
 
 

 

 

 

 

BIOAVAILABILITY-BASED 

ENVIRONMENTAL RISK ASSESSMENT OF 

THE IMPACTS FROM METAL TOXICANTS 

AND NUTRIENTS IN LAKE TAI 

 

Thesis submitted in accordance with the requirements of the University of 

Liverpool for the degree of Doctor in Philosophy 

 

by 

Xiaokai Zhang 

May 2020 



ii 
 

ABSTRACT 

Environmental pollution has increasingly become a global issue in recent years. 

Heavy metals are the most prevalent pollutants and are persistent environmental 

contaminants since they cannot be degraded or destroyed. Environmental risk 

assessment (ERA) will pave the way for streamlined environmental impact 

assessment and environmental management of heavy metal contamination. 

Bioavailability is increasingly in use as an indicator of risk (the exposure of 

pollutants), and for this reason, whole-cell biosensors or bioreporters and 

speciation modelling have both become of increasing interest to determine the 

bioavailability of pollutants. While there is a great emphasis on metals as 

toxicants in the environment, some metals also serve as micronutrients. The 

same processes that introduce metals as pollutants into the environment also 

introduce metals that may function, in some cases, as micronutrients, which then 

have a role to play in eutrophication, i.e. excessive nutrient richness that is an 

impairment of many freshwater ecosystems and a prominent cause of harmful 

algal blooms. In this thesis, I cover a wide range of topics. A unifying theme is 

biological impacts of metals in the environment and what the implications are for 

environmental risk assessment.  

This thesis begins with my initial work in which I conducted laboratory 

experiments using a bioreporter, genetically engineered bacterial that can 

produce dose-dependent signals in response to target chemicals to test the 

bioavailability of lead (Pb) in aqueous system containing Pb-complexing ligands. 

Lead serves as a good model because of its global prevalence and toxicity. The 
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studied ligands include ethylene diamine tetra-acetic acid (EDTA), meso-2,3 

dimercaptosuccinic acid (DMSA), leucine (Leu), methionine (Met), cysteine (Cys), 

glutathione (GSH), and humic acid (HA). The results showed that EDTA, DMSA, 

Cys, GSH, and HA amendment significantly reduced Pb bioavailability to 

bioreporter with increasing ligand concentration, whereas Leu and Met had no 

notable effect on bioavailability at the concentrations tested.  Natural water 

samples from Lake Tai (Taihu) were also been studied which displayed that 

dissolved organic carbon in Taihu water significantly reduced Pb bioavailability. 

Meanwhile, the bioreporter results are in accord with the reduction of aqueous 

Pb2+ that I expected from the relative complexation affinities of the different 

ligands tested. These findings represented a first step toward using bioreporter 

technology to streamline an approach to ERA. 

Dissolved organic matter (DOM) plays an important role in both speciation 

modelling and bioavailability of heavy metals. Due to the variation of DOM 

properties in natural aquatic systems, improvements to the exiting standard one 

size fits-all approach to modelling metal-DOM interactions are needed for ERA. 

My next effort was to investigate variations in DOM and Pb-DOM binding across 

the regional expanse of Taihu. Results show that different DOM components are 

highly variable across different regions of Taihu, and bivariate and multivariate 

analyses confirm that water quality and DOM characterisation parameters are 

strongly interrelated. I find that the conditional stability constant of Pb-DOM 

binding is strongly affected by the water chemical properties and composition of 

DOM, though is not itself a parameter that differentiates lake water properties in 

different regions of the lake. The variability of DOM composition and Pb-DOM 

binding strength across Taihu is consistent with prior findings that a one-size-
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fits-all approach to metal-DOM binding may lead to inaccuracies in commonly 

used speciation models, and therefore such generalised approaches need 

improvement for regional-level ERA in complex watersheds. 

Based on the findings from the investigation of Pb-DOM complexation, I 

compared a one-size-fits-all approach to different methods of implementing site-

specific variations in modelling. I was able to substantively improve the 

procedures to the existing speciation model commonly used in ERA applications. 

The results showed that the optimised model is much more accurate in 

agreement with bioreporter-measured bioavailable Pb. This streamlined 

approach to ERA that I developed has performed well in a first regional-scale 

freshwater demonstration. 

There is a close connection between environmental water and sediment 

contamination, and I also studied Pb bioavailability in lake sediemnt with a focus 

on the ramifications regarding environmental risk. For this work, I studied 

sediment samples from Brothers Water lake in the United Kingdom, a much 

simpler lake system than Taihu that is severly impacted by centuries of Pb-

mining in the immediate vicinity. The results showed that the total concentration 

of Pb in the sediment has an inverse relationship with bioavailable Pb in the test 

samples, has a positive relationship with sediment particle size and sand content 

and a negative relationship with clay content. I find that the relative amount of 

bioavailable Pb in the lake sediments are low, although surface sediments may 

have much higher bioavailable Pb than deeper sediments. 

To address the issues of metals and other micronutrients on algal growth, I 

performed small-scale mesocosm nutrient limitation bioassays using boron (B), 
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iron (Fe), cobalt (Co), copper (Cu), molybdenum (Mo), nitrogen (N) and 

phosphorus (P) on phytoplankton communities sampled from different locations 

in Taihu to test the relative effects of micronutrients on in situ algal assemblages. 

I found a number of statistically significant effects for micronutrient stimulation 

on growth or shift in algal assemblage. The most notable finding concerned 

copper, which, to my knowledge is unique in the literature. However, I am unable 

to rule out a homeostatic link between copper and iron. The results from my 

study concur with a small and emerging body of literature suggesting that the 

potential role of micronutrientss in harmful algal blooms and eutrophication 

requires further consideration in ERA and environmental management. 

The findings from this work are not only of interest to academics, but represent 

feasible approaches from which environmental practitioners may evaluate risk.   

My work on Pb needs further validation, however would be validatable through 

impact assessment studies and is therefore directly and immediately extensible 

to environmental risk. I am therefore hopeful that my work on ERA will drive 

tangible outcomes in the work of environmental management. Likewise, though 

my work on the affect of micronutrients on algal growth is more fundamental 

than applied at present, there are important and immediate implications for 

environmental management: at present, copper is used as an algicide. My work 

suggests the long term effect of copper at 20 µg·L-1 could possibly encourage 

rather than inhibit harmful algal blooms. It is satisfying to arrive at a scientifically 

interesting, and at the same time practically useful outcome from my years’ of 

work, however, I hope that this and other similar work on risk and management 

interventions could inspire a shift to pollution prevention rather than “end of 

pipe” solutions.
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1 INTRODUCTION 

1.1 BACKGROUND 

This thesis focuses on development of new approaches to Environmental Risk 

Assessment (ERA) that will pave the way for expedited environmental impact 

assessment, which has a crucial role in decision support for environmental 

management interventions. As the world burden of environmental 

contamination increases, it is of the utmost importance to develop streamlined 

approaches to ERA in order to prioritise mitigation measures. Biological effects, 

such as toxic response, are a consequence of pollutant bioavailability in the 

environment, hence bioavailability has been an increasing focus of ERA (United 

States Environmental Protection Agency, USEPA 2016; Zhang et al., 2017), 

particularly for heavy metals. Many different methods have been and are being 

developed to utilise bioavailability in ecological and human health risk 

assessment (USEPA 2007a; Fairbrother et al. 2007). In human health risk 

assessment, methods include, but are not limited to, methods to assess human 

oral bioavailability (the definition for which is different from environmental 

bioavailability, USEPA 2007a). In recent years, whole-cell bioreporters have 

become of increasing interest to determine the bioavailability of pollutants in 

environment (Al-Anizi et al. 2014; Van der Meer and Belkin 2010; Wells 2012). 
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Meanwhile, speciation models are also often used in ERA to evaluate the 

bioavailability of heavy metals (Di Toro et al. 2001; USEPA 2016), and those 

models include dissolved organic matter (DOM) in natural water as DOM binds 

heavy metals and thus reduces their bioavailability (Boggs et al. 1985; Mostofa et 

al. 2013a). In this research, I conducted some bioavailability-based experiments 

in the lab and combined them with the speciation modelling. Then, I extended my 

work to field studies that focused on lakes, as these sinks represent an endpoint 

for catchment-wide effects (pollution, land use and land use change). 

1.2 RESEARCH QUESTIONS AND STRUCTURE OF THESIS 

The structure of this thesis is framed around the following research questions:  

I) Are bioreporter results able to reflect expectations based on chemical 

speciation modelling, i.e. the type of modelling used in ERA?  

I report results from this work in Chapter 3, after the literature review in Chapter 

2. This work consists of a lab-based case study to examine whether whole-cell 

bioreporter results are able to reflect expectations based on chemical speciation 

modelling, with the hope to extend the research into a wider framework of risk 

assessment. I studied a specific test case concerning the bioavailability of lead (Pb) 

in aqueous environments containing organic and inorganic Pb-complexing 

ligands. Inorganic ligands in the media that I used are those commonly 

encountered in natural waters and organic ligands studied included ethylene 

diamine tetra-acetic acid (EDTA), meso-2,3 dimercaptosuccinic acid (DMSA), 

leucine (Leu), methionine (Met), cysteine (Cys), glutathione (GSH), and humic 

acid (HA), and I also performed preliminary experiments  using natural lake 
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water samples. I compared the results to expectations from theory and some 

results from speciation modelling. 

II) How does the dissolved organic matter in natural water affect the metal 

speciation, and is there a suitable approach to account for dissolved organic 

matter variability in ERA modelling?  

Having validated the bioreporter for my intended use, the next step in my project 

was to investigate whether validation could be achieved for a large freshwater 

system, i.e. using environmental samples rather than well-characterised lab 

proxies. I found that my results for Pb binding by DOM in natural waters are more 

complex than I had anticipated due to the possible and unknown variability of 

natural DOM from site-to-site. Speciation models in common use assume a 

relatively fixed nature for DOM. Chapter 4 summarises the work that I did to 

characterise DOM across my chosen field area of Taihu, including determination 

of site-specific conditional stability constants used in ERA for metal binding with 

DOM, by using fluorescence spectroscopic techniques combined with different 

approaches to multivariate data analysis. 

III) How does my approach of using a bioreporter and modelling perform in 

an ERA context for freshwater?  

Since a one-size-fits-all approach to metal-DOM binding may lead to inaccuracies 

in commonly used speciation models, therefore such generalised approaches 

need improvement for regional-level ERA in complex watersheds. In Chapter 5, I 

used results from Chapter 4 to test whether the obtained parameters are fit-for-

purpose with respect to speciation modelling and ERA. Furthermore, I also used 
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the bioreporter to test the Pb bioavailability across the whole lake and checked 

whether the bioreporter results agree with the optimised speciation model. 

IV) What does the bioreporter reveal about Pb bioavailability in heavily 

contaminated lake sediments and what are the implications for ERA? 

Using the bioreporter for the measurement of bioavailable Pb in lake sediment is 

a logical extension of ERA on lake pollution and also an extension of my aqueous-

phase work. During the course of this work, an opportunity arose to investigate a 

lake system in the United Kingdom called Brothers Water lake, in which Pb is 

specifically highly accumulated in the sediment (Schillereff et al. 2016). Therefore, 

I conducted such a study using Pb-polluted sediment from this lake and the 

results are described in Chapter 6. Until now, very few studies have conducted 

investigation from the standpoint of ERA as implemented by environmental 

practitioners. Therefore, my aim for this study was to develop methods that 

enable reaching fit-for-purpose ERA conclusions. 

V) How do micronutrients, including metals, affect algae, and are there 

implications regarding the risk of harmful algal blooms? 

Metal toxicity is not the only way in which metals pose a potential environmental 

risk. As is well-known, some heavy metals are micronutrients for phytoplankton. 

What is less-well known, but increasingly recognised as an ERA challenge, is that 

with increasing levels of anthropogenic disruption of biogeochemical cycles, 

metals and other micronutrients may in some cases be limiting. In Chapter 7, I 

describe mesocosm studies to investigate the effect of metal amendments on 

algae to understand whether or not metals might be a causative or aggravating 

factor in harmful algal blooms.  
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1.3 STATUS OF MANUSCRIPTS ARISING FROM WORK 

All of the work reported in this thesis is either published or scheduled for 

publication. I am the first author for all the publications.  The publication status 

of the work presented here, at the time of submission of this manuscript to the 

examiner, is listed below. 

Work presented in Chapter 3, published:  

Zhang X, Qin B, Deng J, Wells M (2017) Whole-cell bioreporters and risk 

assessment of environmental pollution: A proof-of-concept study using lead. 

Environ Pollut 229:902–910 

Work presented in Chapter 4, revised manuscript under review:  

Zhang X, Li B, Deng J, Qin B, Wells M, Tefsen B.  Regional-scale investigation of 

dissolved organic carbon and lead binding in a large impacted lake with a 

focus on environmental risk assessment. Water Res 172:115478 

Work presented in Chapter 5, manuscript prepared, improving first draft:  

Zhang X, Li B, Deng J, Qin B, Wells M, Tefsen B. Advances in freshwater risk 

assessment: improved accuracy of dissolved organic matter-metal 

speciation prediction and rapid biological validation. Ecotoxi Environ Safe 

(reviewed positively, revision for resubmission in progress). 

Work presented in Chapter 6, manuscript prepared, improving first draft: 

Zhang X, Li B, Schillereff DN, Chiverrell RC, Wells M, Tefsen B. Risk assessment of 

Pb pollution in lake sediment (manuscript under minor revision after first 

internal review of authors; I intend to submit this manuscript to Journal of 

Hazardous Materials in February, 2020). 
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Work presented in Chapter 7, published:  

Zhang X, Li B, Xu H, Wells M, Tefsen B, Qin B (2019) Effect of micronutrients on 

algae in different regions of Taihu, a large, spatially diverse, hypereutrophic 

lake. Water Res 151:500–514 
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2 LITERATURE REVIEW 
 

Environmental pollution has increasingly become one of the severe global issues 

(Briggs 2003; Hill 2010). Recent years have witnessed rapid industrialisation, 

urbanisation, and population growth, mining activities, the use of large number 

of pesticides and chemicals for agricultural production, resulting in the 

deterioration of environment (Hill 2010). Therefore, it is important to conduct 

ERA. The ERA process can be complicated, being time and resource intensive, yet, 

it is often driven by immediate needs such as reducing human and ecosystem 

exposure to unacceptable levels of pollutants. Because of the ever increasing 

scale of environmental pollution and in the increasing immediacy of ERA needs, 

it is essential to develop streamlined approaches to ERA. 

2.1 AN ERA PROBLEM – HEAVY METAL POLLUTION 

Since 2008, according to various reports from the Pure Earth Institute and 

partners, heavy metals1 topped the list of the world’s biggest pollution problems, 

inclusive of health effects, with contaminated surface water being a key issue 

                                                           
1 There is no generally accepted definition for what a heavy metal is, however, in environmental 
analysis, testing labs often analyse a screening group for heavy metal for contamination including 
arsenic (technically a metalloid), cadmium, chromium, copper, nickel, lead, zinc, and sometimes 
mercury. These also, normally, happen to be present at trace quantities and are therefore sometimes 
referred to as trace metals.     
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linking pollution to health effects. In addition to being the most abundant and 

toxic pollutants, heavy metals are persistant because metals cannot be degraded. 

Heavy metals are introduced to freshwater environments by many different 

industrial activities, viz. mining, refining ores, smelting, legacy sources such as 

leaded gasoline, fertilizer industries, tanneries, battery manufacture, paper 

industries, pesticides and wastewater (Pastircakova 2004; Pure Earth/Green 

Cross 2015). Many of the heavy metals (e.g. Copper or Cu) can be nutrients or 

toxicants, depending upon the concentration, organism, bioavailability, and other 

considerations (Procházková et al. 2014). Anthropogenic contributions of heavy 

metals that disrupt natural biogeochemical cycles have the ability to impact 

heavy metals’ role as nutrient or toxicant. 

In terms of heavy metals toxicants, Pb is ranked as the most abundant heavy 

metal pollutant in the world today (Pure Earth/Green Cross 2015, also, 

historically, see Tong et al. 2000). Pb’s prevalence is aggravated by its particular 

toxicity to children (Grandjean and Landrigan 2014). Tiwari et al. (2012) report 

that Pb accounts for the majority of cases of pediatric heavy metal poisoning. The 

global annual costs of childhood Pb exposure from cognitive defects alone are 

estimated to be 1.15 trillion US dollars, most of which is borne by low- and 

middle-income countries (Grandjean and Bellange 2017). Cognitive defects are 

only one of several cost categories, and even for cognitive defects, this estimate 

does not consider cognitive losses within the normal range, which a recent 

sensitivity analysis suggests may result in a 200-fold underestimate for costs of 

Pb exposure from cognitive defects to children (Attina and Trasande 2013). 

USEPA has set the maximum allowable level for Pb in drinking water at a 

concentration of 15 ppb (USEPA 2002), and in China the maximum allowable 
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level is 10 ppb (Ministry of Health, People’s Republic of China, MHPRC 2006), 

however, though limits are set, literature shows that no safe level of lead 

exposure exists (Grandjean 2010). Pb precipitates to insoluble species under 

alkaline conditions, and conversely the increasing occurrence of acid rain in some 

areas of the world, notably China, has enhanced the release of Pb into water and 

soil solution (Du et al. 2014; Li et al. 2015). China is one of the places most affected 

by Pb poisoning. Recent studies have shown that nearly 30% of urban children 

aged 3-5 years had a blood Pb level above the recommended 100 µg·L-1 ((Wang 

and Zhang, 2006; Ye et al. 2007). The major sources of Pb in the environment are 

from mining, historical use of Pb in vehicle fuel, smelters, and battery disposal 

(Adriano 2001; Joumard et al. 1983; Sud et al. 2008). In addition to posing risks 

to human health, high levels of Pb in soils and water threaten ecosystems (Sekar 

et al. 2004), and it is therefore important to be able to rapidly evaluate potential 

biological effects of Pb in the environment and on a site-to-site basis. These 

factors concerning the high risk profile of Pb determined its selection as the 

target metal for my work.  

The role of heavy metals as micronutrients (MNs) is discussed further in Section 

2.4 below. 

2.2 ENVIRONMENTAL RISK ASSESSMENT 

As a seminal text on ERA states “the world is a dirty place, and getting dirtier all 

the time” (Lerche and Glaesser 2006; also see Biello 2009; Harvey 2007). With 

the increasing levels of contaminants prevalent globally, there is an increasing 

and urgent need to perform accurate ERA and to be able to set appropriate and 
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site-specific or even regional levels for metals that are protective, yet not 

unrealistically conservative (Briggs 2003; Critto and Suter 2009; Fairman et al. 

1999; Janssen et al. 2003). Environmental risk involves the combined evaluation 

of hazards and exposure. ERA is a process that evaluates the interactions of 

hazards, humans, and ecological resources and is a crucial process that underpins 

environmental management (Muralikrishna and Manickam 2017). It consists of 

two parts; human health risk assessment and ecological risk assessment. The risk 

assessment process has been divided into four steps: hazard identification, dose–

response assessment, exposure assessment and risk characterisation by USEPA 

(USNRC 1983). The identification of hazard may involve characterising the 

behaviour of a pollutant within the human body and chemical interactions within 

organs, cells, or even parts of cells (Frenich et al. 2007). However, exposure 

assessment is mainly estimates how often a person comes in contact with a 

pollutant (Frenich et al. 2007). Ecological risk assessment is different from 

human health risk assessment which can be considered single species, since only 

a few types of representative organisms are selected as assessment end-points 

(Muralikrishna and Manickam 2017; Stephen et al. 1985). Historically, ERA from 

potential exposure to toxic contaminants has been based on total chemical load 

(Critto and Suter 2009). For heavy metals, total concentration has been 

traditionally used as a predictor of the magnitude, frequency and duration of 

human exposure and used to define a level of acceptable carcinogenic or 

noncarcinogenic human health risk (USEPA 1992; 2007a). In addition to being 

concentration-based, the traditional methods for ERA often require large 

amounts of field data and usually obtained at significant effort and expense 

(Lerche and Glaesser 2006). With the ever-increasing amount of environmental 
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contamination in the world, it is of crucial interest to develop risk assessment 

methods that are streamlined and enable a sort of environmental triage or 

ranking of contaminant risk. A first step in this direction occurred with the 

recognition that risk relates more to bioavailability of pollutants rather than total 

concentration. Therefore, bioavailability has largely become the focus of ERA 

(Avio et al. 2015; Caussy et al. 2003; Janssen et al. 2003; USEPA 2003a). The 

“Bioavailability Processes” was defined by the US National Research Council 

(USNRC 2003) as an approach to ERA; they include the release of solid-bound 

pollutants and their subsequent transport, direct contact and uptake by passage 

through a biological membrane and incorporation into a living system. The 

factors that determine the bioavailability of heavy metals are complex, and may 

depend, on, for instance, the total concentration of metal, water chemistry, and 

physical conditions (e.g. temperature) (Coles and Young 2006; Sisombath 2014). 

While there are distinct advantages to using bioavailability rather than total 

chemical load as a basis for ERA, the measurement-intensive (therefore relatively 

time- and cost-intensive) nature of obtaining data remains. 

Speciation modelling is increasingly used to effect streamlined ERA, and ERA 

modelling is now an accepted approach to heavy metals ERA (Niyogi and Wood 

2004; Sander et al. 2015) and is being used to set Water Quality Criteria (WQC), 

i.e. safe operating levels (Di Toro et al. 2001; USEPA 2016) of heavy metals in 

freshwater, that may also be regional or even site-specific. The speciation 

modelling approach is implemented in a number of software packages, assessing 

bioavailability directly through speciation, or evaluating toxicity indirectly 

through speciation (e.g. Gustafsson 2014). 
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2.3 TOWARD STREAMLINING BIOAVAILABILITY-BASED ERA 

Measurement of bioavailability using bioreporters 

In recent years, whole-cell bioreporter has attract more attention for its role on 

measuring the bioavailability of pollutants in the environment. (Al-Anizi et al. 

2014; Ding 2009; Deepthike et al. 2009; Kohlmeier et al. 2008; Selifonova et al. 

1993; Van der Meer and Belkin 2010; Wells 2012). This approach is typically 

faster and cheaper than many other biological tests and also has the advantage of 

being able to measure bioavailability or toxicity, depending on the concentration 

range of the target molecule (Ding 2009; Wells 2012; Zhang et al. 2017). 

Bioreporters are organisms that are genetically engineered to give a “report” on 

target substances being capable of producing dose-dependent signals in response 

to target chemicals (Belkin 2003; Kessler et al. 2012; Magrisso et al. 2008; Van 

der Meer and Belkin 2010). Genetic construction of bacterial bioreporter strains 

is achieved by a combination of a promoter gene (a sensing element) and a 

reporter gene (signalling element) within a host cell. The most common strategy 

for the selection of the sensing element is to use the promoter of a gene known to 

be induced by the stress condition of interest, in this case Pb exposure (Kessler 

et al. 2012). Therefore, the bioreporter was constructed for the measurement of 

the target metal. Fusing the promoter to the reporter ensures that when the 

promoter senses the target, i.e. the promoter is “turned on”, this then causes the 

reporter gene(s) to be expressed. In this process, the target chemical was 

detected in the periplasm by means of a receptor (or ‘receiver’) protein. Then, the 

receptor binding triggers an intracellular phosphorelay that is transmitted to the 

switch and promoter, leading to the expression of the reporter gene (van Der 
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Meer and Belkin 2010). Many studies reported that the bioreporters are very 

sensitive to target metal at low concentrations (Kessler et al. 2012; Magrisso et 

al. 2008; Zhang et al. 2017). When the sample contains multiple metals, it is 

necessary to further consider which bioreporter to use and how to optimize the 

detection method. 

Figure 2-1 is a schematic representing the process of bioreporter signal 

activation. Reporter genes are chosen to produce reporter proteins that have a 

measurable signal, typically optical. Studies have shown that almost all of the 

promoter elements used for the construction of bioreporters drive the induction 

of genes involved in heavy metal resistance (Bontidean et al. 2004; Bruins et al. 

2000), and many bioreporters specifically responsive to one or more heavy 

metals have been constructed (Selifonova et al. 1993; Magrisso et al. 2008; 

Rasmussen et al. 2000; Yoon et al. 2016a). Most heavy metal bioreporters detect 

concentrations of target pollutants below the respective drinking water safety 

limits (Ripp et al. 2011).  

 

Figure 2-1. Schematic representing the process of bioreporter signal activation to 

measure bioavailability (after Belkin 2003). 



14 
 

Recently, some work has assessed the bioavailability and toxicity of arsenic (As), 

Cu, cobalt (Co), nickel (Ni), zinc (Zn) and Pb, using whole-cell bioreporters (Jia et 

al. 2016; Magrisso et al. 2009; Yoon et al. 2016a, b). A bioreporter for As was used 

for testing 194 different groundwater samples from Vietnam (Trang et al. 2005). 

The authors noted that after a 1.5 h incubation, the strain exhibited a limit of 

detection (LOD) of 7 μg·L-1. The bioreporter assay used for the testing was shown 

to more reliable than chemical field test kits, as validated using instrumental 

methods of chemical analysis. A mer-lux bioreporter was constructed by Ndu et 

al. (2012) to assess the bioavailability of methylmercury, CH3Hg(II), in 

Escherichia coli (E. coli). These authors found that the addition of chlorides 

resulted in an increase in CH3Hg(II) bioavailability, however, HA were found to 

reduce the bioavailability of CH3Hg(II) in varying degrees (Ndu et al. 2012). The 

work of Ndu et al. is an example demonstrating how bioreporter response follows 

the conceptual model wherein free-metal ions react with biological binding sites 

(Song et al. 2014a), and, for instance, presence of other ions or complexing 

ligands then affects the bioreporter signal in a manner consistent with 

expectations from theory (see discussion of speciation below). 

In addition to measurements of bioavailability in aqueous media, bioreporters 

have been used to measure the bioavailability of heavy metals in soil and 

sediment. For example, Ivask et al. (2007) used an E. coli merR-luxCDABE strain 

and an E. coli ars-luxCDABE strain to examine the bioavailability of Hg and As in 

soil and sediment samples. They found only 1.2-6.7% of total Hg and 0.9-4.9% of 

total As was bioavailable (Ivask et al. 2007). The properties of soil and sediment 

can strongly affect the bioavailability of metals. For instance, Magrisso et al. 
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(2009) found that Fe-oxides, which have the highest affinity for Pb, make Pb 

biounavailable to microorganisms in the soil (Magrisso et al. 2009). 

The various attributes of bioreporters that I describe here (rapid and sensitive 

response, economic feasibility, measurement of bioavailability, ability to use in a 

variety of environmental matrices) make them ideal with respect to their 

potential to streamline ERA. 

Bioavailability, ERA, and speciation modelling 

Modelling has become quite an important tool in ERA, and perhaps one of the 

most famous and often used models is referred to as the biotic ligand model 

(BLM). The BLM was developed to provide a scientific method for the assessment 

and prediction of metal toxicity to aquatic organisms (Di Toro et al. 2001; Sander 

et al. 2015). This is a bioavailability-based approach that first arose out of work 

that was maturing in the 1990s and culminated with the USEPA’s 2003 

publication of the BLM approach to formulation of BLM-based WQC used in 

management of environmental risk for heavy metals (see USEPA 2003a, and 

references therein, also see Niyogi and Wood 2004 for an early review). The 

USEPA now uses the BLM as a defensible and cost-effective way to develop WQC 

used in environmental risk management (USEPA, 2016).  

A generally accepted conceptual model of the cause of metal toxicity involves 

free-metal ions reacting with a biological binding site or receptor (Song et al. 

2014a). Some cations, such as H+, Ca2+, Mg2+, Na+ and K+ compete with metal ions 

for these binding sites thereby decreasing bioavailability to organisms and 

associated toxic response (Celen et al. 2007; De Schamphelaere and Janssen 2002; 
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Santore et al. 2001; Song et al. 2014a). In natural waters, dissolved organic matter 

(DOM) primarily, and anions secondarily (e.g., Cl-, SO42-, CO32-), are also known to 

complex or adsorb toxic free-metal ions and reduce bioavailability. The discovery 

that these effects could be accurately estimated through modelling led to the 

development of the BLM, a conceptual representation of which is given in Figure 

2-2. 

The BLM is run in one of two modes: speciation and toxicity, and the model has 

been implemented in a number of software packages. The most commonly used, 

which I used for my work, is Visual MINTEQ (Gustafsson 2001). Speciation mode 

does not depend on information about metal-receptor binding, which is 

organism-specific. In speciation mode, the chemical speciation, or form, of heavy 

metal toxicant is calculated, and, risk is based on the level of toxic free-metal ion 

present (Gustafsson 2001; USEPA 2003a). The parameters that describe metal-

ligand, cation-ligand, cation-anion, etc, binding have been incorporated in the 

speciation mode-Visual MINTEQ, which enables calculation of the amounts of all 

different metal species on basis of commonly and inexpensively measured water 

properties. 



17 
 

 

Figure 2-2. Schematic representing the concepts underlying the BLM. Cations compete 

with metal ions for binding sites on the biotic ligands present in organisms like fish, 

water flea and bacteria (including bioreporters). Anions and dissolved organic carbon 

(DOC) can complex with metals and thereby decrease metal bioavailability. 

Toxicity mode requires additional parameters (Nys et al. 2014) that enable the 

model to calculate the total metal concentration that will result in a particular 

toxic effect for a specific organism. Many toxicity-mode BLMs originate from tests 

with fish (Santore et al. 2001; Smith et al. 2017). Some have been recalibrated for 

more sensitive daphnids by adjustment BLM parameters according to the relative 

sensitivity of toxic response (Clifford and Mcgeer 2010; Santore et al. 2001), and 

recently toxicity-mode BLMs have been constructed for algae and bacteria. Such 

calibration to run in toxicity mode can be very accurate, however may also be 

very time consuming (Niyogi and Wood 2004; Nys et al. 2014). For my work, I 

refer to speciation modelling in the context of ERA as the speciation modelling 

that I perform is the same as BLM speciation-mode. This is convenient since the 

bioreporter that I use reports bioavailable Pb (free-metal ion). To translate this 

to toxicity would involve performing a calculation in toxicity mode to produce the 

same level of free-metal ion Pb that is observed in speciation mode or developing 
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and adding parameters for toxicity-mode calculations for my organism. The latter 

is a work nearing completion that has been conducted by a fellow-PhD student 

(Boling Li, Xi’an Jiaotong-Liverpool University, upcoming thesis), and therefore is 

not a topic covered in this thesis. 

Models require validation, and for ERA speciation and toxicity models this occurs 

by comparing model results with comparable biological results. Numerous 

biological techniques have been used to investigate the bioavailable fraction or 

toxicity of heavy metals (Heijerick et al. 2005; Nys et al. 2014; Smith et al. 2017). 

Most of this type of work is relatively unwieldy in terms of cultivating and 

maintaining test organisms for use, for example, the cultivation of Daphnia 

magna and rainbow trout (De Schamphelaere and Janssen 2002; Heijerick et al. 

2005; Nys et al. 2014; Smith et al. 2017). In this respect, use of a whole-cell 

bioreporter to measure bioavailable Pb offers the advantage of being rapid and 

readily comparable to model results.  

The role of dissolved organic matter in heavy metals’ bioavailability 

Studies have shown that DOM 2  plays an important role in the fate and 

biogeochemical cycling of metal ion in the aquatic environment (Christensen et 

al. 1999; Mostofa et al. 2013a; Mueller et al. 2012; Reuter and Perdue 1977; Zhang 

et al. 2014). For many metals, complexation, which reduces bioavailability and 

therefore risk, is primarily determined by complexation with DOM in natural 

                                                           
2 The term dissolved is operational and is understood to be a size fraction that is small enough to pass 
a given filter size. Commonly, as relates to my work, the term dissolved applies to DOM and to heavy 
metals. The most common filter sizes for environmental work are 0.22 and 0.45 microns (e.g., see 
Kolka et al. 2008). It is generally acknowledged that this is operational, and that these filter sizes may 
entail that some colloidal materials (not technically dissolved species) are within the operationally 
defined dissolved fraction. 
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systems, and complexation can be quantified using chemical speciation models 

(Baken et al. 2011; Boggs et al. 1985; Mostofa et al. 2013a; Yamashita and Jaffé 

2008; Zhang et al. 2017). A quantity associated with DOM and a term that will be 

used often in this thesis is DOC (see Figure 2-2). DOC is the primary component 

of that is used to quantify DOM and used in modelling studies (Chen et al. 2003a). 

In modelling, DOC is used as an input parameter, usually expressed in units of 

mg·L-1 as determined from total carbon analysis of combustion of DOM 

(Gustafsson 2001; 2014). 

Fundamentally, DOM is an organic ligand, however, a difficulty in modelling 

metal-DOM interactions arises because DOM is not “one thing”; DOM is a complex, 

heterogeneous mixture of aromatic and aliphatic organic compounds of varied 

origin and includes humic substances such as HAs and fulvic acids (FAs) 

(Leenheer and Croué 2003; Zhang et al. 2014). One way to study the effect of 

organic ligands on bioavailability in a simple way is to use model ligands. In my 

work, I started experiments with simple model organic ligands prior to 

progressing to work with DOM. Initially I chose different ligands with different 

structures and types of functional groups that are known to complex Pb in 

aqueous environments (two chelators, three amino acids one peptide, and a 

commercially available HA). Literature provided a rationale for ligand choice. I 

chose ethylenediaminetetraacetic acid (EDTA) and dimercaptosuccinic acid 

(DMSA) as chelators. Sillanpää and Oikari (1996) studied the effect of EDTA on 

heavy metal toxicity and found that complexation by EDTA noticeably reduced 

the toxicity of Zn and Pb, whereas DMSA is a drug currently used for chelation 

therapy in Pb poisoning (Besunder et al. 1996). Amino acids, peptides and HA are 

two subgroups of DOM that occur in environmental settings and play an 
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important role in binding heavy metals due to the presence of metal-coordinating 

functional groups in their chemical structures. For amino acid and peptides 

choice, I followed the protocol of Ndu et al. (2012), who investigated the 

comparative effects of two thiol-containing compounds, the amino acid Cys and 

the peptide GSH (a Cys containing tri-peptide), to those of two non-thiol-

containing amino acids, Leu and Met, on the response of a mercury-sensitive 

bioreporter. Leu with its α-amino group, α -carboxylic acid group and isobutyl 

side chain is classified as a non-polar amino acid, whereas Met is also non-polar, 

however has an S-methyl thioether side chain. Cys in turn has an active thiolate 

instead of the S-methyl thioether side chain and is variously classified as polar to 

hydrophobic. Cys and glycine having two carboxyl groups, a primary amine, two 

secondary amines, and a thiolate group, GSH is a tripeptide incorporating 

glutamate (Sisombath 2014; Wu et al. 2004). While the carboxylic acid and 

primary amine groups (e.g. as in Leu and Met) are capable of complexing metals, 

the thiol groups in particular (Cys, GSH) are thought to be largely implicated in 

the complexation of metals by thiolate-containing amino acids and peptides 

(Sisombath 2014). Studies have shown that Pb complexes strongly with HA, 

which serves to reduce bioavailable Pb (Coles and Yong 2006). Though HA itself 

is a class of compound with no specific chemical formula or structure, 

commercially available HA is purified, hence it represents one purified 

component of naturally occurring DOM and is therefore more uniform chemically 

than DOM itself. 

Bivalent metals such as Pb2+ often complex strongly with HA and FA components 

of DOM, with HA’s complexing heavy metals more strongly (Fasurová and 

Pospíšilová 2010). Some authors assert that when comparing modelling results 
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to experiment, the differences in metal complexing properties in natural waters 

have been found to be relatively small between different HAs and FAs, suggesting 

that to some extent generalisation within these groups is possible (Benedetti et 

al. 1996). The idea of generalisability has led to the development of speciation 

submodels for metal-DOM binding that have been able to be validated in the 

context of ERA (Di Toro et al. 2001; USEPA 2007b; Gustafsson 2001, Tipping 

1994). Two common approaches to quantify metal-DOM binding and attendant 

metal bioavailability include the Stockholm Humic Model (SHM, Gustafsson 2001, 

implemented in Visual MINTEQ) and the Windemere Humic Acid Model (WHAM, 

Tipping 1994 and 1998). While the details of these models and model 

calculations are quite complicated, the key point is that these models rely on 

conditional stability constants, Kcond, which originate from thermodynamic 

quantities and are constant quantities that reflects the strength of an interaction 

between a given metal and DOM sample in coming together to form a metal-DOM 

complex. Models such as SHM and WHAM hold the assumption that for HA and 

FA, respectively, a single Kcond describes metal binding with phenolic- and 

carboxylic- acid type sites within HA and FA, and that the relative proportions of 

DOM that are HA and FA are generalisable, therefore, such an approach may be 

referred to as a “one-size-fits-all” approach. 

The varying characteristics of DOM that relate to its origin, environmental 

conditions and aging processes have driven much work devoted to characterising 

DOM to provide a better understanding of metal-DOM complexation (Leenheer 

and Croué, 2003; He et al. 2015; Kikuchi et al. 2017; Mostofa et al. 2013a; Ren et 

al. 2015; Zhang et al. 2014). There is increasing evidence that extant speciation 

models do not always adequately predict metal-DOM binding due to the variable 
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nature of DOM (e.g. see Ahmed et al. 2014; Ndungu 2012). Natural waters with 

DOM that deviates in composition or binding strength from current model 

assumptions and specifications, inherent in the one-size-fits-all approach, will 

not be amenable to accurate calculation of speciation and assessment of risk, and 

recent studies call for site-specific binding parameters to ensure that ERA 

modelling meets environmental management needs (Ahmed et al. 2014; Mostofa 

et al. 2013a; Mueller et al. 2012; Zhang et al. 2014). 

Common techniques for the characterization of DOM and metal-DOM binding 

include voltammetry (Sander et al. 2015; Sander et al. 2011), fluorescence 

(Mostofa et al. 2013b) and UV/vis spectroscopy (Birdwell and Engel 2010), 

Fourier transform ion cyclotron resonance (ultra-high resolution) or triple 

quadrupole mass spectrometry with electrospray ionization (Boija et al. 2014; 

D’Andrilli et al. 2010; Kujawinski et al. 2009) and different ultrafiltration and 

resin fractionation techniques combined with chemical analysis (Chow et al. 

