Supplementary materials

Improving rheumatoid arthritis comparative effectiveness research through causal inference principles: systematic review using a target trial emulation framework

Sizheng S Zhao, Houchen Lyu, Daniel H Solomon, Kazuki Yoshida

Search terms: Rheumatoid arthritis AND (Observational OR regist* OR real-world) AND (Comparative effectiveness OR effectiveness OR propensity) NOT (review OR cost-effective* OR JIA OR juvenile idiopathic arthritis).

Supplementary figure S1. Study selection flowchart.

We focused on design rather than reporting recommendations, as it precedes and impacts study conduct and reporting. Study design guidance from the Patient-Centred Outcomes Research Institute (PCORI) and International Society for Pharmacoeconomics and Outcomes Research (ISPOR) share many overlapping areas with each other and with target trial emulation [1–4]. Target trial emulation is unique in explicitly writing down two protocols, whereas the target trial is rarely characterised in other recommendations (supplementary Table S1). Note that this review used the target trial emulation framework retrospectively to appraise studies, and does not demonstrate its prospective implementation for design; worked examples of the latter and detailed descriptions can be found in references [3,5–7].

Supplementa	Supplementary Table S1. Comparison of design principles from target trial emulation and other sources.										
	Hernan et al. Target Trial Emulation [6,8]	PCORI Methodology Standards for Causal Inference Methods	ISPOR Good Research Practices for CER [2]								
Objective	Explicitly specifying the target trial so that causal analyses of observational data can be evaluated with respect to how well they emulate it. - Organizes analytic approaches dispersed throughout the literature - Provides a structured process for critical appraisal of observational studies - Helps avoid common methodologic pitfalls	Set standards required for the conduct of scientifically valid patient-centred outcomes research that focuses on causal inference.	Ensure internal validity and improve causal inference from observational studies								
Conceptuali zation	Specify the aims of the target and emulated trials, e.g., using the PICOTS framework	Specify the causal model underlying the research question, informed by the PICOTS framework. Determine whether and how the study can handle bias and confounding and the extent to which valid estimates of the effects of an intervention can be generated.	Define causal diagrams (directed acyclic graphs (DAGs)) before starting analysis, to declare a priori assumptions about causal relationships between variables under study and consider whether the observed data are sufficient to control for confounding.								
Eligibility	Define clear eligibility criteria that would be used in a hypothetical target trial. Criteria cannot include post-baseline events (e.g., patients with insufficient follow-up), which may introduce bias.	Specify eligibility criteria for inclusion in the study population and analysis, based on information at baseline. If patients are excluded, address potential for and impact of selection bias on validity of results.	Eligibility criteria can be used to create homogenous study cohorts with the primary intention of reducing confounding, particularly when there are variables that influence prescribing decisions that are not available in the data.								
Treatment strategies	The emulated target trial will typically be a pragmatic trial (e.g., cannot emulate a placebo-controlled trial with tight monitoring and enforcement of adherence to the study protocol). Eligible individuals who did not start interventions of interest are considered ineligible. Individuals are then assigned to the trial (treatment) strategy or strategies (note that multiple assignment is explicitly allowed).	No recommendation regarding treatment strategies, except to describe intervention and comparators as per PICOTS framework.	No recommendation regarding treatment strategies, except that exposure misclassification should be considered at the design stage, including how they could influence the acceptance or rejection of the null hypothesis.								

	Comparisons of initiators avoid biases		
Assignment procedures	Only pragmatic target trials can be emulated (i.e., without blind assignment). To emulate random assignment of interventions at baseline, we need to adjust for all confounding factors required to ensure comparability (exchangeability) of the groups defined by initiation of the treatment strategies. Confounding bias may be reduced by using active comparators and tested using "reverse target trials" (i.e., users are assigned to continue or stop the treatment) or control outcomes with no expected causal effect.	No specific recommendations about assignment. Considerations for using propensity scores and instrumental variables are given.	Confounding should be considered at the conceptual stage, and whether the observed data are sufficient to control for confounding. Confounding may be reduced using new-user and active comparator designs, propensity score trimming, and/or sensitivity analysis exploring outcomes with no expected causal effect.
Follow-up period	Successful target trial emulation requires a proper definition of start of follow-up, which should align with meeting eligibility criteria and treatment assignment. This may not be straightforward, but solutions are available. End should be clearly defined (e.g., at loss to follow-up or 1 year after baseline).	No specific recommendations except to measure potential confounders before start of exposure	No specific recommendations except that the exposure time-window should not be based on the actual drug intake, but rather on the time period during which the medication may cause the outcome and the duration of the disease process.
Outcome	Outcomes begin to be measured after start of follow-up. Note that it may not be possible to emulate target trial with systematic and blind outcome ascertainment (i.e., without knowledge of treatment history) using observational data, except when outcome ascertainment cannot be affected by treatment history (e.g., death ascertained from an independent data source).	Define the timing of the outcome assessment relative to the initiation and duration of exposure, to reduce potential sources of bias arising from inappropriate study design choices (e.g., immortal time bias)	No recommendation regarding the timing of outcome assessment. However, outcome misclassification should be considered at the design stage, including how they could influence the acceptance or rejection of the null hypothesis.
Causal contrast(s)	Intention-to-treat effect (i.e., effect of being assigned to the treatment strategies	No specific recommendations	No specific recommendations

