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Abstract

Reasoning about relations between words or entities plays an important role in human
cognition. It is thus essential for a computational system which processes human languages to
be able to understand the semantics of relations to simulate human intelligence. Automatic
relation learning provides valuable information for many natural language processing tasks
including ontology creation, question answering and machine translation, to name a few.
This need brings us to the topic of this thesis where the main goal is to explore multiple
resources and methodologies to effectively represent relations between words.

How to effectively represent semantic relations between words remains a problem that is
underexplored. A line of research makes use of relational patterns, which are the linguistic
contexts in which two words co-occur in a corpus to infer a relation between them (e.g., X
leads to Y). This approach suffers from data sparseness because not every related word-pair
co-occurs even in a large corpus. In contrast, prior work on learning word embeddings have
found that certain relations between words could be captured by applying linear arithmetic
operators on the corresponding pre-trained word embeddings. Specifically, it has been shown
that the vector offset (expressed as PairDiff) from one word to the other in a pair encodes
the relation that holds between them, if any. Such a compositional method addresses the
data sparseness by inferring a relation from constituent words in a word-pair and obviates
the need of relational patterns.

This thesis investigates the best way to compose word embeddings to represent relational
instances. A systematic comparison is carried out for unsupervised operators, which in
general reveals the superiority of the PairDiff operator on multiple word embedding models
and benchmark datasets. Despite the empirical success, no theoretical analysis has been
conducted so far explaining why and under what conditions PairDiff is optimal. To this
end, a theoretical analysis is conducted for the generalised bilinear operators that can be
used to measure the relational distance between two word-pairs. The main conclusion is
that, under certain assumptions, the bilinear operator can be simplified to a linear form,
where the widely used PairDiff operator is a special case.

Multiple recent works raised concerns about existing unsupervised operators for inferring
relations from pre-trained word embeddings. Thus, the question of whether it is possible to
learn better parametrised relational compositional operators is addressed in this thesis. A
supervised relation representation operator is proposed using a non-linear neural network
that performs relation prediction. The evaluation on two benchmark datasets reveals
that the penultimate layer of the trained neural network-based relational predictor acts
as a good representation for the relations between words. Because we believe that both
relational patterns and word embeddings provide complementary information to learn
relations, a self-supervised context-guided relation embedding method that is trained on
the two sources of information has been proposed. Experimentally, incorporating relational
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contexts shows improvement in the performance of a compositional operator for representing
unseen word-pairs.

Besides unstructured text corpora, knowledge graphs provide another source for relational
facts in the form of nodes (i.e., entities) connected by edges (i.e., relations). Knowledge
graphs are employed widely in natural language processing applications such as question
answering and dialogue systems. Embedding entities and relations in a graph have shown
impressive results for inferring previously unseen relations between entities. This thesis
contributes to developing a theoretical model to infer a relationship between the connections
in the graph and the embeddings of entities and relations. Learning graph embeddings
that satisfy the proven theorem demonstrates efficient performance compared to existing
heuristically derived graph embedding methods. As graph embedding methods generate
representations for only existing relation types, a relation composition task is proposed in
the thesis to tackle this limitation.
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Glossary

Semantic relations. Associations that exist between the meanings of words (Hypernym,
Meronym, capital-of, CEO, etc.).

Syntactic relations. In the context of the study in this thesis, syntactic relations refer
to associations between different morphological forms of words (e.g., between apply
and applied or between aware and unaware). Syntactic relations are also called
morphological relations.

Word analogies. A way of expressing a relationship between words and is formally
written as a : b :: c : d (read a is to b as c is to d).

Analogy questions. Test questions that require reasoning about relations. One form
of analogy question is where you are given a word-pair and you are asked to choose
another word-pair with the same relationship. Another form is filling a missing word
given two word-pairs (i.e., a : b :: c :?).

Analogous word-pairs. A relation in the pair (a, b) is analogous to that in (c, d).

Non-analogous word-pairs. A relation in the pair (a, b) is different from that in (c, d).

Relational similarity. Is a similarity between two pairs of words obtained by comparing
a relation that holds between the two words in a first pair with that of a second pair.

PairDiff. A method of generating a vector offset of a pair of words (a, b) by subtracting
pre-trained word embedding vectors (b − a), which in turn can be used to predict
relations between words.

Word embeddings (or representations). Real-valued low dimensional vectors that
capture semantic and syntactic properties of the words in a vocabulary.

Knowledge graph embeddings. Representations of entities and relations in a given
graph, which enable predicting missing links in the graph.

Relational patterns. Linguistic contexts that connect two related entities in a text
corpus.

Pattern-based approach. A popular approach for representing relations between words
relying on the patterns extracted from linguistic contexts in which the pairs of words
co-occur in a text corpus, e.g., “X increase the risk of Y”.
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Compositional approach. Refers to methods for representing relations between two
words that apply a compositional operator on their semantic representations rather
than depending on relational patterns.

Unsupervised compositional operators. Following the literature, when a composi-
tional operator does not have learnable parameters, we call it unsupervised.

Relational walk. A theoretical model that derives a relationship between the connections
between entities and relations in a knowledge graph and the corresponding entity
and relation embeddings. The relational walk is a generative model that performs a
random walk over the KG parametrised by hidden knowledge vectors.

Relation compositions in knowledge graphs. The task of predicting representations
for novel relation types by composing pre-trained relation embeddings for the relations
that exist in a knowledge graph.
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1
Introduction

1.1 Context of the Study

“Every word in a sentence is not isolated as it is in the dictionary. The mind
perceives connections between a word and its neighbours. The totality of these
connections forms the scaffold of the sentence.”

- Tesniére, 1959

In natural languages, i.e., English, Arabic, Chinese, relations are the connections between
concepts that are expressed by words1. As stated by cognitive scientists, understanding
words by their relationships is essential to the expression of continuous thoughts for human
intelligence (Tesnière, 1959). In aptitude tests provided by government institutions to enter
universities in some countries such as the United States2 and Saudi Arabia3, students are
asked to detect word analogies of the form a : b :: c : d (read as a is to b as c is to d)
to measure their ability to recognise relations. One has to identify and then compare the
relationship between the two words in each pair (a, b) and (c, d) to answer these type of
questions. For example, (lion, cat) is relationally similar (i.e., analogous) to (ostrich, bird)
because a lion is a large cat as an ostrich is a large bird.

Nowadays, in the digitalised world, it is required for a computational system that
processes human languages to be equipped to learn semantics not only for the words
but also for relations between them to intelligently perform useful tasks just as humans
do. Such tasks that benefit from using relational information within Natural Language
Processing (NLP) include analogical reasoning (Turney and Littman, 2005; Li et al., 2018),

1Throughout this thesis, words may refer to unigrams (e.g., food and animal) as well as multi-word
expressions including named entities such as person or location names (e.g., United States). The terms word
and entity are used interchangeably in this thesis.

2https://collegereadiness.collegeboard.org/sat
3https://qiyas.sa/en/Exams/Education/GeneralAbilities/Pages/default.aspx

1

https://collegereadiness.collegeboard.org/sat
https://qiyas.sa/en/Exams/Education/GeneralAbilities/Pages/default.aspx
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relation extraction (Mintz et al., 2009; Su et al., 2018), relational search (Cafarella et al.,
2006; Duc et al., 2010, 2011), machine translation (Nakov, 2008; Zhang et al., 2018), text
categorisation (Espinosa-Anke and Schockaert, 2018; Camacho-Collados et al., 2019), textual
entailment (Vu and Shwartz, 2018; Joshi et al., 2019), word-sense disambiguation (Federici
et al., 1997; Agirre et al., 2014) and knowledge graphs completion (Nguyen, 2017), among
others.

In relational search, given a query “a is to b as c to ?” the goal is to retrieve entities that
have a semantic relationship with c similar to that between a and b. For example, given the
relational search query “Bill Gates is to Microsoft as Steve Jobs is to ?”, a relational search
engine is expected to return the result Apple Inc. because of the CEO relation that holds
between the first and the second entity pairs. One might also want to ask a search engine
to list all entities that are in a relation with another entity. For instance, a query “what can
be produced from a cork tree”, needs a relational search to retrieve entities that are in the
produced-from relation with cork tree. Recognising textual entailment offers another kind
of application. Given a premise P, “a man ate an apple”, and a hypothesis H, “a man ate
a fruit”, a model that can infer the existence of the is-a relation between fruit and apple
would correctly predict that H entails P.

Modelling the meaning of relations and relational reasoning are well-defined problems in
the field of NLP and machine learning. Resources that are adopted for such tasks can be
categorised into either: (a) text-based, and (b) knowledge graphs-based. Text corpora play
a critical role in NLP research. In the context of learning relations, linguistic contexts of
entities in a corpus work in one way or another as clues to infer relations between entities.
For example, the sentence from Wikipedia that says “Paris is the capital and most populous
city of France, with . . . ” shows the capital-of relation. On the other hand, real-world facts
such as Paris is the capital city of France is asserted in structured knowledge graphs such as
Freebase, wherein Paris and France are represented by two nodes and the relation capital-of
is the label for the edge that connects the two entities.

In NLP systems, linguistic components such as words, relations, phrases, etc. have to be
represented in a way so as to make it possible for a computer to understand the underlying
semantics. To address this need, Vector Space Models (VSMs) of semantics have been
applied successfully as testified in the voluminous NLP related literature. The underlying
concept of the VSMs is that a linguistic item is mapped to a vector of multiple dimensions
corresponding to features that collectively derive the meaning of the represented item. These
features are extracted and learnt from various resources such as the above-mentioned ones,
text corpora and knowledge graphs. In theory, VSMs require semantically similar items
to be nearby in space. The VSMs initially show their potential applications in document
retrieval, where a search engine retrieves relevant documents to a given query according
to the similarities (e.g., cosine of angles) between the query vector and the document
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vectors in a space (Manning et al., 2008). Documents and queries are represented in a
multi-dimensional space where each term in the vocabulary is a dimension. In the context
of word representations, in which VSMs have achieved breakthrough performance, the
dimensions in a space basically indicate the co-occurrence statistics from a text corpus
(discussed in details in Section 2.5.1).

Semantic spaces have been successfully extended to encode relations, word-pairs and to
represent Knowledge Graphs (KGs) as well (Turney and Pantel, 2010; Bordes et al., 2013).
Word-pairs are represented in vector space such that pairs of words that belong to the same
relation are closer than word-pairs from different relation types. Text-based resources have
been employed in different themes to obtain representations for word-pairs in space. One
methodology heavily depends on particular contexts in which related words appear in a text
corpus (Turney, 2005; Espinosa-Anke and Schockaert, 2018). In contrast, from 2013 onwards,
word representations that are generated from text corpora using deep learning methods have
shown promising performance in capturing relational features of word-pairs. This thesis
investigates such a property in the VSMs of semantics for words towards relations. In the
context of KGs, entities and relations are also represented in a semantic space such that
entities that participate in similar relations are embedded closely to each other, while at the
same time relations that hold between similar entities are embedded closely to each other in
the relational embedding space. This thesis also studies representations of relations in KGs.

Having introduced the importance and resources of relational learning, the work
presented in this thesis is directed at several research issues within the context
of representing relations between words. The rest of this chapter is organised as
follows. Section 1.2 introduces the research aim and motivations. In Section 1.3 the research
issues that are considered for this thesis are listed. The contributions of this thesis are
explained in Section 1.4. Published work and the thesis outline are presented respectively
in Section 1.5 and Section 1.6.

1.2 Research Aim and Motivations

How to accurately represent semantic relations between words or entities remains a problem
that is underexplored within the NLP community. As elaborated earlier, a text corpus
represents an important and abundantly available source of information for building NLP
systems. Traditionally, automatic learning of word pair representations from a text corpus
has relied on distributional relation analysis, which states that the relation between two
words in a pair is evidenced by the contexts that co-occur with the pair (Turney and Littman,
2005; Turney, 2006; Bollegala et al., 2008). Such contextual information is expressed in
the form of lexico-syntactic patterns, for instance, “X is a Y” and “Y such as X” patterns
indicate that X is a hyponym of Y (Snow et al., 2005). This approach for representing
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Figure 1.1: The frequency of related word-pairs in Wikipedia corpus.

relations is called, in this thesis, pattern-based because of the need for lexical patterns that
connect pairs of words to infer relations between words.

Despite the good performance of the pattern-based approach in previous research (Tur-
ney, 2005; Jameel et al., 2018), it suffers from data sparseness which in turn limits the
generalisation capabilities of this methodology. Specifically, two words have to co-occur in a
contextual window, or else no relation can be represented for unseen word-pairs. Even in
a large text corpus, not every related pair co-occurs within a specified window. Also, in
any text collection, the number of sentences in which the two related words appear might
be quite small or might not be relevant for characterising the considered relations, which
drastically affects the quality of the relation representation. For example, Figure 1.1 shows
the co-occurrence frequency and rank of related word-pairs4 in the Wikipedia corpus. The
graph illustrates that even in a large corpus as in the case of Wikipedia, the distribution of
co-occurrences of related word-pairs has a long tail. Moreover, 321 word-pairs from the set
of related words do not co-occur within any sentence.

To address the aforementioned sparsity problem of the pattern-based approach for relation
representations, we have to obviate the strong co-occurring assumption of related word-pairs
to represent relations. Mikolov et al. (2013c) showed that pre-trained word representations
(a.k.a embeddings), which are low-dimensional real-valued vectors that are generated typically
from distributional information in text, encode remarkable structural properties about
semantic relations. As illustrated in Figure 1.2a, the vector offsets woman − man,
queen − king and aunt − uncle are approximately parallel, here the notation man
is used to denote the embedding of the word man. These vector offsets describe gender

4These word-pairs are taken from two popularly used benchmarks for relations, namely, SAT and
SemEval-2012 Task 2 that are introduced later in Section 3.3.1 and Section 3.3.2, respectively.
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(a) Gender relation (b) Plural relation

Figure 1.2: Example of linguistic regularities in word embeddings. The figure is taken from
Mikolov et al. (2013c).

directions from male to female in the embedding space. The well-known example is that of the
proportional analogy expressed in (1.1). Mikolov et al. (2013c) fill the blank of the analogy by
finding the nearest neighbour word vector to the composed vector king−man+woman.

man : woman :: king :? (semantic) (1.1)

king : kings :: queen :? (syntactic) (1.2)

Such an approach is referred to as compositional because (a) the way in which the relation
representation is composed by applying some algebraic relational operator on the represen-
tations of the words that participate in a relation, and (b) we infer a relation between a
pair without assuming the availability of patterns in which a pair matches in a corpus. In
this thesis, compositional methods for relation representations are explored from multiple
aspects as will be demonstrated in the next section.

As elaborated in the previous section, unstructured text corpora are not the only source
for relations. KGs represent another important source for relational information that
organise knowledge bases of relations in the form of nodes (entities) and edges (relations).
While relations in text-based sources are latent as they are induced through linguistic
patterns, KGs typically consist of a set of well-defined discrete relation types. Such KGs are
either constructed manually or using relation extraction techniques on a text corpus (Mintz
et al., 2009; Riedel et al., 2010). The advent of KGs in different domains is important
for a wide range of NLP tasks such as learning knowledge-enhanced semantics (Faruqui
et al., 2015a; Alsuhaibani et al., 2018), question answering (Das et al., 2017) and text
summarisation (Baralis et al., 2013). However, the constructed KGs, especially those
extracted from text, suffer from sparsity since many plausible facts are missing (Pujara
et al., 2017; Paulheim, 2017). One popular way to handle sparsity in KGs is to encode
entities and relations of a KG into low-dimensional vector spaces, so-called Knowledge Graph
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Figure 1.3: An illustration of diverse sources that are consider in this thesis for learning
relation representations.

Embeddings (KGEs). As is customary in the literature, entity and relation embeddings are
jointly learnt such that some objective that models the interaction between two entities
and a relation that holds between them is optimised (Bordes et al., 2013; Yang et al., 2015;
Nickel et al., 2015; Guo et al., 2016; Nickel et al., 2016). By embedding entities and relations
that exist in a KG in some space, we can infer previously unseen relations between entities,
thereby expanding a given KG.

Although existing KGE methods demonstrated valuable performance in predicting new
links between entities, objectives for learning such embeddings are heuristically motivated.
Therefore, a theoretical understanding of KGE methods is required. In addition, KGE
methods embed existing entities and relations and they are unable to predict representations
for unseen relation types. Accordingly, this thesis contributes to solving the above-raised
issues of KGEs.

Figure 1.3 shows the different sources of information that are considered in this thesis
for relation representations. From an unstructured text corpus, word embeddings are
learnt from the corpus and are taken as a source of information for learning compositional
operators for word-pair representations. Such compositional methods can be improved
by supplying patterns of related word-pairs during training (pattern-guided compositional
relation representations). As shown on the right side of the figure, extracting relations from
a KG in the form of knowledge graph embeddings to reduce sparsity in the KG is also
considered in the conducted research. The section below will present the research question
and related issues that are studied in this thesis.
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1.3 Research Question and Issues

From the foregoing aims and motivations of this thesis, the main research question considered
in this work is as follows: Can we learn relation representations from word representations;
and if so what are the appropriate methods and resources for achieving this?

Many issues arise to answer the above question, here are the addressed issues:

• Given pre-trained word embeddings, what is the best unsupervised compositional
operator to represent relations between words? and how appropriate is such an
operator for various relation types?

• Can we discover discriminating relational features from word representations to measure
the relational similarity between two word-pairs?

• Can we systematically investigate a bilinear operator, which is parametrised by a
3D tensor, to map two given word embeddings into a vector representing a relation
between the two words?

• Can we learn better compositional operators for relation representations from word
representations?

• Can we improve the performance of compositional relation representation methods
by training such methods using the two sources of information, namely: (a) word-
embeddings of related pairs, and (b) co-occurring patterns extracted from a corpus?

• Given a KG, can we enrich the graph by inferring missing links using a theoretically
motivated approach for relation and entity embeddings?

• Given pre-trained KGEs, can we infer embeddings for unseen (i.e., novel) relations
using existing relation embeddings and relational logical rules?

1.4 Contributions

The primary goal of this thesis is to explore resources and methodologies to represent
relations between words such that we overcome data sparsity of related pairs in texts or
KGs. The thesis makes a number of noteworthy contributions, which are:

• A comparative study for unsupervised compositional operators to derive
relational features from word embeddings. The contribution of this study aims
to compare different unsupervised compositional operators for obtaining relation
representations from word-level representations. Such unsupervised operators do not
have learnable parameters, and they are applied on word representations learnt in
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unsupervised settings. The performance of such unsupervised compositional meth-
ods are investigated by measuring the relational similarities using several relational
benchmark datasets, and also evaluated in a KG completion task. The performance
of the compositional operators among various relation types is also investigated. This
contribution was published in the Knowledge-Based System journal (Hakami and
Bollegala, 2017), and is presented in Section 3.4 of this thesis.

• A method to discover discriminative features in word representations for
measuring relational similarities. Features that accurately express the relational
similarity between two word-pairs remain largely unknown. So far, methods have
been proposed based on linguistic intuitions such as the functional space proposed
by Turney (2012), which consists purely of verbs. In contrast, a data-driven approach
for discovering feature spaces for relational similarity measurement is proposed in this
thesis. This study was published at PACLING 2017 (Hakami et al., 2017). Section 3.5
is devoted to this contribution.

• A mathematical analysis for bilinear relation representations. A simple, yet
surprisingly accurate method for representing a relation between two words is to
compute the vector offset (PairDiff) between their corresponding word embeddings.
Despite the empirical success, it remains unclear as to whether PairDiff is the best
operator for obtaining a relational representation from word embeddings. To this end,
a theoretical analysis is conducted of generalised bilinear operators that can be used to
measure the `2 relational distance between two word-pairs. This work was published
at COLING 2018 (Hakami et al., 2018), and is included in Chapter 4 of this thesis.

• A method to learn compositional operators for relation representations.
Despite that simple unsupervised operators such as the vector offset between two-word
embeddings have shown to recover certain relationships between words, how to accu-
rately learn generic relation representations from word representations remains unclear.
In this thesis, relation representation is modelled as a supervised learning problem and
parametrised operators are learnt such that they map pre-trained word embeddings
to relation representations. Specifically, a method for learning relation representations
using a feed-forward neural network that performs relation prediction is proposed.
This contribution was published at Automated Knowledge Base Construction (AKBC)
2019 (Hakami and Bollegala, 2019b), and is presented in Section 5.2 of the thesis.

• An exploration of the complementary of lexical patterns and word embed-
dings for representing relations. A semantic relation between two given words
can be represented using two complementary sources of information: (a) the semantic
representations of the two words and, (b) the lexico-syntactic patterns obtained from
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the co-occurrence contexts of the two words. Pattern-based approaches suffer from
sparsity, while methods that rely only on word embeddings for the related pairs lack
relational information. To this end, a Context-Guided Relation Embedding model
that uses the two sources of information is proposed under a self-supervised fashion.
The learnt operator is evaluated for its ability to create relation representations for
word-pairs that do not co-occur. The code and pre-trained word-pair embeddings
are publicly available for reproducibility5. The proposed method was published at
PACLING 2019 (Hakami and Bollegala, 2019a), and is presented in Section 5.3.

• A proposed relational walk model for KGEs. Although existing KGE methods
demonstrate good empirical performance on predicting missing links in a graph,
theoretical understanding of KGE methods is comparatively underdeveloped. As such,
it is not clear how the heuristically defined KGE objectives relate to the generative
process of a KG. This thesis seeks to fill this void by providing a theoretical analysis of
KGEs. To do so, the random walk model of Arora et al. (2016) of word embeddings was
extended in this thesis to KGEs to derive a scoring function that evaluates the strength
of a relation between two entities. Specifically, a generative process is proposed where
the formation of a relation between two entities using the corresponding relation
and entity embeddings is derived theoretically. This contribution is presented in
Section 6.2 of this thesis.

• A proposed compositional semantic method to infer embeddings for novel
relations. Existing KGE methods can only learn representations for the relations
that exist in a KG. However, there are correlations among relations in a graph that
allow relation inferences. For instance, given that X born-in Y and Y capital-of Z,
we can infer the relation X nationality Z. Relation composition is introduced in this
thesis as the task of inferring embeddings for unseen relations by combining existing
relations in a KG. Specifically, a supervised method (modelled as a non-linear neural
network) is proposed to compose relational embeddings for novel relations using
pre-trained relation embeddings for existing relations. The implementation of the
proposed relation composition model is publicly available on GitHub6. The work was
published at PACLING 2019 (Chen et al., 2019), and included in Section 6.3

1.5 Publications

Most of the material presented in the thesis has already been published in NLP conferences
and journals. The list of the publications (chronological order) and their corresponding

5https://github.com/Huda-Hakami/Context-Guided-Relation-Embeddings
6https://github.com/Huda-Hakami/Relation-Composition-for-Knowledge-Graphs

https://github.com/Huda-Hakami/Relation-Composition-for-Knowledge-Graphs


10 Huda Hakami

chapters or sections is presented below:

1. Danushka Bollegala, Huda Hakami, Yuichi Yoshida, Ken-ichi Kawarabayashi: RelWalk
- A Latent Variable Model Approach to Knowledge Base Embedding, under review.
Section 6.2.

2. Huda Hakami and Danushka Bollegala: Context-guided Self-Supervised Relation Em-
beddings, Proc. of the 16th International Conference of the Pacific Association for
Computational Linguistics (PACLING), October, 2019. Section 5.3.

3. Wenye Chen, Huda Hakami and Danushka Bollegala: Learning to Compose Relational
Embeddings in Knowledge Graphs, Proc. of the 16th International Conference of
the Pacific Association for Computational Linguistics (PACLING), October, 2019.
Section 6.3.

4. Huda Hakami and Danushka Bollegala: Learning Relation Representations from Word
Representations, Proc. of the Automatic Knowledge Base Construction Conference
(AKBC), May, 2019. Section 5.2.

5. Huda Hakami, Kohei Hayashi and Danushka Bollegala: Why does PairDiff work? - A
Mathematical Analysis of Bilinear Relational Compositional Operators for Analogy
Detection, Proc. of the 27th International Conference on Computational Linguistics
(COLING), pp. 2493-2504, 2018. Chapter 4.

6. Huda Hakami and Danushka Bollegala: Compositional approaches for Representing
Relations Between Words: A Comparative Study, Knowledge-Based Systems (KBS),
Vol. 136, pp. 172-182, 2017. Section 3.4.

7. Huda Hakami, Angrosh Mandya, and Danushka Bollegala: Discovering Representative
Space for Relational Similarity Measurement, Proc. of the 15th International Confer-
ence of the Pacific Association for Computational Linguistics (PACLING), pp. 76-87,
2017. Section 3.5.

1.6 Thesis Outline

The overall structure of the reminder of this thesis takes the form of five main chapters and
a concluding chapter as follows.

Chapter 2: Background and Related Works. This chapter consists of background
knowledge about relations between words that is important to understand the remain-
der of this thesis. The chapter introduces semantic spaces in the NLP field. The
applications of relational reasoning in NLP are demonstrated. Different methods in the
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literature for representing relational information with respect to the work presented
in this thesis are also reviewed in this chapter.

Chapter 3: Deriving Relational Features from Word Representations. The first
part of this chapter introduces the word embedding models and relational benchmark
datasets that are used extensively in this thesis. Then, the chapter presents a systematic
comparison of four different unsupervised compositional operators for representing
relations, namely: offset, concatenation, addition and multiplication. The last part
of the chapter presents a proposed data-driven approach to discover discriminative
features form word-level representations for measuring relational similarity between
word-pairs.

Chapter 4: Mathematical Analysis for Bilinear Relation Representations. A
theoretical analysis of generalised bilinear operators that can be used to measure the
`2 relational distance between two word-pairs is presented in this chapter. Specifically,
a theorem of a bilinear relational operator is proved. The chapter includes empirical
validations of the theory to show the rationality of the presented analysis.