2004). Among these techniques, fluorescence spectroscopy has high sensitivity, 

is rapid and is semi-quantitative to quantitative (Chen et al. 2003a; Marhaba 2000; 

Mostofa et al. 2013b; Sanchez et al. 2014) and consequently is increasingly used 

to characterise properties and provenance of DOM in natural waters (Coble et al. 

1990; Fellman et al. 2010; Hudson et al. 2007; Mostofa et al. 2013b). Additionally, 

the fluorescence characterization of metal-DOM binding has been demonstrated 

using high-throughput analysis (Neculita et al. 2011), which is quite cost-effective 

and would be ideal for ERA needs. Three-dimensional excitation-emission matrix 

(3DEEM) fluorescence spectroscopy (Coble et al. 2014) and synchronous 

fluorescence spectroscopy (SFS) are two techniques in particular that have been 

widely used to probe the chemical structure of DOM and to investigate water 
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pollution (Baker 2001; Baker et al. 2004; Manciulea et al. 2009; Mostofa et al. 

2013b; Wu et al. 2003). The simplicity and potential for high-throughput were 

primary factors that led me to choose fluorescence techniques for the portion of 

my work that dealt with extracting parameters for use in Pb-DOM complexation 

modelling 

2.4 HEAVY METALS/MICRONUTRIENT EFFECTS ON ALGAE AND 

RELATION TO EUTROPHICATION RISK 

Increasingly, harmful algal blooms (HABs) in freshwater and marine systems is 

an issue causing serious environmental and ecological problems. Eutrophication, 

identified as a major environmental problem for water resource management, is 

a term that typically indicates a process wherein a body of water becomes 

enriched in excess dissolved nutrients that stimulate excessive algal growth. This 

algal growth in turn causes reduced water transparency, and as algae die and 

decay, development of hypoxic/anoxic conditions leading to fish suffocation 

along with production and release of algal metabolites that are toxic to 

animals/humans; near-term and cumulative effects inclue decreased biodiversity 

(Qin et al. 2007; Tang et al. 2016). 

For many years, phosphorus (P) was thought to be the primary limiting nutrient 

in terrestrial freshwater systems (Correll et al. 1998; Schindler 1977). It may be 

that, in an ideal and increasingly rare case of an anthropogenically undisturbed 

environment, an assumption of P-limitation would still prove valid. Increasingly, 

however, human activities are altering the Earth’s pre-industrial balance. Of nine 

Earth systems characterised as planetary boundaries at risk of irreversible and 

potential catastrophic change, two count as systems in which the safe operating 
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space has been exceeded. One of these is biochemical flows of nitrogen (N) and P 

(Ahlström and Cornell 2018; Steffen et al. 2015). Human disruption of the global 

N cycle is greatest (Campbell et al. 2017; Kinzig and Socolow 1994; Steffen et al. 

2015), and there is now a substantial amount of literature demonstrating that N 

is sometimes as important as P in contributing to eutrophication via the of 

development and persistence of HABs and in controlling phytoplankton species 

composition (Anderson et al. 2002; Chaffin et al. 2013; Conley et al. 2009; Havens 

et al. 2001; Paerl et al. 2011; Paerl et al. 2015; Smayda and Reynolds 2001; Xu et 

al. 2010). The dramatic increase of N- and P-inputs to lakes in the past several 

decades is mainly due to the increased use and abuse of chemical fertilizers 

during agricultural activities and inadequate environmental controls (Norse 

2005; Smith and Siciliano, 2015).  

The impact of chemical pollution, i.e. a category including heavy metals, in 

planetary boundaries has not yet been quantified (Steffen et al. 2015), however, 

as the research previously cited in Section 2.1 indicates, the increases in metal 

pollution and consequences of this pollution are dire. Anthropogenic 

disturbances of global geochemical cycles entail that assumptions about P-

limitation, or even P- and/or N-limitation, may not be reliable, and this will affect 

water resource management needs (Campbell et al. 2017; Conley et al. 2009; 

Lewis et al. 2008). Compared to N and P, relatively little work has been done on 

the role of MNs, particularly in highly disturbed/impacted systems. In thinking 

about the issue of nutrient controls on eutrophication and HAB formation during 

the course of my PhD and discussing with collaborators, I became curious about 

the question of MNs. If the thinking on causes of HAB formation shifted from that 

of P-limitation (an early model) to P- and/or N-limitation (over the decades in 
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which the global biogeochemical N-cycle is increasingly disrupted), is it possible 

that other, similarly anthropogenically disrupted cycles, are now also 

contributing to the problem? Arguably, it is not possible to say not at present 

because the effect of MNs on algal growth tends to be overlooked as a research 

topic, particularly with respect to their role in HAB formation. In contrast, there 

has been so much work on N- and P- limitation, it would not be possible to 

provide a comprehensive overview within the scope of this thesis. The 

fundamental need for MNs by algae, the majority of which are heavy metals, is 

well-known (Anderson 2005; Axler et al. 1980; Goldman 1972; Twiss et al. 2000; 

Wurtsbaugh and Horne 1983). 

The often-used text edited by Andersen (2005) on culturing algae lists boron (B), 

Co, Cu, iron (Fe), molybdenum (Mo), manganese (Mn), selenium (Se), vanadium 

(V), and Zn as important algal MNs, i.e. except for B and Se (a metalloid), seven of 

the nine of these would be considered as heavy or trace metals and three (Co, Cu, 

and Zn) are within the group of environmental heavy metal contaminants 

commonly screened. Some early research studies on algae in lakes have shown 

that the phytoplankton communities area affected in some way or potentially 

limited by the availability of MNs including Fe, B, Co, Mn, Mo, and Zn (Axler et al. 

1980; Goldman 1972; Twiss et al. 2000; Wurtsbaugh and Horne 1983). The 

requirements of MNs appears to vary among phytoplankton species and groups, 

and Table 2-1 summarises representative information on MN limitation of algal 

growth. After some initial reading (key papers cited herein), I found I cannot 

work on all MNs that might be of interest. Therefore, I picked Fe due to its being 

the most studied MN, commonly known to be physiologically limiting in some 

situations. From some papers, there is a sense that cyanobacteria, mostly 
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responsible for the HABs, shows some limitation or co-limitation for B and Mo. 

The metals Co and Cu were interesting to me because both of them could either 

be nutrient or toxicant to algae. 

Table 2-1. Available literature information on micronutrient limitation on algal growth. 

Aqueous Media Location MN Results Reference 

Lake 
Kasumigaura 

Japan Fe 

Fe was a limiting nutrient, 
together with N and P for 
Microcystis aeruginosa and 
Planktothrix agardhii 

(Nagai et al. 
2006) 

55 lakes Canada Fe 

Fe serves as a possible cofactor 
that maintains cyanobacterial 
biomass across a lake trophic 
gradient. 

(Sorichetti 
et al. 2016) 

Lake Erken Sweden B 

B addition increased the 
growth of cyanobacteria 
colonies in the presence of 
added iron, which was itself a 
limiting nutrient. 

(Hyenstran
d et al. 
2001) 

Lake Mahinerangi 
and LakeWaihola 

New 
Zealand 

B 

The additions of B increased 
primary productivity by 
approximately 40% over the 
controls. 

(Downs et 
al. 2008) 

Godavari India Cu 

At concentration of 1 × 10-7 M 
of metal, Cu acted as a nutrient 
and helped to increase the 
biomass of the algae. 

(Chakrabort
y et al. 
2010) 

Castle Lake America Mo 

The addition of Mo to the lake, 
primary productivity in the 
epilimnion increased 40% over 
the previous year. 

(Goldman 
1966) 

Lake Tahoe, 
Walker Lake, and 
Clear Lake 

America Mo 

N2 fixation rates and Chl-a 
concentrations were positively 
correlated with Mo(V) 
concentrations 

(Romero et 
al. 2011) 

Eight lakes 
South 
Island 

Co 
The availability of Co was found 
to limit primary productivity in 
eight of 10 South Island lakes.  

(Goldman 
1964; 
Goldman 
1972) 

Estuary Swedish Co 

The growth of a bloom-forming 
alga in a Swedish estuary was 
stimulated by the addition of 
Co. 

(Granéli and 
Haraldsson 
1993) 

 

For algae, Fe is needed for essential metabolic functions in photosynthetic 

electron transport, respiratory electron transport, nitrate and nitrite reduction, 
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sulphate reduction, N fixation, and detoxification of reactive oxygen species 

(Sunda et al. 2005). Work by Molot et al. (2010) and Pollingher et al. (1995) has 

shown that changes in Fe availability affect the outcome of competition among 

phytoplankton species (Molot et al. 2010; Pollingher et al. 1995). Cyanobacterial 

iron requirements are reported to exceed non-photosynthetic prokaryotes by 

∼10-fold and are described as “exceptionally high even among other 

photosynthetic organisms” (Kranzler et al. 2013; Moreno-Vivian 1999) due to 

mechanisms of intracellular homeostasis in these organisms. Xu et al. (2013) 

found that Fe is a primary limiting or co-limiting (with N and P) MN for 

Microcystis spp. growth in different regions of Taihu in China (Xu et al. 2013).  

It has been demonstrated that the diazotrophic cyanobacteria have a specific 

need for Fe in enzymes required for atmospheric N2 fixation (Sohm et al. 2011). 

In addition to studies that find Fe-limiting or co-limiting in freshwaters (Berman-

Frank et al. 2001; Dang et al. 2012; De Wever et al. 2010; Evans and Prepas 1997; 

Goldman 1972; Ivanikova et al. 2007; Larson et al. 2015; Nagai et al. 2006; 

Nicolaisen et al. 2010; North et al. 2008; Stoddard 1987; Twiss et al. 2005; 

Verschoor 2017; Vrede and Tranvik 2006), a number of studies have looked at 

the effect of DOM, particularly siderophores, in affecting Fe bioavailability 

(Sorichetti et al. 2016; Ward et al. 2002) and hence algal community succession 

patterns (Molot et al. 2010; Murphy et al. 1976; Nagai et al. 2006; Sarkar et al. 

2016). Another important line of enquiry concerns how Fe/P-linked 

biogeochemistry (e.g. Vivianite formation / dissolution) causes Fe limitation in 

some situations (Arbildua et al. 2017; Molot et al. 2014; Orihel et al. 2016). 

Reports indicate that in some cases a siderophore or P-related dose-response 

behaviour resembling toxicity is a consequence instead of the presence of these 
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substances in concentrations that decrease Fe bioavailability (Arbildua et al. 

2017; Nagai et al. 2006; Ward et al. 2002). 

With regard to some other MNs, as early as 1966 Lewin published a study 

reporting B to be a requirement for algal growth “generally” (Lewin 1966), and 

several studies have since been published looking finding B limitation or co-

limitation in lakes (Bayer et al. 2008; Bonilla et al. 1990; Downs et al. 2008; 

Hyenstrand et al. 2001). Concerning HABs, Hyenstrand et al. (2001) reported that 

the addition of B increased the growth of cyanobacteria in the presence of added 

iron. Shortly after Hyenstrand’s paper was published, another study reported 

findings concerning how the intake of one nutrient might also affect the status of 

another; Sterner et al. (2004) observed that quantities of N or P that caused only 

a small increase in algal phytoplankton growth rates were nonetheless sufficient 

to induce Fe limitation. 

Another MN of essential importance to algae is Mo, which has been shown to be 

limiting and/or co-limiting (Axler et al. 1980; Downs et al. 2008; Glass et al. 2010 

and 2012; Rueter and Petersen 1987; Song et al. 2012). Mo is a cofactor in N 

reduction (Moreno-Vivian et al. 1999) and similar to Fe, Mo contributes to N 

fixation for cyanobacteria. An early study showed that Mo stimulated N uptake 

rates and had the greatest effect when nitrate was the dominant N source (Axler 

et al. 1980). More recently Glass et al. have revisited the topic of Mo-limiting N 

fixation in freshwater and coastal cyanophytes (Glass et al. 2010; for a more 

detailed discussion of Mo, see Rueter and Petersen 1987, and references therein). 

The MNs Co, Cu and Zn fall into the category of environmental heavy metal 

contaminants, and these nutrients stimulate algal growth at low concentrations 
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and are toxic to algae at high concentrations. All of these nutrients have been 

found to be growth-limiting nutrients to algae by some studies (Cavet et al. 2003; 

Chakraborty et al. 2010; Downs et al. 2008; Manahan and Smith 1973; Roussel et 

al. 2007; Sandmann and Böger 1980; Stoddard 1987). Chakraborty et al. (2010) 

found that at concentrations of 1×10-7 M, Cu acted as a nutrient and helped to 

increase the phytoplankton biomass followed by Co, Ni and Zn. However, a higher 

concentration of 1×10-6 M of metal resulted in toxic effect on phytoplankton; Cu 

acted as the most toxic metal followed by Zn, Co and Ni. 

While the research on MN controls of HABs is comparatively (to N and P controls) 

sparse, the information that I could find nonetheless suggests that the effects of 

MNs on algal growth might play an important role in regulating HABs, and that 

therefore, studying these effects would be are important for the assessing the risk 

of HABs and evaluating possible management interventions. 

2.5 DEMONSTRATION PROJECT – FIELD AREA 

Field area characteristics and background 

My work was designed around the idea of an ERA demonstration project, which 

imposes needs and desirable characteristics to consider in choosing a field site.  

The primary field study area for this work is Lake Tai (hereafter designated as 

Taihu, after 太湖 in Chinese), a system that is large enough (> 2,400 km2) to 

reflect regional scale processes, has a complex aquatic ecosystem (Sun and Mao, 

2008) and a long history of anthropogenic impacts (Qin, 2007). Lakes play an 

important role on the effect of ecosystem stability, providing important 

ecosystem services such as productivity from biodiversity, resilience to climate 
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change, fisheries, recreation and tourism, sediment and nutrient retention and 

processing, and hydrological regulation (Lévêque 2001; Schallenberg et al. 2013). 

As China’s third largest freshwater lake, Taihu provides a high degree of all of 

these ecosystem services, or at least it once did in its natural state. As shown in 

Figure 2-3, Taihu is situated in the south-eastern region of the Yangtze delta, the 

most industrialized area in China with high urbanisation, population density, and 

economic development (Qin et al. 2007). It has a volume of 4.4 billion m3 and a 

drainage basin of 36,500 km2, with a 68.5 km length (from north to south) and 56 

km width (from east to west). The lake is the drinking water source for several 

cities, such as Wuxi, Suzhou and Shanghai and is also important for a variety of 

purposes including drinking water source, flood control, tourism and aquaculture 

(Gong and Lin 2009; Qin et al. 2007).  

Taihu is a lake that is seriously disturbed by human activities. Studies have shown 

that due to the rapid development of industry and agriculture in this area, the 

lake has received more and more pollutants from industrial and agricultural 

activities, e.g. fertilizer and pesticide application (Jin et al. 2010; Liu et al. 2012; 

Qin et al. 2007). During the past several decades, most studies have focused on 

HABs in Taihu. However, the heavy metal contamination is substantial as well, if 

not as palpable. Many heavy metals have been deposited in lake sediments, 

however, since Taihu is a shallow lake (< 3 m maximum depth), wave action, 

especially during storms, is a key factor in interactions between the sediment and 

water (Qin et al. 2007), enhancing the risk of heavy metals in the sediment being 

released into the lake. 
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Figure 2-3. Location of Taihu. (A) Yangtze delta region, and (B) Map showing location of 

Taihu in the Yangtze delta. 

The size, history of mixed impacts, and regional importance of Taihu is ideal for 

an ERA demonstration project. Additionally, however, the catchment complexity 

of Taihu makes it interesting and suitable for regional-scale ERA. Taihu has a 

complicated river and channel network with more than 170 rivers connecting to 

the lake. As Kothawala et al. (2014) have summarized regarding the importance 

of DOM’s role in biogeochemical processes and the global carbon cycle, with 

particular emphasis on lakes, lakes may be viewed as sinks that may be used as 

catchment level indicators that receive and process DOM from catchment areas 

substantially greater than the area of any give lake itself. While these authors 

focus on DOM, a topic that is also very important to my work, the view of lakes as 

catchment level indicators is extensible, and Taihu serves as a sink for a 

particularly large and diverse catchment. 

Heavy metal pollution in Taihu 

With the development of the economy and increasing urbanisation, the regions 

surrounding Taihu have been faced with a serious problem of heavy metal 

contamination (Niu et al. 2015). An investigation conducted by Liu et al. (2004) 
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showed that the wastewater containing metals from papermaking, dyeing, 

leather and metallurgy industries were discharged to Taihu through rivers. This 

caused varying degrees of heavy metal pollution of the lake (Table 2-2). 

Especially during flooding season, flooding runoff from the west or southwest 

washes pollutants into the lake from west to the east.  

Table 2-2. Summary of information from literature on heavy metal pollution in Taihu. 

Object of 
study 

Metals Results Reference 

Water and 
sediment 

Cu, Cd, Cr, 
Ni, Pb, Sn, 
Sb, Zn, Mn 

The average concentration of all 
metals ranged from 0.047 μg·L-1 (Cd) 
to 8.778 μg·L-1 (Zn) in water, from 
1.325 mg·L-1 (Cd) to 798.2 mg·L-1 
(Mn) in sediment. 

(Yu et al. 
2012a) 

Water column, 
interstitial 
water and 
surface 
sediment 

Cu, Cd, Cr, 
As, Pb, Zn, 
Ni 

In the surface sediment, the mean 
concentrations for Cr, Ni, Cu, Zn, As, 
Cd and Pb were 41.50, 28.72, 27.82, 
65.46, 5.94, 0.82 and 41.17 mg·kg-1, 
respectively. 

(Jiang et al. 
2012) 

Sediment 

Ag, As, Cd, 
Co, Cr, Cu, 
Hg, Ni, Pb, 
Zn 

The nearby Meiliang Bay suffered 
from the worst heavy metal 
contamination (e.g. As, 64.0; Ag, 4.2; 
Cd, 0.93; Co, 14.2; Cr, 155.0; Cu, 
144.0; Hg, 0.25; Ni, 79.8; Pb, 143.0 
and Zn, 471 mg·kg-1). 

(Qu et al. 
2001) 

Sediment 
Pb, Cd, Cu, 
Zn, Cr, Ni 

The distribution areas of heavy 
metals with higher concentrations 
were mainly the north bays. 

(Niu et al. 
2015) 

Water, 
sediments, 
Ceratophyllum, 
and Bellamya 
sp 

Cd, Cr, Cu, 
Ni, 
Pb, Zn 

Zn concentration was the highest, Cd 
concentration was the lowest among 
the six metals in water, sediments, 
and aquatic organisms. 

(Bo et 
al.2015) 

 

These heavy metals may be adsorbed or scavenged by suspended particles in lake 

water and subsequently deposit and accumulate in lake sediments. Previous 

studies have shown that a large amount of heavy metals are accumulated in Taihu 

sediment (Qu et al. 2001; Rose et al. 2004). Because Taihu is large and 

shallow/polymictic, these heavy metals in the sediment may be resuspended and 

released back to the lake water by frequent wind-blown waves, trawling and 
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large vessels (Qin et al. 2007). Resuspension events enable the metals to be 

adsorbed or incorporated by fish and other organisms in the water column, 

repeated cycles for which result in the contamination of food chains. 

Studies have confirmed that concentrations of heavy metals have greatly 

increased in water of Taihu (Liu et al. 2012; Niu et al. 2015; Yu et al. 2012a) and 

a large amount of heavy metals have been accumulated in the sediment (Qu et al. 

2001). A number of studies on heavy metals in Taihu focus on the investigation 

of bioaccumulation of different metals from water and sediment in 

phytoplankton, zooplankton, zoobenthos and fish (Bo et al. 2015; Chen et al. 2011; 

Qu et al. 2001; Yu et al. 2012b). Fu et al. (2013) found that fish from Taihu 

accumulated a much higher concentration of heavy metals than those from the 

Yangtze River. Chi et al. (2007) investigated the Zn content in edible parts of 

fishes sampled in Meiliang Bay, a polluted bay in north Taihu; the result showed 

that the Zn concentration had also surpassed the Chinese Food Health Criterion. 

Bo et al. (2015) measured the concentrations of Cd, Cr, Cu, Ni, Pb and Zn in water, 

sediments, Ceratophyllum and Bellamya sp. in Taihu. They found that Cd posed 

the highest ecological risk to the environment. Yu et al. (2012b) had similar 

findings (phytoplankton, zooplankton, two species of zoobenthos, and eight fish). 

The concentration of heavy metals in Taihu varies with the seasons. Rajeshkumar 

et al. (2017) showed that total heavy metal (Pb, Cd, Cr and Cu) concentrations in 

water samples were higher in winter and summer than in the spring and autumn 

seasons. They also noted that oyster and fish tissues accumulated more metals 

during winter and summer relative to other seasons. Heavy metal pollution in 

Taihu also displays spatial differences. Many studies have shown that heavy 
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metal pollution in the northern part of the lake and in areas with river inflows 

was more serious than that in other parts of the lake  (Hao et al. 2013; Shen et al. 

2007). However, it needs more than just enforcement from above, more scientific 

studies are still needed to show the importance of taking action for improving the 

lake environment. 

Effect of micronutrients on harmful algal blooms in Taihu 

Investigation has shown that by 1981 the total inorganic nitrogen (TIN) in Taihu 

had increased dramatically by a factor of 18 over what is was in 1960. Over the 

same period, chemical oxygen demand (CODMn, determined by permanganate 

oxidation) increased by 49% (Sun and Huang 1993). The primary inputs of N and 

P in Taihu was river transport from the west or northwest. Studies have indicated 

that about 30-40% of N and P is retained inside the lake (Qin et al. 2007). The 

sources of the nutrient pollutants are industrial activities, domestic sewage, and 

non-point sources (agriculture production). The relative contributions of 

pollution vary. Huang (2004) showed that 49.5% of TN and 48% of TP produced 

in the basin were from agriculture. 

The excessive nutrient inputs since the 1960s have led to the appearance of HABs 

and associated eutrophication in the lake. Figure 2-4 shows sampling in Taihu 

during part of my field work when an HAB was forming. It has been reported that 

during this period, Taihu has changed from a mesotrophic, diatom-dominated 

lake to hyper-eutrophic, cyanobacteria-dominated system (Chen et al. 2003b; 

Chen et al., 2003c). Since the mid-1980s, cyanobacteria (Microcystis spp.) HABs 

have occurred every summer in the northern part of the lake (Qin et al. 2007). In 

recent years, the HABs have expanded throughout northern part of the lake and 
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into the western and central regions, where the bloom is regular feature from 

May through October (Guo, 2007). 

 

Figure 2-4. Pictures from my field sampling work showing what Taihu looks like during 

an HAB.  

The eutrophication associated with HABs in Taihu has led to a serious reduction 

of the water quality, at times reading crisis levels. This has led to a large number 

of studies investigating the effects of N and P on algal growth and HABs. Since 

2008, a series of nutrient limitation bioassays (NLBs) were conducted that were 

focused on the heavily polluted northern region and other selected lake locations 

(Paerl et al. 2015). Xu et al. (2010) and Paerl et al. (2011) found that P limitation 

happened in spring, followed by summer and autumn N and P co-limitation of 

Microcystis spp. blooms in Meiliang Bay. In most cases, the addition of combined 

N and P promoted maximum growth. In recent years, studies have been 

conducted to evaluate the potential role that Fe limitation might play in Taihu. Xu 

et al. (2013) demonstrated that addition of Fe alone significantly stimulated 

Microcystis spp. growth, indicating that Fe was a primary limiting nutrient in East 

Taihu. They also found that in East Taihu, N was not limiting, and Fe and P 
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supplies facilitated Microcystis spp. growth. With the exception of the Xu et al. 

(2013) work, other studies have been limited to the effects of N and P, and except 

for my work, other MNs have not been studied to my knowledge. 
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3 WHOLE-CELL BIOREPORTERS AND 

RISK ASSESSMENT OF 

ENVIRONMENTAL POLLUTION – A 

PROOF-OF-CONCEPT STUDY USING 

LEAD 
 

The traditional approach to assessing ecological or human health risk associated 

with soil and water contaminants typically relies upon measuring the total 

concentration of contaminant present. Due to variations in bioavailability 

however, total concentration does not always relate to toxicity, and accordingly, 

the USEPA Framework for Metals Risk Assessment states that risk assessors 

should “explicitly incorporate factors that influence the bioavailability of a metal” 

(Fairbrother et al. 2007). To begin my work on risk assessment, first I wanted to 

examine whether bioreporter results, which reflect toxicant bioavailability, 

would be able to reflect expectations based on chemical reactivity and speciation 

modelling, with the hope to extend the research into a wider framework of risk 

assessment. For the work reported in this chapter I investigated the 

bioavailability of Pb, as measured with a Pb-sensitive bioreporter, in the presence 



38 
 

of different ligands that complex Pb in aqueous environments (EDTA, DMSA, 

amino acids/peptides, HA, and DOC). 

I found that bioreporter results are in accord with the reduction of aqueous Pb2+ 

that I expect from the relative complexation affinities of the different ligands 

tested. Where possible, I compared bioreporter response with speciation 

modelling, results from which comparisons are in good agreement. This 

agreement was a first prerequisite to developing an approach to the biological 

validation of speciation modelling for ERA that is effectively high throughput 

compared to approaches such as those that I cited in Chapter 2 that are currently 

in common use.  

3.1 MATERIALS, BIOREPORTER ASSAY AND INITIAL SPECIATION 

CALCULATION 

Bioreporter strains, growth media, and assay conditions 

In this research, E. coli strain zntA, which has the capacity to emit a dose-

dependent bioluminescence in response to available Pb (Riether et al. 2001), was 

used for Pb bioavailability evaluation. The construction of the specific strain used 

is described in the studies by Kessler et al. (2012). The strain was stored on 

Lysogeny Broth (LB, Bertani 2004) agar amended with 40 μg·mL-1 ampicillin at 

4°C. Overnight cultures (1 mL LB, 40 μg·mL-1 ampicillin) were grown at 30°C for 

16 h. The overnight culture was diluted 100-fold in fresh LB and re-grown at 26°C 

with shaking at 200 rpm. At an optical density at 600 nm (OD600) of 0.2, cells were 

harvested by centrifugation (10,625 × g). The supernatant was discarded, and the 

cells were resuspended in optimised minimal medium (MM). The MM contained 
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6.06 g of 3-[N-morpholino] propane sulfonic acid (MOPS), 2 g of sodium 

gluconate, 4.68 g of NaCl, 1.07 g of NH4Cl, 0.43 g of Na2SO4, 0.2 g of MgCl2∙6H2O 

and 0.03 g of CaCl2∙2H2O in 1,000 mL of distilled water and adjusted to pH 7.0±0.1 

(Magrisso et al. 2009; Mergeay et al. 1985). All chemicals were reagent grade and 

purchased from Alfa Aesar Co., Ltd (Shanghai, China).  

Bioavailability calibration curves, as operationally defined by Magrisso et al. 

(2009), were used to assess bioreporter-measured bioavailability of Pb in this 

study. To construct these curves, 50 µL of bioreporter cell suspension was added 

to a 96-well opaque white microtiter plate (Nunc, Denmark) followed by another 

50 µl of Pb standard, nominally containing 0 (blank), 0.0125, 0.025, 0.05, 0.1, 0.2, 

or 0.4 mg·L-1 of Pb in 0.002% HNO3 (the latter confirmed low enough to be 

neutralised by MM) to each well. The microplate was incubated at 24°C with a 

shaking speed of 180 rpm, and bioluminescence was measured every 10 min for 

up to 7 h using a microtiter plate luminometer (Varioskan LUX, Thermo Fisher 

Scientific, USA).  

Unless otherwise specified, samples subject to bioreporter measurements for Pb 

were spiked with Pb standard in order to conveniently achieve a final Pb 

concentration near the mid-point of the bioreporter linear range (0.2 mg·L-1 Pb2+) 

which is effectively the speciation mode. To perform bioreporter measurements, 

50 μL of Pb standard plus 25 μL ligand solution (EDTA, DMSA, Cys, Leu, GSH, Met, 

HA) were added to 25 μL bioreporter cell suspension in each microtiter plate well. 

HA was purchased from Alfa Aesar (Tianjin, China). The HA stock solution was 

prepared according to the method of (Chen and Elimelech 2007) before use. Final 

HA concentrations were verified using a total organic carbon (TOC) analyser 
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(multi N/C ®3100, Analytikjena, Germany). Bioreporter response was measured 

by the method described above. Measurements were also made to monitor 

response in the presence of ligands and absence of Pb (i.e., to see if the ligands 

alone had any effect on the bioreporter). Parallel experiments measuring OD600 

were made a) for the bioreporter assays, and b) in experiments identical to the 

assays except without Pb (i.e., with ligands alone). In both cases, OD600 responses 

were identical to within experimental error and showed very slow and 

monotonic increase in OD600 with time, as I also observe in the same 

concentration of MM alone. 

Collection and chemical analysis of natural water samples 

Water samples were collected from Taihu in July 2016 from eight stations (St 0, 

St 1, St 3, St 4, St 5, St 6, St 7, and St 8) mostly in Meiliang Bay, with one station to 

the east of the Bay. These stations were chosen as being the primary focus of 

routine monitoring activities, and thus most well understood. For this initial work, 

my main focus was to obtain some natural water samples for controlled testing. I 

discuss Taihu as a freshwater system and results in that context in more detail in 

Chapters 4, 5, and 7. Subsequently all water samples were immediately brought 

to the laboratory and stored in the dark at 4°C for preliminary laboratory 

handling. Chemical properties were measured in the lab and included DOC, 

phosphate (PO43-), ammoniacal nitrogen (NH4
+), nitrate (NO3

-) and nitrite (NO2
-). 

NO3
- and NO2

- were measured using the cadmium reduction method and NH4
+ 

was determined using the indophenol blue method (APHA 1995). PO43- was 

determined by using the molybdenum blue method (APHA, 1995). Cations (Na+, 

K+, Ca2+, Mg2+) and anions (Cl- and SO42-) were analysed using ion 
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chromatography following the National Standards of the People’s Republic of 

China (MHPRC 2016a, b). DOC was determined using the high-temperature 

combustion method with a Dohrmann DC-190 total organic carbon analyser 

(Rosemont Analytical Inc., Calif., USEPA, 1979). The total dissolved Pb 

concentrations in the water samples, 𝐶Pb
Tot, diss, were determined by inductively 

coupled plasma mass spectrometry (ICP-MS, NexION300, PerkinElmer, USA). To 

investigate the effects of natural constituents in the samples on Pb bioavailability, 

samples were spiked to final Pb concentrations of 0.05, 0.2 and 0.8 mg·L-1 using 

1000 mg·L-1 Pb standard solution and allowed to equilibrate overnight. This spike 

assay method is discussed further in Chapter 4. For measurement, 50 μL of water 

sample plus 50 μL bioreporter cell suspension was added to each microtiter well 

with bioluminescence subsequently measured as described above.  

Chemical speciation calculations 

Speciation was calculated using Visual MINTEQ 3.1 (Gustafsson 2014). Input data 

for Visual MINTEQ were pH, temperature (of assay) and the concentrations of , 

𝐶Pb
Tot, diss , Ca2+, Mg2+, K+, Na+, NH4+, Cl-, SO42-, NO3

-, NO2
- PO43-, DOC, as well as 

concentrations of MM constituents and, as relevant, ligands/chelators described 

above. In this software, the Stockholm Humic Model (SHM) has been 

implemented to provide a more realistic assessment of metal-humic substances 

complexation (Gustafsson 2001). The SHM uses a discrete-site approach, wherein, 

in principle, humic substances are treated as impermeable spheres that may in 

part form gel-like structures. The electrostatic interactions on the surface are 

modelled using the Basic Stern Model. Equilibrium constants are defined for 

mono- and bidentate coordination, and an extra parameter accounts for binding-
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site heterogeneity. HA concentration in water samples is estimated according to 

basic assumptions for terrestrial DOC in Visual MINTEQ. 

3.2 EVALUATION OF BIOREPORTER RESPONSE TO PB 

Figure 3-1 shows the bioluminescence response produced by the zntA 

bioreporter in response to different concentrations of Pb. Figure 3-1A and B 

display the kinetics of the bioluminescent response as a function of time and Pb 

concentration, respectively. After exposing the bioreporter to different 

concentrations of Pb, the luminescence response increases over time, typically 

reaching maximum luminescence at ~170 minutes. Figure 3-1C shows three 

representative bioavailability calibration curves (Magrisso et al. 2009), for which 

response is reported as the maximum response ratio (MRR), where MRR = RLUCPb, 

max / RLU0, max, RLUCPb, max is the maximum response, in relative luminescence 

units (RLU), for  𝐶Pb
Tot, diss, and RLU0, max is the maximum response of the blank. As 

for other methods of analysis (for instance, in high performance liquid 

chromatography response may be evaluated by peak height, peak area, and 

variations on these), there are different ways to calculate bioreporter response, 

and there are different ways to construct a bioavailability calibration curve (e.g. , 

(  𝐶Pb
Tot, diss , Pb2+ or activity). Here I used MRR and  𝐶Pb

Tot, diss  because when I 

published the work I wanted it to be comparable to that of Magrisso et al. (2009), 

who originally developed the calibration approach that I follow. The average 

relative standard deviation (RSD) for each measurement cycle was lower than 

6%, which indicates the procedure of the experiment is repeatable and quite 

precise. For initial work, I used two methods to investigate the Pb LOD of the 
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bioreporter based on data from bioavailability calibration curves. Each method 

involved calculation according to LOD = 3 × sCPb=0
 (Shrivastava 2011). The first 

calculation utilised sCPb=0
 (standard deviation of blank) obtained as replicate 

measurements of MRRCPb=0
 and the second utilised sint, the uncertainty in the 

linear regression intercept for the bioavailability calibration curve. Using 

standard deviation of blank replicates, the average LOD is 4 µg·L-1; the linear 

regression method, displayed a lower value of 1.2 µg·L-1. The first method is 

typically accepted, with the second being highly conservative. The USEPA has set 

the maximum allowable level for Pb in drinking water and aquatic life in 

freshwater at a concentration of 15 µg·L-1 and 3.2 µg·L-1, repectively (USEPA 2002, 

2017). Hence, these are reasonable LODs for detection of Pb in polluted waters 

or to test for exceedance of the USEPA drinking water standard, however these 

LODs are high for testing relatively unpolluted waters.  

 

Figure 3-1. Response of the bioluminescent response of bioreporter strain zntA to Pb. 

Response kinetics (in relative luminescence units, RLU) as a function of (A) time, and 

(B) 𝐶Pb
Tot, diss. Panel C shows a bioavailability calibration curve. Per the expression for MRR 

given in the text (where MRR = RLUCPb, max / RLU0, max), for RLUCPb, max and RLU0, max the time 

of maximum intensity is not specified, as this may vary slightly from experiment to 

experiment and greatly from strain to strain. For these experiments RLUCPb, max and RLU0, 

max are typically at ~170 min, as in Panel A. The unit in panel A is mg·L-1. 
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Numerous studies have been conducted for the investigation of heavy metal 

bioavailability using whole-cell bioreporters (Ndu et al. 2012; Song et al. 2014b; 

Yoon et al. 2016a). As displayed in Figure 3-1, the strain zntA was effective to test 

for Pb bioavailability which in agreement with the previous studies using 

bioreporter as a tool to test the bioavailability of heavy metals. Directly after 

dosing cultures with Pb, the response is very low as the luminescent reporter 

proteins have not been synthesised by the bacteria yet. By 30 minutes, there is a 

marked difference in the amounts of luminescence given off by the bioreporter 

exposed to the higher concentration Pb. The luminescence signal increases until 

reaching a peak, diminishing thereafter, a circumstance anticipated from the 

cellular metabolic burden of expression of reporter protein and concomitant 

reduction of cellular activity from transferring cells to MM. The kinetics of strain 

zntA’s response are comparable to those investigated for strain NMZA1 for Hg 

(Ndu et al. 2012) and strain AE1433 for Pb (Magrisso et al. 2009). In a previous 

study, Magrisso et al. (2009) used the strain AE1433 for the measurement of Pb 

bioavailability, and obtained an MRR of ~30 for the  𝐶Pb
Tot, diss of 3.25 mg·L-1, which 

was approximately the top of the linear response range. In this study, the strain 

zntA produced an MRR of ~70 (Figure 3-1) for Pb at a total concentration of 0.2 

mg·L-1(Kessler et al. 2012), which is below the top of the linear range. The LOD 

for strain zntA is ~25 times lower than that of AE1433. The results thus 

demonstrate that the strain zntA is quite sensitive for Pb and is more suitable for 

the detection of bioavailable Pb in polluted waters, i.e., risk-related contexts. 
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3.3 EFFECTS OF ORGANIC LIGANDS ON THE BIOAVAILABILITY OF PB 

Effects of common chelating agents on the bioavailability of Pb 

Generally, chelating agents can bind Pb, making Pb become less bioavailable. 

Figure 3-2 demonstrates the effects of two types of chelating agents, EDTA and 

DMSA, on Pb bioavailability for experiments wherein  𝐶Pb
Tot, diss  was fixed at a 

concentration of 0.2 mg·L-1. As the concentration of EDTA and DMSA increases, 

the bioavailability of Pb decreases according to a log-sigmoid trend. Using the 

EDTA ionisation and Pb complexation constants in the default thermodynamic 

database of Visual MINTEQ, the predicted response was calculated and is plotted 

for comparison to the bioreporter response for EDTA, along with the percent of 

 𝐶Pb
Tot, disscomplexed to EDTA (PbEDTA, second y-axis). The results are generally 

in very good agreement compared to the level of uncertainty that is acceptable 

for this type of modelling (USEPA 2007b), which is a promising initial result for 

the intended eventual application to risk assessment. For DMSA (meso form), 

there were no definitive results from modelling, which is not surprising since 

there is considerable disagreement about the appropriate thermodynamic 

constants, and even the most appropriate reactions (Fang and Fernando 1995). 

According to Fang and Fernando (1995) some possible dominant reactions are  

Pb2+ + DMSA4-  PbDMSA2-     logβ1,1,0 = 18.2, 

Pb2+ + DMSA4- + H+  PbHDMSA-                               logβ1,1,1 = 24.82, 

Pb2+ + DMSA4- + 2H+  PbH2DMSA                           logβ1,1,2 = 27.5  

Pb2+ + 2DMSA4- + H+  PbHDMSA25-                         logβ1,2,1 = 32.2.  
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In contrast, the β for PbDMSA2- is almost an order of magnitude different than 

that reported by Egorova (1972) and Harris et al. (1991), and in considerable 

disagreement with results from, for instance, De La Gala Morales et al. (2014). 

