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a b s t r a c t

Quasi-Monte Carlo (QMC) methods using quasi-random sequences, as opposed to
pseudo-random samples, are proposed for use in the joint modelling of time-to-event
and multivariate longitudinal data. The QMC integration framework extends the Monte
Carlo Expectation Maximisation approaches that are commonly adopted, namely using
ordinary and antithetic variates. The motivation of QMC integration is to increase
the convergence speed by using nodes that are scattered more uniformly. Through
simulation, estimates and computational times are compared and this is followed with
an application to a clinical dataset. There is a distinct speed advantage in using QMC
methods for small sample sizes and QMC is comparable to the antithetic MC method
for moderate sample sizes. The new method is available in an updated version of the R
package joineRML.

Crown Copyright© 2020 Published by Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal studies in clinical research involve subjects who are followed-up repeatedly and on whom response data
are collected such as, for example, one or more biomarkers (Gould et al., 2015). The time to an event is also usually of
interest, for example death. The longitudinal data may be censored by this time-to-event outcome. Modelling these two
outcome processes separately is generally inefficient, and can lead to biased effect size estimates if the two outcome
processes are correlated (Ibrahim et al., 2010). Consequently, during the past two decades, there has been a rapid and
substantial development in research on joint modelling of longitudinal and time-to-event data (Wulfsohn and Tsiatis,
1997; Henderson et al., 2000; Ibrahim et al., 2010; Rizopoulos, 2010; Asar et al., 2015). Motivation has stemmed from
three broad scientific objectives (Henderson et al., 2000): drawing inference about a repeated measurement outcome
subject to an informative dropout mechanism; drawing inference for a time-to-event outcome, whilst taking account of an
intermittently and possibly error-prone measured endogenous time-dependent variable; and studying the joint evolution
of the correlated processes.
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One avenue of current research is on the incorporation of multiple longitudinal outcomes, and despite several software
packages being developed to fit joint models (Rizopoulos, 2010; Crowther et al., 2013; Kim, 2016; Philipson et al., 2017;
Xu et al., 2020), they have mostly been limited to the setting of univariate longitudinal outcomes. This is despite a
plethora of research into joint models of multivariate longitudinal data and time-to-event outcomes (Hickey et al., 2016).
From a theoretical perspective, the extension of the classical univariate joint model to that of the multivariate case is
straightforward. However, from a practical viewpoint, the estimation algorithms for fitting these extended models are
computationally expensive. This is due to the need to integrate out subject-specific random effects from the generally
intractable likelihood, of which the number increases with each additional longitudinal outcome. Hence, the search for
efficient integration methods in multivariate joint models is highly motivated with the first work in this area beginning
to emerge (Crowther, 2018; Martin et al., 2020).

There have been several proposals on how to fit joint models in recent years. Aside from the fitting paradigm, for
example Bayesian (Xu and Zeger, 2001), frequentist (Henderson et al., 2000; Crowther et al., 2013), generalised estimating
equations (Song et al., 2002), or latent class model estimation (Proust-Lima et al., 2012), a common theme is the evaluation
of complex integrals. Common approaches to evaluating these integrals are Gaussian quadrature (GQ), including adap-
tive (Wulfsohn and Tsiatis, 1997) and pseudo-adaptive (Rizopoulos, 2012) variants ; Laplace approximations (Rizopoulos
et al., 2009) and Monte Carlo (MC) estimation (Lin et al., 2002).

These approaches have several pros and cons. GQ can be very accurate, however the number of nodes increases
at an exponential rate (Cools, 2002). Therefore, it is only useful for low dimensional random effects. Adaptive and
pseudo-adaptive GQ approaches can reduce some of this burden, but still remain constrained by the exponential
growth in nodes. Laplace approximations are particularly amenable to high dimensional data, and have been shown
to reduce computational burden; however, the approximation may be inaccurate when some subjects contribute very
few observations (Rizopoulos et al., 2009). MC methods benefit from a convergence rate that is independent of the
dimensionality of the problem (Lemieux, 2009). However, estimates are subject to MC error, which can only be reduced
by increasing the number of MC draws.

In this paper, we describe the estimation of a joint model with a solitary time-to-event outcome and multivariate
longitudinal data, with a linear random effects structure. We consider an alternative method, which has, to-date, not been
routinely adopted into statistical estimation: Quasi-Monte Carlo (QMC) (Caflisch, 1998). QMC methods are comprised of a
set of heuristic algorithms that generate low discrepancy sequences. Such methods have been shown to be highly suitable
to high-dimensional generalised linear mixed models (Pan and Thompson, 2007). Our primary objective is therefore to
compare three different variations of MC: (1) ordinary MC (OMC); (2) antithetic variables MC (AMC); and (3) QMC. In
particular, we contrast the estimates and the computational requirements using simulation studies with two and three
longitudinal biomarkers across three sample sizes, and analogous applications to a clinical dataset.

The latest version of the R package joineRML (Hickey et al., 2018) has been extended to fit the aforementioned
model using a Monte Carlo Expectation Maximisation algorithm (MCEM) (Wei and Tanner, 1990; Lin et al., 2002) under
QMC. Previously, the package was predicated on exploiting a variance reduction technique for the MC E-step — antithetic
variables simulation.

