This study 

c-5775 HygR; MSMEG_5775 complemented strain This study 

c-6421 HygR; MSMEG_6421 complemented strain This study 

c-(0107+5775) KanR; MSMEG_0107-MSMEG_5775 complemented strain This study 

c-(0107+6421) KanR; MSMEG_0107-MSMEG_6421 complemented strain This study 

c-(5775+6421) KanR; MSMEG_5775-MSMEG_6421 complemented strain This study 

      
Plasmids     

pML2424 HygR; temperature sensitive plasmid for creating deletion construct A gift from Michael 
Niederweis 

pML2714 KanR; cre expression plasmid for removing the cassette A gift from Michael 
Niederweis 

pML2424-0107 HygR; MSMEG_0107 deletion construct This study 

pML2424-5775 HygR; MSMEG_5775 deletion construct This study 

pML2424-6421 HygR; MSMEG_6421 deletion construct This study 

pSMT3 HygR; complementation vector of single lcp deletion mutant A gift from Michael 
Niederweis 

pSMT3-mspA-LipYtb KanR; for complement construct of double lcp deletion mutant A gift from Michael 
Niederweis 

pSMT3-0107 HygR; MSMEG_0107 complementation construct This study 

pSMT3-5775 HygR; MSMEG_5775 complementation construct This study 

pSMT3-6421 HygR; MSMEG_6421 complementation construct This study 

pSMT3-0107-5775 KanR; MSMEG_0107-MSMEG_5775 complementation construct This study 

pSMT3-0107-6421 KanR; MSMEG_0107-MSMEG_6421 complementation construct This study 

pSMT3-5775-6421 KanR; MSMEG_5775-MSMEG_6421 complementation construct This study 
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3.2.3. Construction of single and double lcp deletion mutants  

 

3.2.3.1. Creation of gene-inactivation constructs 

To construct single and double deletion mutants, LB broth and LB agar were used whenever 

required. The gene deletion strategy in Msmeg was adapted from the Niederweis group (Ofer 

et al., 2012) and requires pML2424 plasmid (kindly provided by Michael Niederweis, 

University of Alabama, Birmingham). This plasmid contains a temperature-sensitive PAL5000 

origin of replication and the sacB gene as a counter-selectable marker. In addition, this vector 

contains Hyg resistance as the positive selection marker and, two reporter genes (gfp and 

Tdtomato), which indicates the integration of the plasmid and loss of the plasmid backbone. 

The reporter genes enable distinction between spontaneous Hyg-resistant mutants and allelic 

exchange clones on a plate. For preparing a single lcp gene deletion construct, the gene 

upstream and downstream of the target gene to be deleted were amplified using knockout 

construct primers (Table 3.2) and wild type mc2155 genomic DNA (refer to section 2.2.4) as 

template. PCR products were confirmed by gel electrophoresis followed by gel extraction 

(section 2.2.5.2 and 2.2.5.3). The pML2424 plasmid was digested with SpeI (NEB) and NsiI 

(NEB) to yield the large fragment of vector and digested with PacI (NEB) and SwaI (NEB) to 

yield the other small fragment of the vector. The four fragments thus produced were fused 

together using the In-Fusion® HD Cloning Plus CE kit (Clontech) as per the manufacturer’s 

instructions, transformed (refer section 2.2.5.6) and selected on LB/Hyg plates. The 

transformants were confirmed by colony PCR and/or restriction analysis (refer section 2.2.6). 

Selected transformants were inoculated into LB medium, their plasmids isolated using a 

QIAprep Spin Miniprep Kit (Qiagen) according to manufacturer’s protocol and finally 

sequenced (Sangon Biotech Co. Ltd, Shanghai, China).  
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Table 3.2: Primers used for cloning, generating and confirming knockout constructs 

Primer name Sequence (5ʹ - 3ʹ) 
    
Gene amplification primers   
MSMEG_5775-F-HindIII GCGAAGCTTGTGAACGATCCGGTGGACGA 
MSMEG_5775-R-ClaI GCTAGATCGATTCATTCGCAGGTGGCGTCGGC 
MSMEG_6421-F-PstI GTATTCTGCAGGTGGCGCAGCGGAATCG 
MSMEG_6421-R-HindIII GGCGCAAGCTTTCAATTGACGGCATTTTCCAG 
MSMEG_0107-F-HindIII GCGGCAAGCTTTCATTTCACGCACGG 
MSMEG_0107-R-ClaI GCCGCATCGATATGAACTCACCTG 
MSMEG_5775-F-NheI GCGGCTAGCGTGAACGATCCGGTGGACGA 
MSMEG_5775-R-PmeI CGTGTTTAAACTCATTCGCAGGTGGCGTCGG 
MSMEG_0107-F-PmeI CGGGTTTAAACATGAACTCACCTGCCCATGC 
MSMEG_0107-R-SpeI CGACTAGTTCATTTCACGCACGGGATGC 
MSMEG_6421-F-NheI GCGGCTAGCGTGGCGCAGCGGAATC 
MSMEG_6421-R-PmeI CGTGTTTAAACTCAATTGACGGCATTTTCCAGG 
  
Knockout construct primers   
MSMEG_0107-UF-SpeI-Fw ATATTGATCCACTAGTCGAGCATGAACGCAACGAGA 
MSMEG_0107-UF-SwaI-Rev TATACGAAGTTATTTAAATTATGCTGCCGATGGCGTGAA 
MSMEG_0107-DF-PacI-Fw TATACGAAGTTATTAATTAACACAGACCTGAGCCAGATGA 
MSMEG_0107-DF-NsiI-Rev GACAATAACCATGCATCGATGGCCAAGGAGCTGTAT 
MSMEG_5775-UF-SpeI-Fw ATATTGATCCACTAGTTCCCGGTGACGGTCAAGTTC 
MSMEG_5775-UF-SwaI-Rev TATACGAAGTTATTTAAATCGTCGTCCACCGGATCGTTC 
MSMEG_5775-DF-PacI-Fw TATACGAAGTTATTAATTAACATCCCGACCACGGGTTACG 
MSMEG_5775-DF-NsiI-Rev GACAATAACCATGCATGCTGGCGCGACTTCCTGATG 
MSMEG_6421-UF-SpeI-Fw ATATTGATCCACTAGTGATTCCACCGGCGCGGAGTC 
MSMEG_6421-UF-SwaI-Rev TATACGAAGTTATTTAAATGTGGCGGCTACCGCAACCAG 
MSMEG_6421-DF-PacI-Fw TATACGAAGTTATTAATTAAGACGTGGTGATGTGGGACAG 
MSMEG_6421-DF-NsiI-Rev GACAATAACCATGCATCTGGAACCGTCCGGTCAAGC 
    
Knockout confirmation primers  
KO-0107 gene F CGTTCTCGGCACTGGACTCA 
KO-0107 gene R GAACTCCGCGAACGCAATCC 
KO-5775 gene F ACAGTCGGAGGCCGATAGGA 
KO-5775 gene R GCGGTGTTGGTGGTGGATTC 
KO-6421 gene F CTGCGCCAACTCGACATCAG 
KO-6421 gen R ATCGCGTGATTGCGCTCCTC 
KO-6421 del F GCACCGACACGATCCTCTTG 
KO-6421 del R CGTCCGTCGAGTTCCTGACA 
pML2424-cas1 GCGTGCGAACGCACAGATCA 
pML2424-cas2 CAAGTACCGCCACCTAACAA 
  
qPCR primers  
5775-qPCR-F CAGCAGTTGTTCCTGTCGTC 
5775-qPCR-R TGACCACGTTGTTGAGCTTG 
6421-qPCR-F CATCGCCCACACTCTGATC 
6421-qPCR-R ACCGTTCATCTCAGCAATGTAC 
0107-qPCR-F TCGTTGAGGCATACGGTGATC 
0107-qPCR-R GGAATCCCCATCGACCATTT 
smeg-rpoD-qPCR-F GTGTGGGACGAGGAAGAGTC 
smeg-rpoD-qPCR-R ACCTCTTCTTCGGCGTTGAG 
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Table 3.3: Primers used for sequencing the complement constructs  

Primer name Sequence (5ʹ - 3ʹ) 
    
Sequencing primers  
pSMT3-5775-Fseq-3381 CAGCTGCTGGGATTACACATGG 
pSMT3-5775-Fseq-4119 CGAAGAACGACTCCCTCAACAAG 
pSMT3-5775-Fseq-4870 CGCCGACAGCTACGTCGACAACATC 
pSMT3-6421-Fseq-3350 AGAGACCACATGGTCCTTCTTG 
pSMT3-6421-Fseq-3941 GCCACGTACATTGCTGAGATGA 
pSMT3-6421-Fseq-4680 CCGGTTACGGCGAGGACAAGATCA 
pSMT3-0107-Fseq-3381 CAGCTGCTGGGATTACACATGG 
pSMT3-0107-Fseq-4128 TCGAGCGCCACGTTCTGCTT 

  

 

Table 3.4: Primers used to study relative expression of cytokines produced in the wild 
type, deletion mutants and their complemented strains  

Primer name Sequence (5ʹ - 3ʹ) 
 
Cytokine qPCR primers  
TNF-α-qPCR-F GATCAATCGGCCCGACTATC 
TNF-α-qPCR-R TCCTCACAGGGCAATGATCC 
IL-1β-F TGGCAATGAGGATGACTTGT 
IL-1β-R GTGGTGGTCGGAGATTCGTA 
IL-6-F GCCACTCACCTCTTCAGAACG 
IL-6-R CCGTCGAGGATGTACCGAATT 
IL-10-F GACTTTAAGGGTTACCTGGGTTG 
IL-10-R TCACATGCGCCTTGATGTCTG 
GAPDH-F CCATGTTCGTCATGGGTGTG 
GADPH-R GGTGCTAAGCAGTTGGTGGTG 
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3.2.3.2. Transformation and gene deletion 

Confirmed single lcp gene deletion constructs were transformed into Msmeg strain mc2155, 

using standard electroporation protocol however, the recovery and plating temperature was 

30°C. The reporter gene activity of the transformants was confirmed by fluorescence 

microscopy, followed by fresh plating of a positive transformant that displayed both green and 

red fluorescence (from gfp and TdTomato). Diluted cultures of the positive transformant were 

plated on LB/Hyg plates, supplemented with 10% (w/v) sucrose and incubated at 40°C. At this 

restrictive temperature, double-crossover clones resulting from homologous recombination, 

express GFP but not TdTomato. The sacB gene enables this selection of double-crossover 

mutants in the presence of sucrose, resulting in successful deletion of the target gene (Fig 

3.1). This strain was termed marked deletion mutant, because of the presence of cassette 

that contains both gfp and hyg resistance marker. Another plasmid pML2714, was 

subsequently used to facilitate excision of this cassette from the chromosome via loxP site-

specific recombination catalysed by the cre recombinase, resulting in an unmarked deletion 

mutant strain. All the deletion mutants were confirmed by RT-PCR (section 3.2.5). 

 

3.2.3.3. Construction of double deletion mutant strains 

Double deletion mutants were made by transforming the pML2424 based recombinant 

plasmid construct of a second target lcp gene into competent cells of an unmarked single 

deletion strain. Thus, the pML2424-0107 construct was transformed into competent unmarked 

Δ5775 strain resulting in double deletion mutant strain ΔΔ(0107+5775). Similarly, 

ΔΔ(0107+6421) and ΔΔ(5775+6421) were constructed by transforming pML2424-0107 into 

the unmarked Δ6421 strain and pML2424-5775 into the unmarked Δ6421 strain, respectively. 

Similar procedures as described in section 3.2.3.2 were carried out to create and confirm the 

double deletion strains. 
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3.2.4. Construction of complemented strains of single and double lcp deletion 
strains  

The complemented strains of single lcp gene deletion mutants were constructed using the 

plasmid pSMT3 that contains a cassette with a gfp reporter and a hyg resistance gene 

whereas, to create complemented strains of double deletion mutants, pSMT3-mspA-lipYtb 

that contains a gfp and kanamycin resistance gene was used. For complementation of single 

deletion mutants, the target gene was fused downstream of gfp reporter gene and expressed 

under the control of the constitutive promoter Phsp60. For complementation of double deletion 

mutants, the two pre-cloned adjacent Mtb genes mspA and lipYtb were replaced with the 

target lcp genes. The constructs were confirmed by colony PCR, restriction analysis and 

subsequently sequenced using sequencing primers (Table 3.3) as described in section 2.2.6. 

The confirmed plasmid constructs were transformed by standard electroporation procedure to 

create complementation strains of the lcp deletion mutants. 

Fig 3.1. Schematic representation of the construction of a single lcp deletion mutant. Levansucrase, the 
product of sacB gene present in pML2424 temperature-sensitive plasmid catalyzes the conversion of sucrose to 
levan, which is toxic to the bacteria, resulting in defective growth in media containing sucrose. A hygromycin (hyg) 
resistance marker ensures positive selection on Hyg plates. The reporter genes gfp and TdTomato are fluorescent 
markers. Together, gfp and hyg is termed as cassette. Cloning of the upstream and downstream regions of target 
gene on either side of the cassette, and transforming into the wild type (WT) genome enables homologous 
recombination in the WT genome at both ends. This leads to allelic replacement of target gene with the cassette, 
and subsequent removal of the target gene. 
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3.2.5. mRNA extraction and reverse transcription- PCR (RT-PCR) 

The wild type and mutant strains overnight grown cultures were centrifuged at 11,000 g for 2-

3 min and the supernatant discarded. The pellet was resuspended in 100 µL TE (10 mM Tris-

HCl pH 8.0 plus 0.1 mM EDTA) buffer and lysozyme at a final concentration of 3 mg/mL to 

disrupt the mycobacterial cells. The mRNA was then extracted using the manufacturer’s 

instructions in Innuprep Micro RNA kit (Analytikjena, China). The extracted mRNA was 

reverse transcribed to cDNA using GoScript™ Reverse Transcription System (Promega, 

China) according to the manufacturer’s instructions. GoTaq® qPCR Master Mix (Promega, 

China) and primer sequences listed in Table 3.2 were used for qPCR (cycling conditions: 95°C 

for 2 minutes followed by 40 cycles at 95°C for 15 seconds and at 60°C about 1 minute) in 

QuantStudio™ 5 System (ThermoFisher, China). In this study, SigA (rpoD) was used as the 

reference gene for confirming the mutants, and GAPDH was used as a reference gene for 

cytokine qPCR. The relative expression analyses are based on three replicates of at least 

three independent experiments. 

 

3.2.6. Growth kinetics 

Growth of the wild type strain, single and double lcp deletion mutants as well as the 

complementation strains were measured in 96-well plates. The overnight cultures were 

adjusted to OD600 of 0.5 and diluted further 1:20. Subsequently, a total volume of 200 µL of 

each strain was plated in triplicate and incubated at 37°C for 60 hours in a microplate reader 

(Varioskan LUX, Thermo Fisher), with readings taken every 2 hours at OD600. The growth 

curve was plotted using Microsoft Excel. 

 

3.2.7. Scanning electron microscopy (SEM) 

For SEM, the wild type strain and the double lcp deletion mutant ΔΔ(0107+5775), were fixed 

with 2.5% (v/v) glutaraldehyde (Macklin) in PBS and sent to Yuan test (QingDao) for further 

processing and imaging. According to the company’s protocol, the fixed cells were first 

washed in PBS for 15-30 min, followed by dehydrating them. The dehydration process is done 

by incubating the cells consecutively in an ascending acetone series (30%, 50%, 70%, 90%, 

and 100%) for 15-20 min each and the last step repeated thrice. The samples were then dried 

in liquid CO2 to a critical point followed by sputter coating with a 10-nm gold/palladium layer. 

Samples were subsequently analyzed using an environmental scanning electron microscope 
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(ESEM XL 30 FEG, FEI, Philips, Eindhoven, Netherlands) in a high vacuum environment with 

a 20 kV acceleration voltage. 

 

3.2.8. Colony morphology 

The colony morphology of the wild type, lcp deletion mutants and their complemented strains 

were analyzed on 7H10 plates supplemented with 10% ADS, appropriate antibiotics (section 

3.2.1) of 0.5 µg/mL concentration and 100 µg/mL Congo red (Cangelosi et al., 1999, Klepp et 

al., 2012). Briefly, 5 µL of overnight cultures were adjusted to OD600 of 0.5 and spotted on 

these plates in triplicate and incubated for 3 days at 37°C, in plastic bags. The colonies were 

subsequently inspected by naked eye and each colony diameter was determined by 

averaging two perpendicular measurements. The experiment was done at least thrice. 

 

3.2.9. Biofilm formation and quantification 

For biofilm formation on liquid-air interface, the method was adapted from previous studies in 

Msmeg with few modifications (Bharati et al., 2012, Zanfardino et al., 2016). Briefly, adjusted 

stationary phase culture (OD600 of 0.5) was inoculated into a petri dish containing 20 mL 7H9 

medium at a 1:100 dilution, supplemented with 10% ADS and appropriate antibiotics (section 

3.2.1), but devoid of Tween-80, and incubated in standing condition for 4-5 days at 37°C. For 

biofilm quantification, crystal violet assay was performed as described earlier (Bharati et al., 

2012) with few modifications. Briefly, overnight cultures were washed with Sauton’s medium 

and diluted to a final OD600 of 0.05 in Sauton’s medium supplemented with 2% glucose, 

followed by plating 200 µL of the cultures into each well and incubating at 37°C for 5 days. 