Chapter 5: Learning Compositional Operators for Relation Representations.
This chapter presents learnable compositional operators to represent relations between
words. The first section is about the proposed supervised operators for relation
embeddings using word embeddings. The second section introduces self-supervised
context-guided compositional relation embeddings, which explore the complementari-
ties of training on both word-embeddings and relational patterns.

Chapter 6: Relations in Knowledge Graphs. This chapter considers the problem
of representing relational information in a KG for KG completion. The first section
presents a theoretically analysed relational walk model for KGEs. The second section
shows a relation composition, which is the task of predicting relation embeddings for
novel relation types by composing the embeddings for existing relation types.

Chapter 7: Conclusion. This chapter summarises the main findings of this thesis and
discuss potential future directions.

1.7 Summary

This chapter has introduced an overview of the research area considered in this thesis. The
research aim, motivations and questions were defined. A summary of the main contributions
alongside the published articles was also presented. The chapter was concluded with an
outline of the structure of the thesis. The next chapter provides background information
and a review of the related literature required to understanding the remainder of the thesis.





2
Background and Related Work

2.1 Introduction

As elaborated in Chapter 1, this thesis is concerned with representing relations between
words in texts or KGs. This chapter will provide a review of the background information
and the related literature on representing relations in the context of NLP. The chapter
begins with a brief overview of semantic representations for natural language components
in Section 2.2. Then, Section 2.3, provides motivational answers to the question as to
why we should care about relations between words. This is followed by Section 2.4 which
presents the classical pattern-based approach for representing relations between words in
texts. After presenting the pattern-based approach along with its drawbacks, Section 2.5
introduces an alternative approach to capture relational information in a word-pair from the
representations of corresponding words in the pair. A hybrid approach that combines the two
resources (i.e., patterns and word representations) is presented in Section 2.6. Section 2.7
then introduces multi-relational KGs and related work concerning the task of embedding
relations using KGE methods.

2.2 Semantic Spaces in NLP

A well-defined field of linguistics that concerns the analysis of meanings is called semantics,
with lexical semantics being a sub-field that deals with meanings of individual words and
relations between them (Cruse et al., 1986). We can describe the meaning of a word by
considering the word as a container (semantic features) or through its relationships with
other words (lexical relations). For example, colour can be a feature when representing the
word flower. Considering lexical relations, we can explain the meaning of the word daffodil
in terms of its relationship to flower because “daffodil is a kind of flower ”.

As humans, we use natural languages to communicate and understand the world around

13
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us. With the increasing amounts of textual data, it is important to digitise this field and
enable computers to understand languages that we humans speak and write. To this end,
NLP researchers seek to propose various methods to represent the semantics of linguistic
items in such a way that computers can process, reason and perform useful tasks on texts.
Semantic VSMs is the most dominant research area in the field of computational semantics.
Generally speaking, VSMs make use of geometric spaces to assign data points to vectors
using a set of features, where each feature is considered to be a separate dimension in
a vector space with a real value. Selecting such features to construct a semantic space
profoundly depends on the nature of a concept whose meaning we aim to encode. The key
aspect in VSMs is that similar concepts are represented closely in a space. In contrast to
discrete representations, the notion of similarity can be directly inferred from VSMs by
measuring degrees of similarities between the representations of the corresponding concepts.

Turney and Pantel (2010) provide a comprehensive literature survey about VSMs of
semantics that are proposed to represent various linguistic concepts such as words, word-
pairs, phrases and documents. Typically, VSMs are constructed automatically relying on the
distribution of the concepts to be represented in a text corpus. Impressive successes has been
shown for VSMs in information retrieval, analogical reasoning and KG completion, among
others. Take for instance the task of analogical reasoning, word-pairs can be represented in
a multi-dimensional space where, for instance, linguistic contexts that connect word-pairs
are the dimensions of the space, and the elements correspond to the number of times a
particular pair appears with a given context. Such representations can be used to measure
the relational similarities between word-pairs to find analogies or can be used as features
to downstream NLP applications. For KGEs, each relation can be represented as a latent
vector that works as an operator on entity vectors to predict relations between entities.

The work in this thesis is broadly connected to three different types of VSMs: (a) word
meanings, (b) word-pair representations and (c) KGEs. This chapter presents the necessary
background concerning each of these semantic spaces with respect to the conducted research
in the thesis. The main focus in this thesis is directed at encoding relational information
between words in a semantic space from different aspects as elaborated previously in
Sections 1.3 and 1.4.

2.3 Why Do We Care About Relations in NLP?

A relation is a way of describing how two things are connected. Connections exist everywhere
around us, and they vary across different domains, ranging from relationships between
people that represent a business, to social relations, to mathematical relations between
quantities such as equivalence and reflexive relations. In the field of NLP, relations mainly
refer to semantic links that hold between words and can be used to define the nature of
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word meanings in a language clearly. In this section, we will introduce some properties of
relations between words (Section 2.3.1). Then, in Section 2.3.2 we will show how representing
relations between words plays a vital role in numerous NLP tasks.

2.3.1 Relations Between Words

In a written or spoken language, a word is the basic lexical unit that is used with others to
create a meaningful phrase or sentence. Various types of relations exist between words such
as the Hypernym between ostrich and bird, the Antonym between hot and cold, the Meronym
between car and engine and the Attribute between glass and fragile. If we consider named
entities, we can observe a richer diversity of relations such as Founder-of between Bill Gates
and Microsoft, Capital-of between Tokyo and Japan and CEO between Tim Cook and Apple
Inc. Extensive efforts have been made in the literature by linguistics, cognition science and
computational linguistics to define taxonomies of relationships between words (Casagrande
and Hale, 1967; Levi, 1978; Chaffin and Herrmann, 1984; Nastase and Szpakowicz, 2003;
Hendrickx et al., 2009; Jurgens et al., 2012). Many of the datasets used are publicly available
for researchers.

Relations between words exist in many flavours. Some relations exist between two
words relying on a given specific context in which the two words co-occur. For example,
given the sentence “the machine makes a lot of noise”, we can infer a Cause-Effect relation
between machine and noise considering the linguistic clue makes a lot of in this particular
sentence. The former interactions that are sensitive to contexts are referred to as syntagmatic
relations, a phrase first coined by Saussure (1959) and then adopted by other studies about
relations (Khoo and Na, 2006; Hendrickx et al., 2009). For such syntagmatic relations, we
might infer different relations between the same word-pair based on the provided contexts.
On the other hand, Saussure (1959) defines associative (paradigmatic) relations as those that
hold between two words regardless of the contexts in which they co-occur. For instance, the
capital-of relation between London and England and is-a relation between cat and animal.
Associative relations can be lexical (is-a, part-of) or encyclopaedic (capital-of, nationality).
Prior work has also considered associative syntactic relations between words such as plural
(cat, cats) and comparative (weak, weaker) depending on word morphology (Mikolov et al.,
2013c; Vylomova et al., 2016). There are also implicit relations within a noun compound,
which is a sequence of two nouns acting as a single noun in English (Downing, 1977).
Examples of implicit relations in noun-compounds are cause in flu virus, container in apple
cake and location in home town. Several researchers have attempted to automatically
recognise implicit relations among noun compounds (Nastase and Szpakowicz, 2003; Tratz
and Hovy, 2010; Shwartz and Dagan, 2018).

Another dimension of variation across relations is the number of linked arguments.
In this sense, a binary relation is a link that exists between two arguments. However,
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relations might connect more than two arguments, which are termed n-ary relations (where
n indicates the number of linked arguments). For example, the ternary response relation in
the instance (EGFR, L858E, gefitinib) means that the EGFR mutation in the gene L858E
responds to the drug gefitinib. The interest in this thesis is directed in particular at binary
relation types; the extension to n-ary relations can be investigated in future work.

2.3.2 Applications of Relation Learning

Reasoning about relations between entities, rather than about individual entities, is an
essential element of human cognition (Glass et al., 1977; Penn et al., 2008). For computational
systems, connecting up entities within a chunk of text performs a battery of NLP tasks in
which relational information is essential to conduct the tasks successfully. Such tasks include
recognising word analogies, relational information retrieval, textual entailment, machine
translation, metaphor detection and knowledge base completion.

Relation representations have been successfully used for relational similarity-based tasks
ever since the work of Turney (2005), who demonstrated that the similarity between two
pairs could be measured using their relation representations. In the Scholastic Aptitude
Test (SAT), a standardised test widely used for college admissions in the United States,
an analogy question consists of a stem word-pair and a list of four to five pairs in which
only one represents the correct choice for the stem. To answer analogical SAT questions,
one is required to determine relations between the pairs to be compared. Turney (2005)
proposed an algorithm for representing relations that achieved human-level performance as
the average of US college applicants is 57.0%, whereas the state-of-the-art algorithm gave
56.1% accuracy.

In areas of research involving cross-sentence inference, such as textual entailment and
question answering, incorporating relational representations between words is beneficial.
For textual entailment tasks, given a premise P “a man ate an apple” and a hypothesis H
“a man ate a fruit”, a model that can infer the existence of is-a relation between fruit and
apple would correctly predict that P entails H. A recent study by Joshi et al. (2019) shows
the importance of enriching word representations with relation representations to improve
cross-sentence inferences.

Relational reasoning has also been applied to the task of machine translation (Nakov, 2008;
Aharoni and Goldberg, 2017; Zhang et al., 2018). For example, Nakov (2008) paraphrases
implicit relations in noun compounds of sentences in a source language to generate new
sentence variants that are combined with training data. Further, Zhang et al. (2018)
improve recurrent neural network encoder-decoder models for translations by learning
pairwise relations between words in a source sentence while decoding to a target sentence.

Metaphorical language is ubiquitous in our life, which is typically the use of a word to
an object to which it is not literally applicable such as “The printer died ”, here died is a



Chapter 2. Background and Related Work 17

Figure 2.1: Example of analogical reasoning for completing rule bases. Taken from Schockaert
and Prade (2014).

metaphorically used verb to describe that the printer cannot be restarted (Lakoff and John-
son, 2008). Automatic detection of metaphorical and literal language in discourse has been
extensively studied (Barnden and Lee, 2001; Zayed et al., 2018). Interestingly, metaphors
are similar to analogies since both employ comparisons between two concepts (Gentner et al.,
2001). As such, an implicit comparison in a metaphor can be expressed as an explicit anal-
ogy, e.g., “The printer died ” expressed as person : die :: printer : damage (Turney, 2006).
Consequently, reasoning about relations between words has also its potential applications in
identifying metaphors.

Automatic KG completion is another important area of research in which relation
representations are successfully applied. Numerous studies have shown that representing
entities and relations within a given KG enables predicting missing facts and thus resolves
the poor coverage of such graphs (Socher et al., 2013a; Nguyen et al., 2016; Dettmers
et al., 2018; Bollegala et al., 2019). Similarly, to deal with missing domain knowledge in
rule-based systems, we can use the assumption that analogous changes in the condition
of a rule lead to equivalent changes in the conclusion. Figure 2.1 illustrates an example
of predicting the missing plausible rule (coyote → predator) from a proportional analogy
cat : lynx :: dog : coyote and a given set of if-then rules.

Having discussed the potential applications of relation learning, we now move on to
present the most popular approach for representing relations between words, namely the
pattern-based approach.

2.4 Pattern-Based Approach for Relations

Several methods have been proposed for learning representations that encode the relationship
between two words. This section will introduce the most popular pattern-based strategy
for relations, which essentially relies on the contextual patterns that link pairs of words in
a text corpus. A definition of linguistic patterns in the context of relational information,
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with examples, is discussed in Section 2.4.1. Next, Latent Relational Analysis is presented,
which is a pioneering pattern-based model for relations, followed by other recent variants
of pattern-based relation representation methods. Section 2.4.4 concludes this part of the
chapter by discussing the limitations of the pattern-based approach, which in turn motivate
the work presented later in this thesis.

2.4.1 Relational Patterns

An unstructured text corpus forms an important resource to extract information for numerous
NLP tasks such as relation extraction where the task is to identify the relation that holds
between two named entities (Hearst, 1992; Mintz et al., 2009; Baldini Soares et al., 2019).
The linguistic contexts in which two words co-occur in the corpus provide useful clues
regarding the relations that exist between the two related words. Such contexts that connect
two related entities are expressed as relational patterns. For example, the causality relation
between smoking and lung cancer can be expressed by multiple text spans as follows:
“smoking increases the risk of lung cancer ”, “smoking led to lung cancer ” and “smoking
causes lung cancer ”. Replacing the targeted entities with placeholders produces general
patterns that can be matched with any other pairs of entities. For instance, “X increase
the risk of Y” is a pattern that might match word-pairs such as (smoking, lung cancer),
(obesity, diabetes) and (explosion, damage). Here, X and Y in a pattern refer to the first
and the second entity of a pair, respectively.

Several studies have defined hand-crafted patterns for lexical relations. Hearst patterns
are well-known manually constructed lexico-syntactic patterns for the Hypernym taxonomic
relation (Hearst, 1992). Hearst defines a small set of patterns for hypernym detection;
for example, “X and other Y”, “Such Y as X” and “X is a Y that”. Lexical patterns for
other relations have also been defined such as Meronym (Berland and Charniak, 1999; Girju
et al., 2003), causality (Marshman, 2002) and protein-protein inhibit relations (Pustejovsky
et al., 2001). Later on, the limited pre-defined set of patterns for relations was replaced
by automatic extraction of lexico-syntactic patterns from a text corpus (Snow et al., 2005;
Turney, 2005; Shwartz et al., 2016; Washio and Kato, 2018b; Joshi et al., 2019). Given a
set of entity pairs, the sentences containing the two words in each pair are extracted to
generate the patterns. To increase the precision of the set of patterns, sentences in which
the two words are far apart from each other are not considered because the assumption
is that the longer the distance, the less useful the pattern for the relation. Many features
can be extracted from the patterns—the two popular types are lexico-syntactic surface
tokens (Hearst, 1992; Turney et al., 2003) and dependency paths that give dependencies
between tokens in a pattern (Yangarber et al., 2000; Nakashole et al., 2012; Shwartz et al.,
2016).
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Figure 2.2: An illustration of LRA method for word-pair representations. This Figure is
inspired by Figure 1 in Liu et al. (2017).

2.4.2 Latent Relational Analysis

Latent Relational Analysis (LRA) is a pattern-based method for representing word-pairs by
adopting latent relational hypothesis, which was coined by Turney et al. (2003) and literally
states that: “pairs of words that co-occur in similar patterns tend to have similar semantic
relations”. Figure 2.2 summarises the LRA steps for generating word-pair representations.
The first step in the process of LRA is to align a given set of pairs with a corpus to extract
relational contexts. Then, following the VSM of semantics (Turney and Pantel, 2010),
each pair of words is represented using a vector of pattern frequencies, with the elements
corresponding to the number of different sentences where the two words in a given pair
co-occur with a particular pattern.

A two-dimensional visualisation of word-pair representations using the LRA method can
be shown as indicated in Figure 2.3. We notice that the angle between (ostrich, bird) and
(lion, cat) is much smaller than the angle between either of the pairs and (mason, stone).
Because the number of automatically defined patterns in the pair-pattern matrix is large, a
dimensionality reduction method, such as Singular Value Decomposition (SVD), is applied
to obtain dense and latent representations for word-pairs. This representation allows us
to measure the relational similarity between two given pairs of words by the cosine of the
angle between the corresponding pattern-frequency vectors.
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Figure 2.3: Illustrative visualisation of word-pair vectors. Here axes work with and is a
large are the relational patterns. Three targeted word-pairs are plotted along with their
statistical vectors that indicate co-occurrence frequencies between pairs and patterns.

2.4.3 Other Pattern-Based Methods

Proposed pattern-based methods differ with respect to how they encode pattern features in
relation representations. As seen in LRA, each lexico-syntactic pattern is considered to be a
dimension in the pair-pattern vector space that involves counting statistical co-occurrences
for feature values. In recent years, with the emergence of deep learning, the focus in
pattern-based relation representations has shifted to the use of neural networks. Hashimoto
et al. (2015) and Fan et al. (2015) represent relations by averaging word embeddings for the
words that occur in between a and b (more details on word embedding models is presented
in Section 2.5.1). Along similar lines, in a semantic vector network model (SeVeN) that is
proposed by Espinosa-Anke and Schockaert (2018), a relation vector for a word-pair (a, b) is
defined as the average of the word vectors of the corresponding words in the surface patterns
that match a and b augmented with a and b word vectors. On the other hand, Jameel et al.
(2018) learn global relation vectors by optimising an objective function that can approximate
the 3-way co-occurrence statistics between the word pair (a, b) and each context word that
occurs with the pair in a sentence. Rossiello et al. (2019) learn relation representations of
entity pairs by first aligning pairs in a KG to a corpus to extract sentences in which the
pairs co-occur, then learning pair embeddings by predicting the analogy between entity-pair
sentences.

The above-mentioned methods, along with LRA, require word-pairs to co-occur frequently
in a corpus, which is a strong condition that suffers from the limitations explained in the
following section.
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2.4.4 Limitations of Pattern-Based Semantic Spaces

The majority of the previously discussed pattern-based methods for relation representations
achieve successful performance on different relation-specific tasks. For instance, the LRA
model achieved human-level performance for measuring relational similarity on the SAT
multiple-choice word analogy questions. The global relation vectors proposed by Jameel
et al. (2018) record the best result in relation induction, which is a binary classification
task to decide whether a test pair is related in the same way as the pairs in a given set
of word-pairs, compared to other relation representation methods. SeVeN also reports
an increase in the performance of text categorisation and sentiment analysis tasks when
individual word representations are augmented with their proposed relation vectors.

Although the use of relational patterns has shown good performance when it comes
to representing the semantic relations between two words, this approach suffers from data
sparseness. In the pair-pattern matrix, most of the elements have zero occurrences because
most related words co-occur only with a small fraction of the extracted patterns. This
problem necessitates some form of a dimensionality reduction in practice. Besides, such
pattern-based methods require two words to co-occur in a specified window to extract
patterns and thus to represent the pair. However, not every related pair co-occurs even in a
large corpus (as shown in Figure 1.1). Therefore, pattern-based approaches fail to handle
such unobserved but related words. Co-occurrences of word-pairs in sentences might also
not be relevant for characterising the considered relation, an issue that typically leads to
noisy relation representations.

Another limitation of this approach is scalability. For binary relations (relations
between two arguments), the representation size in pair-pattern matrix grows quadratically
with the number of words in the vocabulary. Therefore, it is computationally costly,
especially if the vocabulary size is very large (> 106) and new words are continuously
proposed because for each new word we must pair it with existing words in the vocabulary.
Furthermore, a continuously increasing set of patterns is required to cover the relations that
exist between the two words in each of those word-pairs.

In addition to the drawbacks mentioned above, the pattern-based approach loses gen-
eralisation ability. The majority of pattern-based methods assign each word-pair a rep-
resentation and would not be able to generate relation representations for newly added
word-pairs.

To overcome the limitations of the pattern-based approach, an alternative methodology
that does not rely on pair-pattern co-occurrences is required. Such alternative methods
must be able to represent the semantic relations that exist between all possible pairings
of words requiring only semantic representations for the constituent words. These sort
of methods are referred to as compositional in this thesis. A reason for this naming is
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because the compositional approach manipulates pre-trained word embeddings learnt from
co-occurrence statistics in a corpus by applying operators that compose word representations
to relation representations. The compositional approach has been inspired by the success of
a new-family of word embeddings in solving analogies (as introduced in Section 1.2). The
next section introduces word embedding models and relational reasoning in word embedding
spaces.

2.5 Relational Reasoning with Word Embeddings

As mentioned earlier in Chapter 1, the work in this thesis seeks to avoid the problems in the
pattern-based approach for representing relations between words, particularly sparseness,
by adopting compositional methods for representing relations. This section will introduce
our motivation for considering such an alternative for representing relations. The section
commences by laying out dominant word representation models in Section 2.5.1 before
moving to examine how relational information can be captured from the learnt word
representations in Section 2.5.2. Then, Section 2.5.3 reviews some theoretical insights that
explain the behaviour of word embeddings in solving analogies. Limitations of relational
reasoning with word embeddings are discussed in Section 2.5.4. Finally, Section 2.5.5
presents efforts made to employ word embeddings for various NLP tasks in which relational
reasoning is required.

2.5.1 Word Embedding Models

Representing the meaning of individual words in a semantic space has been studied exten-
sively since 1996 (Landauer and Dumais, 1997; Lund and Burgess, 1996). Capturing the
meaning of words plays a vital role in the most important advances of NLP applications. In
the 1950s, a linguist called John Firth stated that words borrow their meanings from other
words. Succinctly, this is called the distributional hypothesis of meaning, which states that
“you shall know a word by the company it keeps” (Harris, 1954; Firth, 1957). This theory of
meanings is extremely profound and widely applied in the NLP community. Let us consider
the following example to clarify the idea of this hypothesis.

Question: X is a device that is easy to carry around; you can speak using X and use the
Internet. What could X be?

a doga)

an aeroplaneb)

an iPhonec)

a bananad)
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Here, even without knowing the meanings of the words in the candidate list, we can represent
X by examining its contexts set (i.e., device, carry, speak, Internet, etc.), which functions as
the clues that define the meaning of X. Thus, the correct answer for X that fits the given
contexts is an iPhone. The distributional hypothesis implies that linguistic items (such as
words in our context here) that appear in similar distributions have similar meanings.

In practice, existing word representation methods apply the distributional hypothesis
in various ways on a large text corpus to teach computerised systems the meaning of
words. Typically, each word is represented in term of its surrounding lexical contexts, and
semantically similar words have comparable representations. Having representations of
individual words is important for an unlimited number of computational linguistic tasks,
including word sense disambiguation (McCarthy, 2007; Alsuhaibani and Bollegala, 2018),
relation representation and classification (Glavaš and Vulić, 2018; Anke et al., 2019; Hakami
and Bollegala, 2019a) and compositional semantics (Socher et al., 2013b), to name a few. If
a model captures the meanings of individual words properly, we can then use compositional
approaches to construct the meanings of other constituents such as phrases, sentences,
documents and even relations as in the case of this thesis.

Word representations are generated by diverse methods. Counting-based is a classical
approach for representing words in a vector space, and the generated vectors are referred
to as distributional word vectors. Distributional representations are generally based on
counting co-occurrences between words in a large text corpus. Specifically, a word vector
represents the meaning of a word by a potentially high-dimensional sparse vector, where each
dimension corresponds to a particular word that co-occurs with the word under consideration
in some context. The counting process creates a word-context co-occurrence matrix such
that words that co-occur with similar contexts will obtain a similar distribution in the matrix.
The counting-based approach suffers from various issues, such as the imbalance of word
frequencies due to rare and frequent words, which is addressed by weighting the raw values
using an association measure such as Point-wise Mutual Information (PMI) or a log-likelihood
ratio (Church and Hanks, 1990). Another issue associated with this approach is the high-
dimensional space due to large vocabulary size. To combat the curse of dimensionality in
the co-occurrence matrix (≈ X ∈ R105×105), dimensionality reduction techniques are applied
to the matrix to generate denser representations while preserving the similarity between the
two representations. The most widely used and effective dimensionality reduction methods
are SVD, Principle Component Analysis (PCA) and Nonnegative Matrix Factorisation
(NMF). This process of obtaining semantic representations of words by applying such
reduction techniques on the co-occurrence matrix is termed Latent Semantic Analysis
(LSA) (Deerwester et al., 1990).
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Recently, a new family of word representation (a.k.a. embedding1) methods that
are prediction-based have gained attention due to advances in neural networking tech-
niques. Rather than counting co-occurrences between words, each word w is assigned a
low-dimensional vector (10 ∼ 1000 parameters) of random numbers; its parameters are
then learnt such that we can accurately predict the words that appear in the same context
as w. Compared to the observed contextual features of distributional representations,
prediction-based methods yield to distributed representations with latent features that
jointly represent the space efficiently. Typical models of distributed representations come
from natural language modelling (Bengio et al., 2003; Collobert et al., 2011; Mikolov et al.,
2013c).

The most popular and successful word embedding models of the prediction-based ap-
proach are Continuous Bag-of-Words (CBOW) and Skip-Gram (SG) (Mikolov et al., 2013b,a),
Global Vector Prediction (GloVe) (Pennington et al., 2014) and FastText (Bojanowski et al.,
2017). Similar to counting-based methods, these models require a large text corpus to learn
efficient representations in an unsupervised fashion because the corpus is basically unanno-
tated. In other words, there is no need for hand-labelled supervision to train prediction-based
word embedding models. The following sections describe in detail the prediction-based word
embedding models utilised in this thesis.

CBOW and SG models

CBOW and SG models learn word representations by considering the task of predicting
words that co-occur in a local contextual window. Whereas CBOW is learnt to predict a
target word given its context, the SG model predicts the surrounding window of context
words of the target word. The two models are widely referred to as Word2Vec, which is a
tool used for learning CBOW and SG word vectors.

The CBOW model is described briefly as follows. Initially, each word w in the vocabulary
is assigned with two vectors one as a target (denoted as w) and the other as a context word
(denoted as w̃). Given a sentence “I had bread and butter for breakfast”, suppose we are
interested in learning a semantic representation for the word butter (ith target word wi)
considering the set of context words C = {wi−1, wi−2, wi+1, wi+2} in a window of size l = 2

to left and right sides. The aim is to learn vectors encoding that given the context words
{I, had, bread, breakfast}, it is more natural that the missing target word is butter rather
than the word pen, for instance. To do so, the model seeks to maximise the probability of
predicting butter among other words in the vocabulary. The likelihood of the word butter
co-occurring in the given context words (p(wi | C)) can be modelled using the dot product
between corresponding word vectors normalised to be in a range [0, 1]. The word embeddings

1The terms representation and embedding are used interchangeably throughout this thesis to refer
meaning representations.
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of the context words in a specified window are averaged in the CBOW model, ignoring word
order. However, it is computationally expensive to consider all the words in the vocabulary
when predicting a target word. Thus, to reduce the complexity of such computations, two
different training algorithms have been proposed, namely, hierarchical softmax and negative
sampling. The CBOW objective function to be maximised with negative sampling is defined
in (2.1).