Since accurate ionisation and complexation constants are needed for modelling, 

I focused primarily on how modelling results compare to bioreporter response 

for Pb when in the presence of EDTA and HA, i.e. those species that are well 

studied and accounted for in Visual MINTEQ and its associated database. Since 

HA is highly variable, in particular it was important to me to see if results for 

EDTA would be accurate. 

 

Figure 3-2. Effect of common chelating agents on Pb bioavailability to E. coli strain zntA 

and predicted data (for EDTA) based on speciation calculation. The concentration of Pb 

was kept constant at 0.2 mg·L-1, while the concentration of EDTA was increased from 0 

to 0.76 mg·L-1 and DMSA concentration was increased from 0 to 4 mg·L-1. For calculation 

results bioavailable Pb is expressed as reduction in response to available Pb2+. As 

detailed in the text, obtaining accurate speciation calculation results for DMSA is not 

possible due to large uncertainties in ionisation and complexation constants that are 

needed as input parameters. 

Previous studies have demonstrated that, among various common chelators, 

EDTA is highly effective for Pb (Azhar et al. 2006; Lasat 2002; Palma and Mecozzi 

2007). Azhar et al. (2006) found that 1:1and 3:4 molar ratio of EDTA to Pb 
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reduces the toxic effect of Pb on sunflower plants, which is consistent with the 

present study, wherein I find (Figure 3-2) that Pb becomes essentially 

biounavailable at a 1.37:1 molar ratio. While there is very good agreement 

between bioreporter results and results from speciation calculation for EDTA, 

small differences still exist. I find that, in practice, uncertainties in the 

concentration of chelator solutions are critical; even small errors in standard 

preparation for experiments can cause experimental results to appear to be quite 

different from calculated predictions. For the calculation the total chelator 

concentration is exact, and whatever one puts as input determines results. 

However, for calculations, uncertainties in the thermodynamic constants 

potentially have a strong effect, particularly for systems such as EDTA wherein 

there are six ionisation constants and one complexation constant in the database 

and uncertainties propagate non-linearly.  With these considerations in mind, the 

agreement between measured bioreporter results and speciation calculations for 

EDTA is notable. 

DMSA has been used for the detoxification of chronic metal overexposure in 

humans (Blaurockbusch 2014). In this study, I observed that there was a 

significant decrease of bioavailable Pb after the application of DMSA. At the 

concentration of 4 mg·L-1, DMSA complexed 98% of the total Pb (0.2 mg·L-1). 

Figure 3-2 shows that EDTA is more effective than DMSA to reduce the 

bioavailability of Pb, which is reasonable since the logβ for formation of 

PbDMSA2- is estimated as being on the order of 17.4 to 18.2 (Fang and Fernando, 

1995), whereas the logβ for formation of PbEDTA2- is 19.8 (Allison et al. 1991). I 

find that Pb becomes essentially biounavailable at a 23:1 molar ratio of DMSA:Pb, 

compared to 1.37:1 for EDTA. These findings may be rationalised looking at the 
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proposed structure of EDTA and DMSA complexes with Pb2+ in Figure 3-4; EDTA 

is a hexavalent chelator, whereas DMSA is thought to be a bidentate chelator. It 

has been reported that, as a weaker chelating agent, DMSA is more suitable for 

Pb intoxicated children and sensitive adults (Blaurockbusch 2014). As noted 

above, the Pb complexation with DMSA includes several possible reactions, and 

the shape of the DMSA curve in Figure 3-2 is suggestive of two primary 

complexation reactions, as reported by Fang and Fernando (1995).   

Effects of amino acids/peptide on the bioavailability of Pb 

Amino acids, peptides and proteins are known as complexation agents for metal 

ions due to the presence of metal-coordinating functional groups in their 

chemical structures. In this study Leu, Met, Cys, and GSH were chosen as three 

target amino acids and one peptide for testing due to their different structural 

properties (see discussion of these ligands in Chapter 2 and work of Ndu et al. 

2012). Figure 3-3 shows the effect of these amino acids/peptide on Pb 

bioavailability in the E. coli strain zntA. It can be observed that different amino 

acids affect the Pb bioavailability differently, and primarily according to the 

presence or absence of free thiolate. Leu and Met have little discernible dose-

dependent effect on Pb bioavailability. I find that for both Cys and GSH, the raw 

response, as RLU, first increases, and then decreases (data not shown). 

Comparing the response of the bioreporter to Cys and GSH in the presence and 

absence of Pb however, I find that the trend is similar, i.e., it would appear that 

this response pattern reflects some effect of the compound itself on the 

bioreporter rather than a true effect related to Pb bioavailability. As such, for each 

concentration of Cys/GSH shown in Figure 3-3, the MRR is plotted according to 
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MRR= RLU𝐶𝑃𝑏=0.2

𝐶𝑎𝑎/𝑝𝑒𝑝𝑡𝑖𝑑𝑒 RLU𝐶𝑃𝑏=0

𝐶𝑎𝑎/𝑝𝑒𝑝𝑡𝑖𝑑𝑒⁄ , i.e. instead of normalising only to the blank 

response, there is a separate Pb blank response for each different concentration 

of Cys or GSH. This type of normalisation is non-optimal because the blank 

response is very low, and hence the trend of blank response is variable, and 

considerable uncertainties may be injected into the overall trend. Accordingly, 

the MRR trends for Cys and GSH in Figure 3-3 show the same log-sigmoid trend 

as for EDTA and DMSA in Figure 3-2, albeit there is still the indication of a slight 

increase in Pb bioavailability at low Cys concentrations. It seems likely that this 

is an artefact of the differential bioreporter response levels at the two different 

Pb concentrations (i.e. the response at  𝐶Pb
Tot, diss = 0.2 being high are more precise 

versus  𝐶Pb
Tot, diss = 0 being low and less precise). 

 

Figure 3-3. Effect of different amino acids and a peptide on Pb bioavailability in the E. coli 

strain zntA. The  𝐶Pb
Tot, diss was kept constant at 0.2 mg·L-1, while the concentration of Leu 

was increased from 0 to 250 mg·L-1, Met was increased from 0 to 500 mg·L-1, Cys was 

increased from 0 to 1.25 mg·L-1, and GSH was increased from 0 to 200 mg·L-1.  

The interaction between organic compounds such as amino acids, peptides and 

proteins with heavy metals may in some cases result in significant ecological 
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consequences (Dee 2016; Jia et al. 2016). In the case of Leu and Met, as shown in 

Figure 3-3, these have little effect on Pb bioavailability. While the carboxylic acid 

and primary amine groups in Leu and Met are capable of complexing metals, 

binding constants are low (the binding constants value for Pb are lowe than 4, see 

Berthon 1995), and in this study the Leu and Met have no effect on Pb 

complexation at the concentrations tested. A previous study conducted by Ndu et 

al. (2012) demonstrated that Leu and Met showed no effect on the bioavailability 

of CH3Hg+ and Hg2+. Many amino acid-based compounds contain thiol groups, and 

Pb2+ has a high affinity for thiol-containing residues in biological conditions 

(Sisombath 2014). Ndu et al. (2012) demonstrated a trend of increasing 

bioavailability of Hg2+ and CH3Hg+ to bioreporter bacteria when Cys 

concentrations are increased. However, both the strain and the metal used in 

those studies differ from this study, and my results suggest that Cys reduces Pb2+ 

bioavailability, with the apparent slight increase at low concentrations likely 

artefactual.  

However, I also find that the addition of GSH decreased Pb bioavailability, 

consistent with Ndu et al.’s finding that glutathione decreases the bioavailability 

of CH3Hg+ and Hg2+. Reduction of bioavailability via Cys and GSH complexation is 

rationalised as primarily resulting from interaction of Pb2+ with the sulfhydryl 

group (Uzun et al. 2008). Reports indicate that complexes between Cys and GSH 

and Pb2+ involve multiple structures (Figure 3-4), all of which involve the thiol 

group, but which may also involve the carboxylic acid moiety. The stability 

constant of Pb complexation with Cys is 8.2 (Tewari 2005), which is higher than 

7.8 for GSH (Singh 2001). I find that the molar ratio needed at which Pb is 

biounavailable for Cys is 11:1, whereas the molar ratio for GSH is 674:1. This is in 
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agreement with Crea et al. (2014), who found that GSH showed weaker Pb2+ 

binding affinity than Cys. 

 

 

Figure 3-4. Proposed structure for Pb2+-ligand complexes in aqueous solution. Structures 

from Bradberry and Vale 2009; Sisombath 2014; Vacek et al. 2004. 

Effects of HA and DOC on the bioavailability of Pb 

In aqueous systems, DOC is generically known to complex heavy metals and HA 

is a fraction of DOC that has been observed in many cases to dominate 

complexation with metals (Coles and Yong 2006; Di Toro et al. 2001; Gustafsson 

2001, Tipping 1994). Figure 3-5 shows the effect of commercially available HA on 

Pb bioavailability, which follows the log-sigmoid trend observed for other 

binding agents above. Visual MINTEQ has reasonably well-studied 

thermodynamic constants that describe metal binding with HA, or at least an 

“average”/typical HA, and the Visual MINTEQ predicted response was calculated 

and is plotted for comparison to the bioreporter response for HA along with the 
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percent of total Pb complexed to HA (HA2Pb, second y-axis). The results are in 

reasonable agreement with the bioreporter response, though not quite as good 

as for EDTA. Also plotted in Figure 3-5, are the effects of DOC on Pb bioavailability 

in water samples collected from Taihu sampling stations, which I plot in terms of 

estimated HA concentration (according to the implementation in Visual MINTEQ). 

In the eight Taihu samples analysed, estimated HA is proportional to DOC content, 

which was 6.88 mg·L-1 for St 4, 4.30 mg·L-1 for St 0, 3.99 mg·L-1 for St 1, 3.57 mg·L-

1 for St 6, 3.43 mg·L-1 for St 3, 3.36 mg·L-1 for St 5, 2.45 mg·L-1 for St 7, and 2.44 

mg·L-1 for St 8. I see the same trend for natural samples as for commercially 

available HA, however, the only sample that has enough DOC/HA to have a 

substantive effect is the one collected from St 4.  

 

Figure 3-5. Effect of HA on Pb bioavailability in the E. coli strain zntA. Panel A is prepared 

HA solution and predicted data based on speciation calculation; Panel B is HA in Taihu 

water and the inset shows the locations of the sample sites.  
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HA is the most abundant organic constituent produced by the biodegradation of 

dead organic matter (present in the dissolved phase as DOC) and is a complex 

mixture of structures with a frequent motif of aromatic groups linked together 

and having carboxylic and phenolic acid substituents (Coles and Yong 2006). The 

considerable overall similarity among many individual HAs entails that they 

behave as mixtures of dibasic (carboxylic, phenolate) acids. The unique 

characteristics of HA make it a very efficient sorbent for heavy metals, and my 

results are consistent with the finding of Khokhotva and Waara (2010) that 

sorption of Zn, Ni, Pb and Cu is sensitive to DOC content. Visual MINTEQ results 

from speciation calculations, even using parameters for “generic” HA, were in 

reasonable agreement with bioreporter results. Results for Pb binding by DOC 

(expressed in Visual MINTEQ in terms of HA binding) in natural waters are more 

complex due to the possible and unknown variability of natural DOC from site-to-

site. In this study, I noted that DOC in water samples can decrease the 

bioavailability of Pb in a manner that mimics the trend of the lab refined HA, as 

shown in Figure 3-5, and the differences in the effect on bioavailability at 

different  𝐶Pb
Tot, diss concentrations are consistent with model predictions. While all 

results reported herein are mutually consistent, further studies are still needed 

to increase the accuracy of modelling.  

3.4 IMPLICATIONS FOR FIELD WORK 

I have found that known chelators such as EDTA and DMSA, along with other 

complexing ligands including Cys, GSH, and commercially available HA, may 

significantly reduce the bioavailability of Pb or even render it biounavailable to a 

whole-cell bioreporter. In contrast, compounds that do not strongly complex Pb 
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(Leu, Met) do not affect bioavailability, or at least not at the concentrations tested 

here. I also found that bioavailability of Pb is reduced in natural waters at higher 

DOC concentrations. These findings are what would be expected based on the 

binding affinity of the ligands with Pb2+, and in agreement with preliminary 

results from speciation modelling.  

 These initial results indicate potential of being able to further develop a 

useful and cost-effective preliminary approach to water quality ERA for 

heavy metals, with rapid secondary validation from bioreporters. 

 Given that biological methods currently in use for such validation are 

somewhat unwieldy, development of relatively higher throughput 

methods is of interest to complement, and potentially one day replace, 

methods in current use. 

 In later chapters, I show how I combined this initial work with a geospatial 

view to examine Pb risk in Taihu. While Pb has been studied in Taihu, the 

work in this area has not been as comprehensive as for other forms of 

pollutants that threaten the lake, and moreover, the heavy metal pollution 

in a context of bio-toxicity in this drinking water lake has not been 

addressed to date. 
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4 THE EFFECT OF DOM IN 

TAIHU ON PB BINDING 
 

After validating the bioreporter with model predictions through the work in 

Chapter 3, my intention had been to expand work to a full-scale regional level 

demonstrtaion in Taihu. Preliminary work, however, was not successful. I 

determined that the most likely cause of the problem was that the parameters 

describing Pb-DOM complexation in the models, though reasonably generalisable, 

are not correct for my field site. There is an emerging appreciation of this issue 

(as described in Chapter 2). This left me with the challenge that, if I wanted to 

proceed, I would need to find a way to rapidly obtain site-specific parameters 

(namely conditional binding constant, Kcond) for use in ERA models, and I 

determined that fluorescence techniques were most promising. In this work I 1) 

characterise the spatial distribution and variability of DOM across Taihu, i.e. at 

regional scale, 2) study the binding capacity of DOM with Pb in different parts of 

the lake to understand regional variability in Kcond, and 3) explore whether I can 

elucidate factors controlling Pb-DOM complexation, i.e. whether there are 

relationships between DOM fluorescence properties, water quality indicators and 

Kcond that provide insights on variability in Kcond. I find that Kcond varies over two 
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orders of magnitude at the regional level, contrary to established assumptions 

behind one-size-fits-all models of metal-DOM binding in current ERA speciation 

models that hold Kcond constant, and that Kcond varies in a manner that is 

consistent with other factors affecting DOM and water quality. Unlike other 

works that have studied metal-DOM complexation with fluorescence 

spectroscopic techniques, the approach I use here specifically addresses the 

needs of ERA in development of more accurate, yet rapid/streamlined ERA 

modelling. This work is novel as I do not know of any other studies that have 

employed as the wide array of indicators that might provide insights into Kcond 

variability or have used the approach that I use in the framework of ERA. The 

results are proof-of principle that the approach I take is sufficiently rapid and 

adaptable to be fit-for-purpose with respect to ERA applications. 

4.1 FIELD AREA, SAMPLING, ANALYSIS AND FLUORESCENCE 

TECHNIQUES 

Study area, sampling and water quality analyses 

Taihu is located in one of the most rapidly developing urban and economic 

regions in China, with 0.4% of the land area of China, over 40 million inhabitants 

and ~13% of the nation's GDP (Gross Domestic Product) (Qin et al. 2010; Yang 

and Liu 2010). Taihu holds a crucial role in regional water security, however, 

Taihu has become hypertrophic (Qin et al. 2007) due to the influx of nutrient-rich 

wastes from urban, agricultural, and industrial activities within the Taihu 

watershed (Sun and Mao 2008). With more than 170 rivers and streams draining 

into Taihu, there is a substantial exogenous contribution to DOM in some parts of 

the Taihu ecological system. At the same time, the size and relative biological 
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productivity of Taihu entails that there is much endogenous contribution to DOM 

as well, particularly given that Taihu has experienced HABs every year since the 

mid-1980s (Sun and Mao 2008). These HABs have had a strong influence on the 

chemical nature and amount of DOM, particularly in the northern part of the lake 

(Zhang et al. 2014). In consequence of the highly variable sources of DOM across 

the very large lacustrine system, there is potential to observe a highly variable of 

DOM properties throughout the lake (Yao et al. 2011), and therefore different 

effects of metal-DOM binding and Kcond. 

In addition to the highly variable sources of DOM to Taihu, the character of DOM 

is expected to be affected by the water retention time (WRT), which has been 

reported to be on the order of 5-10 months (Qin et al. 2004, 2007). As the lake is 

so large, the WRT is also variable in different regions of the lake. Urban pollutants 

discharge into northern Taihu, runoff sources are largely from the western and 

southwestern mountains, and outflows are located throughout East Taihu. Figure 

4-1A shows the tributaries/drainage network for Taihu and prevailing summer 

current pattern (Qin et al. 2007). The greatest inflow rivers are the Chendong, 

Tiaoxi (net inflow), and Yincun in the west/southeast, though approximately 60% 

of river water inflow comes from western rivers along the Yixing shore (Figure 

4-1B, notably the Chendong River and the Caoqiao are also important, see Qin et 

al. 2007; Sun and Mao 2008; Xu and Qin 2005). The main outflow rivers are the 

Taipu (accounting for ≥50% of the total outflow volume), Xinyun, and Xijiang in 

the east/southeast (Qin et al. 2007). By far the largest flow is the Taipu River, 

which results in shorter WRT times in the south. In consequence of inputs and 

residence times, water quality, therefore, is better in the south than in the north, 

and in the southeastern part of lake (Qin et al. 2007). 
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Water samples from 32 monitoring stations in Taihu that are monitored by 

NIGLAS (Nanjing Institute of Geography and Limnology, Chinese Academy of 

Sciences) quarterly (Zhang and Chen 2011) were collected in August, 2017 

(Figure 4-1B). This sampling time was chosen to occur at the height of what has 

become a yearly occurrence of a cyanobacterial HAB in the north/northwestern 

part of the lake. The yearly HAB occurrence commences in the northern part of 

the lake, in the Meiliang Bay area where stations Sts 1, 3, 4 and 5 are located 

(Figure 4-1B), spreading toward the south and east thereafter. Despite the 

frequent HABs, the southeastern region of the lake is typically characterised by 

relatively clear water with floating and submersed macrophytes (Qin et al. 2007). 

The inflows and outflows of the lake are complex due to the networked nature of 

the watercourses connected to the lake (Sun and Mao 2008), however, the HAB 

is associated with inflow of nutrient-polluted waters, and its spread follows the 

predominant pattern of summer circulation, as shown in Figure 4-1B (Qin et al. 

2007). 

For taking water samples, at each station, a 1.5 L water sample was collected from 

0.2 m below the water surface in a trace-metal clean polyethylene bottle, and 

water sample physical parameters including surface water temperature, Secchi-

disk transparency (Transp), pH, electrical conductivity (Cond) and dissolved 

oxygen (DO), were measured using a YSI 6600 multisensor sonde. Water samples 

were returned to the laboratory within 6 h and 0.75 L of each sample was filtered 

through a pre-combusted 45 mm Whatman GF/F glass fibre filters (nominal pore 

size 0.7 µm) and kept at 4ºC in the dark until analysis for dissolved quantities. 

The remainder of each sample was subject to analysis of other water quality 

parameters. 
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Figure 4-1. Maps of Taihu. Map shows (A) its tributaries/drainage network (R. is River) 

and prevailing summer current pattern (Qin et al., 2007), and (B) location of all 32 

sampling stations (St) indicated with dots. TLLER is the location of the Taihu Laboratory 

for Lake Ecosystem Research, marked with a star. 

The measurement of 𝐶Pb
Tot, diss, DOC, NH4+, Na+, K+, Ca2+, Mg2+, NO3-, NO2-, PO43-, Cl- 

and SO42- was conducted as described in detail in Chapter 3. Additional chemical 

properties that were measured in the lab included chlorophyll-a (Chl-a), total 

phosphorus (TP), total dissolved phosphorus (TDP), total nitrogen (TN), total 

dissolved nitrogen (TDN) 5-day biological oxygen demand (BOD) and CODMn. For 

the determination of Chl-a, water samples were filtered through Whatman GF/F 

glass fibre filters, then the concentration of Chl-a was determined by hot ethanol 

method (ISO 1992). The concentrations of TN, and TP were determined using a 

combined persulphate digestion (Ebina et al. 1983).  BOD and CODMn were 

determined according to the corresponding standard methods (APHA 1995). 

Fluorescence spectroscopy 

Fluorescence spectra for the 32 stations were obtained in a 1 cm quartz cuvette 

using a Cary Eclipse fluorimeter (Agilent Technologies) equipped with a 150-W 

Xenon arc lamp light source and a PMT detector with voltage set at 700 V. For 
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3DEEM fluorescence spectra (3-D being excitation, emission, and intensity, 

hereafter EEM), the excitation wavelength range was scanned from 200 to 450 

nm at 5 nm intervals, and the emission wavelength was scanned from 300 to 550 

nm in 1 nm increments. For SFS quenching titration experiments to study Pb-

DOM complexation (Esteves Da Silva et al. 1998; Fu et al. 2007), spectra were 

recorded scanning the excitation and emission monochromators over a 200 nm 

range starting at 250 nm with a Δλ = 20 nm offset using a 5 nm slit width and a 

scan speed of 1200 nm·min-1. Titration was carried out by adding a series of Pb 

spikes (final concentrations ranging from 9.5×10-7 to 3.8×10-5 M) to subsamples 

from each sample of the 32 stations. pH was adjusted to 7.00 ± 0.05 by adding 

MOPS buffer (Zhang et al. 2017). Prior to analysis, all samples were kept 24-h at 

room temperature in the dark to ensure complexation and avoid photolytic 

reactions. A sample of commercially available HA (8 mg·L-1, Alfa Aesar, Tianjin, 

China) was also scanned under the same conditions, albeit without adding Pb, in 

order to have a comparator for spectral features. 

Parallel factor analysis modelling 

Stedmon et al. (2003) demonstrated the use of parallel factor (PARAFAC) analysis 

of EEM spectra to decompose or “unmix” the complex mixture of DOM 

fluorophores into contributions from underlying component fractions without 

any assumptions about the spectral shape or number of contributing components. 

In recent decades, this method has been widely used for the characterisation of 

DOM/DOC from both freshwater and marine aquatic environments (Cory and 

McKnight 2005; Kowalczuk et al. 2009; Yamashita et al. 2008). With regard to 

lakes in particular PARAFAC has been used to study land use change, 
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environmental processing of DOM, ecological processes taking place within and 

among lakes, and lake stratification and spatial variation in DOM sources within 

lakes (Jaffé et al. 2004). The PARAFAC model decomposes an EEM spectrum as 

follows:  

𝑋𝑖𝑗𝑘 = ∑ (𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓)
𝐹

𝑓=1
+ 𝑒𝑖𝑗𝑘,     (4-1) 

where Xijk is an array with the fluorescence intensity for the ith sample at 

emission wavelength j and excitation wavelength k, the summation includes a set 

of trilinear terms aif, directly proportional to the concentration of the fth analyte 

in the ith sample, bjf, is linearly related to the emission spectra at wavelengths j 

for the fth analyte, and ckf is linearly proportional to the specific absorption 

coefficient at excitation wavelength k. The term eijk represents an array 

containing the model residuals. For samples that have a wide range of DOC 

concentrations, a correlation of components may arise artefactually in 

proportion to DOC. To avoid that, the computational package used to perform 

PARAFAC analysis (staRdom, Pucher et al. 2019) is implemented so that samples 

may be normalised to DOC for determination of components, with normalisation 

being later reversed by multiplying samples loadings for each component with 

normalisation factors. 

Theory of fluorescence quenching titrations 

Fluorescence quenching is defined as any process that decreases the fluorescence 

intensity of a sample (Lakowicz 2006). There are many mechanisms by which 

quenching occurs, e.g. excited-state reactions, inner filter effect (autoabsorption 

proportional to the optical density of the sample at excitation and emission 
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wavelengths), self- and/or intramolecular absorbance, collisional/dynamic 

quenching and static quenching. Collisional/dynamic quenching occurs when an 

excited-state fluorophore experiences non-reactive contact with a species in 

solution (e.g. chloride, oxygen) that facilitates non-radiative relaxation to the 

ground state. Static quenching occurs when, for example, complexation between 

a metal ion and the main binding sites of DOM occurs and causes non-radiative 

relaxation.  

It is well-known that DOM fluorescence is quenched by heavy metals, via both 

static and dynamic mechanisms (Lakowicz 2006), usually dominated by static 

quenching for bivalent metals that strongly form strong complexes with organic 

fluorophores (Cabaniss 1992; Esteves da Silva et al. 1998). Quenching (measured 

by SFS) is proportional to metal complexation, and this phenomenon has become 

well established as a method to determine Kcond of complexation (Cabaniss 1992; 

Esteves da Silva et al. 1998; Fu et al. 2007; Heibati et al. 2017; Lu and Jaffe´ 2001; 

Ryan and Weber 1982a and b). Studies have shown that both fluorescence 

lifetime (Lakowicz 2006) and thermal quenching (Carstea et al. 2014) are useful 

in verifying quenching mechanisms. Due to the various processes that may be 

affecting fluorescence, the use of quenching titrations is operationally bolstered 

by common matrix, i.e., when spiking metal into a sample solution, the only thing 

that is changing is metal concentration, hence mechanistic information is not 

operationally necessary. 

The complexation reaction is described by (charges omitted) 

𝑀 + 𝐿 ↔ 𝑀𝐿,        (4-2a) 
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where M is the metal (Pb here), L represents a complexing ligand (in this case 

DOM), and ML is the complex (Pb-DOM). This chemical reaction is governed by 

the equilibrium expression 

𝐾cond =  
[ML]

[M]∙[L]
,        (4-2b) 

where binding is assumed to form 1:1 complexes, and brackets denote 

concentrations of the ML complex, uncomplexed metal ion, and uncomplexed 

ligand, respectively. The quenching of DOM fluorescence by complexation with a 

metal ion can be described by the modified Stern–Volmer equation (Esteves Da 

Silva et al. 1998) according to 

𝐼0

𝛥𝐼
=

1

𝑓∙𝐾cond∙𝐶M
Tot, diss +

1

𝑓
 ,      (4-3) 

where I = I0 - I, I0 and I are the fluorescence intensities of the sample, 

respectively, with and without M (Pb) present, f is the fraction of I0 that 

corresponds to the fluorescent portion of DOM that participates in binding, Kcond 

is the conditional stability constant for the reaction shown in (2), and 𝐶M
Tot, diss is 

the total dissolved metal (Pb) concentration. Equation (3) may be plotted as a line 

for which I0/I, 𝐶M
Tot, diss, 1/(f· Kcond) and 1/f  are the ordinate, abscissa, slope, and 

intercept, respectively. Thus Kcond and f are estimated from the slope and 

intercept of the linear plot. An alternate expression for static quenching (Ryan 

and Weber 1982b) is 

𝐼 = (
𝐼ML−100

2𝐾cond𝐶L
Tot, diss) [(𝐾cond𝐶L

Tot, diss + 𝐾cond𝐶M
Tot, diss + 1) −

√(𝐾cond𝐶L
Tot,diss + 𝐾cond𝐶M

Tot, diss + 1)
2

− 4𝐾cond
2𝐶L

Tot, diss𝐶M
Tot, diss ] +100,      (4-4)                    



64 
 

where IML is the fluorescence intensity (in %, i.e. when data is expressed such that 

I0 = 100%) at which further addition of quencher produces no further diminution 

of fluorescence intensity, and 𝐶L
Tot, diss  is the total concentration of ligand. This 

expression has two new parameters, however, the parameter IML is related to the 

parameter f in equation (3) since, when IML is expressed in decimal percent, IML+ 

f = 1, hence equation (4) is used in problems seeking to understand complexing 

capacity in addition to the magnitude of Kcond s (Boguta et al. 2016; Esteves Da 

Silva et al. 1998). For (4), parameter solutions are determined using non-linear 

regression analysis, plotting I versus 𝐶M
Tot, diss. 

Expression (3) was developed to capture non-idealities/deviations from linearity 

in Stern-Volmer plots. Another commonly used expression to address this issue 

that also relies on non-linear regression is 

𝐼0/𝐼 = (
1

𝑓

1+𝐾cond∙𝐶M
Tot, diss + 𝐼ML 

),      (4-5)                    

where IML is decimal (Carraway et al. 1991) and non-linear regression is 

performed on a I0 / I versus 𝐶M
Tot, diss plot. Comparison of results from different 

equations are useful due to the variability in error structure arising from different 

functional forms.  

When collisional/dynamic quenching occurs simultaneously to complexation 

between a metal and DOM, nonlinearity of I0/I versus 𝐶M
Tot, diss plots (away from 

x-axis) is observed. The expression used in this case is (Carraway et al. 1991) 
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𝐼0

𝐼
= (1 + 𝐾cond

d ∙ 𝐶M
Tot, diss) ∙ (1 + 𝐾cond ∙ 𝐶M

Tot, diss)   (4-6)                               

where 𝐾cond
d is the constant for collisional or dynamic quenching and parameters 

are determined via nonlinear regression (Carraway et al. 1991). 

Data treatment and calculations 

The R (R Core Team 2019) package staRdom (Pucher et al. 2019), with associated 

packages in R (Helwig 2019; Massicotte 2019; Wickham et al. 2019; Wickham and 

Henry 2019), was used for analysis of EEM spectra. Fluorescence peaks and 

indices calculated include Coble peaks (Coble 1996), the humification index (HIX) 

(Ohno 2002; Zsolnay et al. 1999), the index of recent autochthonous contribution 

(BIX) (Fellman et al. 2010; Huguet et al. 2009), and the fluorescence index (FI) 

(McKnight et al. 2001). HIX is calculated according to 

∑ 𝐼Em=435−480 nm
∑ 𝐼Em=300−345 nm

⁄  for λEx = 254 nm (Ohno 2002). BIX is 

𝐼=380 nm
Em

𝐼=430 nm
Em⁄  for λEx = 310 nm (Huguet et al. 2009), and FI is 

𝐼=380 nm
Em

𝐼=430 nm
Em⁄  for λEx = 370 nm (McKnight et al. 2001). 

The processing pipeline included data checking, blank subtraction, inner filter 

effect correction and removal of scattering peaks (see vignette, Pucher 2019). 

Raman normalisation was not performed, in accordance with findings of Mostofa 

(Mostofa et al. 2013b). PARAFAC analysis was also conducted and provides 

similar but different data as from peak picking (Coble peaks), namely that 

decomposition of spectral components via PARAFAC analysis avoids spectral 

overlap and can provide exploratory results beyond the pre-determined Coble 

peaks (Murphy et al. 2013). Normalisation (and subsequent inverse 
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normalisation) was performed for PARAFAC analysis, and results were 

subsequently validated via analysis of residuals, split-half analysis, and 

comparison with similar systems (Bro 1997); OpenFluor was used for the latter 

(Murphy et al. 2014). SFS data were analysed by linear (Excel) and nonlinear 

(Origin) regression analysis using equations (4-3), (4-4), (4-5) and (4-6). 

Additional data analysis included pair-wise correlation analysis, multiple 

regression, and principle component analysis (PCA). These were performed 

using the corrplot, FactoMineR, factoextra, fields, leaps, plot3D, rcorr, and stats 

calculation and visualisation packages in R (Alboukadel and Fabian 2017; Harrell 

et al. 2015;  Karline 2017; Lumley 2017; Nychka et al. 2017; R Core Team 2019; 

Sebastien et al. 2008; Taiyun and Viliam 2017). To perform these calculations, 

results from physical and chemical analysis of water samples were combined 

with results from analysis of EEM data and results for Kcond into a single 

multivariate data set.  

4.2 WATER QUALITY AND CONDITIONS 

Results for individual measurements of 22 physical and chemical parameters for 

the 32 samples in different regions of Taihu are given in Table 4-1 (along with 

results for 𝐶Pb
Tot, diss) and for brevity are summarised here. The pH in the lake was 

somewhat high, ranging from 7.90 to 8.35, which has been attributed to inorganic 

carbon scavenging of phytoplankton as a result of HABs (Fang et al. 2018; Ma et 

al. 2014; 2015). The Chl-a concentrations ranged from 7.81 to 239.2 µg·L-1, with 

higher Chl-a concentrations occurring in HAB-impacted areas of the lake, and a  
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number of parameters follow the general motif of being higher in HAB-impacted 

areas and vice versa. Table 4-1 shows that Na+ and Cl- are the dominant ions in 

the lake,  which is an indicator that anthropogenic impacts strongly affect the 

water quality (Chetelat et al. 2008; Yu et al. 2013). 

Regarding Pb, concentrations of 𝐶Pb
Tot,diss in the water at the time of sampling are 

also in Table 4-1. These levels are low enough to be well below environmental 

acceptance criteria (lower than the standard concentration for drinking water 

and aquatic life, WQC set via USEPA), and low enough to be below levels that 

would have a detectable effect in quenching titrations (verified in this study by 

testing, data not shown). The low levels of 𝐶Pb
Tot,diss  at pHs above ~8.5 are an 

expected consequence of formation of various inorganic complexes (hydroxy-, 

carbonato-, pyrophosphate) whose solubility product is exceeded or which more 

readily flocculate resulting in deposition of Pb into the bottom sediments as 

insoluble compounds (Fang et al. 2018). Likewise, during periods of lower 

ambient pH, DOM in freshwater lakes can complex with heavy metals and 

flocculate in a manner that results in deposition of metals into bottom sediments. 

Due to pollution inputs into Taihu, including Pb, over time this has resulted in 

high sediment concentrations of heavy metals (Liu et al. 2012; Niu et al. 2015). 

Due to the polymictic nature of the lake, storms cause resuspension events that 

can cause high levels of metals to become available for redissolution as pH values 

recover (seasonally, post-HAB) to a lower level (Wang et al. 2014; Zheng et al. 

2013). There are implications of varying dissolved metal content from the 

standpoint of ERA. First, it is not unusual, and therefore analytical methods must 

be adaptable. In the case of low 𝐶Pb
Tot,diss , measurements are performed as 
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described in this manuscript. In the case of higher 𝐶Pb
Tot,diss , saturation 

measurements or competitive ligand exchange techniques are used as part of the 

titration process (Sander et al. 2015). For the work reported here, which centers 

on the potential effects of DOM that deviate from standard assumptions used in, 

e.g. WHAM and the SHM, I sampled when there is potentially a high level of DOM 

cycling in the lake, inclusive of locally high contributions of allochthonous DOM 

(i.e. as occurs during HABs). From the standpoint of ERA, the quantities that are 

calculated in setting WQC involve ascertaining what value of 𝐶Pb
Tot,diss, if present, 

would cause unacceptable risk under variations in ambient conditions.  

Figure 4-2 shows selected contour maps for Chl-a, DOC, CODMn, TN, TP and TN:TP 

to illustrate these general trends. The higher concentration of the nutrients is the 

main driver that leads to HABs, which in turn may be associated with elevated 

Chl-a, COD and DOC concentrations. Chl-a has a higher correlation with CODMn 

than BOD, which is likely a result of processes that affect the reworking of organic 

matter from HABs (note, I treat BOD, CODMn, DOC, and Chl-a as indicators of 

OM/primary productivity, correlations are discussed in more detail below). The 

regions that suffered from HAB are not entirely co-located with the distribution 

of TN and TP. This is an outcome of transport hydrodynamics in the lake. The 

predominant inflow of river water from the west/northwest and outflow of water 

to the east ensures a general trend of mass movement counter-clockwise from 

the northern part of Taihu to the locale of the largest outflow at the Taipu River. 

Additionally, in summer the prevailing winds from the southeast or southwest 

generate surface currents that manifest in localised counter clock-wise rotation 

(Figure 4-1B, see arrows pointing northeast and northwest to the north and south 
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of the island in the lake) (Qin et al. 2000; Qin et al. 2007). These simultaneous 

phenomena have a strong impact on the distribution of HAB and HAB-associated 

water quality parameters in the northern and western areas of the lake. 

 

Figure 4-2. Contour maps showing the distribution of selected water quality parameters 

in Taihu. Abbreviations are chlorophyll-a (Chl-a), chemical oxygen demand (CODMn), 

dissolved organic carbon (DOC), total nitrogen (TN), total phosphorus (TP). Chl-a and TN 

distributions are concentrated in portions of the lake that also suffer most from cyclic 

HABs. 

4.3 THE PROPERTIES OF DOM IN TAIHU 

Fluorescence properties of DOM 

A variety of approaches have been used to analyse EEM data and I consider 

results for three of these here: 1) an early approach adduced by Coble involving 

quantifying the intensity of local maxima of fluorescence corresponding to 

different components of DOM (EEM peak picking), 2) calculation of fluorescent 

indices (FlInd), 3) use of PARAFAC analysis to decompose EEM matrices into 

different spectral components. The last decade has seen an increasing shift to 
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PARAFAC analysis of EEMs (Jaffé et al. 2014; Murphy et al. 2013); this approach 

is analogous to quantification of Coble peaks, however it can reveal the presence 

of additional local maxima as well as provide improved resolution of the peaks 

found in analysis of raw EEMs data (see the section on EEM–PARAFAC 

components of Taihu DOM below for additional information on PARAFAC 

analysis). 

Based on several decades of work on the characterisation of DOM, the common 

fluorophores in DOM that are identifiable by fluorescence peaks in different 

regions of EEMs are classified into tyrosine-like (Tyr, amino-sugar), tryptophan-

like (Trp, proteins and peptides), and HA/FA-like materials (Mostofa et al. 2013b). 

Peak nomenclatures typically follow either the early nomenclature of Coble or 

the more recent terminology of Mostofa (Coble 1996; Mostofa et al. 2013b). In 

the Mostofa terminology, regions with Peaks A and C are associated with humic 

substances, with FAs having lower emission wavelengths than HAs for any given 

sample, and the regions with Peaks T and TUV are associated with protein-like 

DOM, with the lower emission wavelengths for each region being Tyr-like and 

higher emission wavelengths being Trp-like, as shown in Figure 4-3. For the 

Coble terminology (Coble 1996), Coble peaks a, and c are coincident with 

Mostofa’s Peak A and Peak C, respectively. Coble terminology does not 

encompass Peak TUV, and in Coble terminology the Mostofa Peak T is subdivided 

into t (higher emission wavelength, Trp-like) and b (lower emission wavelength, 

tyrosine-like) peaks. Coble terminology also distinguishes a m peak that is a 

subclass of Mostofa’s Peak C region, designating a peak that occurs at a slightly 

lower excitation wavelength than the primary Peak C. Mostofa recognises 
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subclasses of the Peak C region (M, Mp and W, see Mostofa et al. 2013b for further 

details). 