Here, 8 wells were assayed for each strain in one experiment and the assay was repeated at 

least thrice. The samples were discarded from the wells and washed 2-3 times with water. 

The biofilm adhering to the walls of the plate was stained with 1% crystal violet solution and 

incubated for 1 hour at room temperature. The excess dye was washed 3-4 times with water 

and the plate air dried. The bound dye was then solubilized in 300 µL 80% (v/v) ethanol and 

the A550 was measured using Biotek Synergy 2 microplate reader, and the results analyzed 

using the Gen5 software (Biotek, Winooski, USA). 
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3.2.10. Cellular aggregation 

The method is a modified protocol from a previous study (Yang et al., 2017). Saturated 

cultures of the strains were grown in 7H9 medium supplemented with 10% ADS but without 

Tween-80. Cells were washed thrice with PBS and finally resuspended in 5 mL PBS. The 

cellular aggregates were broken by vortexing the resuspended cells for 1 min and the initial 

OD600 (T=0 min) of the cell suspension was measured using a spectrophotometer. 

Subsequent readings were taken without resuspending the cells, for 15 minutes at an interval 

of 1 min. The results were analyzed by first normalizing each time point to T=0 min and 

subsequently calculating the percentage reduction of each time point from initial OD600. For 

visual inspection, the washed and vortexed cells were kept stand still for 4 minutes and the 

image captured. 

 

3.2.11. Extraction and purification of mycobacterial lipids for thin layer 
chromatography 

This method in Msmeg is an adaptation from an unpublished protocol shared by Nicholas P. 

West (University of Queensland). Briefly, overnight cultures (OD600 of 1.5 - 2) of the strains in 

7H9 medium were spun down at 11,000 g for 10 min and washed 2-3 times with PBS. The 

bacterial pellet was air dried and weighed. 1 g of the bacterial cells were resuspended in 1 mL 

mixture of chloroform:methanol (2:1) in PTFE-capped glass centrifuge tubes (Fisher 

Scientific), and incubated overnight at room temperature on a rotating wheel. The bacterial 

suspension was centrifuged for 30 min at 11,000 g. The resulting supernatant containing a 

mixture of polar and apolar lipids was carefully separated from the pellet and air dried. This 

dried supernatant was dissolved in 50 µL of chloroform:methanol at a ratio of 2:1 and were 

spotted on to the TLC silica gel 60 (Merck Millipore, China). The TLC plates were developed 

in chloroform:methanol:water at a ratio of 20:4:0.5, and subsequently stained with a solution 

containing 8% aqueous phosphoric acid (v/v) and 10% copper (II) sulfate (w/v) (Churchward 

et al., 2008). The plates were then charred using a heat gun until the lipids were revealed. 

 

3.2.12. Determination of minimum inhibitory concentration (MIC) 

The MIC values of various antibiotics for each strain under study, were determined using the 

resazurin (7-hydroxy-10-oxidophenoxazin-10-ium-3-one) microtiter plate assay (REMA), 

which is a widely used method for determining MICs in mycobacteria (Palomino et al., 2002). 

This method was adapted from a previous method done in Msmeg (Agrawal et al., 2015) with 
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few modifications. Briefly, overnight cultures were adjusted (OD600 of 0.5) and diluted 1000 

times. Then, 50 µL of 7H9 medium supplemented with 10% ADS was added to all wells in a 

Polystyrene 96-well plate (Corning®) except the first row. Antibiotic concentration double the 

requirement was prepared, and 100 µL was added to the wells in the first row. This was serially 

diluted to half the concentration in the subsequent wells, by mixing 50 µL of the antibiotic to 

50 µL of the medium until the penultimate row. The last row containing only medium was the 

negative control i.e. without antibiotics. Then, 50 µL of the diluted overnight cultures was 

added to each well thus attaining the desired antibiotic concentration in each well. The plate 

was sealed in a plastic bag and incubated at 37°C for 48h after which 30 µL of filter-sterilized 

0.2 mg/mL resazurin dye was added to each well and incubated again overnight at 37°C. If 

live bacteria are present in any of the wells, the dye changes it color to pink; otherwise, it 

retains its blue color. A lack of metabolic activity indicates inhibitory activity of the compound 

tested but not necessarily its bactericidal activity. The MIC was defined as the minimum 

antibiotic concentration at which the color of resazurin did not change i.e., the first well 

showing bacterial growth inhibition. Three independent experiments were performed each in 

duplicate. 

 

3.2.13. Sodium dodecyl sulfate (SDS) sensitivity assay 

Sensitivity of the wild type, lcp deletion mutants and their complemented strains to the 

detergent sodium dodecyl sulfate (0.1% SDS) was determined as in a previous study (Meng 

et al., 2017). Briefly, overnight cultures were adjusted to OD600 of 0.5 and further diluted to 

1:10. Then, 100 µL of this diluted bacterial suspension was spread over a 7H10 plate 

supplemented with 10% ADS, using a cotton swab. 5 µL of different concentrations of SDS 

was pipetted on to sterilized Whatman discs and placed on the plate followed by incubation 

at 37°C for 48 hours. The sensitivity of the strains to the detergent was estimated by 

measuring the diameter of the inhibition zone. The experiment was done in triplicates and was 

repeated at least thrice to determine the average sensitivity zone diameter. 

 

3.2.14. Lysozyme sensitivity assay 

The resazurin assay was used to determine the susceptibility of the lcp deletion mutants under 

lysozyme stress, as done in a previous study (Malm et al., 2018). Briefly, overnight exponential 

cultures were adjusted to OD600 of 0.5 and diluted further to 1:20. Subsequently, 100 µL of 

this diluted culture was added to wells in a 96-well plate (Corning, USA) and different 
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concentration of lysozyme was added to each of the bacterial strains, as indicated in the 

results. The plate was incubated at 37°C for 24 hours in a sealed plastic bag after which 30 

µL of 0.2 mg/mL resazurin was added to the wells and the plate was incubated further at 37°C 

overnight. The fluorescence was detected by Varioskan LUX fluorescent microplate reader 

(Thermo Fisher) and emission detected at 590 nm using an excitation wavelength of 540 nm. 

Background fluorescence was corrected by subtracting values obtained from wells containing 

medium only. Experiments were performed in triplicate and repeated at least thrice. 

  

3.2.15. Immunological response to lcp mutants in differentiated THP-1 cells 

The human monocytic cell line THP-1 was obtained from the Cell Bank of the Academy of 

Sciences (Shanghai, China, http://www.sibcb.ac.cn/ep6-1.asp). Cells were maintained in 

RPMI-1640 (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS, 

Gibco), 2 mM L-glutamine (Gibco), 100 U/mL penicillin and 100 µg/mL streptomycin 

(HyClone) at 37°C with 5% CO2 and passaged twice a week. The wild type and the mutant 

cells were seeded at a density of 5 x 104 cells/well in a 96-well flat-bottom plate with medium 

containing 100 µg/mL phorbol-12-myristate-13-acetate (PMA, Promega) for 48 h. 

Lipopolysachharide (LPS) from E. coli was used as a positive control in this experiment. 

Differentiated THP-1 cells were infected at a multiplicity of infection (MOI) of 10 for 2 hours 

followed by adding 100 µg/mL gentamycin per well to kill extracellular bacteria. At the time 

points, 2h, 4h and 8h (T2, T4 and T8), mRNA was isolated from macrophages using Innuprep 

mRNA isolation kit (Analytikjena) for measuring relative expression by qPCR. The primers 

used for cytokine qPCR are listed in Table 3.4. This is a preliminary experiment and has been 

conducted once with three replicate for the qPCR relative expression.  The reference gene 

GAPDH was used to normalize gene expression. 

 

3.2.16. Detection of AG and mannose components in the cell envelope of lcp 
mutants 

A direct ELISA was performed in a NUNC maxisorp 96-well ELISA plate (Thermo Fisher 

Scientific) to detect AG and mannosylated biomolecules of the wild type and the lcp deletion 

mutants by EB-A2 mAB and ConA lectin, respectively. The commercial PlateliaTM Aspergillus 

kit used to detect Aspergillosis, contains the rat antigalactofuran (anti-Galf) IgM EB-A2 mAB. 

Briefly, overnight cultures were washed 2-3 times with PBS, suspended to a final 

concentration of 1.5 X 108 cells/well in 50 mM carbonate coating buffer and 150 µL of this 

http://www.sibcb.ac.cn/ep6-1.asp
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bacterial suspension was added into each well of a 96-well plate. The reference Galf 

embedded in gold nano particle (Galf-GNP) or mannotriose-polyacrylamide (man-3-PAA) was 

diluted in carbonate buffer at indicated concentration and plated. After coating overnight at 

4°C, the plates are dried and washed twice with PBS containing 0.05% Tween-20 (PBST). 

The plates were then blocked with 1% BSA in PBST for 1h at room temperature. 150 µL of 

1:5 dilution of HRP conjugated EB-A2 (stock concentration 1 mg/mL) in PBST or, 2 µg/mL 

final concentration of ConA was added to each well and incubated at 4°C overnight. The plates 

were then washed 2-3 times with PBST and 200 µL TMB substrate solution was subsequently 

added to each well. The plates were incubated for 30 min at room temperature with gentle 

shaking and 50 µL of 0.8M H2SO4 (stop solution) was then added. The absorbance was 

measured at 450 nm using a microplate reader. 

 

3.2.17. Statistical analysis 

Microsoft excel was used for statistical analysis. Data were expressed as the mean ± SD and 

student's two-tailed t-test was used to determine significant differences between the groups. 

P-values in a range of 0.0005-0.05 were considered to be significant, as indicated in the 

experimental figures. 

 

3.3. Results and discussion 

 

3.3.1. Construction of deletion mutants and their complemented strains 

The use of pML2424, a temperature sensitive plasmid, in deletion of single and double lcp 

genes in our study, is facilitated by homologous recombination between flanking sequences 

upstream and downstream of the target gene to be deleted (Ofer et al., 2012). The reporter 

gene sacB, plays a significant role in selecting the double crossover mutants, by acting as a 

counter-selectable marker. Levansucrase, a secretory enzyme encoded by sacB gene, 

catalyzes the hydrolysis of sucrose into levan, which is toxic to most Gram-negative bacteria 

(Sangiliyandi et al., 1999), a few Gram-positive and many other bacteria (Jager et al., 1992, 

Pelicic et al., 1996). This toxic product is conferred by a cysteine residue in sacB gene 

(Senthilkumar et al., 2003) resulting in defective growth of bacteria in the presence of sucrose. 

This strategy was successfully applied to create single lcp deletion mutant strains Δ0107, 

Δ5775 and Δ6421, as well as double lcp deletion strains ΔΔ(0107+5775), ΔΔ(0107+6421) 
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and ΔΔ(5775+6421) (Table 3.1). This study is the first of its kind to construct and study double 

lcp deletion mutants, as this would give more insights into understanding the impact of deleting 

two non-essential lcp genes from the Msmeg genome, on the mycobacterial cell physiology 

and possible altered chemical composition in the cell envelope. However, using this strategy, 

several attempts to delete MSMEG_1824 were unsuccessful. During this study, the paper 

published by Harrison (Harrison et al., 2016) confirmed our suspicion that MSMEG_1824 is 

an essential gene, so these attempts were halted. Though conditional expression-specialized 

transduction essentiality test (CESTET) has been previously established to be a suitable tool 

to create efficient deletion of essential genes utilizing an inducible acetamidase promoter 

(Bhatt & Jacobs, 2009), and has been used to create a  conditional deletion of the essential 

lcp gene MSMEG_1824 in Msmeg (Harrison et al., 2016), however, this conditional mutant 

could not be created in our lab due to unavailability of resources. Furthermore, several 

attempts were made to generate a triple deletion mutant ∆∆∆(0107+5775+6421) but they did 

not yield any colonies after transformation of pML2424-0107 construct into the unmarked 

mutant ΔΔ(5775+6421), and is thus anticipated to be lethal. Consequently, our current study 

includes three out of four single lcp deletion mutants, three double lcp deletion mutants and 

complemented strains of all these mutants. All the mutants were confirmed by PCR with site-

specific primers on genomic DNA (Fig 3.3) and for lack of mRNA expression by quantitative 

RealTime PCR (Fig 3.2). The complement constructs for creating complemented strains were 

confirmed by restriction analysis (Fig 3.4) and sequencing. Finally, all the mutants and the 

complemented strains of the single lcp deletion mutants were confirmed for their transcription 

levels by real-time PCR (Fig 3.5). As of now, we do not have enough quantitative real-time 

PCR data on confirmation of complementation strains of the double lcp deletion mutants, and 

so aim to pursue that as a future work. 

The double-crossover deletion mutants generated using the plasmid pML2424 has a cassette 

containing both gfp and hyg resistance marker. Hence, these mutants were termed marked 

mutants. In order to construct a double deletion mutant, it is required to remove the cassette 

from the chromosome of the marked single deletion mutant. Therefore, another plasmid 

pML2714 that facilitates the excision of this cassette from the chromosome via loxP site-

specific recombination, was used. The resultant unmarked single lcp deletion mutant was then 

used as a template to introduce another pML2424-lcp gene construct to create a double 

deletion mutant. However, for unknown reasons, the unmarked double lcp deletion mutants 

∆∆(0107+5775) and ∆∆(0107+6421) could not be created, meaning that the cassette 

containing gfp and hyg was still present within the Msmeg genome of these marked mutants. 

Although the cassette could be excised in ∆∆(5775+6421), rendering it unmarked, it was 

decided to use the marked ∆∆(5775+6421) throughout our study in order to maintain similar 
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culturing conditions for the three double deletion mutants to be used in various assays. In 

order to rule out any discrepancy between the marked and unmarked strains in any assays, 

both the marked and unmarked strains of ∆∆(5775+6421) were confirmed by using them in 

few assays viz., morphological characteristics determination, growth kinetics, sliding motility 

and biofilm formation. Similar phenotypes between the marked and unmarked strains of each 

of these double deletion mutants were observed. The complemented strains of single and 

double lcp deletion mutants were constructed with the single constitutive promoter, Phsp60 

which is present in the complementation plasmid pSMT3. Phsp60 controls expression of the 

reintroduced lcp genes in all complementation strains in this study. 

In our results to confirm the expression levels of the mutants and their respective 

complemented strains, all the single and double lcp deletion mutants showed the expected 

null expression (Fig 3.5), however, the complemented strains displayed several folds higher 

expression levels than the wild type strain (12-fold increase in c-0107, P=.001; 19-fold 

increase in c-5775, P=.002 and about 2.6-fold increase in c-6421) (Fig 3.5, A-C). This 

overexpression in the complemented strains has been associated with the presence of 

Phsp60 promoter in pSMT3 plasmid (Movahedzadeh & Bitter, 2009). 
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Fig 3.2. Confirmation of the single lcp deletion mutants in Msmeg. Deletion mutants were created in Msmeg for A. ∆0107 
B. ∆5775 and C. ∆6421. A-I, B-I and C-I represents the sequence spanning the deletion region (blue rectangular box), the 
remnant portion of the target lcp genes that could not be deleted (pink rectangular box) and, the primers used to confirm the 
deletion. The lcp gene is represented by a black arrow, and all the start and end sites are numbered in accordance to the full 
length sequence shown here. A-II, B-II and C-II are amino acid sequences of the respective lcp genes in Msmeg. The deleted 
region is highlighted in pink, transmembrane domain is highlighted in blue, LCP domain is bold and underlined and LytR_C 
domain is in red. A-III, B-III and C-III shows the confirmation of single lcp deletion mutants by agarose gel electrophoresis. 
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Fig 3.3. Confirmation of the double lcp deletion mutants in Msmeg. The marked double lcp deletion mutants A. 
∆∆(0107+5775) B. ∆∆(0107+6421) and C. ∆∆(5775+6421) were created using an unmarked single lcp deletion 
mutant. pML2424-0107 containing the cassette was electroporated into unmarked single deletion mutant ∆5775 and 
∆6421 to create ∆∆(0107+5775) and ∆∆(0107+6421) respectively, whereas pML2424-6421 was used to construct 
∆∆(5775+6421). The primer pairs used to confirm the deletion by agarose gel electrophoresis, are represented for 
each mutant. The target genes are represented by black arrow, remnant portions of the undeleted target gene is in 
pink and the deletion part is represented by blue box. The numbers of start and end site of each gene or primer are 
in accordance with the full length sequence taken here. 
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Fig 3.4. Confirmation of the complement constructs by restriction analysis. The complement 
constructs containing single (A-C) and double (D-F) lcp genes were created using pSMT3 and pSMT3-
mspA-LipYtb vector respectively. The recombinant plasmid maps shown here are mapped to scale 
using Snapgene software. Black arrow(s) on the map represents the target gene cloned into the vector. 
The size of the respective gene(s) are shown in parentheses. Green arrow represents Green 
fluorescent protein (GFP) and red box represents Phsp60 promoter. The antibiotic resistance marker 
gene has been labeled with a grey box. The restriction sites used for cloning the gene(s) have been 
marked on their respective locations on the plasmid map. The complement constructs were confirmed 
by restriction analysis on DNA agarose gel, using these restriction enzymes. 
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3.3.2. Msmeg double deletion mutant ∆∆(0107+5775) exhibits slower growth rate 

To determine growth rate of the wild type, deletion mutants and their complemented strains, 7H9 

medium was used at all times, supplemented with 10% ADS and 0.5% glycerol for enrichment, 

and 0.05% Tween-80 to prevent cell clumping and the strains incubated at 37°C for 60 hours. 

