
Synthesis through Unification Genetic Programming
Thomas Welsch

Computer Science, University of Liverpool, UK
Vitaliy Kurlin

Computer Science, University of Liverpool, UK

ABSTRACT
We present a new method, Synthesis through Unification
Genetic Programming (STUN GP), which synthesizes prov-
ably correct programs using a Divide and Conquer approach.
This method first splits the input space by undergoing a
discovery phase that uses Counterexample-Driven Genetic
Programming (CDGP) to identify a set of programs that
are provably correct under unknown unification constraints.
The STUN GP method then computes these restraints by
synthesizing predicates with CDGP that strictly map inputs
to programs where the output will be correct.

This method builds on previous work towards applying
Genetic Programming (GP) to Syntax Guided Synthesis (Sy-
Gus) problems that seek to synthesize programs adhering to
a formal specification rather than a fixed set of input-output
examples. We show that our method is more scalable than
previous CDGP variants, solving several benchmarks from
the SyGus Competition that cannot be solved by CDGP.
STUN GP significantly cuts into the gap between GP and
state-of-the-art SyGus solvers and further demonstrates Ge-
netic Programming’s potential for Program Synthesis.

CCS CONCEPTS
• Software and its engineering → Genetic programming; •
Theory of computation → Program verification;

KEYWORDS
Genetic programming, Search Based Program Synthesis, Di-
vide and Conquer
ACM Reference Format:
Thomas Welsch and Vitaliy Kurlin. 2020. Synthesis through Unifi-
cation Genetic Programming. In Genetic and Evolutionary Com-
putation Conference (GECCO ’20), July 8–12, 2020, Cancún,
Mexico. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3377930.3390208

1 INTRODUCTION
Program Synthesis is the problem of synthesizing a program
given a specification dictating the program’s behavior. A

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3390208

Figure 1: A grammar for Conditional Linear Integer Arith-
metic (CLIA).
I ::= I + I | I - I | ite(B,I,I) | -1 | 0 | 1
| v1 | v2 | ... | vn
B ::= and(B,B) | or(B,B) | not(B) | B = B
| I < I | I <= I | I = I | I >= I | I > I

prominent variant of Program Synthesis is Syntax Guided
Synthesis (SyGus). [1] SyGus imposes a formal specification
𝑆𝑝𝑒𝑐 consisting of logical constraints on the input and output
of the program to be synthesized. 𝑆𝑝𝑒𝑐 is supplemented by a
Grammar 𝐺, a set of production rules from which the program
must be constructed. An example of a SyGus formulation of
the max4 problem is given by the combination of Figure 1
containing a grammar 𝐺 for the Conditional Linear Integer
Arithmetic (CLIA) domain and Figure 2, containing a formal
specification 𝑆𝑝𝑒𝑐. The key property of SyGus formulations is
that they allow for the creation of provably correct programs
with respect to 𝑆𝑝𝑒𝑐 found through search based methods
on the syntactic space restricted by 𝐺.

Standard Genetic Programming (GP) and Grammatical
Evolution (GE) cannot be applied to the SyGus problem
as, while they can construct programs from 𝐺 [13], they re-
quire input-output examples to inductively synthesize a solu-
tion. Counterexample-Driven Genetic Programming (CDGP),
however, demonstrated that through interaction with a Sat-
isfiability Modulo Theorem (SMT) Solver a set of examples
could be obtained that formed a suitable fitness gradient for
GP. Consequently CDGP is capable of producing provably
correct programs on SyGus problems. [11]

CDGP supports grammars for two domains: Strings with
Linear Integer Arithmetic (SLIA) and Conditional Linear In-
teger Arithmetic (CLIA). Problems in the SLIA domain seek
to manipulate strings, usually to match some specific syntax,
while CLIA problems result in the construction of tree-like
programs where inner nodes consist of boolean predicates
that form paths to leaves consisting of terms that return an
integer. The paper [7] demonstrated that CDGP is competi-
tive with the state-of-the-art SyGus solver CVC4 [6] in the
SLIA domain and in fact is superior on purely declarative
specifications that are not supplemented with input-output
examples. CDGP was less competitive, however, on problems
in the CLIA domain. We posit that the reason for this lies
in CDGP’s approach to CLIA problems. CDGP implicitly
solves CLIA problems by simultaneously discovering terms
which are correct on a subset of the problem’s input space,
predicates which map to these terms, and a unification of
these terms and predicates that form a correct program.
CDGP’s approach is sound but as arity of the function to
synthesize increases performing these tasks simultaneously

https://doi.org/10.1145/3377930.3390208
https://doi.org/10.1145/3377930.3390208
https://doi.org/10.1145/3377930.3390208