of interest	regardless of whether it is followed) or the per-protocol effect (i.e., effect of following the treatment strategies).		
Analysis	An intention-to-treat analysis is rarely possible using observational data. Often the closest analogue is a comparison of initiators of the different treatment strategies, assuming adequate adjustment for baseline confounders. To estimate the per-protocol effect, adjustment for baseline and post-baseline (e.g., adjusting for loss to follow-up) confounding is necessary.	No equivalent recommendations	No equivalent recommendations
Additional stages			Conclusions should be compared to equivalent randomised trials; caution should be applied if it conflicts with trial evidence or if effect sizes are small

Supplementary Tab	Supplementary Table S2. Summary of observational study designs for each component of the target trial emulation framework. Design limitations are underlined and summarised in the final column.							
Study	1.Eligibility criteria	2.Treatment strategies	3.Assignment procedures	4.Follow-up period	5.Outcome	6.Causal contrast of interest	7.Analysis plan	Summary of design issues identified
Blom 2011 [9]	ACR criteria RA failing 2 TNFi with DAS28≥3.2. with ≥12m follow-up <u>Analysis implicitly</u> <u>excluded those</u> without follow-up at <u>each time point.</u>	1) RTX 2) Any TNFi as 3 rd bDMARD	Unadjusted comparison: Statistical selection of confounders found no significant univariate association with treatment arm.	12 months Follow-up schedule at discretion of rheumatologist	Course of DAS28 every 3m over 12m	ITT – clearly declared	Linear mixed effect model. No covariate adjustment. <u>Complete-case</u> <u>analysis</u>	 Post-baseline data in eligibility criteria. Confounding by indication. Solely statistical selection of confounders.
Boyadzhieva 2018 [10]	ACR criteria RA with no prior bDMARD use and DAS28>5.1 <u>Analysis implicitly</u> <u>excluded those</u> without follow-up	1) RTX 2) TCZ 3) any TNFi as 1 st bDMARD Discontinuation censored	Unadjusted pairwise comparisons	12 months	CDAI, SDAI, DAS28 at 6 and 12 months	Per-protocol	t-test <u>Complete-case</u> analysis	 Naïve PP with potential for selection bias. Confounding by indication.
Choy 2017 [11]	ACR criteria RA with no prior bDMARD use <u>Analysis implicitly</u> <u>excluded those</u> <u>without follow-up at</u> <u>24wks</u>	1) TCZ (IV) 2) any TNFi as 1 st bDMARD Discontinuation censored	Pre-defined confounders	12 months	Change in DAS28 at 24wks Sample size justified	Per-protocol	ANCOVA; sensitivity analysis adjusting for propensity score. <u>Complete-case</u> <u>analysis;</u> MI as sensitivity analysis	1. Naïve PP analysis with potential for selection bias.
Emery 2015 [12]	RA failing 1 TNFi With <u>follow-up</u> <u>DAS28 at 6m</u>	1) RTX 2) Any TNFi as 2 nd bDMARD	Statistical selection of confounders for association with treatment arm. Post baseline variables included (use of co- medications in the first 6m of the study).	12 months with visits as indicated by routine clinical practice regardless of treatment discontinuation.	Mean change in DAS28 between baseline and 6±2 months Sample size justified	ITT; "as observed" sensitivity analysis	ANCOVA for treatment strategies adjusting for baseline DAS28 and unbalanced baseline characteristics; sensitivity analysis adjusting for propensity score. <u>Complete-case</u> analysis	 Post-baseline data in eligibility criteria. Naïve ITT with potential for selection bias. Solely statistical selection of confounders.