While all the single deletion mutants, the double deletion mutants ∆∆(0107+6421) and 

∆∆(5775+6421), and all of their respective complemented strains had similar growth patterns 

compared to the wild type, the double lcp deletion mutant, ∆∆(0107+5775) displayed a slower 

growth rate (Fig 3.6). This suggests that, with the loss of both lcp genes MSMEG_0107 and 

Fig 3.5. Confirmation of Msmeg single and double lcp deletion mutants by real-time PCR.  Quantitative real-time PCR 
analysis was performed on the single lcp deletion mutants. A. ∆0107, B. ∆5775 and C. ∆6421 for their null expression, and on 
their respective complemented strains to check their phenotypic restoration to wild type levels. The data represented here is an 
average of five independent experiments each performed in triplicate for ∆0107, ∆5775 and their respective complemented 
strains whereas, for ∆6421 and its complemented strain, an average of six independent experiments each performed in triplicate 
is shown. The transcription levels in the double lcp deletion mutants ∆∆(0107+5775), ∆∆(0107+6421) and ∆∆(5775+6421) 
represented here is an average of three independent experiments performed in triplicate (D-F). The relative expression values 
of the mutant and the complemented strains are normalized to wild type expression levels. Error bars denote mean ±SD values 
between the three independent experiments and asterisks represent statistical significance (** P ≤ .005). 
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MSMEG_5775, the cells divide much slower rate. A 2-4 fold reduced growth rate of this mutant 

was observed compared to the wild type strain, during the log phase. However, the 

complementation strains of the double deletion mutants ∆∆(0107+5775) and ∆∆(5775+6421) did 

not revert back to the wild type growth characteristics and exhibited the slowest growth of all. The 

constitutive Phsp60 promoter of the plasmid pSMT3 used to generate c-(0107+5775) and c-

(5775+6421) that results in an overexpression of the incorporated lcp genes compared to the wild 

type strain (Fig 3.5), might be the cause for this unexpected detrimental effect on the growth of 

these complemented strains. 

 

 

 

 

 

 

Fig 3.6. Growth curve of the wild type strain and lcp deletion mutants. The data represents continuous growth of 
the strains for 60 hours at continuous shaking conditions at 37°C, and the absorbance recorded every 2 hours. The 
double lcp deletion mutant ∆∆(0107+5775) displays the slowest growth rate amongst all mutants whereas, its 
complemented strain c-(0107+5775) along with c-(5775+6421) displays a growth rate even slower than 
∆∆(0107+5775). The error bars represent ± SD of three independent experiments each performed in 3 replicates. 
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3.3.3. Scanning electron microscopy of the compromised double lcp deletion 
mutant 

Based on the detrimental growth curve result of the double lcp deletion mutant ∆∆(0107+5775), 

it was hypothesized that the cell envelope of this mutant might have been compromised. Hence, 

we were interested to further investigate the surface alterations of this mutant by SEM. Both the 

strains were grown to an OD600 of 2 before processing them for SEM. Few cells of the mutant had 

punctured ends while others were over-inflated in the middle or at the terminals (Fig 3.7). Some 

cells also showed septum-like features either at the centre or at the terminals. These features 

were absent in the Msmeg wild type. In C. glutamicum, the layers of the cell envelope of an lcp 

mutant (Cg0847, orthologue of MSMEG_1824) was reported to be scraped (Baumgart et al., 

2016). In our study, a couple of such scraped cells were found in a total of five pictures taken for 

∆∆(0107+5775). However, the Msmeg double lcp deletion mutant ∆∆(0107+5775) seemed to be 

rounder and bulkier than the wild type strain. However, this data was generated from one 

independent experiment and hence needs to be reproduced. Since, a late-log phase culture was 

used for this SEM study, it would be worthwhile to find the surface features of this mutant at all 

growth phases and hence, further investigations are required in this regard. 

 

 

 

 
Fig 3.7. Scanning electron microscopy of Msmeg wild type and lcp double deletion mutant ΔΔ(0107+5775). Images 
were captured at a high voltage of 20 kV with 40,000 magnification. The arrows indicate the altered cell surface features in 
the mutant. 
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3.3.4. The double lcp deletion mutant ∆∆(0107+5775) is altered in colony 
morphology 

To characterize the lcp deletion mutants, their colony morphology and diameter of growth were 

analyzed on Middlebrook 7H10 along with Congo red (Klepp et al., 2012). Congo red not only 

improves visualization of distinct alterations in cell morphology but also evaluates any changes in 

the lipid and lipoprotein contents of the cell envelope (Cangelosi et al., 1999). This was 

advantageous in our study since changes in the cell surface hydrophobicity of the lcp deletion 

mutants were anticipated. On comparing the single lcp deletion mutants with the wild type strain 

mc2155, it was observed that ∆0107 and ∆6421 had no significant visible alterations in their 

morphology (Fig 3.8, A). They all had common features of i) a dense, dried and complex network 

of three dimensional crenulated structures interconnected to each other ii) a distinct central zone 

with a network of smaller crenulated structures iii) an outer zone comprising of a network with 

larger thread-like structures and, iv) coarse and shrunk uneven edges. In contrast, the colony 

formed by ∆5775, showed a significant decrease in the crenulated network both in the central and 

outer zone and, the edges appeared smoother but still uneven. Since we did not find any literature 

describing these thread-like networks formed in Msmeg, these different phenotypes could not be 

explained easily. However, it is anticipated that these formations are likely to be associated with 

hydrophobicity properties of the strain, as Congo red dye is known to associate with the lipophilic 

regions of the mycobacterial cell envelope and delivers a measure of total hydrophobicity of the 

cell (Jankute et al., 2017). When comparing the double lcp deletion mutants with the wild type, 

striking differences were observed between ∆∆(0107+5775) and the wild type strain. The dense 

network of crenulated structures were almost completely absent and the whole colony appeared 

smooth and moist. This suggests the overall hydrophobicity of this mutant might have been 

diminished due to the deletion of the genes MSMEG_0107 and MSMEG_5775. The colony of 

∆∆(0107+6421) seemed more dense. This indicates that, MSMEG_1824 and MSMEG_5775 

might have compensated for the loss of the two other Msmeg lcp homologues in this strain and 

thus were able to maintain the hydrophobicity of the bacteria at levels comparable to that of the 

wild type. On the other hand, in ∆∆(5775+6421), the crenulated network was still seen, though 

less dense and with smooth edges, and the colony had increased by 1.2-folds (Fig 3.8, B). The 

complemented strain of ∆∆(5775+6421) could restore the size and dense crenulated features of 

the wild type phenotype however, it lacked a visible central zone. An explanation for this 

incomplete restoration to wild type phenotype might be in the constant expression levels of both 

genes due to the constitutively active Phsp60 promoter instead of differentially regulated 

expression patterns during different growth phases of the colony like in the wild type strain.  
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Strikingly, c-(0107+6421) appeared similar to its mutant ∆∆(0107+6421) but, the measure of the 

diameter was about 1.5-fold reduced. Altogether, the observed changes in morphology suggest 

cell envelope alterations due to the loss of lcp genes that are also probably associated with the 

hydrophobicity of the mycobacterial cell. Therefore, the hydrophobic attributes of these mutants 

were further investigated by examining its biofilm forming ability, which is generally seen in 

mycobacteria. 

 

 

 
Fig 3.8. Morphology of lcp deletion mutants on congo red plates. A. Colony morphology on congo red plates. 
The plates for the marked double-deletion mutants and the complemented strains were supplemented with 
appropriate antibiotics (section 3.2.1). In both the experiments, 5 µL of OD600 of 0.5 adjusted overnight culture is 
pipetted onto the plate, and incubated in sealed plastic bags for 3-4 days. B. Quantification of colonies by 
measuring the diameter of each colony from two perpendicular angles using a ruler, and the average recorded. 
The data shown is the average of three independent experiments, each done in triplicates. The error bars indicate 
standard deviation. 
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3.3.5. ∆∆(0107+5775) exhibits enhanced biofilm adherence on plastic but 
diminished biofilm formation on air-liquid interface 

A biofilm is described as a thin and slimy layer of bacterial cells that either adhere to each other 

or to a solid surface. The formation of bacterial biofilms is believed to contribute to virulence and 

acts as a survival mechanism (Lai et al., 2018). Bacterial biofilms consist of extracellular polymeric 

elements such as proteins, nucleic acids, lipids and polysaccharides (Sousa et al., 2015), that act 

together as a physical barrier to antimicrobial agents (Shi et al., 2011). They can be formed on 

solid surfaces because of the bacteria’s ability to adhere to abiotic surfaces such as polystyrene 

or polyvinyl chloride surfaces, or at the air-liquid interface called as pellicles (Donlan, 2002).  

Since an altered colony morphology of the double lcp deletion mutant ∆∆(0107+5775) on Congo 

red was observed, it was hypothesized that the crenulated structures which were lost in this 

mutant could be features associating to its hydrophobicity. Hence, this mutant was investigated 

for its ability to form biofilm. It was observed that this mutant had lost its ability to form biofilm on 

the air-liquid interface, whereas ∆∆(5775+6421) showed an enhanced biofilm formation (Fig 3.9, 

A). A distinct feature of the mycobacterial cell wall is that around 60% of its weight comprises of 

lipids, which mainly includes long chain fatty acids containing 60 to 90 carbons, also called mycolic 

acids (Bendinger et al., 1993, Jarlier & Nikaido, 1994). The extreme hydrophobicity of 

mycobacterial cells is rendered by this high lipid content, which is also responsible for 

impermeability of many chemical disinfectants and some antibiotics into the cell (Borrego et al., 

2000), and also confining uptake of nutrients into the organisms, thus contributing to slower 

growth rate of mycobacteria (Draper, 1984). This again indicates reduced hydrophobicity in the 

mutant that lacks both MSMEG_0107 and MSMEG_5775. Therefore, it was speculated that a 

deletion of MSMEG_0107 and MSMEG_5775 might have had a negative effect on the amount of 

lipids on the mycobacterial cell envelope, especially in the mycolic acid layer which has been 

implicated in this pellicle (biofilm on air-liquid interface) formation (Ojha et al., 2005). Similarly in 

∆∆(5775+6421), MSMEG_1824 and MSMEG_5775 might have overexpressed and tried to 

compensate the loss of the other two genes. From this observation, it seems that the three lcp 

genes compensate the loss of one another. However, when both MSMEG_0107 and 

MSMEG_5775 are absent from the genome, the organism loses its ability to form biofilm, 

suggesting that these two genes together are important for maintaining the cell wall integrity.  The 

biofilm formation was further quantified in a polystyrene 96-well plate using 1% crystal violet. 

There was about 8-fold increase (P=.001) in the amount of biofilm adhering to the walls of the 

plate by ∆∆(0107+5775), and about 4.5-fold increase by ∆∆(5775+6421) compared to the wild 

type (P=.002) (Fig 3.9, B). The crystal violet is known to bind to the hydrophobic features of the 
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mycobacterial cell envelope and therefore, it is suspected that an increased biofilm adherence to 

the polystyrene plate by the double lcp deletion mutant ∆∆(0107+5775), is a result of increased 

GPL levels in the Msmeg cell envelope associated with the loss of both MSMEG_0107 and 

MSMEG_5775. The complemented strains for these two double lcp deletion mutants showed a 

decreased adherence to the well, but did not restore to wild type levels completely. The single lcp 

deletion mutant ∆0107 showed enhanced and large aggregates of biofilm, whereas ∆5775, 

∆6421, ∆∆(0107+6421) and ∆∆(5775+6421) displayed overall increase in biofilm formation on the 

air-liquid interface (inlet of Fig 3.9, A and Appendix). However, there was no significant change in 

the biofilm adherence of the two single deletion mutants, in the 96-well plate. This discrepancy in 

biofilm formation on the air-liquid interface and on the walls of the 96-well plate is due to the 

association of pellicle (biofilm formation on air-liquid interface) with lipids within the mycolic acid 

layer (Ojha et al., 2005), whereas the biofilm adherence on polystyrene 96-well plate has been 

mostly correlated to the amount of GPLs present in the cell wall of non-tubercle mycobacterial 

species (Recht et al., 2000, Recht & Kolter, 2001, Schorey & Sweet, 2008). Thus, it would be 

interesting to investigate the association between these surface hydrophobic features and the 

LCP family of proteins. One fastest and easiest way to establish this correlation is by investigating 

the relative expression of genes encoding GPL proteins in lcp deletion mutants. We propose to 

investigate this in future. Apart from this, reduced biofilm formation have been previously 

established to be associated with a defective extracellular matrix and a defective induction of 

short-chain mycolic acids (Mathew et al., 2006), as well as with increased aggregation (Gupta et 

al., 2015). Therefore, the aggregative properties of the lcp mutants were further investigated to 

confirm whether they are in line with the observed hydrophobicity.  
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Fig 3.9. Biofilm determination. A. Air-liquid interface biofilm determination in wild type and lcp deletion mutants. The biofilm 
observed on the surface of 7H9 medium supplemented with ADS but without Tween-80, is after incubation of the plates at 37°C 
for 4 days. The data is a representative of one of the three independent experiments. B. Quantification of adhering biofilms with 
1% crystal violet solution. The data represented here is a quantification of the adherent biofilms formed in a Polystyrene 96-well 
plate after 5 days of incubation at 37°C. The amount of biofilm accumulated by the bacteria is determined by measuring the 
absorbance at OD550. The data is an average of three independent experiments performed in at least 3 replicates in each 
experiment. The error bars represent standard deviation and asterisks represent statistical significance (**, P ≤ .005). 
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3.3.6. Deletion of both MSMEG_0107 and MSMEG_5775 diminishes aggregative 
properties 

Cellular aggregation is demarcated by the accumulation of cells to form fairly stable, 

interconnected, multicellular associations under physiological conditions (Borrego et al., 2000). 

The hydrophobic attribute of the cell envelope contributes to cell clumping and formation of large 

cell aggregates in mycobacteria, thus allowing to settle down when kept stationary. The 

turbidimetric method used to measure the cell aggregation displayed about 2-fold and 2.3-fold 

slower aggregation rate of the single deletion mutant ∆5775 and the double lcp deletion mutant 

∆∆(0107+5775) compared with the wild type strain, at T=5 min (Fig 3.10, A and B). In a complete 

time window of 15 min, ∆∆(0107+5775) settled down slower at a uniform rate until T=10 min after 

which it remained stationary. On the other hand, ∆5775 settled down even slower throughout, and 

mostly appeared to remain uniformly dispersed in the suspension until the last minute. The single 

deletion mutants, ∆0107 and ∆6421, showed higher aggregation rate than the wild type after T=2 

min indicating higher cell surface hydrophobicity in these strains. This is in congruence with the 

biofilm formation of these two single deletion mutants on the air-liquid interface. Though the 

aggregation rate of the double deletion mutant ∆∆(0107+6421) was slower than the wild type 

initially (until T=5 min), the rate became faster than the wild type thereafter. However, 

∆∆(5775+6421) aggregated slower and parallel to the wild type throughout. It was also interesting 

to notice that all the complemented strains of the double deletion mutants aggregated faster than 

the wild type after about T=4 min. Since such turbidimetric assays are prone to higher standard 

deviations when reproduced in multiple experiments, one such representative experiment has 

been presented here from two independent experiments. 

GPLs in the envelope has been previously reported to inhibit aggregation (Yang et al., 2017). 

Though our data does not include major studies on GPLs, however it is evident that the double 

deletion mutant ∆∆(0107+5775) with an enhanced biofilm formation on polystyrene plate has 

diminished aggregative properties. This is in congruence with a previous study where reduced 

biofilms have been associated with increased aggregation (Gupta et al., 2015). 
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Fig 3.10. Aggregative properties of lcp deletion mutants. A. The aggregation plot is 
derived by measuring the OD600 of PBS-washed bacterial cells grown without Tween-80. The 
starting OD600 is adjusted to 1, and the data is normalized to percent reduction at time point 
zero in each well. The arrow represents the time point (T=5min) at which the image is clicked 
in Fig 3.10, B. B. Visual display of the aggregation assay using the wild strain and the 
mutants. The image displayed is taken at the 5th minute i.e. T=5 min. This is a representative 
experiment out of two independent experiments.  
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3.3.7. ∆∆(0107+5775) display elevated levels of glycopeptidolipids (GPLs) in thin 
layer chromatography 

Reduction in biofilm formation and changes in other macroscopic surface properties of the double 

deletion mutant strain ∆∆(0107+5775), strongly indicated alterations in the lipid composition of 

the cell walls of these strains. Both the polar and apolar lipids were isolated from supernatant of 

the bacterial samples by chloroform-methanol fractionation, and subsequently analyzed by TLC. 