2. Joint models for multivariate longitudinal data and time-to-event data

2.1. Model

For each subject i = 1, . . . , n, y i = (y⊤

i1, . . . , y
⊤

iK ) is the K -variate continuous outcome vector, where each y ik denotes an
(nik × 1)-vector of observed longitudinal measurements for the kth outcome type: y ik = (yi1k, . . . , yinikk)

⊤. Each outcome
is measured at observed (possibly pre-specified) times tijk for j = 1, . . . , nik, which can differ between subjects and
outcomes. Additionally, for each subject there is an event time T ∗

i , which is subject to right censoring. Therefore, we
observe Ti = min(T ∗

i , Ci), where Ci corresponds to a potential censoring time, and the failure indicator δi, which is equal
to 1 if the failure is observed (T ∗

i ≤ Ci) and 0 otherwise. We assume that censoring is independent and, along with the
measurement times, non-informative.

The model we describe is the natural extension of the model proposed by Henderson et al. (2000) to the case of
multivariate longitudinal data. The kth longitudinal data submodel is given by

yik(t) = µik(t) + W (k)
1i (t) + εik(t), (1)

where µik(t) is the mean response, W (k)
1i (t) is a latent process and εik(t) is the model error term, which we assume to

be independent and identically distributed normal, with mean zero and variance σ 2
k . The mean response is specified as a

linear model

µik(t) = x⊤

ik (t)βk, (2)

where xik(t) is a pk-vector of (possibly) time-varying covariates with corresponding fixed effect terms βk. In the models
considered here W (k)

1i (t) is specified as a linear combination of random effects, namely

W (k)
1i (t) = z⊤

ik (t)bik, (3)
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where z ik(t) is an rk-vector of (possibly) time-varying covariates with corresponding subject-and-outcome random effect
terms bik, which follow a zero-mean multivariate normal distribution with (rk × rk)-variance–covariance matrix Dkk. To
account for dependence between the different longitudinal outcome outcomes, we let cov(bik, bil) = Dkl for k ̸= l. This
latent process subsequently links the separate submodels via association parameters. Furthermore, we assume εik(t) and
bik are uncorrelated, and that the censoring times are independent of the random effects.

The submodel for the time-to-event outcome is given by the hazard model

λi(t) = λ0(t) exp
{
v⊤

i γv + W2i(t)
}
,

where λ0(·) is an unspecified baseline hazard, and vi is a q-vector of baseline measured covariates with corresponding
fixed effect terms γv . Conditional on Wi(t) and the observed covariate data, the longitudinal and time-to-event data
generating processes are independent. To establish a latent association, we specify W2i(t) as a linear combination of{
W (1)

1i (t), . . . ,W
(K )
1i (t)

}
:

W2i(t) =

K∑
k=1

γykW
(k)
1i (t),

where γy = (γy1, . . . , γyK ) are the corresponding association parameters. To emphasise the dependence of W2i(t) on the
random effects, we explicitly write it as W2i(t, bi) from here onwards.

2.2. Estimation

The observed data likelihood for the joint outcome is given by
n∏

i=1

(∫
∞

−∞

f (y i | bi, θ)f (Ti, δi | bi, θ)f (bi | θ)dbi

)
, (4)

where θ = (β⊤, vech(D), σ 2
1 , . . . , σ 2

K , λ0(t), γ⊤
v , γ⊤

y ) is the collection of unknown parameters that we want to estimate,
with vech(D) denoting the half-vectorisation operator that returns the vector of lower-triangular elements of matrix D,
given by

D =

⎛⎜⎝D11 · · · D1K
...

. . .
...

D⊤

1K · · · DKK

⎞⎟⎠ ,

and β = (β⊤

1 , . . . ,β⊤

K )
⊤, and bi = (b⊤

i1, . . . , b
⊤

iK )
⊤.

As per (Henderson et al., 2000), we exploit the expectation–maximisation (EM) algorithm (Dempster et al., 1977) for
fitting the model, by treating the random effects bi as missing data. Starting from an initial estimate of the parameters,
θ̂
(0)
, the procedure involves iterating between an M-step and an E-step until convergence is achieved. Full details of the

M-step are provided elsewhere (Wulfsohn and Tsiatis, 1997; Lin et al., 2002), and remain identical for all approaches
considered in this research. In short, all parameters except γv and γy are available in closed-form; the parameters in the
Cox proportional hazards submodel are estimated by a one-step Newton–Raphson or a quasi-Newton one-step update that
is an analogue of the Gauss–Newton method (McLachlan and Krishnan, 2008, p. 8). Standard errors can be approximated
after the EM algorithm has converged using the empirical information matrix approximation (Lin et al., 2002), allowing for
Wald-like confidence intervals to be estimated and this is the method adopted here. Alternatively, bootstrap estimation
can be used, but at increased computational expense (Henderson et al., 2000; Hsieh et al., 2006) — we utilise this approach
in Appendix C.

3. E-step approaches

At each E-step, it is required that we compute the expected log-likelihood of the complete data conditional on the
observed data and the current estimate of the parameters,

Q (θ | θ̂
(m)

) =

n∑
i=1

E
{
log f (y i, Ti, δi, bi | θ)

}
=

n∑
i=1

∫
∞

−∞

{
log f (y i, Ti, δi, bi | θ)

}
f (bi | Ti, δi, y i; θ̂

(m)
)dbi.