GECCO ’20, July 8–12, 2020, Cancún, Mexico Thomas Welsch and Vitaliy Kurlin

(set-logic LIA)
;;Specifies structure of target function,
;;has input Ints x,y,z,w and the
;;function returns an Int.
(synth-fun max4 ((x Int) (y Int) (z Int)
(w Int)) Int)

;;Declaration of variables.
(declare-var x Int) (declare-var y Int)
(declare-var z Int) (declare-var w Int)

;;Constraints target function must satisfy.
(constraint (>= (max4 x y z w) x))
(constraint (>= (max4 x y z w) y))
(constraint (>= (max4 x y z w) z))
(constraint (>= (max4 x y z w) w))
(constraint (or (= x (max4 x y z w))

(or (= y (max4 x y z w))
(or (= z (max4 x y z w))

(= w (max4 x y z w))))))
(check-synth)

Figure 2: A declarative specification for the max4 problem.

becomes harder due to the curse of dimensionality. Conse-
quently, CDGP struggles to synthesize programs with higher
function arities. [7]

Our new method, Synthesis through Unification GP (STUN
GP), exploits properties of the CLIA domain to split the
tasks of term discovery, predicate mapping and unification
into separate processes. This decomposes the problem into
sub-problems of lower dimensionality allowing the algorithm
to cope better with increases in arity. We demonstrate in
our results section that on canonical SyGus benchmarks an
implementation of STUN GP solves problems up to an ar-
ity of 15, a nearly three fold increase upon the max arity
previously achieved by CDGP. This significantly closes the
gap between GP and state-of-the-art SyGus solvers in the
CLIA domain. The source code for this project is available
at https://github.com/twelsch1/STUN_GP.

2 RELATED WORKS AND BACKGROUND
THEORY

Program synthesis has traditionally been an interest of the
formal methods community. "Search Based Program Syn-
thesis" gives a good introduction of how this problem has
been considered historically and how the new Search Based
Program Synthesis paradigm encompassing SyGus emerged.
[5]

Recently attention in the GP community has begun to
turn towards Program Synthesis, as noted by [12], and GP
inherently performs a form of Program Synthesis for any given
problem. However, the only other GP method we are aware
of capable of solving SyGus problems is CDGP. Consequently,
CDGP has a strong influence on and is indeed integral to
our approach.

(set-logic LIA)
(set-option :produce-models true)
;;Function is now defined
;;as synthesized program.
(define-fun max4
((x Int)(y Int)(z Int)(w Int))
Int (ite (and (<= w x) (= y x))
(mod y (- 9)) z))

(declare-fun x () Int) (declare-fun y () Int)
(declare-fun z () Int) (declare-fun w () Int)
;;Assert that the program defined
;;does NOT satisfy max4.
(assert (not (and (>= (max4 x y z w) x)

(>= (max4 x y z w) y)
(>= (max4 x y z w) z)
(>= (max4 x y z w) w)
(or (= x (max4 x y z w))
(or (= y (max4 x y z w))
(or (= z (max4 x y z w))
(= w (max4 x y z w))))))))

;;Check for satisfiability,
;;get counterexample if program incorrect.
(check-sat)
(get-value (x y z w))

Figure 3: An example of a query that verifies a single program.

We give special consideration to two concepts from the
formal methods community: Counterexample Guided Induc-
tive Synthesis (CEGIS) [1] and Synthesis through Unification
(STUN) [2]. CDGP can be thought of as an extension of
CEGIS into the GP domain as it uses a CEGIS like workflow
to construct a training set. Our new method, meanwhile, can
be thought of as an extension of STUN into the GP domain.

2.1 Counterexample Guided Inductive Synthesis
Counterexample Guided Inductive Synthesis (CEGIS) is an
algorithm that synthesizes a program through iterative inter-
action with a Satisfiability Modulo Theorem (SMT) Solver.
The Learning Algorithm, or Synthesizer, produces a best
guess program based off its knowledge of the search space
and presents this to the SMT Solver. The solver then for-
mally verifies the program to determine if it is correct. If it
is correct the Solver communicates this and the algorithm
terminates and returns the provably correct program. If it is
not correct the Solver returns a counterexample which the
Learning Algorithm then uses to try and produce a better
candidate. [1]

2.2 Counterexample-Driven Genetic
Programming (CDGP)

Counterexample-Driven Genetic Programming (CDGP) is
an extension of Genetic Programming that can synthesize