Since, the double lcp deletion mutant ∆∆(0107+5775) had a very slow growth rate, it was grown 

longer until the OD600 reached 2, and subsequently diluted it to an OD600 of 0.5 before isolating 

the polar and apolar lipids from this strain. It was found that, except for ∆6421, the level of GPLs 

seemed higher in the other two single deletion mutants, ∆0107 and ∆5775. The double lcp deletion 

mutant ∆∆(0107+6421) has not been used for this experiment, as this mutant was not constructed 

when this experiment was conducted. With the two available double deletion mutants for this 

experiment, higher GPLs in both these mutants were observed, with ∆∆(0107+5775) displaying 

the highest level of GPLs amongst all (Fig 3.11). The GPLs are a major class of lipids present on 

the outermost portion of the non-tubercle mycobacterial cell envelope, which are absent in Mtb 

(Miyamoto et al., 2006). Msmeg produces both polar and apolar GPLs (Schorey & Sweet, 2008) 

also known as serovar specific and nonserovar-specific GPLs respectively (Miyamoto et al., 2006, 

Schorey & Sweet, 2008). Elevated levels of GPLs in the double lcp deletion mutant 

∆∆(0107+5775), led us to initially hypothesize that the cell of this mutant may be more 

hydrophobic. A previous study describes apolar GPLs that are present on the surface of Msmeg 

to be responsible for sliding motility and biofilm formation whereas, the presence of polar lipids 

such as triglycosylated GPLs have been associated with cell surface alterations resulting in 

reduced sliding motility as well as changes in cellular aggregation and colony appearance on 

Congo red (Deshayes et al., 2005). The polar GPLs vary from the apolar GPLs by the addition of 

a rhamnosyl residue (triglycosylated GPLs) or a succinyl residue (succinylated GPLs) linked to 

the terminal rhamnosyl unit (Vergne et al., 1995, Mills et al., 2004). GPLs have also been 

associated with the initial attachment of mycobacterial cells to substratum like polyvinyl chloride 

(PVC) (Recht & Kolter, 2001). Although polystyrene plate was used for biofilm quantification in 

our study, the association of GPLs with PVC can be related considering it to be a similar 

substratum for biofilm attachment. Therefore, with an enhanced biofilm formation on polystyrene 

plate and elevated GPLs observed in the mutant ∆∆(0107+5775) in this preliminary experiment, 

it may be hypothesized that the deficiency of both MSMEG_0107 and MSMEG_5775 genes from 

Msmeg results in an increased GPL formation in this mutant. However, this has to be further 

investigated to draw a firm association of the lcp genes with GPLs. It may be hypothesized that 
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the distinct physicochemical characteristics of the GPLs might have altered the nature of 

interaction with the environment, resulting in the various phenotypes related to hydrophobicity 

observed in this study. Apart from this, it was also found that ∆6421 displayed similar intensity of 

the GPLs compared to the wild type in the TLC plate, whereas a reduced intensity of GPLs 

compared to rest of the mutants. This is congruent to the biofilm quantification results where both 

∆6421 and the wild type strain display similar biofilm adherence compared to each other and 

reduced adherence compared to other mutants, as detected by crystal violet (Fig 3.9, B). 

However, more number of reproducible experiments on these mutants are required to confirm 

these preliminary observations. Moreover, investigating the lipid profile of these mutants at 

different growth phases would contribute information on the impact of lcp genes in lipid 

biosynthesis, at different stages of growth. 

 

 

 

 

 

 

Fig 3.11. Thin Layer Chromatography of lcp deletion mutants. The polar and apolar lipids were extracted from the 
wild type strain and the lcp deletion mutants. The lipids were developed in the solvent system containing 
chloroform:methanol:water (20:4:0.5) and stained with a solution containing 8% aqueous phosphoric acid and 10% 
copper (II) sulfate. The TLC silica plates were subsequently charred to reveal the lipids. The different lipid fractions 
obtained have been labeled and compared according to the unpublished protocol by Nicholas P. West (University of 
Queensland). The presented data is a preliminary experiment to investigate the lipid profile in Msmeg lcp mutants. 
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3.3.8. The double lcp deletion mutant ∆∆(0107+5775) is highly sensitive to 
antibiotics and other envelope stress conditions 

The lipid rich mycobacterial cell envelope acts as an impermeable barrier to numerous chemicals 

and antibiotics (Jarlier & Nikaido, 1994), thus contributing to the pathogenesis of the organism 

(Brennan, 2003). Since loss of lcp genes compromise the integrity of cell envelope (Kawai et al., 

2011), it was thus interesting to investigate the susceptibility of these mutants to various first line 

anti-TB antibiotics by a resazurin based assay (Agrawal et al., 2015). Resazurin is a fluorogenic 

redox dye, which has been used to test the antimicrobial activity of many compounds. After 

exposing the bacteria to different antibiotic concentration for 48 hours, resazurin was added to 

detect the metabolic activity of the cells. Reduction of this dye changes its color from blue with 

little fluorescence to highly fluorescent pink, and this conversion, which could be quantified by the 

fluorescence, indicates the extent of bacterial viability (Palomino et al., 2002). 

An 8-fold increased susceptibility to cell wall targeting antibiotics such as vancomycin and 

bacitracin (Table 3.5) was observed in the double deletion mutant ∆∆(0107+5775), when 

compared to the wild type Msmeg strain. In mycobacteria, Bacitracin (BAC) binds to the 

decaprenyl pyrophosphate (C50-PP) (Stone & Strominger, 1971) which functions as a carrier lipid 

in transporting PG components across the cell membrane (Valvano, 2008). In the presence of 

BAC, this transport is inhibited because BAC prevents the cleavage of the pyrophosphate and 

consequently inhibits cell wall biosynthesis (Stone & Strominger, 1971, Ming & Epperson, 2002, 

Economou et al., 2013, Kingston et al., 2014). This indicates that ∆∆(0107+5775) which seems 

to have a compromised cell envelope already due to inefficient linkage of the AG and PG, further 

succumbs to the inhibitory effect of BAC by preventing dephosphorylation of the decaprenyl 

pyrophosphate and thus inhibiting the recycling of decaprenyl phosphate lipid carrier (Qi et al., 

2008). Although a 2-fold enhanced susceptibility to BAC is observed in ∆5775, ∆6421, 

∆∆(5775+6421) and ∆∆(0107+6421), ∆0107 remained unaffected compared to the wild type 

strain. This might indicate the compensatory effects of MSMEG_1824, MSMEG_5775 and 

MSMEG_6421 in ∆0107 to remain uninhibited by BAC activity.  

The peptidoglycan targeting antibiotic VAN binds to the D-alanyl–D-alanine carboxyl terminus of 

cell wall precursor molecules thus preventing the transpeptidase from acting on these newly 

formed blocks and ultimately preventing the cross-linking of the peptidoglycan (Walsh, 2000). This 

results in a less rigid and more permeable peptidoglycan layer which causes cellular contents of 

the bacteria to leak out and thus destroying the organism. With the deletion of both MSMEG_0107 

and MSMEG_5775 in the double lcp deletion mutant ∆∆(0107+5775), the already compromised 
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AG-PG linkage further makes it easier for the antibiotic to act efficiently. Although single lcp 

deletion mutants ∆0107 and ∆6421 showed no alterations to VAN susceptibility, but the double 

lcp deletion mutant devoid of both ∆0107 and ∆6421 displayed a 4-fold increased susceptibility 

compared to the wild type strain, and so does the double lcp deletion mutant ∆∆(5775+6421). 

However, the single lcp deletion mutant ∆5775 displayed a 2-fold sensitivity to VAN compared to 

the wild type strain. This suggests that a deficiency of both MSMEG_0107 and MSMEG_5775 or, 

both MSMEG_5775 and MSMEG_6421 in Msmeg leads to an enhanced inhibitory effect of VAN 

on the transpeptidation of D-alanyl–D-alanine peptidoglycan precursors. 

Apart from BAC and VAN that targets the cell wall biosynthesis, common β-lactam antibiotic such 

as PEN was also used in our study. A 4-fold sensitivity to PEN was observed in the double lcp 

deletion mutant ∆∆(0107+5775) compared to the wild type strain. PEN targets the cell wall by 

disrupting the β-(1,4) linkage between N-acetylmuramic acid and N-acetylglucosamine, as well 

as by breaking the cross-linking peptide chains. β-lactam antibiotics which are structural mimics 

of the D-Ala-D-Ala terminus of the stem pentapeptide that is conserved in Lipid II stem peptides, 

react with the serine active-site of transpeptidases to inactivate them (Tipper & Strominger, 1965). 

This indicates that, ∆∆(0107+5775) with a compromised AG-PG bonding is hyper sensitive to β-

lactam antibiotics too. Apart from this, LCP proteins in S. aureus have also been shown to be 

essential for cell division, autolysis, and β-lactam resistance (Over et al., 2011). For instance, in 

S. aureus, β-lactam resistance was shown to be contributed by MsrR (Rossi et al., 2003), whereas 

both MsrR of S. aureus and Psr of Enterococcus faecalis were described to augment virulence in 

Caenorhabditis elegans, a model host organism (Bae et al., 2004, Maadani et al., 2007). 

An 8-fold increased susceptibility of ∆∆(0107+5775) to rifampicin and erythromycin, a 4-fold 

increased susceptibility to penicillin and novobiocin, and a 2-fold increased susceptibility to 

ethambutol (EMB), isoniazid (INH), azithromycin (AZT) and streptomycin (STR) was also 

observed. However, as rifampicin, erythromycin and novobiocin are not cell wall-targeting 

antibiotics, increased sensitivity of ∆∆(0107+5775) to these antibiotics could be due to enhanced 

permeability of the drug to the mycobacterial cytoplasm to target the DNA-dependent RNA 

polymerase, protein synthesis and DNA gyrase respectively. Similar to the observation by 

Grzegorzewicz and colleagues (Grzegorzewicz et al., 2016), where Rv3484 mutant and the wild 

type Mtb reported no differences in their susceptibility to rifampicin, our study also confirms this 

outcome with MSMEG_0107 (homologue of Rv3484) and wild type being indifferent to RIF 

sensitivity. 
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The deletion of either MSMEG_0107 or MSMEG_5775 showed resistance to INH, an inhibitor of 

mycolic acid synthesis, by 8-folds in ∆0107 and 2-folds in ∆5775. Additionally, ∆5775 also showed 

a 2-fold increased resistance to AZT. Though a deletion of MSMEG_0107 did not show 

susceptibility to a wide range of antibiotics used here except STR (by 2-fold), however loss of 

MSMEG_5775 had a 2-fold increased susceptibility to the cell wall targeting antibiotics such as 

BAC, VAN and EMB. A 2-fold enhanced susceptibility to cell wall synthesis inhibitors such as 

EMB and BAC was also observed by strains lacking MSMEG_6421. Apart from this, the 

complemented strain carrying both MSMEG_0107 and MSMEG_6421 completely restored the 

wild type phenotype whereas, other complemented strains of both single and double deletion 

mutants partly restored the phenotype. From this study, it was found that a severely compromised 

cell envelope in Msmeg with the loss of both MSMEG_0107 and MSMEG_5775 makes the 

organism permeable to antibiotics however, the peptidoglycan biosynthesis targeting drugs 

severely affected this mutant strain ∆∆(0107+5775). Although the essential gene MSMEG_1824 

may prove to be a better drug target, however, the two lcp genes MSMEG_0107 and 

MSMEG_5775 together could be considered an alternative target for formulation of drugs. 

 

Table 3.5: Determination of MIC of antibiotics used for Msmeg wild type, mutants and their 
complemented strains 

PEN, penicillin; EMB, ethambutol; INH, isoniazid, VAN, vancomycin; BAC, bacitracin; NOV, novobiocin; RIF, 

rifampicin; AZT, azithromycin; ERY, erythromycin; STR, streptomycin. 
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Based on the results described so far that suggests severe alteration of the cell envelope in the 

double lcp deletion mutant ∆∆(0107+5775), it was investigated whether this mutant is also 

hypersensitive to cell wall targeting agents such as detergents like SDS. SDS is generally used 

to mimic surfactant stress that Mtb might encounter in macrophages during host infection 

(Johansson & Curstedt, 1997). Hence, the effect of this cationic detergent in Msmeg was tested 

and a significant 1.4-fold increased sensitiveness (P=.003) was found in the double deletion 

mutant ∆∆(0107+5775) at both 8% and 10% concentration SDS (Fig 3.12, A). Like in many other 

experiments, the sensitivity to SDS was not lowered to wild type levels in the complemented strain 

of this mutant. This indicates that the expression levels of the LCP proteins need to be balanced 

properly to be able to form the wild type mycomembrane that can function most optimal as a 

permeability barrier. While ∆6421 strain displayed a slight sensitivity of 1.1-fold to 8% SDS 

(P=.01), the two double deletion mutants lacking MSMEG_6421 showed 1.3-fold increased 

susceptibility to both 8% (P=.002) and 10% (P=.007) SDS.  

The increased susceptibility of the double deletion lcp mutant ∆∆(0107+5775) to a wide range of 

antibiotics suggested that deletion of both MSMEG_0107 and MSMEG_5775 disturbed the 

assembly of the Msmeg cell envelope. Therefore, this mutant is expected to attenuate its 

resistance against some external stresses. Lysozyme is such an antimicrobial factor that induces 

lytic stress in host phagolysosomes (Michailova et al., 2000) during mycobacterial infections. It 

compromises the cell wall in mycobacteria by cleaving the β-1,4-glycosidic bonds of the PG 

backbone (Mattman, 1970). Hence, the sensitivity of wild type and all the lcp deletion mutants to 

lysozyme, was determined by resazurin reduction assay (Malm et al., 2018).  

All the strains in our study were found to have lost their metabolic activity in the presence of 0.5 

mg/mL lysozyme (Fig 3.12, B). The fluorescence intensity of ∆∆(0107+5775) was hardly 

measurable, indicating a significant (98%) decrease (P=.001) compared to the wild type in the 

presence of 0.0625 mg/mL lysozyme (Fig 3.12, B). Deletion of either MSMEG_0107 or 

MSMEG_6421 did not influence the susceptibility to lysozyme much as compared to the parent 

strain. Though the complemented strain of ∆6421 did not deviate much from the wild type, but the 

complemented strain of ∆0107 showed a 24%, 38% and 46% decrease in fluorescence units in 

the presence of 0.0625, 0.125 and 0.25 mg/mL lysozyme compared to the wild type. In contrast, 

MSMEG_5775-deficient mutant had a 44% increased susceptibility to 0.25 mg/mL of lysozyme 

compared to the wild type. It is also notable that complementation with a wild type copy of 

MSMEG_5775 or both MSMEG_0107 and MSMEG_5775 in the mutants only partly restored the 

stress response to a level similar to the wild type. Apart from these, the most striking observation 

was made in the strain lacking both MSMEG_0107 and MSMEG_6421. Though this strain 
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displayed similar phenotype to the wild type at 0.0625 mg/mL lysozyme stress, but it became 

gradually resistant with increased concentration of lysozyme (29% and 64% resistance at 0.125 

mg/mL and 0.25 mg/mL lysozyme concentration respectively). Similar levels of resistance were 

also observed in the complemented strain of this mutant. On the other hand, the strain lacking 

both MSMEG_5775 and MSMEG_6421 displayed a 17% and 31% resistance to lysozyme at 

lower doses of 0.0625 m/mL and 0.125 mg/mL lysozyme however, with increased concentration, 

it became sensitive by 35% than the wild type. This indicates that the cell envelope of double lcp 

deletion mutant ∆∆(5775+6421) is least affected with small doses of lysozyme however with 

increased dosage, the β-1,4-glycosidic bonds of the PG backbone is disrupted. Although the 

complemented strain of this mutant was similar to the wild type phenotype at lower doses of 

0.0.625 mg/mL and 0.125 mg/mL lysozyme, it became sensitive by 60% than the wild type, with 

0.25 mg/mL lysozyme. Thus, in our study, all the results point out at the hypersensitivity exhibited 

by ∆∆(0107+5775) towards the cell wall disrupting detergents such as SDS and lysozyme as well 

as to various first line of antibiotics used against TB infection. This corroborates the weakened 

state of the cell envelope of this double lcp deletion mutant. Not only this, it was also observed 

that strains lacking MSMEG_6421 were 20-31% resistant to lysozyme at 0.125 mg/mL 

concentration. Though ∆6421 and ∆∆(5775+6421) amongst these strains became sensitive to an 

increased concentration of 0.25 mg/mL lysozyme, but the mutant lacking both MSMEG_0107 and 

MSMEG_6421, as well its complemented strain became increasingly resistant by 60%-65% 

resistant at this concentration. This indicates that the mutants lacking MSMEG_6421 requires 

higher lysozyme concentration to disrupt the PG backbone, as these mutants do not seem to 

disrupt the cell wall significantly. Looking at these results, we thought it to be interesting to further 

investigate the expression network of the Msmeg lcp genes under standard and stress conditions 

(refer to Chapter-4).  
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Fig 3.12. Sensitivity of the lcp double deletion mutant ΔΔ(0107+5775) to stress conditions. A. 
Increased sensitivity of ΔΔ(0107+5775) to cationic surface detergent SDS. The diameter of the zone of 
complete inhibition (termed as halo) was measured and compared with the wild type strain (*, P ≤ .05; **, P 
≤ .005). The representative data is an average of three independent experiments each performed in triplicate. 
B. Increased sensitivity of ΔΔ(0107+5775) to different concentrations of lysozyme. A resazurin based 
fluorescent assay was done and the fluorescence measured at 600 nm in a microplate reader. The double 
lcp deletion mutant ΔΔ(0107+5775) displayed a significant susceptibility of lysozyme at 0.0625 mg/mL 
concentration compared to the wild strain (**, P = .001). The other significant values are mentioned in the 
text. The representative data is an average of three independent experiments each performed in at least 
three replicates. In both A and B, the data is normalized to a no-stress condition of the particular strain. The 
error bars represent the standard deviations from three independent experiments.  
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3.3.9. Inflammatory responses to Msmeg lcp mutants in THP-1 macrophages 

Based on our results on lysozyme susceptibility of ∆∆(0107+5775) and resistance observed in 

∆∆(0107+6421) at all concentrations used in our study, we next ventured into seeing the effect of 

these mutants on cytokines produced in macrophage-like THP-1 cells. As macrophages are 

known to release lysozymes as the first defense strategy against pathogens, it would be 

interesting to see if these mutants produce the same effect in macrophages. For this study, the 

PMA differentiated THP-1 cells were infected with the wild type and the mutants at an MOI of 10, 

and lysed the macrophages at different time points (2h, 4h and 8h) to extract mRNA, and used it 

to investigate the transcription levels of cytokines by quantitative PCR. 