J =
1

T

T∑
i=1

log σ

wi
>
∑
−l≤j≤l

w̃i+j

+
∑

w′∈S(V)

log σ

−w′> ∑
−l≤j≤l

w̃i+j

 (2.1)

Here, T is the number of tokens in the corpus, V is the vocabulary of words and S(V) is the
set of negatively sampled target words from V . While parsing the text, the defined objective
would maximise the probability of predicting the observed target word in the given context,
whereas minimising the probabilities of negative words in that context. The SG is a reverse
of the CBOW model as it considers p(wi+j | wi), which is the probability of observing the
context word wi+j given the ith target word wi. This probability will be computed for each
context word around wi in a window of size l (i.e., −l ≤ j ≤ l, j 6= 0).

GloVe model

The global vector prediction model combines the properties of counting- and predicting-based
methods. As indicated by the model name, GloVe takes advantage of global co-occurrence
statistics between words while predicting their embeddings instead of local co-occurrences
as in CBOW and SG. Specifically, GloVe first builds a co-occurrence matrix between words
and then learns embeddings for the words such that by using the inner product between the
corresponding embeddings, we can approximate the logarithm of the co-occurrence counts
between the words. The least-square objective function of the GloVe to be minimised is
defined in (2.2).

J =

|V|∑
i,j=1

f (Xij)
(
wi
>w̃j + bi + b̃j − logXij

)2
(2.2)

Here, wi is the vector representing the ith target word, w̃j is the vector for the jth context
word, and |V| is the number of words in the vocabulary. bi and b̃j are biases vectors
associated with each target and context words. The co-occurrence matrix is denoted by
X, where Xij is the number of times wi co-occurs with wj in the corpus (only nonzero
elements are considered while training). f is a weighting function that aims to reduce the
impact of frequent co-occurrences in X. The weighting function f is parametrised by xmax
(normalisation factor) and α (for nonlinearity), and defined in a way to be in a range [0, 1]
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as follows:

f(x) =

(x/xmax)α if x < xmax

1 otherwise
(2.3)

Earlier described word embedding models (CBOW, SG and GloVe) are considered
context-free because, by the end of the training, each word is assigned a single representation
considering its distribution among the entire corpus. Recently, from 2018 onwards, the
interest in this field has been directed towards what is called contextualised word represen-
tation models. After pre-training such models on a corpus considering different language
modelling tasks, a representation is given to a word based on a given contextual window
(e.g., sentence) in which the target word appears. For instance, the word bank would have
two embeddings for each of the two given sentences: “I accessed the bank account” and “I
waded to the bank and picked up my shoes”. In light of the previous example, contextualised
embeddings can handle the polysemy issue. ELMo Embeddings from recurrent neural
network Language Models (Peters et al., 2018) and BERT Bidirectional Encoder Repre-
sentations from Transformers (Devlin et al., 2019) are pioneering models of contextualised
word embeddings that are fine-tuned successfully on variety of NLP downstream tasks such
as question answering and lexical entailment. It is worth noting that at the time of working
for this thesis, contextualised word embedding models had not emerged yet. Moreover, the
study of this thesis seeks to model a target relation between words without requiring the
relational patterns at inference time to avoid the sparsity problem; thus contextualised word
embeddings were not of our interest at this stage.

Having understood word embeddings and how they are generated, the next section
moves on to discuss relational reasoning with pre-trained word embeddings.

2.5.2 Relations as PairDiffs: A Compositional Approach

Generally speaking, the earlier-mentioned word embedding models seek to map semantically
similar words to nearby points in semantic space of representations. A proof of this concept
is that word representations are primarily evaluated using a semantic similarity task, which
measures the attributional similarities between words and compares with gold-standard
human scores. Several word similarity datasets, such as WS353 (Finkelstein et al., 2002),
MC (Miller and Charles, 1991) and MEN (Bruni et al., 2012), have been established as
benchmarks for predicting the semantic similarity between words. Two words that share
an identical set of attributes (such as car and automobile) should have a high degree of
attributional similarity and thus can be considered to be synonyms. However, two concepts
can also be similar according to a different notion of similarity. As noted by Hill et al.
(2015), these benchmarks include word-pairs with high scores because they are associated or
related by a specific relation type. For instance, in the WS353 dataset, (media, radio) and
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(cup, coffee) are assigned values of 7.42 and 6.58, respectively. The two words in these pairs
are not purely attributionaly similar, but they are related by either Hypernym as in (media,
radio) or content-container as in (cup, coffee).

Research in word representations moved to evaluate such representations using a different
notion of similarity between words, referred to as a relational similarity (Turney, 2006;
Jurgens et al., 2012). For example, rather than focusing on how similar France is to Italy as
countries, they wanted to assess whether Paris is related to France in the same way that
Rome is related to Italy. They convert these four words into the following question: “What
is the word that is related to Italy in the same way as Paris is related to France?”. This
analogy question between two word-pairs is formally written as France : Paris :: Italy :?,
where the correct word to complete such an analogy is Rome because Paris is the capital-of
of France as Rome is the capital-of Italy. In addition to the semantic kind of analogies as in
the previous example, analogies of morphological forms of words show another interesting
way of associations between words. For example, kings to king as queens to queen, small to
smallest as big to biggest. For this sort of evaluation, several benchmarks have been proposed,
such as MSR syntactic analogies (Mikolov et al., 2013c) and Google analogies (Mikolov
et al., 2013a).

The hypothesis that will be tested while answering analogical questions is whether
semantic spaces of pre-trained word embeddings encode implicit relationships between words.
Mikolov et al. (2013c), in their widely cited work, show remarkable success in demonstrating
a relationship between two words by subtracting the two corresponding word vectors. In
other words, the vector offsets of word-pairs that exemplify a particular relationship are
almost parallel. Mikolov et al. (2013c) refer to this property as linguistic regularities in the
semantic spaces and they illustrate such regularity as presented in Figure 1.2 that shows
Opposite-Gender and Singular-Plural word-pairs, which can be mathematically written as:

woman−man ≈ queen− king ≈ aunt− uncle

kings− king ≈ queens− queen

We denote this operation as PairDiff throughout this thesis, which means the difference
between two vectors in a pair. Hence, to answer the question man : woman :: king : d,
PairDiff is applied for each pair in the two sides of the analogy to find the missed word d
as in (2.4). Then, using the nearest neighbour search between d and embeddings of other
words in the vocabulary considering cosine similarity scores, the closest word to d is selected
as the answer.

woman−man = d− king

woman−man+ king = d (2.4)
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(a) Country-Capital (Mikolov et al., 2013b)

(b) Male-Female (Pennington et al., 2014) (c) Company-CEO (Pennington et al., 2014)

Figure 2.4: Tow-dimensional visualisation for selected word-pairs of pre-trained SG (a) and
GloVe embeddings (b and c). These figures are taken from the original papers.

As presented in Figure 2.4, visualisations of two-dimensional projection for selected
word-pairs of SG and GloVe embeddings emphasise the regularity of word-pairs that belong
to the same relation under the PairDiff method. Word representation models that are
proposed after the emergence of this property adopt solving word analogical questions as a
new intrinsic evaluation method (Schnabel et al., 2015). This remarkable property of word
embeddings also sparked a renewed interest in methods that compose relational embeddings
from word embeddings, as in the case of this thesis. This approach for representing relations
between words is called compositional, throughout the thesis, because the way in which the
relation representation is composed using the semantic representations of the constituent
words avoiding the need for relational patterns.
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Intuitive explanation of PairDiff. Let us think about word embeddings and then
consider their difference to represent relations. For low-dimensional word embeddings such
as CBOW, SG and GloVe, dimensions are latent in the sense that they do not correspond
to known features. A collection of d dimensions altogether defines the meaning of a concept
from co-occurrence information, as described in Section 2.5.1. In this regard, the embedding
vector king represents the word king in terms of its most salient features within the
dimensions of the vector. Thus, king ∈ Rd (d usually set to be in a range [50, 1000]) has
high values in dimensions corresponding to royalty, masculinity and any feature related
to humanity. On the other hand, royalty dimensions are assigned low values in the vector
of man, whereas we expect high values for masculinity and humanity features as in king.
Intuitively, subtractingman from king would cancel out2 the features of man that are king-
specific, and retaining the features that distinguish a royalty. Similarly, we can think about
the operation of queen−woman. This is how PairDiff derives relational representations
from word embeddings.

However, NLP researchers considered the ability to reason about relations by manipulat-
ing pre-trained word embeddings as being purely coincidental because:

• word embeddings are not explicitly trained to capture such relational information
between words; and

• when Mikolov discovered this remarkable property, there was no theoretical under-
standing of why this has to happen.

In response to this, there have been some papers that attempt to provide formal analysis to
understand this interesting property in word semantic spaces, as will be seen in the next
section.

2.5.3 Theories of Word Embedding Geometrics for Word Analogies

The first attempt that explains regularities for word analogies was with the release of
GloVe word embeddings. Due to the fact that the GloVe model works on factorising global
co-occurrence statistics between words, their intuition was that some aspect of meaning for
two words could be inferred from the ratio of co-occurrence probabilities. To explain this,
we can take the dominant word-pair (man, woman) as an example. The relation between
man and woman can be expressed as the probability ratio p(w|man)

p(w|woman) among various words
w in the vocabulary. For gender-related words w, the ratio will be large for masculinity
words (he) and small for femininity words (she), whereas for gender-neutral words the ratio
would be almost close to 1. The ratio scores allow discriminating relevant from irrelevant

2It is unlikely a dimension has the same value in both words, so the difference vector will still have some
nonzero value left in the dimension.
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contexts from the two target words, and thus the ratios of related word-pairs are expected
to be similar as in (2.5).

p(w | man)

p(w | woman)
≈ p(w | king)

p(w | queen)
≈ p(w | uncle)

p(w | aunt)
(2.5)

Pennington et al. (2014) designed the GloVe objective in (2.2) in a way that the ratio of
co-occurrences between words is encoded in the word vector space using vector differences.
Although explicitly designing the word space in such a way improved the performance of
the word analogy task, the authors do not substantiate their conjecture with mathematical
analysis or empirical validation.

There have been few notable formal explanations of why king −man+woman ≈
queen within word embedding spaces, starting with the latent variable text generative
model (Arora et al., 2016), which is used to provide a theoretical analysis of the close
approximation between the PMI co-occurrence matrix and its low-ranked SVD. The central
assumption used in the theory of Arora et al. is the isotropy of word embeddings in a space,
verified empirically in their paper. A critical implication from their proposed model and
theory, in the extent of the compositional-based approach, is that relations represent lines
in low-dimensional word embedding space. Namely, from the ratio of probability suggested
by Pennington et al. (2014), they show that a relation is represented by a vector such that
the PairDiff vectors for all word-pairs of this relation are similar to the relation vector with
a small amount of noise. Ethayarajh et al. (2019) thoroughly analysed why and when word
analogies can be solved using SG and GloVe word embeddings. They assign the success of
linear analogies within a set of word-pairs to co-occurrence statistics between words over a
training corpus used to learn word embeddings. Along with the same word-pair set example
{(king, queen),(man, woman)}, they theoretically and empirically validate that a specialised
PMI (termed co-occurrence shifted PMI) has to be the same for (king, queen) and (man,
woman) in order for the differences king − queen and man−woman to be identical.

Differently, Allen and Hospedales (2019) explain why word embeddings should show
analogies using a paraphrasing model under word transformations. They provide evidence
for the linear combinations (additions and subtractions) of embeddings using two sets of
words that are paraphrasing each other, which mean they have the same distributions over
context words. For example, king paraphrase {man,royal}. Allen and Hospedales (2019)
give a probabilistic definition of paraphrasing that is applied to justify why analogies hold.
The analogy “man is to king as woman to queen” indicates the existence of a paraphrase
between the two sets {woman, king} and {man, queen} through word transformations from
man to king and from woman to queen. A transformation can be chosen to be parametrised
by adding king and subtracting man to move from one word to another. Along a similar
line, Gittens et al. (2017) explain word analogies by studying the additive compositionality
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in SG embedding space with a strong assumption that word frequencies are uniform in a
corpus.

All the aforementioned theoretical understanding of why word analogies can be solved us-
ing pre-trained word embeddings is essential to eliminate surrounding queries for compositional-
based methods for relations, which in turn support the conducted research in this thesis.
However, these research studies focus on providing explanations that support linear com-
binations of word embeddings towards solving analogies, considering the success of the
initial hype. The work conducted in this thesis goes beyond the scope of the linear additive
combinations for relation representations in different ways. For instance, a theoretical
analysis for a bilinear operator between word embeddings to represent relations for word-
pairs is conducted, as will be presented in Chapter 4. Also, different models that learn
parametrised compositional operators for relations between words using neural networks
with nonlinearities are proposed in Chapter 5 of this thesis.

2.5.4 Criticisms of PairDiff Method

The PairDiff approach for word analogies has attracted a significant amount of attention in
terms of validating its success for reasoning about relations empirically considering multiple
views. Most prior work is devoted to analysing the ability of PairDiff towards completing
word analogies as coined by Mikolov et al. (2013c), whereas some others test the utility of
PairDiff vectors for learning relations (Levy et al., 2015b; Vylomova et al., 2016; Chen et al.,
2017).

Investigating the power of PairDiff for answering analogy questions (i.e., a : b :: c :

?), Linzen (2016) and Rogers et al. (2017) attribute a large percentage of the success of
PairDiff to the lexical similarities between the words in the question. Returning to the
well-known example in (2.4), they show that the correct answer to man : woman :: king :?

is predicted to be queen because queen is the nearest neighbour to king in an embedding
space regardless of the offset vector woman −man. Although PairDiff performs well
on the Google analogy dataset, which is used initially for the evaluation of PairDiff, its
performance for other relation types such as paradigmatic relations (Hypernym, Synonym,
Antonym) has been poor (Köper et al., 2015; Gladkova et al., 2016). In response to these
limitations, alternative methods have been proposed to resolve analogies, indicating that
relational properties that cannot be extracted by one method from word embeddings can be
accessed by another method (Levy and Goldberg, 2014; Drozd et al., 2016).

Even though answering analogies from word embedding motivates the work conducted
in this thesis, it is worth noting that the focus is tended on representing features of relations
that hold between two words within a given pair rather than analogy completion. In this
regard, Vylomova et al. (2016) test the generalisation of the PairDiff vectors across different
kinds of relations by evaluating the space of PairDiff in their own right under unsupervised
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(clustering) and supervised (classifying word-pairs to relation types) settings. Considering
a broad coverage of relation types outside those in the Google dataset, they conclude
that important information about relations is implicitly embedded in PairDiff vectors.
However, they show that syntactic relations are clustered better than semantic relation
types. Whereas Vylomova et al. (2016) show that word-pairs can be classified accurately to
relations by training a supervised classifier on PairDiff vectors, Levy et al. (2015b) argue
that the learnt method considers individual word properties such as a prototypical hypernym
rather than learning relations between words. Similarly, Fu et al. (2014) report that the
hypernym-hyponym link between words is more complicated, and a single offset vector cannot
completely represent it.

The space of unsupervised operators that are proposed so far in the literature is limited
in the sense that the operators are pre-defined and fixed, and they cannot be adjusted
to capture the actual relations that exist between words. It is unrealistic to assume that
the same operator can represent all relation types from the word embeddings learnt from
different word embedding learning algorithms. On the other hand, there are many datasets
such as SemEval 2012 Task2, Google analogies and MSR analogies that already provide
examples of the relation types that exist between words. Motivated by this, it has been
proposed to learn parametrised relational compositional operators using word embeddings,
as will be presented in Chapter 5.

2.5.5 Learning Relational Tasks via Word Embeddings

Since the success of solving word analogy, as first proposed by Mikolov et al. (2013c), several
efforts have been made to use unsupervised word embeddings for tasks in which accurately
capturing relational features is critical to improving performance. These relational tasks
include word analogies (Levy and Goldberg, 2014; Drozd et al., 2016; Bouraoui et al., 2018),
relation classification (Attia et al., 2016; Glavaš and Ponzetto, 2017; Glavaš and Vulić, 2018;
Wang et al., 2019b), hypernym generation (Fu et al., 2015; Yamane et al., 2016; Wang et al.,
2019a) and bilexical prediction (Madhyastha et al., 2014, 2015; Gupta et al., 2017).

Most of the work in the literature tends to classify word-pairs into relation types
from a pre-defined relation set via embeddings of words in the pairs. In a direct way,
supervised classifiers have been learnt using distributional features of word-pairs to predict
relation labels, wherein word-pairs (a, b) are presented to a classifier as a composition of
a and b embeddings (Vu and Shwartz, 2018). Wang et al. (2019b) assign probability
distribution over relation types for unlabelled word-pairs (a, b) by training a classifier on
features taken from learnt relation-specific projection matrices from source word embeddings
(i.e., a) to target word embeddings (i.e., b) of labelled training pairs. Then, they learn
relation vectors (spherical relation embeddings as they express) such that these vectors
can predict the neighbour pairs in a sequence of generated pairs. The proposed spherical
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relation vectors outperform multiple pattern-based methods for relation classification. Along
similar lines, Glavaš and Ponzetto (2017) propose a dual tensor model to detect whether an
asymmetric relation holds between word-pairs. Specifically, the dual tensor model learns two
different specialisation tensors (for source and target words), the specialised word vectors are
then mapped through a bilinear relational tensor to predict a confidence score for word-pairs.

Another task in which pre-trained word embeddings are applied successfully is generating
a hypernym word for a given hyponym. Fu et al. (2015) construct a semantic hierarchy
of concepts linked by is-a relation by linearly projecting hyponyms to their hypernym
embeddings within a cluster of PairDiff vectors. Rather than clustering pairs using PairDiff
vectors, Yamane et al. (2016) propose a model that jointly learns to cluster and project
word-pairs.

For word-level bilexical prediction, Madhyastha et al. (2014) learn a low-ranked bilexical
operator between the embeddings of words in pairs sharing a given relation so that they
can predict a modifier for an unseen noun among a vocabulary, such as predicting electronic
as a better modifier for device than case. Similarly, Gupta et al. (2017) study the ability
of word embeddings for predicting embeddings for missing entities in a KG by training a
nonlinear feed-forward neural network. Ethayarajh (2019) also learn linear and orthogonal
transformations in word embedding spaces such that a word a can be transformed to b
where a relation r holds between a and b.

This thesis addresses the more general task of learning compositional operators on word
embeddings to obtain representations for relations between words. Unlike this approach,
all the efforts mentioned above use word embeddings for specific tasks instead of broadly
mapping word-pairs to relation embeddings. Having stand-alone representations for relational
features between words can enrich features of word embeddings and thus improve the
performance of a variety of downstream NLP tasks such as textual entailments, machine
translation and question answering. Also, relation representations allow us to conduct all of
the earlier mentioned tasks as the evaluations carried out for this thesis.

2.6 Complementarity of Pattern-based and Compositional Ap-
proaches for Relations

As elaborated in Section 2.4.4 and 2.5.4, both pattern-based and compositional approaches
for representing relations suffer from significant drawbacks. While the pattern-based methods
such as LRA efficiently leverage patterns that link related concepts, they fail with respect
to representing unobserved related pairs. On the other hand, the compositional PairDiff
method may able to represent such related but unseen pairs; still, they indirectly utilise
the relational properties because they consider global contextual statistics for each word
to learn relations. However, the two approaches have complementary properties when it
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comes to representing relations. Hence, there is a need for hybrid approaches that provide a
balance between the data sparsity in the pattern-based methods and the lack of relational
information in the compositional approach.

A limited number of studies have attempted to address this requirement for various
relational tasks. To measure relational similarity, Zhila et al. (2013) combine heterogeneous
models, including distributional word embeddings and lexical patterns. They show that
the compositional method, which uses the PairDiff, reported encouraging results for many
relation types in the SemEval-2012 task 2 dataset. Shwartz et al. (2016) and Shwartz
and Dagan (2016) integrate dependency paths of relational patterns, which are encoded
using recurrent neural networks, and distributional word embeddings to classify word-pairs
to semantic relations. Integrated models boost the performance for the identification of
semantic relations, in contrast to models that employ each source separately.

Few recent studies have been devoted to incorporate the two types of information to
improve the relation representations (Washio and Kato, 2018b,a; Joshi et al., 2019). Washio
and Kato (2018b) extend LRA through proposing an unsupervised relational operator that
is learnt to make the compositional and pattern representations similar using a negative
sampling training objective. During inference time, the proposed method does not need to
access relational patterns for representing word-pairs. The authors also found that their
proposal can be used worthily to predict missing dependency paths between word-pairs
that do not co-occur in a corpus (Washio and Kato, 2018a). Joshi et al. (2019) show
improving in performance when providing such word-pair embeddings, which are obtained
from a hybrid compositional method trained on the two sources of information, to question
answering and cross-sentence natural language inference models.

Previously described hybrid methods for relation representation specialise word vectors
such that relational properties are encoded. Thus, they might fail to represent relations
between unseen words. This thesis contributes towards hybrid approaches to represent
relations by proposing a context-guided relation embedding method, as will be presented in
Chapter 5 (Section 5.3). The parametrised operator we learn generalises in the sense that it
can be applied to any new word-pair or relation type, and it is not limited to the words and
relations that exist in the training data.

Parallel to exploiting texts as a source of relational knowledge, KGs represent another
thread of work for relations. The section below reviews related literature to relational KGs
and representations for KG entities and relations.

2.7 Multi-Relational Knowledge Representations

Let us now move from the expressive and unstructured text-based source of information for
relations to another finger-structured source referred to as knowledge graphs. Chapter 7 in
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this thesis is directed at representing relations between entities in the context of structured
KGs. The remainder of this section is organised as follows, it begins by reviewing the
structure of KGs in Section 2.7.1. Then, knowledge graph embedding methods for inferring
missing links within a graph are descirbed in Section 2.7.2.

2.7.1 Knowledge Graphs

KGs organise the knowledge that we have about entities and the relations that exist between
entities in the form of labelled graphs, where entities are denoted by the vertices and the
relations are denoted by the edges that connect the corresponding entities. A KG can be
represented using a set of relational tuples of the form (h, r, t), where the relation r ∈ R
exists between the (head) entity h ∈ V and the (tail) entity t ∈ V such that the direction of
the relation is from h to t. Here, V and R respectively denote the sets of entities and relations
in the KG. For example, the relational tuple (Donald Trump, president-of, US ) indicates
that the president-of relation holds between Donald Trump and US. Freebase (Bollacker
et al., 2008) and WordNet (Miller, 1995) are widely used KGs. Freebase is an example
of social KG of relations between named entities (people, places, etc.), whereas WordNet
is a semantic graph of linguistic relations between words. Other KGs are domain-specific
such as AceKG for academic publications (Wang et al., 2018), Product KG at Amazon for
e-commerce and the UMLS semantic network for the biomedical field. Organising data in
graphs benefits a variety of information extraction and NLP tasks such as relational search
(e.g., Google KG), natural language generation (Koncel-Kedziorski et al., 2019; Logan et al.,
2019) and question answering (Das et al., 2017; Sydorova et al., 2019).

Traditionally, KGs were created manually by specialists in the domain. However, the
cost of constructing such large-scaled graphs is high in terms of time, money and effort
for specialised fields such as biomedicine. Recently, with the advent of machine learning
techniques, automated methods have been proposed to extract relational triples from
unstructured texts and thus help enlarge KGs. Many proposed methods are devoted
to naming entities in unstructured texts and then predicting relations between them
automatically (Mintz et al., 2009; Getoor and Machanavajjhala, 2012; Konstantinova, 2014;
Riedel et al., 2013; Ren et al., 2017; Bosselut et al., 2019). The embedding-based approach
is another technique to increase KGs coverages by embedding KGs into numerical objects
such that reasoning and inference are applied to predict missing links and classify triples.
More details about knowledge graph embedding methods are discussed in the following
section.
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Table 2.1: Score functions proposed in selected prior work on KGEs. Entity embeddings
h, t ∈ Rd are vectors in all models, except in ComplEx where h, t ∈ Cd. Here, `1/2 denotes
either `1 or `2 norm of a vector. In ComplEx, t̄ is the element-wise complex conjugate.

KGE method Score function Relation
f(h, r, t) parameters

Unstructured(Bordes et al., 2011) ||h− t||`1/2 none
Structured Embeddings SE (Bordes et al., 2011) ||R1h−R2t||`1,2 R1,R2 ∈ Rd×d

Translating Embeddings TransE (Bordes et al., 2013) ||h+ r − t||`1/2 r ∈ Rd

DistMult (Yang et al., 2015) 〈h, r, t〉 r ∈ Rd
RESCAL (Nickel et al., 2011) h>Rt Rd×d

ComplEx (Trouillon et al., 2016) 〈h, r, t̄〉 r ∈ Cd

2.7.2 Knowledge Graph Embeddings

Despite the best efforts to create complete and large-scale KGs, most KGs remain incomplete
and do not represent all the relations that exist between entities (Min et al., 2013). In
particular, new entities are constantly being generated, and new relations are formed between
new as well as existing entities. Therefore, it is unrealistic to assume that a real-world KG
would be complete at any given time point. Developing approaches for KG completion is an
important research field associated with KGs.

Analogous to the word embedding methods discussed in Section 2.5.1, KG components
can be embedded into numerical formats. KGE methods learn representations (also referred
to as embeddings as in the case of word embeddings) for the entities and relations in a given
KG (Bordes et al., 2011; Nickel et al., 2011; Yang et al., 2015; Nickel et al., 2016; Trouillon
et al., 2016). The learnt KGEs can be used for link prediction, which is the task of predicting
whether a particular relation exists between two given entities in the KG. Specifically, given
KGEs for entities and relations, in link prediction, we predict r that is most likely to exist
between h and t according to some scoring formula. Thus, by embedding entities and
relations that exist in a knowledge graph in some (possibly lower-dimensional and latent)
space, we can infer previously unseen relations between entities, thereby expanding a given
KG.

Knowledge Graph Embedding Process

At a high-level of abstraction, KGE methods can be seen as differing in their design choices
for the following two main problems:

(a) how to represent entities and relations using some mathematical entities in linear
algebra, and
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(b) how to model the interaction between two entities and a relation that holds between
them.