Finckh 2007 [13]	RA failing ≥1 TNFi With <u>≥1 follow-up at</u> <u>12m</u> Excluded patients wishing to switch due to personal preference or have lymphoma	1) RTX 2) any TNFi as 2 nd or 3 rd bDMARD censored observations after interruption of TNFi treatment or re- treatment with RTX	Statistical selection of confounders using stepwise selection for association with treatment arm. Baseline disease activity not included.	<u>Indefinite</u>	Change in DAS28 over time	Per-protocol	Linear mixed effect model <u>Complete-case</u> <u>analysis</u>	 Post-baseline data in eligibility criteria. Naïve PP with potential for selection bias. Solely statistical selection of confounders. Undefined follow-up period.
Finckh 2010 [14]	RA failing ≥1 TNFi With <u>≥1 follow-up at</u> <u>12m</u> Excluded patients with lymphoma	1) RTX 2) any TNFi as 2 nd or 3 rd bDMARD censored observations after interruption of TNFi treatment or re- treatment with RTX	Pre-defined confounders	<u>Indefinite</u>	Change in DAS28 over time	Per-protocol	Linear mixed models with PS stratification. <u>Complete-case</u> <u>analysis</u>	 Naïve PP with potential for selection bias. Undefined follow-up period.
Finckh 2012 [15]	RA failing ≥1 TNFi With <u>≥1 follow-up</u> <u>radiograph</u> Excluded bio-naïve and those with lymphoma.	1) RTX 2) any TNFi as 2 nd , 3 rd or 4 th bDMARD Discontinuation censored	Pre-defined confounders	<u>Indefinite</u>	Change in Ratigen erosion score over time	ITT – clearly declared; per-protocol as sensitivity analysis	Linear mixed effect model <u>Complete-case</u> <u>analysis</u>	 Post-baseline data in eligibility criteria. Naïve ITT/PP with potential for selection bias. Undefined follow-up period.
Frisell 2019 [16]	RA with no prior bDMARD use or failing 1 TNFi within 1 year	 ABA RTX TCZ any TNFi Stratified analysis as 1st bDMARD; separate analysis as 2nd bDMARD. Biosimilar switch and discontinuation 	Confounders selected if differed significantly between treatments, significant predictors of response, or expert opinion.	12m	Proportion on therapy and with good response (good EULAR response AND HAQ improvement >0.2 AND 0 swollen/tender joints AND CDAI remission) at 3 and 12m	Per-protocol Sensitivity analyses using complete case and extreme imputation (as good or poor responders) declared as ITT	Linear models. Missing outcomes multiple imputation.	1. Naïve PP with potential for selection bias.

		due to remission permitted. Other discontinuation and emigration were censored.			(equivalent to LUNDEX)			
Gomez-Reino 2012 [17]	RA failing ≥1 TNFi With follow-up at 6, 9, 12m	1) RTX 2) any TNFi as 2 nd or subsequent bDMARD.	Pre-defined confounders	12 months	Change in DAS28 and HAQ at 6, 9 and 12m compared to baseline	ΠΤ	Linear mixed models with PS stratification <u>Complete-case</u> <u>analysis of different</u> <u>subsets at each</u> <u>time point</u>	1. Naïve ITT with potential for selection bias.
Gottenberg 2019 [18]	ACR criteria RA with no prior ABA/RTX/TCZ use or failing any number of prior TNFi, <u>with ≥24</u> <u>month follow-up</u> contraindications to any of the three bDMARDs	1) ABA (IV) 2) RTX 3) TCZ (IV) as 2 nd or subsequent bDMARD	Pre-defined confounders	24 months	EULAR response at 6, 12, 24m	ΠΤ	Weighted GEE. worst case (non- response) imputation for missing	1. Post-baseline data in eligibility criteria.
Grøn 2019 [19]	RA with no prior bDMARD use	1) ABA 2) CZP 3) INF (CT-P13) as 1 st bDMARD	Pre-defined confounders	12 months	DAS28 remission at 6 and 12m	ITT – clearly declared	Logistic regression. Missing outcome imputed with best (all responded) and worst case (non- response) scenario.	None
Harrold 2015 [20]	RA failing ≥1 TNFi but no prior bDMARD of other classes, not in CDAI remission at baseline. <u>With follow-up</u> <u>assessments at 6 or</u> <u>12m</u>	1) ABA 2) any TNFi as 2 nd or subsequent bDMARD	Pre-defined confounders	12 months	Change in CDAI at 6m and 12m	Π	Generalised linear latent and mixed models with PS matching Discontinuation imputed using LOCF.	1. Naïve ITT with potential for selection bias.