This is a preliminary experiment and the first thing to be noticed was the overall heightened 

upregulation of IL-1β of all the strains under study when compared to other pro-inflammatory 

cytokines (about 50-fold higher than TNF-α and 400 to 600-fold higher than IL-6) (Fig 3.13). This 

inflammatory cytokine expression pattern of IL-1β may be related to the persistence of Msmeg in 

the THP-1 cell line. The second thing to be noticed is the decrease in IL-1β expression levels of 

the Msmeg wild type strain and the lcp mutants at 4 hours of infection (T=4h). This pattern was 

found to be consistent in the LPS control too. Infact, in comparison to the LPS control, all the 

Msmeg strains showed decreased transcription at T=4h. Though, in the mutant lacking 

MSMEG_6421, a 1.3-fold decrease in transcription level was observed at this time, when 

compared to that in wild type. Although after T=4h, LPS showed similar transcription levels to this 

time point at the 8th hour (T=8h), however, the Msmeg wild type and mutants showed a heightened 

expression again at T=8h. Given that there are no extra cellular bacteria to have caused this, we 

speculate that, majority of the bacteria escapes the immune response and therefore, there is an 

increase in the pro-inflammatory cytokines again, at T=8h, and this observation was find in almost 

all strains. This data is contradictory to our idea on the double lcp deletion mutant, ∆∆(0107+5775) 

as it shows similar transcription level of IL-1β with the wild type at T=4h and 8h, whereas a 1.4-

fold increase than the wild type in the cytokine release at T=2h. Thirdly, elevated levels of 

expression of IL-1β in the MSMEG_5775-deleted strain was observed at both T=2h and T=8h in 

comparison to other Msmeg strains. However, at T=4h, the expression of this cytokine was similar 

to that of the wild type. Not only IL-1β, but the MSMEG_5775-deleted strain showed higher 

transcription levels for the other pro-inflammatory cytokines TNF-α as well as IL-6. This is in 

contrast to our result on lysozyme sensitivity of this strain at all concentrations used in our study. 

Lastly, our anticipation of ∆∆(0107+6421) being resistant to lytic stress produced by the 

macrophage-like cells, are in congruence with the result obtained for this strain at T=8h post 

infection. A 1.2-fold increase in IL-1β production compared to the wild type suggests this mutant 
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to evade the lytic cycle of the THP-1 macrophages. However, our data needs to be reproducible 

to draw a firm conclusion hence, we aim to pursue further experiments. 

 

 

 

 

 

 

Fig 3.13. Determination of the production of different cytokines in THP-1 macrophages infected with Msmeg lcp mutants.  
PMA-differentiated THP-1 macrophages were infected at an MOI of 10. Culture supernatants were collected at indicated intervals, 
and the transcription of A. IL-1β, B. TNF-α, C. IL-6 and D. IL-10 mRNA were detected by real-time PCR. The preliminary data 
presented here is of one independent experiment performed in triplicate. The error bars in A represent standard deviation between 
the triplicates of the single experiment.  
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3.3.10. Msmeg double lcp deletion mutants showed exposed AG moieties in the cell 
envelope 

The localization of polysaccharides and glycoconjugates in the cell wall and membrane of a 

bacterium serves as an interface between the cell and its environment, which facilitates cell-cell 

interactions and cell signaling mechanisms (Dwek, 1996). AG is one such major cell wall 

polysaccharide in mycobacteria, and it is composed of galactose and arabinose sugar residues, 

in the furanose (f) ring form collectively called Galf and Araf (McNeil et al., 1987). Galf and Araf 

are galactan monomers that are embedded in the mAGP core of the mycobacterial cell wall. In 

mammals, galactose which is a common monosaccharide, is found prominently in the pyranose 

form (Galp) whereas, Galf is exclusive to non-mammalians (Tefsen et al., 2012). The galactan 

component of Galf is a linear chain of about 30 alternating 5- and 6-linked β-D-Galf residues 

(Daffe et al., 1990) which is interconnected with three highly branched arabinan chains, consisting 

of approximately 30 Araf residues (Besra et al., 1995). The non-reducing end of these arabinan 

chains serve as an attachment site for mycolic acids, succinyl and galactosamine (D-GalN) 

moieties (Draper et al., 1997, Bhamidi et al., 2008).  

Since, Galf in Aspergillus niger could be detected by anti-Galf EB-A2 monoclonal antibody (mAB) 

(Chiodo et al., 2014), we believed that it could also detect the Galf moieties in Msmeg. Hence, an 

attempt was made to identify these moieties by EB-A2 mAB. Though it is believed that a 

galactomannan disaccharide fragment, Galf-β-(1→5)-Galf acts as the epitope for EB-A2 

detection, however a recent study in Aspergillus fumigatus suggested that the mAB EB-A2 used 

in the kit detects multiple epitopes of circulating galactomannan. Thus, it is perceived to be a 

major drawback for the detection of Aspergillosis, due to increased occurrence of false positives 

(Krylov et al., 2019). However, for the sole purpose of potentially detecting exposed galactan 

moieties in the lcp mutants, this antibody proved to be useful. 

Mtb and related pathogenic mycobacteria also contain mannose-capped lipoarabinomannan 

(ManLAM) that binds to cell surface receptors of macrophages and dendritic cells. This results in 

several immunomodulatory responses, downregulation of cell-mediated immunity and effective 

invasion of the host cells (Briken et al., 2004). Apart from ManLAM, the surface of the Mtb cell is 

also rich in other mannose-containing biomolecules like lipomannan (LM), phosphatidyl-myo-

inositol mannosides (PIMs), arabinomannan, mannan, and manno-glycoproteins. PIMs, LM, and 

ManLAM are exposed on the Mtb cell surface, and they act as ligands for host cell receptors and 

contribute to the pathogenesis of Mtb (Torrelles & Schlesinger, 2010). Lectins have been 

extensively used to detect these mannosylated glycoconjugates in Mtb (Gonzalez-Zamorano et 
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al., 2009, Mohanty et al., 2015). The use of small bioreceptors (based on lectin-carbohydrate 

binding) have also been recently shown as potent molecules for pathogen detection (Saucedo et 

al., 2018). However, in the non-pathogenic Msmeg, ManLAM is partially replaced by inositol 

phosphate units (PILAM) (Khoo et al., 1995, Gilleron et al., 1997). The presence of mannosylated 

glycans like LM and PIMs in Msmeg cell envelope led us to determine the ConA lectin binding 

efficiency of these exposed units of mannose-containing biomolecules in the lcp deletion mutants 

of Msmeg.  

Given that the double lcp deletion mutant ∆∆(0107+5775) has a weakened cell envelope, it was 

hypothesized that the Galf moieties present in the cell wall core (Fig 1.5) of this mutant, might be 

exposed. Thus, we were intrigued to detect these elements by Galf specific EB-A2 mAB, in a 

direct ELISA method, and used multivalent gold nanoparticles carrying Galf (Galf-GNPs) as a 

positive control (Chiodo et al., 2014). In this study, EB-A2 mAB was used to detect the exposed 

galactan in the whole bacterial cells of the wild type and the lcp mutants. Most strains did not 

show a signal deviating from the signal that the wild type generated in this experiment. 

Interestingly, the single deletion mutant ∆0107, showed a significant 1.8-fold decrease (P=.03) in 

detectable Galf whereas, the lcp double deletion mutant ∆∆(0107+5775) displayed a highly 

significant 5-fold increase (P=.0002) of detectable Galf moieties (Fig 3.14, A). This indicates that 

the Galf in the cell envelope that is normally shielded in the wild type is widely accessible by the 

EB-A2 antibody in the mutant ∆∆(0107+5775). However, there are no experimental ELISA data 

for the complemented strains currently, and we plan to use them in the near future. 

ConA, is a plant derived terminal α-D-mannose and α-D-glucose-binding lectin that recognizes 

mannosylated N-glycans (Cummings & Etzler, 2009). The mycobacterial cell wall is composed of 

many immunomodulatory mannose containing glyco-conjugated complexes, such as the LAM, 

LM and PIMs (Fukuda et al., 2013, Gilleron et al., 2003). The difference between the LAMs in Mtb 

and Msmeg is that, Mtb has mannose-capped LAM (ManLAM) whereas, Msmeg has 

phosphomyoinositol-capped LAM (PILAM) (Nigou et al., 2003). ConA does not bind PILAM in 

Msmeg, rather it has higher affinity for terminal mannosyl units of LAM in Mtb (Zhang et al., 2019),. 

However, not only mannosides, but ConA has also been reported to bind glucosides (Saucedo et 

al., 2018). It was thus hypothesized ConA to detect the exposed glucosides or other forms of 

mannosylated molecules in the putatively cell envelope-altered structure of lcp deletion mutants. 

This implicates potential altered levels of mannosylated glycans in the mutants, which are either 

embedded in the plasma membrane or in the outer membrane in Msmeg, with the help of their 

lipid moiety (Pitarque et al., 2008). Unexpectedly, deletion of either MSMEG_0107 or 

MSMEG_5775, led to a 2-fold (P=.02) and 2.3-fold (P=.001) decrease in the levels of mannose-
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exposed moieties compared to that of the wild type strain as detected by ConA in our setup (Fig 

3.14, B). Since this is a preliminary report on the abundance of mannosylated glycoconjugates in 

the lcp deletion mutants, the nature of these mannosylated complexes detected by ConA is still 

unclear. This study could be a foundation to understand the underlying mechanism that involves 

the impact of lcp genes on the mannosylated glycolipids. 

 

 

 

 

 

 

 

 

Fig 3.14. Detection of exposed galactofuranose and mannose moieties in lcp mutants. Direct ELISA was performed on a 
96-well plate for both the experiments. The detection of monosaccharides present on the cell envelope of mycobacteria is 
relative to the amount of coated bacterial cells (1.5 X 108cells/well). A. The arabinofuranose-bearing molecules present on the 
cell envelope were detected by EB-A2 Mab. Galf coated with gold nano-particle (20 µg/mL) was used as the positive control. 
B. The exposed mannose residues were detected by ConA lectin. Man-3-PAA (Mannotriose-polyacrylamide) at a concentration 
of 2 µg/mL was used as the positive control. The data represented here is an average of three independent experiments each 
performed at least in duplicate. The error bars represent standard deviation and asterisks indicate significant differences (* P ≤ 
.05, ** P ≤ .005, *** P ≤ .0005). 
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3.4. Conclusions 

In this chapter, the impact of three lcp genes in Msmeg viz., MSMEG_0107, MSMEG_5775 and 

MSMEG_6421 was studied, by developing single and double deletion mutants of these genes. 

The complemented strains for all the mutants were used in experiments such as growth curve, 

colony morphology, aggregation, biofilm formation in 96-well plate, as well as stress responses 

to various antibiotics, detergent and lysozyme. The higher expression levels of these 

complemented strains as evident from the real-time PCR results, and their partial restoration to 

the wild type phenotype, suggests that native promoter of lcp genes is required for complete 

restoration to wild type expression level. 

The effect of the lcp mutants on the physiological characteristics of Msmeg were explored and it 

was found that disruption of two of these lcp genes viz., MSMEG_0107 and MSMEG_5775 proved 

to be detrimental. This double lcp deletion mutant ∆∆(0107+5775) had altered bacterial cell 

surface properties compared to the wild type strain. These include smooth colony morphology, 

slower aggregation rate, diminished biofilm formation on air-liquid interface and increased 

susceptibility to antibiotics as well as stress conditions. However, opposite effects for this mutant 

was observed in the crystal violet detection of biofilms. Since, higher levels of biofilm were not 

observed to adhere to the 96-well plate in ∆∆(0107+5775) compared to the wild type, it is assumed 

that the crystal violet dye might be more reactive to this mutant thus showing elevated levels. The 

exposed galactan moieties on this mutant’s cell envelope could be detected by Galf specific EB-

A2 mAB. This further strengthens our belief that the cell wall of this mutant might have disrupted 

thus, revealing the Galf motifs that are otherwise embedded below the mycolic acid layer. Since 

the experiment design in this study included the use of whole bacterial cells, our conclusions are 

confined to the exposed Galf motifs. However, a future direction could be detecting these motifs 

in the culture supernatants to identify if the double lcp deletion mutant ∆∆(0107+5775) releases 

un-ligated AG into the culture medium. The outcomes from this chapter thus suggest that the loss 

of both MSMEG_0107 and MSMEG_5775 severely compromises the Msmeg cell wall integrity 

and indicate that, although these genes are not essential, they contribute to building a healthy cell 

envelope.  
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Chapter-4 

Differential regulation of Mycobacterium smegmatis LCP 
proteins under in vitro stress conditions 

 

Abhipsa Sahu, Ziwen Xie and Boris Tefsen 
Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, PR China 

 
4.1. Introduction 

Mycobacterium tuberculosis (Mtb), the causative agent of TB is a global health threat, and its 

success as a pathogen partially owes to its ability to evade the host immune system, and stays 

dormant until the host becomes immunocompromised. With the elusive growth of the organism 

as multidrug resistant strains, it is necessary to understand the underlying mechanisms of the 

mycobacterial immune system evasion to combat the disease. All the species of mycobacteria 

are predominantly obligate aerobes, which includes the pathogenic Mtb and the non-pathogenic 

Msmeg (Cumming et al., 2014). The hydrophobic cell surface of mycobacteria permits tenacity 

and survival under various adverse environmental conditions and interfaces (Parker et al., 1983, 

Collins et al., 1984, Santos et al., 2015, Yang et al., 2018). Adaptation to different environmental 

stress conditions, encountered during various stages of the life cycle, is a key survival strategy of 

this human intracellular pathogen (Dogra et al., 2015). Not only Mtb, but also the saprophytic and 

model organism Msmeg, is capable of existing in several ecological setups, thereby showcasing 

its ability to adapt to different environmental cues. 

Redox reactions are essential in regulating the cellular, biochemical and physiological processes 

(Kondo et al., 2006, Du et al., 2012) and, also play a crucial role in both aerobic and anaerobic 

respiration. In aerobic bacteria, the oxidative and reactive species are neutralized by antioxidants 

to maintain redox homeostasis (Cumming et al., 2014). This equilibrium is important to efficiently 

prevent damage caused by oxidative stress, which otherwise ensues impairment of cellular 

functions, such as lipid peroxidation, protein degradation, DNA damage, and subsequently, 

disease, senility, and cell death (Berg et al., 2004, Kondo et al., 2006, Du et al., 2012). During 

infection, Mtb is exposed to various redox stressors such as reactive oxygen species (ROS), 

hydrogen peroxide (H2O2), superoxide (O2−) and hydroxyl radicals (OH). The released superoxide 

gets converted into hydrogen peroxide by the antioxidant, superoxide dismutase. The 
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decomposition of this hydrogen peroxide to water and oxygen, is then catalysed by catalase 

(Piddington et al., 2001).  Mtb also encounters reactive nitrogen species (RNS) during infection, 

which is primarily produced by NADPH oxidase (NOX2), the main producer of ROS inside the 

host. This especially includes nitric oxide (NO), which is produced largely by inducible nitric oxide 

synthase (iNOS) (Bhat et al., 2012). Higher oxidative stress marker levels and lower antioxidant 

capacity have been regarded as the main culprit for pathogenesis of TB (Vidhya et al., 2019). In 

order to maintain the redox state, almost all microorganisms including Mtb use antioxidant 

enzymes (Fukumori & Kishii, 2001, Bryk et al., 2002, Dalle-Donne et al., 2008, Lu & Holmgren, 

2014, Si et al., 2015, Watanabe et al., 2016). This indicates the importance of ROS in monitoring 

mycobacterial infections.  