The EEMs for the 32 stations are given in Figure 4-4. In Figure 4-4, the EEMs 

samples from all stations display Peak TUV and Peak T (protein-like DOM), and 

generally the highest intensities are seen for these peaks, though, even visually it 

is apparent that for Sts 9 and 15 these contributions are low (particularly in the 

Tyr-like portion of the EEM spectrum, see EEM for St 9). Sts 9 and 15 are the only 

two stations that are technically not in Taihu. These stations are in Wuli Bay, 

which was an arm of Taihu until a gate was built to separate it from Taihu; Wuli 

Bay is not considered as a watercourse connected to Taihu. All the samples also 

had a Peak A contribution of varying intensity (e.g. contrast St 9 and St 13), 

however Peak C is weak or absent from visual inspection of the EEMs for around 

a third of the samples (e.g. St 13 in). Strong protein-like fluorescence has often 

been reported in water bodies that experienced HABs (Haas and Wild 2010; 

Moffett 1995), and protein-like fluorescence is also associated with wastewater, 

i.e. from wastewater treatment plants (WWTPs, e.g. see Sorensen et al. 2018). 

Many studies have demonstrated that excretion by HABs may contribute 

significantly the DOM pool (Bertilsson and Jones 2003; Moffett 1995; Yao et al. 

2011; Zhang et al. 2009; Zhang et al. 2007). Since the highly labile DOM leached 

from algae is consumed very rapidly, the algae-produced DOM is not likely to 

persist in the environment, and thus except under specific conditions this 

bioavailable pool of algae-produced DOM that predominates in the HAB-

dominated summer environment of Taihu is not expected to make up a significant 

fraction of the DOM in natural, unimpacted waters (Chen and Wangersky 1996; 

Hansen et al. 2016; Moreira et al. 2011). A shift in composition violating this 
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assumption would be one reason for speciation models to fail to predict 

bioavailability. 

 

Figure 4-3. Schematic showing locations of EEM peaks reported in the literature for DOM. 

Regions for Peaks TUV, T, A and C (Mostofa et al. 2013b) in EEMs are separated by dashed 

lines; error bars are one standard deviation of literature average. The 

approximate/indicative locations of Coble peaks a, c, b, t, and m are marked with ellipses 

(Coble, 1996). 

Coble peaks and fluorescence indices 

Table 4-2 contains results for quantification of Coble peaks and the FlInd. For 27 

of 32 samples, the quantification of Coble peaks a, b, c, m, and t shows the order 

b  t > a > m > c fluorescence, indicating that protein-like (b and t, tyrosine and 

tryptophan) compounds are the main component of DOM in Taihu at the time of 

sampling.  
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Two of the five exceptions are Sts 9 and 15, which have the lowest and second 

lowest, respectively, intensities for Peak TUV and T of all stations. The other 

exceptions are Sts 10, 16 and 17, along the western Yixin shoreline where the 

greatest density of water from the Massif region in the western Taihu Basin feeds 

into Taihu. These stations all have slightly differing relative proportions of b and 

t, still following the trend a > m > c. 

The metrics HIX, BIX, and FI have been developed characterise the origin and 

transformation degree of DOM (Huguet et al. 2009; McKnight et al. 2001). HIX is 

based on the concept that emission spectra will shift toward longer wavelengths 

as humification of DOM proceeds (Fellman et al. 2010). The HIX values for all the 

samples from Taihu are below 1, which indicates this DOM is mainly associated 

with biological or autochthonous material with a quite low humification degree 

(Huguet et al. 2009), which is consistent with findings for Coble peaks and my 

PARAFAC model (vide infra). The average HIX value is 0.52, and only Sts 9, 10, 15, 

16 and 17 have a HIX value greater than 0.6. St 17 is near Sts 10 and 16 where 

there is greater influx, hence a slightly greater allochthonous contribution to 

DOM may be anticipated at these stations (Zhang et al. 2012). 

The BIX index was calculated for characteristic of autochthonous biological 

activity in water samples. The BIX values in my study range from 0.87 to 1.13. 

Huguet et al. (2009) showed that values from 0.8 to 1 represent the DOM 

associated with a strong autochthonous component, and values greater than 1 

are indicative of biological production of strongly labile organic matter. Of 32 

stations, all have a BIX higher than 0.8, and 24 display a BIX value higher than 1, 

indicating the presence of freshly released DOM (Huguet et al. 2009). In this study, 
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the BIX and HIX indices show a small range of values and a negative correlation, 

indicating that the DOM in Taihu was strongly affected by autochthonous 

contributions, freshly released in origin and likely caused by the HAB in the lake. 

These findings might be subject to debate however, for instance, Microcystis spp. 

are typically the dominant genus found in Taihu HABs, and Yang et al. (2016) 

found that, when growing Microcystis aeruginosa in lab culture, BIX values may 

drop from 1 to ~0.2 in early exponential phase growth (Yang et al. 2016). Similar 

comments pertain to my results for FI. McKnight et al. (2001) developed the FI 

for predicting the precursor source and chemical properties of FA. For my 

samples the FI values range from 1.39-1.71. FI values of <1.9 consistently appear 

in DOM from rivers that have terrestrially derived DOM sources (McKnight et al. 

2001). In terrestrial environments the source of DOC is typically from 

decomposition of dead organic matter (Camilleri and Ribi 1986). Taihu is a very 

large lake with many inflowing rivers that may transport HA/FA components of 

DOM into the lake, however, the FI may not be representative of the source of 

non-HA/FA components of the DOM. 

EEM–PARAFAC components of Taihu DOM  

PARAFAC analysis was used to decompose EEMs into components corresponding 

to DOM fluorophores (Bro 1997; Murphy et al. 2013). Figure 4-5 panels A to D 

display four different components, designated as Comp1 to Comp4, which are the 

composite components obtained from PARAFAC analysis; the component 

breakdowns for each sample are given in Table 4-3.  
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For PARAFAC, an initial exploratory analysis was performed including scrutiny 

of model residuals, plots of leverage for each sample, and split-half analysis for 

the entire data set (both calculated as implemented in R’s staRdom).  

Table 4-2. Coble peaks and FlInds. Units for Coble peaks are RFU and indices are unitless. 

Station 
Coble peaks  Indices 

b t a m c FI BIX HIX 

St 0 115 117 105 83 60 1.55 0.94 0.58 

St 1 152 139 112 84 62 1.48 1.01 0.54 

St 3 134 107 103 76 58 1.58 1.00 0.56 

St 4 157 137 108 85 69 1.71 1.05 0.54 

St 5 247 228 117 78 59 1.47 1.01 0.47 

St 6 266 265 178 130 86 1.50 1.10 0.57 

St 7 157 138 92 73 46 1.43 1.07 0.49 

St 8 168 158 94 82 44 1.52 0.92 0.47 

St 9 43 59 91 70 55 1.49 0.94 0.76 

St 10 139 170 151 111 88 1.48 0.87 0.68 

St 11 169 125 78 57 39 1.43 1.04 0.44 

St 12 167 141 83 65 43 1.50 1.06 0.46 

St 13 291 277 94 68 51 1.54 1.04 0.38 

St 14 169 144 96 70 53 1.60 1.06 0.50 

St 15 49 70 92 67 50 1.50 0.89 0.74 

St 16 105 108 160 120 100 1.57 0.90 0.73 

St 17 164 178 170 92 79 1.50 1.04 0.63 

St 18 160 148 118 92 63 1.46 0.98 0.55 

St 19 148 123 112 84 58 1.54 0.98 0.57 

St 20 227 199 113 85 65 1.56 1.04 0.47 

St 21 175 155 94 71 49 1.47 1.08 0.47 

St 22 203 164 100 74 48 1.62 1.11 0.45 

St 23 185 163 102 80 58 1.49 1.08 0.48 

St 24 157 131 76 57 41 1.48 1.04 0.45 

St 25 132 102 82 62 45 1.51 1.00 0.51 

St 26 165 135 69 49 34 1.39 1.13 0.42 

St 27 141 110 65 46 35 1.59 1.06 0.44 

St 28 87 69 49 35 24 1.39 1.02 0.49 

St 29 186 151 67 49 34 1.54 1.09 0.39 

St 30 211 181 71 52 37 1.67 1.08 0.38 

St 31 148 117 77 58 40 1.50 1.02 0.47 

St 32 169 149 104 83 64 1.63 1.03 0.51 
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Figure 4-5. Results from PARAFAC analysis of EEM spectra.  Panels (A), (B), (C) and (D), 

respectively, show the composite fluorescence signatures of Comp1 to Comp 4. Panels 

(E), (F), (G) and (H), respectively, show a comparison of my composite results with 

representative results published on OpenFlour and a composite of literature data 

reviewed and compiled by Mostofa et al. (2013b). 

Based on leverage, as a metric of how unusual a datum is, outliers were identified 

and removed from the final calculation that was used to determined underlying 

composites for each component. Samples from St 0, 6, 9, 10, 15, 16, and 17 had 

the highest leverage and were classified as outliers. After the calculation of 

component composites for the remaining samples (base EEM data set), the 

outlier samples are recalculated to extract the calculated components. The 

features that cause samples to be outliers are in some cases apparent from visual 

scrutiny of EEMs in Figure 4-4. For instance, for St 17 the Peak C occurs at a higher 
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excitation wavelength and for St 9 Peak A is much broader than for samples in 

the base data set.  

Table 4-3. The component breakdowns for each sample by PARAFAC model. 

Station 
Component (%) 

Comp1 Comp2 Comp3 Comp4 

St 0 20 20 30 30 

St 1 20 24 28 27 

St 3 18 21 28 33 

St 4 21 21 27 31 

St 5 28 23 17 32 

St 6 19 34 25 22 

St 7 23 27 30 20 

St 8 24 30 32 15 

St 9 12 13 35 40 

St 10 12 23 25 40 

St 11 27 27 24 22 

St 12 30 25 25 20 

St 13 38 28 17 17 

St 14 25 23 24 28 

St 15 14 15 30 41 

St 16 8 17 28 47 

St 17 12 23 17 49 

St 18 19 26 29 26 

St 19 18 22 28 32 

St 20 25 28 24 24 

St 21 24 28 25 22 

St 22 26 29 25 20 

St 23 24 27 26 23 

St 24 27 25 24 24 

St 25 22 22 27 29 

St 26 31 28 22 19 

St 27 27 26 23 23 

St 28 26 23 25 26 

St 29 33 29 20 18 

St 30 37 29 18 17 

St 31 25 25 25 25 

St 32 23 24 27 27 

 

Figure 4-6 shows the comparison of PARAFAC model output data with the data 

from Openflour for each component. Openflour is an online repository of 
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published DOM fluorescence spectra, and it can be searched for quantitative 

matches with any given set of input spectra; I searched Openfluor using the four 

components shown in Figure 4-5 as input spectra. Studies have shown that there 

are now more than 100 published PARAFAC models of DOM and over 500 

published PARAFAC components (Murphy et al. 2013; Murphy et al. 2014).  

For Comp1, there are 16 studies that agree with both excitation and emission of 

my data. For Comp2, 2 and 3 studies for the excitation and emission, respectively, 

agree.  Similar results for Comp3 include 12 and 22 studies, respectively, for both 

excitation and emission peaks. There are 12 data sets that agree with my 

excitation spectrum for Comp4 and 22 for the emission spectrum. In Figure 4-5, 

panels E, F, G and H, respectively, show a comparison of my PARAFAC composite 

results with representative results published on OpenFlour and a composite of 

literature data reviewed and compiled by Mostofa et al. (2013b). The Mostofa 

excitation and emission peaks were plot by Using data from Mostofa et al. 

(2013b), average Ex, max, and Em, max and standard deviations were calculated for 

Tyr, Trp, HA and FA components of DOM and these values were used to construct 

composite spectra according to 

𝐼 = ∑ 𝑒
−(

(−�̅�)2

2∙𝑠2 )
𝑖 ,       (4-7) 

where I is the composite fluorescence intensity, i sums over all peaks in an 

excitation/emission spectrum,  is the spectral wavelength for each point 

reconstructed in the composite, �̅� is the average max for excitation or emission, 

and s is the standard deviation of �̅�.  
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In Figure 4-5 panels E to H, I compare composite spectra from my results to 

representative results from the literature obtained from the OpenFlour database 

(Murphy et al. 2014) and to a composite for each component obtained from the 

data in the extensive review published by Mostofa et al. (2013b). The spectra of 

the four components in my study agree very well to those of DOM reported in 

other aquatic environments based on comparison to published data (see Figure 

4-6).  

The EEM for Comp1 show peaks at λEx 223 and 280 nm / λEm 320 nm, 

corresponding to the Peaks TUV and T with aromatic protein/tyrosine-like 

fluorescence (Mostofa et al. 2013b). This component has been reported to arise 

from the degradation products of autochthonously-produced DOM, such as 

phytoplankton (Catalán et al. 2013; Yao et al. 2011; Zhang et al. 2009), and the 

short WRT for Taihu coupled with cyclic HABs is one reason why the ratio of 

protein-like to FA/HA-like DOM might be overall higher in Taihu.  In the EEM of 

Comp2, there were two excitation maxima (λEx 230 nm and 285 nm) at λEm 347 

nm, consistent with tryptophan-like fluorescence in Peaks TUV and T (Mostofa et 

al. 2010). Yamashita et al. (2008) reported that Comp2 is comprised of labile 

components produced by authochthonous biological production. Comp3 has λEx 

210-240 and 315 nm and λEm 408 nm, corresponding to the FA-like fluorescence 

of Peak A and Peak C, respectively (Fu et al. 2010; Parlanti et al. 2000; Zhang et 

al. 2009). Comp4 is also composed of two peaks with λEx 261 and 364 nm / λEm 

465 nm. The first peak lies within the spectral area of Peak A and the second one 

Peak C region. Both peaks fall into the category of HA-like fluorescence (Mostofa 

et al. 2005; Ohno and Bro 2006).  
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Figure 4-6. A comparison of PARAFAC model output data from this study (red line, all 

panels) with matching data from Openfluor. Data is given as reported, i.e., the present 

data and some other data are normalised to a peak maximum of 1, and other data are not. 

All other lines are literature results of spectra as archived in Openfluor. 

Unlike the Coble peaks, I do not see a consistent pattern of progression for the 

different components to the relative composition of the EEMs. In common with 

findings for Coble peaks, Sts 9, 10, 15, 16 and 17 have the lowest contributions 

from the Tyr-like component and Trp-like components. Sts 10, 16 and 17, located 

at and below the outflow of Zhushan Bay (a polluted bay, Chen 2008), have 

cumulatively the highest amounts of the HA-like component. Other extrema differ 



83 
 

from those seen in the Coble peaks, for instance St 13 has the greatest amount of 

the Tyr-like component, and St 6, has the highest amount of both tryptophan-like 

DOM. St 13 is closest to the city of Wuxi, having a population of 4.9 million people, 

and St 6 is near the mouth of a tributary, and in Meiliang Bay, which is typically 

the area of Taihu most polluted/affected by HABs. 

Split half is a way to determine if there is internal consistency for calculation 

results wherein a data set is split into parts, each part is calculated independently, 

and the results compared. The default split half implementation in staRdom 

divides samples, i.e. for this study the group of 32 stations, into four subgroups 

(A, B, C and D), then the subgroups are recombined (AB, AC, AD, BC, BD, and CD, 

six subgroups). The results from split half analysis (sans outliers) are shown in 

Figure 4-7, which shows there is reasonable internal consistency of calculated 

components, particularly since split half analysis becomes more problematic as 

the number of samples decreases. 

 

Figure 4-7. Results of split half analysis for Comp1 to Comp4. Each panel shows results 

for one component and contains plots of results of split half calculations for six 

subgroups. Excitation spectra are shown as dashed lines, and emission spectra as solid 

lines. For each component plot, there are six excitation spectra, which correspond by plot 

color to an emission spectrum of the same subgroup from split half analysis (i.e. colors 

represent calculation result for each subgroup). 
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4.4 COMPLEXATION OF LEAD BY TAIHU DOM 

Compared with EEM, SFS shows narrower peak widths, is easier to use for 

identification, and minimises the chance for false determinations or omissions of 

specific spectral features. Meanwhile, the process of obtaining SFS is much faster 

than EEM (Dreischuh et al., 2015). SFS is a simple, sensitive and nondestructive 

technique that has been successfully used to rapidly characterise the interactions 

between heavy metals and DOM (Esteves Da Silva et al. 1998; Ryan and Weber 

1982b; Zhang et al. 2014). Numerous studies have used fluorescence quenching 

titrations to investigate the binding properties of heavy metals with DOM (e.g. Fu 

et al. 2007; Manciulea  et al. 2009; Wu et al. 2011; Yamashita and Jaffé 2008). 

Preliminary evaluation confirmed that the samples used for this study were 

suitable for quenching titration studies (fluorescence quenching was observed 

after the addition of Pb and that no fluorescence enhancement was observed 

under the experimental conditions). Figure 4-8A shows an example of 

fluorescence quenching of DOM by Pb as a function of Pb concentration for St 1 

(SFS for the 32 samples are all characterised by a similar spectral shape but by 

differences in relative intensity, see Figure 4-9). All SFS spectra for this study 

showed two peaks at wavelengths of λ = 290 nm (Peak I) and λ = 414 nm (Peak 

II). Figure 4-8B displays a SFS for commercially purchased HA, in which I see that 

the SFS for HA is considerably more complex than the SFSs for my samples, 

however, Peaks I and II from my samples have corresponding features in the HA 

SFS, marked by arrows in each plot. Figure 4-8C shows the modified Stern–

Volmer plot for data extracted from Figure 4-8A.  
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Figure 4-8. Results for SFS quenching experiments. (A) An example of a SFS quenching 

titration for DOM from St 1 titrated with Pb, (B) the SFS for a commercially available HA 

with arrows showing the locations of Peak I and Peak II from (A), and (C) a modified 

Stern–Volmer plot resulting from data in panel A. Note,  for Peak II vs. Peak I is the 

same for (A) and (B); max Peak I and Peak II in panel B are 15 nm lower than in (A), 

consistent with natural variations in spectral features (see Figure 4-3). 

Figure 4-9 displays SFS for 32 stations in Taihu. All the samples have two 

differentiated peaks. Peak I is often assigned as originating from Trp-like and 

tyrosine-like fluorophores (Yu et al. 2016; Zhang et al. 2008), however, both Peak 

I and Peak II can be found in the SFS of HA result (Figure 4-8). With respect to 

Peak II, its counterpart is typically not visually apparent on EEMs; this may be an 

artefact of the relative intensity of scattering peaks bleeding into the shoulder of 

the EEM Peak T in unprocessed EEMs, whereas Peak II lies in a relatively quiet 

spectral region. Complicating matters, EEMs and SFS are typically collected with 

spectrofluorimeter settings that result in different spectral resolution. In this vein, 

some authors contend that SFS Peak II (shoulder of EEM Peak C) contains 

polycyclic aromatic structures like flavone and coumarine components that are 

difficult to discern in EEMs (Smith and Kramer 1999; Zhang et al. 2008).  
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Figure 4-9. SFS of 32 samples from Taihu without added Pb. Each line indicates the SFS 

of a sample taken from a different Taihu station. 

The SFS spectra for 32 stations were analysed using Stern-Volmer analysis as 

described in Sections 2.5 and 2.6 to obtain f, Kcond, and 𝐶L
Tot, diss . The binding 

strength for these fluorophores with metals may vary according to DOM 

composition (Ryan and Weber 1982a; Zhang et al. 2014) resulting in variations 

of Kcond for different samples. Values of Kcond and f based on data from SFS 

quenching titrations for the samples from 32 stations of Taihu are summarised in 

Table 4-4 for Peak II. These Kcond values vary over a range of 4.64-6.50. These 

results indicate that Pb has a complexation affinity for DOM that varies by 

approximately two orders of magnitude, far from fitting the assumption that a 

constant Kcond is universally suitable for speciation models used in ERA. In the 

present study, I also calculated 𝐶L
Tot, diss, however, in many cases the expression 

used for this was over-parameterised, e.g., see (Esteves Da Silva et al. 1998), 

hence values for those samples are not reported. 
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Table 4-4. Parameters governing the complexation of Pb with DOM, calculated from SFS 

Peak II.a 

  Station logKcond
 b 𝐶L

Tot, dissc f (%) Station logKcond 𝐶L
Tot, diss

  f (%) 

St0 5.61 ± 0.31 1.9E-06 69 St17 5.40 ± 0.43  84 

St1 6.32 ± 0.19 9.3E-07 84 St18 6.04 ± 0.58 6.7E-07 83 

St3 5.68 ± 0.20  64 St19 6.00 ± 0.23 9.3E-07 83 

St4 6.50 ± 0.02  75 St20 6.13 ± 0.07  81 

St5 5.97 ± 0.08  68 St21 5.82 ± 0.14  98 

St6 6.18 ± 0.53 5.4E-06 87 St22 6.02 ± 0.02  96 

St7 6.04 ± 0.32 4.5E-06 89 St23 5.47 ± 0.16  98 

St8 5.49 ± 0.11 5.5E-07 93 St24 6.14 ± 0.28  87 

St9 5.92 ± 0.44 2.6E-06 91 St25 6.02 ± 0.16 8.0E-06 98 

St10 5.02 ± 0.15  83 St26 6.01 ± 0.54 5.5E-06 99 

St11 5.97 ± 0.14  85 St27 4.64 ± 0.25  100 

St12 6.41 ± 0.08  88 St28 5.69 ± 0.68 1.4E-05 98 

St13 5.74 ± 0.26  88 St29 5.72 ± 0.51  95 

St14 5.77 ± 0.44  84 St30 5.52 ± 0.28 1.8E-06 85 

St15 5.88 ± 0.32  84 St31 5.94 ± 0.19 5.1E-07 88 

St16 5.84 ± 0.18  82 St32 5.79 ± 0.27  98 
a f is the fraction of I0 that corresponds to the fluorescent portion of DOM that participates in complexation 
with DOM (I0 is the fluorescence intensities of the sample without Pb present); Kcond is the conditional 
stability constant that describes the affinity for Pb to complex with DOM and form Pb-DOM; CL is the total 
ligand concentration, i.e. DOM in molar equivalents in terms of complexation with Pb. 
b Values are given with uncertainty expressed as average of results from different methods (see equations) 
of parameter determination, where applicable, or standard error from fitting. 
c Units for total dissolved L in molar. 
 
 

While various attributions are made to the origin of Peaks I and II, the origins of 

each are not unequivocally clear. For the majority of samples, a Kcond for Peak I 

was not quantifiable either because the peak itself was too weak or because the 

progression of changes in signal as a result of titration was small. For those 

samples for which Peak I Kcond was quantifiable, results are given in Table 4-5, 

along with results from Peak II for comparison. I find, as other authors have 

commented (Fu et al. 2007; Lu and Jaffe 2001) that Kcond from Peak I and Peak II 

are not greatly different, i.e. given uncertainties known for calculating Kcond by 

any method,  an order of magnitude is not unreasonable. This observation would 

seem to suggest that Peak I arises in whole or part from the weaker low 

wavelength HA emission, as seen in Figure 4-8B.  
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Table 4-5. Comparison of logKcond calculated from Peak Ia. 

Station 
Peak I 

logKcond 
b f (%) 

St0 5.58 ± 0.15 46 

St3 5.18 ± 0.03 73 

St4 6.00 ± 0.05 33 

St25 5.74 ± 0.01 41 

St26 5.42 ± 0.46 51 
a Kcond is the conditional stability constant that describes the affinity for Pb to complex with DOM and form 
Pb-DOM; f is the fraction of I0 that corresponds to the fluorescent portion of DOM that participates in 
complexation with DOM (I0 is the fluorescence intensities of the sample without Pb present). 
b values are given with uncertainty expressed as average of results from different methods of parameter 
determination, where applicable, or standard error from fitting. 

 

Table 4-6 shows the range of values of Kcond found in this study in comparison to 

some representative values of Kcond for complexation of specific DOM components 

with Pb. It is generally accepted for a number of reasons that the binding strength 

order for components with Pb should be HA > FA > Trp > Tyr, which is reflected 

in the literature results shown. The ranges for found in this study span all 

components, though exceeding the literature value for HA shown. 

Table 4-6. Comparison of values of logKcond calculated from this study and representative 

values from literature. 

Ligand logKcond References 

L-Tyrosine 4.19 

Weber and Simeon 1971 

D-Tyrosine 4.14 

LD-Tyrosine 4.09 

L-Tryptophan 5.11 

D-Tryptophan 5.05 

LD-Tryptophan 5.06 

FA-water 5.10 Saar and Weber 1980 

FA-water 5.20 
Warwick and Hall 1992 

FA-lake water 5.14 

HA 6.11 Ghosh and Banerjee 1997 

Peak II/HA 4.64 to 6.50 This study 
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4.5 RELATIONSHIPS BETWEEN WATER QUALITY, DOM PROPERTIES 

AND CONDITIONAL STABILITY CONSTANTS 

I used pair-wise correlation analysis, multiple regression, and principal 

component analysis to perform exploratory investigation of my data (Izenman, 

2008). Pair-wise correlation analysis is suitable to explore basic relationships 

between measured quantities in the sense that no quantity is assumed to be an 

independent variable on which another depends (in contrast to linear regression 

analysis). Correlation analysis is often performed using Pearson’s r as a measure 

of the strength of a linear relationship between two variables. I used Spearman’s 

ρ for reasons relating to the potential violation of bivariate normality in the 

dataset. Early work by Kowalski (1972) concludes that the distribution of r is not 

robust when bivariate normality is violated, as is often the case for environmental 

samples, and since then various studies indicate that for the type of data I have, 

Spearman’s ρ, which correlates for monotonic relationships, is a suitable 

correlator, also with suitably robust p-values (Fowler 1987; Gauthier 2001).  

Figure 4-10 shows results for Spearman’s ρ from pairwise correlation analysis 

for parameters including water quality, parameters of DOM characterisation and 

logKcond for Pb-DOM complexation. Results are plotted in clusters according to a 

matrix hierarchical clustering algorithm implemented in R. Table 4-7 gives  p-

values levels corresponding to Spearman’s ρ for Figure 4-10. In many cases, I 

anticipate that some quantities might have strong positive relationships, for 

instance I find that all dissolved nutrients correlate with total dissolved forms, 

and the analysis is thus in some cases useful as confirming my understanding of 

expected trends in the regional system, though, I note that, for a system with as 
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many varied and complex inputs as Taihu, even these basic relationships should 

not be accepted as given without testing. In other cases, I find results that might 

not be considered fully intuitive by all. Thus for instance, no matter how I vary 

the approach to calculation, I consistently find that Comp1, Comp2, and b and t 

have strong relationships with each other, as do Comp3, Comp4, and c, a, and m, 

however these two indicators of DOM type do not have a strong relationship with 

each other. It would seem a reasonable supposition to expect that all of these 

constituents of DOM would increase with increasing DOC, and therefore each type 

would correlate with each other type (as is the case with some nutrient forms). 

That I do not observe this reinforces my hypotheses at the outset (in choosing to 

sample Taihu, during the summer) that physically separable contributors to DOM 

are present (i.e. all forms contribute to DOC, however, protein-like DOM would 

not correlate with FA/HA-like DOM if they are present from distinct sources with 

varying source contributions regionally). 

In Figure 4-10, I expect there may be some trends based on end-member mixing, 

from various sources, of conservative quantities (e.g. ions that are not reactive or 

less reactive), coupled with the imprint of changes in reactive species that reflect 

dynamic processes in the water column (e.g. changes in nutrients and Chl-a). 

Accordingly, there are strong relationships between Na+, K+, Cl-, and SO4
2- (bottom 

right corner, Figure 4-10).  A retrospective study of water in Taihu spanning six 

decades (Yu et al., 2013) reports that inputs from these ions have changed greatly 

as a result of increases to the surrounding population base and concomitant 

pollution to the lake. Increases in K+ have occurred in part due to the large 

fertilizer load and SO4
2- due to atmospheric deposition of SO2 (as H2SO4) from coal 
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and combustion byproducts. The ions Na+ and Cl- are partly linked to outflow 

from domestic WWTPs, though Cl- is also input from industrial pollution and 

wastewater treatment (Yu et al. 2013), and to some extent all of these ions are 

associated with mixed pollution sources. While ions represent more conservative 

tracers of water source and mixing, they are not independent of other quantities, 

and there are strong relationships between Na+ and Cl- with DOC (in part 

consistent with WWTP sources), and to a lesser extent BOD, CODMn and Chl-a 

(HABs), while SO4
2-, Na+ and Cl- all have negative associations with NO2

- (bottom 

right and left of Figure 4-10, respectively). NO2
- is one of the most highly 

correlated parameters with significant relationships (p < 0.01) to all dissolved 

nutrients (positive), as well as CODMn and DO (left edge, Figure 4-10). One report 

indicates that NO2
- concentrations from runoff from the western mountains can 

be exceptionally high, consistent with the idea that NO2
- is not associated with ion 

pollutant signatures (Hampel et al. 2018). There are strong positive relationships 

between various indicators of DOM/productivity with total nutrients and K+, all 

of which fit with expectations of organic matter and agricultural runoff serving as 

a source of needed carbon and nutrients that drive HABs (bottom left and right, 

Figure 4-10, for comparison, see for instance Paerl et al. 2011; Xu et al. 2010). 

Total and dissolved forms of nutrients have generally strong relationships with 

each other (top and bottom right, Figure 4-10, respectively); in some cases, i.e. 

NO2
- correlates with NO3

-, the two quantities are different, however, correlation 

is consistent with common provenance. In other cases, the correlation is 

obviously spurious as, for instance, NO2
- and NO3

- are both constituents of TDN.  
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Figure 4-10. Correlation matrix plot showing pairwise-correlation analysis results. The 

size and degree of coloration of each circle in the matrix is proportional to Spearman’s ρ 

(see color legend at the bottom). The plot is arranged according to post-correlation 

hierarchical clustering. The p-values associated with each ρ are given by significance 

level in Table 4-7; for all but two pairs,  ρ > 0.55 are all associated with p < 0.001. For the 

two exceptions, 0.001 < p < 0.05. See text for further discussion of clusters. 

The theme of common provenance may also be invoked in considering some 

relationships between PARAFAC components, Coble peaks, and FlInds, though 

there also begins to be a clear indication of different types of DOM. Comp4, HIX, 

and Coble peaks a, c, and m, and to a lesser extent Comp3, all show positive 

relationships with each other and are indicators of FA- and HA-dominated DOM 

(upper right, Figure 4-10), whereas Comp1, Comp2, BIX, and Coble peaks b, and t 

show positive relationships with each other and are indicators of protein-

dominated DOM (middle right, Figure 4-10, see for instance Coble 1996; Stedmon 

et al. 2003).  
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The weak negative relationships of protein-like indicators with BIX is consistent 

with an autochthonous contribution of these quantities to DOM, while the 

stronger relationship of HIX with FA/HA-like indicators is more consistent with 

allochthonous contributions to DOM. The middle portion of Figure 4-10 has a 

cluster of largely negative relationships wherein FA/HA-dominated DOM is 

inversely correlated with protein-dominated DOM. DOC does not correlate with 

any PARAFAC components, Coble peaks, or fluorescence indices. If considering 

DOC as a heterogeneous and macromolecular system that is generalisable in 

chemical behavior (i.e., fixed reactivity in respect of metal complexation), as is the 

case for the ERA speciation models in common use, this might be a surprising 

result. In contrast, if DOC is considered more in the framework of an assemblage 

(possibly with separate FA/HA versus aromatic/protein-like constituents, or 

possibly a wider variation of functional group compositions associated with 

macromolecules) it is not surprising that DOC does not correlate with any of 

those parameters. In the latter case, there is no reason why FA/HA composition 

should be perforce linked to protein-like DOM indicators, and therefore different 

substituents of DOM would not necessarily correlate with DOC itself. Additionally, 

reactivity of DOM with metals might vary greatly as well. In keeping with this 

supposition, logKcond has among the fewest correlations (ranked in the bottom 

octile), with ρ only exceeding 0.4 for Comp1 (0.41) and HIX (-0.45). As Kcond is the 

primary parameter of focus for use in speciation models that support ERA, I was 

interested to further explore any relationships that might exist between the other 

parameters and Kcond. 

I performed multiple regression analysis and was not able to find a predictive 

model for Kcond using the entire dataset due to collinearities. Reduction of the 

dataset resulted in optimal predictivity at 24 parameters (Figure 4-11A). Past this 

optimum, further reduction in parameters, resulted in inferior correlation and 

reduction in p-values. As the number of parameters used in prediction was 

reduced, the number of permutations of parameters that would produce a model 

of equally good correlation and p-value increases.  
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Figure 4-11. Plot showing the results of multiple regression analysis and distribution of 

logKcond. (A) Result for multiple regression using different numbers of parameters as 

predictors of Kcond, and (B) contour map showing logKcond. For the plots in (A), selected 

models with 24, 20, and 8 parameters are shown. The R2, adjusted R2, and p-values for 

these are, respectively, 0.98, 0.92, 0.0005 (24 parameters), 0.88, 0.67, 0.0097 (20), 0.59, 

0.44, 0.037 (8).  

I find that, depending on the level of accuracy desired, eight parameters provide 

an adequate predictor of Kcond, as shown in Figure 4-11A. From permutational 

analysis of subsets of the data, I find a reasonable degree of variability in the 

multiple regression equation that will predict Kcond, though I consistently find that 

parameters including a mixture of water chemistry, Coble peaks/PARAFAC 

components, and FlInd provide similar predictions of Kcond, as to those shown in 

Figure 4-11A. The process of examining multiple regression is useful to support 

an understanding that Kcond depends on water quality parameters and DOC 

fraction in a rational manner that, as with pairwise correlation results in Figure 

4-10, speak to the difference water inputs to the lake as well as processes 

affecting the diagenesis of DOM. Figure 4-11B shows the variation of logKcond 

across Taihu; the highest values for logKcond are associated with sites that have 

strong allochthonous contributions, natural and anthropogenic (Meiliang Bay, 
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The Taige/Caoqiao Rivers, the Changxin River, and the Tiaoxi River mouths). 

There is also an area of elevated values near the Taipu River mouth. The Taipu 

River is the location of Taihu’s main outflow, however, this region of the shoreline 

also historically was the site of extensive and long-standing aquaculture activity 

(Cao et al. 2007). 

Care must be taken when multiple regression is performed, and I used this 

approach to answer two simple questions: 1) are there combinations of variables 

that are able to serve as predictors of Kcond?, and 2) if so, how parsimonious a 

model might be used, and with how many permutations? 

 In theory, I expect that, for so many variables, some combination might predict 

Kcond, and with multiple regression in particular, once finding a model, it is often 

more instructive to use multiple regression to assess the impact of with input 

variables can be removed with either positive (improving predictivity) or 

negligible effects. PCA in contrast, because of the manner in which contributions 

of different variables occurs, enables a way to test whether there are groupings 

of subsets of samples that are similar to each other, and different from other 

subsets, and if so, what relative role Kcond has in contributing to these groupings. 

I found when performing PCA that three main principal components (PC1, PC2 

and PC3) account for the majority of the variance in the original data set (see 

Figures 4-12 and 4-13).  
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Figure 4-12. Scree plot showing total percent explained variance that each PC 

accounts for in the input data. Dimensions 1, 2, …,10 represent PC1, PC2, …, PC10, 

respectively.  

Rather than being constituted of a few contributing parameters, PC1-PC3 each 

have a relatively large number of contributing parameters. PC1 accounts for 24% 

of the total data set variance and is characterised by low contributions (~4 to 

<10%) of 12 parameters (nutrients and ions) among 35 parameters. PC2 explains 

19% of the total variance and is mainly associated with low contributions (~3 to 

8%) of 14 parameters (some DOM components, FlInd, DOM/productivity 

indicators, total nutrients). PC3 accounts for 13% of the total variance and is 

again comprised of low contributions (~3 to 10%) of 15 parameters, similar to 

PC2, however with different degrees of contribution. 

Figure 4-14 is a 3-dimensional plot of PC1-PC3 with the different stations labelled. 

There is one main cluster that is ellipsoidal, the major axis vertices for which may 

be thought of as endpoints based on the stations nearest to each, i.e. Sts 1 and 4 

at one vertex and Sts 26-28 at the other. Some stations nearest to inputs of large 

rivers off-axis to, or highly separated from, the main cluster. These include St 6, 

near a river mouth in Meiliang Bay, Sts 9 and 15 in Wuli Bay, and Sts 10, 16, and 
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17, which are all adjacent to the shoreline where the rivers from the 

northwestern highlands feed into the lake. For the three PCs, most of the 

parameters in the dataset contribute overall to one or more PCs, and these 

parameters therefore constitute a relatively large group of indicators that 

cumulatively characterise different areas of the lake. A notable exception is Kcond. 

For all three PCs, the contribution of Kcond is either one of the lowest, or the lowest, 

of all parameters.  

 

Figure 4-13. Bar plots showing the percent total contribution that each variable makes 

to principal components. (A) PC1, (B), PC2 and (C) PC3. The dashed red reference line 

corresponds to the expected value if the contribution where uniform; a contribution 

above the reference line is often considered as important in contributing to the 

dimension. For the current data set, the range of percent contribution of each variable is 

not large (i.e. of a possible range that could approach a maximum near 100%). For data 

sets wherein particular variables have high contributions, the plot would appear with a 

smaller number of variables contributing above the reference line and a larger number 

of variables contributing below the reference line. 
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Based on analysis of preliminary data prior to performing the present study and 

a limited elementary effects sensitivity analysis that I performed on the data 

reported here, I find that results obtained from the methods of multi-variate 

analysis that I describe are, generally, highly sensitive to minor variations in 

inputs. As such, I do not believe that, for instance, a single governing formula for 

prediction of Kcond, even in Taihu, would be robust to changing field conditions at 

the regional level. However, what I also find from this analysis is that there are 

general trends: correlations between water quality indicators, PARAFAC 

components, Coble peaks and fluorescence indicators vary in a logical manner, 

subsets of these different types of parameters seem to consistently produce a 

multiple regression model that is an adequate predictor of Kcond, PCA produces 

groupings that are reflective of processes in different parts of the lake, with some 

isolated areas or source inputs being “more different”, there are no strong 

correlations of any single component with Kcond and Kcond is not a significant 

contributor to and PCs. Summarising, Kcond might be described as an outcome of 

water composition, in the sense that water chemical properties and DOM indices 

may serve as predictors of Kcond, however, unlike many other parameters, Kcond is 

not a characteristic differentiating water from one station to another. I do not 

know of another study that has approached the issues here with such a 

comprehensive data set and from the standpoint of a rapid method that is 

practically extensible to ERA.  
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Figure 4-14. Graphical results from PCA analysis. Three-dimensional plot of PC1-PC3, 

which cumulatively account for the majority of variance in the data set (see Figure 4-12). 