Here, the complete-data likelihood contribution for subject i is given by the integrand of (4).
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Consequently, the M-step update involves terms of the form E
[
h(bi) | Ti, δi, y i; θ̂

]
, for known functions h(·). It can be

shown that this conditional expectation can be written as

E
[
h(bi) | Ti, δi, y i; θ̂

]
=

∫
∞

−∞
h(bi)f (bi | y i; θ̂)f (Ti, δi | bi; θ̂)dbi∫

∞

−∞
f (bi | y i; θ̂)f (Ti, δi | bi; θ̂)dbi

, (5)

where f (Ti, δi | bi; θ̂) is given by

f (Ti, δi | bi; θ) =
[
λ0(Ti) exp

{
v⊤

i γv + W2i(Ti, bi)
}]δi

× exp
{
−

∫ Ti

0
λ0(u) exp

{
v⊤

i γv + W2i(u, bi)
}
du

}
,

and f (bi | y i; θ̂) is calculated from multivariate normal distribution theory as

bi | y i, θ ∼ N
(
Ai

{
Z⊤

i Σ
−1
i (y i − X iβ)

}
,Ai

)
, (6)

with Ai =
(
Z⊤

i Σ
−1
i Z i + D−1)−1

, where Σi =
⨁K

k=1 σ 2
k Inik is a diagonal matrix. Also X i =

⨁K
k=1 X ik and Z i =

⨁K
k=1 Z ik are

block-diagonal matrices, with X ik =

(
x⊤

i1k, . . . , x
⊤

inikk

)
an (nik × pk)-design matrix, with the jth row corresponding to the

pk-vector of covariates measured at time tijk, and where
⨁

denotes the direct matrix sum.
Without loss of generality, we outline the approaches with respect to the integral of a Lebesgue integrable function

f (x) on the unit cube Id = [0, 1]d in d-dimensions. We define

I[f ] = E[f (x)] =

∫
Id
f (x)dx. (7)

All of the approaches described naturally generalise to non-uniform distributions. That is, for a d-dimensional non-uniform
random variable x ∈ Rd with density function p(x) : Rd

↦→ R, we can define

I[f ] = E[f (x)] =

∫
Rd

f (x)p(x)dx.

3.1. Monte Carlo

Monte Carlo integration is a probabilistic representation of the integral (Lemieux, 2009). Namely, consider a random
sequence {xn}Nn=1 independently sampled from Ud(0, 1), then an empirical approximation to (7) is

IN [f ] =
1
N

N∑
n=1

f (xn), (8)

which converges almost surely to I[f ], i.e.

lim
N→∞

IN [f ]
a.s.
→ I[f ].

The central limit theorem (CLT) can be used to determine that the error of the Monte Carlo integration is of order O(N−1/2).
It is useful to note that this order is independent of the integral dimension d.

For the E-step in the multivariate joint model problem, this translates to a strategy of first sampling a sequence {bn
i }

N
n=1

from (6) and, for each subject i, calculating
N∑

n=1

h(bn
i )f (Ti, δi | bn

i ; θ̂)∑N
n=1 f (Ti, δi | bn

i ; θ̂)
. (9)

3.2. Antithetic variables

Variance reduction techniques for Monte Carlo integration are used to accelerate the convergence (Lemieux, 2009). As
noted above, the error of the Monte Carlo integration is of order O(N−1/2). By exploiting the CLT, it is possible to show
that the constant is equal to the standard deviation of the integrand, σ [f ] given by

σ [f ] =

(∫
Id

(f (x) − I[f ])2 dx
) 1

2
.

The rationale of variance reduction techniques is to reduce this constant term, thus making the convergence relatively
faster.
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Fig. 1. Bivariate uniform U2(0, 1) (top row) and normal N2(0, I2) (bottom row) deviates sampled according to ordinary Monte Carlo (OMC; left
column), antithetic Monte Carlo (AMC; middle column), and quasi-Monte Carlo (QMC; right column) using a Sobol sequence with Owen-type
scrambling.

If we again consider a random sequence {xn}
N/2
n=1, with N an even number, and also the corresponding antithetic variates

{x̃n}
N/2
n=1 = {1 − xn}

N/2
n=1, then the antithetic empirical approximation to (7) is

IN [f ] =
1
N

N/2∑
n=1

(
f (xn) + f (x̃n)

)
. (10)

Assuming σ [f ] < ∞, the variance in the antithetic sampling approach is

1
N

[
σ 2

[f ] + cov
(
f (x), f (x̃)

)]
.

Hence, if cov
(
f (x), f (x̃)

)
< 0, then the error term will be smaller than if we had sampled N independent draws of xn as

per ordinary Monte Carlo; see Section 3.1.
For the E-step in the multivariate joint model case, this translates to a strategy of first sampling Ω ∼ N(0, I r ) and

obtaining the antithetic pairs ±Ω, which will both be r-vectors of standard normal samples, that are then transformed
to the required form of (6) via

Ai
{
Z⊤

i Σ
−1
i (y i − X iβ)

}
± C iΩ,

where I r is the identity matrix of dimension r = dim(bi), and C i is the Cholesky decomposition of Ai such that C iC⊤

i = Ai.
Drawing N/2 pairs and evaluating (9) yields the antithetic estimate of (5).