A study in the non-pathogenic Msmeg has also reported generation of ROS in phagocytic models 

(Ghosh et al., 2019). In the natural habitat, Msmeg is known to use a wide range of antioxidant 

enzymes such as superdioxide dismutase, catalase, and peroxidase to detoxify ROS (Rizvi et al., 

2019). Acidity is also generated in the phagocytic cells during infection, and Mtb has the capability 

to resist this stress condition. Similarly, the prevalence of acidic conditions in soil and aquatic 

habitats where the saprophytic mycobacteria reside, indicates the acid sensing mechanisms of 

Msmeg. It has been reported that in in vitro conditions, Msmeg initially withstands the acid insult, 

and subsequently delays the acidification of phagosomes (Anes et al., 2006). Acid resistance in 

Msmeg has also been related to downregulation of transmembrane proteins involved in transport 

mechanisms, and upregulation of fatty acid metabolism encoding enzymes (Roxas & Li, 2009). 

Apart from these, lysozyme also acts as a common and crucial stress giver to mycobacterial cells. 

Lysozyme as an antimicrobial factor, is released from phagocytic cells in response to 

mycobacterial infections in vivo. It is the first enzymatic weapon used by the host defense 

mechanism against pathogens, which has a strong bactericidal effect. Under in vitro conditions, 

lysozyme induces the conversion of bacillary to defective forms of cell wall in mycobacteria 

(Mattman, 1970). In vivo, these defective cell wall type of mycobacteria develop, when 

encountered with certain antimicrobial drugs, or, in response to lytic stress that is regulated by 

host phagolysosomes (Mattman, 1970, Michailova et al., 2000). Lysozyme is such an enzyme 

that induces lytic stress by hydrolyzing 1,4-β-linkages between N-acetylmuramic acid and N-

acetyl-D-glucosamine residues in PG layer. Transcriptional regulation is one of the important 

mechanisms controlling the gene expression of such stress responses. Transcription units, 

promoters and sigma factors are all part of this transcriptional machinery. 

DNA-protein interactions that take place during transcription initiation play a crucial role in 

regulating the gene expression. Transcription factors (TFs), the DNA binding proteins that are 



  

104 
 

capable of activating or repressing transcription of particular genes, regulate the bacterial 

metabolic adaptations at the transcriptional level (Browning & Busby, 2004). TFs function by 

activating their respective regulons, which are a collection of operons that are transcriptionally co-

regulated (Liu et al., 2016). Bacterial TFs include sigma (σ) factors, which aids promoter 

recognition and specificity to the RNA polymerase holoenzyme under various stress conditions 

(Ishihama, 2010). The σ factors first form a complex with the core enzyme of RNA polymerase, 

and subsequently escorts the RNA polymerase to promoter DNA, resulting in the formation of a 

transcription bubble with the opening of the double-stranded DNA, thus facilitating the synthesis 

of initial short RNA transcripts. This is followed by the assistance of σ factors in promoter escape 

(Saecker et al., 2011).  These σ factors along with two-component signal transduction systems in 

bacteria are well known to coordinate several stress responses by differential expression of 

transcriptional regulators (Feng et al., 2016). Msmeg has been reported to have 28 σ factors 

which is twice the number that are present in Mtb, and therefore the regulatory repertoires of 

Msmeg are found to be far more complex than in Mtb (Waagmeester et al., 2005). The σ factors 

that are unique to Msmeg are believed to be involved in regulating the genes that are specific to 

this non-pathogen. For instance, an enhanced form of SigJ, SigL and SigH subfamily are found 

in this species, with SigH containing seven paralogs, which is believed to be acquired by gene 

duplication followed by speciation (Waagmeester et al., 2005). SigF and SigH are alternative σ 

factors in Msmeg that plays a vital role in oxidative stress (Gebhard et al., 2008, Provvedi et al., 

2008). While additionally, SigH plays a crucial role in heat stress response in Msmeg (Fernandes 

et al., 1999). SigF has been demonstrated to be involved in regulating the genes involved in 

carotenoid biosynthesis as well as other cell wall components (Provvedi et al., 2008). With this 

background on mycobacterial regulatory elements, it will thus be interesting to predict putative 

transcriptional motifs and regulators responsible for regulating the gene expression of lcp genes.  

The LCP proteins, a family of enzymes responsible for ligating the AG and PG in mycobacteria, 

has four lcp homologues in Msmeg, which might have occurred due to gene duplication based on 

its large genome size (Hubscher et al., 2008). Under standard conditions, all the four lcp genes 

would be expected to have a certain transcription level. However, when encountered with a 

specific stress, some of these genes might be differentially regulated, as a survival mechanism of 

the organism. Moreover, the transcriptional profile that may exist in Msmeg during various stress 

situations in comparison to the standard phase, has remained elusive. Our results on stress 

responses of the lcp mutants towards the detergent SDS and antimicrobial compounds such as 

lysozyme and antibiotics in chapter-3 intrigued us to investigate the differential expression of 

these cell envelope proteins under three stress conditions, namely, lysozyme, acidic and oxidative 
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stress. These three stress conditions are encountered by Msmeg, both as a soil bacterium and 

as an opportunistic infection inside phagocytic cells of immunocompromised hosts (Pierre-

Audigier et al., 1997). Hence, in this study, the induction of these stressors were simulated in 

Msmeg wild type strain and the lcp deletion mutants in vitro, in order to identify the transcription 

profiles of these genes during such adverse situations. This investigation will contribute to 

answering some questions regarding the lifestyle of Msmeg with respect to these cell envelope 

proteins, such as: i) What is the need of four lcp homologues in Msmeg? ii) Is the gene expression 

of the four lcp homologues in Msmeg controlled by a single or multiple regulator(s)? This study 

will therefore help gain new insights into the role of Msmeg lcp genes when encountered with 

environmental stress that have not been reported earlier. Apart from this, the potential regulatory 

elements in Msmeg that govern the expression of all these four lcp genes would also be 

investigated. This study along with further investigation on the regulatory motifs might relay 

information on different pathways involved in the cell envelope biogenesis in Msmeg. 

 

4.2. Materials and methods 

 

4.2.1. Bacterial strains and growth conditions 

The bacterial strains were grown as mentioned in chapter-3 (section 3.2.1). Briefly, for every 

experiment, fresh seed culture of Msmeg wild type, mutant and complemented strains were grown 

in 7H9 medium (Difco) supplemented with 10% (v/v) ADS, 0.5% glycerol (v/v), 0.05% Tween-80 

(v/v) (Solarbio, China) and appropriate antibiotics wherever necessary (section 3.2.1). The 

overnight culture was prepared by inoculating the seed culture at a dilution of 1:100 in 7H9 

medium, supplemented with Tween-80 and antibiotics. The marked double deletion mutants 

ΔΔ(0107+5775),  ΔΔ(0107+6421) and  ΔΔ(5775+6421), as well as complemented strains of 

single deletion mutants viz., c-0107, c-5775 and c-6421 were supplemented with 0.25 µg/mL of 

hygromycin (Hyg). The complemented strains of double deletion mutants, c-(0107+5775), c-

(0107+6421) and c-(5775+6421) were supplemented with a final concentration of 0.25 µg/mL of 

kanamycin (Kan). 
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4.2.2. Stress conditions induced in Msmeg 

In this study, three stressors were used viz., oxidative (H2O2), acidic pH (HCl) and lysozyme. 

 

4.2.2.1. Acidic stress 

Strains were grown to late-log phase (OD600 of 1.5 -2.0) in 7H9 medium (Difco) supplemented 

with 10% (v/v) ADS, 0.5% glycerol (v/v), 0.05% Tween-80 (v/v) (Solarbio, China), and diluted 

further to OD600 of 0.5 in 7H9 medium.  The treated samples were prepared by adjusting the 

culture medium to pH 6.7 and pH 5.7 by adding HCl. Then the strains with and without stress 

were incubated at 37°C, while shaking at 200 rpm for 15 minutes before isolating mRNA. 

 

4.2.2.2. Lysozyme stress 

Strains were grown to late-log phase (OD600 of 1.5 -2.0) in 7H9 medium (Difco) supplemented 

with 10% (v/v) ADS, 0.5% glycerol (v/v), 0.05% Tween-80 (v/v) (Solarbio, China), and diluted 

further to OD600 of 0.5 in 7H9 medium. The diluted cultures were supplemented with lysozyme at 

a final concentration of 0 mg/mL, 0.125 mg/mL and 0.5 mg/mL.  All the strains with and without 

lysozyme were incubated at 37°C, shaking at 200 rpm for 1 hour. 

 

4.2.2.3. Oxidative stress 

Strains were grown to late-log phase (OD600 of 1.5 -2.0) in 7H9 medium (Difco) supplemented 

with 10% (v/v) ADS, 0.5% glycerol (v/v), 0.05% Tween-80 (v/v) (Solarbio, China), and diluted 

further to OD600 of 0.5 in 7H9 medium. The diluted cultures were treated with H2O2 at a final 

concentration of 5 mM and 7 mM. All the treated and untreated strains were incubated at 37°C, 

shaking at 200 rpm for 15 minutes. 

 

4.2.3. mRNA extraction and RT-qpCR 

Bacterial culturing conditions for RNA extraction was done as in chapter-3 (section 3.2.5). 

Reverse transcription was performed using the manufacturer’s instructions on the kit (Promega, 

China). The RT-qPCR was performed using the manufacturer’s instructions of the kit (Promega, 

China). The RT-qPCR primers used are listed in Table 3.2 in chapter-3. Apart from these, RT-
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qPCR primers used for determining the expression of MSMEG_1824 are: 1824-qPCR-F (5ʹ 

ATCTCGAGCAAGACCCTGTC 3ʹ) and 1824-qPCR-R (5ʹ ATCCATGATGTCCCAACCGT 3ʹ). 

SigA (rpoD) was used as the reference gene for the real-time PCR. The relative expression 

analyses are based on three replicates of two independent experiments. 

 

4.2.4. In silico analysis of regulatory elements of the LCP proteins 

The operon and the promoter sequence for each of the four Msmeg lcp genes was predicted by 

DMINDA2 server (http://bmbl.sdstate.edu/DMINDA2/). The DNA binding transcriptional motifs in 

the promoter region were subsequently predicted in the MEME-suite server (Bailey et al., 2009) 

using default settings. The classic discovery mode was employed to optimize the E-value of the 

motif information content. The site distribution was set to “Any number of repetitions” of a 

contributing motif site per sequence. A default motif width between 6 and 50 was used. The 

predicted motifs ranked on the basis of their lowest statistical significance (E-value) were 

compared with the available transcriptional motifs in the TOMTOM database of the MEME suite, 

and were aligned for each significant match. The predicted motifs were highlighted in the 

sequence map scaled in Snapgene software. 

 

4.3. Results and discussion 

Based on our results on the pyrophosphatase activity exhibited by the lcp genes in Msmeg (refer 

section 2.3.4), and the fact that Msmeg has four lcp homologues in its genome, we were intrigued 

to study the differential expression of these four genes in the wild Msmeg strain, as well as in the 

deletion mutants that were generated during this study. In this study, three stressors were 

included, namely, oxidative (H2O2), acidic pH (HCl) and lysozyme, as these are commonly 

encountered by Msmeg in its natural habitat, as well as in vitro during macrophage infection. As 

mentioned in Chapter-3, a strain devoid of MSMEG_1824 has not been included in this work, due 

to unavailability of resources to construct a conditional mutant for this gene.  

http://bmbl.sdstate.edu/DMINDA2/
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4.3.1. Differential expression of Msmeg wild type lcp genes under standard 
conditions 

Genes in an organism will show variations in expression at different growth stages and Msmeg  

is no exception (Singh & Singh, 2009). Here, we wanted to investigate the differential expression 

of the four lcp genes under standard laboratory conditions, and so, cultured the strain until late-

log phase i.e., until OD600 of 1.5 - 2.0 (Singh & Singh, 2009). The average expression level of 

MSMEG_1824 in three independent experiments was 2.1 to 1.6-fold lower than the other three 

lcp homologues,  (P = .012 for MSMEG_0107, .065 for MSMEG_5775 and .219 for 

MSMEG_6421) (Fig 4.1). Both MSMEG_5775 and MSMEG_6421 seemed slightly higher 

expressed than MSMEG_0107, although more independent experiments would be needed to 

confirm that. However, this study focusses on the expression levels of the lcp genes at late log 

phase where the strains exhibit negligible or no cell division at all. Hence, a future perspective is 

evident in this perspective where early log phase cultures would be used to study the transcription 

profile of the lcp genes. 

 

 

 

 

 

Fig 4.1. Differential expression of Msmeg lcp homologs in the wild type strain. The relative 
expression of lcp genes in the wild type strain mc2155 was determined with respect to the 
reference gene rpoD (SigA). The presented data is an average of three independent experiments 
each performed in triplicate. The error bars represent standard deviation between the three 
experiments and asterisk represents significant difference (*, P ≤ .05). 
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4.3.2. Differential expression of Msmeg lcp genes in the wild type strain under 
various stress conditions 

Next, it was interesting to see whether certain stress conditions, would lead to a change in the 

overall expression pattern of the four lcp genes. Therefore, three different stressors we induced 

to the wild type strain and the relative expression levels of the four lcp genes were compared by 

real-time PCR to those in a wild type strain under normal, non-stressed conditions. A 1.3 to 1.5-

fold decrease in expression levels of all the lcp genes was observed under acidic stress of pH 5.7 

compared to the wild type (Fig 4.2, A). This pH was chosen with regard to the low end of pH 5.0 

that Mtb could possibly encounter in a macrophage during early infection (Pethe et al., 2004). As 

the LCP family members are transmembrane proteins  our finding is consistent with a study where 

the downregulation of transmembrane and transporter proteins under acidic stress in Msmeg is 

described (Roxas & Li, 2009). Overall, all the four lcp genes was observed to be downregulated 

in a similar manner and the expression pattern to be persistent. Amongst the four, MSMEG_1824 

displayed the lowest and MSMEG_6421 the highest transcription level. 

When subjected to 0.5 mg/mL lysozyme, all the lcp genes displayed about 1.5 to 1.9-fold reduction 

in expression levels however, when induced with a lower concentration of 0.125 mg/mL lysozyme, 

MSMEG_0107 and MSMEG_6421 displayed about 1.6 and 1.7-fold increase in transcription 

levels (Fig 4.2, B). This was also observed in our resazurin-based assay, where the single deletion 

mutant of MSMEG_6421 showed about 20% resistance at 0.125 mg/mL lysozyme concentration 

(Fig 3.12, B). Additionally, the strain lacking both MSMEG_0107 and MSMEG_6421 showed 

about 29% and 64% at 0.125 mg/mL and 0.25 mg/mL lysozyme concentration (Fig 3.12, B). This 

suggests that lysozyme at 0.5 mg/mL might be toxic to Msmeg, resulting in the degradation of cell 

wall. But, at lower concentrations, the non-essential lcp genes are upregulated to withstand cell 

damage in the wild type Msmeg. 

When induced with peroxide stress, MSMEG_1824 was neither up nor downregulated, whereas 

rest all three non-essential genes are upregulated with increase in H2O2 stimulation. This seems 

to be an interesting observation, as this indicates the differential regulation between this essential 

gene and the rest of the non-essential genes. 
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Fig 4.2. Differential expression of Msmeg lcp homologs in the wild type strain under 
various in vitro stress conditions. Determination of relative expression of the wild type 
strain with respect to rpoD (SigA) gene as the reference, under A. acidic stress, B. lysozyme 
stress and C. oxidative stress. The data shown here is a representative of two independent 
experiments each performed in triplicate. Error bars represent standard error of triplicate 
values. 
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4.3.3. Differential expression of Msmeg lcp mutants under standard conditions 

The results with the wild type strain, made us wonder whether deletion of one or two non-essential 

lcp genes would have an influence on the expression of the other lcp genes. Therefore, the single 

and double lcp deletion mutants that we constructed during our study were used, to investigate 

the differential expression of the lcp genes under standard conditions. Strikingly, in the single 

deletion mutant ∆5775, all the three genes were overexpressed by 4.6-fold (P = .02), 3-fold and 

6.8-fold (P = .02) for MSMEG_0107, MSMEG_1824 and MSMEG_6421 respectively, which might 

be needed for that strain to compensate the loss of MSMEG_5775 and still survive (Fig 4.3). This 

shows that MSMEG_5775 is a very important entity amongst the four lcp genes in Msmeg. In a 

strain lacking MSMEG_5775, other three lcp genes compensate its loss. However, with a loss of 

any of the other two non-essential genes, there is no such compensatory effect seen. 

 

  

 

 

Fig 4.3. Differential expression of Msmeg lcp homologs in the deletion mutants under standard stress-free 
conditions. The relative expression of the lcp deletion mutants is determined with respect to rpoD (SigA) gene as the 
reference. The presented data is an average of four independent experiments each performed in triplicate, and is 
normalized to the relative expression of the wild type strain. Asterisks represent significant difference (*, P ≤ .05). The 
error bars represent ±SD of triplicate values. 