Next, we briefly discuss prior proposals to those two problems.
A popular choice for representing entities is to use vectors, whereas relations have

been represented by vectors (e.g., Translating Embeddings and DistMult), matrices (e.g.,
Structured Embeddings and RESCAL) or by 3D tensors as in the Neural Tensor Network
model proposed by Socher et al. (2013a). ComplEx (Trouillon et al., 2016) introduced
complex vectors for KGEs to capture the asymmetry in semantic relations. Given entity and
relation embeddings, a scoring function is defined that evaluates the strength of a relation r
between two entities h and t in a triple (h, r, t). The scoring functions that encode various
intuitions have been proposed such as the `2 norm of the vector formed by a translation
of the head entity embedding by the relation embedding over the target embedding, or by
first performing a projection from the entity embedding space to the relation embedding
space (Yoon et al., 2016). As an alternative to using vector norms for scoring functions,
DistMult and ComplEx use the component-wise multi-linear dot product. Lacroix et al.
(2018) proposed the use of nuclear 3-norm regularisers instead of the popular Frobenius
norm for canonical tensor decomposition. Table 2.1 shows the scoring functions along
with algebraic structures for entities and relations proposed in selected prior work in KGE
learning.

Once a scoring function is defined, KGEs are learnt that assign better scores to relational
triples in existing KGs (positive triples) over triples where the relation does not hold
(negative triples) by minimising a loss function such as the logistic loss (RESCAL, DistMult,
ComplEx) or marginal loss (TransE). Because KGs record only positive triples, a popular
method to generate pseudo negative triples is to perturb a positive instance by replacing its
head or tail entity by an entity selected uniformly at random from the vocabulary of the
entities E . However, uniformly sampled negative triples are likely to be obvious examples
that do not provide much information to the learning process and can be detected by
simply checking for the type of the entities in a triple. Cai and Wang (2018) proposed an
adversarial learning approach where a generator assigns a probability to each relation triple
and negative instances are sampled according to this probability distribution to train a
discriminator that discriminates between positive and negative instances.

In link prediction and triple classification (predicting whether a triple is true or false)
benchmark tasks, impressive results are reported for state-of-the-art KGE methods, with
an 88.8% classification accuracy being achieved for the FB13 benchmark (Nguyen et al.,
2018). Nevertheless, existing KGE models have some limitations as will be discussed in the
following section.
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2.7.3 Limitations of Existing KGE Models

Despite the good empirical performances of the existing KGE methods, the existing scoring
functions are heuristically motivated to capture some geometric requirements of the embed-
ding space. Theoretical understanding of KGE methods is comparatively underdeveloped.
For example, it is not clear how the heuristically defined KGE objectives relate to the
generative process of a KG. This thesis endeavours to fill this gap by providing a theoretical
analysis of KGE. Specifically, a generative model of KGs that derives a relationship between
p(h, t | r) (the probability of r holding between h and t) and the embeddings of r, h and t is
proposed. Then, we propose a learning objective to learn KGEs from a given KG such that
the relationship given by our proven theorem is empirically satisfied. Our analysis is an
extension of the random walk model proposed by Arora et al. (2016) on word embeddings
to KGEs. The developed theoretical model is introduced in Section 6.2.

Noteworthy, the links that can be predicted using all previously mentioned KGEs are
confined to R, which is the set of relation types that already exists in the KG. In other words,
we cannot predict novel relation types using the pre-trained KGEs alone. Relatively, there
is a general paucity of studies that seek to predict representations for novel relations. Ma
et al. (2019) propose TransW that extends the TransE model by predicting embeddings for
unseen relations as well as entities from their word embeddings and thus detecting unknown
facts. This thesis contributes towards solving this problem differently, as will be presented in
Section 6.3. In short, considering the fact that relations that exist in a KG are often closely
related (e.g., born_in ∧ capital_of → nationality), relation composition is proposed, which is
a task of forming an embedding for a new relation type from given relation embeddings.
Several studies have exploited such latent correlations between relations using multi-hop
links between entities (i.e., h r1−−→ e1

r2−−→ t) while learning representations for a KG, rather
than only considering direct links (h r−−→ t) (Lin et al., 2015; Nathani et al., 2019). For
example, Lin et al. (2015) propose Path-based TransE (PTransE) that modify TransE
objective to be ||h+ g(r1, r2)− t||`1/2 , where g is a composition function that outputs a
composed vector for the path. PTransE specifically tunes TransE by jointly learning entity,
relation and path representations, and has been evaluated on existing relations as other
typical KGE methods. However, our proposed relation composition is universal as they are
not parametrised by the entities or relations in a KG.

2.8 Summary

This chapter reviewed relevant background material regarding the task of representing
relations between words considering two different resources, namely text corpora and KGs.
At a text corpus level, related work for representing relations was reviewed which broadly falls
into two approaches: pattern-based, which exploits co-occurrence linguistic contexts of pairs,



Chapter 2. Background and Related Work 39

and compositional, which apply operators on word embeddings. How compositional methods
can resolve the data sparsity drawback in the pattern-based approach was particularly
discussed as it forms a motivation behind most of the work in this thesis. Studies that
criticised the unsupervised PairDiff method for reasoning about relations were also presented.
The last part of the chapter presented KG resources of structured relational knowledge.
KGE methods were introduced as an efficient methodology to combat sparsity in KGs.

The chapter that follows moves on to consider the task of deriving relational features
from word-level representations using unsupervised compositional operators.





3
Deriving Relational Features from Word

Representations

3.1 Introduction

Chapter 2 outlined two approaches for learning relation representations for word-pairs,
namely pattern-based and compositional approaches. Recall that the compositional methods
access relational information between the words using the features in their word embeddings,
which overcomes the sparsity problem in the pattern-based methods. Features that represent
words are typically obtained by applying deep learning methods on a large corpus of text
considering co-occurrences between words either in counting- or prediction-based fashion.
It has been shown that the feature set that encodes word semantics includes features that
are effective to induce relations between words. The first serious discussions of extending
lexical semantics of words to capture relations between words emerged when Mikolov et al.
(2013c) demonstrated linguistic regularities in the vector space of prediction-based word
embeddings. Specifically, the authors found that the relationship between two words can be
characterised by the vector offset of the corresponding word embeddings. The well-known
example is the gender-direction relationship of the two word-pairs: (man, woman) and (king,
queen), where the offset vectors of woman−man and queen− king are shown to be
approximately parallel. This finding sparked a renewed interest in methods that derive
relational features for word-pairs from word embeddings of the related words.

Before the advent of prediction-based word embeddings, Turney (2012) represented
words in a way such that semantic relations between words can be modelled. Specifically,
he constructs two spaces that represent words, namely domain and function spaces which
respectively consisted of nouns and verbs. The author then modelled semantic relations
between two word-pairs (a, b) and (c, d) by measuring domain similarities between a and b
(likewise for c and d), and functional similarities between a and c (likewise between b and d).
For instance, the two word-pairs (carpenter, wood) and (mason, stone) show that each pair

41



42 Huda Hakami

has a relatively high domain similarity. At the same time, carpenter and mason have high
functional similarity because both are artisans, while wood and stone share the function of
materials. Thus we can infer that (carpenter, wood) is relationally similar to (mason, stone).

Motivated by the studies discussed above, this chapter aims to derive relation representa-
tions from the features that represent individual words in different ways. A systematic study
for various compositional operators that can be applied under unsupervised settings on
word embeddings to obtain relation features is conducted. Also, inspired by the heuristically
constructed domain and function spaces in Turney (2012) work, we consider the observed
contextual features from counting-based word representations to propose a data-driven
approach for discovering representative features for relational similarity measurement.

The remainder of this chapter is organised as follows. We first present the word embedding
models that are used in this chapter, and throughout the thesis as well, in Section 3.2.
In Section 3.3, benchmark datasets that are used to evaluate relation representations
are introduced. Then, Section 3.4 is devoted to the conducted study for unsupervised
compositional methods for representing relations from word-level representations. The
task of discovering representative feature spaces from counting-based word embeddings to
measure the relational similarity is discussed in Section 3.5. The chapter is concluded with
a summary in Section 3.6.

3.2 Training Word Embeddings

The study carried out in this thesis for obtaining relation representations assumes the
availability of pre-trained word embeddings. As discussed in Section 2.5.1, deep learning
models have been exploited to learn features that represent words using a large collection of
text. A wide range of models have been proposed to obtain representations for words. In this
chapter (and throughout the thesis), the three widely used prediction-based word embedding
methods are considered, namely CBOW, SG and GloVe. Section 2.5.1 introduced these
word embedding models in detail. For consistency of the comparison, all word embedding
learning methods are trained on the same ukWaC corpus1, which is a web-derived corpus in
English consisting of ca. 2 billion words (Ferraresi et al., 2008). We lowercase all the text
and tokenise using the NLTK tool2, and we use the publicly available implementations by
the original authors of CBOW, SG3, and GloVe4 for training the word embeddings with
the recommended parameters settings. Specifically, in GloVe, the co-occurrence weighting
parameters xmax and α are respectively set to 100 and 0.75, the maximum iteration is 50,
and the contextual window size is equal to 15 words before and after the target word. In

1http://wacky.sslmit.unibo.it/doku.php?id=corpora
2http://www.nltk.org
3https://code.google.com/archive/p/word2vec/
4http://nlp.stanford.edu/projects/glove/

http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://www.nltk.org
https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/
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CBOW and SG, the context window is set to eight words, the negative sampling rate is set
to 25 words for each co-occurrence, 15 iterations, and sampling parameter equal to 10−4.
The vocabulary is restricted to the words that appeared more than six times in the corpus,
resulting in 1,371,950 unique words. Using each of the word embedding learning methods,
we train 300-dimensional word embeddings.

In addition to prediction-based word embeddings described above, counting-based word
representations are also considered in our study. This method assigns each word with a
high-dimensional vector that captures the contexts in which it occurs. Unigram counts from
the ukWaC corpus are first constructed. The co-occurrences between low-frequency words
are rare and result in a sparse co-occurrence matrix. To avoid this issue, the most frequent
50,000 words in the corpus are used as our vocabulary and co-occurrences between only
these words considered. We found that a vocabulary of 50,000 frequent words is sufficient
for covering all the benchmark datasets used in the evaluations. Moreover, truncating
the co-occurrence matrix to the top frequent contexts makes the dimensionality reduction
methods computationally inexpensive. Then, the word-context co-occurrence statistics are
computed from the corpus using windows of size five tokens on each side of the target word.
We weight the co-occurrences by the inverse of the distance between the two words measured
by the number of tokens appearing between the two words. Afterwards, the Positive PMI
(PPMI) is computed from the co-occurrence matrix X ∈ Rn×m (n words in the vocabulary
and m contexts in which they are the same in our settings) as follows:

PPMI(x, y) = max

(
0, log

p(x, y)

p(x)p(y)

)
, (3.1)

where p(x, y) is the joint probability that the two words x and y co-occur in a given
context, whereas p(x) and p(y) are the marginal probabilities. SVD is then applied to
the PPMI matrix, which factorises X as USV>, where S are the singular values of X, U
and V are orthonormal matrices of singular vectors5. U is truncated by keeping only the
sub-matrix of the top d singular values to be the word embedding matrix W ∈ Rn×d (i.e.,
W = Ud). Consistent with Levy et al. (2015a), we empirically find that ignoring the singular
matrix S when generating word embeddings performs better among the evaluated tasks
and datasets. Following the literature, word embeddings with latent dimensions that are
obtained after applying dimensionality reduction on the co-occurrence matrix are referred
to as LSA (Deerwester et al., 1990).

As an alternative dimensionality reduction method, we also apply Nonnegative Matrix
Factorisation (NMF) (Lee and Seung, 2001). Given the co-occurrence matrix X ∈ Rn×m,
NMF computes the factorisation X = GH, where G ∈ Rn×d, and H ∈ Rd×m, and
G ≥ 0,H ≥ 0 (i.e., G and H contain non-negative elements). By setting d < min(n,m), we

5sparsesvd package in python is used for SVD, https://pypi.org/project/sparsesvd/.

https://pypi.org/project/sparsesvd/
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obtain lower d-dimensional embeddings for the rows and columns of X, given respectively by
the rows and columns in G and H. Unlike SVD that generates dense embeddings of small
positive or negative values on most of the dimensions across all word domains, the word
embeddings obtained from NMF are interpretable because of the non-negative constraints
and the sparsity as each word is represented by a small number of active dimensions (Murphy
et al., 2012). By using non-negative sparse word embeddings, we can test the behaviour of
word-level relational features from a different aspect. The pre-trained word embeddings on
ukWaC for all the models are publicly available6.

We experimented using both unnormalised and `2 normalised word embeddings and
found that `2 normalised word embeddings perform better than the unnormalised version in
most configurations of the conducted experiments in this thesis. Consequently, we report
results obtained only with the `2 normalised word embeddings in the remainder of the thesis.

3.3 Relational Similarity: Datasets and Tasks

A natural way to gauge the effectiveness of relational features is to measure the similarity
between two word-pairs. Given two word pairs (a, b) and (c, d), the task is to measure the
similarity between the relations that exist between the two words in each pair. A good
relational representation method assigns a high degree of relational similarity if (a, b) stands
in the same relation as (c, d). This type of similarity is referred to as relational similarity and
is analogous to attributional similarity, which is the correspondence between the attributes
of two objects. Relational similarity measures can be involved in various relational tasks such
as finding analogies, ranking word-pairs in a particular relation, completing proportional
analogies of the form a : b :: c :?, and relation classification. In the following subsections, we
lay out the tasks and the benchmark datasets evaluated throughout this thesis.

3.3.1 Multiple-Choice Analogy Questions: SAT

The Scholastic Aptitude Test (SAT) word analogy dataset contains 374 multiple choice
questions that each includes a word-pair as the stem, and the examinees are required to
select the most analogous word-pair out of four or five candidate answer word-pairs. SAT
is introduced in Turney et al. (2003) as a way of evaluating methods for measuring the
relational similarity. An example is shown in Table 3.1. Typically, we need to measure the
similarity between the relation of the question word-pair and the relation of each of the
candidate word-pairs to select the candidate with the highest relational similarity as the
correct answer. The accuracy metric is used to report performance on the SAT, which is
the ratio of the number of questions answered correctly to the total number of questions

6https://github.com/Huda-Hakami/Word-Embeddings-ukWaC

https://github.com/Huda-Hakami/Word-Embeddings-ukWaC
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Table 3.1: An example question from the SAT dataset. In this question, the common
relation between the stem (ostrich, bird) and the correct answer (lion, cat) is is-a-large.

Stem: ostrich : bird ::

Choices: (a) lion : cat
(b) goose : flock
(c) ewe : sheep
(d) cub : bear
(e) primate : monkey

Solution: (a) lion : cat

in the dataset. Because there are five candidate answers out of which only one is correct,
random guessing would provide 20% accuracy.

3.3.2 Ranking Word-Pairs: SemEval-2012 Task 2

Instances of relations can have different degrees of prototypicality. For instance, according
to human ratings for word-pairs in PART-WHOLE (object: component) relation, “hand :
finger ” is assigned a higher degree to be an instance of the relation compared to “computer :
chip”, which in turn has a higher degree than “movie: scene”. SemEval-2012 Task 27 is a
benchmark dataset that is proposed for measuring the degrees of relational similarity to
rank word-pairs according to the degree to which a relation applies (Jurgens et al., 2012).
This dataset covers ten coarse-grained categories of semantic relations, each with several
subcategories. The dataset includes a total of 79 fine-grained semantic relation types (10 for
training and 69 for testing). Each relation type has approximately 41 word-pairs (not all
are equally good examples for a relation) and three to four prototypical examples. In total,
nearly 3, 464 word-pairs are collected for this dataset across relations. Table 3.2 illustrates
some selected relation types along with the given ranked pairs in SemEval-2012 Task 2.
The task assigns a score to each word-pair, which we compute by averaging the relational
similarity between the given word-pair and prototypical word-pairs in a relation. Following
previous work, the performance is evaluated by its correlation with human judgments using
Spearman correlation across relations or the macro-averaged MaxDiff (Maximum Difference
Scaling).

3.3.3 Analogy Completion: Google and MSR Analogies

An alternative task that involves measuring relational similarity is word analogy completion
of the form: a : b :: c :?. The task is to find the missing fourth word d from a fixed
vocabulary such that the relational similarity between (a, b) and (c, d) is maximised. For

7https://sites.google.com/site/semeval2012task2/
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Table 3.2: Taxonomy of selected semantic relations in SemEval-2012 Task 2 with ranked
word-pairs

Main Category Subcategories Prototypical pairs Ranked pairs (highest to lowest)
Part-Wole Object:Component car:engin, face:nose hand:finger . . . toe:foot

Mass:Portion water:drop, time:moment hour:seconds . . . country:city
Collection:Member forest:tree, anthology:poem army:soldiers . . . album:songs

Class-Inclusion Taxonomic flower:tulip, poem:sonnet weapon:spear . . . insect:ant
Functional weapon:knife, ornament:brooch tool:hammer . . . appliance:fridge
Class Individual river:Nile, city:Berlin ocean:pacific . . . earth:planet

Cause-Purpose Cause:Effect enigma:puzzlement, joke:laughter loss:grief . . . run:sweat
Case:Compensatory Action hunger:eat, fatigue:sleep thirst:drink . . . dizzy:drunk
Enabling Agent:Object match:candle, gasoline:car battery:flashlight . . .match:wood

this task, we use the two datasets of MSR syntactic analogies (Mikolov et al., 2013c),
and Google analogies8 (Mikolov et al., 2013b). MSR analogies contains 8,000 proportional
analogies covering ten different syntactic relations, such as “highest is to high as worst is to ?”
where bad is the correct answer. The Google analogy benchmark contains 19,544 analogical
questions covering nine syntactic and four semantic relation types, corresponding to 10,675
syntactic and 8,869 semantic analogies. The semantic questions are typically analogies about
people or places, such as “London is to England as Madrid is to ?”. We restrict the search
space for the missing word to the words that appear in a large set of vocabulary consisting
of 13,609 words, excluding the three words for each question. Following the literature, we
report the accuracy of answering semantic (sem), syntactic (syn) questions separately, and
also the total (sem and syn) accuracy.

3.3.4 Relation Classification: DiffVec

The DiffVec dataset was proposed by Vylomova et al. (2016), and consists of 12,458 triples
(a, b, r), where word a and b are connected by a relation r. It is called DiffVec (Vector
Differences) because it was initially proposed to evaluate vector differences over a large
set of relation types. The relation set in the DiffVec comprises 15 coarse-grained relation
types including lexical-semantic (e.g., Hypernym, Meronym and Causality), morphosyntactic
paradigm (e.g., VerbPast and SingularPlural) and morphosemantic relations (e.g., Collec-
tiveNoun and Light_Verb_Construction). Some of main relation types are classified into
sub-categories, in total the dataset includes 36 fine-grained relations. Relation types along
with word-pair examples for the DiffVec are shown in Table 3.3, and it is publicly available
for evaluation9.

In this thesis, we evaluate relational similarity on the DiffVec using a relation classification
task. In relation classification, the problem is to classify a given pair of words (a, b) to a
specific relation label r from a predefined set of relations according to the relation that

8http://download.tensorflow.org/data/questions-words.txt
9https://github.com/ivri/DiffVec

http://download.tensorflow.org/data/questions-words.txt
https://github.com/ivri/DiffVec
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Table 3.3: Types of relations and the number of instances for each relation type in DiffVec.

Relation type Sub-relations Example #Pairs

Hypernym _ (tool, knife) 1,173

Meronym _ (tiger,mouth) 2,825

Event _ (fix, oven) 3,583

Collective-Noun _ (army, ants) 2,57

Light-Verb-Construction _ (give, approval) 58

Cause-Purpose EnablingAgent: Object (battery, phone) 34
Cause: Effect (disease, sickness) 38
Agent: Goal (workers, salary) 31
Prevention (antibiotic, infection) 33

Instrument:Goal (aspirin, healing) 29
Instrument:IntendedAction (knife, cut) 20

Action:ActivityGoal (bath, clean) 36
Cause:CompensatoryAction (obesity, exercise) 28

Space-Time Item: Location (aquarium, fish) 27
Location-Process:Product (press, books) 27

Contiguity (frame, photograph) 33
Attachement (gloves, hand) 27
Sequence (inhale, smell) 34

LocationInstrument:AssociatItem (ball, sport) 32
LocationAction:Activity (kitchen, cooking) 21
Time-Action:Activity (morning, breakfast) 34

Reference Plan (map, city) 35
Sign: Significant (alarm, action) 33

Expression (crying, sadness) 31
Representation (song, emotion) 30
Knowledge (anatomy, body) 27
Concealment (encryption, data) 31

Attribute Object: TypicalAction(n.v) (dog, bark) 33
Object:State (n.n) (ice, cold) 32

Action:ObjectAttribute (collect, fee) 6

Syntactic Prefix (adjust, readjust) 118
relations Noun-SingPlur (artist, artists) 100

Verb_past (accept, accepted) 100
Verb_3rd (accept, accepts) 99

Verb_3rd_past (accepts, accepted) 100
VerbNoun_Nominalisation (abet, abetment) 3,303

Total 36 _ 12,458

exists between a and b. For the evaluation, we perform the 1-Nearest Neighbour (1-NN)
classification with leave-one-out cross-validation. The testing set consists of a single word-
pair, and the training includes the remaining word-pairs of a dataset. If the nearest neighbour
has the same relation label as the target word-pair, then it is considered to be a correct
classification. The micro-averaged classification accuracy is computed as the ratio of the
correct matches to the total number of tested word-pairs. We avoid lexical overlaps between
testing and training pairs. For example, given the test word-pair (a, b), we exclude the
training pairs (a, c), (b, c), (c, a) or (c, b), if any.
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Table 3.4: Relation types in BATS dataset.

Semantic Relations Sub-relations Example Syntactic Relations Sub-relations Example

Lexicographic hypernyms-animals (ant, insect) Inflectional noun-plural-reg (car, cars)
hypernyms-misc (cake, dessert) noun-plural-irreg (academy, academies)
hyponyms-misc (weapon, gun) adj-comparative (cheap, cheaper)

meronyms-substance (jam, fruit) adj-superlative (huge, hugest)
meronyms-member (tree, forest) verb-inf-3pSg (accept, accepts)
meronyms-part (apartment, bedroom) verb-inf-Ving (add, adding)

synonyms-intensity (cat, lion) verb-inf-Ved (accept, accepted)
synonyms-exact (child, kid) verb-Ving-3pSg (adding, adds)

antonyms-gradable (big, small) verb-Ving-Ved (agreeing, agreed)
antonyms-binary (after, before) verb-3pSg-Ved (agrees, agreed)

Encyclopedic country-capital (Beijing, China) Derivational noun+less-reg (arm, armless)
country-language (Cuba, Spanish) un+adj-reg (able, unable)
UK_city-county (Liverpool, Lancashire) adj+ly-reg (global, globally)
name-nationality (Hawking,British) over+adj-reg (excited, overexcited)
name-occupation (Edison, inventor) adj+ness-reg (aware, awareness)
animal-young (cat, kitten) re+verb-reg (adjust, readjust)
animal-sound (dog, bark) verb+able-reg (edit, editable)
animal-shelter (bee, hive) verb+er-irreg (bake, baker)
things-color (coal, black) verb+tion-irreg (accuse, accusation)
male-female (king, queen) verb+ment-irreg (agree, agreement)

Total 20 1,000 20 1,000

3.3.5 Bigger Analogy Test Set

Bigger Analogy Test Set (BATS) is a dataset of word-pairs that is proposed by Gladkova
et al. (2016), and it is publicly available10. BATS has relational instances that are classified
into four main relation types, namely, lexicographic semantics, encyclopaedic semantics,
inflectional morphology and derivational morphology. Each relation type is divided into ten
subcategories of which each includes 50 word-pair examples. In total, BATS includes 40
relation types and 2,000 relational instances. Relation types along with word-pair examples
taken from BATS are shown in Table 3.4. As with the DiffVec dataset, we use the relation
classification task when evaluating on BATS.

3.4 Unsupervised Compositional Approaches for Relations

There is a considerable number of literature around representing large linguistic units,
such as phrases and sentences from word-level representations, which is referred to as
compositional semantics (Mitchell and Lapata, 2008; Baroni and Zamparelli, 2010; Socher
et al., 2013b). However, the problem of representing the meaning of a sentence differs from
the problem of representing the relation between two words, in several important ways.
First, a sentence would often contain more than two words, whereas we consider word pairs
that always contain precisely two words. Second, a good sentence representation must
encode the meaning of the sentence in its entirety, ideally capturing the meanings of salient

10http://vecto.space/projects/BATS/

http://vecto.space/projects/BATS/
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content words in the sentence. On the other hand, in relation representation, we are not
interested in the meanings of individual words, but the relationship between two words in a
word pair. For example, given the word pair (ostrich, bird), the semantics associated with
ostrich or bird is not of interest to us. Instead, we want to represent the relation is-a-large
that holds between the two words in this example. Most of the compositional operators that
have been proposed in prior work on sentence representations, such as vector addition or
element-wise multiplication, could be used to create relation representations for word-pairs,
but there is no guarantee that the same operators that have been found to be effective for
sentence representation will be accurate for relation representation. As we see later in this
chapter, vector offset, which does not scale up to sentences turns out to be a better operator
for relation representation.

To the best of our knowledge, there have been few systematic studies devoted to
exploring the best compositional operator to be applied on word embeddings for relation
representations. For example, the Gábor et al. (2017) study explores various vector and
similarity combinations on a semantic space of word embeddings for measuring relational
similarity. However, the authors do not represent relations in any way. Weeds et al. (2014)
compare different combinations on word representations to train a classifier that distinguish
hypernym and co-hypernym relation types. In response to this gap, a comprehensive study for
unsupervised compositional operators that can be applied on pre-trained word embeddings
to obtain word-pair representations is performed. The study presented in this section is
limited to unsupervised functions that are nonparametric (i.e., they do not have learnable
parameters), and are applied to word embeddings trained in an unsupervised fashion.
Parametric functions that require training data for computing the optimal values of the
parameters for composing relation representations from word embeddings are beyond the
scope of this chapter.