3.3. Quasi-Monte Carlo

Ordinary Monte Carlo (OMC) and antithetic Monte Carlo (AMC) are predicated on a probabilistic interpretation. That is,
they use random (or rather, pseudo-random) sequences, which ensures convergence of order O(N−1/2). Quasi-Monte Carlo
(QMC) methods, on the other hand, use quasi-random sequences, which are deterministic (Lemieux, 2009; Caflisch, 1998).
For this reason, they are sometimes referred to as low-order deterministic sequences. The motivation of QMC integration
is to reduce the order of convergence and number of nodes required, by using nodes that are scattered more uniformly on
Id than pseudo-random points, which, by virtue of independence, often display clusterings. Fig. 1 shows sampling nodes
for the distributions U2(0, 1) and N2(0, I2) deviates under OMC, AMC, and QMC (based on the Sobol sequence, described
in Section 3.3.2).
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Quasi-random sequences yield smaller errors than standard Monte Carlo integration methods, which follows from the
Koksma–Hlawka inequality (Koksma, 1942; Hlawka, 1961):

|I[f ] − IN [f ]| ≤ V [f ]D∗

N (x1, x2, . . . , xN ), (11)

where V [f ] is the variation of f (·) over Id in the sense of Hardy and Krause (Hardy, 1906). The quantity D∗

N is a measure
of the uniformity (called the star discrepancy) of the sequence {xn}Nn=1, defined by

D∗

N (x1, x2, . . . , xN ) = sup
J∈Id

⏐⏐⏐⏐⏐ 1N
N∑

n=1

1{xn∈J} − A(J)

⏐⏐⏐⏐⏐ , (12)

where A(J) is the volume of the hyper-rectangular set J in Id that has one vertex at 0. See Caflisch (1998, §5.4) for an
outline of the proof. It can be recognised that (12) is in fact the Kolmogorov–Smirnov test statistic. The inequality in (11)
is an upper-bound and, moreover, since V [f ] is fixed for a given f (·), the bound is determined by D∗

N . Hence, for any
sequence, the error of the approximation is bounded by order O

(
(logN)dN−1

)
. It has been reported that this bound is

usually overcautious, and in practice faster convergence is observed.
In the E-step under consideration here, this translates to a strategy of first calculating uniform deterministic sequences,

{xi}Ni=1, and transforming them to multivariate normal deviates bi = Φ−1
d (xi), where Φd(·) is the d-variate Gaussian

cumulative distribution function. Alternative methods of transformation and the discrepancy properties have been
explored using the Box–Muller transformation (Ökten and Göncü, 2011). Several deterministic sequences have been
proposed in recent years. In the following, we consider two standard sequences: the Halton sequence and the Sobol
sequence. Efficient algorithms for implementing both are widely available, which we access through the R package
randtoolbox (Dutang and Savicky, 2018).

3.3.1. The Halton sequence
The Halton sequence (Halton, 1960) is the multidimensional generalisation of the one-dimensional van der Corput

(VDC) sequence (van der Corput, 1935). The nth element of the VDC sequence is constructed by reversing the represen-
tation of base-n. In other words, every integer n has a b-adic representation n =

∑L−1
l=0 dl(n)bl (with 0 ≤ dl(n) < b the lth

digit). The nth number in the VDC sequence is then gb(n) =
∑L−1

l=0 dl(n)b−l−1. The Halton sequence extends this approach
by considering the pm-adic expansion of n for the mth dimension, where pm is the mth prime number.

3.3.2. The Sobol sequence
The Sobol sequence (Sobol, 1967) is an alternative, as well as the most-widely used (Atanassov et al., 2010), low-

discrepancy sequence. The mathematical determination of the sequence is based on linear recurrence relationships over
the finite field F2 = {0, 1}; hence, it is more involved than the Halton sequence, but a fast algorithm based on the Grey
code implementation is available. For details, we refer the reader to Antonov and Saleev (1979). By considering orthogonal
projections of multidimensional Sobol sequences, it has been shown that non-uniformity can occur. By scrambling the
low-discrepancy sequence – a hybrid of OMC and QMC – this issue can potentially be alleviated (Chi et al., 2005). In
particular, a commonly used scrambling method is that of Owen (1998).

4. Simulation study and results

Two simulation studies were conducted, assuming K = 2 and K = 3 longitudinal outcomes respectively, each with
n = 250, 500 and 1000 subjects. The submodels, for k = 1, . . . , K , are given as

yijk = (β0,k + bi0k) + (β1,k + bi1k)tj + β2,kxi1 + β3,kxi2 + εijk, (13)

λi(t) = λ0(t) exp
{
xiγv + ΣK

k=1γyk(bi0k + bi1kt)
}
, (14)

where εijk ∼ N(0, σ 2
k ) and K = 2 and K = 3 for the bivariate and trivariate scenarios respectively; we refer to these

scenarios as ‘Scenario 1’ and ‘Scenario 2’ hereafter.
In both scenarios, longitudinal data were simulated according to a follow-up schedule of 6 time points (at times

0, 1, . . . , 5), with each model including subject-and-outcome-specific random-intercepts and random-slopes, whereby
rk = 2. The event rate in the simulations was ≈ 40%. Independent censoring times were drawn from an exponential
distribution with rate 0.05. Any subject with Ti > 5 was censored at time C = 5.1. For all submodels, we included
a pair of covariates xi = (xi1, xi2)⊤, where xi1 is a continuous covariate independently drawn from N(0, 1) and xi2 is
a binary covariate independently drawn from Bin(1, 0.5). In the above, λ0(t) = e0.25 − 3.5t , bi has a multivariate
normal distribution, N2K (0,D), and D is a specified unstructured (2K × 2K )-covariance matrix (since rk = 2) with (up
to)

∑2K
i i unique parameters. For this study, the true parameters were: β⊤

1 = (0, 1, 1, 1), β⊤

2 = (0, −1, 0, 0.5), σ 2
1 =

σ 2
2 = 0.25, γ⊤

v = (0, 1), γ⊤
y = (−0.5, 1). The random effect covariance matrices were and D1,1 = D3,3 = 0.52,

D2,2 = D4,4 = 0.22, and D1,3 = D3,1 = −0.53 with the remaining elements of Di,j set to zero.
A total of 1000 datasets were simulated for each setting using the simData() function in the joineRML R pack-

age (Hickey et al., 2018), and the mjoint() function used to fit the models. For each simulated dataset, we fitted the
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Table 1
Computing times in seconds (SD in parentheses) under ordinary (OMC), antithetic (AMC) and quasi (QMC) Monte Carlo
methods for both simulation scenarios and all sample sizes.