  

112 
 

4.3.4. Differential expression of Msmeg lcp mutants under acid stress 

In order to investigate whether stress conditions change expression patterns of the remaining lcp 

genes in the deletion mutants, a 15-minute acidic stress (pH 5.7) was applied, as described for 

the wild type in the previous section. Interestingly, the expression levels of the lcp genes under 

acid stress change depending on which of the non-essential lcp genes is lacking in the deletion 

mutant (Fig 4.4, A-F).  

Acid stress did not have much effect on the expression of MSMEG_1824, MSMEG_5775 and 

MSMEG_6421 in Δ0107 compared to the standard pH (Fig 4.4, A). However, in the Δ5775 mutant, 

the expression levels of the other three lcp genes that were dramatically upregulated under 

standard conditions compared to the wild type strain, were found to retain its wild type 

transcription levels at the respective pH, on exposure to acid stress (Fig 4.4, B). However, in 

Δ6421 mutant, all the available lcp genes that expressed lower than the wild type strain under 

standard conditions, were found to be upregulated towards the wild type transcription levels at 

the respective pH (Fig 4.4, C). On a striking note, the mutant devoid of both MSMEG_0107 and 

MSMEG_5775 showed increased expression by 3-folds for MSMEG_1824 and 2.5-folds for 

MSMEG_6421, than that of standard pH conditions (Fig 4.4, D). Interestingly, from this, it was 

also observed that MSMEG_1824 which had no altered expression under normal pH conditons, 

showed an elevated expression under acid stress. On the other hand, at normal pH, 

MSMEG_6421 was downregulated compared to the wild type but, under acid stress, 

MSMEG_6421 upregulates towards the wild type transcription levels. Similar phenomenon was 

seen in the strain that lacks both MSMEG_0107 and MSMEG_6421 (Fig 4.4, E). In 

ΔΔ(5775+6421), MSMEG_0107 that was downregulated in this mutant under standard conditions 

compared to that in wild type, was seen to be upregulated beyond the wild type transcription levels 

by almost 2-folds, whereas, MSMEG_1824 that had similar transcription to the wild type, had a 

2.6-fold increased transcription (Fig 4.4, F).  

Thus, this study shows that a strain lacking MSMEG_5775 under standard pH conditions, shows 

elevated levels of transcription of the other three lcp genes. However, when under acidic stress 

of pH 5.7, these upregulated lcp genes restore back to the wild type levels. In contrast, Δ6421 

that showed lower transcription levels of the available lcp genes compared to the wild type under 

standard pH conditions, showed an upregulation under acid stress.  
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Fig 4.4. Differential expression of lcp genes in Msmeg lcp deletion mutants under acid stress. The relative expression of lcp 
genes was determined with treated and untreated samples of the deletion mutants. The untreated cultures have a standard pH of 
6.7 and the treated cultures have a pH of 5.7. The data presented here are relative expression normalized to that of the wild type 
strain mc

2
155, at respective pH. This is a representative experiment out of two independent experiments each done in triplicate. 

Error bars represent standard error of triplicate values. 
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4.3.5. Differential expression of Msmeg lcp mutants under lysozyme stress 

In order to investigate whether lytic stress conditions change expression patterns of the remaining 

lcp genes in the deletion mutants, an hour lysozyme stress was applied at varied concentrations 

(0.125 mg/mL and 0.5 mg/mL) (Fig 4.5, A-F) as described for the wild type in the previous section 

in two independent experiments. It was found that, ∆0107 itself had lower transcription levels at 

standard conditions compared to the wild type which remained the same at 0.125 mg/mL 

lysozyme stimulation (Fig 4.5, A). But, when administered with 0.5 mg/mL lysozyme, all the rest 

three lcp genes were upregulated compared to the wild type transcription levels at the given dose 

(1.6-fold, 1.7-fold and 2-fold upregulation of MSMEG_1824, MSMEG_5775 and MSMEG_6421 

respectively). As described in previous sections, ∆5775 had elevated transcription levels than the 

wild type strain. However, at a lower lysozyme dose of 0.125 mg/mL, both MSMEG_0107 and 

MSMEG_6421 almost restored back to the wild type transcription levels at this given 

concentration, whereas, the expression of MSMEG_1824 almost reduced to half than the wild 

type at 0.125 mg/mL concentration (Fig 4.5, B). When administered with even a higher dose of 

0.5 mg/mL, a 3-fold, 1.3-fold and 2.7 fold upregulation was observed in MSMEG_0107, 

MSMEG_1824 and MSMEG_6421 respectively. The most striking of all was the strain lacking 

MSMEG_6421 that showed increased transcription levels of all the available lcp genes with 

increase in lysozyme concentration Fig 4.5, C). Amongst the three lcp genes, MSMEG_0107 

showed the highest upregulation by 5.4-fold and 15-fold at 0.125 mg/mL and 0.5 mg/mL of 

lysozyme respectively, compared to the wild type, at the given concentration. On the other hand, 

MSMEG_1824 and MSMEG_5775 showed an upregulation by 2.4-fold and 1.6-fold at 0.125 

mg/mL concentration, as well as a 5-fold and 3.2-fold respective upregulation of these two genes 

at 0.5 mg/mL lysozyme. It was initially assumed that the weakened cell wall of ∆∆(0107+5775) 

might witness a decreased expression levels of the lcp genes with increased lysozyme 

concentration. Though the transcription levels dropped at 0.125 mg/mL concentration, but 

surprisingly at 0.5 mg/mL dose, MSMEG_6421 showed a 2.2-fold upregulation than the wild type 

at this concentration (Fig 4.5, D). MSMEG_1824 on the other hand, restored its expression to the 

wild type levels for this mutant at this concentration. In ∆∆(0107+6421), a similar phenomenon 

was observed for MSMEG_1824, where at standard conditions, the transcription levels were 

lower than the wild type by 1.3 folds but with a lower dose of 0.125 mg/mL concentration of 

lysozyme, there was a downregulation of this gene and finally at 0.5 mg/mL, there was an 

upregulation again by 1.4-fold compared to the wild type at this concentration (Fig 4.5, E). But, 

that was not the case for MSMEG_5775 in this mutant. A constant upregulation of this gene was 

observed with increased lysozyme concentration and at 0.5 mg/mL, which was quite near to the 
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wild type expression level at this concentration (about 1 fold lower than the wild type level). This 

phenomenon was seen even in the mutant that lacked both MSMEG_5775 and MSMEG_6421. 

Here, in the mutant ∆∆(5775+6421), both the available lcp genes showed increased transcription 

with increasing dose of lysozyme. Hence, about 1.5-1.6 fold upregulation of both MSMEG_0107 

and MSMEG_1824 genes was observed at 0.125 mg/mL lysozyme, and about 3.4-fold and 2.4-

fold upregulation of MSMEG_0107 and MSMEG_1824 respectively at 0.5 mg/mL concentration 

(Fig 4.5, F). Therefore, from this study, it was found that, a deletion of either MSMEG_5775 or 

MSMEG_6421 or both, leads to an upregulation of the other two available lcp genes at 0.5 mg/mL 

lysozyme concentration, but at 0.125 mg/mL lysozyme concentration, downregulates the 

available lcp genes in a mutant that lacks MSMEG_5775. 

These results showing enhanced transcription of all the available lcp genes in the mutants ∆6421 

and ∆∆(5775+6421) than the wild type levels, is comparable to our data on lysozyme resistance 

conferred upon by these two mutants (Fig 3.12, B), that showed increased resistance to lysozyme 

at 0.125 mg/mL concentration than the wild type strain. However, the mutants appeared more 

sensitive to 0.5 mg/mL lysozyme concentration in the resazurin-based assay, probably because 

they were induced for a longer period (1 hour), than the real-time PCR-based experiment where 

the mutants were induced for a shorter time period of 30 minutes only. 

Based on our results on differential expression of the lcp genes, it would thus be interesting to 

see the complete transcription profile for these mutants, to determine what other genes are 

affected similarly in those mutants, as this might point to particular regulators. A subsequent in 

silico analysis was thus performed to predict putative regulatory elements that might govern the 

expression of these genes. 

 

 

 

 

 

 



  

116 
 

 
 Fig 4.5. Differential expression of lcp genes in Msmeg lcp deletion mutants under lysozyme stress. The relative expression 

of lcp genes was determined with treated and untreated samples of the deletion mutants. Two different lysozyme concentrations 
(0.125 mg/mL and 0.5 mg/mL) were used for the treated samples. The data presented here are relative expression normalized to 
that of the wild type strain mc

2
155, at the given lysozyme concentration. This is a representative experiment out of two independent 

experiments each done in triplicate. Error bars represent standard error of triplicate values. 
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4.3.6. Prediction of regulatory elements of the lcp genes 

The ability of Msmeg to flourish and survive under stress conditions largely depends on the 

regulation of gene expression. In order to predict regulatory elements responsible for regulating 

the expression of lcp genes in Msmeg, first the operons encompassing each of the lcp genes 

were determined by DMINDA webserver (Fig 4.6, A-D). Subsequently, MEME-suite was used to 

find potential transcriptional motifs. Since the regulatory elements are usually present in the 

upstream region of the target gene, therefore, the sequences upstream of the start of the target 

lcp gene until the positioned start site of the adjacent open reading frame (ORF) were selected. 

In this manner the sequences selected were of 1560 bp, 982 bp, 1606 bp and 1061 bp upstream 

region of MSMEG_0107, MSMEG_1824, MSMEG_5775 and MSMEG_6421. Several DNA-

binding sites were predicted for each lcp gene, but the site with the lowest E-value was considered 

to be the putative binding site for the regulation of the target lcp gene. This binding site has many 

motifs on it that matches the transcriptional motif of an organism, which is retrieved from the 

database. These transcriptional motifs (Fig 4.6) are sorted by their P-values. P-values are 

probability values that a random motif of the same width as the target would have an optimal 

alignment with a match score as good as or better than the target's. In all the lcp genes except 

MSMEG_6421, the transcriptional motifs were identified to align significantly with AmrZ motif of 

Pseudomonas aeruginosa (Fig 4.6, A-C). This bi-functional transcriptional factor that acts either 

as a repressor or activator on a wide range of gene targets is involved in P. aeruginosa virulence. 

Furthermore, it is considered as a key global regulator involved in environmental sensing and 

adaption (Jones et al., 2014, Martinez-Granero et al., 2014). TF that was predicted for 

MSMEG_6421 with the lowest E-value was LexA, which is a transcriptional repressor protein 

involved in the SOS response in Mtb. It has a coordinated activation of a cohort of genes required 

for DNA repair and mutagenesis in response to DNA damage in Mtb (Smollett et al., 2012) and 

C. glutamicum (Jochmann et al., 2009). In all, motifs were found that maximally matched P. 

aeruginosa motifs. The motifs that were more related to mycobacteria or actinobacteria were GlxR 

in C. glutamicum, DosR in Mtb, EspR in Mtb.  

Though the regulatory elements involved in the regulation of lcp genes have not been studied 

before, this preliminary in silico analysis can serve as a starting point to understand the regulatory 

mechanisms of these cell envelope proteins. Such information can help understand the differential 

regulation of the multiple homologues much better.  
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Fig 4.6. Schematic representation of the locations of the predicted transcriptional motifs of lcp genes. The target 
lcp genes A. MSMEG_0107 B. MSMEG_1824 C. MSMEG_5775 and D. MSMEG_6421 have been labeled along with 
other adjacent genes that are a part of the single operon inside thick black arrows. The adjacent gene(s) that are not a 
part of the operon are labeled inside thick grey arrows. The direction of gene expression is represented by the direction 

of arrow. The promoter sequence as predicted in DMINDA
2
 server is shown as a yellow rectangular box. The initiation 

site for gene transcription is represented by a bent arrow over the gene. The transcriptional motifs for the expression of 
lcp genes that were predicted in MEME suite webserver are drawn to scale using Snapgene software. The motifs 
numbering are done in the ascending order of P-values of the given motif as predicted in the MEME analysis are in 
parentheses. The P-value in MEME analysis is the probability that a random motif of the same width as the target would 
have an optimal alignment with a match score as good as or better than the target's. The motifs predicted on the sense 
and anti-sense strands are represented by right and left red arrow respectively.  The transcription motif sites and their 
source organism that matched the Msmeg motifs in MEME analysis, have been described in the box with their E-values. 
The E-values represent the statistical significance of the motif and are displayed in ascending order. The lowest E-value 
are the most statistically significant. 
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4.4. Conclusions 

Prokaryotic cells respond to environmental perturbations by acclimatizing their gene expression 

or by modifying the stability of their existing proteins. A study performed previously in Msmeg to 

study its adaptation to different stresses for survival, has been associated with different growth 

stages (Drapal et al., 2014). Since in our study, cultures from a late log phase were used therefore, 

it is likely to be expected that the differential expression profile in between the Msmeg lcp 

homologues might vary from that in a different growth stage. In this study, differential expression 

of the lcp homologues in Msmeg wild type strain as well as the mutants under standard as well 

as stress conditions were observed. The Msmeg strain lacking MSMEG_5775 was seen to display 

a 3-fold to 7-fold upregulation of all the lcp genes. Under both acidic and lysozyme stress, loss of 

MSMEG_5775 downregulates all the other lcp genes available in the Msmeg genome, whereas, 

loss of MSMEG_6421 upregulates them. Thus the participation of regulator(s) for such kind of 

differential regulation comes into picture. From in silico analysis, putative transcriptional motifs in 

Mtb and C. glutamicum were retrieved, however experimental evidences are necessary to confirm 

their role in Msmeg. The experimental data from this study indicates the role of all four lcp 

homologues in Msmeg that differentially gets regulated to act upon stress situations. Such 

regulation might help the organism to survive the adversity. Overall, a bigger understanding of 

such stress response profiles incurred by the Msmeg lcp genes will gain more insights into the 

differences between pathogenic Mtb and nonpathogenic Msmeg, and will help us to understand 

the pathogenesis of Mtb much better. 
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Chapter-5  

General Discussion 

 

LCP proteins are often present as multiple homologues in almost all Gram-positive bacteria 

including mycobacteria (Hubscher et al., 2008). They play a crucial role in the cell wall assembly 

by catalyzing the transfer of glycopolymers from a polyprenyl pyrophosphate carrier to numerous 

cell envelope acceptors including PG (Kawai et al., 2011, Chan et al., 2013, Liszewski Zilla et al., 

2015, Wang et al., 2015, Baumgart et al., 2016, Grzegorzewicz et al., 2016, Harrison et al., 2016). 

In mycobacteria, these glycopolymers are transferred from AG onto the C-6 hydroxyl of MurNAc 

residues in PG. This coupling process between these two major cell envelope 

heteropolysaccharides, results in hydrolysis of the pyrophosphate group to release inorganic 

phosphate, and thus LCP proteins are said to have pyrophosphatase activity (Grzegorzewicz et 

al., 2016). Many studies have suggested the participation of more than one LCP homologue to 

exhibit this enzymatic activity. For instance, in Mtb, three out of four LCP proteins show 

pyrophosphatase activity (Grzegorzewicz et al., 2016) whereas, in C. glutamicum, only one 

essential protein was reported to exhibit this function (Baumgart et al., 2016). In our study, all the 

four Msmeg LCP homologues were found to demonstrate this activity at varied levels (Fig 2.10), 

suggesting multiple LCP proteins to be involved in the cell wall assembly in Msmeg. This may 

account for the genome size of Msmeg (6.99 MB) which is larger than most of the Mycobacterium 

spp. (Prasanna & Mehra, 2013). While MSMEG_5775 displayed a 2-fold higher pyrophosphatase 

activity than MSMEG_1824, MSMEG_0107 showed about 1.4-fold higher pyrophosphatase 

activity than this essential protein. On the other hand, MSMEG_6421 showed a 2.2-fold reduced 

activity. In addition to this, differential expression of lcp genes in the wild Msmeg strain under 

standard no-stress conditions at a late log phase (Fig 4.1), revealed the essential gene 

MSMEG_1824 to have 1.6-fold to 2.1-fold reduced expression compared to the rest of the three 

lcp homologues. Such coexistence in the variation of pyrophosphatase activity and higher 

transcription levels of MSMEG_0107 and MSMEG_5775 compared to the essential gene 

MSMEG_1824, leads us to speculate that higher number of mRNA transcripts of both 

MSMEG_0107 and MSMEG_5775 results in higher pyrophosphatase activity. In order to rule out 

the possibility of different expression levels of the lcp genes at different growth phases, a post-

study was done to determine the differential expression of lcp homologues in Msmeg wild type 

strain at an early log phase (OD600 of 0.5-0.8) (data not shown here). There was a 1.6 to 3.6-fold 
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reduced expression of MSMEG_1824 compared to the rest three non-essential lcp genes at early 

log phase, and a 2-fold reduced expression of this essential gene at early log phase compared to 

that of the late log phase. Thus it seems that, though MSMEG_1824 is essential in linking AG to 

PG in Msmeg, the rest three non-essential lcp genes play a crucial role in aiding this essential 

gene. Finally, the results of pyrophosphatase activity obtained in our study does not conclude the 

ligation of AG to PG by the lcp homologues in Msmeg. Besides, it was previously demonstrated 

that decaprenyl-1-monophosphate co-purifies with the LCP protein of Mtb and is likely to be bound 

within the hydrophobic cavity of the protein (Harrison et al., 2016). This leads us to speculate if 

the inorganic phosphate released in our study was obtained after GPP was cleaved by the Msmeg 

LCP∆TM proteins, or from the co-purified decaprenyl-1-monophosphate, or both. This can be 

elucidated by determining the ligation activity between AG and PG, an approach that has been 

previously established using a cell-free biochemical functional assay in Mtb where the in vitro 

covalent attachment of AG intermediates to PG was investigated by a [14C] carbohydrate 

radiolabeling assay (Harrison et al., 2016) that monitored the synthesis of Dec-P-P-linked 

intermediates of mycobacterial cell wall biosynthesis (Birch et al., 2009). 