The contributions made in this work can be summarised as follows. We conduct
an empirical comparison of the compositional operators (offset, concatenation, addition
and element-wise multiplication) to derive relational features between words from word
embeddings. Following related work, these operators are called unsupervised methods for
constructing relation representations. We investigate the performance of these operators
by measuring the relational similarity between word-pairs for multiple relational tasks and
benchmark datasets that were introduced in Section 3.3. We examine how the performance of
different compositional operators are affected by the models used to obtain word embeddings
and the dimensionality of such embeddings. The extent to which the PairDiff operator can
encode relational directionality is also considered.

This section is organised as follows. Section 3.4.1 defines the compositional operators
that are evaluated for relations between words. Next, experimental results for the introduced
relational datasets are discussed in Section 3.4.2. Section 3.4.3 breakdowns the performance
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by relation types. The effect of the dimensionality of a word embedding space has been tested
for relation learning as presented in Section 3.4.4. Section 3.4.5 presents the evaluation of
relations directionality under PairDiff. In Section 3.4.6, we investigate the extent to which
word embeddings learnt from a corpus can benefit relation predictions in KGs applying the
unsupervised compositional operators.

3.4.1 Unsupervised Compositional Operators

Our goal is to compare different compositional operators for composing representations of
the relation between two words given the corresponding word embeddings. We assume that
pre-trained word embeddings are provided, and the task is to use these word embeddings to
compose relation representations. Specifically, given a word-pair (a, b), consisting of two
words a and b, represented respectively by their embeddings a, b ∈ Rd, we evaluate different
compositional operators/functions that return a vector r ∈ Rδ given by (3.2) representing
the relationship between a and b.

r = f(a, b) (3.2)

We use the following operators to construct r for a given word-pair (a, b):

PairDiff: The pair difference operator has been used by Mikolov et al. (2013c) for detecting
syntactic and semantic analogies using offset vectors. For example, given a pair of
words (a, b), they argue that (b − a) produces a vector that captures the relation
existing between the two words a and b. Under the PairDiff operator, a resultant
relation representation vector has the same dimensionality as the input vectors. The
PairDiff operator is defined as follows:

r = (b− a) (3.3)

PairDiff captures the information related to a semantic relation by the direction of
the resultant vector. Similar relations have shown to produce parallel offset vectors in
prior work on word embedding learnings (Pennington et al., 2014). Such geometric
regularities are useful for NLP tasks, such as solving word analogies (Mikolov et al.,
2013c; Levy and Goldberg, 2014).

Concat: The linear concatenation of two n-dimensional vectors a = (a1, . . . , an)> and
b = (b1, b2, . . . , bn)> produces a 2n-dimensional vector r given by,

r = (a1, a2, . . . , an, b1, b2, . . . , bn)>.

Here, r can then be used as a proxy for the relationship between a and b. Vector
concatenation retains the information that exists in both input vectors in the resulting
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composed vector. In particular, vector concatenation has been found to be effective for
combining multiple source embeddings to a single meta embedding (Yin and Schütze,
2016). However, a disadvantage of concatenation is that it increases the dimensionality
of the relation representation compared to that of the input word embeddings.

Mult: Apply element-wise multiplication between a and b such that the ith dimension
of r has the value of multiplying the ith dimensions of the input vectors. Applying
element-wise multiplication generates a vector in which the dimensions common to
both words receive non-zero values. The Mult operator is defined as follows:

r = a� b

ri = aibi
(3.4)

Element-wise multiplication has the effect of selecting the common dimensions to the
embeddings of both words for representing their interrelationships. Prior work on
compositional semantics showed that element-wise multiplication is an effective method
for composing representations for larger lexical units, such as phrases or sentences
from elementary lexical units such as words (Mitchell and Lapata, 2008). However,
element-wise multiplication has an undesirable effect when the embeddings contain
negative values. For example, two negative-valued dimensions can generate a positive-
valued dimension in the relational representation. If the relations are directional
(asymmetric), then such a change in sign can incorrectly indicate an opposite/reversed
relations between words. For example, Baroni and Zamparelli (2010) report that word
embeddings created via SVD perform poorly when composing phrase representations
because of this sign-flipping issue. As we will see in Section 3.4.2, Mult also suffers
from data sparseness because if at least one of the corresponding dimensions in two
word embeddings is zero (or numerically close to zero), then the resultant dimension
in the composed relational vector becomes zero. Our experimental results suggest that
sparseness, more than negativity, is problematic for the Mult operator. However, to
the best of our knowledge, the accuracy of element-wise multiplication has not been
evaluated in the task of relation representation.

Add: Apply element-wise addition between a and b such that the ith dimension of r has
the value of adding the ith dimensions of the input vectors, given as follows:

r = a+ b

ai = ai + bi
(3.5)

Element-wise multiplication and addition have been evaluated in compositional semantics
for composing phrase-level or sentence-level representations from word-level representa-
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tions (Mitchell and Lapata, 2009, 2008). In the context of relations, a relationship might
materialise between two entities because they share many common attributes. For example,
two people might become friends through social media because they discover they have
many common interests. Consequently, element-wise addition and multiplication emphasise
such common attributes by adding their values together when composing the corresponding
relation representation. In this work, we hypothesise that some relations are formed between
entities because they have common attributes. By pairwise addition or multiplication of the
attributes of two given words, we emphasise these common attributes in their relational
representation.

Element-wise operators between word vectors assume that the dimensions of the word
representation space are linearly independent. Alternatively, we can consider that the
dimensions are cross-correlated and use cross-dimensional operators (i.e., operators that
consider the ith and jth dimensions for i = j as well as i 6= j) instead of element-wise
operators to create relation representations. For this purpose, given a word representation
matrix W ∈ Rn×d of n words and d dimensions, we create a correlation matrix C ∈ Rd×d

in which the Cij element is the Pearson correlation value of W:,i and W:,j , (i.e., the ith and
the jth dimensions for all of the represented words). In our preliminary experiments with
the pre-trained word embeddings used as inputs, we found that the correlation coefficients
between i, j( 6= i) dimensions are close to zero, indicating that the dimensions are indeed
uncorrelated (more details are in Chapter 4). Consequently, for the prediction-based
word embeddings we used in this comparative study, we did not obtain any significant
improvement in performance by using cross-dimensional operators. Therefore, we do not
consider cross-dimensional operators for the purpose of relation representations.

3.4.2 Experiments and Results

We evaluate the effectiveness of the predefined operators for relations using the datasets
along with the tasks that are shown in Section 3.3. For each operator f and a given word-pair
(a, b), the relation vector rab is obtained by applying f on a and b embeddings. We adopt
the cosine of the angle between two relation representations (rab and rcd) as a proxy of the
relational similarity between the two pairs (a, b) and (c, d), which is defined as follows:

sim(rab, rcd) = cos(θ) =
rab
>rcd

||rab|| ||rcd||
(3.6)

In Table 3.5, we compare the performance of the four compositional operators (PairDiff,
Concat, Add and Mult) described in Section 3.4.1 for the word representation models
described in Section 3.2. The best result for each dataset among the word embedding types
is presented in bold. We observe that PairDiff achieves the best results compared with
other operators for all the evaluated datasets and all word representation methods. PairDiff
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Table 3.5: Accuracy (%) of the compositional operators for measuring relational similarity
in the benchmark datasets. MaxDiff scores are reported for SemEval-2012 Task 2.

Representation Compositional SAT SemEval MSR Google DiffVec BATS
model operator (MaxDiff) sem syn total

CBOW PairDiff 41.82 44.35 30.16 24.43 32.31 28.74 77.40 67.93
Concat 38.07 41.06 0.39 3.01 1.26 2.05 77.24 55.68
Add 31.10 36.37 0.06 0.16 0.15 0.15 62.11 40.17
Mult 27.88 35.19 8.13 2.38 6.11 4.42 61.01 36.47

SG PairDiff 39.41 44.03 21.08 22.28 26.47 24.57 75.64 65.28
Concat 35.92 41.21 0.30 1.40 1.17 1.27 73.03 49.42
Add 28.69 35.48 0.00 0.17 0.13 0.15 55.92 36.12
Mult 24.40 35.4 3.26 2.29 4.47 3.48 53.43 30.82

GloVe PairDiff 41.02 42.8 16.74 15.42 21.00 18.47 72.87 60.63
Concat 36.19 40.17 0.31 2.27 1.17 1.67 70.08 49.02
Add 29.22 35.23 0.0 0.24 0.18 0.20 53.25 32.52
Mult 23.32 32.0 0.91 3.87 1.39 2.51 41.4 22.06

LSA(SVD) PairDiff 36.90 43.44 8.49 2.84 11.26 7.44 75.35 61.27
Concat 38.77 42.04 0.35 0.50 0.82 0.68 72.48 47.59
Add 31.82 36.05 0.01 0.26 0.14 0.19 54.55 36.03
Mult 29.14 34.79 5.56 0.52 6.91 4.01 55.78 33.27

LSA(NMF) PairDiff 35.29 42.88 2.8 1.75 3.66 2.79 70.08 51.94
Concat 31.02 41.39 0.19 0.44 0.65 0.50 69.52 43.19
Add 29.68 36.00 0.03 0.21 0.11 0.16 55.79 33.33
Mult 21.12 34.49 0.00 0.03 0.00 0.02 44.32 21.71

reports significantly better results than Concat, Add and Mult for all the embedding types
(both prediction- and counting-based) in the MSR, Google, DiffVec and BATS datasets
according to Clopper-Pearson confidence intervals (p < 0.05). Because the SAT is the
smallest dataset among all, so we were unable to see any significant differences with SAT.

Analogy completion in Google and MSR analogies are considered an open vocabulary
task because to answer a question of the form “a is to b as c is to ?”, we must consider all
words in the corpus as candidates, which is an open vocabulary, not limited to the words
that appear in the benchmark datasets, as in SAT or SemEval datasets. Therefore, applying
PairDiff to each pair (a, b) and (c, d) retrieves candidates d that have relations with c similar
to the relation between a and b, but not necessarily similar to the word c. For instance,
the top three ranked candidates for the question “man is to woman as king is to ?” are
women, pregnant and maternity. We notice that the top-ranked candidates indicate feminine
entities. This observation explains the performance of PairDiff for answering MSR and
Google analogies, which is lower compared with other relational tasks (similar observations
have been made by Levy and Goldberg (2014)). Moreover, the open vocabulary task (Google
and MSR analogies) is harder than the closed vocabulary task (SAT, SemEval, DiffVecs and
BATS) because in closed vocabulary benchmarks we are provided with related word-pairs,
whereas the number of incorrect candidates is much larger in the open vocabulary setting.
This means that the probability of accidentally retrieving a noisy negative candidate as the
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Figure 3.1: The average sparsity of relation embeddings for different operators using CBOW
embeddings with 300 dimensions for some selected word-pairs.

correct answer is higher than in the closed vocabulary task. This property provides a reason
for why Mikolov et al. (2013c) do not rely on the relation alone, and they consider shifting
the context of c using a relation r when looking for d, i.e., r + c. When using PairDiff,
Mult and Add to construct r that is then used to shift c, we respectively obtain 70.63, 28.02
and 5.35 on Google total analogies under the CBOW embeddings. Overall, we observe that
Concat, Add and Mult fail in the task of analogy completion.

Mult is performing slightly worse with NMF word embeddings compared to other
embedding models. Recall that NMF produces non-negative embeddings, and Mult conducts
an elementwise multiplication operation on the two input word embeddings to create the
embeddings for their relation. If the negativity was the only issue with the Mult operator,
as previously suggested by Baroni and Zamparelli (2010), then Mult should have performed
better with NMF. We hypothesise that the issue here is sparsity in the relation representations.
To test the hypothesis empirically, we conduct the following experiment. First, we randomly
select 140 word-pairs from the Google dataset and apply different compositional operators
to create relation embeddings for each word-pair using 300-dimensional CBOW word
embeddings as the input. Next, we measure the average sparsity of the set of relational
embeddings created by each operator. We define sparsity at a particular cut-off level ε for a
d dimensional vector as the percentage of elements with absolute value less than or equal to
ε out of d. Formally, sparsity is given by (3.7).

sparsity =
1

d

d∑
i=1

I[|xi|≤ ε] (3.7)
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Here, I is the indicator function that returns 1 if the expression evaluated is true, or 0
otherwise. Our definition of sparsity is a generalisation of the `0 norm that counts the
number of non-zero elements in a vector. However, exact zeros will be rare in practice, so
we require a more sensitive measure of sparsity, such as the one given in (3.7). Average
sparsity is computed by dividing the sum of sparsity values given by (3.7) for the set of
word-pairs by the number of word-pairs in the set (i.e., 140).

Figure 3.1 shows the average sparsity values for the operators under different ε levels.
As shown in the figure, the Mult operator generates sparse vectors for relations compared
to other operators under all ε values. Considering that Mult performs a conjunction over
the two input word embeddings, even if at least one embedding has a nearly zero dimension,
after element-wise multiplication we are likely to be left with nearly zero dimensions in
the relation embedding. Such sparse representations become problematic when measuring
cosine similarity between relation embeddings, which leads to poor performances in word
analogy tasks.

3.4.3 Breakdown of the Performance by Relation Types

As elaborated in Section 3.4.2, the evaluation of relation embeddings generated by applying
compositional operators on word embeddings reveals the optimality of the PairDiff operator
for multiple tasks and datasets. However, it remains unclear how appropriate is the PairDiff
for various relation types. To answer this question, we need to breakdown the evaluation
by the relation types for a given benchmark dataset. Most of the relational benchmark
datasets we introduced in Section 3.3 classify pairs of words to explicit linguistic relations,
which enable us to compare the accuracy among different relation types. For this purpose,
we use DiffVec and BATS that are evaluated for relation classification tasks and contain a
variety of relation types, including semantic and syntactic relations.

Figure 3.2 reports the accuracy of each relation on DiffVec and BATS. Out of the
nine semantic and morphosemantic relations in DiffVec, PairDiff performs better than
other operators only for Attribute, Event and Collective-Noun relation types. For Hypernym,
Meronym, Causality, SpaceTime and Reference, the concatenation of word embeddings
achieves the best accuracy in relation classification. On the other hand, syntactic relations
in DiffVec are encoded better as captured by PairDiff compared with other compositional
operators, a finding that is consistent with previous works (Chen et al., 2017; Vylomova
et al., 2016; Köper et al., 2015). Similarly, in the BATS dataset (Figure 3.2b), PairDiff
fails to represent lexicographic semantic relations, and the best macro-average accuracy is
reported for inflectional syntactic relation types followed by semantic encyclopedics.

Given that the PairDiff is an effective operator for deriving relational features of arbitrary
relations, one would expect coherency between the offset vectors of word-pairs sharing a
considered relation type. That means in the embedding space, the PairDiff vectors have to
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(a) DiffVec

(b) BATS

Figure 3.2: Accuracy on different types of relations for DiffVec (a) and BATS (b) datasets.

be almost parallel for word-pairs related by the same relation. This hypothesis is tested
by measuring the average of pair-wise cosine similarities between the PairDiff vectors in
each relation type of BATS dataset. As shown in Figure 3.3, inflectional morphology and
encyclopaedic relations have stronger PairDiff directions in the 300-dimensional CBOW
embedding space compared to lexicographic semantics. The results in Figure 3.3 are
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Figure 3.3: Average pair-wise cosine similarity scores for each relation type in BATS using
300-dimensional CBOW embeddings.

consistent with the accuracy of relation classification shown in Figure 3.2b, wherein the
performance of PairDiff on lexicographic relations is poor. A possible explanation is that
for encyclopaedic relations, the source words (i.e., a) can be grouped into a sub-space in
the embedding space that is roughly aligned with the sub-space of the target words (i.e.,
b) (Liu et al., 2017; Bouraoui et al., 2018). For instance, in the country-capital relation the
source words represent countries while the target words represent cities. On the other hand,
lexicographic relation types do not have specific sub-spaces for the related head and tail
words, which means that the offset vectors would not be sufficiently parallel for PairDiff to
work well.

Let us analyse the role of PairDiff for morphological relation types to reason a relatively
high accuracy of this type of relations compared to others. For example, the inflectional
morphology relation (verb-infinitive, verb-ing) with the instance (play, playing). The contexts
for play and playing are quite different, because play would occur with like to, hate to, etc.
as prefixes, and hockey, football, etc. as suffixes (e.g., “I hate/like to play hockey/football)”.
However, the contexts for playing would be something like “I like playing hockey”, “playing
hockey is my hobby” and “he is playing football ”. Note that missing to before playing and
missing is before play makes adequate contextual clues to learn embeddings that encode
such syntactic properties11. Compared to syntactic relations, semantic relations are more
expressive as many contextual patterns can be used to indicate a semantic relation between
two words.

Even though we are expecting different morphological forms of a word (e.g., play and
playing) to occur with similar contexts, the above-discussed syntactic contexts are still

11Thats why removing stopwords might by a bad idea when learning word embeddings.
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Figure 3.4: Probability density estimation for `2 norms of PairDiff vectors in inflectional
morphology vs lexicographic semantic relations in BATS dataset.

encoded in their embeddings, which in turn explains the success of PairDiff method. We
test this argument by measuring the `2 norm for PairDiff vectors of the ten inflectional
morphology relations vs the ten lexicographic semantics in BATS. As shown in Figure 3.4,
the distribution illustrates that PairDiff vectors of morphological word-pairs have relatively
smaller norms than lexical semantics; however, PairDiffs between two different forms of
words (i.e., as in play and playing) are still not close to zero.

Examining the compositional operators for each relation type shows the fact that the
performance of the best operator (i.e., PairDiff) can vary from one relation type to another.
Consequently, we conclude that a compositional operator for relations between words cannot
capture all semantic relations in the space provided. This analysis also reveals that syntactic
relations are predicted at high accuracy, whereas lexical semantic ones are more challenging.
Thus, there exists much room for improvement.

3.4.4 Effects of the Word Embeddings Dimensionality on Relations

The dimensionality of the relational embeddings produced by the compositional operators
depends on the dimensionality of the input word embeddings. For example, the Mult, Add,
and PairDiff operators produce relational embeddings with the same dimensionality as
the input word embeddings, whereas the Concat operator produces relational embeddings
twice the dimensionality of the input word embedding. A natural question, therefore, is to
consider how the performance of the relational embeddings varies with the dimensionality
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of the input word embedding. To study the relationship between the dimensionality of the
input word embeddings and the composed relational embeddings, we conduct the following
experiment. We first train word embeddings of different dimensionalities using the ukWaC
corpus and keep all other parameters of the word embedding learning method fixed except
for the dimensionality of the word embeddings learnt. Because CBOW turned out to be the
single best word embedding learning method according to the results in Table 3.5, we use
CBOW as the preferred word embedding learning method in this analysis. Figure 3.5 shows
the performance of the compositional operators on the benchmark datasets using the CBOW
input word embeddings with dimensionalities in the range of 50-800. As seen in the Figure,
PairDiff outperforms all other operators across all dimensionalities. PairDiff reports the best
results on SemEval and DiffVecs with 300 and 200 dimensions, respectively. Performance
saturates when the dimensionality is increased beyond these points. On the other hand,
SAT shows a different trend as the performance of PairDiff continuously increases with
the dimensionality of the input word embeddings. We observe another behaviour from the
figure for the MSR and Google datasets where the performance of PairDiff decreases while
that of Mult increases with the dimensionality of the input word embedding.

To understand the above-described trends, we first note that the dimensions in word
embeddings provide almost complementary information related to word semantics. As
described in Section 3.4.1, correlations between different dimensions in the word embeddings
are small, showing that different dimensions are uncorrelated. Adding more dimensions to the
word embedding can be seen as a way of representing richer semantic information. However,
increasing the dimensionality also increases the number of parameters to learn. Prediction-
based word embedding learning methods first randomly initialise all the parameters and
then update them such that the co-occurrences between words can be accurately predicted
in a given contextual window. However, the training dataset, which in our case is the ukWaC
corpus, is fixed. Therefore, we have more parameters than we can reliably estimate using
the available data, resulting in overfitted noisy dimensions as we increase the dimensionality
of the word embeddings learned.

One hypothesis for explaining the seemingly contradictory behaviour from the PairDiff
and Mult operators in the open vocabulary task (MSR and Google analogy completion) is
the following. When we increase the dimensionality of the input word embeddings, there will
be some noisy dimensions in the input word embeddings. The PairDiff operator amplifies the
noise in the sense that the resultant offset vector retains noisy high dimensions that appear
in both word embeddings. On the other hand, the Mult operator behaves as a low-pass
filter where we shutdown dimensions that have small (or zero) valued dimensions in at least
one of the two embeddings via the element-wise multiplication of corresponding dimensions.
Therefore, Mult will be robust against the noise that exists in the higher dimensions of the
word embeddings compared to the PairDiff operator. To empirically test this hypothesis, the
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Figure 3.5: Influence of the dimensionality of the CBOW word embeddings for compositional
relation representations.
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`2 norms of (a− b) and (a� b) are computed for word embeddings of different dimensions
and averaged over 140 randomly selected word-pairs. As shown in Figure 3.6, the norm of
the PairDiff relation embeddings increases with dimensionality, whereas the norm of the
relation embedding generated by Mult decreases. This result proves the hypothesis that
Mult filters out the noise in high dimensional word embeddings better than PairDiff.

Figure 3.6: Average `2 norm of relational vectors generated using PairDiff and Mult operators.

3.4.5 Evaluating Relations Directionality Under PairDiff

Relations between words can be categorised as either being symmetric or asymmetric. If
two words a and b are related by a symmetric relation r, then b is also related to a with the
same relation r. Examples of symmetric relations include synonym and antonym. On the
other hand, if a is related to b by an asymmetric relation, then b might not be necessarily
related to a with that relation. Examples of asymmetric relations include hypernym and
meronym. As discussed in Section 3.4.2, the PairDiff operator outperforms the Add and
Mult operators in multiple relational tasks that involve measuring the relational similarity
between word-pairs. Unlike Mult and Add, which are commutative operators, PairDiff is a
non-commutative operator. This fact raises the question of whether PairDiff can detect the
directionality of relations between words.

To test the ability of PairDiff for detecting the direction of a relation, we set up the
following experiment. Using a set of word-pairs with a common directional relation r

between the two words in each word pair as the training data, we use PairDiff to represent
the relationship between two words in a word-pair, given the word embeddings for those
two words. Next, we swap the two words in each word-pair and apply the same procedure
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Figure 3.7: The accuracy of SVM classifier for evaluating the directionality of relation
embeddings using PairDiff.

to create relation embeddings for the reversed relation r′ in each word-pair. We model the
task of predicting whether a given word-pair contains the original relation r or its reversed
version r′ as a binary classification task. Specifically, we train a binary Support Vector
Machine (SVM) with a linear kernel with the cost parameter set to 1 using held-out data.
If the trained binary classifier correctly predicts the direction of a relation in a word-pair,
then we conclude that the relation embedding for that word-pair accurately captures the
information about the direction of the relationship that exists between the two words in the
word-pair. We repeat this experiment with symmetric and asymmetric relation types and
compare the performances of the trained classifiers to understand how well the directionality
in asymmetric relations is preserved in the PairDiff embeddings.

For the asymmetric relation types, we use all relation types in the DiffVec because this
dataset contains only these types of relations. For symmetric relation types, we use two
popular symmetric semantic relations, namely, synonymy12 and antonymy13. We report
the five-fold cross-validation accuracies with each relation type, as shown in Figure 3.7. If
the classifier reports a high classification accuracy for asymmetric relations compared to
symmetric relations, then it indicates that the relation embedding can encode the directional
information in a relation. From the Figure, we see that the accuracies for the two symmetric

12http://saifmohammad.com/WebDocs/LC-data/syns.txt
13http://saifmohammad.com/WebDocs/LC-data/opps.txt

http://saifmohammad.com/WebDocs/LC-data/syns.txt
http://saifmohammad.com/WebDocs/LC-data/opps.txt
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relation types are lower compared to the asymmetric relation types. This result indicates
that PairDiff correctly detects the direction in the asymmetric relation types.

3.4.6 Knowledge Graph Completion

So far, the focus of the evaluation has been on measuring the relational similarity between
word-pairs to conduct various relational tasks. However, we still do not know which
composition method to choose for other NLP tasks like KG completion. For this purpose,
we analyse such compositional operators in the context of KG link predictions (i.e., KG
completion). Specifically, we want to study the extent to which pre-trained word embeddings
capture relational attributes for entities in a KG, and which unsupervised operator can
perform well on predicting missing links.

Experimental Settings

KGs such as WordNet and Freebase link entities according to numerous relation types that
hold between entities. Automatic KG completion attempts to overcome the incompleteness
of such KGs by predicting missing relations in a KG. For instance, given a first entity (a.k.a.
the head entity h) and a relation type r, we need to predict a second entity (a.k.a. the tail
entity t) such that h and t are related by r.

To evaluate the unsupervised compositional operators for the KB completion task using
the embeddings of KG entities from a text corpus, we apply the following procedure. To
avoid the need for composing word embeddings to construct representations for multiple
words entities, we used the WN18RR dataset (a subset of WordNet released by Dettmers
et al. (2018)) because it primarily includes unigram entities14. In this experiments, we
exclude entities consisting of more than one word. To evaluate the accuracy of a relation
composition operator f , we first create a representation ri for each relation type ri using the
entity pairs (h, t) in the training data by applying f to the embeddings of the two entities h
and t as follows:

ri =
1

|Ti|
∑

(h,ri,t)∈Ti

f(h, t) (3.8)

Here, Ti is the set of pairs of entities that are related by ri. Next, for each test triple
(h′, r′i, ? ), we predict a distribution for the missing tail t′ as follows:

t′ = h′ + r′i (3.9)

We rank all the entities in WN18RR according to the cosine similarity score between the
corresponding entity embedding with the predicted tail embedding. A similar procedure of

14Textual Information about WN18RR entities is taken from: https://github.com/villmow/
datasets_knowledge_embedding/tree/master/WN18RR

https://github.com/villmow/datasets_knowledge_embedding/tree/master/WN18RR
https://github.com/villmow/datasets_knowledge_embedding/tree/master/WN18RR
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Table 3.6: Results of the compositional operators for KG completion task.