Method

OMC AMC QMC

Scenario 1
n = 250 129.67 (81.88) 23.83 (24.32) 13.77 (6.62)
n = 500 449.15 (921.31) 108.49 (288.44) 167.55 (339.91)
n = 1000 573.30 (680.37) 132.53 (59.35) 259.62 (122.54)

Scenario 2
n = 250 243.83 (193.42) 51.96 (43.90) 24.90 (9.78)
n = 500 570.12 (602.72) 128.25 (141.53) 122.59 (113.68)
n = 1000 692.14 (303.15) 318.31 (96.09) 482.80 (145.89)

Table 2
Coverage rates of regression parameters using ordinary (OMC), antithetic (AMC) and quasi (QMC) Monte
Carlo methods for both simulation scenarios: n = 500.
Parameter Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

β0,1 0.945 0.942 0.941 0.956 0.956 0.955
β1,1 0.960 0.959 0.955 0.960 0.959 0.955
β2,1 0.958 0.959 0.958 0.961 0.961 0.962
β3,1 0.949 0.949 0.949 0.950 0.949 0.948
β0,2 0.969 0.964 0.967 0.956 0.959 0.954
β1,2 0.949 0.936 0.945 0.954 0.945 0.937
β2,2 0.956 0.957 0.955 0.950 0.951 0.953
β3,2 0.960 0.961 0.962 0.966 0.968 0.967
β0,3 – – – 0.953 0.954 0.954
β1,3 – – – 0.951 0.952 0.953
β2,3 – – – 0.962 0.961 0.962
β3,3 – – – 0.954 0.956 0.955
γv1 0.954 0.956 0.955 0.955 0.955 0.956
γv2 0.957 0.957 0.962 0.932 0.932 0.932
γy1 0.960 0.961 0.961 0.957 0.958 0.958
γy2 0.945 0.948 0.946 0.936 0.938 0.937
γy3 – – – 0.967 0.970 0.970

model with OMC (using control argument type = ‘‘montecarlo’’), AMC (type = ‘‘antithetic’’) and QMC using
a Sobol sequence with Owen-type scrambling (type = ‘‘sobol’’). Full R code to run the simulation studies is available
from https://github.com/petephilipson/QMC.

Each of the three methods (using the different E-step routines) was successfully applied to 1000 simulations, which
were carried out in parallel on an HPC cluster, consisting of nodes with 64 GB RAM and 14-core 2.4 GHz CPU for each
scenario. As expected, the time for the joint model to fit was much faster for the AMC approach relative to the OMC
approach in all cases (Fig. 2), with a smaller number of nodes used at the last iteration (Fig. A.3). The proposed QMC
method outperforms AMC for small sample sizes in each scenario, and is comparable when n = 500. However, AMC is
superior to QMC for the largest sample size under consideration here. Convergence times and standard deviations across
both scenarios and all three MC approaches are given in Table 1. Pilot results with larger samples sizes indicate that AMC
requires fewer nodes than QMC, which, in turn, requires fewer nodes than OMC.

The differences in computational times were primarily explained by the changes in MC nodes due to the dynamic
nature of the E-step algorithm described — see Hickey et al. (2018) for details of the software implementation of the
algorithm. In other words, the mean number of MCEM algorithm iterations were often similar for each method, but the
mean number of nodes used at the last iteration were substantially different. For example, in scenario 1, the mean number
of iterations for the OMC, AMC, and QMC approaches was only 33, 20, and 15, respectively, whereas the mean number
of nodes used at the last iteration – at which (9) is evaluated – were 3516, 1043 and 703.

Coverage rates were also calculated under each approach for both scenarios. Table 2 and Table 3 display the coverage
rates for the regression and variance parameters respectively when n = 500, with equivalent results for n = 250 and
n = 1000 given in Table A.5 to Table A.8. The rates are very similar across methods and scenarios, and are all close to the
nominal 0.95 level.

5. Application

To compare the three MC methods in a clinical setting we consider an application to the oft-used (Albert and Shih,
2010; Crowther et al., 2013; Andrinopoulou and Rizopoulos, 2016) primary biliary cirrhosis (PBC) data, which is publicly
available in a variety of places, including within the joineRML R package; further details are given in Hickey et al. (2018).

https://github.com/petephilipson/QMC
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Fig. 2. Distribution of run times over 1000 simulated datasets using each MC method for simulation study 1 (upper row) and simulation study 2
(lower row) at each sample size. Run-times are on the log10 scale.