Synthesis through Unification Genetic Programming GECCO ’20, July 8–12, 2020, Cancún, Mexico

provably correct programs from formal specifications. CDGP
is in most respects a standard implementation of GP. Pro-
grams are represented as standard tree structures, evolution
is achieved through crossover and mutation applied to these
trees, and both tournament and lexicase selection are sup-
ported. CDGP specifically differs from standard GP in that
when evaluating a program it derives from 𝑆𝑝𝑒𝑐 a query that
determines if the program is correct or not. If it is not the
SMT provides an input model for which the program fails,
and CDGP can use this through an additional query to obtain
a test pair <input, expected output> which is for evaluation
in subsequent generations. We explain this in more detail
using a running example of synthesizing the max 4 function.
The 𝑆𝑝𝑒𝑐 for max 4 is given in Figure 2.

𝑆𝑝𝑒𝑐 imposes constraints such that the function to be
synthesized takes 4 integers as input, x,y,z, and w, and returns
an integer. It further asserts that the function’s output must
be one of x,y,z or w and be at least greater than or equal to
each of them. Any function that meets these requirements
provably will provide the maximum of 4 integer inputs. From
this the query to verify a synthesized program is derived.
An example of this query’s syntax is given in figure 3. The
query defines the synthesized function and asserts that there
exists an input such that the synthesized program does not
meet the constraints of 𝑆𝑝𝑒𝑐. If no such input exists the
solver returns UNSAT, meaning the program is provably
correct with respect to 𝑆𝑝𝑒𝑐, and CDGP can terminate after
the generation. If such an input exists, the solver returns
SAT and provides a counterexample in the form of an input
model 𝐼. The model 𝐼 is then used for an additional query
which defines the inputs to be 𝐼 and assert that the input
must be satisfiable with respect to the constraints of max4.
Upon receipt of SAT from this call the expected output 𝑂 is
obtained. A test is then constructed consisting of <𝐼, 𝑂>. 1

Using the procedure above, CDGP is able to discover a
training set through interaction with the SMT Solver that
facilitates inductive synthesis. Note that, unlike in most in-
stances of GP, there is no training-test set split and gener-
alization is consequently not a concern. CDGP fits to the
discovered tests and concludes either with a timeout or a
program provably correct with respect to 𝑆𝑝𝑒𝑐.

2.3 Synthesis through Unification (STUN)
[2] in 2015 made the observation that smaller functions are
typically easier to synthesize then larger ones. To exploit
this observation [2] proposed Synthesis through Unification
(STUN), which uses a combination of CEGIS and a widening
operator on predicates to discover and split the input space
into sub spaces where solutions could be quickly enumer-
ated. These solutions could then be trivially unified in any
grammar containing an if-than-else concept (e.g. CLIA). [4]
refined this research and proposed the EUSolver, which uses
a combination of enumeration and decision tree learning to
determine terms and predicates which correctly map to these
terms. This solver won the 2017 SyGus Competition [3] and
1This interaction with the solver is described in more detail in [7].

Algorithm 1: Discovery Phase
Result: Partials, a list of programs covering the input

space
Partials ← ∅;
PartialsIncorrect ← true;
while PartialsIncorrect do

BestProgram ← CDGP(Partials);
Partials ← Partials ∪ BestProgram;
PartialsIncorrect ← VERIFY(Partials);

end

continues to be one of the state-of-the-art solvers in the CLIA
domain along with CVC4.

The original STUN and EUSolver took CEGIS concepts
and achieved significant speed up through a divide and con-
quer methodology. We seek to achieve the same effect on
CDGP with Synthesis through Unification Genetic Program-
ming (STUN GP). Note that our method differs significantly
from the original STUN algorithm, but conceptually still
exploits the same properties of the CLIA domain.

3 SYNTHESIS THROUGH UNIFICATION
GENETIC PROGRAMMING (STUN GP)

Synthesis through Unification Genetic Programming (STUN
GP) splits a given SyGus problem on the CLIA domain into
three sequential phases: discovery, decision and unification.
The first phase, discovery, uses CDGP to construct a set
of programs using grammar 𝐺 that cover the input space.
This set, 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠, can under some unknown unification con-
straints 𝑈𝑛𝑖𝑓 be unified into a program 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 that adheres
to formal specification 𝑆𝑝𝑒𝑐. The second phase, decision, then
finds 𝑈𝑛𝑖𝑓 by using CDGP to construct a list of predicates
from 𝐺 corresponding to 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠. These predicates map in-
puts to corresponding program(s) in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 such that each
predicate holds strictly where the program is correct. The
third phase then constructs 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 by unifying 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠
with 𝑈𝑛𝑖𝑓 using a fast and sound unification procedure.