Harrold 2015 [21]	RA failing ≥1 TNFi, with CDAI>10. <u>With ≥1 assessment</u> <u>between baseline</u> and 1yr and follow- <u>up at 1y</u> Excluded lymphoma	1) RTX 2) any TNFi as 2 nd or subsequent bDMARD; separate analysis stratified by number of prior bDMARDs	Statistical selection of confounders for propensity score trimming, then pre- defined confounder for outcome models	12 months	CDAI low disease activity or remission at 12m	IΠ	Logistic regression Discontinuation imputed as non- response.	1. Naïve ITT with potential for selection bias.
Harrold 2016 [22]	RA failing ≥1 TNFi, have not used ABA/TCZ with CDAI>10. With follow-up CDAI at 6m	1) ABA 2) TCZ Stratified analysis as 2 nd bDMARD; separate analysis as 3 rd or subsequent bDMARD	Pre-defined confounders	6 months	Change in CDAI at 6m	ПТ	Linear regression with PS matching. Discontinuation imputed using LOCF and nonresponse.	1. Naïve ITT with potential for selection bias.
Harrold 2018 [23]	RA failing ≥1 TNFi, CDAI>10 <u>With follow-up at 6m</u>	1) TCZ monotherapy 2) any TNFi+MTX dual therapy as 2 nd or subsequent bDMARD Discontinuation censored	Pre-defined confounders	6 months	Change in CDAI	ΠΤ	Mixed effect models with PS trimmed population. Imputation with LOCF and non- response after artificial censoring.	 Post-baseline data in eligibility criteria. Naïve ITT with potential for selection bias.
Harrold 2019 [24]	ACPA positive RA with no prior TNFi use, or failing any number of TNFis, <u>With follow-up at 6m</u>	1) ABA 2) any TNFi Stratified analysis by number of prior TNFi Discontinuation censored.	Pre-defined confounders	6 months	Change in CDAI at 6 months	Per-protocol	Test of mean difference in PS matched group CDAI at switch was carried forward to 6m	1. Potential for selection bias
lannone 2018 [25]	RA with no prior bDMARD use or failing any number of bDMARDs <u>Analysis implicitly</u> <u>excluded those</u> <u>without follow-up at</u> each time point	1) ABA 2) TCZ 3) any TNFi <u>as 1st or subsequent</u> <u>bDMARD</u>	Active comparator with similar indications. No further attempt for confounding adjustment.	24 months	DAS28 remission at 6, 12, 18, 24 months	ITT	chi-squared test <u>Complete-case</u> analysis	 Heterogenous eligibility (bDMARD naïve and experienced). Naïve ITT with potential for selection bias. Confounding by indication.

Jørgensen 2015	RA with no prior	monotherapy of	Unadjusted	6 months	CDAI remission at	Causal contrast	LUNDEX - No	1. Confounding by
[26]	bDMARD use or	1) ABA	proportions.		6m using LUNDEX	undefinable due	statistical	indication.
	failing 1 or 2	2) RTX	·		0	to unclear	comparison	2. Causal contrast unclear.
	bDMARDs	3) TCZ	Several baseline			treatment	•	3. Naïve PP with potential
		4) any TNFi	characteristics			initiation.	Complete-case	for selection bias.
	Analysis implicitly	.,,	unbalanced				analysis	
	excluded those	Both monotherapy	between treatment			Per-protocol (in	<u></u>	
	without follow-up	initiators and those	groups, including			incident users) –		
		who stopped	the number of prior			clearly declared		
		combination therapy	bDMARDs					
		were included.	<u></u>					
		Later stratified by						
		incident/prevalent						
		users.						
		Discontinuation						
		censored						
Jørgensen 2017	RA with no prior	monotherapy of	Unadiusted pairwise	6 months	EQ5D at 6 months	Per-protocol –	Kruskal Wallis test	1. Heterogenous eligibility.
[27]	bDMARD use or	1) ABA	comparisons.			clearly declared		2. Confounding by
	failing any number of	2) RTX	<u> </u>			,	Complete-case	indication.
	bDMARDs	3) TCZ	Several baseline				analysis	3. Naïve PP with potential
		4) any TNFi	characteristics					for selection bias.
	Analysis implicitly	, ,	unbalanced					
	excluded those	As 1 st or subsequent	between treatment					
	without follow-up	bDMARD	groups, including					
			the number of prior					
		Discontinuation	bDMARDs					
		censored						
Kekow 2012 [28]	RA failing 1 TNFi,	1) RTX	Unadjusted pairwise	6 months	Change in DAS28 at	ITT	t-test	1. Post-baseline data in
	DAS28≥3.2	2) any TNFi	comparison		6m			eligibility criteria.
							Complete-case	2. Naïve ITT with potential
	With follow-up	as 2 nd bDMARD					<u>analysis</u>	for selection bias.
	DAS28 at 6m						-	
Kihara 2017 [29]	RA with no prior	1) TCZ (IV)	Statistical selection	6 months	EULAR and DAS28	ITT	Weighted	none
	bDMARD use with	2) any TNFi	of confounders for		remission at 6m		generalised linear	
	DAS28>5.2		association with				models.	
		as 1 st bDMARD	treatment arm and					
			potential predictors				Multiple imputation	
			of outcome				for missing data.	