Table 3
Coverage rates of variance parameters using ordinary (OMC), antithetic (AMC) and quasi (QMC) Monte Carlo
methods for both simulation scenarios: n = 500.
Parameter Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

D1,1 0.951 0.956 0.948 0.959 0.960 0.956
D2,2 0.946 0.947 0.932 0.954 0.954 0.945
D3,3 0.941 0.945 0.935 0.957 0.956 0.950
D4,4 0.948 0.944 0.950 0.956 0.952 0.944
D5,5 – – – 0.951 0.952 0.953
D6,6 – – – 0.958 0.958 0.959
σ 2
1 0.963 0.964 0.968 0.969 0.967 0.967

σ 2
2 0.952 0.951 0.950 0.956 0.958 0.959

σ 2
3 – – – 0.966 0.968 0.966

PBC is a chronic liver disease affecting the bile ducts of the liver, causing liver damage, cirrhosis and, ultimately, death in
many cases.

In keeping with the simulation study, we consider both two and three longitudinal biomarkers, although many more
are available within this rich data source. In keeping with the simulation study, the models for each biomarker include
random effects for both the intercept and slope. In the PBC study, patients were randomly assigned to either the drug
D-penicillamine (n = 158) or placebo (n = 154), here represented by the binary covariate xi2 and we include the age of
patients at baseline as our continuous covariate, xi1. There were a total of 140 (44.9%) deaths amongst the 312 patients.

As detailed in Hickey et al. (2018), a log transformation is commonly used for one of the biomarkers (serum bilirubin)
and another (prothrombin index) requires a transformation based on the residuals from the longitudinal sub-model, and,
hence, these transformations are adopted here too. The submodels for k = 1, 2, 3 are as given by (13) where k = 1
represents the log-transformed serum bilirubin, k = 2 corresponds to serum albumin and k = 3 is the Box–Cox-
transformed prothrombin time. Also, xi = (xi1, xi2)⊤ is the vector of baseline covariates and γv the vector of associated
parameters in the survival submodel, and bi follows a multivariate normal distribution, N2K (0,D).
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Table 4
Parameter estimates from each Monte Carlo method (with standard errors in parentheses) for
the bivariate application to the PBC data.
Parameter Method

OMC AMC QMC

β0,1 0.495 (0.298) 0.498 (0.299) 0.489 (0.302)
β1,1 0.188 (0.010) 0.188 (0.010) 0.187 (0.010)
β2,1 0.001 (0.006) 0.001 (0.006) 0.001 (0.006)
β3,1 −0.108 (0.117) −0.107 (0.118) −0.105 (0.119)
β0,2 3.952 (0.120) 3.949 (0.121) 3.951 (0.122)
β1,2 −0.109 (0.005) −0.109 (0.005) −0.108 (0.005)
β2,2 −0.008 (0.002) −0.008 (0.002) −0.008 (0.002)
β3,2 0.037 (0.043) 0.037 (0.044) 0.037 (0.044)
γv1 0.066 (0.014) 0.065 (0.014) 0.066 (0.015)
γv2 −0.250 (0.291) −0.248 (0.291) −0.246 (0.292)
γy1 1.020 (0.124) 1.019 (0.124) 1.023 (0.123)
γy2 −2.415 (0.335) −2.410 (0.333) −2.405 (0.333)
D1,1 0.993 (0.111) 0.992 (0.111) 0.992 (0.111)
D2,2 0.034 (0.005) 0.034 (0.005) 0.033 (0.005)
D3,3 0.117 (0.014) 0.117 (0.014) 0.118 (0.014)
D4,4 0.005 (0.001) 0.005 (0.001) 0.005 (0.001)
σ 2
1 0.347 (0.002) 0.347 (0.002) 0.347 (0.002)

σ 2
2 0.319 (0.002) 0.319 (0.002) 0.319 (0.002)

Table A.5
Coverage rates of regression parameters under each Monte Carlo method for both simulation scenarios:
n = 250.
Parameter Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

β0,1 0.949 0.952 0.950 0.964 0.965 0.963
β1,1 0.957 0.957 0.952 0.968 0.971 0.968
β2,1 0.961 0.962 0.961 0.963 0.964 0.964
β3,1 0.948 0.950 0.950 0.971 0.969 0.971
β0,2 0.952 0.950 0.948 0.964 0.965 0.965
β1,2 0.952 0.954 0.952 0.960 0.957 0.956
β2,2 0.953 0.955 0.954 0.968 0.968 0.968
β3,2 0.957 0.955 0.955 0.963 0.966 0.966
β0,3 – – – 0.966 0.965 0.968
β1,3 – – – 0.967 0.967 0.970
β2,3 – – – 0.969 0.971 0.970
β3,3 – – – 0.967 0.967 0.967
γv1 0.959 0.960 0.960 0.966 0.966 0.966
γv2 0.940 0.941 0.940 0.942 0.942 0.942
γy1 0.960 0.960 0.963 0.968 0.969 0.969
γy2 0.948 0.948 0.951 0.959 0.959 0.960
γy3 – – – 0.967 0.968 0.967

We fitted the bivariate and trivariate models with OMC, AMC and QMC (using the control arguments described in
Section 4) in turn to the PBC data (the code for model fitting is available at https://github.com/petephilipson/QMC. The
superiority of QMC over the other two methods seen in the simulation study for small sample size is repeated here. The
times for the model fits for K = 2 were 200.9, 122.5 and 14.6 s for OMC, AMC and QMC respectively, and for K = 3 the
corresponding times were 429.0, 256.9 and 12.0 s.