Diamonds are points for each St, and small squares show the projections of these stations 

onto the x-y and y-z axes. Black dashed arrows are roughly aligned according to the main 

circulation trend in Taihu (from Meiliang Bay in the northern part, e.g. St 1, to eastern 

Taihu, e.g. St 28). Stations not part of the main end-member mixing group, i.e. not 

following the trend of the dashed black lines, are circled on the x-y projection. These 

stations correspond to inputs from major rivers as discussed in the text. 

4.6 IMPLICATIONS FOR THE STUDY OF DOM ON ERA 

DOM and Pb-DOM binding, and relationships with these to water quality in Taihu, 

have been investigated in this study to understand implications for building 

better speciation models for ERA. Key points are as follows: 

 DOM is highly variable across Taihu and reflects different inputs from 

different regions as well as processes within the lake. Temporal variability 

is presumably high as well, since I find that during the time of my study 
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there is a strong HAB contribution to DOM, and HABs are associated with 

summer conditions. 

 I find that Kcond for Pb-DOM binding vary by approximately two orders of 

magnitude across Taihu, and in many cases there is a strong proteinaceous 

contribution to DOM. Such variable composition and binding strength is 

consistent with prior findings that a one-size-fits-all approach to metal-

DOM binding leads to inaccuracies in commonly used speciation models. 

Therefore, such generalised approaches need improvement for regional-

level ERA in complex watersheds. 

 The Kcond of Pb-DOM binding can be predicted using the chemical 

properties of the water together with parameters extracted from 

fluorescence studies of the DOM present. This approach aids our 

understanding of conceptual models regarding the provenance and 

diagenesis of DOM.  

 Results from PCA confirm the finding that water quality and DOM 

composition parameters are strongly interrelated and reflect different 

inputs, diagenetic and transport processes across the large expanse of 

Taihu. 

 The approach taken here is extensible to any regional setting for 

freshwater studies, and with particular relevance to bioavailability 

modelling and ERA. 

Overall, results herein suggest that the values of Kcond that I obtain fit with our 

understanding of processes occurring across the lake, and as affected by 

upstream hydrological inputs and regional-scale transport. The ability to use the 
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fluorescence methods here in high throughput applications (fluorescence 

measurement, titration, and data analysis pipelines), is highly attractive for ERA 

applications, and I do not know of another report that has been as comprehensive 

and resulted in simultaneously good internal agreement with understanding of 

the field site and results (Kcond) that are obtained in a manner practical enough to 

implement in ERA studies. I have recently completed a detailed study using the 

Kconds reported here in ERA models, and I find that the average relative error is 

vastly improved; I report these results in Chapter 5.  
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5 NEW APPROACH TO 

REGIONAL STREAMLINED 

RISK ASSESSMENT 
 

In Chapter 2, I discussed that speciation modelling should be used in conjunction 

with biological techniques for validation. Free metal ion (in this case 𝐶
Pb2+ ) is 

generally accepted to be the relevant quantity in bioavailability-based ERA (Nys 

et al. 2014).  A BLM speciation model is considered valid if there is a 

demonstrable correlation between BLM-predicted free metal ion and measured 

toxicity data, with a factor of ±2 being a benchmark of good predictive capability 

(USEPA, 2003a, b). However, the metric for BLM is usually for the measurement 

of metal toxicity, which indirectly reflects Pb bioavailability. In this chapter, I use 

a whole-cell bioreporter to test the 𝐶Pb2+  in the waters of Taihu, and I compare 

this to results from speciation modelling, which is an approach that has not been 

studied yet in this way and at a regional level. Using a whole-cell bioreporter to 

measure 𝐶Pb2+  is of interest since it is comparatively much faster, cheaper and 

can be performed on high-throughput basis, as well as being a more direct 

measurement of bioavailability (Belkin 2003; Magrisso et al. 2009; Zhang et al. 

2017). A direct approach enables comparison of 𝐶Pb2+  levels to often well-known 
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data on, for instance, Genus Mean Acute Values (GMAV is the geometric mean of 

the species mean acute values for all species in the genus, and the species mean 

acute value is the geometric mean of the acute toxicity data for an individual 

species) for toxicity.  

The aim of this chapter is to 1) expand upon earlier work in Chapter 3 and 

determine the 𝐶Pb2+  in different regions of Taihu using a whole-cell bioreporter; 

2) to explore the optimisation of the speciation model (using results from Chapter 

4 for all analyses) on the estimation of the free metal concentrations and 3) to 

compare the measured 𝐶Pb2+  with the free metal concentrations predicted by 

speciation modelling.  

5.1 CHEMICAL SPECIATION CALCULATIONS FOR DOC BINDING 

Speciation calculations were performed using Visual MINTEQ 3.1 (Gustafsson 

2014), as described in Chapter 3. The input data for Visual MINTEQ were pH, 

temperature (of assay), the total concentrations of all inorganic constituents 

analysed in Taihu water samples as well as total concentrations of all MM 

constituents and DOM. To represent DOM, either DOC concentration or CL was 

used, depending on how DOM was modelled, as described in this section. 

Speciation modelling is based on thermodynamic principles (Vanbriesen et al. 

2010), and therefore requires mole-based units.  

Since there is not a fixed chemical formula for DOC and DOC itself is usually 

reported in weight per volume units, a conversion must occur. For instance, the 

SHM uses the conversion 1.65 × DOC (mg/L) × 5.33 (mole·mg-1 reactive sites) to 

obtain reactive HA, and these conversion factors of 1.65 and 5.33 are based on 
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quantities inferred from averages of experimental data (Gustafsson 2001; 

Gustafsson 2014). In contrast to DOC, values for CL are determined 

experimentally and are in units of molar (see for instance Boguta et al. 2016; 

Sander et al. 2011; Wells et al. 2013). Some values for CL are given in Chapter 4, 

however, as described there, some results are not accurate due to problems with 

overparameterisation. As such, an approach similar to that of the SHM (and 

WHAM, Tipping 1994) is taken wherein the concentration of active DOC (ADOC, 

i.e., molar concentration capable of participating in M-DOC binding) is calculated 

as follows: 

𝐶ADOC = 𝑓ADOC ∗ 𝐶DOC,       (5-1) 

where CADOC is the concentration of ADOC in M (unit), fADOC is the fraction of DOC 

that is ADOC, in mol mg-1, and the concentration of DOC, in mg·L-1. The value for 

fADOC is determined from experimental data using the average value of CL reported 

in Table 4-4 as a measure of ADOC and using the average values of DOC 

concentration in Table 4-1 that are associated with the same samples. 

For the work reported in this chapter, six approaches were used to calculate M-

DOC binding, and for simplicity, I give each an abbreviated name, abbreviations 

and method descriptions as follows:  

Method 1) SHM: DOC concentrations were used as direct inputs and DOC-

associated speciation was calculated for HA and FA using the SHM, which is what 

is referred to in this work to as being a one-size-fits-all approach since the FA:HA 

ratio, number of binding sites per FA/HA component, and M-DOC binding 

parameters are all assumed invariant in this model. As described in Chapter 3, 

the SHM assumes a gel-like structure for humic substances and accounts for 
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metal binding via two discrete types of ligands sites, with an electrostatic 

submodel and an empirical set of equations to account for extra charge screening 

within the gel model.  

Method 2) Lit K‒f CL: Per Chapter 4, four different components of DOC were 

assumed (Tyr, Trp, FA and HA). Calculations were performed assuming an 

aqueous-phase reactivity model and using conditional stability constants from 

the literature (𝑙𝑜𝑔𝐾cond
Tyr

 = 4.14, 𝑙𝑜𝑔𝐾cond
Trp

 = 5.07, 𝑙𝑜𝑔𝐾cond
FA  = 5.15, 𝑙𝑜𝑔𝐾cond

HA  = 5.82, 

Mostofa et al. 2013a; Saar and Weber 1980; Warwick and Hall, 1992; Weber and 

Simeon, 1971). Ligand concentrations CTyr, CTrp, CFA, and CHA, were obtained by 

𝐶Comp = 𝐶L × %𝐶𝑜𝑚𝑝,      (5-2) 

where CComp represents CTyr, CTrp, CFA and CHA and %Comp is the percentage of each 

component. This approach is of interest in terms of the dynamics of the result, 

however, suffers from the flaw that it would presumably underestimate organic 

ligand concentrations if Peak II (Chapter 4), from which CL concentrations are 

derived, exclusively represents HA (since fADOC is calculated using data that 

pertains to Peak II; see discussion in Chapter 4 regarding the identity of Peak II). 

This calculation is effectively another, less complicated, one-size-fits-all 

calculation inasmuch as binding constants are the same in all cases and ligand 

concentrations are fixed in respect of DOC concentrations.  

Method 3) Exp K‒f CL:  Speciation was calculated as for Method 2 above, however, 

as a refinement, 𝐾cond
Tyr

 and 𝐾cond
HA  were assumed to be equal to Kcond for Peak I 

(where applicable) and Peak II, respectively, from Table 4-4.  
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Method 4) Lit K‒f HA:   This approach is the same as for Method 2 above, only 

with a variation in specification of ligand concentration to correct for possible 

error in specifying concentration in Method 2 above. For this approach to 

calculation, the concentration of CADOC as determined in equation 5-1 above is 

assumed equal to CHA, and the concentration of Try, Trp, and FA are estimated 

according to the concentration of CHA according to 

𝐶Comp = 𝐶HA × (%𝐶𝑜𝑚𝑝/%𝐻𝐴),     (5-3) 

where %Comp and %HA are taken from Table 4-3.  

Method 5) Exp K‒f HA:  This approach is the same as for Method 3 above, however 

using the approach to specifying ligand concentration from Method 4 above. 

Method 6) Exp K‒CL: A single, generic, “organic” ligand type (LADOC) was assumed 

and entered as a new speciation component, and for each St, the ligand binding 

strength and ADOC were varied using CADOC (equation 5-1 above) and Kcond for 

Peak II (from Chapter 4) as binding parameters. This approach is different than 

the SHM in most respects, however shares the assumption that CADOC can be 

assumed to be a fixed proportion of DOC. This approach assumes that a single 

strong(er)-binding proportion of DOM, LADOC, has overarching effect in 

determining metal speciation and that Kcond for M-LADOC binding is variable, which 

is akin to the approach and generic terminology of strong-metal binding that is 

used in some work (see Chapman et al. 2009; Maldonado et al. 2005; Sander et al. 

2011 as examples). 
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5.2 SPECIATION RESULTS 

Water quality and effect on inorganic Pb speciation 

The properties of the water samples collected from 32 stations are shown in 

Chapter 4, Table 4-1. While DOC in freshwater lakes can complex with heavy 

metals and strongly affect the metal speciation, inorganic components may also 

have a large effect on speciation, such that one model in use for prediction of 

toxicity and use in determining WQC is referred to as the Hardness Model 

(referring to inorganic constituents contributing to water hardness, see Deforest 

et al. 2017). The 𝐶Pb2+  is considered to be the toxic and bioavailable Pb species 

provoking biological response (Magrisso et al. 2009; Zia et al. 2011) and its 

concentration will be affected by water quality.  When heavy metals combine with 

anions (e.g. Cl- and SO42-), the free metal ion will be reduced. At the same time, 

cations in solution will compete for anion binding, inclusive of biotic ligand. All 

Pb interactions with inorganic species are be affected by the water pH (Tipping 

et al. 1998). In particular, because of increasing pH in summer in Taihu (Wang et 

al. 2017), the resulting alkaline environment may contribute to the formation of 

bis-hydroxy- and/or carbonato- complexes of metal and substantively reduce the 

𝐶Pb2+/bioavailability (Kim et al. 1999).  

Cation and anion concentrations vary in different regions of Taihu (Table 5-1), 

reflecting regional differences at the watershed scale. The ions that vary the most 

are NH4+, NO2-, NO3-, and PO43-. However, for NO2-, NO3- and PO43-, the variation is 

most likely because the concentrations measured are near LOD. Only the 

constituents that can bind Pb strongly, such as Cl- and SO42-, will affect the Pb 

bioavailability. To test the effect of such variability, I chose two stations with the 



109 
 

concentration of Cl- and SO42- that differed the most (Sts 14 and 15) and 

performed speciation calculations on these stations from pH 6 to 9, the upper 

limit being within summer ranges found in Taihu. 

Table 5-1. Variation of cations and anions in different regions of Taihu. 

Ions  Averagea Maximum Minimum Maximum/Minimum 

NH4+   0.3 1.0 0.05 19 

NO2
-   0.04 0.4 0.001 378 

NO3-   0.1 0.7 0.065 10 

PO43-   0.03 0.1 0.005 23 

K+   4.9 5.2 4.3 1.2 

Na+   37 43 25 1.7 

Ca2+   29 37 22 1.7 

Mg2+   7.4 7.8 6.6 1.2 

Cl-   43 49 26 1.9 

SO42-  50 56 40 1.4 
a Values for average, maximum, and minimum are in mg·L-1. 
 

Figure 5-1 shows the calculated speciation variation of inorganic Pb fractions at 

different pH for Taihu water for the two stations that were picked as examples. 

The dominant complexes are PbSO4 (aq), PbCl+, PbOH+ and PbCO3 (aq).  As can be 

seen in Figure 5-1, when the pH increases from 6 to 9, PbSO4 and PbCl+ 

concentrations decrease. However, for PbOH+ and PbCO3, the concentration 

increases initially with increasing pH, before commencing a decreasing trend.  

The pH values in Taihu at the time of sampling for this work ranged from 7.90 to 

8.35, which implies that Pb2+ only accounts for around 10% of the total Pb 

concentration in this speciation calculation. At 49 mg·L-1, the SO42- concentration 

of St 14 is almost twice that of St 15 (26 mg·L-1), and the concentration of Cl- for 

St 15 compared to St 14 is also higher (ratio of 1.3, St 15 Cl- is 56 mg·L-1; St 14 is 

41 mg·L-1). However, at pH=8, only 1% more Pb was complexed by SO42- and Cl- 

in St 14. The results for overall percent of Pb2+ speciation in Figure 5-1 are very 

close to results from an International Union of Pure and Applied Chemistry 
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(IUPAC) study for inorganic speciation of Pb in freshwater (in the absence of DOC, 

Powell et al. 2009). For instance, I find that the average fraction of Pb2+ at pHs, 

relevant for Taihu, is around 10% (with no DOM) which is with the same as the 

fraction of Pb2+ reported by Powell et al. (2009) for ~10%. For PbSO4 (aq), in both 

Powell et al. and my study, the average fraction is around 3%.  

In my calculation, and that of Powell et al., higher order Pb hydroxy clusters are 

neglected (Wang et al. 2009, these equilibria are not in Visual MINTEQ), and 

therefore the concentration of hydroxy-complexes may be underestimated 

compared to those of carbonato-complexes at high pH. In the absence of DOC, at 

high pH the inorganic forms of Pb that are present may vary, but, generally, Pb2+ 

is not a dominant species at higher pH. While the results in Figure 5-1 give a sense 

of the relative importance of inorganic Pb complexes and almost absent 

bioavailability of Pb2+ at high pH, when DOC is present in solution, it will often 

become the predominant component that complexes Pb2+ (Gustafsson 2011; 

Ibrahim 2015; Shahid et al. 2012). 

 

Figure 5-1. Percent of inorganic Pb species versus pH for Pb2+ in Taihu water without 

DOC. The value of 𝐶Pb
Tot, diss was set at 9.7 × 10-7 M. Other inputs are the water quality 

parameters from St 14 and St 15 (the full list of parameters is in Chapter 4, and a 

description of standard speciation calculation is in Chapter 3).  
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Pb-DOC speciation variability from different approaches to calculation 

The DOC concentration in samples from the 32 Taihu stations is variable, ranging 

from 3.3 to 8.6 mg·L-1. As described in Chapter 4, the characteristics of DOC 

(different components and values of Kcond for Peak II/HA) are also highly variable 

in different regions of Taihu. Methods 1-6 for calculating Pb-DOC binding in 

Section 5.1 were chosen to explore how much variations in DOC characteristics 

affects Pb-DOC speciation. I also wanted to see which approaches are more 

accurate for the organic matter in Taihu, which, during active HABs differs greatly 

from standard assumptions about DOC that are inherent in models such as 

WHAM and the SHM. Figure 5-2 shows CPbDOC (sum of all fractions) as percent of 

𝐶Pb
Tot, diss, calculated using the six approaches described in Section 5.1 above. Figure 

5-3 shows the variations in the percentage of 𝐶Pb
Tot, diss complexed as Pb-DOC from 

station-to-station, as calculated by Method 1 to Method 6. Panels A and B are the 

same data as for Figure 5-2 above, replotted to better see the variations in 

different stations as a function of method of calculation. Panel C shows summary 

statistics with relative average magnitude of Pb-DOC and precision for Methods 

1 to 6. 

In Figures 5-2A and 5-3C (Method 1/SHM), compared with other methods of 

calculation, there is a much higher concentration of Pb-DOC for all the 32 stations 

(for St 1, nearly 90% 𝐶Pb
Tot, diss was complexed by DOC).  
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Figure 5-2. Variation in CPbDOM expressed as the percent of 𝐶Pb
Tot for each station in Taihu. 

CPbDOM speciation was determined by six modeling approaches. For visual clarity, labels 

on the x-axis correspond to St numbers (i.e. 0, 1, … 32, instead of St 0, St 1, … St 32).   

However, for this method the predicted relative amount of Pb complexed as Pb-

DOC did not change very much between different stations. In comparison, for 

Methods 2 and 4 (Figure 5-2B and D, also see Figure 5-3C), the percent of Pb 

complexed as Pb-DOC is much lower, however, varying the ligand concentrations 

and not Kcond still gives percentages of Pb complexed as Pb-DOC that do not 

change too much for all the stations. For Methods 3, 5 and 6 (corresponding to 
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Figure 5-2C, E and F, respectively), the value of Pb-DOC varies a lot (Figure 5-3C) 

due to the variation of ligand concentrations as well as Kcond. The methods have 

in common much lower active ligand concentrations, ranging from 2.0×10-7 to 

1.8×10-6 M, therefore, the relatively narrow range of active ligand concentration 

leads to the dominant role of Kcond in the complexation of Pb. For all the 

calculations the concentration of ADOC varies linearly, however Kcond varies 

exponentially, therefore, variations in Kcond have much more effect on Pb 

speciation. 

 

 

Figure 5-3 Variations in the percent of 𝐶Pb
Tot, diss complexed as Pb-DOC. (A) and (B) Pb-

DOC variability, St 0 and St 4, respectively, for the six methods of calculation; (C) 

Summary statistics for the percent of 𝐶Pb
Tot, diss complexed as Pb-DOC; error bars show one 

standard deviation and RSDs are labelled in percent for 32 stations. 

Figure 5-4 shows the how proportion of the four components Tyr, Trp, FA and HA 

vary depending on the method used in this study. In Figure 5-4, two 

representative stations (panels A and B, I selected St 4 and 10 as representative 

examples) and summary statistics are shown (Panel C). For Methods 2 to 5, 

respectively, RSDs for Tyr are 45, 79, 51 and 75%, for Trp are 33, 61, 45 and 59%, 

for FA are 21, 60, 32 and 58%, for HA are 10, 30, 18 and 29%. 
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Figure 5-4 Variation of CTyr, CTrp CFA, and CHA as total percentage of CPbDOM. Representative 

results for two stations (Sts 4 and 10) are given in (A) and (B), respectively, for Method 

2/Lit K‒f (CComp-ADOC) (which has the lower variability for CPbDOM results from stations-to-

station) and Method 5/Exp K‒f (CComp-HA) (which has the higher variability for CPbDOM 

results from stations-to-station). C) shows the average variation of CTyr, CTrp CFA, and CHA, 

and error bars show the standard deviation of the average. 

The overall variability of the four Pb-Comp species in Figure 5-4, on average, is 

slightly different from that for Pb-DOC variation for Method 2 to Method 5 in 

Figure 5-3, though in both Figures 5-3 and Figure 5-4, Methods 2 and 4 show 

lowest variability and Methods 3 and 5 show highest variability. I also notice that 

Pb-HA shows the highest variation Pb-Tyr is the lowest. The average RSD for 

𝐶Pb
Tot, diss follows the order Method 2 < Method 4 < Method 3 < Method 5 as shown 

in Figure 5-4C. Figure 5-4A  shows how, for different stations, the calculation of 

Method 2/Lit K‒f (CComp-ADOC) leads to a lower variation of CPbDOM (with the largest 

variability being for CPbTry, being a factor of 2 higher for St 4 than for St 10), 

whereas for Method 5/Exp K‒f (CComp-HA) (Figure 5-4B ), a higher variation of 

CPbDOM from station-to-station appears, with the largest variability being for CPbFA, 

being a factor of 10 higher for St 10 than for St 4. For all the calculations that 

involve different DOM components, HA is consistently the dominant form of 

organic matter that complexes Pb (Figure 5-4C). 
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5.3 TOWARD MODEL VALIDATION: COMPARISON OF MODEL 

RESULTS TO BIOREPORTER RESPONSE 

In this study, I first used the bioreporter assay, as described in Chapter 3 on Taihu 

water samples directly (data not shown). The bioreporter confirmed results from 

ICP-MS, i.e. 𝐶Pb2+  in unspiked samples was below the bioreporter LOD and the 

background Pb is negligible relative to the level of Pb used in the spike assay. 

Figure 5-5 shows the bioreporter response, calibrated as Pb2+, for the 32 stations 

across Taihu. The 𝐶Pb2+  correlates negatively with DOC, consistent with the idea 

that, generally speaking, higher DOC concentration in Taihu will bind more Pb, 

resulting in diminished 𝐶Pb2+ . 

Bioavailability/toxicity-based speciation models were validated against 

biological response, i.e. bioreporter response, for this work. Figure 5-5 shows 

plots of speciation results for 𝐶Pb2+  for the six methods of calculation used in this 

study versus bioreporter-measured 𝐶Pb2+ .  

In Figure 5-6, the stations having weaker Pb-ADOC binding (higher Pb 

bioavailability) lie to the top right of each graph, whereas the stronger Pb-ADOC 

binding (lower Pb bioavailability) lie to the bottom left. The solid line indicates 

an exact match between measured and predicted 𝐶Pb2+ , and two dashed lines and 

the point plotted as a data centroid are discussed further below.  Qualitatively, 

Figure 5-5A shows that there is no relationship between measured 𝐶Pb2+  and 

Method 1/SHM data. As discussed above, the Kconds used to describe M-DOC 

binding are fixed for the SHM, and the results in the figure suggest that the fixed 

Kconds and/or the manner of determining ligand concentration does not lead to a 

biologically meaningful result. Methods 2 and 4 display a poor prediction with 
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flat slopes and no differentiation of predicted results. Visually, Methods 3, 5 and 

6 appear much better than other methods, with relatively higher slopes, and most 

data in the region of the 1:1 line. 

There are two features in Figure 5-5 that I have calculated and used as figures of 

merit to quantitatively evaluate each plot: 1) the distance of the modelled data, 

as a group (on average), from the biological measurement, and 2) how well the 

data lines up with the 1:1 line. Table 5-2 shows a summary of the parameters that 

I used to quantify each. To test the distance of the modelled data from biological 

measurement, I calculated the % difference of the centroid, which is 

∆centroid (%) =  
(𝐶

Pb2+
Pred,avg

 − 𝐶
Pb2+
Biol,avg

)×100

𝐶
Pb2+
Biol,avg     (5-4) 

where centroid is the % difference of the average 𝐶Pb2+predicted from speciation 

modelling, 𝐶
Pb2+
Pred, avg

 and the average 𝐶Pb2+  measure by the bioreporter, (𝐶
Pb2+
Biol, avg

), 

averages being over 32 stations. I plotted one centroid in Figure 5-5 panel A to 

show graphically show what this looks like. Other measures of distance of 

modelled data to biological response include the average of the RPDs, RPDavg, for 

predicted versus measured 𝐶Pb2+  at each station, and the geometric mean of the 

RPDs, RPDgeom. RPD provides information on the scale of residuals. RPDgeom gives 

a value that will smooth out outliers. I calculated SSR and slope, m, of a linear 

regression of the data as measures of how "linear" the data is, assuming that 

model-predicted data equals bioreporter data. 



117 
 

 

Figure 5-5. Comparison of Pb2+ (𝐶
Pb2+)  from speciation calculation and bioreporter 

measurements. The six panels differ according to the manner in which PbDOM was 

calculated in the speciation model. The solid line in each plot represents the 1:1 line 

(predicted bioavailability = biologically measured). Two types of figures of merit are also 

shown. The two dashed lines represent a factor of twice the average relative percent 

difference (RPD) for Method 6/Exp K‒CADOC, and the difference in the data centroid 

(circle) and the 1:1 line is a shown in panel A (dotted line). See text for further details 

about figures of merit. 

Also, in Table 5-2, I calculated the same quantities for data from literature (Ge et 

al., 2005) for a study that used the WinHumicV and NICA-Donnan models. 

WinHumicV is based on WHAM (Tipping 1994), so similar in approach as SHM, 
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and NICA-Donnan gives results for Ge et al. (2005) that are better than, but 

similar to, those of WinHumicV. 

Table 5-2. Summary of the figures of merit used to evaluate plots in Figure 5-6.
a 

 

Model centroid RPDavg RPDgeom 𝑅RPDavg RPDgeom⁄  SSR m 

Method 1 -71 111 110 1.0 1.2E-12 0.2 

Method 2 5.4 7.5 4.8 1.6 2.1E-14 0.008 

Method 3 4.1 6.3 3.9 1.6 1.5E-14 0.2 

Method 4 -5.9 8.2 5.9 1.4 1.3E-13 0.1 

Method 5 -9 9.5 6.4 1.5 3.2E-14 0.76* 

Method 6 -4 5.5 2.8 1.9 1.4E-14 0.84* 

NICA-Donnan 136 105 81 1.3 8.9E-14 2.1 

WinHumicV -92 150 120 1.2 1.4E-13 2.4 
a
 centroid is the percent difference of the average 𝐶Pb2+ predicted from speciation modelling, versus that 

measured by the bioreporter; RPDavg is average RPD (RPDs calculated as absolute, not ), all points; RPDgeom 
is the corresponding geometric mean; R is a ratio (terms in subscript); SSR is the sum of squared residuals; 
represents for regression sum of squares; m is the slope of a linear regression of the data; Method 1 = SHM; 
Method 2 = fixed K (literature), Ccomp  = f (CL, %Comp); Method 3 =  measured K (HA), Ccomp  = f (CL, %Comp); 
Method 4 = fixed K (literature), Ccomp  = f (HA,%Comp); Method 5 =  measured K (HA), Ccomp =f (HA,%Comp); 
Method 6 =  measured K (HA), CL; Data for NICA-Donnan and WinHumicV are form Ge et al. (2005).  * 
indicates H0: m – 1 (slope of 1:1 line) cannot be rejected, p < 0.05. 
 

Looking at the results in Table 5-2, for centroid Method 2 to Method 6 are much 

better than Method 1 and methods from literature. The RPDavg and RPDgeom follow 

the centroid trend: Method 1 and literature results have an order of magnitude 

worse RPD on average than for Method 2 to Method 6. Using centroid, RPDavg and 

RPDgeom, Method 6 comes out as the best model, followed by Method 3. 

The usual approach to evaluate agreement between predicted and biologically 

measured data involves setting positive and negative limits of acceptability. The 

USEPA standard (USEPA 2003a, b) for setting these limits that is used in BLM 

modelling is too large to be relevant to my results since this standard is based on 

biological toxicity measurements, which are less direct measurements and 

consequently have inherently larger uncertainty. Therefore, I decided to set a 

factor of twice the average RPD value for Method 6 (dashed lines in Figure 5-5) 
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as nominal guideline for error in prediction. In Figure 5-5, the dashed lines 

provide an indication of the distance of the data, on average, from the 1:1 line, as 

well as a sense of linearity for each set of results and the relative number of points 

that might be characterised as outliers. The value of 𝑅RPDavg RPDgeom⁄ , in comparison 

to other values, also provides some indication of outliers. So, for instance, for 

Method 1, all points are far away from the 1:1 line, the RPDavg is very high, and 

the 𝑅RPDavg RPDgeom⁄  is 1; when all points are far off of an accurate prediction, none 

are effectively outliers. In contrast, for Method 6, most of the points fall very close 

to the 1:1 line, and the 𝑅RPDavg RPDgeom⁄ , at 1.9, is the highest for all results in Table 

5-2 because two points far from the 1:1 line cause a large difference in RPDavg 

versus RPDgeom.  

While the metrics of Method 3 are similar to those of Method 6 in terms of how 

close the centroid is to the 1:1 line, visually it is apparent that Method 3 is inferior 

to Method 6 in terms of linearity, which is verified by the SSR and m. The SSR is a 

calculation of how well the data fits the 1:1 line. For Method 1 the SSR is highest 

(least fit to the 1:1 line), the literature data also high, and Method 2 to Method 6 

are better overall. The SSR shows that Method 6 has the closest distance to the 

1:1 line (lowest SSR value) followed by Method 3, though the difference in SSR 

for the two methods is small. However, for Method 6 m = 0.84 (not significantly 

different from m = 1, see footnote Table 5-2), whereas m = 0.24 for Method 3. I 

also tested m for Method 5 (0.78) and found that it is not significantly different 

from m = 1, the slope of the 1:1 line.  

Of the different approaches considered, Method 6 is the best method for 

incorporating Pb-DOC into speciation modelling and obtaining results that agree 
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with biological measurement. The Method 6 model uses CL and Kcond that I 

calculated from Peak II (based on SFS measurements, Chapter 4), which could be 

representative of HA (vide supra). If this is true, then the accuracy of Method 6 

implies that HA is the main factor influencing LADOC, which is also consistent with 

assumptions in models such as SHM and WHAM. Clearly, however, these one-

size-fits-all HA-dominated models do not always work (Figure 5-5A for with SHM; 

Table 5-2 for literature results), and it would appear that the main differentiator 

for Method 6 is the use of values of Kcond, that are not one-size-fits all and that do 

vary at a regional level. In contrast to Method 6, while the central tendency 

measures are as good for Method 5, for linearity it is second best after Method 6, 

and this approach does assume different components (obtained independently 

from the experiments used to determine CL and Kcond). Nonetheless, as Figure 5-

4 shows, even for Method 5, Pb-HA still dominates. Therefore, for my samples, it 

appears that HA, or perhaps some fraction of HA with aggregated strong metal-

binding characteristics plays a more important role than other components in 

DOC on Pb binding.  

5.4 IMPLICATIONS FOR ENVIRONMENTAL RISK ASSESSMENT 

The main goal of this study was to explore the possibility of using site-specific 

parameters in chemical speciation models to improve their predictions of Pb 

speciation to be fit-for-purpose for use in ERA. Primary findings from this part of 

the work are as follows: 
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 I have shown that such model optimisation produces results that are much 

more accurate in their agreement with bioreporter measured 𝐶Pb2+  than 

results from one-size-fits-all models in current use for ERA; 

 The best agreement between biologically measured bioavailable Pb and 

model predictions results from modelling ADOC as a single organic ligand 

type, LADOC, with aqueous-phase complexation, CL and Kcond for which are 

rapidly and conveniently assessed from simple fluorescence 

measurements; 

 I conducted this study across the area of Taihu, which, with a 2,400 km2 

surface area, is large enough to reflect regional scale processes. My results 

offer a good demonstration for a way forward to streamline ERA in 

freshwater settings. 
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6 RISK ASSESSMENT OF PB 

POLLUTION IN LAKE SEDIMENT 
 

Previous chapters detail work that I have done using a bioreporter to measure 

the Pb aqueous bioavailability in Taihu, China’s third largest freshwater lake 

(Zhang et al. 2017). Extending this aqueous-phase work to use a bioreporter to 

assess the 𝐶Pb2+  in lake sediment is a logical extension of ERA on lake pollution. 

Studies have shown (vide supra) that the sediment in Taihu is heavily polluted by 

different heavy metals and they usually co-exist. While the bioreporter that I have 

been using is sensitive to several different types of heavy metals at higher 

concentrations (the LOD for Zn, Ni, Cu are all higher than 6µ.L-1, which is much 

higher than 1.2µ.L-1 for Pb and as the metal concentration increases, their 

influence on bioreporter is also irregular), it is differentially more sensitive to Pb, 

and thus should be suitable for use to study Pb sediment bioavailability in Taihu. 

During the course of this work, however, an opportunity arose to investigate a 

lake system, Brothers Water lake in the United Kingdom (UK), in which Pb is 

specifically highly accumulated in the sediment (Schillereff et al. 2016). The Pb 

contamination in this lake is quite high, > 12,000 mg·kg-1, and there is a large body 

of data available for the sediments of this lake, making the lake ideal for the study 
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needs of my project. This chapter reports results from studies on a core from this 

lake. 

6.1 HISTORY OF FIELD SITE AND METHODS USED FOR SEDIMENT 

STUDIES 

Description of Brothers Water and history of mining impacts 

Brothers Water is a small (0.18 km2), upland lake with a comparatively large 

catchment (13.01 km2) in the eastern Lake District of northwest England 

(54.5066°N, 2.9249°W, Figure 6-1A). There is a single dominant inflow fed by five 

tributary networks that drain the surrounding upper hills, and this inflow enters 

Brothers Water at its southeast corner (Figure 6-1). According to historical 

records, the English Lake District experienced small-scale Bronze Age and Roman 

Era metal extraction, followed by more extensive Medieval operations (1200–

1400) and an intensifying industrial phase from 1550 to ~1940 (Adams 1988). 

The primary Pb mine whose impacts on Brothers Water have been studied is 

called Hartsop Hall; it lies 600 m to the southwest of Brothers Water on the east-

facing flank of Hartsop-above-How hill. Documentation for mining activities at 

Hartsop Hall exist for 1696, 1802-1804 (2450 kg·year-1 ore), 1830-1832 (6230 

kg·year-1 ore), 1863-1871 (24,000 kg·year-1 ore) and 1931-1942 (Tyler, 1992). 

Later, during 1931–1942, mechanically enhanced extraction resulted in more 

efficient Pb recovery from harvested ores, and processing shifted to the larger 

Greenside Mine (Tyler, 1992). Peak modern production at Hartsop Hall (1863-

1871 period) coincides with anecdotal evidence for discoloration of Kirkstone 

Beck, fish kills and acute livestock poisoning (Tyler, 1992).  
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In Schillereff et al.’s (2016) work on Brothers Water, they note a consistency with 

other smaller water-bodies in the area that act as a pollutant sinks for mining-

related Pb from upstream, intercepting or “trapping” (Miller et al., 2014) much of 

the mining-sourced Pb and thus preventing its deposition in larger lakes of the 

region (e.g. Ullswater, Windermere).  Therefore, the first-order lakes like 

Brothers Water are the primary sink for mining-derived material and for which 

its sediment cores are a well-preserved reflection of pollutant impacts.  

 

Figure 6-1. Details on geographical context of Brothers Water lake. (A) Location of the 

English Lake District within the UK. (B) Detail map showing the five tributary systems 

(for simplicity labelled 1-5 since they are not discussed further in text) that drain into 

Brothers Water within the catchment (black line). Also show are the locations of ore 

extraction and processing sites (labelled as Mine Sites) in the Brothers Water catchment 

and the location of a leat (drainage trench) that cuts through legacy waste heaps from 

the Hartsop Hall mine. 

Waste materials of the mining infrastructure are still visible across the hillslopes 

at Hartsop Hall Mine even today (Figure 6-2). After rainfall, overland flow incising 

through spoil piles and remnants of a functioning leat drain directly downslope 

to the streams (see Figure 6-1B) that are tributaries to Brothers Water. This 
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overland flow through streams continues to deposit Pb-bearing sediments into 

the lake, enhancing the Pb concentration in lake sediments (Schillereff et al. 2016). 

Therefore, it is important to understand risks associated with historical recent 

and continuing Pb deposition in the lake.  

 

Figure 6-2. The location of Brothers Water and its floodplain relative to Hartsop Hall 

mine. The view west across the floodplain of Brothers Water highlighting the location of 

Hartsop Hall mining infrastructure, shaft levels, exposed waste heaps and their 

proximity to the Kirkstone Beck river that drains into Brothers Water. The shafts/levels 

were sunk incrementally, with the first ore extracted from shafts at level 1, and with 

shafts at levels 3 and 4 having been dug during peak mining in the 1860s and 1870s 

(figure from Schillereff et al. 2016). 

Previous work on sampling and analysis of sediments in Brothers Water 

Sediment cores of between 24.5 and 339 cm in length were extracted from ten 

profundal locations in March, 2011, and October, 2012, by Schillereff et al., 

locations of which are shown in Figure 6-3. I selected sediment core BW11/2, 

sampled in 2011, for Pb bioavailability study based on the historical depth range 

it covers, the large differences in distribution of Pb in different sediment layers, 
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the representation of Pb contamination (notably very high Pb in one layer), and 

the sufficiency of sample available for study. The core BW11/2 is 339 cm in length 

and was originally subsampled at 0.5 cm depth, much of the original sample 

having been used for other analyses, including total Pb and geochronology. I 

chose thirty-two sediment samples from different layers (ranging from 15 to 

202.75 cm depth) of core BW11/2 to use for all the tests in this study. The layers 

I chose represent the periods of interest from prior to intensive mining activity 

up to recent times and samples with sufficient material for analysis and varying 

total sediment Pb concentration, 𝐶Pb
Tot, sed. 