Lauper 2018 [30]	RA failing ≥1 bDMARD	1) TCZ 2) any TNFi as 2 nd or subsequent bDMARD	Pre-defined confounders Unadjusted proportions	Indefinite 1 year for binary outcome	Change in CDAI over time Binary CDAI threshold at 1 year using LUNDEX	ΠΤ	Linear mixed models. Single imputation for missing outcome No statistical comparison	 Naïve ITT with potential for selection bias. Undefined follow-up period. Confounding by indication.
Leffers 2011 [31]	ACR criteria RA with no prior bDMARDs use or failing ≥1 bDMARDs <u>With ≥1 follow-up at</u> <u>48w</u>	1) ABA 2) TCZ <u>as 1st or subsequent</u> <u>bDMARD</u> Discontinuation censored	No statistical comparison made	<u>Indefinite</u>	Change in DAS28 over time	Per-protocol	No statistical comparison <u>Complete-case</u> <u>analysis</u>	 Post-baseline data in eligibility criteria. Heterogenous eligibility (bDMARD naïve and experienced). Naïve PP with potential for selection bias. Undefined follow-up period.
Li 2017 [32]	RA failing etanercept as the 1 st bDMARD <u>With continued use</u> of study drug ≥1y and follow-up visit at ≥1y	1) ABA 2) TCZ 3) any TNFi as 2 nd bDMARD	Pre-defined confounders	<u>Undefined</u> period, at least 1 year	EULAR responses and change in CDAI	ΙΤΤ	Linear and logistic regression <u>Complete-case</u> <u>analysis</u>	 Post-baseline data in eligibility criteria. Naïve ITT with potential for selection bias. Undefined follow-up period.
Pascart 2016 [33]	ACR criteria RA failing any number of bDMARDs as long as the last one was ABA/RTX/TCZ Analysis implicitly excluded those without follow-up	1) ABA 2) TCZ 3) RTX as 2 nd or subsequent bDMARD	Baseline DAS28 adjusted	12 months	Percentage change in DAS28 at 6 and 12m	ITT	ANCOVA <u>Complete-case</u> analysis	 Naïve ITT with potential for selection bias. Confounding by indication.
Romao 2015 [34]	ACR criteria RA with no prior bDMARD use or failing any number of bDMARDs, <u>continuing treatment</u> for ≥6m With follow-up at 6m	1) TCZ 2) any TNFi Stratified analysis as 1 st bDMARD; separate analysis as 2 nd or subsequent bDMARD	Stepwise then change-in-outcome selection of confounders for association with outcome; PS (pre-defined variables without	6 months	DAS28 remission at 6 months	ITT	Logistic regression. PS use for matching and outcome regression. <u>Complete-case</u> <u>analysis</u>	 Post-baseline data in eligibility criteria. Naïve ITT with potential for selection bias.

			significant missing data)					
Santos-Faria 2019 [35]	RA failing 1 TNFi with baseline assessments <u>Analysis implicitly</u> <u>excluded those</u> without follow-up	1) RTX 2) TCZ 3) any TNFi as 2 nd bDMARD Discontinuation censored	Unadjusted proportions	24 months	Remission/low disease activity using CDAI, SDAI, DAS28 at 6, 12, 24m using LUNDEX	Per-protocol	LUNDEX - No statistical comparison <u>Complete-case</u> <u>analysis</u>	 Naïve PP with potential for selection bias. Confounding by indication.
Soliman 2012 [36]	RA failing 1 TNFi <u>With follow-up</u> <u>DAS28 and/or HAQ at</u> <u>6m</u>	1) RTX 2) any TNFi as 2 nd bDMARD	Selection for baseline characteristics that differed (presumed statistically) between the two treatment arms	6 months	EULAR response and HAQ improvement at 6m. Further switches within 6 months constituted composite failure. Sample size justified.	ΙΤΤ	Logistic models adjusting for PS <u>Complete-case</u> <u>analysis</u>	 Post-baseline data in eligibility criteria. Naïve ITT with potential for selection bias. Solely statistical selection of confounders.
Torrente-Segarra 2016 [37]	ACR criteria RA failing 1 TNFi <u>Analysis implicitly</u> <u>excluded those</u> <u>without follow-up</u>	1) RTX 2) any TNFi as 2 nd bDMARD	Active comparator with similar indications. No further attempt for confounding adjustment.	6 months	DAS28 and EULAR response at 6m	Per-protocol	'Cochran test' <u>Unclear if</u> <u>discontinuation was</u> <u>counted as non-</u> <u>response</u> <u>Complete-case</u> <u>analysis</u>	 Confounding by indication. Causal contrast unclear.
Walker 2016 [38]	RA failing RTX starting the subsequent bDMARD within 6 months of last RTX infusion <u>With 6m follow-up</u>	1) ABA 2) TCZ 3) any TNFi <u>After any number (1</u> <u>to >4) of prior</u> <u>bDMARDs as long as</u> <u>the most recent was</u> <u>RTX</u>	Pre-defined confounders	6 months	Change in DAS28, CDAI, HAQ at 6m	ITT	Linear regression <u>Complete-case</u> <u>analysis</u>	 Heterogenous eligibility (bDMARD naïve and experienced). Naïve ITT with potential for selection bias.