Parameter estimates and standard errors (using the approximate method discussed earlier in Section 2.2) from the
three methods are displayed in Table 4 for the bivariate model. Both parameter estimates and associated standard errors
are very similar across the three methods. However, we also utilise the bootstrap to quantify the uncertainty in run
times since times based on a single model fit may not be indicative of generally quicker performance. The bootstrap
results consolidated our findings in this case, namely that QMC provided considerably faster run times than the other
two methods for a small sample size; indeed the differences were even more marked in this setting. Results under the
bootstrap approach are included in Appendix C; we note in passing that differences between the empirical and bootstrap
standard errors were negligible in this instance.

6. Discussion

In this article, we compared traditional and quasi-MC approaches for the numerical integration of random effects
in a multivariate joint model. QMC integration is based on choosing uniformly scattered deterministic nodes in a

https://github.com/petephilipson/QMC
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Fig. A.3. Distribution of final number of MC nodes over 1000 simulated datasets using each MC method for simulation study 1 (upper) and simulation
study 2 (lower) at each sample size. Nodes are on the log10 scale.

Table A.6
Coverage rates of variance parameters under each Monte Carlo method for both simulation scenarios:
n = 250.
Parameter Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

D1,1 0.962 0.962 0.955 0.962 0.961 0.960
D2,2 0.953 0.954 0.942 0.966 0.961 0.953
D3,3 0.957 0.956 0.952 0.966 0.966 0.952
D4,4 0.957 0.954 0.957 0.968 0.969 0.962
D5,5 – – – 0.964 0.962 0.965
D6,6 – – – 0.959 0.961 0.962
σ 2
1 0.964 0.962 0.962 0.963 0.963 0.963

σ 2
2 0.966 0.969 0.967 0.974 0.973 0.974

σ 2
3 – – – 0.966 0.966 0.967

unit hypercube rather than pseudo-random nodes. There are many proposals on how to calculate these deterministic
sequences, including Sobol sequences, Halton sequences, Faure sequences, and various scrambled versions. Despite the
promising results here and elsewhere in other applications (e.g. Pan and Thompson, 2007), QMC methods have not
widely penetrated the biostatistical methodological field. In the joint model described here, the time-to-event model was
semiparametric. Standard approaches to the estimation of this model have been based on the EM algorithm (Henderson
et al., 2000; Lin et al., 2002), which converges linearly. Hence, it is necessary to speed up convergence by offsetting
computational overheads such as the E-step.

Alongside the setting considered in this work, joint models using parametric time-to-event models (e.g. Crowther et al.,
2013) can also exploit QMC methods in alternative fitting algorithms, e.g. Newton–Raphson. Furthermore, QMC could be
used in any other setting that typically relies on numerical integration, with examples ranging from competing risks in
a classic joint modelling setting (Williamson et al., 2008) to semi-competing risks for clustered survival data (Peng et al.,
2018), or with frailty in a copula model (Emura et al., 2017).

In any event, there are practical issues in using QMC methods for fitting joint models. Like the OMC and AMC cases, a
suitable number of nodes need to be selected; in our example, we initially choose a small value of N = 100 × K , where
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Table A.7
Coverage rates of regression parameters under each Monte Carlo method for both simulation scenarios:
n = 1000.
Parameter Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

β0,1 0.955 0.946 0.951 0.953 0.951 0.951
β1,1 0.947 0.948 0.935 0.950 0.946 0.949
β2,1 0.958 0.959 0.958 0.960 0.958 0.958
β3,1 0.944 0.947 0.947 0.944 0.943 0.944
β0,2 0.933 0.931 0.930 0.940 0.939 0.937
β1,2 0.922 0.880 0.926 0.942 0.915 0.919
β2,2 0.952 0.952 0.952 0.955 0.958 0.958
β3,2 0.943 0.949 0.949 0.954 0.954 0.955
β0,3 – – – 0.950 0.954 0.952
β1,3 – – – 0.944 0.938 0.947
β2,3 – – – 0.961 0.961 0.961
β3,3 – – – 0.955 0.952 0.954
γv1 0.955 0.954 0.954 0.950 0.952 0.951
γv2 0.941 0.943 0.943 0.942 0.942 0.942
γy1 0.944 0.946 0.947 0.950 0.956 0.955
γy2 0.934 0.937 0.937 0.948 0.943 0.945
γy3 – – – 0.951 0.954 0.953

Table A.8
Coverage rates of variance parameters under each Monte Carlo method for both simulation scenarios:
n = 1000.
Parameter Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

D1,1 0.947 0.946 0.945 0.955 0.955 0.950
D2,2 0.950 0.948 0.932 0.963 0.964 0.948
D3,3 0.958 0.959 0.946 0.956 0.958 0.942
D4,4 0.945 0.940 0.947 0.953 0.949 0.940
D5,5 – – – 0.965 0.966 0.966
D6,6 – – – 0.941 0.939 0.941
σ 2
1 0.954 0.953 0.952 0.950 0.947 0.955

σ 2
2 0.959 0.959 0.958 0.948 0.947 0.949

σ 2
3 – – – 0.951 0.951 0.950

K is the number of longitudinal outcomes, as it is computationally inefficient to initialise the algorithm with a large N as
the estimates may be far from their true values. In addition, we continue to dynamically increase the number of nodes as
K + ⌊K/δ⌋ for some small δ (e.g. δ = 3) following the same methodology used for the OMC and AMC approaches (Ripatti
et al., 2002). As described in Hickey et al. (2018), this ensures that Monte Carlo error does not overwhelm any changes
to parameter estimates. A limitation of QMC methods is that they do not permit the estimation of MC error. However,
using the scrambling methods this can be overcome (Owen, 1998).