  

 

Figure 6-3. Sampling diagram of Brothers Water lake. Selected depth contours (relative 

to the lake border), locations of the ten 2011/2012 coring sites and relative location of 

coring site BW11/2 (used in bioavailability studies reported here) are shown.  
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Selected subsamples from core BW11/2 had been previously dated using 

multiple isotope techniques. Radiometric measurements for 210Pb, 226Ra, 137Cs 

and 241Am (Szarlowicz et al. 2019) were conducted by direct gamma assay using 

Ortec HPGe GWL series well-type coaxial low background intrinsic germanium 

detectors at the Liverpool Environmental Radioactivity Laboratory (Appleby et 

al. 1986). Geochronology was based on the convergence of fallout 210Pb with in 

situ 226Ra (radium) activity and artificial radionuclide (137Cs, 241Am, cesium and 

americium) concentrations associated with known atmospheric releases of these 

radionuclides to the atmosphere (Schillereff et al. 2016). An age-depth model was 

then constructed for BW11/2 using thirteen 14C radiocarbon measurements that 

targeted handpicked terrestrial plant macrofossils (Schillereff et al. 2016).  

Percent organic matter (OM) content was determined by thermogravimetry (TGA) 

as the percentage mass loss during burning between 230 and 530°C using a 

PerkinElmer STA6000. To determine the mean particle size, samples were 

treated with 30% H2O2 to remove the organic fraction, sonicated to disperse, and 

measured via laser granulometry, simultaneous to determination of sand, silt and 

clay content, on a Beckman Coulter LS320 particle size analyser (Schillereff 2015). 

Sediment sub-samples taken at 0.25 cm midpoints in 0.5 cm core slices were 

freeze-dried, and Pb concentrations were measured using a Bruker S2 Ranger 

ED-XRF. The thirty-two sediment samples from core BW11/2 have 𝐶Pb
Tot, sed 

ranging from 45 mg·kg-1 to 10,500 mg·kg-1, spanning a deposition time period 

from 500 to 2011 A.D. (Schillereff et al. 2016). These different 𝐶Pb
Tot, sed in the lake 

sediments over this period reflect a prior history of varying impacts to the lake 

watershed from Pb mining. Prior to analysis of Pb bioavailability on the whole 
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core (for which some subsamples had a limited amount of material available), I 

selected five samples from the thirty-two for detailed study. These five were 

chosen to be representative of different periods (before mining, during mining 

and after mining) and different Pb concentrations.  

Methods used to study sediment bioavailability of Pb 

In this research, genetically engineered E. coli strain zntA, which has the capacity 

to emit a dose-dependent bioluminescence in response to bioavailable Pb, was 

used, as described in detail in Section 2.3 in Chapter 2 and Section 3.1 in Chapter 

3. For direct-contact sediment assays, 50 µL of bioreporter cell suspension was 

added to 50 µL of sediment slurry, and the bioluminescence was measured as for 

solution-phase assays described in Section 3.1, Chapter 3. Sediments slurries 

were prepared by mixing sediments with water in different proportions, and the 

technique requires careful mixing and rapid sample transfer to ensure uniform 

results (i.e., to avoid settling). At the outset of my bioavailability experiments, I 

knew that the direct-contact sediment assay would pose a number of challenges 

because of the complex interplay between slurry concentration, attenuation of 

signal transmittance, LOD, and high Pb concentrations potentially killing the 

bioreporter. I first performed a series of preliminary experiments with sediments 

of moderate lead concentrations over slurry concentration ranges from 0.039 to 

500 mg sediment·mL-1 water to determination the feasible range of slurry 

concentration (too much sediment attenuates signal, too little sediment reduces 

Pb available for the bioreporter to sense). Based on these preliminary 

experiments, I chose to do more detailed experiments using the slurry dilution 

series: 6.25, 3.125, 1.5626, and 0.7812 mg sediment·mL-1 water.   
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Compared with the measurement of Pb in aqueous-phase, particles in solid-phase 

materials may block or scatter the luminescence signal produced by the 

bioreporter. In some cases, it may be possible to neglect these effects and perform 

direct measurement in the bioreporter/soil slurry, depending on the degree of 

the effect and the aim of the study (Magrisso et al. 2009). Often neglecting the 

blocking/scattering effect is unsuitable, and common ways to address this 

problem include, for instance, measurement after separation of the cells from 

particulate matter using a polyvinylpyrrolidone density gradient, or 

measurement of signal loss with post-analysis correction (Magrisso et al. 2009; 

Pertof et al. 1978). Preliminary testing of BW11/2 samples confirmed that 

blocking/scattering effects are non-negligible for these samples, and the 

approach I used herein to correct for effect of the sediment matrix on 

bioluminescence detection involves measurement of light blocking/scattering, 

which may vary according to sediment qualities.  

To perform experiments to measure blocking, bioreporter response was 

measured in solution phase and compared to the same exposure in sediment 

slurries. Since the goal was to measure the physical effect of blocking/scattering 

and to avoid bioreporter activation during the experiment, I added activated 

solution-phase bioreporter to a known quantity of sediment and measured the 

diminution of signal immediately. To perform blocking experiments, first special 

plates were prepared wherein doses 50 µL of well-mixed sediment slurry was 

added to wells in a microplate and carefully dried at low temperature (30°C). At 

the beginning of each experiment, bioreporter was activated as described in 

Chapter 3 at a dose of 1:1 bioreporter: 0.2 mg·L-1 Pb. When the activated 

bioreporter signal was seen to be nearing the luminescence response maximum, 
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100 µL of activated reporter solution was transferred to each microtiter plate 

well with dried sediment and vigorously mixed to suspend the dried sediment 

into solution. Luminescence measurement was immediately resumed, and the 

diminution in signal between activated reporter and activated reporter plus 

sediment was used to quantitate the blocking effect.  

Response for bioreporter sediment assays was calculated using the bioreporter 

calibration curve and correcting for reduction in transmittance as a result of 

blocking/scattering. The transmittance (T, decimal) of blocking was calculated as  

   𝑇 = 𝑅𝑆/𝑅𝐶
                               (6-1) 

where RS is the bioluminescence value after adding the sediment, RC is the 

bioluminescence value before blocking (control). All experiments were 

performed with 4 replicates unless otherwise stated.  

According to Schillereff et al. (2016), the 𝐶Pb
Tot, sed in in some of the sediments is 

very high, and an initial issue that I needed to consider was the potential effect of 

the very high 𝐶Pb
Tot, sed  on the bioreporter. From prior work, I have tested the 

bioreporter response to Pb standards over a large range of Pb from 0 to 400 mg·L-

1 (Figure 6-4A), and from this it became clear that at around 12.5 mg·L-1 Pb the 

bioreporter response started to decrease and after above 100 mg·L-1 Pb the 

bioreporter is killed, leading to complete absence of signal. Another researcher 

who is also using this bioreporter has done work that confirmed my 

interpretation of these findings using a Live/Dead assay (Huang et al. 2013, and 

unpublished data, personal communication, Boling Li, XJTLU, 2019). Prior to 

doing direct-contact sediment assays with the bioreporter for research data 

collection, I first performed some preliminary analysis to see if the very high 
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sediment concentrations would adversely affect the reporter. Firstly, I made 

some calculations based on the 𝐶Pb
Tot, sed  to calculate the level of Pb that the 

bioreporter would be exposed to assuming 100% bioavailability. Secondly, I 

prepared a large range of slurry concentrations of sediment and incubated them 

with the bioreporter. Use of these varying slurry concentrations offered the 

information whether the bioreporter response was in the region of signal 

reduction or in the region where signal increased with increasing Pb. By doing 

this, I found that all of the responses for the slurry concentrations I tested were 

in the calibration range.  

In addition to direct-contact assays, the concentration of 𝐶Pb2+  to total Pb 

(𝐶Pb
Tot, desorb ) desorbed from different sediment samples was determined after 

extraction with 50% MM, which is intended to mimic the static solution-phase 

environment of the sediment assay, i.e. the amount of Pb that is desorbed in the 

absence of bioreporter over the time course of the bioreporter direct-contact 

assay. To perform the desorption experiments, sediment sample was added to a 

solution with 50% MM and 50% ultra-pure water. After 3.5 h of contact, slurries 

used in desorption were centrifuged (3 min at 10,625 × g) and filtered through a 

membrane filter (0.45 μm pore size). The filtrate was analysed using both ICP-MS 

(for 𝐶Pb
Tot, diss, as described in Section 3.1, Chapter 3) and bioreporter (for 𝐶Pb2+ , as 

described in Section 3.1, Chapter 3). 
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6.2 EFFECT OF SEDIMENT ON BIOLUMINESCENCE SIGNAL 

TRANSMITTANCE 

Five sediments with 𝐶Pb
Tot, sed in spanning the lowest and highest concentrations 

(45 mg·kg-1 to 10,500 mg·kg-1) from core BW11/2 were chosen for more detailed 

analysis, beginning with intercomparison of results for how these different 

sediments affected bioluminescence signal transmittance. Transmittance may 

vary with the physical properties of the sediment, which vary across the different 

depths of core BW11/2. When sediments are deposited in lakes, the weathered 

materials from which they come are subjected to a number of physical and 

chemical processes that determine sediment properties. Lake sediments are 

typically comprised of terrestrially-derived clastic material and autochthonous 

biogenic compounds that can include silicates, carbonate and organic matter 

(Lowe and Walker 1997). The lithology of BW11/2 core is dominated by silt, with 

variable sand and organic matter content (Schillereff 2015). The mean particle 

size of the sediment samples varies with depth and ranges from 6 to 94 μm 

(Schillereff 2015). The organic matter content varies from 4 to 19%. All these 

factors (minerology, grain size variation, organic matter content) can cause 

differences in the blocking/scattering of bioluminescence signal for different 

sediment samples.  

Higher slurry concentrations may increase the effective Pb LOD due to 

diminution of bioluminescence signal transmittance and associated increase in 

signal-to-noise. Meanwhile, it is difficult for the bioreporter to sense 𝐶Pb2+  at 

lower slurry concentrations since 𝐶Pb
Tot, sed, and therefore the maximum potential 

bioavailable Pb, decreases as the slurry is more diluted. I used the four slurry 
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concentrations determined in preliminary work as feasible to examine the effects 

of sediment slurry concentration on bioreporter bioluminescence transmittance. 

Results for the five sediments that I chose for detailed analysis are displayed in 

Figure 6-4. Increasing slurry concentrations reduce measured bioluminescence 

due to the physical blocking and scattering of light by the sediment particles, and, 

as expected from theory, higher slurry concentrations result in lower light 

transmission and vice versa. Transmittance, as %T, varies from ~25% to ~75% 

for the range of slurry concentrations used. As shown in Figure 6-4B, the decrease 

of %T from high slurry concentration to low is non-linear, and when plotted as 

optical density (Figure 6-4C) a linear relationship is apparent. This trend is in a 

manner consistent with Beer’s Law, which is widely used in calculating light fields 

in dispersion media and in solving problems of the reconstruction of the 

dispersion medium parameters from the characteristics of scattered radiation 

(Dick 1998). The results in Figure 6-4 show that small differences in %T exist 

from sediment to sediment, as expected given the variations in sediment 

composition through the core. Uncertainty analysis of 25 replicate experiments 

(replicates for each individual core subsample) of the type shown in Figure 6-4 

suggests that greater accuracy in correcting for transmittance effects is achieved 

using the sediment-specific T data (RSD less than 10%), except for the highest 

slurry concentration (with 16.7% for the RSD). At this slurry concentration the 

relative uncertainty in T is highest, as the overall signal is lowest in all cases, and 

hence an average value was used for T as being more accurate than individual 

values. 
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Figure 6-4. Response of bioreporter to Pb and effects of sediment slurry concentration 

on bioreporter bioluminescence. Bioreporter response to Pb standards over a large 

range of Pb from 0 to 400 mg·L-1 (A), for the five sediments with varying concentrations 

of 𝐶Pb
Tot, sed  (concentrations in legend in mg·kg-1) that were chosen for more detailed 

analysis, figure shows (B) diminution of transmittance, and (C) increase in optical 

density for blocking/scattering of bioreporter bioluminescence signal. Dashed lines 

represent average values for all five sediments trialled at each slurry concentration (mg 

sediment·mL-1 solution). For panel B, R2s from linear regression for each individual 

sediment are 0.97, 0.99, 0.97, 0.98, and 0.99, for sediments having 45, 690, 1090, 2900, 

and 10,500 mg·kg-1 𝐶Pb
Tot, sed , respectively. 

6.3 PB BIOAVAILABILITY IN LAKE SEDIMENTS 

Bioavailable Pb by direct-contact assay compared to solution desorption 

Preliminary trials suggested that for the materials used in this study, Pb 

bioavailability is a function of slurry concentration. Subsequent to determining a 

feasible range of slurry concentrations from which a useful level of 

bioluminescence signal could be obtained, the five sediments with 𝐶Pb
Tot, sed 

ranging from 45 to 10,500 mg·kg-1 (also representing different sediment ages due 

to relative positions in the core from which they were taken) were selected to 

investigate the effect of slurry concentration on Pb bioavailability further. Figure 

6-5A displays the relative content of 𝐶Pb2+  in these five sediment samples by 

direct-contact assay for four sediment slurry concentrations. It shows that the 
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relative content of bioavailable Pb is inversely related to 𝐶Pb
Tot, sed  (especially for 

lower slurry concentration, ranges from 88% bioavailable for 45 mg·kg-1 to ~1% 

for 10,500 mg·kg-1 sediment 𝐶Pb
Tot, sed ). For all the five samples, as the slurry 

concentration increases, the content of relative 𝐶Pb2+  decreases. The pattern of 

decrease would be consistent with various physico-chemical phenomena, 

desorption for instance. A desorption study found that as the slurry 

concentration increased, the desorbed metal concentration decreased (Yin et al. 

2002), which is quite similar to my findings. Therefore, I decided that it would be 

of interest to compare the 𝐶Pb2+  in direct-contact assays to desorbed Pb and, 

further, to compare what the bioreporter sees as desorbed Pb versus what a 

chemical test (ICP-MS) result shows. 

Results for the 𝐶Pb2+  in desorption experiment supernatants are shown in Figure 

6-5B, and results for ICP-MS analysis for the same solutions are shown in Figure 

6-5C. In Figure 6-5B, the trend of the desorption data is consistent with the data 

from the direct-contact assays in Figure 6-5A, though, since for the 45 mg·kg-1 

sediment the desorbed 𝐶Pb2+  in all the four slurry concentrations was lower than 

the LOD of the bioreporter, it is not possible to calculate the relative amount of 

desorbed 𝐶Pb2+  for this sediment. Relative desorption of this low 

𝐶Pb
Tot, sed sediment may be simultaneously higher than that for the 690 mg·kg-1 

sediment on a relative basis and nonetheless lower than the reporter LOD. In this 

desorption experiment, the sediment: solution ratio significantly affects the 

distribution of metals between sediment particles and solution. As the amount of 

sediment mass per volume of solution is changed, so does relative speciation. In 

their work on soils, Yin et al. (2002) found, consistent with the equilibrium 
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speciation theory, that at higher soil:solution ratio, Cu showed a stronger 

disposition to be retained in soil organic matter and was more difficult to dissolve 

and/or desorb into solution. My results agree with their study.  

For the ICP-MS data in Figure 6-5C, all the trends3 could be said to follows the 

observed behaviour of the bioreporter in general terms if the data is viewed as 

being highly “noisy”, i.e. as a function of slurry concentration the largest change 

is for 45 and least change for 10,500 mg·kg-1 Pb, as seen for the bioreporter 

results. The lack of a clear trend for the ICP-MS data would appear to be an 

artefact of measurement, with possible sampling heterogeneity caused by small 

sediment quantities, small sample sizes and intra-sample differences in colloidal 

minerals sampled and/or the amount of Pb associated with same and 

simultaneous differences in the effect of HNO3 used to solubilise Pb for ICP-MS 

measurement. The results from ICP-MS analysis indicate that the concentration 

of ICP-MS-measured desorbed Pb (total solution-phase Pb) is higher than the 

bioreporter-measured desorbed Pb in Figure 6-5B, which demonstrates that 

much of solution-phase Pb is not bioavailable to bioreporter. Studies have 

demonstrated that both organic matter and inorganic species (solubility of both 

of which increase with decreasing sediment:solution ratio) bind metals and 

hence reduce metal bioavailability (Boggs et al. 1985; Mostofa et al. 2013a; 

Tipping et al. 1998). 

                                                           
3 In the mathematical sense, an upward or downward shift/pattern in noisy data as function of the 
independent variable. 
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Figure 6-5. Effects of sediment slurry concentration (mg sediment·mL-1 solution) on 

direct-contact assay and solution-desorbed Pb. (A) Relative content of bioavailable Pb in 

sediment measured by direct-contact assay; (B) Relative content of bioavailable Pb 

desorbed in supernatants; (C) ICP-MS measured relative content of 𝐶Pb
Tot, sed desorbed in 

supernatants.  Sediment 𝐶Pb
Tot, sed (in mg·kg-1) is given in the legend of (A). 

Therefore, in the desorption solution, inorganic and/or organic complexed Pb is 

not bioavailable and cannot be detected by the bioreporter. However, for the ICP-

MS analysis, HNO3 was added to the solution to effect total digestion before the 

measurement, and effectively all Pb in solution (including colloidal forms) and 

are measured as Pb ions. In contrast, results from the direct-contact assay show 
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that roughly an order of magnitude more Pb is bioavailable when the reporter 

directly “sees” the sediment, and the direct-contact assay results are higher than 

the results for static-sink desorption of Pb measured by ICP-MS. 

Figure 6-6 shows the relationship between 𝐶Pb2+by direct-contact assay versus 

𝐶Pb2+  in desorption supernatant, with a very good linear relationship (R2 = 0.98) 

and a slope of 16. This large slope suggests some additional detection mechanism 

other than simple interrogation of the solution-phase by the reporter, i.e. either 

the bioreporter can detect some part of the undesorbed Pb on sediment particles 

(as the reporters and sediment particles likely adhere to each other) or the 

bioreporter has some part in dynamically influencing Pb desorption in a manner 

that simultaneously causes uptake into the reporter for further activation of the 

promoter associated with bioluminescence. Both of these types of phenomena 

have been confirmed to occur and reported upon in the literature (Magrisso et al. 

2009; Tecon et al. 2010). 

 

Figure 6-6. Agreement between two types of bioreporter measurements. Correlation 

between 𝐶Pb2+in sediment as measured by direct-contact assay and 𝐶Pb2+desorbed into 

solution for five sediments of different age and with widely differing 𝐶Pb
Tot, sed (listed in 

the legend in units of mg·kg-1). 
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Bioaccessible Pb in Brothers Water sediments and implications for ERA 

As I discussed above, even though the 𝐶Pb
Tot, sed  is quite high in some sediment 

samples, most of the Pb is not bioavailable. However, as indicated in the 

introduction, bioavailability can be variable. Floods in particular cause 

disturbances in and change the distribution of lake sediments (Schillereff et al. 

2014). During, or as a result of such events, it is quite possible that the Pb in the 

sediment can be released to the lake water as a result of sediment 

disturbance/resuspension and enhance the risk of Pb exposure. For results 

discussed above, decreasing the sediment:solution ratio increases the 𝐶Pb2+ , and 

theoretically, as the slurry concentration approaches zero, the limit of an infinite 

sink environment is reached. While this is not meaningful physically (no 

sediment means no Pb to measure), it is nonetheless possible to estimate the 

infinite sink limit from the data. The result would in effect conditionally represent 

something referred to as bioaccessibility, i.e. an estimate of the amount of Pb that 

may not be bioavailable at a higher sediment:solution ratio, but which might 

ultimately become bioavailable, other environmental factors remaining equal. 

The term bioaccessibility was used by Ruby et al. (1994; 1996) for representing 

the fraction of a toxicant (or substance) that becomes soluble within the gut or 

lungs and therefore becomes available for absorption through a membrane (Ruby 

et al. 1994; 1996). This concept of bioaccessibility has been refined with respect 

to ERA to indicate that portion of toxic substance that is bioavailable or may 

become bioavailable, i.e. from the release or solubilisation of soil- and sediment-

associated metals in environmental systems external to the organism (Reeder et 

al. 2006). 
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Results from bioavailability for the five selected samples in Figure 6-5A were 

used for the estimation of bioaccessible Pb. Bioaccessibility was estimated by two 

graphical methods of plotting, per the exemplars in Figure 6-7; one obtains an 

intercept from fitting a line, and the other from non-linear fitting to a generalised 

hyperbolic. The two approaches, having different mathematical forms, are 

subject to different fitting uncertainty.  

Figure 6-8 shows the comparison of 𝐶Pb2+and bioaccessible Pb as a function of 

𝐶Pb
Tot, sed in the five sediments. Results for estimated bioaccessibility show that 100, 

23, 11, and 5% of, respectively, the 45, 690, 1090, 2900, and 10,500 mg·kg-1 

𝐶Pb
Tot, sed samples is bioaccessible. For the five sediments chosen for detailed study, 

the relative content of bioaccessible Pb follows the trend for bioavailable Pb, 

decreasing as the total Pb content increases. Effectively all of the Pb in the 45 

mg·kg-1 𝐶Pb
Tot, sed  sediment is ultimately bioaccessible (100%), however only a 

small fraction of the Pb in the 10,500 mg· kg-1 𝐶Pb
Tot, sed sediment appears to be 

bioaccessible (5.3%). This finding was not as expected, however, might be 

rationalised by chemical processes in diagenesis (changes undergone by a 

sediment after its initial deposition, Jackson 1997). For instance, a higher 𝐶Pb
Tot, sed 

would theoretically drive the equilibrium position forward for mineralisation 

reactions. In addition, the potential of mineralisation reactions’ being accelerated 

by high 𝐶Pb
Tot, sed, other processes that could also have a role to play in affecting 

bioaccessibility include sediment accumulation rate (potentially affects 

diagenetic processes), the amount organic matter (complexes with Pb) and 

sediment biological activity (affects chemical composition of organic matter, 

Price 1976).  
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Figure 6-8B shows the bioavailable Pb in all the sediment samples (above Limit 

of Quantitation/LOQ) at 6.25 mg·mL-1 slurry concentration. I include only points 

above LOQ here as due to the larger uncertainties associated with the higher 

slurry concentration. Data in panel B is consistent with data in A, however, the 

trend is not as clear; there are various reasons why this might be, considering 

that it is likely that no one mechanism is likely to explain bioavailability.  I will 

discuss this further with respect to sediment grain size distribution below. 

 

Figure 6-7. An example of graphical methods used for the estimation of bioaccessible Pb. 

(A) linear regression; (B) non-linear hyperbolic curve. Intercepts shown as filled squares. 

 

Figure 6-8. Comparison of bioavailable Pb and bioaccessible Pb with 𝐶Pb
Tot, sed  for five 

sediments. (A) R2 is 0.95, 0.99, 0.97, 0.96 and 0.91 for 0.78, 1.5626, 3.125and 6.25 mg·mL-

1 slurry concentrations (given in legend), respectively); (B) bioavailable Pb in all the 

sediment samples (above LOQ) at 6.25 mg·mL-1 slurry concentration. 
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In Tyler’s (1992) analysis of historical mining activity in the Brothers Water 

watershed, a period of intensive mining happened in the interval of 1863–1871, 

and Schillereff et al. (2016) showed that this period corresponds to the depth 

range from 49.5 to 62 cm sediment. The 10,500 mg·kg-1 total Pb sediment occurs 

at 58.75 cm in core BW11/2, which is during this mining period. In my study, I 

found that most of the Pb in this layer of the sediment is not bioavailable. 

Notwithstanding my hypothesis regarding the potential relationship between 

high 𝐶Pb
Tot, sed and the concentration of 𝐶Pb2+  (inverse relationship in Figures 6-5 

and 6-8), during this period, a large amount of Pb was deposited in the lake in the 

form of ore particles i.e. a form of mineralised Pb. This mineralised Pb would be 

expected to be less inherently bioavailable. Though once the galena removed 

from subsurface and exposed to surface, the oxidation processes might render 

some of the mineralised Pb bioavailable, this process would be limited to surface 

Pb, and the bulk of the material in particles would remain intact as galena. 

Nonetheless, for 5.3% bioaccessibility, this implies that 560 mg·kg-1 of Pb in the 

sample with a 𝐶Pb
Tot, sed of 10,500 mg·kg-1 is bioaccessible, and this is considerably 

above 400 mg·kg-1, which is the level of acceptable risk to cause cancer for human 

in soil (in the form of 𝐶Pb
Tot, sed) assigned by the USEPA (2009). As bioaccessibility 

in the sense that it is used here is akin to an infinite sink limit, it still nominally 

represents a conservative approach to risk assessment. In situ sediment:solution 

ratios are much higher than the slurry concentrations used here, though surface 

layers or layers subject to bioturbation/storm resuspension would still be at 

issue as sources of bioavailable environmental Pb. Such estimations of 

bioaccessible Pb could be used as a site-specific risk assessment guideline value 
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that would be more reasonable than 𝐶Pb
Tot, sed , yet conservative in relation to 

variations in actual 𝐶Pb2+ . 

Changing Pb bioavailability in time from the Brothers Water core BW11/2 

The full suite of sediment samples (32 samples) was analysed by direct-contact 

assay at a slurry concentration of 6.25 mg·mL-1, which is the sediment:solution 

ratio that is closest to in situ values while still being feasible to measure. Figure 

6-9 presents (A) 𝐶Pb
Tot, sed  with depth/age, (B) bioavailable Pb and (C), and the 

amount of bioavailable Pb relative to 𝐶Pb
Tot, sed . In the discussion here, the 

variations in measured quantities in Figure 6-9 will be discussed in terms of age. 

Panel A shows the 𝐶Pb
Tot, sedfor all Pb measurements in core BW11/2 to 210 cm 

depth or ~1200 A.D. The core is 351 cm long, dating back to ~500 A.D., after the 

Roman Era in the UK, and Figure 6-9A shows part of the pre-1507 record wherein 

the sediment all display a 𝐶Pb
Tot, sed , which can be classed as the pre-mining 

baseline.4 Per Adams (1988), the intensifying industrial phase began in the 1500s, 

i.e. any mining that occurred in the period of 500-1507 A.D. was relatively modest 

compared to later. Those samples above the pre-1507 baseline have an average 

concentration of 860 mg·kg-1, which is 14 times higher than baseline of 62 mg·kg-

1. However, the highest record, ~12,400 mg·kg-1, is over ~20,000 times the 

baseline. There is a first small-peak at ~122 cm/1550 A.D. which looks like there 

was decidedly mining by this time, with 𝐶Pb
Tot, sed increasing thereafter, with some 

periods of apparent less activity. The first small peak was followed by peaks at 

                                                           
4 I refer to this as pre-mining baseline, however, since there was Bronze Age and Roman Era mining, 

and core BW11/2 does not capture the pre-Bronze Age 𝐶Pb
Tot, sed, what I refer to as baseline here may 

be relative, and may not be true baseline. 
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~1612 A.D. 1702 A.D. (which can be attributed to the first big mining activity for 

which Tyler, 1992, reports documentation in 1696 A.D.) and ~1780 A.D. During 

early-nineteenth century, approximately the turn of the century to the 1830s, 

contractual documents indicate that mining ventures at Hartsop Hall experienced 

a financial pressure and restricted operations (Tyler 1992). The imprint of these 

small changes can be observed in the BW11/2 Pb profile at 75.75 to 72.25 cm. 

Mining activity subsequently resumed and reached its peak during the period 

when water powered milling was introduced (1863 to 1871 A.D.); which is 

reflected in the large spike starting at 60.75 cm depth/~1870 A.D. and peaking at 

58 cm/~1875 A.D. The last period of ore extraction at Hartsop Hall was1931-

1942 (38.25 to 34.75 cm). Pb continued to fluctuate after the cessation of mining 

in 1950 and the average concentration is 810 mg·kg-1 which is 12 times higher 

than the baseline. This is due to the remobilisation of mining waste during flood 

events (Schillereff et al. 2014; 2016). 

 

Figure 6-9. Variation of 𝐶Pb
Tot, sed  and 𝐶

Pb2+ over time in Brothers Water core BW11/2. 

Variation of (A) 𝐶Pb
Tot, sed, (B) 𝐶

Pb2+  (C) % bioavailable Pb of 𝐶Pb
Tot, sed. Triangles represent 

values below LOD, diamonds represent values above LOD but below LOQ, and circles 

represent values above LOQ. Filled symbols represent the five samples chosen for 

detailed study. 
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Panel B indicates that the concentrations of 𝐶Pb2+in core BW11/2 above 120.75 

cm/1558 A.D. are higher than that in the deeper core. Almost all the samples 

below 120.75 cm, prior to 1558 A.D., have bioavailable Pb concentrations that are 

not detectable (below LOD) or low enough as to be below the bioreporter LOQ at 

the high slurry concentration (resulting in higher LOD and LOQ) used for these 

experiments. This finding agrees with the data in panel A that shows relatively 

lower 𝐶Pb
Tot, sed  is present below 129.75 cm/1507A.D., there being a lag time 

between when 𝐶Pb
Tot, sed begins to increase over baseline in the sediment record 

(~1510) and when sufficient 𝐶Pb
Tot, sed is present for the bioreporter to detect it 

(~1560). I found that the trend of 𝐶Pb2+  in the sediment above 120.75 cm/1558 

A.D. generally mimics the trend of 𝐶Pb
Tot, sed in panel A, which means that, on an 

absolute basis, more Pb is bioavailable in higher 𝐶Pb
Tot, sed  samples. There is a 

positive correlation of R2 = 0.62 for samples above LOD, however, this is highly 

influenced by two high points. Two samples I studied that do visually do not 

follow the trend so closely are in Figure 6-9B are the samples at 15.75 cm/1983 

A.D. and 150.25 cm /1407 A.D. The former sample has relatively lower 𝐶Pb
Tot, sed 

and higher 𝐶Pb2+ . This may be a result of the oxidation processes in the top layer 

of the sediment causing increased dissolved Pb, due to the oxygen exchange 

between sediment and water being at the top of the sediment column. This sort 

of phenomena has been observed, for instance by (Masscheleyn et al. 1990), who 

reported that the total soluble selenium concentrations substantially increased 

upon oxidation in the upper sediment column near the water-sediment interface. 

I am unsure what the cause of the increased bioavailability for the 150.25 cm 

/1407 A.D. sample is, however, this sample is anomalous in at least one way that 
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I can see. Of the approximately 160 𝐶Pb
Tot, sed readings for this core prior to 129.75 

cm/1507 A.D. that are shown in Figure 6-9A, if I plot the data as a control chart, 

there is only one period that deviates statistically from control, and this sample 

falls at the lowest 𝐶Pb
Tot, sed during that period. 

Panel C shows the amount of 𝐶Pb2+relative to 𝐶Pb
Tot, sed without the data that are 

under LOQ. The % 𝐶Pb2+  of 𝐶Pb
Tot, sed in panel C that are above LOQ mimics the trend 

in Figure 6-8A as shown in Figure 6-8B. This could be because a higher 𝐶Pb
Tot, sed 

drives the equilibrium position forward for mineralisation reactions, which has 

been discussed above. So, while absolute bioavailable Pb may correlate weakly 

with the 𝐶Pb
Tot, sed, I simultaneously find that this bioavailable Pb shows a different 

trend when normalised to 𝐶Pb
Tot, sed, such that relative bioavailable Pb is inversely 

related to 𝐶Pb
Tot, sed. 

The properties of the sediment samples might also affect the bioavailable fraction 

of Pb. Figure 6-10 shows correlations between 𝐶Pb2+  and physical properties of 

sediment. For panel A, 𝐶Pb2+shows the almost no correlation with fraction of sand 

in the sediment for the selected 32 samples. However, when I deleted the two 

points with the highest 𝐶Pb
Tot, sed, a positive correlation appears, and the R2 changes 

from 0.12 to 0.52. In panel B, plotting 𝐶Pb2+  versus the fraction of silt in sediment, 

a negative correlation appears when I exclude these two points, and the R2 

changes from 0.10 to 0.56. These data indicate a weak tendency for more sand to 

lead to more 𝐶Pb2+ , the opposite being true for silt. Studies have demonstrated 

that heavy metals are very easily desorbed by sandy soil (panel A) and can be 

strongly stabilised by clay and silt (as shown in panel B, Acosta et al. 2011; 
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Sheppard and Thibault 1992). I found no relationship between bioavailability and 

sediment clay content, however, the clay content of these sediments is generally 

very low, ranging from 3.8 to 10, and averaging 7.3%. Panel C shows that the 

observations in panels A and B are also reflected in mean particle size, which 

shows a weak positive correlation, as should be expected since larger mean 

particle size reflects more sand and smaller particle size reflects more silt. It 

seems likely to me that that the two points with the highest 𝐶Pb
Tot, sed disrupt these 

weak correlations in Figure 6-10 because these two have higher relative 

proportions of the Pb-bearing ore mineral galena, from which the mobilisation 

and bioavailability of Pb may be very different, as I have also hypothesised about 

earlier in this chapter.  

 

Figure 6-10. Correlation between 𝐶
Pb2+  and physical properties of sediment. (A)% Sand 

and (B) % Silt and (C) Mean particle size. Thirty samples are used in linear regressions 

shown (filled circles), and the two highest 𝐶Pb
Tot, sed (2,900 and 10,500 mg·kg-1, open 

circles) values are not included in the regression. 

6.4 IMPLICATIONS ON SEDIMENT STUDY 

I have used the Pb-sensitive bioreporter zntA to assess the bioavailable fraction 

of Pb in the sediments of Brothers Water lake. The percent 𝐶
Pb2+  varies in 
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different layers of the sediments and is independent of OM, inversely related to 

silt content and directly proportional to sand content and mean sediment particle 

size. There is, at least for some subset of the samples, an inverse relationship 

between 𝐶Pb
Tot, sed and the percent 𝐶

Pb2+ . All of these variations fit with what I know 

of physico-chemical processes likely at work in the sediment column and the 

complex nature of factors determining bioavailability. Based on this work, I 

formulate the following conclusions regarding ERA of the impacted lake 

sediments: 

 The bioreporter can measure over an order of magnitude more 𝐶
Pb2+  by 

direct-contact with the sediment slurry than the desorption supernatant. 

It is thus inaccurate to determine the concentration of bioavailable Pb in 

sediment by only measuring the Pb desorption into solution. This further 

demonstrates the dynamic nature and advantage of using a biological 

rather than a chemical approach to measure bioavailability.  

 The absolute amount of bioavailable Pb in the top layer is notably high 

(53.6 mg·kg-1), which may pose a risk to the aquatic organisms in the lake 

and the related ecosystem. This result should arouse widespread concern 

about Pb pollution in Brothers Water lake. However more studies that 

reated to Pb toxicity to aquatic life in the lake are still needed. 
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7 EFFECT OF 

MICRONUTRIENTS ON 

ALGAL GROWTH – FOCUS ON 

RISK ASSESSMENT 
 

Eutrophication is a major environmental problem for water resource 

management (Lewis et al. 2008, 2011; Qin et al. 2007; Tang et al. 2016), and local 

economies may suffer when a lake experiences HABs (Dodds et al. 2009). It is 

generally accepted that N and P nutrients are the primary causative factor, 

however, for systems subject to large anthropogenic perturbation, this may no 

longer be true, and the role of micronutrients (MNs) are often overlooked. By far 

the most study of MN limitation is for Fe, the literature for which is extensive (see 

for instance Kranzler et al. 2013; Moreno-Vivian 1999; Sunda et al. 2005; Vrede 

and Tranvik 2006). Other MNs are less well-studied than Fe but have been shown 

to be variously limiting and co-limiting (Bayer et al. 2008; Bonilla et al. 1990; 

Downs et al. 2008; Hyenstrand et al. 2001; Lewin 1966).  

Here I report results from my work on the effects of MNs on algae in Taihu. Rapid 

development and lack of suitable environmental controls has led to large inputs 

of pollutants from industry and agricultural waste into Taihu and its tributaries, 



150 
 

intensifying water quality deterioration (Wang et al. 2009). Ergo, this previously 

oligotrophic, diatom-dominated lake (Chen et al. 2003b,c) is now subject to 

hypereutrophication, and cyanobacterial HABs have occurred every summer in 

the northern part of the lake since the mid-1980s (Qin et al. 2007). During the 

summer of 1990, a large-scale cyanobacterial HAB occurred in Taihu, causing 116 

factories to halt work (Guo 2007; Xu et al. 2010). In May, 2007, another large-

scale HAB incapacitated a drinking water plant, leading to a water crisis in the 

city of Wuxi, population 4 million (Guo 2007; Qin et al. 2010). Qin et al. (2007) 

showed that the extent of HABs in Taihu has expanded throughout the northern, 

western and central regions of the lake from May through October every year, 

and this intensity of anthropogenic disturbance to Taihu makes it an interesting 

field site to study. Further, a better understanding of the factors that promote 

HABs is essential in order to protect the water resource. 

Studies on Taihu often focus on the effects of N and P on algal growth (Paerl et al. 

2011; Xu et al. 2010). A recent study by one of my collaborators working on Taihu 

used short-term nutrient limitation bioassays (NLBs) in small scale mesocosms 

to study Fe limitation of Microcystis spp. in Taihu waters (Xu et al. 2013) and 

found that Fe was a limiting nutrient under some conditions. So far the emphasis 

is on cyanobacterial growth as the major risk factor for HABs in Taihu (Chen et al. 

2003c; Liu et al. 2011; Paerl et al. 2011). Less emphasis has been on study of in 

situ algal assemblages with multiple species and phyla, and no studies have 

evaluated the potential that other MNs might play in nutrient limitation in Taihu. 

A major theme in my work on Pb relates to bioavailability and bioavailability-

based risk assessment, and I became interested in the potential links between my 

colleague’s work and mine. Pb is not known to be nutritive, however, many 
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metals may serve as toxicants or nutrients, depending on concentration 

(Manahan and Smith 1973; Wu et al. 2017). Either would affect the risk profile 

for HABs. As a first step, I decided to extent the collaborators work and expand 

the scope of studies of MN effects on algae in Taihu, with the primary goal being 

to understand if there are effects, and if so, what the implications might be for 

HABs.  

7.1 EXPERIMENTS AND LABORATORY ANALYSIS  

Design of experiments 

For this study, I employed small-scale mesocosm/NLB experiments. The idea 

behind mesocosm experiments is to conduct experiments that have an element 

of control that would be obtainable for lab experiments, hence improving 

reproducibility, ability to isolate variables, and ability to form more well-defined 

and tractable hypotheses, while also adding an element of environmental reality 

that field experiments have and lab experiments lack, i.e. to capture ambient 

environmental conditions (e.g. diel cycles, temperature conditions, Paerl and 

Bowles 1987; Piehler et al. 2009; Xu et al. 2010). The particular NLB approach 

that I used was developed to provide a rapid assessment of nutrient limitation 

characteristics (Paerl and Bowles 1987; Piehler et al. 2009; Xu et al. 2010) and 

follows the preceding Taihu work on Fe limitation described in Xu et al. (2013). 