Yoshida 2011 [39]	RA with no prior	1) TCZ	Statistical selection	6 months	DAS28 remission	Per-protocol	Linear mixed	1. Post-baseline data in
	bDMARD use or	2) any TNFi	of confounders		and Boolean		models.	eligibility criteria.
	failing 1 to 2				remission at 6m			2. Naïve PP with potential
	bDMARDs	Stratified analysis as					LOCF for those with	for selection bias.
		1 st bDMARD;					follow-up <6	3. Solely statistical
	With follow-up at 6m	separate analysis as					months.	selection of confounders.
		2 nd or 3 rd bDMARD						
		Discontinuation						
		censored						
For item 2, treatment strategies implied initiation of listed drugs; almost all studies permitted concurrent use of other non-bDMARDs. Where discontinuation was censored, this implied that analysis was for								
per-protocol effe	ct.							

References

- 1. PCORI Methodology Standards [Internet]. 2015 [cited 2019 Oct 9]. Available from: https://www.pcori.org/research-results/about-our-research/research-methodology/pcorimethodology-standards
- Cox E, Martin BC, Van Staa T, Garbe E, Siebert U, Johnson ML. Good research practices for comparative effectiveness research: approaches to mitigate bias and confounding in the design of nonrandomized studies of treatment effects using secondary data sources: the International Society for Pharmacoeconomics and Outcomes Research Good Research Practices for Retrospective Database Analysis Task Force Report--Part II. Value Health J Int Soc Pharmacoeconomics Outcomes Res. 2009 Dec;12(8):1053–61.
- 3. Hernan MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. Am J Epidemiol. 2016 Apr 15;183(8):758–64.
- 4. Hernan MA, Sauer BC, Hernandez-Diaz S, Platt R, Shrier I. Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses. J Clin Epidemiol. 2016 Nov;79:70–5.
- 5. García-Albéniz X, Hsu J, Bretthauer M, Hernán MA. Effectiveness of screening colonoscopy to prevent colorectal cancer among Medicare beneficiaries aged 70–79 years: a prospective observational study. Ann Intern Med. 2017 Jan 3;166(1):18.
- 6. Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available: Table 1. Am J Epidemiol. 2016 Apr 15;183(8):758–64.
- 7. Danaei G, García Rodríguez LA, Cantero OF, Logan RW, Hernán MA. Electronic medical records can be used to emulate target trials of sustained treatment strategies. J Clin Epidemiol. 2018 Apr;96:12–22.
- 8. García-Albéniz X, Hsu J, Hernán MA. The value of explicitly emulating a target trial when using real world evidence: an application to colorectal cancer screening. Eur J Epidemiol. 2017;32(6):495–500.
- 9. Blom M, Kievit W, Donders ART, den Broeder AA, Straten VHHP, Kuper I, et al. Effectiveness of a third tumor necrosis factor-alpha-blocking agent compared with rituximab after failure of 2 TNF-blocking agents in rheumatoid arthritis. J Rheumatol. 2011;38(11):2355–61.
- Boyadzhieva V, Stoilov N, Ivanova M, Petrova G, Stoilov R. Real World Experience of Disease Activity in Patients With Rheumatoid Arthritis and Response to Treatment With Varios Biologic DMARDs. Front Pharmacol [Internet]. 2018 Nov 20 [cited 2020 Jan 21];9. Available from: https://www.frontiersin.org/article/10.3389/fphar.2018.01303/full
- 11. Choy EH, Bernasconi C, Aassi M, Molina JF, Epis OM. Treatment of Rheumatoid Arthritis With Anti-Tumor Necrosis Factor or Tocilizumab Therapy as First Biologic Agent in a Global Comparative Observational Study: Comparative Effectiveness of Tocilizumab and TNF Inhibitors in RA. Arthritis Care Res. 2017 Oct;69(10):1484–94.
- 12. Emery P, Gottenberg JE, Rubbert-Roth A, Sarzi-Puttini P, Choquette D, Taboada VMM, et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann Rheum Dis. 2015;74(6):979–84.
- 13. Finckh A, Ciurea A, Brulhart L, Kyburz D, Moller B, Dehler S, et al. B cell depletion may be more effective than switching to an alternative anti-tumor necrosis factor agent in rheumatoid arthritis

patients with inadequate response to anti-tumor necrosis factor agents. Arthritis Rheum. 2007 May;56(5):1417–23.