We describe these phases in detail below.

3.1 First Phase of STUN GP: Discovery
We say that a set of programs covers the input space on a
𝑆𝑝𝑒𝑐 if for any input there is at least one program in the
set that is correct. The discovery phase searches for such a
set using Algorithm 1. 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 is initialized as an empty
list. We then run CDGP and upon termination add the best
program to the list. If 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 consequently covers the space,
we terminate and return 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠, otherwise we run CDGP
again. Note that we pass 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 into CDGP as it is needed
for internal verification calls.

3.1.1 Verification for Discovery Phase. The key modifica-
tion to CDGP for the Discovery phase is that the verification
function 𝑉 𝐸𝑅𝐼𝐹 𝑌 now checks for correctness on a set of
programs rather than a single program. To demonstrate this
we return to our example of synthesizing the function max4.

GECCO ’20, July 8–12, 2020, Cancún, Mexico Thomas Welsch and Vitaliy Kurlin

(set-logic LIA)
(set-option :produce-models true)
;;Now defining multiple functions

;;This defines the
;;recently synthesized program.
(define-fun max4
((x Int)(y Int)(z Int)(w Int))
Int (ite (> x w) x w))

;;This defines a program
;;found previously that
;;is partially correct.
(define-fun max4_0
((x Int)(y Int)(z Int)(w Int))
Int y)

(declare-fun x () Int) (declare-fun y () Int)
(declare-fun z () Int) (declare-fun w () Int)

;;Assert our most recent program does NOT
;;meet the specifications of Max 4.
(assert (not (and (>= (max4 x y z w) x)
(>= (max4 x y z w) y)(>= (max4 x y z w) z)
(>= (max4 x y z w) w)(or (= x (max4 x y z w))
(or (= y (max4 x y z w))(or (= z (max4 x y z w))
(= w (max4 x y z w))))))))

;;Assert our previously synthesized program
;;does NOT meet specifications of Max 4.
(assert (not (and (>= (max4_0 x y z w) x)
(>= (max4_0 x y z w) y)(>= (max4_0 x y z w) z)
(>= (max4_0 x y z w) w)(or (= x (max4_0 x y z w))
(or (= y (max4_0 x y z w))
(or (= z (max4_0 x y z w))
(= w (max4_0 x y z w))))))))

;;If there exists input on which both programs are
;;incorrect returns SAT and provides
;;counterexample.
;;Otherwise returns UNSAT meaning at least one
;;of the programs is correct for each input.
(check-sat)
(get-value (x y z w))

Figure 4: A verification query that determines if a set of pro-
grams is correct.

The specification 𝑆𝑝𝑒𝑐 for max4 is given in Figure 2. On
the first iteration of the Discovery phase loop, 𝑉 𝐸𝑅𝐼𝐹 𝑌 is
identical to the verification query in the original CDGP. On
subsequent iterations, however, the query defines an addi-
tional function for each program 𝑃 in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 and asserts
that there exists an input such that 𝑃 does not meet the
constraints of max4. The syntax of this call is given in Figure
4. This query asserts that there exists an input such that

(set-logic LIA)
(set-option :produce-models true)
;;Program from Partials.
(define-fun max4 (
(x Int)(y Int)(z Int)(w Int)) Int w)

(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(declare-fun w () Int)

;;Our assertion.
(assert(
;;Predicate
ite(<= y w)
;;LHS, for given input produces
;;counterexample if max4 incorrect WRT input.
(not (and (>= (max4 x y z w) x)
(>= (max4 x y z w) y)
(>= (max4 x y z w) z)
(>= (max4 x y z w) w)
(or (= x (max4 x y z w))
(or (= y (max4 x y z w)) (or (= z (max4 x y z w))
(= w (max4 x y z w)))))))

;;RHS, for given input produces
;;counterexample if max4 is correct WTR input.
(and (>= (max4 x y z w) x)
(>= (max4 x y z w) y)
(>= (max4 x y z w) z)
(>= (max4 x y z w) w)
(or (= x (max4 x y z w))
(or (= y (max4 x y z w)) (or (= z (max4 x y z w))
(= w (max4 x y z w))))))
))

;;If assertion holds on any input, returns SAT
;;and provides a counterexample where input is
;;misassigned to LHS or RHS.
;;Otherwise, returns UNSAT meaning predicate
;;strictly maps inputs to LHS when max4 is
;;correct.
(check-sat)
(get-value (x y z w))

Figure 5: A verification query that determines if a predicate
is correct with respect to the defined function.

every program defined in query does not adhere to 𝑆𝑝𝑒𝑐. If
such an input exists the solver returns SAT and we receive
a counterexample. If no such input exists the solver returns
UNSAT and we know that the union of 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 and the
most recent synthesized function covers the input space.