CBOW SG GloVe

Method MR H@10 MR H@10 MR H@10

PairDiff 1,580 25.72 1,393 27.18 1,806 25.39
Add 1,831 23.93 1,550 25.62 2,154 15.97
Mult 1,814 24.63 1,641 25.62 2,088 23.41
BL 1,814 24.59 1,640 25.67 2,043 23.46

evaluating word embeddings for KG predictions has been used by Gupta et al. (2017).
If the correct tail entity can be accurately predicted in the top of the ranked list using

the relation embeddings created by applying a particular compositional operator, then we
can conclude that operator to be accurately capturing the relational information. Two
measures have been used for evaluating the predicted tail entities: Mean Rank (MR) and
Hits@10. MR is the average rank assigned to the correct tail entity in the ranked listed
of candidate entities. A lower MR is better because the correct candidate is ranked at the
top by the compositional operator under evaluation. Hits@10 is the proportion of correct
entities that have been ranked among the top 10 candidates. It is noteworthy that our
purpose here is not to propose state-of-the-art KG completion methods, but rather to use
KG completion only as an evaluation task to compare different compositional operators for
relation prediction. Prior work in KG completion learns entity and relation embeddings
that can accurately predict the missing relations in a KG as described in Section 2.7.2.

Results

We exclude the Concat operator because according to the adopted evaluation in (3.9),
addition is not well-defined between two vectors of different dimensionalities (i.e., we can
pad up vectors with zeros, but dimensions will not correspond, which is an important
issue). We also include a baseline (BL) in which the relation vector r′i in (3.9) is ignored,
and tail entities are ranked based on the similarity to the given head embedding. In
total, we evaluated 11 relations in WN18RR, 19,144 unigrams entities in which we have
their embeddings, 57, 280 training and 2, 123 testing triples across the relations. We use
300-dimensional prediction-based embeddings explained in Section 3.2.

Table 3.6 displays the performance on the compositional operators for the KG completion
task on WN18RR, where low MR and high Hits@10 indicates better performance. As can
be seen from the Table, the PairDiff operator yields the lowest MR and the highest Hits@10
accuracy among other operators for the three word embedding models. Overall, SG performs
the best compared to CBOW and GloVe embedding models. Add and Mult similarly perform
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as BL that ignore the relation vector from the training triples. If a relation is asymmetric
such as hypernym and has-part as in WN18RR, the addition model will be insensitive to the
directionality of such relations compared to PairDiff which explains the better performance
of PairDiff over Add and Mult. Even though the proposed results are far from those obtained
by using KGE methods, it would be possible to bridge the embeddings obtained from a text
corpus and KGEs for complementarity of corpus- and KG-based embeddings.

3.5 Representative Space for Relational Similarity

In the previous Section (3.4), we investigated unsupervised compositional operators that
can be applied to word embedding space to encode relational features between words.
Subsequently, relational similarity can be measured between two relation representations of
the corresponding word-pairs (a, b) and (c, d). On the other hand, the relational similarity
can be inferred from the similarity of the corresponding relation arguments (i.e., between
a and c, b and d). Thus, the relational similarity score between (a, b) and (c, d) can be
defined as a function of the two pairs that can be decomposable as similarities between a
and c, b and d. For example, it is highly probable that (electricity, wire) and (water, pipe)
are relationally similar because electricity and water share multiple properties such as they
can flow, whereas wire and pipe are similar since they are both carrying things that flow.
Thus, we can consider the two pairs as instances of the same relation, namely flows in.

This section focuses on the task of measuring the relational similarity between two
word-pairs considering the argument-wise similarity using word representation features. In
the previous section, prediction- and counting-based embeddings are employed to evaluate
compositional operators for accessing relations between words. In contrast to the latent
features in prediction-based embeddings, the counting-based approach represents words in
terms of the observed (i.e., interpretable) co-occurring contextual features from a corpus.
However, the features that accurately express the relational similarity between word-pairs
from contextual features of individual words remain largely unknown. Previous studies
proposed solutions based on linguistic intuitions such as domain (i.e., topic) and function
(i.e., role) spaces, which consist respectively of nouns and verbs to represent words (Turney,
2012). The intuition behind the dual-space model is that the domain of a word is better
described linguistically using nouns that appear around it, whereas the function of words
can be expressed by surrounding verbs. Measuring similarities between words under this
duality can help to infer relationally similar word-pairs. For example, for the analogy
electricity : wire :: water : pipe, electricity and wire are from the domain of electronic that
can be defined by nouns such as energy, charge, power and circuit. On the other hand,
electricity and water sharing the same role in the function space as they occur with similar
verbs such as flow, runoff, get in and come on.
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Although the above-mentioned linguistically-oriented spaces for semantic relations
are justified by experiments, the question whether we can learn descriptors of semantic
relations from labeled data? remains unanswered. We address this question by proposing a
method for ranking lexical features to represent the semantic relations existing between two
words. Given a set of word-pairs labelled by their relation types, we model the problem of
extracting descriptive features for relations as a linear classification problem. Specifically, a
linear-SVM classifier is trained to discriminate between positive (analogous) and randomly
generated pseudo-negative (non-analogous) word-pairs using statistical co-occurrence features
associated with individual words. The weights learnt by the classifier for the features can
then be used as a ranking score for selecting the most representative features for semantic
relations. Experimental results on a benchmark dataset for relation classification show that
the proposed feature selection method outperforms several competitive baselines and the
previously proposed heuristics by Turney (2012). It is worth noting that selecting features
using classification-based approaches has been adopted for different NLP tasks such as
sentiment analysis (Tripathi and Naganna, 2015) and text classification (Mladenić et al.,
2004; Chang and Lin, 2008).

This section is organised as follows. Section 3.5.1 discusses the task of measuring
relational similarity by considering the word representation feature space. The proposed
method for weighting word representation features that are discriminators for semantic
relations is presented in Section 3.5.2. Section 3.5.3 demonstrates the experimental settings
and results obtained in this study.

3.5.1 Relational Similarity in Feature Space

Let us consider a feature x in some feature space S. No constraints have been imposed on
the type of features here, and the proposed method can handle any type of features that
can be used to represent a word such as other words that co-occur with a target word in
the corpus (lexical features), or their syntactic categories such as Parts-Of-Speech (POS)
(syntactic features). The feature space S is defined as the set containing all features we
extract for all target words. The salience of x in S is represented by the discriminative
weight w(x,S) ∈ R. For example, if x is a representative feature of S, then it will have
a high w(x,S). The concept of a discriminative weight can be seen as a feature selection
method. If a particular feature is not a good representative of the space, then it will receive
a small (ideally zero) weight, thereby effectively pruning out the feature from the space.

Given the above scenario, the task of discovering relational feature spaces can be modelled
as a problem of computing the discriminative weights for features. We use φ(a) to denote
the set of non-zero features that co-occur with the word a. The salience f(a, x,S) of x as a
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feature of a in S is defined as follows:

f(a, x,S) = h(a, x)× w(x,S) (3.10)

Here, h(a, x) ≥ 0 is the strength of association between a and x, and can be computed using
any non-negative feature co-occurrence measure. In the experiments, we use PPMI, defined
in (3.1), computed using corpus counts as h(a, x).

Equation (3.10) is analogous to the tf-idf score used in information retrieval in the sense
that h(a, x) corresponds to the term-frequency (tf) (i.e., how significant is the presence of x
as a feature in a), and w(x,S) corresponds to the document-frequency (df) (i.e., what is
the importance of x as a feature in the space S). The similarity, simS(a, c) between two
words a and c in S can then be defined as in (3.11), which is the sum of pointwise products
over the intersection of the feature sets φ(a) and φ(c).

simS(a, c) =
∑

x∈φ(a)∩φ(c)

f(a, x,S)f(c, x,S) (3.11)

Moreover, by substituting (3.10) in (3.11) we get:

simS(a, c) =
∑

x∈φ(a)∩φ(c)

h(a, x)h(c, x)w(x,S)2 (3.12)

Following the proposal by Turney (2012), we can then compute the relational similarity,
between two word-pairs (a, b) and (c, d) as the geometric mean of their functional similarities
as follows:

simrel((a, b), (c, d)) =
√

simS(a, c)× simS(b, d) (3.13)

3.5.2 Learning the Relational Feature Space

The relational similarity measure described in Section 3.5.1 depends on the feature space S
via the discriminative weights w(x,S) assigned to each feature x. Therefore, our goal of
discovering a representative feature space from the data is solved through the learning w(x,S).
We propose a supervised classification-based approach for computing the discriminative
weights using a labelled dataset.

Let us define a labelled dataset as consisting of the word-pairs (a, b) and (c, d) annotated
for l = 1 (i.e., the two word pairs are analogous) or l = 0 (otherwise). Here, l ∈ {0, 1}
denotes the class label. From (3.13) and (3.12), we see that for two analogous word-pairs,
(a, b) and (c, d), their relational similarity increases if the two products h(a, x)h(c, x) and
h(b, x)h(d, x) increase. Following this observation, we define a feature x to appear in an
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instance of word-pairs (a, b) and (c, d) if and only if:

(x ∈ φ(a) ∩ φ(c)) ∨ (x ∈ φ(b) ∩ φ(d)) (3.14)

Linear Classifier for Relational Feature Ranking

For the proposed classification-based approach, each positive instance word pairs ((a, b), (c, d))

or negative word-pairs ((a′, b′), (c′, d′)) has a corresponding feature vector in S, such that
the entry for x in the (a, b), (c, d) positive instance is defined as follows:

g (((a, b) , (c, d)) , x) = I [x ∈ φ(a) ∩ φ(c)] + I [x ∈ φ(b) ∩ φ(d)] (3.15)

Here, g(((a, b), (c, d)), x) denotes the value of the feature x in the feature vector representing
the instance ((a, b), (c, d)), and I is the indicator function that returns 1 if the expression
evaluated is true, or 0 otherwise, and likewise for a negative instance. We train a linear-SVM
binary classifier to learn a weight for each feature in the feature space. The function w(x,S)

can be interpreted as the confidence of the feature as an indicator of the strength of analogy
(relational similarity) between (a, b) and (c, d). The absolute value of the weight of a feature
can be considered as a measure of the importance of that feature when discriminating
the two classes in a binary linear classifier. Therefore, we rank the features in the space
according to the absolute value of the weights |w(x,S)|. Only the linearised kernel classifier
explicitly associates the weights to individual features. Therefore, this approach is restricted
to the linear kernel. In the case of non-linear kernels, such as polynomial kernels that can be
expanded prior to learning all feature combinations considered in the kernel computation, we
can still apply this technique to identify salient feature combinations. However, we limit the
discussion in this work to finding relational feature spaces consisting of individual features
and defer the study of salient feature combinations for relational similarity measurement to
future work.

The proposed method is compared to Kullback–Leibler divergence (KL), PMI, heuristic
verb space and random selection. The KL and PMI methods also require labelled data as in
our proposed classification-based approach, as will be discussed in the following sections.

KL Divergence-based Ranking

For sentence-level similarity, Ji and Eisenstein (2013) apply a data-driven approach for
weighting the features in the paraphrase classification task. Based on labelled data, they
proposed a new weighting metric to distinguish the deterministic features for sentence
semantics. The metric uses KL Divergence to weight the distributional features in the
co-occurrence matrix for sentences before the decomposing process. They report significant
improvement in sentence similarity in comparison with other works.
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Inspired by the above-mentioned study, we evaluate the proposed classification-based
approach against the KL divergence-based weighting approach to compute w(x,S) for the
relational similarity measurement. We consider the two distributions for each feature x in
S-space, namely, p(x) and q(x) where p(x) is computed for analogous pairs ((a, b), (c, d)),
while q(x) is taken over the unrelated pairs of words ((a′, b′), (c′, d′)). The two probability
distributions are formally defined by (3.16).

p(x) = P (x ∈ φ(a) | x ∈ φ(c), l = 1 or x ∈ φ(b) | x ∈ φ(d), l = 1), (3.16)

q(x) = P (x ∈ φ(a′) | x ∈ φ(c′), l = 0 or x ∈ φ(b′) | x ∈ φ(d′), l = 0)

Specifically, we compute the probability p(x) of a feature x being an indicator of the
analogous class as follows:

1

Zp(x)

∑
(a,b),(c,d)∈D+

g (((a, b) , (c, d)) , x) (3.17)

Here, D+ is the set of positive word-pairs, and the normalisation coefficient Zp(x) satisfies,∑
x∈S p(x) = 1. Likewise, we can compute q(x), the probability of a feature x being an

indicator of the negative (relationally dissimilar) class using the features occurrences in
negative instances ((a′, b′), (c′, d′)) as follows:

1

Zq(x)

∑
(a′,b′),(c′,d′)∈D−

g
(((

a′, b′
)
,
(
c′, d′

))
, x
)

(3.18)

Here, D− is the set of negative word-pairs, and the normalisation coefficient Zq(x) satisfies,∑
x∈S q(x) = 1. Having computed p(x) and q(x), we then compute w(x,S) as the KL

divergence between the two distributions as,

w(x,S) = p(x) log

(
p(x)

q(x)

)
. (3.19)

PMI-based Ranking

The PMI-based approach to select a subset of informative features uses a mutual information-
based methodology. The PMI statistical weighting method has been applied for feature
selection in document categorisation (Xu et al., 2007; Schneider, 2005). It calculates the
amount of information that a feature includes about a specific category. Xu et al. (2007)
show that PMI is not an efficient approach to select relevant features for text classification
compared with other known approaches, such as Document Frequency and Information
Gain.
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In this study, PMI is used to weight a feature x such that:

w(x,S) = PMI(x,D+)− PMI(x,D−) (3.20)

where PMI(x,D+) measures the association between a feature x with analogues word-pairs,
and PMI(x,D−) indicates the co-occurrence of a feature with relationally dissimilar pairs.
PMI is computed as follows:

PMI(x,D+) = log

(
h(x,D+)

h(x,D)|D+|
|D|
)

(3.21)

D = D+ ∪ D−

Here, D is the union set of the positive and negative word-pairs and h(x,D+) is summed for
all analogous pairs as:

∑
(a,b),(c,d)∈D+

g (((a, b) , (c, d)) , x). Similarly, h(x,D−) is calculated
by considering the negative instances in the dataset.

We rank the features according to the absolute values of their weights by each of these
methods to define the representative space to measure the relational similarity. The relational
similarity between two given word pairs is computed as defined in (3.13) after reducing
the word representations to the top-ranked feature space. We experimented using both
unnormalised and `2 normalised word representations. We found that the `2 normalised
word representations perform better than the unnormalised version in most configurations.
Consequently, we report results obtained only with the `2 normalised word representations.

3.5.3 Experiments and Results

Dataset. The above-mentioned feature selection methods require a dataset of word-pairs
labelled by their relation types to generate analogous and non-analogous relational instances.
We use the following procedure leveraging the DiffVec dataset introduced in Section 3.3.4.
Recall, DiffVec consists of triples (a, b, r) where word a and b are connected by a relation r.
This dataset consists of 15 relation types; however, we include the relation types with an
adequate number of pairs to generate the dataset. Consequently, seven semantic relation
types and their subcategories are considered in this study, as listed in Table 3.7. For each
relation, we exclude some pairs of words for testing the methods; in total, we have 367

testing pairs distributed among the relations. We generate positive training instances by
pairing word-pairs that have the same relation type (considering sub-relations), resulting in
7, 187 positive instances from this procedure. Next, we randomly pair a word-pair from a
relation r with a word-pair from a relation r′, such that r 6= r′ to create a pseudo-negative
training dataset with approximately an equal number of instances as that in the positive
training dataset (i.e., 7, 000).
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Table 3.7: Statistic of the dataset used to discover relational feature space.

Relation type #Positive training #Testing instances

Hypernym 1,100 57
Meronym 1,100 57
Event (objects action) 1,100 57
Cause-Purpose 1,149 56
Space-Time 1,435 56
Reference 1,047 54
Attribute 256 30

Total 7,187 367

Evaluation Settings

During the evaluation, we consider the problem of classifying a given pair of words (a, b) to
a specific relation r in a predefined set of relations R according to the relation that exists
between a and b. We measure the relational similarity between a given pair and all the
remaining pairs in the testing data. Then, we perform 1-NN relation classification such that
if the 1-NN has the same relation label as the target pair, then we consider it a correct
match. Macro-averaged classification accuracy is used as the evaluation measure. We use
the PPMI matrix generated by Turney et al. (2011) that contains PPMI values between a
word and unigrams from the left and right contexts of that word in a corpus15. The total
number of features extracted (|S|) is 139, 246.

For a classification method, we train a linear SVM using scikit-learn library16. We
use five-folds cross-validation to find the optimal value of the penalty parameter C of the
error term. Following Turney (2012), we use verbs as S to evaluate the performance of the
functional space for measuring relational similarity. We use the NLTK POS tagger17for
identifying verbs in the feature space, and the verb space that is identified by the POS
tagger contains 12, 000 verbs.

Results

In Table 3.8, we compare the feature weighting methods discussed in Section 3.5.2 for
different semantic relation types used in the evaluated dataset (illustrated in Table 3.7).
The accuracies for the SVM-based, KL, PMI and random ranking methods are reported for
the top 1, 000 features. The macro-averaged accuracy when using all the features in the
space without selecting relational features is 42.43%. For the verb space, the results indicate

15The corpus was collected by Charles Clarke at the University of Waterloo.
16http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
17http://www.nltk.org

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://www.nltk.org
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Table 3.8: Accuracy per relation type for the top 1000 ranked features.

Relation SVM-based KL Verb-space PMI Random

Hypernym 73.68 71.93 73.68 56.14 54.39
Meronym 70.18 68.42 61.4 45.61 56.14
Event 78.95 73.68 66.67 29.82 54.39
Attribute 33.33 13.33 23.33 30.00 10.00
Cause-Purpose 41.07 44.64 37.50 28.57 21.43
Space-Time 58.93 64.29 62.5 33.93 46.43
Reference 57.41 59.26 64.81 42.59 33.33

Macro-average 59.08 56.51 55.7 38.10 39.44

the performance of the 12, 000 verbs in the feature space. The classification approach
for weighting the features and the verb-space perform equally for hypernym relation. For
meronym, event and attribute relation types, the proposed linear-SVM outperforms other
methods of feature ranking. The KL divergence-based method shows its ability to perform
well compared with other methods for cause-purpose and space-time relations. Among the
different relation types compared in Table 3.8, the classification-based weighting method
demonstrates the highest macro-average accuracy with the other baselines. The fact that
the proposed method could improve the performance for many relations of the relational
classification task empirically justifies our proposal for a data-driven approach for feature
selection to measure relational similarity.

We analyse the performance of the relational feature ranking methods by evaluating
which of these methods ranks the relational features at the top of the list. Figure 3.8 shows
the micro-average accuracies of the top-ranked features selected by the different methods;
verb-space is not included in this comparison as it is not a ranking method for feature
selection. We start by evaluating the top-ranked feature, subsequently adding ten more
features at a time. The random baseline randomly selects a subset of features from S.
As shown in the Figure, the top-weighted features using the proposed linear SVM-based
approach outperforms all other methods for the relational similarity measurement. The
proposed method statistically significantly outperforms (according to the McNemar test
with p < 0.05) all other methods for ranking the most informative features in the top-ranked
feature list. This indicates that the effective features for measuring relational similarity are
indeed ranked at the top by the proposed method. In addition, our results show that it is
possible to maintain a relational classification accuracy while using a small subset of the
features (e.g., the top 100 features). The KL divergence-based ranking method follows the
classification approach for ranking the best features for relational similarity. However, the
PMI-based method gives accuracies comparable with the random feature selection method.
PMI is known to assign higher values to rare features, thereby preferring these features. We
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believe this might be an issue when selecting features for representing word-pairs.

Figure 3.8: Cumulative evaluation of feature weighting methods.

3.6 Summary

This chapter has presented an exhaustive evaluation for the contribution of pre-trained
word embeddings to represent relations between pairs of words. We compared unsupervised
compositional operators that require no learning with the aim to derive existing relations
between two words, given their word embeddings as the input. We considered four unsuper-
vised compositional operators, namely, PairDiff, Mult, Add, and Concat. We used different
pre-trained word embeddings and evaluated the performance of the operators on multiple
relational tasks. We observed that PairDiff is the best linear/unsupervised operator to
access relational properties across the considered tasks and the word embedding models.
We also studied the effect of dimensionality on the performance of these two operators and
showed that the sparsity of the input embeddings impacts the Mult operator and not the
negativity of the input word embedding dimensions as speculated in prior work. The closer
examination of different relation types revealed that an important portion of relational
instances of lexical-semantic relations that lead to misclassification violates the primary
assumption that linguistic lexical relations can be encoded under the PairDiff relational
operator. This observation invites us to consider model improvements that can account for
a broader range of semantic relations.
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This chapter has also presented a method for discovering a discriminative feature space
for measuring relational similarity from data. The relational classification results show
that using labelled data to train a linear classifier for feature selection can improve the
feature space in relational similarity measurements. The proposed method outperforms
the KL and PMI methods for discovering relational feature spaces. Using PMI to discover
relational features has been demonstrated to offer relatively poor performance, a finding that
is consistent with previous work for text classification tasks (Xu et al., 2007). In addition,
the classification-based weighting method reports better performance for many relation
types compared with the functional verb space.

The analysis conducted in this chapter was limited to unsupervised operators in the sense
that there are no parameters in the operators that can be (or must be) learnt from training
data. This raises the question of whether we can learn better compositional operators
from labelled data to further improve the performance of the compositional approaches for
relation representations, which we explore in the coming chapters. The next chapter analyses
bilinear operators between two word embeddings for the task of relation representation.



4
Mathematical Analysis of Bilinear Relation

Representations

4.1 Introduction

In Chapters 2 and 3, we showed that a simple method for representing a relation between
two words is to compute the difference between their corresponding word embeddings.
Despite the initial success, it remains unclear as to whether PairDiff is the best operator
for obtaining a relational representation from word embeddings. To this end, this chapter
presents a theoretical analysis of generalised bilinear operators that can be used to measure
the `2 relational distance between two word-pairs.

If we assume that the words and relations are represented by vectors embedded in
some common space, then the operator we are seeking must be able to produce a vector
representing the relation between two words, given their word embeddings as the only input.
The space of operators that can be used to compose relational embeddings is open and vast.
A space of particular interest from a computational point-of-view is the bilinear operators
that can be parametrised using tensors and matrices. In this chapter, we examine operators
that consider pairwise interactions between two word embeddings (second-order terms)
and contributions from individual word embeddings towards their relational embedding
(first-order terms). The optimality of this bilinear relational operator is evaluated using the
expected `2 relational distance between analogous (positive) vs non-analogous (negative)
word-pairs. The theoretical analysis provided in this chapter expands the understanding
of relational embedding methods, and will inspire future research on accurate relational
embedding methods using word embeddings as the input.

Bilinear models have been studied in different scenarios for relational tasks (Socher et al.,
2013a; Madhyastha et al., 2014; Glavaš and Ponzetto, 2017; Glavaš and Vulić, 2018). For
instance, Socher et al. (2013a) represent relations by 3-D tensors and entities as vectors in
a KG, then the parameters are learnt jointly such that the triple scoring function that is

75
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generated by bilinear forms is optimised. This is different from our tasks as we aim to apply
the bilinear operator on pre-trained word embeddings as a generalisation function to analyse
relation representations. Madhyastha et al. (2014) also investigate probabilistic bilinear
forms to perform a relation-specific prediction between two words (e.g., noun-adjective).
Unlike our proposal in this chapter, they consider a different model for each relation, while
we focus on the problem of a generalised relation representation model. Another variation
is that they practically induce low-rank constraints on the bilinear matrix parameters
to project source and target words into a lower-dimensional space in which an element-
wise inner-product takes place. Likewise, for relation classification, Glavaš and Ponzetto
(2017) and Glavaš and Vulić (2018) apply tensors as operators between specialised word
representations to classify given word-pairs to relations, where specialised space and tensors
are learnt jointly.

The organisation of this chapter is as follows. The chapter commences with Section 4.2
that provides a formal definition of bilinear operators for representing relations between
words. We analyse the optimality of the bilinear operator by estimating relational distances
between word-pairs under stated assumptions, as defined in Section 4.3. If we assume that
word embeddings are standardised, uncorrelated and that word-pairs are independent, we
prove in Section 4.4 that bilinear relational compositional operators are independent of
bilinear pairwise interactions between the two input word embeddings. Moreover, under
regularised settings defined in Section 4.5, the bilinear operator further simplifies to a linear
combination of the input embeddings, and the expected loss over positive and negative
instances becomes zero. Our theoretical analysis is supported by empirical evidence to
make it tenable, as shown in Section 4.6. A discussion about the conducted analysis and a
summary of the results are provided Section 4.7 and Section 4.8, respectively.

4.2 Bilinear Relational Operators

Recall that we consider the problem of representing the semantic relation r between two
given words a and b. We assume that a and b are already represented in some d-dimensional
space respectively by their word embeddings a, b ∈ Rd. The relation between two words
can be represented using different linear algebraic structures. Two popular alternatives
are vectors (Nickel et al., 2016; Bordes et al., 2013; Minervini et al., 2017; Trouillon et al.,
2016) and matrices (Socher et al., 2013a; Bollegala et al., 2015). Vector representations are
preferred over matrix representations because of the smaller number of parameters to be
learnt (Nickel et al., 2015).