By doing small-scale mesocosm studies, I was able to perform more trials, 

however, my experimental design was factorial (Torbjorn et al. 1998), which is a 

common design, but meant that I had to choose carefully which MNs I would 

study. I chose to examine the effects of Fe, Cu, Co, B and Mo, with and without 
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addition of N and P, on in situ algal assemblages. I also did N, P, NP, and MNs 

with/without NP, because I wanted to see the effect of N and P on algal growth 

separately and check whether these MN are limiting or co-limiting nutrients for 

algae. The in situ assemblage experiments were conducted to simulate the lake 

environment.  I used water and associated algal assemblages from three regions 

of Taihu that were differentially impacted by HAB, in order to see if observed 

effects were a function of locale/water chemistry or extant assemblages. I 

characterised the effect of MNs using traditional methods for chemical (water 

quality) and biological (microscopic cell counting) analysis, and I supplemented 

these studies using flow cytometry measurement (FCM) coupled with data-

driven analysis. 

Study area and sampling sites 

I conducted sampling at a time when an HAB was fully developed in the western 

part of the lake and spreading east, in order to perform NLB experiments when a 

range of conditions occur in the lake. The three sites that I studied, shown in 

Figure 7-1, are situated in Meiliang Bay, Gonghu Bay and Xukou Bay, and are part 

of a long-term monitoring programme.  

Meiliang Bay (St 3) is one of the lake’s most eutrophic bays with high water 

turbidity and the occurrence of dense cyanobacterial HABs, particularly in 

summer. Large amounts of untreated wastewater from factories, residential and 

agricultural areas are discharged into the bay by the Liangxi and Zhihu Gang 

rivers, and a strong algal bloom was present at the time of sampling for this study. 

The west to east spread of HAB is somewhat variable year-to-year, and though I 

wanted to revisit the sites previously studied for Fe limitation (one of which was 
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Station 3, Xu et al., 2013), I found that the station in eastern Taihu that these 

authors studied was already partially impacted by HAB. Hence, I sampled at the 

nearest eastern station that was not impacted (Station 28, Xukou Bay) at the time 

of sampling. Gonghu Bay (Station 13) was less affected by HAB than Station 3 at 

the time of sampling and was chosen as such. 

 

Figure 7-1. Location of sampling sites for small-scale mesocosm MN NLBs in Taihu. 

Sample collection and water sample analysis 

Water samples from 0.2 m below the surface were collected in August, 2017, into 

40-L acid-cleaned polyethylene carboys. The samples were used for NLB 

experiments (Section 2.5) and water quality analysis. Physical parameters, (WT, 

pH, and DO) were measured in the field using a YSI 6600 multisensor sonde. 

Chemical properties were measured in the lab and included DOC, TN, TDN, NH4+, 

NO3-, NO2-, TP, TDP,  PO43-, Chl-a. Total dissolved MNs (TDFe, TDCu, TDCo, TDB, 
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TDMo) were measured as described in Chapter 3. Chl-a was determined as 

described in Chapter 4, Section 4.1. Phytoplankton samples were preserved with 

Lugol’s iodine solution for storage and were stored in the dark at room 

temperature until analysis. Algal objects were counted from observations of 

samples sedimented in a Sedgwick-Rafter chamber and reported as counts 

(Wang and Wang 1982). The phytoplankton species were identified according to 

Zhou and Chen (2011). 

FCM spectral analysis of single cells was performed using a FACSCalibur (Becton 

Dickinson, California, USA) with two lasers (argon solid-state, and red diode, 

excitation at 488 and 635 nm, respectively). For each sample, 800 µL of cell 

sample was inserted into a 10 mL plastic vial and placed into the flow cytometer 

with a sample intake speed of 12 μL·min-1. The sheath fluid was a commercial 

product (Beckman Coulter Inc., USA), composed of 9.84 g·L-1 Na2SO4, 4.07 g·L-1 

NaCl and 0.11 g·L-1 procaine hydrochloride, pH 7.0, delivered through a 150 µm 

nozzle at 4.5 psi. Measurements included forward scatter (FSC), side scatter (SSC) 

and four fluorescence channels: green fluorescence (FL1, 530/30 nm bandpass, 

associated with carotenoid fluorescence at λmax= 505-530 nm, Chen et al., 2017; 

Kleinegris et al., 2010; Steinberg et al., 1995), yellow fluorescence (channel FL2: 

585/42 nm bandpass, detects phycoerythrin/PE at λmax= 575 nm, Dennis et al., 

2011), red fluorescence (channel FL3: 670 nm/longpass, detects the integrated 

the red tail of the Chl-a peak, λmax= 650-700 nm, Vincent, 1983) and orange 

fluorescence (FL4: 661/16 nm bandpass, detects allophycocyanin/APC at λmax = 

660 nm, Dennis et al., 2011). Resulting data comprises a six-dimensional algal 

signature based on variations in size, granularity, carotenoid fluorescence (lower 

in chlorophytes, for instance, Chen et al. 2017; Steinberg et al. 1995), PE (notably 



155 
 

associated with red algae and cryptophytes, French and Young 1952), APC 

(characteristically dominant in cyanophytes, Canaani and Gantt 1980) and 

chlorophyll. For FSC and SSC the amplification gain was set at 1 and measured in 

the linear mode. For fluorescence channels the amplification gain was set at 1 and 

measured in the log-mode. Acquisition was set to capture 50,000 total events for 

each sample. I did all the analyses above at t=0, however, for the NLB experiments, 

I measured Chl-a, counts, and FCM. Due to limitations in sample volume, I could 

not do all of the analyses above for all the sample times. Therefore, I did the larger 

suite of analyses at the beginning to have a good characterisation of my starting 

point and differences between stations. At the sampling time points of 2 and 4 

days, I did the three analyses to see how these particular things were changing 

with treatment. 

Nutrient limitation bioassay experiments 

NLB experiments were carried out immediately after sample collection and 

followed the method of Paerl et al. (2011, also see Haraughty and Burks 1996; 

Whalen and Benson 2007; and Xu et al. 2013 as examples). The NLB experiment 

is a form of small-scale and short-term mesocosm study. Mesocosm size, 

experimental time-scale, design of experiment and quantities measured vary 

enormously in the literature. A very large number of published studies have 

employed the approach, however, there remain criticisms. The most systematic 

work that I know of that addressed such criticisms is a work by Spivak et al. (2011) 

entitled “Moving on up: can results from simple aquatic mesocosm experiments 

be applied across broad spatial scales?” These authors note that “Experiments in 

mesocosms have contributed to our understanding of community ecology and 
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ecosystem functioning (Fraser and Keddy 1997; Jessup et al. 2004; Spivak et al. 

2009), informed theory (Pfisterer and Schmid 2002; Cardinale et al. 2006), and 

provided insight to global processes (Benton et al. 2007; Duffy 2009; O’Connor et 

al. 2009).” The authors also point out, however, that munificent criticism of this 

approach asserts the approach has limited relevance to natural ecosystems 

(Spivak et al. cite Carpenter 1996; Schindler 1998; and Haag and Matschonat 

2001 as examples). To address this controversy, Spivak et al. (2011) considered 

effects of volume, surface area to volume (shape), and experimental time-scale to 

determine the generality of algal responses to nutrient enrichment and to 

determine the extent of relevance of NLB-type mesocosm experiments to large-

scale processes, such as eutrophication. These authors also considered results 

from 1060 NLB experiments subjected to a meta-analysis (Elser et al. 2007). 

Cumulatively, Spivak et al.’s comprehensive study considered NLB mesocosm 

experiments spanning a wide range of volumetric (as little as 0.02 L) and 

temporal (0 to 7 days) scales, and the authors’ overall conclusions were that 

results from mesocosm experiments are applicable to larger scale processes. 

These conclusions come with caveats. For instance, Spivak et al. observed both 

volume and shape effects in some cases. These tended to be generally small and 

disappeared with longer assay times (3 to 7 days). In considering Spivak et al.’s 

results in the context of my study, while I am not able to unequivocally negate 

arguments posed by detractors of the NLB mesocosm approach, there is certainly 

no consensus of opinion invalidating the value of commonly used NLB 

experiments to real-world environmental processes. Moreover, there is 

considerable support for the validity of the approach. The NLB method is 

reasonably tractable for a large factorial experiment such as what I wanted to 
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perform and therefore I chose this approach as arguably suitable as a screening 

experiment to identify potential MN effects that might be environmentally 

relevant and thus merit further study. Additionally, this is the approach that was 

taken by my collaborator’s Hans Pearl and Hai Xu, who had published his findings 

in a suitable journal with success (Pearl et al. 2015; Xu et al. 2013). It seemed to 

me that using his method would also enable my work to serve as a comparable 

extension to his. 

For each NLB treatment, I took triplicate water 14 L subsamples from each 

respective station from the 42-L samples described above and placed each into 

1-L transparent, chemically inert, cubitainers that were trace-metal clean, as 

described in Xu et al. (2013). Nutrient was then added to cubitainers by spiking 

with concentrated solution to achieve the final concentrations shown in Table 7-

1 for each treatment. The treatments were control (no nutrient additions), N, P, 

combined N and P (NP), single MNs (Fe, Cu, Co, B or Mo), and MN+NP (Fe+NP, 

Cu+NP, Co+NP, B+NP or Mo+NP). Each treatment was sampled twice (once at 2 

days, once 4 days) for analysis (Chl-a, microscopic counts, FCM). Concentrations 

of N, P, NP, and Fe were based on those used in previous work; concentrations for 

other MNs were initially targeted at four times projected ambient, based on 

literature on Taihu or according to other information in literature (Bayer et al. 

2008; Procházková et al. 2014; Xu et al. 2013). After nutrient additions, the 

cubitainers were incubated in situ in Taihu near the surface for four days by 

placing them in a frame at Taihu Laboratory for Lake Ecosystem Research 

(TLLER). As an exploratory study, I chose this method to examine short-term 

growth responses of algae, as the issue of long-term phytoplankton succession 

patterns is undoubtedly more complex. 



158 
 

Table 7-1.  Treatment schedule used in Taihu NLB experiments. 

Experimental treatment Nutrient concentration1 

Control no addition 

N 2.0 mg·L-1 N 

P 0.20 mg·L-1 P 

NP 2.0 mg·L-1 N + 0.20 mg·L-1 mg·L-1 P 

Fe 200 µg·L-1 Fe 

Fe+NP 200 µg·L-1 Fe + 2.0 mg·L-1 N + 0.20 mg·L-1 P 

Cu 20 µg·L-1 Cu 

Cu+NP 20 µg·L-1 Cu + 2.0 mg·L-1 N + 0.20 mg·L-1 P 

Co 1 µg·L-1 Co 

Co+NP 1 µg·L-1 Co + 2.0 mg·L-1 N + 0.20 mg·L-1 P 

B 18 µg·L-1 B 

B+NP 18 µg·L-1 B + 2.0 mg·L-1 N + 0.20 mg·L-1 P 

Mo 1 µg·L-1 Mo 

Mo+NP 1 µg·L-1 Mo + 2.0 mg·L-1 N + 0.20 mg·L-1 P 
1N was added as KNO3, P was added as K2HPO4·3H2O, Fe was added as FeSO4·7H2O, Cu was added as 
CuSO4·5H2O, Co was added as CoCl2·6H2O, B was added as H3BO3, and Mo was added as Na2MoO4·2H2O. 

Data analyses 

One-way ANOVA followed by Tukey’s Honest Significant Difference (HSD) post-

hoc test was used to test for differences in Chl-a among treatments. The R 

programming language and environment for statistical computing was used to 

perform calculations, and the level of significance used was p < 0.05 for all tests 

(Bretz et al. 2011). Additional tests for correlation were performed in Microsoft 

Excel (Pearson’s r and Spearman’s ρ, nonparametric). To analyse FCM data I used 

a data-driven approach. FCM is a high-throughput technology offering rapid 

simultaneous quantification of multiple cellular characteristics. The ability to 

measure six or more parameters simultaneously and measure tens of thousands 

of cells in a few minutes is attractive, however, this “blessing of dimensionality”, 

or the ability to separate groups with higher dimensional data that are not 

otherwise separable, is complemented by “the curse of dimensionality” (Donoho 

2000). To deal with the curse of processing large amounts of multi-dimensional 
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data, even today FCM data analysis typically utilises a process called gating, which 

Bashashati and Brinkman (2009), in a recent review, described thus: 

“Gating is a highly subjective process in which the investigators 

determine the regions in multiparametric space that contain the 

‘interesting’ data, based on their knowledge of the experimental 

factors and experience. This is a tedious, time-consuming, and often 

inaccurate task… to serially select regions in one- and two-

dimensional graphical representations of the data… This low-

dimensional subsetting ignores the high-dimensional multivariate 

nature of the data… even relatively minor differences in gating can 

produce different quantitative results.” 

Recently there has been a great deal of effort put into development of data-

driven approaches to FCM data analysis, so that data analysis is driven by the 

structure of the data itself (Finak et al. 2009; Finak et al. 2010) rather than 

expert opinion (Finak and Gottardo 2011). My use of a data-driven approach 

was an exploratory effort, and to my knowledge I am the first to use such an 

approach to study changes in algal assemblages.     

To perform data-driven analysis of FCM data, I used FlowMerge (Finak and 

Gottardo 2011), which is part of the Bioconductor software project for the 

analysis of FCM data (Huber et al. 2015). FlowMerge is an extension of the 

Bioconductor FlowClust algorithm (Finak et al. 2009). FlowClust is based on t-

mixture models with Box-Cox transformation, and when the number of clusters 

is not known a priori, the Bayesian information criterion (BIC) is used to 

determine the most appropriate number of clusters inherent in the multi-
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dimensional structure of FCM data (Lo et al. 2008, 2009). While this approach is 

used and works well in many applications, it has been noted that the BIC may 

overestimate cluster number because the number of mixture components needed 

to model data may be greater than justified by inherent difference in a sample 

(Baudry et al. 2010; Finak et al. 2009). This issue has been addressed by 

application of the entropy-based integrated completed likelihood criterion (ICL). 

The ICL has been shown to provide a better estimate of the number of clusters, 

however is not a good model for the underlying data distribution (Baudry et al. 

2010). By combining the two approaches, data is first clustered using the t-

mixture model with Box-Cox transformation, and subsequently the ICL guides 

remerging mis-split clusters, arriving at a solution that has the suitable fitting 

properties and a number of clusters that is most likely to represent the number 

of different types of cells/populations present in a sample (Finak et al. 2009). 

7.2 INITIAL CONDITIONS AND WATER QUALITY  

Results from water quality analysis, shown in Table 7-2, confirm that the three 

different stations had the different initial conditions. Turbidity, nutrients (TN, 

TDN, NH4+, TP, TDP, PO43-), DOC, and Chl-a are highest for Station 3, intermediate 

for Station 13 and lowest for Station 28. Some MN concentrations follow this 

trend. TDFe are relatively high and within the range that a previous study found 

for Station 3 (10-106 µg·L-1) but are considerably higher than that study found in 

the eastern part of the lake (below detection to 3 µg·L-1, Xu et al. 2013).  Other 

MN values are reasonably low or below detection, as may occur with trace 

quantities. The nutrients TN and TP are both dominated by organic forms, the 

majority of which is particulate for N, and presumably P as well, though there is 
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a small diminution in the percentage of organic forms from Station 3 to Station 

28. DOC follows that pattern, and since the predominant drainage pattern and 

HAB pattern is from west to east, these results are as expected. Most other 

nutrient forms follow this pattern, however, within analytical uncertainty, NO3- is 

low and essentially static. The TN:TP ratios are similar for Stations 3 and 13 and 

higher for Station 28, and TDN:TDP ratios are both a factor of ~2 less than the 

TDN:TDP ratio for Station 28. There have been reports detailing the ability of 

cyanobacteria to flourish at low TN:TP ratios (Schindler 1977; Smith 1983). The 

high pH of Taihu is notable and perhaps the best indicator of the degree of its 

anthropogenic perturbation. The high pH has been attributed to inorganic carbon 

scavenging of phytoplankton as a result of HABs, part of a vicious cycle conveying 

competitive advantage on bloom-forming species (Wang et al. 2017). This pH 

may substantively reduce the bioavailability of MNs due to the formation of bis-

hydroxy- and/or carbonato- complexes at high pH that is expected theoretically 

and has been demonstrated experimentally (Kim et al. 1999; O’Shea and Mancy 

1978).      

Consistent with prior recent reports, I found that the phytoplankton in Taihu 

were variable across the lake, dominated by Cyanophyta (blue-green 

algae/cyanobacteria), Bacilliarophyta (diatoms), Chlorophyta (green algae), 

Cryptophyta and Euglenophyta (Chen et al., 2003c; Xu et al., 2013). Figure 7-2 

shows pie charts with the relative percentages of each phylum and the total 

counts for each station. Station 3 and Station 13 were dominated by Cyanophyta 

(> 90% of total counts), however, for Station 3, ~82% of all cyanophytes 

(Chroococcus, Microcystis, Nostoc, and Oscillaria spp.) were Microcystis by count, 

whereas for Station 13, ~90% of all cyanophytes were Nostoc spp. by count. 
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Microcystis and Nostoc are non-nitrogen-fixing and nitrogen-fixing genera, 

respectively, which may affect phytoplankton growth differently between these 

two stations. Station 28 was dominated by Bacilliarophyta. The total counts for 

Station 13 are approximately three times that of Station 3, whereas the inverse is 

true for Chl-a between the two stations. 

Table 7-2.  Properties of lake water used for NLB experiments1. 

  Parameter Station 3 Station 13 Station 28 

Physical WT (OC) 30.4 29.8 30.8 

 Turbidity (NTU) 124 48 0.5 

 pH 9.26 8.91 9.30 

Chemical TN (mg/L) 4.55 2.22 0.62 

 TDN (mg/L) 0.80 (18) 0.69 (31) 0.60 (97) 

 TKN (mg/L) 4.4 (98) 2.1 (95) 0.5 (84) 

 NH4+ (mg/L) 0.30 (6.6) 0.26 (12) 0.14 (23) 

 NO3- (mg/L) 0.10 (2.2) 0.11 (5) 0.09 (15) 

 NO2- (mg/L) 0.002 (0.04) 0.002 (0.09) 0.01 (1.9) 

 TP (mg/L) 0.43 0.18 0.02 

 TDP (mg/L) 0.03 (7)  0.02 (11) 0.01 (50) 
 DOP+PP (mg/L) 0.42 (97) 0.17 (94) 0.02 (80) 

 PO43- (mg/L) 0.01 (3) 0.01 (3) 0.004 (20) 

 TN:TP 11 12 31 
 TDN:TDP 27 35 60 

 TDFe (µg/L) 94 68 38 

 TDCu (µg/L) 2.9 3.0 1.7 

 TDCo (µg/L) < 0.8 < 0.8 < 0.8 

 TDB (µg/L) < 10 < 10 < 10 

 TDMo (µg/L) 3.8 3.7 3.1 

 DOC (mg/L) 5.46 4.61 3.83 

 DO (mg/L) 12.3 13.0 11.7 

Biological Chl-a (µg/L) 203 73 1.5 
1 Values in parentheses are percentages of TN and TP for nitrogen and phosphorus species, respectively; 
TKN and DOP+PP determined by difference.  Abbreviations are surface water temperature (WT), total 
nitrogen (TN), total dissolved nitrogen (TDN), total Kjeldahl nitrogen (TKN), ammoniacal nitrogen (NH4+), 
nitrate (NO3-), nitrite (NO2-), total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive 
phosphorus (PO43-), dissolved organic phosphorus (DOP), particulate phosphorus (PP), total dissolved Fe 
(TDFe), total dissolved copper (TDCu), total dissolved cobalt (TDCo), total dissolved boron (TDB), and total 
dissolved molybdenum (TDMo), total dissolved carbon (DOC), dissolved oxygen (DO), and chlorophyll a 
(Chl-a). 

The results in Table 7-2 and Figure 7-2 are consistent with the frequent summer 

trend in Taihu wherein nutrient enrichment followed by an HAB begins in the 

western side of the lake and spreads to the east over the course or the summer, 

per literature cited above on Taihu. 
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Figure 7-2. Pie charts showing the relative amounts of different phyla present in Taihu 

at the time of sampling. Abbreviations are Bac = Bacillariophyta; Chl = Chlorophyta; Cry 

= Cryptophyta; Cya = Cyanophyta; Eug = Euglenophyta).  Total counts are given below 

each pie chart. 

7.3 CHL-A CHANGES IN NUTRIENT LIMITATION BIOASSAYS 

Raw data is provided in Figure 7-3 below, which shows average values for Chl-a 

for all treatments. Significance in pairwise differences are shown based on 

Tukey’s HSD post hoc tests (a > b > c > d > e > f > g, p < 0.05). Where there is a 

mark with the same letter (such as ab), the null hypothesis, H0: a-b=0, cannot be 

rejected, and where different letters are marked (such as a and b) it can be 

rejected. In assigning letters, the letter a represents the largest average and 

serves as the point of reference in comparison to the next largest average, and 

letters are sequentially assigned in this manner thereafter. 

Figure 7-4 shows the results from analysis of NLB experiments for Chl-a, which I 

use as an index of photosynthetic biomass (Billington 1991; Desortová 1981; 

Flemer 1969; Hallegraeff 1977). To show relative changes, N, P, NP, Fe, Cu, Co, B, 

and Mo treatments are normalised to the control (panels A, D, and G), and all 

MN+NP treatments are normalised to NP (panels B, E, and H), i.e. according to 

expressions 7-1a and 7-1b: 
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Normalised Chl-aN/P,MN =
[Chl-a]N/P,MN

[Chl-a]C
, and    (7-1a) 

Normalised Chl-aMN+NP =
[Chl-a]MN+NP

[Chl-a]NP
,    (7-1b) 

where the brackets indicate concentration, the subscripts N/P, MN indicate N, P, 

NP, or one of the MN treatments, the subscript MN+NP indicates one of the MN 

treatments also amended with NP, and the subscript NP in 7-1b indicates use of 

the NP treatment as a control. The rate of change from 0 to 2 days (Chl-a0-2d) 

versus 2 to 4 days (Chl-a2-4d) for all treatments, as given in expressions 2a (for 

diminution) and 2b (for growth) below, is also plotted (panels C, F, and I). 

∆Chl-a𝑡𝑖−𝑡𝑖+2d
=

([Chl-a]𝑡𝑖
−[Chl-a]𝑡𝑖+2d

)

[Chl-a]𝑡𝑖

 × 100%, and   (7-2a) 

 

∆Chl-a𝑡𝑖+2d−𝑡𝑖
=

([Chl-a]𝑡𝑖+2d
−[Chl-a]𝑡𝑖

)

[Chl-a]𝑡𝑖+2d

 × 100%,   (7-2b) 

where the subscript i indicates a measurement time point (0, 2 or 4 days) and 

i+2d indicates the reference time point i plus 2 days. Generally, for those 

treatments exhibiting relative increases in Chl-a, average increases are more 

modest and less variable for Station 3 (average 25% increase, with relative 

standard deviations/RSDs ranging from 10 to 15%), followed by Station 13 (40% 

increase and RSDs ranging from 30 to 35%) and Station 28 (average increase of 

Chl-a by 220%, with RSDs exceeding 100%).   
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Figure 7-4. Results from Chl-a analysis for Station 3 (top row), Station 13 (middle row) 

and Station 28 (bottom row). Chl-a concentrations for each station are shown 

normalised to the control (for N, P, NP, and single MN treatments, panels A, D, and G) or 

to NP (for all MN+NP treatments, panels B, E, and H).  Panels C, F, and I show rate of Chl-

a change over 0 to 2 days compared to 2 to 4 days.  Asterisks in panels A, B, D, E, G, and 

H indicate significant (p < 0.05) pairwise differences based on a one-way ANOVA/Tukey 

HSD post-hoc test.  Open and filled markers in panels C, F and I are based on apparent 

groupings as described in the text, and Pearson’s r squared (R2) is given in each. I also 

calculated Spearman’s . Pearson’s r and Spearman’s for each panel are, respectively, as 

follows: panel C, -0.89 and -0.91; panel F, -0.89 and -0.75 (for filled markers) or -0.93 and 

-0.90 (for open markers); panel I, -0.96 and -0.94. For panel I, Cu+NP is treated as a 

separate class based on Cook’s distance. If grouped with other data (filled markers), the 

correlation coefficients become -0.58 (r) and -0.93 (). 
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I relate the correlations shown in Figure 7-4C, F, and I to changes in growth 

phase/growth rate (note – see figure caption for Pearson’s r and Spearman’s ). 

The NLB experiments that I describe are analogous to performing short-term 

batch culturing under quasi-environmental conditions. Batch systems are highly 

dynamic with a progression of different phases of population change. Barsanti 

and Gualtieri (2010) characterise these algal phases in terms of a typical pattern 

of growth in six phases: lag, acceleration, exponential, early stationary, stationary, 

and decline (refer to this cited text for more details and cited work). The lag phase 

represents a period of adjustment or acclimatisation to altered conditions, during 

which algal growth may not be occurring actively, however most cells are still 

viable, though not dividing. Laboratory experiments with batch cultivation show 

that algal growth media inoculated with exponentially growing algae have short 

lag phases, hence commencement of a NLB experiment need not entail a long lag 

phase if the algal assemblage initially present is in an active growing state and 

conditions are not too far altered. After the lag phase, cells transition into active 

growth through a short phase of growth acceleration until growth reaches the 

maximum possible that can be supported by a given set of conditions. This 

maximum growth phase is referred to as the exponential phase since increasing 

cell density increases in time according to an exponential function. In batch 

laboratory culture, the exponential phase is reasonably brief, hence the same 

circumstance would be expected under NLB conditions. In short order, various 

physical and chemical factors begin to limit growth, such that the cell population 

enters early stationary phase wherein cell numbers continues to increase, albeit 

slowly, until gradually growth ends and stationary phase is reached. Growth is 

highly dependent on parameters such as light intensity, temperature, and 
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nutrient availability. The former two being equal, as for my NLB experiments, 

nutrient availability is the primary factor that determines the maximum cell 

density that will be reached in stationary phase. The cell concentration remains 

at a constant value during stationary phase until culture collapse (decline) occurs, 

which is sometimes referred to as negative growth. The crash is rapid initially, 

however for some cultures a basal cell population may be able to persist for some 

time. The different stages of algal growth are characterised by different growth 

rates. The growth rate is characterized as the slope of the growth curve, i.e. 𝑑𝑓 𝑑𝑡⁄ , 

where cell density is a function, f, of time, t, which in terms of my experimentally 

measurable intervals is Chl-a0-2d or Chl-a2-4d, as given in expressions 2a and 2b 

in the article text. Figure 7-5 characterizes the relationship between changes in 

slope/growth rate through different phases of growth. 

For the data shown on a normalised basis, one-way ANOVA/Tukey’s HSD post-

hoc test (p < 0.05) pair-wise differences of treatment compared to control or NP 

are indicated by asterisks in Figure 7-4. For Station 3, few differences are seen, 

and only at day 2 for P, N, NP, B, and Fe+NP. Both B and Fe have previously been 

reported to increase Microcystis growth (Gerloff 1968; Srivastava et al. 2016). 

While NP exhibited the highest Chl-a relative to the control by day 2, by day 4 it 

appears that NP has accelerated the onset of senescence (a term representing a 

range of processes, mostly in reference to declining/degrading Chl-a associated 

with late stationary/lysis phases resulting from environmental stresses such as 

nutrient limitation Louda et al. 1998). Station 3 had the highest nutrients and 

initial concentrations of Chl-a, and on an absolute basis there is a trend of Chl-a 

diminution over 4 days, with an inverse correlation (R2=0.80) between Chl-a0-

2d and Chl-a2-4d. This observation fits with the idea that, for a late stationary 
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assemblage, less nutritive treatments (e.g. the control in Figure 7-4C) result in 

progressive senescence or decline (decreasing growth curve slope) with a 

diminishing rate of change, whereas more nutritive treatments cause partial 

reinvigoration or at least retard the onset of senescence (flat to increasing growth 

curve slope, as for NP/MN+NP treatments in Figure 7-4C), with subsequent 

senescence after nutrient exhaustion. In terms of growth curve behaviour, larger 

nutrient concentrations result in larger changes in curvature/rate of change, in 

comparison to lower concentrations (Gough et al. 2015; Lee et al. 2000; Pinna et 

al. 2015).  

 

Figure 7-5. Different phases in algal growth curves. The diagram on the left (per Barsanti 

and Gualtieri 2010) gives representative algal growth curves and the table on the right 

shows how the magnitude and sign of the growth curve slope changes. When a given 

population of algae are growing under very nutritive conditions slopes for each phase 

are expected to be steeper, the cell density in stationary phase will be higher, and the 

timing of growth phase transitions may also be affected, as illustrated conceptually in the 

diagram. 

Station 3 was highly impacted by an HAB during the time of this study, the results 

indicate that NP, MN+NP, and to a lesser extent B have the most effect in 

supporting the persistence of the HAB. In actual lake conditions Microcystis can 

vertically migrate throughout the shallow water column, optimising its ability to 
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access favorable conditions to proliferate, which in turn increases its lateral 

extent; smaller differences I see in mesocosm NLBs might be larger in an open 

lake.  

The Station 13 trend for N and P is similar overall to that of Station 3 in that the 

order of effect relative to the control is NP > N > P (Figure 7-4), albeit the pattern 

persists to day 4. Treatments of MN only statistically exceed control/NP 

treatment for Cu and Fe+NP (day 2) and Cu+NP (day 4). While for most 

MN/MN+NP, relative Chl-a decreases from day 2 to day 4, the behaviour of 

Cu/Cu+NP is strikingly different, with Chl-a concentrations increasing for Cu (by 

61%) and Cu+NP (by 11%) from day 2 to day 4 relative to the control and NP, 

respectively. For the scatter plot showing Chl-a0-2d versus Chl-a2-4d for Station 

13 (Figure 7-4F), both visually and in terms of R2, there appears to be two groups 

with an inverse linear relationship. The first group is the “no-growth” group; 

though R2=0.86, it may be more appropriate to view this group as tightly 

clustered. The second group is all of the remaining treatments. For this group, the 

NP/MN+NP treatments show growth during over first two days (positive growth 

curve slope, i.e. a negative Chl-a0-2d value), followed by diminution as nutrients 

have become exhausted whereas Cu and P show diminution in Chl-a over the first 

two days with a net increase thereafter. I posit that, as for Station 3, the standing 

stock for Station 13 is at or nearing decline, and while the NP treatments provoke 

a reasonably rapid response, P and Cu may undergo lag, i.e. the changes are 

suggestive of adjustment and/or decline of the standing stock followed by growth. 

For Station 28, changes for N and P are not significantly different from the control, 

however NP together has Chl-a that is almost 10 times that of the control (days 2 
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and 4). Interestingly, by day 2 for all MN+NP treatments the response is less than 

that of NP alone, with Cu+NP being a pronounced factor of 4.9 lower. The lower 

response for single MN is not generalisable, though the response for Cu alone is 

also much lower, 2.7 times less, than the control. By day 4 all of the control-

normalised single MN treatments have increased compared to their values on day 

2, and MN+NP treatments are all larger than NP, significantly so for Co and Cu. 

The treatment Cu+NP has the most pronounced differential effect and is 4 times 

greater than for NP with a 22-fold increase from day 2 to day 4. The scatter plot 

for Station 28 (Figure 7-4I) lends the appearance of different behaviors: 1) C, N, 

P, Fe, Co, B, and Mo; 2) Cu, NP, Fe+NP, Co+NP, B+NP, and Mo+NP; and 3) Cu+NP 

in a class of its own. Changes for the first group are small and consist of a near-

constant Chl-a0-2d, followed by small and variable increases in Chl-a2-4d. The 

second group follows the inverse relationship discussed previously for Stations 3 

and 13, wherein those greatest increases in Chl-a0-2d (positive growth curve 

slope) are followed by smaller Chl-a2-4d, (in the case of Station 28 possibly 

indicating onset of stationary phase rather than senescence) and vice versa. 

Overall, I observe trends in Figures 7-4C, F, and I that are rationalisable in terms 

of algal growth curves (see Figure 7-5) and appear to result in different groupings 

based on the initial condition of standing stocks and the relative nutrient value of 

different treatments. The similarity between Pearson’s r and Spearman’s  are in 

most cases in good agreement, except when including Cu+NP for Station 28. For 

Station 28 (filled markers in Figure 7-4I) Spearman’s  indicates a strong 

monotonic, if not linear, relationship when including Cu+NP. 
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With respect to N, P, and NP, the results herein present a unified picture for the 

stations sampled, spanning the width of Taihu, wherein NP are co-limiting 

nutrients for HABs, in agreement with previous studies (Dzialowski et al. 2005; 

Paerl et al. 2015; Xu et al. 2013; Yang et al. 2017). While there is an increasing 

awareness that MNs and the bioavailability of trace metals play important roles 

in the carbon and nitrogen metabolism of algae (Baptista and Vasconcelos 2006; 

Berman-Frank et al. 2001; Juneja et al. 2013; Romero et al. 2013), the state of 

knowledge is as yet immature, and my primary purpose for this work was to 

ascertain whether MNs would exhibit effects in a highly disturbed and frequently 

hypereutrophic system as Taihu. The statistically significant results in Figure 7-4 

indicate that MNs may serve both as primary and as co-limiting nutrients in some 

cases. Results for Cu/Cu+NP (Stations 13 and 28) are most marked, and Fe+NP 

shows effects for two stations (3 and 13). For Station 28, Cu/Cu+NP appeared to 

show an inhibitory effect at day 2, whereas by day 4 the maximum increase 

observed during this study was for Cu+NP. It has long been known that, at high 

enough concentrations, Cu is an algal biocide, and Cu2+ has even been suggested 

for use in environmental management of HABs at concentrations ranging from 

90-500 µg/L (Källqvist and Meadows 1978; Wu et al. 2017). Likewise, the 

importance of Cu as a MN for algae has long been recognised (Manahan and Smith 

1973). Because MN such as Cu are required in very small amounts in the whole 

algae life cycle, there is frequently only a very small difference between a 

nutritional, growth-promoting effect and cell toxicity (Procházková et al. 2014). 

The effect of Cu+NP in Station 28 is unique to my knowledge in the literature.  

There has been a growing amount of research into bacterial and algal production 

of copper-binding ligands called chalkophores and copper-binding siderophores. 
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These ligands have demonstrated importance in controlling the bioavailability of 

Cu and may aid organisms to regulate Cu uptake and navigate a narrow divide 

between nutrition and toxicity (Johnstone and Nolan 2015). Regarding a linked 

effect with Fe, as early as 1980, McKnight and Morel (1980) published findings 

wherein Fe limitation resulted in strong secretion of chalkophores by two 

Anabaena species; they speculated that Cu complexes formed with such ligands 

were likely non-toxic and might convey an advantage to cyanophyte populations. 

Subsequently, genetic regulatory links between Cu and Fe homeostasis in 

cyanophytes have been discovered. For example, based on genetic studies 

employing site-directed mutagenesis, Nicolaisen et al. (2010) have developed a 

model wherein schizokinen, a siderophore secreted by Anabaena spp., is 

produced and exported under low Fe or high Cu conditions. When the 

concentrations of both Fe and Cu are low, schizokinen complexes with Fe, 

increasing Fe bioavailability to the organism. At high Cu/low Fe concentrations, 

schizokinen complexes Cu in a manner protective to the organism and another Fe 

transporter is activated. These findings are analogous to findings for P. 

aeruginosa wherein exposure to toxic Cu concentrations resulted in the 

differential production of siderophores, such that a more Cu-protective effect 

(bioavailability reduction) is favoured (Braud et al. 2010). In this study, the 

ambient TDFe for Station 28 averages half that of the other stations (Table 7-2). 

Since the high Chl-a response of Cu+NP appears previously undocumented, some 

phytoplankton reportedly have a relatively high cellular Fe requirement (Brand 

1991), and the low solubility of environmentally prevalent Fe3+ reduces Fe 

bioavailability, I cannot rule out that Cu treatment induced increased Fe 

bioavailability followed by growth. 
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7.4 EFFECT OF MICRONUTRIENTS ON CHANGES IN ALGAL 

ASSEMBLAGES 

My purpose in using in situ algae was to investigate if any changes in algal 

assemblages might be observed and if there might be clues as to MN’s mediating 

conditions favouring Microcystis over other algae. Figures 7-6 to 7-8 show the 

changing proportions of algae in response to MN treatments. Disaggregated 

counts for all species, including species with very low frequency, are given in 

Figures 7-9 to 7-11. While count data give a sense of changes, some species 

quantified are colonial and some are not – counting methods address this, 

arguably, not very successfully (Rott et al. 2007), thus here I have taken a semi-

quantitative rather than statistical approach. 

For Station 3, changes in total counts and algal assemblages are relatively small; 

cyanophytes remain dominant, with Microcystis spp. averaging 88% of the total 

cyanophyte counts (Figure 7-6). By day 4, the total counts for both Cyanophyta 

and Chlorophyta were larger for the single MN treatments in comparison to the 

corresponding MN+NPs, consistent with the effects discussed for Chl-a with 

respect to NP. 

While Cyanophyta predominated initially for Station 13, followed by 

Bacillariophyta, then Chlorophtya, the dominant genus was Nostoc spp., and 

changes to the algal populations of Station 13 in response to MN treatment 

present a more complex picture than that of Station 3 (Figure 7-7). 
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The stairstep pattern of Cyanophyta > Bacillariophyta > Chlorophtya in the initial 

water persisted in the control over 4 days, however the percentage of 

cyanophytes in the control shifted from 81% Nostoc spp./7% Microcystis spp. 

initially to 19% Nostoc/39% Microcystis by day 2 (12% Nostoc/37% Microcystis 

by day 4). This transition from Nostoc to Microcystis occurred in all treatments as 

well with varying percentages. The stairstep distribution was observed for the all 

non-NP treatments in day 2. For NP treatments, by day 2 there was a consistent 

increase of Chlorophtya relative to Bacillariophyta, with abundance of 

chlorophtyes being similar or exceeding that of bacillariophytes, a shift which 

continued to day 4 when all NP/MN+NP treatments save Cu+NP were dominated 

by cyanophytes, however chlorophytes had become more abundant than 

bacillariophytes. The change for Cu+NP was dramatic with Chlorophyta 

becoming 89%, a strikingly apparent visual change under the microscope. Also, 

by day 4, the most abundant form of cyanophyte was Chroococcus spp. for Cu+NP, 

Scenedesmus spp. abundance was 78%, over four times that of any other 

treatment. For Stations 3 and 13, Chroococcus abundance only reached double 

digits for Cu (Station 3 and 13) and Cu+NP in Station 13. Notable changes in 

phytoplankton assemblages in single MN treatments were observed for Cu and 

Co. In the case of Cu, by day 4 the pattern mimicked that of Cu+NP wherein 

chlorophytes were dominant, followed by cyanophytes (most common form 

Chroococcus), then bacillariophytes. For Co, by day 4 Bacillariophyta became the 

most abundant type outnumbering Cyanophyta. 