3.1.2 Redundancy: Removing superfluous programs. A fre-
quent outcome of Algorithm 1 is that 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 contains

Synthesis through Unification Genetic Programming GECCO ’20, July 8–12, 2020, Cancún, Mexico

Algorithm 2: Decision Phase
Result: Unif, a list of predicates corresponding to

Partials
Unif ← ∅;
i ← 1 //skip first program ;
while i < |Partials| do

PredIncorrect ← true;
while PredIncorrect do

BestPred ← CDGP(Partials[i]);
if VERIFYPRED(BestPred) then

Unif ← VERIFYPRED(Partials[i],
BestPred);

PredIncorrect ← false;
end

end
i ← i+1;

end

multiple programs that cover redundant areas of the input
space. An example of this for the max4 problem would be a
program in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 that returns 𝑥 when 𝑥 is greater than
𝑦, and another program that simply returns 𝑥 in all cases.
To account for this, we run a pruning procedure at the con-
clusion of Algorithm 1, iterating through 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 checking
each program 𝑃 to see if 𝑉 𝐸𝑅𝐼𝐹 𝑌 (𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 ∖ 𝑃) returns
true. If it does return true 𝑃 is superfluous and is removed.2

3.2 Second Phase of STUN GP: Decision
The Decision phase takes the list of programs 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 and
computes unification constraints 𝑈𝑛𝑖𝑓 which can be used to
unify 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 into a correct program. 𝑈𝑛𝑖𝑓 is composed of
a set of predicates, each of which corresponds to a program
in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠. In the general case, for any given input a correct
predicate must hold if the program is correct on the input
and not hold otherwise. Finding a correct predicate can thus
be framed as a decision problem.

3.2.1 Verification for Decision Phase. Determining cor-
rectness of a predicate requires a new verification query,
𝑉 𝐸𝑅𝐼𝐹 𝑌 𝑃 𝑅𝐸𝐷, and this query differs slightly depending
upon problem properties. The most general case for veri-
fication is where for each possible input for a program in
𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 the program is correct or incorrect. In this case,
finding predicate correctness can be achieved with a verifica-
tion query that asserts that when the predicate holds for a
given input the program is incorrect on this input and when
the predicate does not hold the program is correct on this
input. If this assertion holds the SMT solver returns SAT
and we can obtain a counterexample. Otherwise the solver
returns UNSAT, meaning that no example could be found
where the predicate mapped an input to a program for which
it was not correct. An example of the syntax for this call is
given in Figure 5.
2This procedure does not guarantee a minimal set, however, in practice
this is not a significant issue as larger sets of small terms are preferred.

(set-logic LIA)

;;Dictates the structure of the function to be
;;synthesized.
(synth-fun findIdx (
(x1 Int) (x2 Int) (k Int)) Int)

;;Declare variables in the problem statement;
(declare-var x1 Int)
(declare-var x2 Int)
(declare-var k Int)

;;Constraints dictating which index in the
;;array should be chosen, note that there
;;is an implication that x1 be strictly less than
;;x2 i.e. list must be sorted from x1 to xn.
(constraint (=> (< x1 x2) (=> (< k x1)
(= (findIdx x1 x2 k) 0))))
(constraint (=> (< x1 x2) (=> (> k x2)
(= (findIdx x1 x2 k) 2))))
(constraint (=> (< x1 x2)
(=> (and (> k x1) (< k x2))
(= (findIdx x1 x2 k) 1))))

(check-synth)

Figure 6: A specification for the array search 2 problem.

There are some cases for which there exists a single answer
output for each input or the input is correct for all possible
outputs. This property occurs often in problems with implied
preconditions. It holds for example on the array_search_n
problem where the array to be searched is implied to be
sorted. In these cases, we can soundly modify the call to
assert that when the predicate holds the program is incorrect
on a given input and when the predicate does not hold every
other program in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 is incorrect on a given input. The
advantage of this is the synthesizer is directed towards the
case where the implications holds rather than wasting time on
the trivial case where the implication does not hold and any
answer is correct. Together, these two verification queries are
sound with respect to all CLIA SyGus benchmarks proposed
for which CDGP is also sound.