- Finckh A, Ciurea A, Brulhart L, Moller B, Walker UA, Courvoisier D, et al. Which subgroup of patients with rheumatoid arthritis benefits from switching to rituximab versus alternative anti-tumour necrosis factor (TNF) agents after previous failure of an anti-TNF agent? Ann Rheum Dis. 2010 Feb;69(2):387–93.
- 15. Finckh A, Moller B, Dudler J, Walker UA, Kyburz D, Gabay C, et al. Evolution of radiographic joint damage in rituximab-treated versus TNF-treated rheumatoid arthritis cases with inadequate response to TNF antagonists. Ann Rheum Dis. 2012;71(10):1680–5.
- 16. Frisell T, Dehlin M, Di Giuseppe D, Feltelius N, Turesson C, Askling J, et al. Comparative effectiveness of abatacept, rituximab, tocilizumab and TNFi biologics in RA: results from the nationwide Swedish register. Rheumatology [Internet]. 2019 Jan 23 [cited 2019 Jan 23]; Available from: https://academicoup-com.liverpool.idm.oclc.org/rheumatology/advancearticle/doi/10.1093/rheumatology/key433/5298542
- 17. Gomez-Reino JJ, Maneiro JR, Ruiz J, Roselló R, Sanmarti R, Romero AB. Comparative effectiveness of switching to alternative tumour necrosis factor (TNF) antagonists versus switching to rituximab in patients with rheumatoid arthritis who failed previous TNF antagonists: the MIRAR Study. Ann Rheum Dis. 2012 Nov;71(11):1861–4.
- 18. Gottenberg J-E, Morel J, Perrodeau E, Bardin T, Combe B, Dougados M, et al. Comparative effectiveness of rituximab, abatacept, and tocilizumab in adults with rheumatoid arthritis and inadequate response to TNF inhibitors: prospective cohort study. BMJ. 2019 Jan 24;l67.
- Grøn KL, Glintborg B, Nørgaard M, Mehnert F, Østergaard M, Dreyer L, et al. Comparative Effectiveness of Certolizumab Pegol, Abatacept, and Biosimilar Infliximab in Patients With Rheumatoid Arthritis Treated in Routine Care: Observational Data From the Danish DANBIO Registry Emulating a Randomized Trial. Arthritis Rheumatol Hoboken NJ. 2019 Dec;71(12):1997–2004.
- 20. Harrold LR, Reed GW, Kremer JM, Curtis JR, Solomon DH, Hochberg MC, et al. The comparative effectiveness of abatacept versus anti-tumour necrosis factor switching for rheumatoid arthritis patients previously treated with an anti-tumour necrosis factor. Ann Rheum Dis. 2015;74(2):430–6.
- 21. Harrold LR, Reed GW, Magner R, Shewade A, John A, Greenberg JD, et al. Comparative effectiveness and safety of rituximab versus subsequent anti-tumor necrosis factor therapy in patients with rheumatoid arthritis with prior exposure to anti-tumor necrosis factor therapies in the United States Corrona registry. Arthritis Res Ther. 2015;17(101154438):256.
- 22. Harrold LR, Reed GW, Solomon DH, Curtis JR, Liu M, Greenberg JD, et al. Comparative effectiveness of abatacept versus tocilizumab in rheumatoid arthritis patients with prior TNFi exposure in the US Corrona registry. Arthritis Res Ther [Internet]. 2016 Dec [cited 2019 Jun 6];18(1). Available from: http://arthritis-research.biomedcentral.com/articles/10.1186/s13075-016-1179-7
- 23. Harrold LR, Reed GW, Best J, Zlotnick S, Kremer JM. Real-world Comparative Effectiveness of Tocilizumab Monotherapy vs. Tumor Necrosis Factor Inhibitors with Methotrexate in Patients with Rheumatoid Arthritis. Rheumatol Ther. 2018 Dec;5(2):507–23.
- 24. Harrold LR, Litman HJ, Connolly SE, Alemao E, Kelly S, Rebello S, et al. Comparative Effectiveness of Abatacept Versus Tumor Necrosis Factor Inhibitors in Patients with Rheumatoid Arthritis Who Are Anti-CCP Positive in the United States Corrona Registry. Rheumatol Ther. 2019 Jun;6(2):217–30.