For Station 28 the dominant algae in the water column initially were 

bacilliarophytes (Melosira spp., 77%, see Figure 7-11), with another 11 and 4% 

respectively of cyanophytes and chlorophytes (Figure 7-8). For most treatments, 
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the pattern of abundance was Bacillariophyta/Melosira, followed by Cyanophyta 

or Chlorophyta. In some cases (control, N, NP, Fe+NP, Cu, Cu+NP, Co+NP, B+NP, 

Mo+NP) Chlorophyta were more prevalent than Cyanophyta. Cyanophytes were 

mostly Microcystis, except for Cu/Cu+NP, the only treatments that had double-

digit abundance of Chroococcus (13%). The day 2 total counts for both Cu and 

Cu+NP were lower than for any other treatment, and Cu+NP was the only 

treatment wherein chlorophytes dominated (followed by Bacillariophyta, then 

Cyanophyta). For the original Station 28 water, the small amount of chlorophytes 

present was equally distributed between Chlorella and Pediastrum spp. By day 2, 

the proportion was the same for Cu, and Cu+NP had twice the amount of the latter 

as the former – by day 4 Cu+NP Chlorophyta was dominated by Scenedesmus spp. 

(24%), the only treatment to have more than 4%. The pattern of abundance by 

phylum was not greatly changed by day 4 for some treatments, (control, N, P, all 

of the single MN treatments except for Cu). For NP, Fe+NP and Cu+NP, 

cyanophytes had become the dominant species, also having a high abundance in 

Cu, and for NP and Cu+NP Bacillariophyta became a minor component. The 

treatments NP, Fe+NP, Cu, and Cu+NP at day 4 were the only ones to have 

Chroococcus spp. ~30% or greater (30, 29, 37, 56% respectively, see Figure 7-11). 

The treatments Co+NP, B+NP, and Mo+NP all showed a similar pattern at 4 days 

(Bacillariophyta dominant, followed by Cyanophyta, then Chlorophyta) with 

relatively elevated total counts. These treatments were also distinguished by 

relatively high amounts of Synedra spp. (69, 75, and 84%, respectively, averaging > 

2.5 times the highest of all other treatments, see Figure 7-11).   

Results from count data are in general accord with Chl-a data in that Station 3 is 

relatively static, and for Stations 13 and 28 more and varied changes occur, 
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reflecting potentially complicated succession patterns that depend on the relative 

distribution of the different species at the start of my experiments and how each 

respond to treatment. Chlorophyta or Bacillariophyta are able in some cases to 

expand at the expense of Cyanophyta (for Cu/Cu+NP and Co in Station 13). The 

most notable change occurring for Stations 13 and 28 is for Cu treatment, singly 

or with NP. For both stations much higher amounts of Pediastrum and/or 

Scenedesmus, species thought to be relatively more tolerant and/or needing Cu 

(Bilgrami and Kumar 1997; Merchant 1998) appear by day 4 for Cu+NP and to a 

lesser extent Cu. For Station 13, Microcystis diminishes from day 2 to day 4 for 

Cu/Cu+NP, whereas the opposite occurs for Station 28. The largest increases for 

Microcystis in Station 28 occur for NP, Fe+NP, Cu, and Cu+NP. In view of the 

relative sensitivity of Microcystis to Cu (Horne and Goldman 1974; Zeng et al. 

2010), the potential role of Cu and Fe affecting the bioavailability of each other 

(as discussed for Chl-a above), the lower amount of Fe in the ambient water of 

Station 28, and the contrasting effect of Cu/Cu+NP on Microcystis in Stations 13 

versus 28, this again raises the question of to what extent changes seen for Cu 

relate to Fe. The present results also underscore the desirability of trying to 

understand how MNs affect succession patterns. 

7.5 FLOW CYTOMETRY ANALYSIS TO DETERMINE CHANGING 

CHARACTERISTICS OF ALGAL POPULATIONS 

FCM is a promising tool to study changes in size, abundance and community 

composition. I used FCM in two ways: 1) for univariate analysis, performing 

estimation of biovolumes and analysis of the FL3/Chl-a channel in comparison to 

bulk Chl-a analysis, and 2) for data-driven multivariate analysis. Univariate 
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analysis of FCM data focused on two indicators: FSC and FL3. Per the method of 

Li and Dickie (2001), I use the FSC signal to estimate a mean equivalent spherical 

diameter, from which an estimated spherical volume is calculated for each cell, 

and the sum of all cellular biovolumes is taken as an estimate of the total relative 

biovolume. As discussed by Dickie and Li, there are various contributors to 

uncertainty in such an estimation, such as differences in shape and refractive 

index of cells and uncertainty in size calibration for the flow cytometer. While 

some uncertainties might cancel, some might propagate, and it is important to 

keep in mind that this is an estimate. For FL3, this is the channel that is most 

typically associated with Chl-a fluorescence. For each sample, I summed the total 

FL3 signal and compare this to results for bulk Chl-a analysis. I wanted to see how 

these two compare, however, I did not automatically anticipate a correlation due 

to known changes in fluorescence and photosystem properties for algae under 

different environmental conditions (Oukarroum 2016). 

Figure 7-12 shows results for both univariate analyses, with the sum of end-

systolic volume (Σ ESV) versus Chl-a for all stations in the left-hand column and 

the sum of FL3 versus bulk Chl-a in the right-hand column. Concerning ESV, my 

hypothesis prior to doing the analysis was that this should show a better 

correlation for Station 3 than for the other two stations because Station 3 is the 

least diverse, being primarily constituted of Microcystis spp. Further, I 

hypothesised that, if correlations would be observed, the correlation would be 

likely better at 2 days than 4 days, as with longer time there might be more 

differentiation of algae based on treatment effects. The outcome of analysis of ESV 

was as anticipated, though the correlations were stronger than I expected, and 

that Station 13 would show as strong of a correlation at 2 days as Station 3 was 
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unexpected, particularly given the nature of uncertainties in ESV. For both 

Stations 3 and 13, the correlation is strong on day 2, and much less apparent on 

day 4. In the case of Station 3, if the treatments NP and Cu+NP are omitted from 

the group, the correlation is less than for day 2, however still respectable (R2 = 

0.73 on day 4 versus 0.81 for day 2). Without omitting these two treatments, the 

correlation effectively disappears (R2 = 0.20). These two treatments did show as 

being distinct in behavior in terms of Chl-a and cluster analysis. Cook’s distance, 

to measure the influence of individual data points in regression (Mendenhall and 

Sincich 1996), was calculated. Based on a cut-off of 1 (Cook and Weisberg 1982) 

the values for NP and Cu+NP are not exceptionally influencing; based on an 

alternate cut-off of 4/n, there is some difference (Bollen and Jackman 1990); for 

the limited number of points, the idea that there is a correlation in day 4 should 

be viewed with caution. Similarly, I find that for Station 13 correlations appear to 

exist if the treatments are split into two groups: NP/MN+NP and the remainder, 

and these groups display different behaviors based on other analyses. Grouped 

together, there is no correlation, hence the trends shown in Figure7-12 for 

Station 13 on day 4 for the two groups are to be viewed with caution as well. For 

Station 28, there is no correlation at either time, however, consistent with 

hypotheses, the apparent scatter in these bivariate plots increases from day 2 to 

day 4, as treatments show increasing differentiation in response. 

Results in Figure7-12 for Chl-a versus FL3 are largely confirmatory to what might 

be expected. For Station 3, the correlation between Chl-a and FL3 is strong on day 

2 (R2 = 0.81), with a general trend such that more nutritive treatments (N, 

NP+MN+NP lie at the high endpoint and the remaining treatments at the low 

endpoint). By day 4 there is a narrow range of values for both Chl-a and FL3, 
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leading to a clustered appearance in the plot. Taken with other results, this 

appears likely a result from all treatments having reached limitations to growth. 

Station 13 shows strong correlations for both day 2 and 4 and in both cases the 

trend of more nutritive treatments lying at the high endpoint and the remaining 

treatments at the low endpoint. For Station 28 there are apparent correlations 

that might be viewed instead potentially as artifacts. Rather than having an actual 

distribution of values across two endpoints, as for Station 3, day 2, and Station 13, 

days 2 and 4, the apparent correlations for Station 28 appear to result from two 

clusters at each endpoint. I note that the apparent correlation shown for Station 

28, day 4, results only with deletion of the Cu+NP treatment, which, whether the 

correlation shown is viewed as an artifact or not, with a Cook’s distance of > 2 

and taken in the context of the other data, Cu+NP is clearly different in response 

from other treatments.  

Taken together, the results for Chl-a versus FL3 indicate that treatments do cause 

increasing differentiation over time, and photosystems changes as a result of 

treatment, i.e. the types of changes that would disrupt potential correlations 

between Chl-a and FL3, are only potentially in play for Station 28. Further, as the 

clustering and count results indicate that significant changes are occurring in 

both algal assemblages and population distribution among growth stages, it is not 

clear that photosystems changes or large changes in pigment production as a 

function of growth phases need be invoked to explain the lack of clear 

correlations for Station 28.  
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Figure 7-12. Scatter plots showing Chl-a versus univariate FCM data. ESV is derived from 

FSC in the left-hand column and FL3/Chl-a fluorescence in the right-hand column. 

Recently there has been a great deal of effort put into development of techniques 

to automate the identification of individual populations or groups of cells in 

mixtures analysed by flow cytometry using clustering algorithms for handling 

large multivariate data sets (Johnsson et al. 2016). These clustering algorithms 
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are fundamental in the quest to automate analysis of FCM data (Johnsson et al. 

2016). Cluster specification may be determined by, for example, use of a distance 

function (Euclidean or Mahalanobis), which may in some cases be sensitive to the 

multi-dimensional “shape” of clusters, or alternately density-based clustering, 

which can find oddly shaped clusters but it not ideal when populations of varying 

density occur together (Han et al. 2011).  In algal research, as with analyst-driven 

gating methods, the focus is to “tune” clustering or filtering in such a manner as 

to successfully identify specific phyta or even species of interest (Dennis et al. 

2011; Franklin et al. 2010; Peniuk et al. 2016). When using an algorithm, the 

algorithm no “preconceived” notion of differentiating, for instance, Microcystis 

spp. from Chlorella spp., meaning is not imposed on the results but rather needs 

to be derived from results. Working with one of the collaborators on my project, 

I tried a number of algorithms for analysis of FCM data, both data-driven 

algorithms and algorithms that rely on assumptions or prior knowledge of the 

data (other methods included k-means and DBSCAN, FlowClust, RTAC, and 

SamSPECTRAL, see Busam et al. 2007; Han et al. 2011; Lo et al. 2008; Zare et al. 

2010). Some of these either split the data into overly spheroid multi-dimensional 

clusters or appeared to produce results that did not perform in a reproducible 

manner across treatments, stations, and sampling periods. The data-driven 

approach that I used, FlowMerge, is more robust to handling difficult clustering 

issues in FCM to provide a final number of clusters most likely representing the 

number of different types of cells or populations that are “separable”/distinct in 

a sample (Finak and Gottardo 2011), and on testing proved to be superior in 

consistent clustering reproducibility across treatments, stations, and sampling 
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periods. In choosing to use FlowMerge, I opted for a conservative approach that 

would not overly split clusters. 

To perform clustering, I took FCM data files and visually inspected bivariate plots, 

confirming a large number of changes as a function of time and treatment. Next, I 

performed clustering on each data file. Clusters are characterised in terms of 

cluster centers, which is the average value of each of the FCM channels for a given 

cluster (FSC, SSC, FL1/caroteniod, FL2/PE, FL3/Chl-a, FL4/APC). For the 

triplicate samples, the average proportion of each cluster and value of each FCM 

channel was plotted as a function of time. Three main types of cluster, “Cluster 1” 

(C1), “Cluster 2” (C2), and “Cluster 3” (C3), occurred reproducibly. I found that C1 

and C2 were detected in most samples. C1 is characterised by, relative to the 

other clusters, a high SSC to FSC ratio and very low FL values across all channels. 

C2 has, relatively, a high FSC to SSC ratio and moderate FL across all channels. C3 

is a cluster that appears in many treatments at days 2 and 4, and is characterised 

by having smaller FSC than C2, smaller SSC than C1, and FL generally higher than 

C1 but lower than C2. Often, the FlowMerge algorithm (Finak and Gottardo 2011) 

that I used identified many more clusters than these three, however, as some of 

these do not appear with high frequency, represent very small proportions of the 

sample, and often do not cluster repeatedly across replicate samples, I do not 

discuss them further. 

Figure 7-13 shows some representative FCM contour plots, how these compare 

to cluster plots (the total number of bivariate plots was 3825; see Figure 7-14 for 

additional selected examples showing more variation in structure), and some 



190 
 

examples of how clusters change as a function of time (see Figures 7-15 to 7-17 

for the full 63 plots of this data).  

 

Figure 7-13. Examples of plots from FCM results including bivariate contour plots 

(panels, A, D, and G), bivariate cluster plots (panels B, E, and H), and plots of cluster 

variations over time for different treatments (panels C, F, and I).  Panels A-C, show plots 

for Station 3, Fe treatment; this treatment is an example with cells distributed across C1 

and C2.  Panels D-F, show plots for Station 13, Fe+NP treatment; in this plot C1, C2, and 

a small C3 are present.  Panels G-I, show plots for Station 28, B+NP treatment; this is an 

example wherein C1 is absent (in multivariate space, which is not necessarily obvious in 

bivariate space), C2 is small, and C3 is well developed. For panels C, F, and I, FSC and SSC 

is only shown for one cluster for plot clarity.  

Examination of the bivariate contour plots that I constructed in comparison to 

clustering data suggests that for C1, and especially C2, there might be more 
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structure in some results than are differentiable by the data-driven clustering 

approach that I chose. These “buried clusters” likely represent different algal 

species/phyla (Dennis et al. 2011; Franklin et al. 2010; Peniuk et al. 2016). 

Regarding C1, FCM reports of features with very low fluorescence for algal 

samples describe these features in two ways: near zero fluorescence that is 

characteristic of bacterial heterotrophs, and very low fluorescence signals from 

algal sources such as debris, or compromised cells that have variously been 

described as shrunken cells with high granularity/SSC, cells that have lost 

membrane integrity or cells that have been verified to be dead (Huang et al. 2015; 

Lopes da Silva et al. 2018; Wang et al. 2016). 

 For those samples dominated by C1 and C2 (e.g. the initial water samples) C2 is 

everything else, i.e. predominately cells in the exponential or stationary phase of 

growth. I observed that C3 is not present in Stations 3, 13, or 28 initially and is 

only present in some of the day 2 and day 4 samples for which active growth is 

likely occurring. SSC may increase disproportionately to FSC for dead or dying 

cells, however for growing cells FSC and SSC are expected to increase together 

(larger objects scatter more than smaller in the forward and side directions). It is 

also possible that internal cell structure changes cause variations in SSC signal. 

Overall, C3’s modest FSC, SSC, and FL signatures imply small, but living, cells – the 

small FSC denoting small(er) relative size, small SSC resulting from smaller side 

scatter of a small object, and small FL resulting from a smaller volume of pigment 

contained in small cells. I posit that C3 is newly divided or induction/early 

exponential phase cells. 
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Figure 7-14. Additional selected contour plots for different treatments in different 

stations. 

Clustering results for Station 3 shows the least variability (for greater detail on 

clustering results, see Figure 7-15). The proportions of C1 initially are 43% and 

appear to change in two groups. For NP and all MN+NP, the C1 proportion 

increases by ~6% overall, and the remaining treatments follow the control with 

the C1 proportion decreasing by ~5% overall. While these are small changes, they 

appear consistent with microscopic analysis performed in the course of collecting 

count data for which at day 4 some samples exhibited the appearance of less 

colorful and/or degraded/fragmented algal cells.  
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For C2, by day 4, P and single MN treatments have increased in proportion by a 

small amount (5-10%), while N, NP and NP+MN treatments see overall a slight 

decrease over this time (the biggest loss is 12% for NP). The decreases in 

proportions for C2 NP and MN+NP are reflected in the appearance of C3 for these 

treatments, however, the proportions of C3 for Station 3 are small (maximum 4-

6% by day 4). The C3 cluster appears in day 2 for N, NP, Cu+NP, and B+NP, 

whereas by day 4, C3 has increased for N, NP, Cu+NP, and B+NP and additionally 

appears for the remaining MN+NP treatments, Fe+NP, Co+NP, and Mo+NP. The 

highest proportion of C3 is NP, which is the treatment that had notably low bulk 

Chl-a by day 4. I initially thought that the bulk Chl-a analysis was reflective of an 

accelerated onset of senescence for NP, however, the FCM results for C3 suggest 

that instead the appearance of very low bulk Chl-a in day 4 for NP may be related 

to this treatment’s having the highest loss of C2 for NP (the most fluorescent 

cluster) and greatest gain of C3. The bulk Chl-a for Cu+NP in day 4 was lower than 

that for NP; while Cu+NP retained a greater proportion of C2 cells, the FL3 (Chl-

a) and FL4 channels were relatively flat for this treatment over 4 days in contrast 

to the other MN+NP treatments. If taken as a group, for C1 the N, NP/MN+NP FSC 

and SSC are on average slightly smaller than for the remaining treatments (on 

average 8%), and fluorescence changes even less. Changes for C2 are more 

pronounced. Over 4 days the C2 FSC, SSC, and FL channels increase for N, 

NP/MN+NP by 25, 85, and 43%, respectively, as a group average. Over the same 

time, fluorescence, particularly for FL3 and FL4, is static or decreasing for the 

other treatments.  
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Figure 7-15. Plots from cluster analysis results showing changes in clusters C1, C2, and 

C3 over time for Station 3.  Note, some treatments are plotted at 1.75 and 3.75 days, 

respectively, instead of 2 and 4 days in order to improve visibility of symbols.  

The treatment Cu+NP is unusual in that for FL3 and FL4 its behaviour is more like 

the non-NP treatments. These averages are for purposes of illustration, however, 
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there is some variability between the behaviour of different treatments, probably 

in part as a result of C3 appearing for some N, NP/MN+NP treatments in day 2 

and for others in day 4.  I note, relative to the discussion for Cu+NP below, that 

Cu+NP is the only cluster that shows a consistent rise in FSC and all FL channels 

between day 2 and day 4. The clustering results for Station 3, taken together, are 

consistent with a picture of nutrient treatment causing modest growth (increases 

in C2, appearance of C3) for many treatments, with the NP, to a lesser extent N, 

treatments showing greater changes. Generally, the greater recruitment into C3 

by day 4 is associated with larger diminution in Chl-a by day 4. 

Figure 7-16 shows details on FL3 versus Chl-a and how Chl-a relates to clustering 

results. The initial proportion of C1 is similar to Station 3 at 51%, and changes to 

C1 are also similar as for Station 3 in that changes for the most part are modest 

and largely not notable except that SSC varies greatly, and not systematically, 

among treatments. The proportions for C2 increase by ~12% for N over 4 days, 

while remaining near static for the single MN treatments (minus Cu), and 

decreasing slightly (6-8%) for NP and the MN+NP treatments (minus Cu+NP). 

 By day 4, the proportion of C2 in Cu and Cu+NP treatments has decreased by 30 

and 32%, respectively, which are the only treatments to have proportions of C2 

less than the control. Only 20% of the Cu treatment population is in C2 by day 2. 

By day 2, C3 appears for NP, B+NP, and Cu+NP, and by day 4, C3 appears for the 

remaining MN+NP clusters and Cu, with proportions increasing slightly for NP 

and B+NP. The proportion of all C3 clusters except Cu and Cu+NP is ~5%, 

whereas for Cu and Cu+NP it is 10% and 28%, respectively.  
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Figure 7-16. Plots from cluster analysis results showing changes in clusters C1, C2, and 

C3 over time for Station 13. Note, some treatments are plotted at 1.75 and 3.75 days, 

respectively, instead of 2 and 4 days to improve visibility of symbols. 

As with Station 3, it appears that losses in C2 translate to gains in C3. For C2 FSC 

and SSC are relatively static, except for NP/MN+NP treatments for which FSC and 
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SSC increase linearly over 4 days. Fluorescence signal is decreasing over 4 days 

for all but the NP/MN+NP treatments. The proportion of C3 for most treatments 

is small, however, the appearance of C3 corresponds with a small decrease in bulk 

Chl-a between day 2 and day 4. Overall, the results from clustering are consistent 

with the idea that C2 is viable cells that are experiencing nutrient-stimulated 

growth. The treatments Cu and Cu+NP treatments are unusual in having very 

high proportions of C3, for which the FSC and FL values are lower than for C2, 

hence based on the results for NP in Station 3, for which a higher proportion of 

C3 for NP was associated with a lower bulk Chl-a, it seems that bulk Chl-a would 

be expected to decrease for Cu and Cu+NP by day 4 for Station 13, and I do see 

some decrease for Cu. However, the ratio of the fluorescence intensity of C2 to C3 

is on average 63% greater for Station 13 than Station 3, which may explain why 

the bulk Chl-a results do not reflect the higher proportion of C3 for Station 13 Cu 

and Cu+NP treatments. 

For Station 28 (see Figure 7-17), the initial proportion of C1 is 73% and 

diminishes during treatment much more strongly in comparison to Stations 3 and 

13. By day 4, C1 had disappeared for the treatments Co, Co+NP, B, B+NP, and 

Mo+NP. For all other treatments save N and P, the C1 proportion diminished to < 

10%, with N having the highest proportion of C1 at ~16%. This diminution of C1 

is most obviously countered by the largest relative increases in Chl-a content 

from bulk analysis for Station 28. The changes in proportion for C2 are most 

extreme of the three stations and are mirrored by C3. Proportions change for the 

control as well, implying that the change in environmental conditions inherent in 

sampling and redeployment in the cubitainers had an effect on the algae in the 

control sample. Over the first two days of treatment, proportions of C2 decrease 
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from 23% to 4-6% for Cu and Cu+NP, remain in the region of starting conditions 

for P, and for all other treatments a marked increase in the proportion of C2 by 

an integer factor of 2-3 is observed. Concomitantly by day 2, C3 appears in all 

treatments except P (for which C3 appears in day 4), however, the proportions of 

C3 for Cu and Cu+NP (60 to 70%) are twice that of the remaining treatment C3s 

(11-29%). By day 4, for N, P, Fe, Co, B, and Mo, the proportions of C2 remain high 

(46 to 66%), whereas the proportions of C2 for NP, Fe+NP, Co+NP, B+NP, and 

Mo+NP have decreased and are low (6 to 12%), and C2 has disappeared for Cu 

and Cu+NP. These changes are strongly mirrored in C3; proportions for C3 in day 

4 are low for N, P, Fe, Co, B, and Mo (25 to 33%, in contrast to higher proportions 

for C2 this group), are high for Cu, Cu+NP, NP, Fe+NP, Co+NP, B+NP, and Mo+NP 

(65-80%, in contrast to low proportions of C2 for this group), and for Cu and 

Cu+NP, the high proportions of C3 in day 2 increase further to day 4, and C2 

disappears for these treatments by day 4. For C2, over four days the FSC of all 

treatments save Cu and Cu+NP increase, with the group NP, Fe+NP, Co+NP, B+NP, 

and Mo+NP having FSCs about double the remaining treatments. The SSC follows 

a similar trend of grouping, however increases more than a factor of two for NP, 

Fe+NP, Co+NP, B+NP, and Mo+NP and remains flat or decreases slightly for the 

remainder. The C2 FL channels show similar trends as for FSC, albeit fluorescence 

shows overall slight decreases for the lower FSC group, while the higher FSC 

group shows strong increases in all FL channels. The changes in FSC, SSC and FL 

for C3 are most complex. Generalising, C3 N, P, and all of the single MN treatments 

do not show marked changes in FSC, SSC, or FL, and FL is lowest and steady across 

fluorescence channels for Cu. The remaining treatments are variable. For NP, 

Co+NP, B+NP and Mo+NP, C3 FL decreases (all channels) to a greater or lesser 
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degree from day 2 to day 4. Only Cu+NP shows a consistent increase in FL from 

day 2 to day 4, and across all channels. FSC decreases from day 2 to day 4 for 

Co+NP, B+NP, and Mo+NP.  For NP and Fe+NP, FSC increases, however, the 

largest relative increase by far is for Cu+NP, for which FSC increases by a factor 

of approximately 2.5 from day 2 to day 4. Large changes in SSC are not observed 

except for Cu+NP, which increases by a factor of > 4. 

Clustering results are consistent with other results, however provide a different 

perspective. For example, NP in Station 3, Cu/Cu+NP in Stations 13 and 28, and 

Co+NP, B+NP, and Mo+NP in Station 28 show distinct differences in Chl-a and/or 

counts that are also apparent in clustering. Notably, Cu+NP behaviour was 

different in clustering across all stations, and the behaviour, particularly for 

Station 28, suggests that this treatment is causing a rapid diminution in standing 

stocks (C2) with rapid new growth (C3) thereafter. I have speculated that the 

effect of Cu might relate to Fe bioavailability, however, the clustering result 

suggests another possibility: Cu-sensitive populations are inhibited while less Cu-

sensitive populations obtain competitive advantage and grow rapidly in the 

presence of NP. This would be consistent with changes in assemblages seen from 

count data. For Station 13 Cu+NP did not favour Microcystis, however, for Station 

28 it did. I have found only one report detailing longer-term studies on the effect 

of Cu addition (Zhao et al., 2009), and this report found that Cu does discourage 

cyanobacteria for a limited time, after which cyanobacterial HAB conditions 

return. The question of how Cu mediates shifts in assemblages, and whether this 

relates to Fe, is an interesting topic for further study. 
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Figure 7-17. Plots from cluster analysis results showing changes in clusters C1, C2, and 

C3 over time for Station 28. Note, some treatments are plotted at 1.75 and 3.75 days, 

respectively, instead of 2 and 4 days to improve visibility of symbols. 

As the use of a data-driven approach to FCM analysis of phytoplankton is new, I 

had no expectations about what I might find. I did not find linkages pointing to 
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contributions of species/phyta. This requires “authentic” samples, posing issues 

in terms of whether algal cultures are truly axenic, whether culture collection 

strains are representative of in situ counterparts, and whether the effect of 

distortions imposed by environmental conditions are mimicked in authentic 

samples. I did find that the results from clustering of FCM data are in many ways 

in accord with other findings for initial water quality, Chl-a changes, and changes 

in phytoplankton assemblage: Station 3 represents one endpoint in terms of 

initial water quality and shows the smallest overall changes in Chl-a and 

phytoplankton assemblages. Station 28 is in most ways the diametric opposite, 

with lower initial concentrations of most constituents analysed and having Chl-a 

and phytoplankton assemblages that changed the most, and quite variably, in 

response to treatment. Station 13 is intermediate to Stations 3 and 13. Based on 

my results, it would be reasonable to characterise response to treatment as what 

is mathematically referred to as an initial value problem – initial water quality 

parameters and phytoplankton assemblages determine the trajectory of change, 

and a change in the status quo can potentially result in dramatic outcomes (e.g. 

Cu+NP in Station 28). Given the high efficiency with which data-driven FCM can 

be performed, it would be of interest to pursue further studies in future to 

develop and better understand the utility of this approach. 

7.6 IMPLICATIONS FOR CONTROLLING HARMFUL ALGAL BLOOMS 

The results presented here show that MN treatment effects on algae varied 

spatially and among algal groups in Taihu, with key points being as follows: 
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 There is a growing body of molecular biological data that documents 

homeostatic links between MNs (herein I discussed Fe and Cu) and 

possible mechanisms of molecular control of the bioavailability of MNs. 

Simultaneously, there is an emerging body of literature 1) documenting 

the importance of Fe in controlling algal phytoplankton growth, and 2) 

propounding the use of Cu as an algal biocide. Given the strong effects for 

Cu that I report here are mutually consistent through the Chl-a, count, and 

FCM data, and given that a role for Fe cannot be ruled out in causing these 

effects, more research into MNs and how they interact with N, P, and other 

MNs should be pursued to explore new interventions for effective 

management of HABs. Notably, the very nature of the “micro” in 

micronutrient may hold promise as being more amenable to intervention 

(for instance, to help one species outcompete another) over regional 

scales. 

 In view of the stimulatory effect that Cu exhibited, inclusive of the 

cyanobacteria Microcystis spp., management of HABs with Cu as an algal 

biocide may be inadvisable. The data in my study are not sufficiently 

exhaustive to demonstrate that copper sulfate treatments, and the 

resulting copper concentrations in treated water, have the potential to 

promote Microcystis spp. growth, however, they do lend basis for invoking 

the best-practice Precautionary Principle in environmental management. 

A better understanding of the role of Cu in affecting algal phytoplankton is 

needed before implementing its widespread use in an environment where 

it might stimulate growth rather than retard it. 



203 
 

 Results from data-driven analysis of FCM are in accord with the Chl-a and 

counting data, and this approach holds promise for development of more 

efficient and reliable ways to investigate growth-related changes in algal 

communities.
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8 CONCLUSIONS AND WIDER 

IMPLICATIONS 
 

This chapter revisits and draws together the key findings of Chapters 3 to 7 and 

assesses the extent to which the key research questions (Chapter 1) have been 

addressed. Additionally, I consider the limitations of the work and its future 

potential. 

8.1 SUMMARY AND CONCLUSIONS 

Chapter 3:  Whole-cell bioreporters and risk assessment of environmental 

pollution: A proof-of-concept study using lead 

In this chapter my goal was to see if bioreporter results would agree with results 

from speciation modelling, as this agreement is what would be needed in order 

to use bioreporter endpoints in ERA. To within current standards of accuracy, my 

results in this study demonstrate that bioreporter combined with speciation 

modelling is certainly suitable for extension to larger scale ERA. These results 

were an important first step to taking my work further. 
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Chapter 4:  The Effect of DOM in Taihu on Pb binding 

Having achieved very promising results in the first part of the study, my original 

plan was to extend the approach to a regional scale in Taihu and perform model 

validation studies. Initial attempts failed, and it appeared that the manner in 

which DOM is specified in the speciation models was the cause. Therefore, I had 

to redesign and add a new part to the study to see if I could find a way to account 

for DOM variability in speciation modelling. Based on the approach that I 

designed to determine site-specific binding characteristics for Pb-DOM, I 

demonstrated that, indeed, the Kcond for Pb-DOC binding in Taihu varied over two 

orders of magnitude at the time of sampling, consistent with my hypothesis that 

high variability in Kcond was responsible for my problems with speciation model 

validation.  Since the trends that I observed in my site-specific measured Kcond for 

Pb-DOC binding varied in a manner consistent with what I knew of the field site, 

I was optimistic that the values could lead to a more accurate modelling result. 

Furthermore, the fluorescence-based approach I designed for the investigation of 

DOM properties and Kcond for Pb-DOM binding is simple, rapid, and can be 

conducted in a high throughput format, which is highly attractive for ERA and 

makes it a suitable approach to account for DOM variability in ERA modelling.    

Chapter 5:  New approach to regional streamlined risk assessment  

After I determined, through the work described in Chapter 4, that my problems 

with regional-scale validation of ERA models was likely due to problems in how 

models specified DOM, the next step was to return to the issue of model validation. 

Now I also needed to alter the models in order to answer my fundamental 
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question about how using a bioreporter in conjunction with standard modelling 

approaches would perform in a freshwater ERA context. For this work, I 

compared a one-size-fits-all approach to Pb-DOM complexation to different 

methods of implementing site-specific variations in modelling. I improved the 

procedures to the speciation model and found model optimised results using the 

methods that I developed in Chapter 4 are much more accurate in their 

agreement with bioreporter-measured 𝐶Pb2+ . With a 2,400 km2 surface area, and 

a history of extreme impacts, Taihu is a suitable system for me to conclude that 

the streamlined approach to ERA that I developed has performed well in a first 

regional-scale freshwater demonstration. 

Chapter 6:  Risk assessment of Pb pollution in lake sediment 

My initial project plan included studies on water/sediment interactions, which is 

interesting, complicated, and highly relevant to Taihu given its seasonally 

variable pH, the extreme sediment contamination in some regions, and the effect 

storms have on resuspension since it is a polymictic lake. These detailed studies 

were no longer feasible due to the delays caused by not being able to use one-

size-fits-all speciation models for the aqueous-phase studies. An excellent 

opportunity arose through University of Liverpool collaborators to do studies on 

sediments from Brothers Water lake in the UK, a much simpler lake system that 

is severly impacted by centuries of Pb-mining in the immediate vicinity. In this 

work, I found that, for 𝐶Pb
Tot, sed variations from < 50 mg·kg-1 to > 10,000 mg·kg-1, 

there was an inverse relationship between 𝐶Pb
Tot, sed and the percent bioavailable 

Pb in the tested samples, and that bioavailable Pb increase with increasing sand 

content and particle size, with a negative relationship to silt content. The relative 
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bioavailable Pb (in %) was low (averaging 4%), and the absolute bioavailable Pb 

averaged 35 mg·kg-1 (from ~1645 to ~1985 A.D.), compared to an average 

𝐶Pb
Tot, sedof 1490 mg·kg-1 over the same period. Bioaccessible Pb will be higher than 

this, on the other hand, the infinite sink assumptions that I used to project 

bioaccessibility are not present in the natural environment. These results can 

offer a reference for government oversight on dealing with the Pb pollution in 

this and comparable lakes. One very interesting result was that the bioreporter is 

able to measure a much higher concentration of bioavailable Pb by direct contact 

with the sediment slurry than by indirectly measuring desorbed Pb in 

supernatant under the same conditions. This further demonstrates the advantage 

of using a biological rather than traditional chemical approach to measure metal 

bioavailability.  

Chapter 7:  Effect of micronutrients on algae and implications regarding the 

risk of harmful algal blooms 

This work presented an opportunity to examine the effect of heavy metals/MNs 

in the environment from a different risk perspective, i.e. that of how MNs affect 

algae and potentially contribute to HAB formation. Investigations of HABs in 

lakes have been on-going for decades, and with Taihu being an important water 

source in China, HABs have aroused more and more attention. The absence of any 

significant focus on MNs potential as stimulating factor of HABs was both 

intriguing and challenging. My results show that MN effects on algae varied 

spatially and among algal groups in Taihu. Overall, the amounts of MN that I used 

are relatively low in the context of the anthropogenic impacts to Taihu, and I 

observed some effects that, to my knowledge, have not previously been reported, 
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particularly for Cu, which effect I could not rule out as being linked with Fe. My 

results show that it is important to further understand the effects of 

bioavailability of MNs to algae and factors such as links in homeostatic processes 

of multiple MNs (here Fe and Cu), for effective management of HABs. Given the 

stimulatory effect that Cu exhibited, inclusive of the cyanobacteria Microcystis 

spp., management of HABs with Cu as an algal biocide may be contraindicated. 

8.2 LIMITATIONS AND FURTHER WORK 

The majority of my work centered on using bioavailability-based biological 

methods combined with speciation modelling to demonstrate an approach to 

streamlining ERA. Results for both water and sediments studies were highly 

promising, and in particular my regional-scale demonstration project well 

exceeded current applicable standards for accuracy. The major limitation to this 

work that I see is that the variation of DOM properties in natural aquatic systems 

strongly affects modelling metal-DOM interactions, which thereby affect the ERA 

conclusions, for instance in using modelling to set WQC. The fluorescence method 

I used in this study for the charactisation of DOC has been described by some as 

semi-quantitative. Even though, I found the method that I used is fit for regional-

scale ERA in a first demonstration project, it is essentical to validate my work to 

a much larger scale. For the sediment work one limitation is that the 

sediment:solution ratio affects singal transmittance of the bioreporter 

luminescence and hence affects the detecion of bioavailavle Pb in the sediment, 

especially for the sediment with low 𝐶Pb
Tot, sed. Therefore, future work is needed to 

further optimise the interplay between sediment:solution ratio, effective LOD, 

and 𝐶Pb
Tot, sed.  



209 
 

I found statistically significant effects of limitation or co-limitation for B, Co, Cu 

and Fe on the stimulation of algal growth, though even for Mo there appeared in 

some cases to be shifts in algal assemblages related to Mo treatment. As the 

purpose of the initial study was to see if there would be observable effects, the 

major limitation in this work is lack of more detailed information about why and 

how MNs might affect HABs. Given the unusual results that I observed for Cu and 

the known homeostatic links between Cu and Fe, how Cu stimulates algal growth 

and how Cu affects the utilisation of Fe by phytoplankton needs to be further 

studied. I have found that results from data-driven analysis of FCM demonstrate 

that this approach holds promise for development of more efficient and reliable 

ways to investigate growth-related changes in algal communities. Due to the 

diversity of algal abundance/community composition and response to nutrients 

in different regions of Taihu, I conclude that a one-size-fits-all approach to 

management of HABs is arguably inappropriate for a system such as Taihu.   

Some parts of my work have been published in highly respected journals 

(Environmental Pollution, Water Research), which means that my work has 

gained acceptance by academics. Meanwhile, my work is extensible for use in 

high throughput formats and in a cost-effective manner, which is highly attractive 

for ERA applications. Therefore, I believe that my work could be of great value for 

environmental practitioners in countries where bioavailability-based ERA is 

already accepted and in use. At the end of this thesis, I strongly urge all humans 

to stop consuming mindlessly and reducing the pollution on the earth. 

Fundamentally, while development of streamlined approaches to ERA are 

increasingly urgent, this is what, in environmental science, is referred to as an 

“end of the (waste) pipe” solution. I hope that my work nonetheless could raise 
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environmental awareness about the perils of the incessant human consumption 

that causes pollution and the need to reduce pollution at the source by reducing 

consumption. 
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