3.2.2 Generating tests for decision problems. For CDGP to
evolve solutions towards a predicate input-output examples
must no longer consist of the input and expected program
output. Rather they must consist of the input and whether
the program corresponding to the predicate is correct for
the given input. Thus, on receipt of a counterexample from
𝑉 𝐸𝑅𝐼𝐹 𝑌 𝑃 𝑅𝐸𝐷, the input of this counterexample is evalu-
ated on the program. If the program’s output is the same as
the expected output we add test pair <input, true>, other-
wise we return test pair <input, false>. We henceforth call
the first of these types of tests a positive and the other a
negative.

GECCO ’20, July 8–12, 2020, Cancún, Mexico Thomas Welsch and Vitaliy Kurlin

Table 1: Parameters of evolutionary algorithm

Parameter Value
Number of Runs 10
Population Size 500

Maximum height of initial programs 5
Maximum height of trees inserted by mutation 5

Maximum number of generations 2 (Discovery) /20 (Decision)
Maximum run time in seconds 3600

Probability of mutation 0.5
Probability of crossover 0.5

Selection method Lexicase
Evolution method Generational

We can partially control which type of test to look for by
altering 𝑉 𝐸𝑅𝐼𝐹 𝑌 𝑃 𝑅𝐸𝐷. Consider the syntax in Figure 5.
If we set the 𝐿𝐻𝑆 to be false then only positive tests will
be found. Similarly, if we set the 𝑅𝐻𝑆 to be false then only
negative counterexamples will be found. By separating our
verification query into these two calls, one with 𝑅𝐻𝑆 false
and the other with 𝐿𝐻𝑆 false, we can choose to attempt
to add a positive or negative test if both calls return SAT.
Note that if both calls return UNSAT this is equivalent to
the full call returning UNSAT and thus this can be used as
a termination condition.

3.2.3 Algorithm. The algorithm for computing the predi-
cates in 𝑈𝑛𝑖𝑓 is given by Algorithm 2. The algorithm iterates
through the list 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 starting from the second element
and computes corresponding predicates for each. Note that
CDGP uses 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠𝑖 for the internal 𝑉 𝐸𝑅𝐼𝐹 𝑌 𝑃 𝑅𝐸𝐷 call,
which checks if the predicate correctly maps inputs to and
away from 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠𝑖. The termination of a successful run
occurs when 𝑈𝑛𝑖𝑓 computes a sufficient number of predicates
to unify 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 into correct.

3.3 Final Phase of STUN GP: Unification
Our Unification phase is a simple procedure that is linear time
with respect to the size of 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠. The procedure simply
constructs 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 by iterating through 𝑈𝑛𝑖𝑓 and 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠
mapping each predicate in 𝑈𝑛𝑖𝑓 to its corresponding program
in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠. This mapping is achieved through the if-than-else
construct ite in our grammar 𝐺 and the unmapped 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠
is left as the final else. This program takes the following
form where 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 and 𝑈𝑛𝑖𝑓 have been constructed by
Algorithms 1 and 2 respectively, 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 is of size n, 𝑈𝑛𝑖𝑓
is size n-1, and both are 0-indexed:
ite(Unif[0] Partials[1]
ite(Unif[1] Partials[2]
ite(...
ite(Unif[n-2] Partials[n-1] Partials[0])
)))

This procedure is sound given the construction of 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠
and 𝑈𝑛𝑖𝑓 is sound as 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 covers the input space, 𝑈𝑛𝑖𝑓
maps the inputs for each corresponding program in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠

to strictly cover inputs for which they are correct, and the
final else must be the input space covered by the unmapped
𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 program. Following unification we now have a full
program 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 constructed from grammar 𝐺 whose adher-
ence to 𝑆𝑝𝑒𝑐 we can check directly using the standard query
for a single program. We perform this verification call for
posterity at the end of a run.

4 EXPERIMENTS
To test the effectiveness of STUN GP we test it against a pair
of SyGus benchmark problems from the SyGus competition.
[3] Each problem has multiple versions with different arities,
ranging from an arity of 2 to an arity of 15, giving us in
total 28 benchmarks. We directly compare this to CDGP’s
top performing variant. We further discuss STUN GP’s per-
formance within the context of the most recently published
SyGus competition results and examine the possible impact
of a parallel implementation.

4.1 Configuration
Our program uses CDGP for both the Discovery phase and
the Decision phase, with the only difference in configuration
being the number of generations. The configuration is given
in Table 1.