To study the effects of LCP proteins on their morphology, ability to form biofilms, growth patterns 

and other such physiological features, a panel of single and double lcp deletion mutants were 

generated. Unfortunately, we have had to deal with certain limitations in our study. Since, 

MSMEG_1824 is an essential gene, and the resources to make a conditional mutant were 

unavailable, the non-essential lcp genes were only focused, in our study. An almost complete 

deletion of MSMEG_0107 was possible, however the total deletion of the other two non-essential 

genes i.e., MSMEG_5775 and MSMEG_6421 could not be generated, either due to the presence 

of overlapping genes, or due to cloning incompatibilities. Thus, there were some remnants of 

these genes remaining in the deletion mutants of MSMEG_5775 and MSMEG_6421. This could 

be reasoned for the complemented strains to not restore the phenotype of the wild type Msmeg. 

The other reason could be the use of a non-native promoter of the lcp gene and using the 

endogenous Phsp60 promoter of the pSMT3 vector that induces higher expression of genes in 

mycobacteria (Movahedzadeh & Bitter, 2009). 

LCP family proteins have shown to be associated with cell surface properties (Bender et al., 2003, 

Wang et al., 2015, Baumgart et al., 2016). When the Msmeg lcp mutants were subjected to such 

physiological assays, it was found that the strain lacking both MSMEG_0107 and MSMEG_5775 

was the most compromised of all mutants (Table 5.1).  
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Table 5.1: Overview of the significant cell physiology alterations exhibited by lcp deletion 
mutants and their complemented strains compared to the wild type strain

 

 

 

The mutant ∆∆(0107+5775), showed altered morphology not only under SEM (Fig 3.7) but also 

on Congo red plates with an erose texture of the colony (Fig 3.8, A). Apart from this, this strain 

also displayed slower growth rate (Fig 3.6), diminished biofilm formation on the air-liquid interface 

(Fig 3.9, A) and slower aggregation rate (Fig 3.10), all of which indicates that the cell envelope of 

this mutant exhibits decreased surface hydrophobicity. However, a preliminary TLC experiment 

displayed increased level of outermost cell envelope GPLs in ∆∆(0107+5775) and ∆∆(5775+6421) 

(Fig 3.11). The surface hydrophobicity of the wild type, mutants and the complemented strains 

were quantified using a crystal violet method. The double lcp deletion mutant ∆∆(0107+5775) 

displayed reduced pellicle formation (biofilm on air-liquid interface) but significantly higher biofilm 

adherence to the walls of polystyrene plate. This is due to the association of pellicles with lipids 
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in the mycolic acid layer (Ojha et al., 2005), and biofilm adherence on polystyrene 96-well plate 

with GPLs present in Msmeg cell wall (Recht et al., 2000, Recht & Kolter, 2001, Schorey & Sweet, 

2008). 

The lipid rich mycolic acid layer of the mycobacterial cell envelope acts as an impermeable barrier 

to numerous antimicrobial compounds (Jarlier & Nikaido, 1994). The LCP proteins are known to 

aid the transfer of AG precursors to uncrosslinked PG (Hancock et al., 2002, Schaefer et al., 

2018). With the compromised AG-PG ligase function of the double lcp deletion mutant 

∆∆(0107+5775), the hyper susceptibility to BAC could therefore be due to an additional shortage 

of the lipid carriers. Since, BAC targets the carrier lipid decaprenyl pyrophosphate (C50-PP) (Stone 

& Strominger, 1971), the transportation of PG precursors across the cell membrane is inhibited 

(Valvano, 2008) by preventing dephosphorylation of the decaprenyl pyrophosphate (Stone & 

Strominger, 1971, Ming & Epperson, 2002, Economou et al., 2013, Kingston et al., 2014) (Fig 

5.1). Therefore, ∆∆(0107+5775) which already has a compromised cell envelope due to inefficient 

AG-PG coupling, becomes highly susceptible to BAC by inhibiting lipid carrier recycling (Qi et al., 

2008). Additionally, in this study, ∆∆(0107+5775) was also found to be hyper sensitive to VAN 

which is known to inhibit the crosslinking of PG precursors D-alanyl–D-alanine present at the 

carboxy terminus, by inhibiting the transpeptidase activity on these precursor molecules (Walsh, 

2000). Thus, synergistic effects between MSMEG_0107-MSMEG_5775 deficiency and 

peptidoglycan-targeting antibiotics is speculated in Msmeg. Not only the peptidoglycan-targeting 

drugs, but ∆∆(0107+5775) owing to its ruptured cell envelope and increased permeability, was 

also found to be sensitive to the cationic detergent SDS and the PG targeting lysozyme. 

Unlike M. marinum, where loss of CpsA exhibited altered cell morphology and enhanced cell wall 

permeability (Wang et al., 2015), the homologue in Msmeg i.e., ∆0107 did not produce significant 

alterations in colony morphology on Congo red plate (Fig 3.8, A). Some organisms have been 

known to survive under adverse conditions and become extremely resistant to antimicrobial 

factors, despite of having an altered cell wall (Rosu et al., 2013). In our study, a single deletion of 

either MSMEG_0107 or MSMEG_5775 showed similar phenomenon of about 8-fold and 2-fold 

resistance to INH respectively (Table 3.5), which is a mycolic acid targeting first line drug against 

TB. Such resistance to INH was also observed in two complemented strains, c-0107 (8-fold) and 

c-6421 (2-fold). An increased resistance to INH to the mutants may be associated with a 

downregulation in the katG gene or a mutation in the katG gene of the mutant strain (Alekshun & 

Levy, 2007, Ando et al., 2011, Warner & Mizrahi, 2013). However, this needs further investigation 

by sequencing the katG gene in these mutant strains (∆0107 and ∆5775) and complemented 

strains (c-0107 and c-6421). 
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Fig 5.1. Inhibitors used in this study that target peptidoglycan biosynthesis. The roles of the key enzymes involved in 
peptidoglycan biosynthesis are illustrated. Reported inhibitors are shown in red. Adapted from (Abrahams & Besra, 2016). 
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A novel approach to study the LCP proteins in this thesis, was assessing the galactan moieties in 

the wild type and the deletion mutants by using of EB-A2 mAB. The Galf moiety has been 

previously detected in Aspergillus niger by anti-Galf EB-A2 mAB (Chiodo et al., 2014) and was 

hypothesized to be detected in Msmeg mutants owing to the altered cell envelope. Though the 

galactomannan disaccharide fragment, Galf-β-(1→5)-Galf acts as the epitope for EB-A2 detection 

in Aspergillus species, however mAB EB-A2 used in the Platelia kit was recently found to detect 

multiple epitopes of circulating galactomannan (Krylov et al., 2019). The mAB EB-A2 was 

however found to be useful in our study for the sole purpose of detecting exposed galactan 

moieties in the lcp mutants, and a significant 5-fold increase of detectable Galf moieties was 

observed in the double lcp deletion mutant ∆∆(0107+5775). This indicates the exposure of these 

galactan moieties as a result of a leaky cell envelope of this mutant (Fig 5.2). 

 

 

 

 

Fig 5.2. Schematic representation of the detection of Galf-β-(1→5)-Galf epitope by EB-A2 Mab in the 
double lcp deletion mutant ∆∆(0107+5775). With the loss of MSMEG_0107 and MSMEG_5775 in Msmeg, 
phosphotransferase activity is lost from these two LCP proteins. This results in a partial linkage of the AG to 
PG leading to the formation of a compromised cell envelope, with a leaky outer membrane. Such a leaky cell 
envelope results in an exposure of the Galf moieties of the AG which are otherwise embedded in the cell 
mycobacterial core. On addition of HRP-conjugated EB-A2 mAB, the Galf moiety is detected. 
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The transcriptional profiling of the lcp genes in the wild type and mutant strains were studied in 

late log phase, in this thesis. The significance of the lcp gene MSMEG_5775 in Msmeg under 

standard non-stress condition, is associated with the display of 3-fold to 7-fold upregulation of the 

other three lcp genes in ∆5775, compared to that in the wild type strain (Fig 4.2). Under both acid 

and lysozyme stress conditions, ∆5775 downregulated all other lcp genes whereas ∆6421 

upregulated these genes. Thus, this study suggests the role of multiple lcp homologues in Msmeg 

genome to differentially regulate under various environmental conditions as a survival strategy of 

the organism. Moreover, such stress response profiles incurred by the Msmeg lcp genes during 

different time points of the log phase might be useful to understand the mechanism of the 

bacterium to survive under normal and stress conditions. Such studies might also help us to 

distinguish the stress mechanisms between pathogenic Mtb and nonpathogenic Msmeg, thus 

contributing to comprehend the pathogenesis of Mtb much better.  

Finally, in silico analysis to predict putative transcriptional motifs provides a scope to explore the 

regulatory elements of this family of proteins. Based on MEME analysis, a bi-functional regulator 

AmrZ was found to regulate the gene expression of MSMEG_0107, MSMEG_1824 and 

MSMEG_5775, whereas a transcriptional repressor protein LexA was found to regulate 

MSMEG_6421. However, these in silico findings need experimental validation to trace putative 

regulatory mechanisms conferred on Msmeg lcp genes.  

On a different note, Rv2700, an essential gene in Mtb required for optimal growth in vitro (Ballister 

et al., 2019) encodes a conserved putative secreted alanine rich protein with a predicted lipid-

binding domain related to TraT, LytR and CpsA (Samanovic et al., 2015). This gene has been 

found to co-occur with Rv3484, which encodes CpsA in string-db webserver (https://string-

db.org/cgi/network.pl?taskId=SoOHkscmS8te). This gene with an LytR_C domain was proposed 

to contribute to cell wall integrity and virulence, suggesting that this domain may be a significant 

contribution to the cell envelope functions (Ballister et al., 2019). The presence of five conserved 

residues in this domain was also found in our study. This in addition to the presence of a CXN 

conserved motif across species, indicates a hidden significance of this domain. Hence, 

investigating the role of this domain and its contribution to LCP domain could be an added 

advantage to understand the LCP family of proteins much better. 

Finally, with the knowledge that LCP proteins catalyze the phosphotransferase reaction where 

galactan intermediates of AG coupled with decaprenyl phosphate are transferred to the 6ʹ-OH of 

MurNAc residues present in PG (Grzegorzewicz et al., 2016, Harrison et al., 2016), this study 

hypothesizes the low levels of mature AG formation with the absence of MSMEG_0107 and 

https://string-db.org/cgi/network.pl?taskId=SoOHkscmS8te
https://string-db.org/cgi/network.pl?taskId=SoOHkscmS8te
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MSMEG_5775 in Msmeg mutant ∆∆(0107+5775). LCP proteins first recognize the translocation 

of the galactan intermediates across the plasma membrane and then prepares itself to bind to the 

LU (Harrison et al., 2016). In our study, the mutant strain ∆∆(0107+5775), is believed to possess 

a partial ability to bind to this LU thus, partly coupling these galactan intermediates to the C6-

hydroxyl of MurNAc in PG. This partial coupling is likely to be conferred upon by the presence of 

MSMEG_6421 and the essential gene MSMEG_1824 in this mutant, thus leading to inefficient 

cleavage of the pyrophosphate group, which possibly releases limited amount of free decaprenyl 

phosphate. Subsequently, the uncleaved or partially-cleaved pyrophosphate group accumulates 

in the periplasm thus, limiting the formation of mature mAGP complex (Fig 5.3). This in turn is 

likely to affect the final anchoring of the terminal β-D-Araf and the penultimate 2-α-D-Araf to the 

mycolic acids (McNeil et al., 1991). The cell envelope of ∆∆(0107+5775) is thus expected to have 

a leaky outer membrane because of the inefficient attachment of the anchoring Araf residues 

present in AG to the mycolic acids. 

 

 
Fig 5.3. Schematic representation of the impact of presence and absence of both MSMEG_0107 and MSMEG_5775 lcp 
genes in Msmeg.  
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Final remarks and future perspectives 

In this thesis, the role of all the four lcp homologues in Msmeg were studied in a comprehensive 

manner. All of these four homologues displayed pyrophosphatase activity at varied levels by 

cleaving the pyrophosphate group of the commercial substrate GPP, to release free inorganic 

phosphate. However, a single concentration of GPP and the proteins were used in our study to 

determine the pyrophosphatase activity. A future work aims at using various concentrations of the 

sample proteins and the substrate to study enzyme kinetics of the LCP proteins. A limitation of 

the Piper method to determine the pyrophosphatase activity is its highly sensitive protocol to 

determine the presence of inorganic phosphate. Since, inorganic phosphate is abundantly found 

in nature, the probability of contamination is high in such sensitive assays. Besides, the inorganic 

phosphate estimation in our study requires further investigation, if it was obtained after GPP-

cleavage by the LCP proteins, or from the co-purified decaprenyl-1-monophosphate, or both, as 

has been previously demonstrated in Mtb (Harrison et al., 2016). Apart from this, further 

investigations are required to study which amino acid residues of the LCP proteins in Msmeg play 

crucial roles in binding and coordinating the sugar residues of both Dec-P-P-GlcNAc-Rha-

galactose (natural substrate) and GPP (artificial substrate used in this study). 

The role of LCP proteins in this thesis were further analyzed by studying their impact on cell 

physiology. This was attained by the construction of single and double deletion mutants for the 

non-essential Msmeg lcp genes, and the double lcp deletion mutant ∆∆(0107+5775) was found 

to be the most compromised mutant of all. This was demonstrated by slower growth rate, altered 

colony morphology, reduced biofilm formation on air-liquid interface and enhanced biofilm 

adherence to polystyrene plate, slower aggregation rate and higher sensitivity to antibiotics used 

in this study. However, the compromised cell envelope of ∆∆(0107+5775) is also hypothesized to 

contain altered capsular polysaccharides resulting in increased permeability. Therefore, studying 

the impact of lcp deletion mutants on the capsular α-glucan production by a method previously 

established (van de Weerd et al., 2016) would be an interesting approach to understand the 

underlying mechanism of LCP proteins in cell envelope biogenesis. Since, this thesis 

hypothesizes the reduced levels of mature AG in the double lcp deletion mutant ∆∆(0107+5775), 

estimating the saccharides content in AG is possibly an interesting approach to elucidate this 

theory. A novel approach in this thesis was the detection of Galf entities of AG by EB-A2 mAB. 

Since the experiment design in this study included the use of whole bacterial cells, our conclusions 

are confined to the exposed Galf motifs only. However, a future direction lies in detecting these 

Galf motifs in the culture supernatants to identify if the double lcp deletion mutant ∆∆(0107+5775) 
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releases un-ligated AG into the culture medium. A primary result in our study included the lipid 

profiling of the wild type strain and the lcp deletion mutants except ∆∆(0107+6421), where a high 

content of GPLs was observed in ∆∆(0107+5775). A future perspective lies in reproducibility of 

this TLC result and studying the effect of GPLs in the lcp deletion mutants by transcriptional 

profiling and promoter analysis. The primary SEM results displayed alterations in the surface 

morphology of ∆∆(0107+5775). An immediate future approach is to reproduce the results and 

quantify the altered size in this double lcp deletion mutant. Finally, creating a conditional mutant 

of the Msmeg essential lcp gene i.e., MSMEG_1824 and a conditional triple deletion mutant of 

the three non-essential lcp genes also remains a high priority to study its impact in cell envelope 

biogenesis, which can be attained by a method previously established in Msmeg (Harrison et al., 

2016). 

It was found that the four lcp homologues in Msmeg differentially express when encountered with 

different external stimuli. Thus it seems that, though MSMEG_1824 is essential in linking AG to 

PG in Msmeg, the rest three non-essential lcp genes play a crucial role in aiding this essential 

gene during various stress conditions. However, the results obtained from this study were 

confined to the transcriptional profiling at a late log phase of the bacterial culture under stress or 

stress-free conditions, where the bacterial cells stop dividing. Therefore, transcriptional profiling 

from bacterial cultures grown at early- and mid-log phase would provide us a better insight of the 

differential expression of the Msmeg lcp homologues. Additionally, identifying the key regulatory 

elements of the Msmeg lcp genes would contribute to understanding the LCP family of proteins 

in the non-pathogenic Mycobacterium exclusively. 
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APPENDIX: Enlarged images of pellicle formation (biofilm on 
air-liquid interface) by the Msmeg wild type strain and lcp 
deletion mutants 
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The biofilm observed on the surface of 7H9 medium supplemented with ADS but without Tween-80, is after incubation of 
the plates at 37°C for 4 days. The data is a representative of one of the three independent experiments. 