Here, we showed that QMC reduced the computational time required to fit multivariate joint models with a small
sample size and was comparable to AMC for moderate sample size. Comparison of times should be viewed cautiously,
as they may not translate across software implementations. However, in the comparisons described here, the code was
identical except for the Monte Carlo simulator, thus it is reasonable to state that the above findings hold.

In future work, we will explore the application of QMC to a wider range of generalised mixed models including multi-
outcome models. A natural avenue for research within the framework of the models considered here would be to compare
quadrature, MCEM and Laplace methods for choices of K and n in order to make recommendations as to which method
should be advocated, and when.
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Table B.9
Regression parameter estimates from each Monte Carlo method (with standard errors in
parentheses) for the trivariate application to the PBC data.
Parameter Method

OMC AMC QMC

β0,1 0.519 (0.309) 0.513 (0.312) 0.501 (0.308)
β1,1 0.194 (0.012) 0.194 (0.012) 0.191 (0.012)
β2,1 0.000 (0.006) 0.000 (0.006) 0.000 (0.006)
β3,1 −0.093 (0.121) −0.092 (0.121) −0.093 (0.120)
β0,2 3.918 (0.125) 3.920 (0.126) 3.922 (0.124)
β1,2 −0.111 (0.006) −0.111 (0.006) −0.109 (0.006)
β2,2 −0.008 (0.002) −0.008 (0.002) −0.008 (0.002)
β3,2 0.036 (0.044) 0.036 (0.044) 0.035 (0.044)
β0,3 1.004 (0.060) 1.005 (0.060) 1.006 (0.059)
β1,3 −0.053 (0.003) −0.053 (0.003) −0.053 (0.003)
β2,3 −0.003 (0.001) −0.004 (0.001) −0.003 (0.001)
β3,3 0.025 (0.024) 0.025 (0.024) 0.025 (0.024)
γv1 0.065 (0.015) 0.065 (0.015) 0.065 (0.015)
γv2 −0.218 (0.301) −0.217 (0.299) −0.217 (0.294)
γy1 0.928 (0.145) 0.930 (0.145) 0.933 (0.146)
γy2 −1.991 (0.451) −1.990 (0.452) −1.981 (0.446)
γy3 −1.727 (1.075) −1.702 (1.065) −1.694 (1.067)

Table B.10
Variance component parameter estimates from each Monte Carlo method (with standard
errors in parentheses) for the trivariate application to the PBC data.
Parameter Method

OMC AMC QMC

D1,1 0.992 (0.114) 0.992 (0.114) 0.993 (0.115)
D2,2 0.037 (0.006) 0.036 (0.006) 0.036 (0.006)
D3,3 0.116 (0.015) 0.116 (0.015) 0.116 (0.015)
D4,4 0.005 (0.001) 0.005 (0.001) 0.005 (0.001)
D5,5 0.042 (0.006) 0.042 (0.006) 0.042 (0.006)
D6,6 0.001 (0.000) 0.001 (0.000) 0.001 (0.000)
σ 2
1 0.346 (0.002) 0.346 (0.002) 0.346 (0.002)

σ 2
2 0.319 (0.002) 0.319 (0.002) 0.319 (0.002)

σ 2
3 0.159 (0.001) 0.159 (0.001) 0.158 (0.001)

Appendix A. Simulation study: further results
Coverage rates for the simulation studies conducted with both n = 250 and n = 1000 are included in

Tables A.5 to A.8. As for n = 500, we see near-identical coverage rates for each parameter, across the three methods.
The final number of MC nodes for all three MC methods, each sample size and both simulation scenarios are included in
Fig. A.3. These boxplots show that the final number of nodes is, as expected, strongly linked with the computing time.
We also observe that, under QMC, the number of nodes is asymmetric under the first simulation scenario for n > 500.

Appendix B. Application: further details

B.1. Trivariate model

Full results from the trivariate joint model applied to the PBC data are included here. Tables B.9 and B.10 give parameter
estimates and associated standard errors based on the trivariate model for the PBC data. Once more, we observe negligible
differences between the parameter estimates, for both the regression coefficients and the variance components.

Appendix C. Bootstrap standard errors

The superiority of QMC over the other two methods seen in the simulation study is repeated when using 100 bootstrap
samples to obtain standard errors in the application to the PBC dataset. Recall, the times for the model fits for K = 2
were 200.9, 122.5 and 14.6 s for OMC, AMC and QMC respectively. The median bootstrap sample fitting times (in seconds)
were 533.8 (OMC), 324.7.0 (AMC) and 54.0 (QMC), showing a near ten-fold difference between OMC and QMC, and a six-
fold difference comparing AMC with QMC. Similarly, for the trivariate model the sample fitting times (in seconds) were
429.0 (OMC), 256.9 (AMC) and 12.0 (QMC). Under bootstrap sampling, the median computing times were 1112, 598.1 and
117.0 s, demonstrating a near ten-fold difference between OMC and QMC, and a five-fold difference between AMC and
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Fig. C.4. Distribution of algorithm multivariate joint model run times across 100 bootstrap samples using different MC integration routines for the
E-step. Run-times are on the log10 scale.

QMC. A boxplot showing the distribution of fitting times across bootstrap samples for both models is given in Fig. C.4. The
bootstrap samples and subsequent model fits were carried out in parallel on the same HPC cluster as for the simulations.
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