The generation sizes for the Discovery phase is set to only
2 per CDGP. In practice this means a random population is
initialized, tests are generated through verification on this
population, and the best candidate in the next generation is
added to 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠. This does not allow the population much
time to evolve, but proved well suited to the benchmarks at
hand. The implications of this are discussed in the subsequent
section. The Decision phase’s size of 20 is still significantly
shorter than the original CDGP algorithm allowed, but we
found that trying shorter runs and restarting if the population
does not converge proved more effective than giving poor
performing initial populations many generations to converge.

Note that there is no maximum number of generations
for STUN GP overall and no timeout in any of the phases.
Rather, there is a global timeout of 3600 seconds in wall
clock time. The original CDGP’s configuration is identical to
the one given by [7] except that we allow max generations

Synthesis through Unification Genetic Programming GECCO ’20, July 8–12, 2020, Cancún, Mexico

Figure 7: Median time to synthesize on benchmarks. Entries >= 3600 represent time outs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

600

1,200

1,800

2,400

3,000

3,600

Function Arity

T
im

e
in

se
co

nd
s

Synthesis Time

STUN GP Array Search
STUN GP Max

CDGP Array Search
CDGP Max

Figure 8: Time Breakdown for max problem up to function arity 12 for STUN GP.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

400

800

1,200

1,600

2,000

Function Arity

T
im

e
in

se
co

nd
s

STUN GP Max Time Breakdown

Total Time
Decision Phase Time
Max Iteration Time

Max Run Time

to be up to 1000. In practice, this results in the algorithm
either converging on a perfect solution or timing out. The
SMT solver we interact with is Z3, a state-of-the-art SMT
solver supported by Microsoft. [8]

4.2 Benchmarks
The primary metric of the SyGus Competition is wall clock
time to synthesize and a benchmark is only considered solved
if a solution is synthesized with 3600 seconds wall clock time.
[3] The benchmarks we test against are the max_n and
array_search_n benchmarks with n ranging from 2 to 15.
The max_n problem requires synthesis of a function that
computes the maximum of n integer inputs. Informally the
array_search_n problem requires synthesis of a function that
computes the location where an element k can be inserted
into a sorted list of size n such that the list remains sorted.
The list is composed of the first n elements passed into the
function and if they are not sorted all possible outputs are
true. The arity of the max_n problem is n and the arity of

array_search_n is n+1. An example spec of array_search_n
where n is 2 is given in Figure 6.

The SyGus competition features different versions of the
max_n and array_search_n problems in their General Track
and their CLIA Track. The versions in the CLIA track’s
only preconditions on the structure of the function to be
synthesized are the number and type of inputs and the type
of return value. The versions in the General Track, on the
other, impose additional requirements on the structure that
can help guide synthesizers towards the syntax for a given
solution. The version in the CLIA track is more difficult, as
the syntactic search space is larger, and consequently this
is the version we test against. It is worth noting that while
these problems are trivial for a human programmer to solve
synthesis for higher arities has proven challenging. These
problems were not both solved up to an arity of 15 until the
2nd SyGus competition in 2015. [3]

GECCO ’20, July 8–12, 2020, Cancún, Mexico Thomas Welsch and Vitaliy Kurlin

4.3 Results
STUN GP and CDGP were run for 10 trials on each of our
benchmarks on a PC with an AMD Dual-Core processor. The
median of these trials for time to synthesize and size is given
in Figure 7. In instances where no solution was synthesized
the time is set to the max time of 3600.

From Figure 7 it can be seen that STUN GP is significantly
faster than CDGP as arity increases. STUN GP proved to
be capable of solving 25 of the 28 benchmarks, solving all of
the array_search_n benchmarks and solving up to arity 12
on the max_n problems. In contrast, CDGP only solves 8 of
the 28 benchmarks, with the time to solve exploding for both
problems as arity increases. The three failed benchmarks for
STUN GP are a slight disappointment, but this is partially
tied to increasing verification time overwhelming the run time
rather than the evolutionary method failing to converge. This
issue could be ameliorated with the parallel speedup discussed
below especially considering that all SyGus synthesizers that
use CEGIS face this bottleneck.

5 DISCUSSION
5.1 Parallel Potential
There is significant potential for parallelism with regards to
the Decision phase. Each program computed in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠 is
independent of the other and computing these concurrently
would lead to a theoretical linear time speed up with respect
to the number of programs in 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑠. To demonstrate the
significance of this we present Figure 8 which demonstrates
on the max_n that the Decision Phase dominates the total
time to solve. Consequently, while a gap still exists in perfor-
mance between state-of-the-art SyGus solvers [3] a parallel
implementation could further close this.