- 25. Iannone F, Ferraccioli G, Sinigaglia L, Favalli EG, Sarzi-Puttini P, Atzeni F, et al. Real-world experience of tocilizumab in rheumatoid arthritis: sub-analysis of data from the Italian biologics' register GISEA. Clin Rheumatol. 2018 Feb;37(2):315–21.
- 26. Jorgensen TS, Kristensen LE, Christensen R, Bliddal H, Lorenzen T, Hansen MS, et al. Effectiveness and drug adherence of biologic monotherapy in routine care of patients with rheumatoid arthritis: a cohort study of patients registered in the Danish biologics registry. Rheumatol Oxf Engl. 2015;54(12):2156–65.
- 27. Jørgensen TS, Turesson C, Kapetanovic M, Englund M, Turkiewicz A, Christensen R, et al. EQ-5D utility, response and drug survival in rheumatoid arthritis patients on biologic monotherapy: A prospective observational study of patients registered in the south Swedish SSATG registry. Kuwana M, editor. PLOS ONE. 2017 Feb 2;12(2):e0169946.
- 28. Kekow J, Muller-Ladner, Schulze-Koops. Rituximab is more effective than second anti-TNF therapy in rheumatoid arthritis patients and previous TNFα blocker failure. Biol Targets Ther. 2012 Jul;191.
- 29. Kihara M, Davies R, Kearsley-Fleet L, Watson KD, Lunt M, Symmons DPM, et al. Use and effectiveness of tocilizumab among patients with rheumatoid arthritis: an observational study from the British Society for Rheumatology Biologics Register for rheumatoid arthritis. Clin Rheumatol. 2017 Feb;36(2):241–50.
- 30. Lauper K, Nordström DC, Pavelka K, Hernández MV, Kvien TK, Kristianslund EK, et al. Comparative effectiveness of tocilizumab versus TNF inhibitors as monotherapy or in combination with conventional synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis after the use of at least one biologic disease-modifying antirheumatic drug: analyses from the pan-European TOCERRA register collaboration. Ann Rheum Dis. 2018 Sep;77(9):1276–82.
- 31. Leffers HC, Ostergaard M, Glintborg B, Krogh NS, Foged H, Tarp U, et al. Efficacy of abatacept and tocilizumab in patients with rheumatoid arthritis treated in clinical practice: results from the nationwide Danish DANBIO registry. Ann Rheum Dis. 2011 Jul 1;70(7):1216–22.
- 32. Li N, Betts KA, Messali AJ, Skup M, Garg V. Real-world Effectiveness of Biologic Disease-modifying Antirheumatic Drugs for the Treatment of Rheumatoid Arthritis After Etanercept Discontinuation in the United Kingdom, France, and Germany. Clin Ther. 2017 Aug;39(8):1618–27.
- Pascart T, Philippe P, Drumez E, Deprez X, Cortet B, Duhamel A, et al. Comparative efficacy of tocilizumab, abatacept and rituximab after non-TNF inhibitor failure: results from a multicentre study. Int J Rheum Dis. 2016 Nov;19(11):1093–102.
- 34. Romao VC, Santos MJ, Polido-Pereira J, Duarte C, Nero P, Miguel C, et al. Comparative Effectiveness of Tocilizumab and TNF Inhibitors in Rheumatoid Arthritis Patients: Data from the Rheumatic Diseases Portuguese Register, Reuma.pt. BioMed Res Int. 2015;2015(101600173):279890.
- 35. Santos-Faria D, Tavares-Costa J, Eusébio M, Leite Silva J, Ramos Rodrigues J, Sousa-Neves J, et al. Tocilizumab and rituximab have similar effectiveness and are both superior to a second tumour necrosis factor inhibitor in rheumatoid arthritis patients who discontinued a first TNF inhibitor. Acta Reumatol Port. 2019 Jun;44(2):103–13.
- 36. Soliman MM, Hyrich KL, Lunt M, Watson KD, Symmons DPM, Ashcroft DM, et al. Effectiveness of rituximab in patients with rheumatoid arthritis: observational study from the British Society for Rheumatology Biologics Register. Griffiths I ID Panayi G, Scott DG, Bamji A, Bax D, Scott DL, Peters S, Taylor N, Hogg M, Tracey A, McGrother K, Silman A, editor. J Rheumatol. 2012;39(2):240–6.

- 37. Torrente-Segarra V, Acosta Pereira A, Morla R, Ruiz JM, Clavaguera T, Figuls R, et al. VARIAR Study: Assessment of Short-term Efficacy and Safety of Rituximab Compared to an Tumor Necrosis Factor Alpha Antagonists as Second-line Drug Therapy in Patients With Rheumatoid Arthritis Refractory to a First Tumor Necrosis Factor Alpha Antagonist. Reumatol Clínica Engl Ed. 2016 Nov;12(6):319–22.
- 38. Walker UA, Jaeger VK, Chatzidionysiou K, Hetland ML, Hauge E-M, Pavelka K, et al. Rituximab done: what's next in rheumatoid arthritis? A European observational longitudinal study assessing the effectiveness of biologics after rituximab treatment in rheumatoid arthritis. Rheumatology. 2016 Feb;55(2):230–6.
- 39. Yoshida K, Tokuda Y, Oshikawa H, Utsunomiya M, Kobayashi T, Kimura M, et al. An observational study of tocilizumab and TNF- inhibitor use in a Japanese community hospital: different remission rates, similar drug survival and safety. Rheumatology. 2011 Nov 1;50(11):2093–9.