Let us assume that the relation r is represented by a vector r ∈ Rδ in some δ-dimensional
space. Therefore, we can write rab as a function f that takes two vectors (corresponding to
the embeddings of the two words) as the input and returns a single vector (representing the
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relation between the two words) as given in (4.1).

f : Rd × Rd → Rδ (4.1)

Having both words and relations represented in the same d = δ dimensional space is useful
for performing linear algebraic operations using these representations in that space. For
example, in the TransE KGE model (Bordes et al., 2013), the strength of a relation r that
exists between two words a and b is computed as the `1 or `2 norm of the vector (a+ r− b)
using the word and relation embeddings. Such direct comparisons between word and relation
embeddings would not be possible if words and relations were not embedded in the same
vector space. If δ < d, we can first project word embeddings to a lower δ-dimensional space
using some dimensionality reduction method such as SVD, whereas if δ > d we can learn
higher δ-dimensional overcomplete word representations (Faruqui et al., 2015b) from the
original d-dimensional word embeddings. Therefore, we will limit our theoretical analysis in
this chapter to the δ = d case for ease of description.

Different functions can be used as f that satisfy the domain and range requirements
specified by (5.1). If we assume multi-linearity for relationships, f can be generally written
as an operator including a, b and a tensor A. The most general functional form of this
bilinear operator is given by (4.2).

rab = a>Ab+ Pa+ Qb (4.2)

Here, A ∈ Rd×d×δ is a 3-way tensor in which each slice is a d× d real matrix. Let us denote
the k-th slice of A by A(k) and its (i, j) element by A(k)

ij . The first term in (4.2) corresponds
to the pairwise interactions between a and b, wherein each slice in the tensor is a bilinear
form that maps two input vectors to a scalar (A(k) : Rd × Rd → R). The second and the
third terms in (4.2) are parametrised by P,Q ∈ Rδ×d, which are the nonsingular projection
matrices1 involving first-order contributions of a and b towards r.

4.3 Learning Settings and Assumptions

Let us consider the problem of learning the simplest bilinear functional form according
to (4.2) from a given dataset of analogous word-pairs D+ = {((a, b), (c, d))}Ni=1, wherein
a relation in the pair (a, b) is analogous to that in (c, d). Specifically, we would like to
learn the parameters A, P and Q such that some distance (i.e., loss) between analogous
word-pairs is minimised. As a concrete example of a distance function, let us consider the

1If the projection matrix is nonsingular, then the inverse projection exists, which preserves the dimen-
sionality of the embedding space.
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popularly used Euclidean distance2 (`2 loss) for two word pairs given by (4.3).

J((a, b), (c, d)) = ||rab − rcd||22 (4.3)

If we were provided with only analogous word-pairs (i.e., positive examples), then this
task could be trivially achieved by setting all of the parameters to zero. However, such a
trivial solution would not generalise to unseen test data. Therefore, in addition to D+ we
would require a set of non-analogous word-pairs D− as negative examples. Such negative
examples are often generated in prior work by randomly corrupting positive relational
tuples (Bordes et al., 2013; Nickel et al., 2016; Trouillon et al., 2016) or by training an
adversarial generator (Minervini et al., 2017; Cai and Wang, 2018).

The total loss J over both positive and negative training data can be written as follows:

J =
∑

((a,b),(c,d))∈D+

||rab − rcd||22 −
∑

((a,b),(c,d))∈D−

||rab − rcd||22 (4.4)

Assuming that the training word-pairs are randomly sampled from D+ and D− according
to two distributions respectively p+ and p−, we can compute the total expected loss, Ep[J ],
as follows:

Ep[J ] =Ep+
[
||rab − rcd||22

]
− Ep−

[
||rab − rcd||22

]
(4.5)

We make the following assumptions to further analyse the properties of relational
embeddings considering bilinear operators.

Uncorrelation: The correlation between any two distinct dimensions i and j in the word
embeddings space is defined in (4.6), and it is equal to zero (i.e., corr(wi, wj) = 0).

corr(wi, wj) =
Cov(wi, wj)

σwiσwj

=

∑
w∈V(wi − µwi)(wj − µwj )√∑

w∈V (wi − µwi)
2
√∑

w∈V
(
wj − µwj

)2 (4.6)

Here, Cov is the covariance between wi and wj , σwi and σwj are respectively the
standard deviations of wi and wj , and µwi is the mean of wi. Over a set of related
word-pairs (a, b), cross-correlation between two distinct dimensions would be zero (i.e.,
corr(ai, bj) = 0), whereas correlation between the same dimension of these two related
words would be some positive value close to one (i.e., corr(ai, bi) = 1). On the other
hand, if u and v are two words that has no relation (e.g., randomly paired words), then
the element-wise dimensions will have no correlation (i.e., corr(ui, vi) = corr(ui, vj) =

0). One might think that these correlations of word embedding dimensions to be
2For `2 normalised vectors, their Euclidean distance is a monotonously decreasing function of their cosine

similarity.
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strong assumptions, but we later empirically show their validity in Section 4.6.1 for a
wide range of word embedding models.

Standardisation: Word embeddings are standardised to zero mean and unit variance. This
is a linear transformation in the word embedding space and does not affect the relative
positioning in the embedding space. In particular, translating word embeddings such
that they have a zero mean has shown to improve performance in similarity tasks (Mu
and Viswanath, 2018).

Relational Independence: Word pairs in the training data are assumed to be independent.
For example, whether a particular semantic relation r exists between a and b, is assumed
to be independent of any other relation r′ that exists between c and d in a different
pair. In other words, this assumption means that each of the word-pair (a, b) and
(c, d) is generated independently of the other, and so their chance to coming together
can be simplified to: p ((a, b) , (c, d)) = p (a, b) p (c, d).

4.4 Theorem and Proof

Under the stated assumptions in the previous section, Theorem 1 holds for relation repre-
sentations given by (4.2).

Theorem 1. Consider the bilinear relational embedding defined by (4.2) computed using
uncorrelated word embeddings. If the word embeddings are standardised, then the expected
loss given by (4.5) over a relationally independent set of word pairs is independent of A.

Proof. Let us consider the bilinear term in (4.2). Because i and j(6= i) dimensions of word
embeddings are uncorrelated by the assumption (i.e., corr(wi, wj) = 0), from the definition
of correlation we have,

corr(wi, wj) = E[wiwj ]− E[wi]E[wj ] = 0 (4.7)

E[wiwj ] = E[wi]E[wj ]. (4.8)

Moreover, from the standardisation assumption we have, E[wi] = 0, ∀i = 1 . . . d. From (4.8)
it follows that:

E[wiwj ] = 0 (4.9)

for i 6= j dimensions.
We will next show that (4.5) is independent of the tensor A. For this purpose, let us

consider the Ep+ term first and write the k-th dimension of rab using A(k), P and Q as
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follows:

rabk =
∑
i,j

(
A

(k)
ij aibj

)
+
∑
n

Pknan +
∑
n

Qknbn (4.10)

Plugging (4.10) in (4.5) and computing the expected loss over all positive training instances
we get,

Ep+

∑
k

∑
i,j

(
A

(k)
ij (aibj − cidj)

)
+
∑
n

Pkn (an − cn) +
∑
n

Qkn (bn − dn)

2 (4.11)

Terms that involve only elements in A(k) take the form:∑
i,j

∑
l,m

Ep+
[
A

(k)
ij A

(k)
lm (aibj − cidj) (albm − cldm)

]
=
∑
i,j

∑
l,m

A
(k)
ij A

(k)
lm

(
Ep+ [aibjalbm]− Ep+ [aibjcldm]− Ep+ [cidjalbm] + Ep+ [cidjcldm]

)
(4.12)

Lets first analyse the cases where i 6= j and l 6= m. Because of the relational independence
assumption, the second and the third expectations in (4.12) can be written as follows:

Ep+ [aibjcldm] = Ep+ [aibj ]Ep+ [cldm]

Ep+ [cidjalbm] = Ep+ [cidj ]Ep+ [albm] (4.13)

The expectations in the right hand side of (4.13) contain the product of different dimension-
alities in two different words. The expected value of the product of two different dimensions
in the same word is zero from (4.9). In addition, as stated in the first assumption, such
cross-correlations are likely to be zero between different words. On the other hand, first and
fourth expectations in (4.12) involve the same pair of words. For example, we could write
the fourth expectation as follows:

Ep+ [cidjcldm] = Ep+ [(cicl)(djdm)] = Ep+ [CilDjm] (4.14)

Here, Cil = cicl and Djm = djdm. If we think of C and D as d2-dimensional word
embeddings, Ep+ [CilDjm] represents the expectation over two distinct dimensions of C and
D for il 6= jm. Therefore, from the same logic as above, this expectation is approximately
zero. Note that il could be equal to jm even when i 6= j and l 6= m. However, such cases
are rare minority. Nevertheless, it is an approximation and not an exact zero.
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For i = j = l = m case we have,

A
(k)
ii

2 (
Ep+

[
a2
i b

2
i

]
− 2Ep+ [aibicidi] + Ep+

[
c2
i d

2
i

])
(4.15)

Because we are considering word-pairs (a, b) for which some relation is known to hold (i.e.,
we are not randomly pairing words), from the definition of the correlation between the same
dimension in different words we have:

corr
(
a2
i , b

2
i

)
= E

[
a2
i b

2
i

]
− E

[
a2
i

]
E
[
b2i
]

= 1

E
[
a2
i b

2
i

]
= E

[
a2
i

]
E
[
b2i
]

+ 1

Because E
[
a2
i

]
= E

[
b2i
]

= 1 from the standardisation, we get:

Ep+
[
a2
i b

2
i

]
= 2 (4.16)

Lets analyse the second term in (4.15). From the relational independence and because the
word embeddings are assumed to be standardised to unit variance, we obtain the follows:

2Ep+ [aibicidi] = 2Ep+ [aibi]Ep+ [cidi] = 2. (4.17)

According to (4.16) and (4.17), (4.15) evaluates to 2A
(k)
ii

2
. We will then get the same term

from the negative expectations and they would cancel out as 2A
(k)
ii

2
is independent of the

training dataset.
Next, lets consider the A(k)

ij Pkn terms in the expansion of (4.11) given by,

2
∑
i,j

∑
n

A
(k)
ij Pkn (aibj − cidj) (an − cn) . (4.18)

Taking the expectation of (4.18) w.r.t. p+ we get,

2
∑
i,j

∑
n

A
(k)
ij Pkn

(
Ep+ [aibjan]− Ep+ [aibjcn]− Ep+ [cidjan] + Ep+ [cidjcn]

)
. (4.19)

For i 6= j 6= n case, we can use d2-dimensional word embeddings to write Ep+ [cidjcn] as
Ep+ [Cindj ], which is zero following the same logic as above. On the other hand, Ep+ [aibjcn]

is equal to Ep+ [aibj ]Ep+ [cn] because of the independency between (a, b) and c. These terms
vanish according to the assumptions. The extreme case of i = j = n leads to:

2
∑
i,j

∑
n

A
(k)
ij Pkn

(
Ep+

[
a2
i bi
]
− Ep+ [aibici]− Ep+ [cidiai] + Ep+

[
c2
i di
])
. (4.20)
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Because Ep+ [aibi] = 1, then we can also expect that Ep+ [a2
i bi] = 1. Also, we can rewrite

Ep+ [aibici] as Ep+ [aibi]Ep+ [ci]. Thus each of the four expectations in (4.20) approach to
one and would cancel out each other to be zero. It is worth noting that this case is small
compared to i 6= j 6= n and thus can be ignored in practice. A similar argument can be used
to show that terms that involve A(k)

ij Qkn disappear from (4.11).
From the provided analysis, we conclude that A does not play any part in the expected

loss over the training examples. Therefore, from (4.5) we see that the expected loss over
the entire training dataset is independent of A. The next section analyses the defined loss
under bilinear relational operator with regularisations.

4.5 Analysis of the Regularised `2 loss

As a special case, if we attempt to minimise the expected loss under some regularisation on
A such as the Frobenius norm regularisation, then this can be achieved by sending A to
zero tensor because according to Theorem 1, (4.2) is independent from A. With A = 0, the
relation between a and b can be simplified to:

rab = Pa+ Qb (4.21)

Then the expected loss over the positive instances, using matrix and vector notations, is
given by (4.22).

Ep+
[
||P (a− c) + Q (b− d)||22

]
= Ep+

[
(a− c)>P>P (a− c)

]
+ Ep+

[
(a− c)>P>Q (b− d)

]
+

Ep+
[
(b− d)>Q>P (a− c)

]
+ Ep+

[
(b− d)>Q>Q (b− d)

]
(4.22)

The second expectation term in the right hand side of (4.22) can be computed as follows:

Ep+
[
(a− c)>P>Q (b− d)

]
=
∑
i,j

(
P>Q

)
ij
Ep+ [(ai − ci) (bj − dj)]

=
∑
i,j

(
P>Q

)
ij

(
Ep+ [aibj ]− Ep+ [aidj ]− Ep+ [cibj ] + Ep+ [cidj ]

)
(4.23)

When i 6= j, each of the four expectations in the RHS of (4.26) are zero from the uncorrelation
assumption between two different dimensions of related or unrelated words. When i = j, we
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have: ∑
i,i

(
P>Q

)
ii

(
Ep+ [aibi]− Ep+ [aidi]− Ep+ [cibi] + Ep+ [cidi]

)
= 2

∑
i,i

(
P>Q

)
ii

(4.24)

The first and the forth terms will be equal to one from the correlation assumption between
the same dimension of two related words. Because the same dimension in unrelated words
is uncorrelated, Ep+ [aidi] and Ep+ [cibi] evaluate to zero and we got the result in (4.24). A
similar argument can be used to show that the third expectation term in the RHS of (4.22)
also evaluates to 2

∑
i,i

(
Q>P

)
ii
.

Now lets consider the first expectation term in the RHS of (4.22), which can be computed
as follows:

Ep+
[
(a− c)>P>P (a− c)

]
=
∑
i,j

(
P>P

)
ij
Ep+ [(ai − ci) (aj − cj)]

=
∑
i,j

(
P>P

)
ij

(
Ep+ [aiaj ]− Ep+ [aicj ]− Ep+ [ciaj ] + Ep+ [cicj ]

)
(4.25)

When i 6= j, it follows from the uncorrelation assumption that each of the four expectation
terms in the RHS of (4.25) will be zero. For i = j case we have,∑

i,i

(
P>P

)
ii

(
Ep+

[
a2
i

]
− 2Ep+ [aici] + Ep+

[
ci

2
])

= 2
∑
i,i

(
P>P

)
ii

(4.26)

Note that Ep+
[
a2
i

]
= Ep+

[
c2
i

]
= 1 from the standardisation (unit variance) assumption,

and Ep+ [aici] = 0, which gives the result in (4.26). Similarly, the fourth expectation term
in the RHS of (4.22) evaluates to 2

∑
i,j (Q>Q)ii. Combined, (4.22) evaluates to:

2
∑
i,j

((
P>P

)
ii

+
(
P>Q

)
ii

+
(
Q>P

)
ii

+
(
Q>Q

)
ii

)
(4.27)

Note that (4.27) is independent of the positive instances and will be equal to the expected
loss over negative instances, which gives Ep[J ] = 0 for the relational embedding given
by (4.21).

It is interesting to note that PairDiff is a special case of (4.21), where P = I and Q = −I.
In the general case where word embeddings are nonstandardised to unit variance, we can
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set P to be the diagonal matrix where Pii = 1/σi, where σi is the variance of the i-th
dimension of the word embedding space, to enforce standardisation. Considering that P,Q
are parameters of the relational embedding, this is analogous to batch normalisation (Ioffe
and Szegedy, 2015), where the appropriate parameters for the normalisation are learnt
during training.

4.6 Experiments and Results

To make our theory tenable, this section provides support for the proven theorem with
empirical evidence. First, in Section 4.6.1, we empirically validate the uncorrelation assump-
tion for six word embedding models. This empirical evidence implies that our theoretical
analysis applies to relational representations composed from a wide range of word embedding
learning methods. Then, we empirically learn the bilinear operator using analogous and
non-analogous word-pairs as presented in Section 4.6.2. In Section 4.6.3, we experimentally
show that a bilinear operator reaches its optimal performance in two relational analogy
benchmark datasets when it satisfies the requirements of the PairDiff operator.

4.6.1 Cross-dimensional Correlations

A key assumption in our theoretical analysis is the uncorrelations between different dimen-
sions in word embeddings. Here, we empirically verify the uncorrelation assumption for
different input word embeddings. We make use of SG, CBOW, GloVe and LSA(SVD) word
embeddings that we trained on ukWaC corpus as described in Section 3.2. In addition, we
examine two other popular models to obtain semantic representations for words, namely,
Latent Dirichlet Allocation and Hierarchical Sparse Coding, as described in the following
two sections.

Latent Dirichlet Allocation

In the context of NLP, Latent Dirichlet Allocation (LDA) is an unsupervised probabilistic
topical model that typically aims to extract hidden themes (topics) in a collection of
documents. LDA has been developed by Blei et al. (2003), and since then it has seen many
areas of application such as document classification and sentiment analysis. The main idea
is to model the similarity of documents in terms of what these documents are about (topic).
Topical models such as LDA seek to imitate a human ability in classifying documents into
topics based on the words appearing in these documents. Briefly, LDA represents each
document as a probability distribution over a latent (small number) of topics, and each
topic is characterised by a distribution over the words in the vocabulary. Document-topic
and topic-word distributions are derived in such a way that they best explain the observed
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unlabelled textual documents. Conceptually, the LSA model can be seen as a topic model
as it shares the underlying assumption that observations consist of a mixture themes, such
that a space of reduced dimensionality through linear algebra represents latent themes.

The LDA model starts with a pre-processing steps on a large collection of documents to
obtain a document-word matrix in which each element corresponds to a term-frequency vs
inverse document frequency between a document and a word. The words that make the
document-word matrix are the only observable features for the LDA model to be trained to
produce a topic distribution that describes how a document could be generated. The number
of latent topics and how these topics are assigned to a document are hyper-parameters to
be defined. The two important parameters for the Dirichlet distribution are α and β that
control per-document topic distribution and per-topic word distribution, respectively. A low
value of α, and similarly for β, means that a document probably belongs to a few of the
topics. The generative process for a corpus goes as follows. First, the model chooses the
probabilities over the K topics for the M documents θd=1,...,M using Dirichlet distribution
parametrised by α. Similarly for topics, where the mixing proportions over words ϕk=1,...,K

are drawn from Dirichlet(β). Then, for the jth position in the ith document, the model
choose a topic zij from a multinomial distribution with θi parameters. Finally, a word wij
is assigned to the selected topic based on the probability vector over the words for zij (i.e.,
ϕzij ). Combined, LDA is learnt to find the topic distributions and the words associated to
each topic, which are likely to generate the collection of documents.

As explained above, LDA was originally proposed to represent similarity between
documents. However, we are interested in getting word representations for our task. A
number of studies adopted the LDA model to generate semantic spaces for words (Mitchell
and Lapata, 2010; Liu et al., 2015). Thus, we built an LDA model to represent each word
by its distribution over the set of topics. Ideally, each topic will capture some semantic
category and the topic distribution provides a semantic representation for a word. For our
experiments, we prefer to use English articles in Wikipedia as a corpus to train our LDA
because it is highly contextualised since each article normally covers a single topic. We
use gensim3 to extract latent topics from a 2017 January dump of English Wikipedia. The
hyper-parameters are set as follows: number of topics=50, α = 0.02, β=0.1, vocabulary
size=100, 000.

Hierarchical Sparse Coding

In contrast to the above-mentioned word embeddings, which are dense and flat structured, we
evaluate Hierarchical Sparse Coding (HSC) that is used to produce sparse and hierarchical
word embeddings (Yogatama et al., 2015). Inspired by considering the hierarchically-

3Gensim is an open source topic modelling framework made in Python: https://radimrehurek.com/
gensim/wiki.html

https://radimrehurek.com/gensim/wiki.html
https://radimrehurek.com/gensim/wiki.html
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organised lexicons such as WordNet, the authors propose an embedding model for words
considering hierarchical structure between word embedding dimensions, which can be seen
as organising the latent concepts in the embedding space. Specifically, given the high-
dimensional context-word matrix X ∈ Rm×n capturing PMI between the occurrences of m
contexts and n words, X is factorised under sparse coding such that the reconstruction loss
given in (4.28) is minimised.

arg min
D,A
||X−DA||22 + λΩ (A) (4.28)

Here, D ∈ Rm×d and A ∈ Rd×n are the dictionary of basis vectors and the code matrix,
respectively (where d indicates the number of latent dimensions). Ω is the structured
regulariser for A, that is applied to each column (a word) in A.

In our experiments, we employ the publicly available 52-dimensional HSC word em-
beddings that are generated from a forest of four tree structures among the 52 latent
dimensions4.

Correlation Results

Given a word embedding matrixW ∈ Rn×d, where each row correspond to the d-dimensional
embedding of a word in a vocabulary containing n words, we compute a correlation matrix
C ∈ Rd×d, where the (i, j) element, Cij , denotes the Pearson correlation coefficient between
the i-th and j-th dimensions in the word embeddings over the n words in the vocabulary.
By construction Cii = 1 and the histograms of the cross-dimensional correlations (i 6= j)
are shown in Figure 4.1 for 50 dimensional word embeddings obtained from the six methods
described above. The mean of the absolute pairwise correlations for each embedding type
and the standard deviation (sd) are indicated in the figure. From Figure 4.1, irrespective of
the word embedding learning method used, we see that cross-dimensional correlations are
distributed in a narrow range with an almost zero mean.

In addition to the correlations between dimensions considering the same set of words,
we validate the cross-correlations and element-wise correlations between two sets of related
words as required in the conducted analysis. To do so, we collect the word pairs from
all the benchmarks datasets that have been used in this thesis, which were introduced in
Section 3.3. In total, we have a set P of 18, 791 related word-pairs (a, b). Then, we generate
two embedding matrices S,T ∈ R|P|×d such that S includes embeddings for the words that
act as the source arguments of the word-pairs (i.e., a), whereas T is constructed for the
corresponding target words (i.e., b). We then compute a correlation matrix C ∈ Rd×d, where
Cij here denotes the Pearson correlation coefficient between the i-th dimension (column) in S
and j-th dimension (column) in T over the word-pairs in P . Figure 4.2 shows the heatmap

4http://www.cs.cmu.edu/~ark/dyogatam/wordvecs/

http://www.cs.cmu.edu/~ark/dyogatam/wordvecs/
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Figure 4.1: Cross-dimensional correlations for six word embedding models.

for the Pearson correlation scores between the dimensions of S and T using 50-dimensional
SG word embeddings. As shown in the figure, element-wise correlations (i.e., the diagonal
values of C) are some positive correlations compared to cross-correlations that are close to
zero. The means and standard deviations of the absolute element-wise (i.e., corr(ai, bi)) and
cross-correlations (i.e., corr(ai, bj)) for all the embedding models are presented in Table 4.1.
All the embedding models report means of zero for cross-correlations with small standard
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(a) corr(ai, bj) (b) corr(a2
i , b

2
j )

Figure 4.2: Heatmap of the Pearson correlation scores between (a) SG embedding dimensions
and (b) SG embedding squared dimensions among related word pairs (a, b).

Table 4.1: Means and standard deviations (mean±sd) for Pearson correlation scores between
dimensions in word embeddings for related word-pairs.

Correlation types CBOW SG GloVe LSA LDA HSC

corr(ai, bj), i 6= j 0.056±0.043 0.053±0.041 0.051±0.038 0.039±0.032 0.009±0.016 0.056±0.045
corr(ai, bi) 0.371± 0.053 0.369±0.044 0.331±0.042 0.343±0.084 0.261±0.226 0.324±0.060

corr(a2
i , b

2
j ), i 6= j 0.021±0.013 0.025±0.022 0.024±0.020 0.022±0.019 0.011±0.012 0.024±0.026

corr(a2
i , b

2
i ) 0.213 ±0.043 0.244±0.071 0.200±0.064 0.197±0.056 0.190±0.13 0.187±0.052

deviations, whereas the element-wise correlations are relatively high up to 0.371 in CBOW
embeddings. On the other hand, element-wise and cross-correlations for randomly paired
words shows zero means across all the word embedding models (0.005± 0.003). We also
evaluate randomly pairing a with c, a with d, b with c and b with d, wherein (a, b) and
(c, d) are instances of the same relation. We use SemEval dataset for this experiment, which
reports means of 0.079 ± 0.035 and 0.022 ± 0.021 for element-wise and cross-correlation
in SG5, respectively. These small means and sd supports the uncorrelation assumption of
unrelated pairs.

These results empirically validate the uncorrelation assumption we used in our theoretical
analysis. Moreover, this result indicates that Theorem 1 can be applied to a wide-range of
existing word embedding models. In the next section, the bilinear relation representation
that minimises the defined loss in (4.4) is learnt using real-world training data.

5All other embedding models show roughly similar correlation scores for this experiment.
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4.6.2 Learning Relation Representations

Our theoretical analysis in Section 4.4 shows that the performance of the bilinear relational
embedding is independent of the tensor operator A. To empirically verify this claim,
we conduct the following experiment. For this purpose, we use the BATS dataset that
was introduced in Section 3.3.5 that contains 40 semantic and syntactic relation types,
and generate positive examples by pairing word-pairs that have the same relation types.
Approximately each relation type has 1,225 word-pairs, which enables us to generate a
total of 48,000 positive training instances (analogous word-pairs) of the form ((a, b), (c, d)).
For each pair (a, b) related by a relation r, we randomly select pairs (c, d) with a different
relation type r′, according to the `2 distance between the two pairs to create negative
(non-analogous) instances. We generate ten negative instances from each word-pair in
our experiments. We collectively refer both positive and negative training instances as
the training dataset. In total, we collect 49, 000 analogous word-pairs and about 20, 000

non-analogous pairs.
Using the d = 50 dimensional word embeddings from CBOW, SG, GloVe, LSA, LDA,

and HSC models, we learn relational embeddings according to (4.2) by minimising the `2
loss defined in (4.4). To avoid overfitting, we perform `2 regularisation on A, P and Q
are regularised to diagonal matrices pI and qI, for p, q ∈ R. We initialise all parameters
by uniformly sampling from [−1,+1] and use Stochastic Gradient Descent (SGD) with
AdaGrad (Duchi et al., 2011) with initial learning rate set to 0.01.