5.2 Discovery Phase
The problem of discovering terms covered by the Discovery
Phase was trivial for the benchmarks tested and took little
time as demonstrated in Figure 8 . Specifically, the correct
terms for each benchmark in any situation can be expressed
with an atomic term (e.g. x or 1) which limited the usefulness
of finding more complex terms over several generations. Going
forward, using enumerative methods for Discovery could
be a simpler approach. It would also be worth exploring
a modification of the Discovery phase that runs for more
generations and then parses multiple terms and predicates
out of the best solution. Multiple terms could then be added
to the query at once and the predicates associated to these
terms could be used to seed the populations in the Decision
phase.

6 CONCLUSION
Synthesis through Unification Genetic Programming (STUN
GP) represents a significant step forward towards applying
GP to the SyGus problem. Our immediate next step is to
produce a parallel implementation to see if the theoretical
speed up is achievable in practice. We also intend to integrate

recent research in the GP community with respect to using
Novelty Search as a diversity driver.[10][9] This approach
has demonstrated promising results in the general Program
Synthesis domain that might hold for the SyGus problem.

STUN GP builds on the excellent work of CDGP [11] in
integrating research from the Formal Methods community
into GP such that provably correct programs can be synthe-
sized. A good question is whether or not there are potential
benefits from GP research that can be integrated into tra-
ditional Formal Methods approaches to Program Synthesis.
GP’s inherent properties lends themselves to hybridization
with these methods. Such a hybridization could thus provide
a well motivated way to transform state-of-the-art determin-
istic solvers into stochastic ones that can exploit the corpus
of Genetic Programming to improve scalability. We consider
this to be a promising long term research direction.

The authors were supported by EPSRC, EP/R018472/1.

REFERENCES
[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin,

Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. IEEE.

[2] Rajeev Alur, Pavol Černỳ, and Arjun Radhakrishna. 2015. Synthe-
sis through unification. In International Conference on Computer
Aided Verification. Springer, 163–179.

[3] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-
Lezama. 2017. Sygus-comp 2017: Results and analysis. arXiv
preprint arXiv:1711.11438 (2017).

[4] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017.
Scaling enumerative program synthesis via divide and conquer.
In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 319–336.

[5] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-
Lezama. 2018. Search-based program synthesis. Commun. ACM
61, 12 (2018), 84–93.

[6] Clark Barrett, Christopher L Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli. 2011. Cvc4. In International Conference on
Computer Aided Verification. Springer, 171–177.

[7] Iwo Błądek, Krzysztof Krawiec, and Jerry Swan. 2018.
Counterexample-driven genetic programming: Heuristic program
synthesis from formal specifications. Evolutionary computation
26, 3 (2018), 441–469.

[8] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient
SMT solver. In International conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 337–
340.

[9] Lia Jundt and Thomas Helmuth. 2019. Comparing and combin-
ing lexicase selection and novelty search. In Proceedings of the
Genetic and Evolutionary Computation Conference. 1047–1055.

[10] Jonathan Kelly, Erik Hemberg, and Una-May O’Reilly. 2019. Im-
proving genetic programming with novel exploration-exploitation
control. In European Conference on Genetic Programming.
Springer, 64–80.

[11] Krzysztof Krawiec, Iwo Błądek, and Jerry Swan. 2017.
Counterexample-driven genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference. 953–
960.

[12] Michael O’Neill and Lee Spector. 2019. Automatic programming:
The open issue? Genetic Programming and Evolvable Machines
(2019), 1–12.

[13] Riccardo Poli, William B Langdon, Nicholas F McPhee, and
John R Koza. 2008. A field guide to genetic programming. Lulu.
com.

	Abstract
	1 Introduction
	2 Related Works and Background Theory
	2.1 Counterexample Guided Inductive Synthesis
	2.2 Counterexample-Driven Genetic Programming (CDGP)
	2.3 Synthesis through Unification (STUN)

	3 Synthesis through Unification Genetic Programming (STUN GP)
	3.1 First Phase of STUN GP: Discovery
	3.2 Second Phase of STUN GP: Decision
	3.3 Final Phase of STUN GP: Unification

	4 Experiments
	4.1 Configuration
	4.2 Benchmarks
	4.3 Results

	5 Discussion
	5.1 Parallel Potential
	5.2 Discovery Phase

	6 Conclusion
	References