Figure 4.3 shows the Frobenius norm of the tensor A (on the left vertical axis) and
the values of p and q (on the right vertical axis) for the six word embeddings. In all cases,
we see that as the training progresses, A goes to zero as predicted by Theorem 1 under
regularisation. Moreover, we see that approximately p ≈ −q = c is reached for some c ∈ R
in all cases, which implies that P ≈ −Q = cI, which is the PairDiff operator. Among the
six input word embeddings compared in Figure 4.1, HSC has the highest mean correlation
(0.082), which implies that its dimensions are correlated more than in the other word
embeddings. This is to be expected by design because a hierarchical structure is imposed
on the dimensions of the word embedding during training. However, HSC embeddings
also satisfy the A ≈ 0 and p ≈ −q = c requirements, as expected by the PairDiff. This
result shows that the claim of Theorem 1 is empirically true even when the uncorrelation
assumption is mildly violated.

In the next section, we test the generalisation of the learnt parameters of the bilinear
operator on relational benchmark datasets.
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Figure 4.3: The learnt model parameters for different word embeddings of 50 dimensions.

4.6.3 Generalisation of Performance on Analogical Tasks

So far we have seen that the bilinear relational representation given by (4.2) does indeed
converge to the form predicted by our theoretical analysis for different types of word
embeddings. However, it remains unclear whether the parameters learnt from the training
instances generated from the BATS dataset accurately generalise to other benchmark
datasets for analogy detection. To emphasize, our focus here is not to outperform relational
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Figure 4.4: The training loss and test performance on the SAT and SemEval benchmark
datasets for relational embeddings.

representation methods proposed in previous works, but rather to empirically show that
the learnt operator converges to the performance of the popular PairDiff operator for the
analogy detection task. To measure the generalisation capability of the learnt relational
embeddings from BATS, we evaluate their performance on two other benchmark datasets:
the SAT (Section 3.3.1) and the SemEval 2012-Task2 with MaxDiff metric (Section 3.3.2).
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Note that we do not retrain A, P and Q in (4.2) on SAT nor SemEval, but simply use the
values learnt from BATS because the purpose here was to evaluate the generalisation of the
learnt operator.

Figure 4.4 shows the performance of the relational embeddings composed from 50-
dimensional word embeddings across different models. Similar trends were observed for
all six word embedding types. In CBOW, for example, the level of performance reported
by the PairDiff operator on the SAT and SemEval datasets are respectively 35.16% and
41.94%, and are shown by horizontal dashed lines. From Figure 4.4, we see that the training
loss decreases gradually with the number of training epochs and the performance of the
relational embeddings on SAT and SemEval datasets reach that of the PairDiff operator.
This result indicates that the relational embeddings learnt not only converge to PairDiff
operator on training data but also generalise to unseen relation types in SAT and SemEval
datasets.

4.7 Discussion

It is worth noting that the theoretical analysis provided in this chapter has some limitations.
First, the conducted analysis does not hold when the cross-dimensional correlations in the
word embeddings are not small. Although we were unable to find a word embedding learning
method that violates this uncorrelation assumption in our experiments, the set of word
embedding learning methods is an open and a continuously growing one. Further theoretical
studies are required to consider the cases where the cross-correlations between different
dimensions in a word embedding can not be ignored.

Another flaw is that the proof used the assumption that word-pairs are independent.
Even though we validate the proven theorem in our experiments, in practice this assumption
is questionable. For example, semantic relations are not always independent. One possible
solution to avoid such an assumption is to analyse the `1 absolute loss rather than `2 least
square loss.

In this chapter, we model relations as vectors and we measure the relational strength
using Euclidean distance. We are aware that there are many other relation representation
methods and relational strength measurement methods besides what we have considered
in the paper. Similar analysis can be conducted in follow-up work for different types of
relation representations and strength measures. For instance, an interesting future research
direction of this work is to extend the theoretical analysis to nonlinear relation composition
operators, such as for nonlinear neural networks.
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4.8 Summary

This chapter presented a theoretical analysis of the bilinear operator for representing relations
between words using their embeddings. We showed that, if the word embeddings are
standardised and under dimensional correlation assumptions, then the expected `2 distance
between analogous and non-analogous word-pairs is independent of bilinear terms, and the
relation embedding further simplifies to the popular PairDiff operator under regularised
settings. Among diverse methods for calculating word embeddings, we empirically verified
the validity of the correlation assumptions in word embedding dimensions, which is one of the
prerequisites for simplifying the bilinear operator to a linear one. Empirically, we supported
the theoretical analysis by showing that when optimising a general bilinear formulation on
a labeled word pair relational dataset, the solution converges to the simple linear form, and
more specifically to the simple PairDiff formulation.

The next chapter will introduce proposed methods of learning compositional operators
for relation representations by employing neural networks on unsupervised word embeddings.
The motivation is to exploit word embeddings that capture global contexts of words and
learnt using a large unlabelled text corpus to develop a supervised (or self-supervised)
method from a small set of labelled data to represent relations between words.





5
Learning Compositional Operators for Relation

Representations

5.1 Introduction

Despite the initial hype of the PairDiff method for relations, multiple independent works
have raised concerns on word embeddings capturing relational structural properties (Linzen,
2016; Schluter, 2018; Liu et al., 2017; Rogers et al., 2017; Gladkova et al., 2016). Although
PairDiff performs well on the Google analogy dataset, its performance on other relation
types has been poor (Chen et al., 2017; Vylomova et al., 2016; Köper et al., 2015). Vylomova
et al. (2016) tested for the generalisation ability of PairDiff using different relation types and
found that semantic relations are captured less accurately compared to syntactic relations.
Likewise, Köper et al. (2015) showed that word embeddings are unable to detect paradigmatic
relations such as Hypernym, Synonym and Antonyms. Another reported problem of PairDiff
is the bias towards attributional similarities between individual words rather than relational
similarities as it fails in the presence of nearest neighbours (Rogers et al., 2017). Various
issues of the PairDiff relational representation method are already covered in detail in
Section 2.5.4.

Considering the above-mentioned limitations of unsupervised relation representation
methods, a natural question that arises is whether it is possible to learn data-driven relation
representation methods to overcome those limitations. This chapter addresses this research
question in different ways. Briefly, we model the task of relation representation as learning
a parametrised function such that we can accurately represent the relation between two
given words from their word representations. We refer to these functions as compositional
operators for relation representations. The underlying idea is that word embeddings are
learnt in an unsupervised manner using a large corpus tend to include features that are
correlating with semantic relations between words. As such, we can apply supervised

95
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approaches on a small set of data to create relation representations between words.
The chapter is organised as follows. Section 5.2 presents a supervised relation rep-

resentation method that is based on word embeddings for related word-pairs and their
relation labels. In short, we train a multi-class relation prediction neural network and adopt
the penultimate layer as relation representations of the given word-pairs. Experimental
results show that our proposed model can generalise by representing relations of word-pairs
from unseen relation types, outperforming different baselines such as PairDiff. Then, in
Section 5.3, compositional methods that learn relational operators are regularised during
training with relational patterns of word-pairs. We call such methods Context-Guided
self-supervised Relation Embeddings. Empirical findings of ranking word-pairs by measuring
relational similarity confirm that the proposed context-guided model improves relation
representations. A summary of the work considered in this chapter and some conclusions
are presented in Section 5.4.

5.2 Learning Supervised Relation Compositional Operators

We model relation representation as learning a parametrised operator f(a, b; θ) such that
we can accurately represent the relation between two given words a and b from their word
representations a and b, without modifying the input word embeddings1. For this purpose,
we propose a Multi-class Neural Network Penultimate Layer (MnnPL), a simple and effective
parametrised operator for computing relation representations from word representations.
Specifically, we train a nonlinear multilayer feed-forward neural network using a labelled
dataset consisting of word-pairs for different relation types, where the task is to predict the
relation between two input words represented by their pre-trained word embeddings. We
find that the penultimate layer of the trained neural network provides an accurate relation
representation that generalises beyond the relations in the training dataset. It is worth
noting that our focus here is not to classify a given pair to a relation in a pre-defined set
(relation classification), but rather to obtain a good representation for the relation between
the two words in the pair.

The aforementioned strategy of modelling relations is similar to that in Rossiello et al.
(2019)'s study. In particular, the authors evaluate their proposed analogy detection neural
network on novel relation types as in our work. They also evaluated the effectiveness of the
penultimate layer of their analogy model to provide word-pair representations. Unlike our
model, their method is considered to be pattern-based relation representation since it requires
sentences in which two words co-occur for both training and testing instances. However,
our proposed MnnPL is compositional as we do not need of co-occurrence sentences.

1The word embeddings are not updated because at evaluation time, we will generate relation representation
between words that might never be seen during training and thus their embeddings never get tuned.
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This section is organised as follows. The proposed MnnPL is introduced in Section 5.2.1.
We evaluate the relation embeddings learnt by the proposed MnnPL on two standard tasks:
out-of-domain relation prediction and measuring the degree of relational similarities between
two word-pairs. In Section 5.2.2, we stated the experimental setup that we follow to train
the proposed method. In Section 5.2.3 and 5.2.4, we discuss the experiments conducted on
the out-of-domain and in-domain relation prediction task, respectively. In Section 5.2.5, we
evaluate relation embeddings by measuring correlation with relational similarity judgments.

5.2.1 Multiclass Neural Network Penultimate Layer

Our goal is to learn a parametrised two-argument operator f(·, ·; θ) that can accurately
represent the relation between two given words a and b using their pre-trained d-dimensional
word embeddings a, b ∈ Rd. Here, θ denotes the set of parameters that governs the behaviour
of f , which can be seen as a supervised operator that outputs a relation representation from
two input word representations. The output of f , for example, could be a vector that exists
in the same or a different vector space as a and b, as given by (5.1).

f(a, b; θ) : Rd × Rd → Rδ (5.1)

In general d 6= δ, and word and relation representations can have different dimensionalities;
even when d = δ they might be in different vector spaces. We could extend this definition to
include higher-order relation representations such as matrices or tensors, but doing so would
increase the computational overhead. Therefore, we limit supervised relational operators
such that they return vectors as given by (5.1). We note that unsupervised relational
operators such as PairDiff and vector concatenation are specific instances of this definition.
For example, for PairDiff we have f(a, b; θ) = a− b (d = δ) , and for vector concatenation
we have f(a, b; θ) = a ⊕ b (δ = 2d), where ⊕ denotes the concatenation of two vectors.
In unsupervised operators, θ is a constant that does not influence the output relation
embedding.

Having been provided with a dataset D = {(a, b, r)1, . . . , (a, b, r)N} containing N word-
pairs (a, b) labelled with relation types r ∈ {1, . . . , |R|} from a set of relations R, we train
a neural network to predict r given the concatenated pre-trained word embeddings a⊕ b as
the input. We implement the proposed supervised relation composition operator, MnnPL,
as a feed-forward neural network with two hidden layers followed by a softmax layer as
shown in Figure 5.1. Mathematically, the input (i), the hidden (h) and the output (o)
layers along with the loss function L(D, θ) are defined as follows:
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Figure 5.1: Architecture of the proposed MnnPL, a feed forward neural network that is
used to model the supervised relational operator f .

i = a⊕ b

h1 = g (W1i+ s1)

h2 = g (W2h1 + s2)

o = W3h2 + s3

p̂ = softmax(o) =
exp(oi)∑|R|
j=1 exp(oj)

for i = 1, . . . , |R|

L(D, θ) = − 1

N

∑
(a,b,r)∈D

log (p̂r) +
λ

2
||θ||22 (5.2)

Weight matrices for the hidden layers are W1 and W2, whereas the bias vectors are s1

and s2. g refers to the nonlinear activation function for the hidden layers. We experiment
with different nonlinearities in the hidden layers. The output layer is the softmax over the
relation labels of a given dataset, which is parametrised by W3 and s3. We minimise the `2
regularised softmax cross-entropy loss over the training instances as defined in (5.2). Here,
θ is the set of the learnable parameters in MnnPL, θ = W1,W2,W3, s1, s2, s3. As the
model’s name implies, MnnPL, after training a single model parametrised by the neural
network for a set of relations, we use the penultimate layer (i.e., the output of the final
hidden layer h2) as the relation representation for a word-pair.

We emphasise that our goal is not to classify a given pair into a specific set of relations,
but rather to find a representation of the relation between any pair of words. Therefore,
we test the learnt relation representation operator using relations that are not seen during
training (i.e., out-of-domain examples) by holding out a subset of relations during training.
Combined, our method can be seen as an instance of transfer learning, which typically aims to
use the knowledge gained when learning one task in a source domain (relation classification)
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and transferring it to a different, but related, task (relation representation) on a target
domain. Our evaluation can be also considered as a zero-shot learning setting (Larochelle
et al., 2008), where some classes are not available during training the model and they are
only given at inference time. The section below describes the training settings for the
proposed model in detail.

5.2.2 Training Setup

Datasets. We used two previously proposed datasets for evaluating the proposed MnnPL:
BATS (Section 3.3.5) and DiffVec (Section 3.3.4). In the DiffVec dataset, we exclude
ATTRIBUTE:Action-ObjectAttribute relation from the experiments as it has less than ten
instances. We experimented with 50-dimensional CBOW, SG, GloVe and LSA(SVD) word
embedding models trained on the ukWaC as the input to the neural network (introduced in
Section 3.2). Overall, we found `2 normalisation of word embeddings to improve results.

Implementation details. The size of the input layer of the MnnPL is 2d, where d is
the dimensionality of the input word embeddings. We set the size of each hidden layer
in MnnPL to d (= 50), and thus the dimensionality of the relation embeddings δ from
the penultimate layer is equal to d. We use SGD with Momentum (Qian, 1999) with a
mini-batch size of 128 to minimise the `2 regularised cross-entropy error. All parameters
are initialised by uniformly sampling from [−1,+1] and the initial learning rate is set to 0.1.
Dropout regularisation is applied with a 0.25 rate. TensorFlow2 was used to implement the
model. All hyperparameters are tuned using a randomly selected 10% of training data, set
aside as a validation dataset. Specifically, we selected the number of the hidden layers among
{1, 2, 3}, the activation function g of the hidden layers among {tanh, relu, linear}, and the
`2 regularisation coefficient from {0.1, 0.01, 0.001} via grid search within the validation
dataset. We found the optimal configuration was to set the number of hidden layers to
two and the nonlinear activation to tanh (hyperbolic tangent function). The tanh function
squashes the input between −1 and 1, and is defined as follows: tanh(x) =

exp(x)−exp(−x)
exp(x)+exp(−x) .

The optimal `2 regularisation coefficient λ was 0.001. These settings performed consistently
well in all our evaluations.

Comparison methods. As our main baselines, we use the unsupervised operators for
representing relations of word-pairs that are studied in Section 3.4.1, namely : PairDiff,
Concatenation (Concat), elementwise addition (Add) and elementwise multiplication (Mult).
These operators are referred to as unsupervised in the sense that there are no parameters in
those operators that can be learnt from the training data. We also compare the proposed

2TensorFlow is an open source platform for machine learning: https://www.tensorflow.org

https://www.tensorflow.org
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MnnPL with the bilinear operator proposed in Chapter 4 as a supervised relation represen-
tation method. For convenience, the bilinear operator is restated in (5.3). We refer to this
operator as BiLin.

rab = a>Ab+ Pa+ Qb+ s (5.3)

Here, A ∈ Rd×d×δ is a 3-way tensor in which each slice is a d× d real matrix. P,Q ∈ Rδ×d

are the projection matrices of a and b, respectively. We train the BiLin operator using a
margin-based rank loss objective. Specifically, we minimise the distance between the relation
representations of the analogous pairs (positive instances), while maximising the distance
between the representations of non-analogous examples (negative instances) created via
random perturbations. Given a set of word pairs Sr that are related by the same relation,
we generate positive training instances ((a, b), (c, d)) by pairing word-pairs (a, b) ∈ Sr and
(c, d) ∈ Sr. To generate negative training instances, we corrupt a positive instance by pairing
(a, b) ∈ Sr with a word-pair (c′, d′) ∈ Sr′ that belongs to a different relation r′ 6= r. One
negative instance is generated for each analogous example in our experiments, resulting in a
balanced binary labelled dataset D. The regularised training objective for BiLin L(D; θ) is
given by (5.4).

∑
((a,b),(c,d),(c′,d′))∈D

max(0, µ+ ||rab − rcd||22 − ||rab − rc′d′ ||
2
2) +

λ

2
||θ||22 (5.4)

Here, µ is a margin hyperparameter set to 1 according to the best accuracy on the validation
dataset. The best regularisation coefficient λ for the tensor A on the validation dataset
was 0.1. However, regularising P and Q decreased the performance on the validation
set, and therefore were not regularised. Considering 50-dimensional word embeddings, the
dimensionality of BiLin parameters are set to: A ∈ R50×50×50, P ∈ R50×50 and Q ∈ R50×50.

The supervised methods are trained for a maximum of 1000 epochs, wherein the best
model is selected by early stopping through evaluating the performance on the validation set.
When the performance ceases to improve for 15 consecutive epochs, we stop the training and
use the last best saved model. The following section discusses the out-of-domain relation
representation task.

5.2.3 Evaluating Out-of-Domain Relations

A critical evaluation criterion for a relation representation learning method is whether it can
accurately represent not only the relations that exist in the training data that was used to
learn the relation representation but can also generalise to unseen relations (out-of-domain).
Therefore, to evaluate the different relation representation methods, we employ them in an
out-of-domain relation prediction task. Specifically, we use different relations for testing



Chapter 5. Learning Compositional Operators for Relation Representations 101

than that used in training. No training is required for unsupervised operators.

Evaluation Protocol

Here, we describe the evaluation protocol of out-of-domain task in detail. Lets denote a set
of relation types by R and a set of word-pairs covering the relations in R by D. First, we
randomly sample five target relations from the dataset to construct a relation set Rt for
testing and the remainder represents a set of source relations Rs that is used for training the
supervised relational operators including the BiLin and the proposed MnnPL. We use the
set Ds of word-pair instances covering Rs to learn the supervised operators by predicting
the relations in Rs. To evaluate the performance of such operators, we use the relational
instances in the test split Dt that cover the out-of-domain relations in Rt. We conduct
1-NN relation classification on the Dt dataset. The task is to predict the relation that exists
between two words a and b from the sampled relations in Rt. Specifically, we represent
the relation between two words using each relational operator on the corresponding word
embeddings. Next, we measure the cosine similarity between representations for the stem
pair and all the word-pairs in Dt. For each target word-pair, if the top-ranked word-pair has
the same relation as the stem pair, then it is considered to be a correct match. Note that we
do not use Dt for learning or updating the (supervised) relational operators but use it only
for the 1-NN relation predictor. We repeat this process ten times by selecting different Rs
and Rt (four or five relations as targets) relation sets and use leave-one-out evaluation for
the 1-NN as the evaluation criteria. We compute the (micro-averaged) classification accuracy
of the test sets as the evaluation measure. Because each relation type in an out-of-domain
relation set has multiple relational instances, a suitable relation representation method
retrieves the related pairs for a target pair at the top of the ranked list. For this purpose,
we measure Mean Average Precision (MAP) for the relation representation methods. MAP
is the mean of the Average Precision (AP) for each test word-pair, which is computed
considering a ranked list of candidate word-pairs as follows:

AP =

∑K
k=1

(
# matches pairs in top k

k

)
× I(k)

#correct pairs
(5.5)

where I(k) is an indicator function that returns 1 if a relation label of a candidate pair at
rank k matches the label of the given test pair, 0 otherwise.

To derive further insights into the relation representations learnt, following Nastase et al.
(2013), we use the notion of “near” vs. “far” analogies considering the similarities between the
corresponding words in the two related pairs. For example, (tiger, feline), (cat, animal) and
(motorcycle, vehicle) are all instances of the is-a-hypernym relation. One can see that (tiger,
feline) is closer to (cat, animal) than (motorcycle, vehicle). Here, tiger and cat are similar
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Table 5.1: The two nearest and the two farthest word-pairs for some stem word-pairs
together with their similarity scores according to (5.6).

Relation type Stem pair Nearest to Farthest

Hypernym (food:cherry) (fruit:plum)0.87,(veggie:parsley)0.81, . . . ,(artifact:helicopter)0.43

Space-Time (theatre:play) (hall:music)0.69,(studio:art)0.68, . . . ,(mine:coal)0.38

Cause-Effect (disease:sickness) (illness:discomfort)0.84,(headache:stress)0.78, . . . ,(digging:hole)0.47

Contiguity (wall:shelf) (sill:window)0.78,(railing:stair)0.76, . . . ,(margin:paper)0.59

because they are both animals; also feline and animal have shared attributes. On the other
hand, the corresponding words in the two pairs (tiger, feline) and (motorcycle, vehicle) have
low attributional similarities between tiger and motorcycle or between feline and vehicle.
Detecting near analogies using word embeddings is easier compared to far analogies because
attributional similarity can be measured accurately using word embeddings. For this reason,
we evaluate the accuracy of a relation representation method at different degrees of the
analogy as follows. Given two word-pairs, we compute the cross-pair attributional similarity
using SimScore defined by (5.6).

SimScore((a, b), (c, d)) =
1

2
(sim(a, c) + sim(b,d)) (5.6)

Here, sim(x,y) is the cosine similarity between x and y. Next, we sort the word-pairs in
descending order of their SimScores (i.e., from near to far analogies). Examples of far and
near analogies with SimScores for some selected word-pairs are presented in Table 5.1. To
alleviate the effect of attributional similarity between two word-pairs in our evaluation, we
remove the 25% top-ranked (nearest) pairs for each stem pair. Consequently, a relation
representation method that relying only on attributional similarity is unlikely to accurately
represent the relations between words.

Experimental Results

The average accuracy (Acc) and the MAP of the relation representation operators for
CBOW, SG, GloVe and LSA embeddings on DiffVec and BATS datasets are presented in
Table 5.2. As can be observed among the different embedding types, MnnPL consistently
outperforms all other methods with respect to both Acc and MAP score. The differences
between MnnPL and other methods for all rounds and target relations are statistically
significant (p < 0.01) according to a paired t-test. CBOW embeddings report the best
Acc and MAP scores for the two datasets in contrast to all other embedding models. The
reported performance of the proposed MnnPL over the best unsupervised operator (i.e.,
PairDiff) has a significant improvement on DiffVec compared to BATS. One of the reasons
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Table 5.2: Average accuracy and MAP of 1-NN relation classification for different relation
representation methods on DiffVec and BATS datasets. Results are shown for CBOW, SG,
GloVe and LSA word embeddings (50 dimensional embeddings).

CBOW SG

DiffVec BATS DiffVec BATS
Method Acc MAP Acc MAP Acc MAP Acc MAP

PairDiff 0.398 0.344 0.688 0.525 0.349 0.305 0.607 0.454
Concat 0.173 0.347 0.325 0.518 0.147 0.316 0.250 0.446
Add 0.164 0.302 0.321 0.479 0.159 0.288 0.269 0.412
Mult 0.179 0.213 0.330 0.286 0.206 0.24 0.289 0.287
BiLin 0.395 0.357 0.710 0.587 0.332 0.309 0.604 0.485

MnnPL 0.486 0.421 0.721 0.624 0.411 0.373 0.625 0.522

GloVe LSA

DiffVec BATS DiffVec BATS
Method Acc MAP Acc MAP Acc MAP Acc MAP

PairDiff 0.365 0.312 0.663 0.516 0.295 0.306 0.624 0.510
Concat 0.139 0.300 0.361 0.520 0.122 0.300 0.298 0.482
Add 0.161 0.276 0.347 0.462 0.132 0.266 0.312 0.442
Mult 0.199 0.225 0.323 0.278 0.179 0.198 0.385 0.335
BiLin 0.355 0.325 0.668 0.557 0.268 0.294 0.622 0.543

MnnPL 0.456 0.381 0.698 0.585 0.360 0.342 0.658 0.59

could be due to a small number of training examples in BATS versus DiffVec. In light with
the proven theorem in Chapter 4 about bilinear operators for relation representations, we
can observe that the obtained results support the theoretical analysis as for most of the
cases BiLin does not significantly outperform PairDiff.

To further evaluate the accuracy of the relational operators on different relation types, we
break down the evaluation per major relation type in the BATS dataset as shown in Table 5.3.
For semantic relation types, we can see that lexicographic relation representations perform
weaker than encyclopaedic relations for all the considered methods. More importantly, the
proposed MnnPL consistently, and often substantially, outperforms the other methods for
both types of semantic relations. In particular, the performance of PairDiff on lexicographic
relations is poor, whereas MnnPl reports the best results. On the other hand, we found
that our proposed MnnPL performs lower than unsupervised PairDiff when it comes to
morphological relations.
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Table 5.3: Break down of the performance for the four major relation types in the BATS
dataset per method using GloVe embeddings.

Encyclopedic Lexicographic Inflectional Derivational

Method Acc MAP Acc MAP Acc MAP Acc MAP

PairDiff 0.764 0.613 0.297 0.213 0.905 0.703 0.789 0.615
Concat 0.724 0.792 0.146 0.302 0.307 0.539 0.244 0.454
Add 0.774 0.781 0.199 0.311 0.153 0.384 0.180 0.337
Mult 0.464 0.294 0.170 0.202 0.382 0.412 0.301 0.260
BiLin 0.813 0.694 0.366 0.300 0.763 0.628 0.694 0.543
MnnPL 0.884 0.813 0.414 0.338 0.817 0.686 0.759 0.615

Further Analysis

Because most NLP models employ the pre-trained Glove and CBOW 300-dimensional vectors
that are publicly available, it is worth showing the performance of these pre-trained models
with the proposed MnnPL. We consider GloVe that is trained on Common Crawl dataset3

(42 billion tokens), and CBOW trained on Google News4 (100 billion words). Table 5.4
illustrates the performance of relation representation methods using the pre-trained GloVe
and CBOW. In addition to the fine-grained DiffVec of 36 relations (DiffVec-fine), we examine
15 coarse-grained relations (DiffVec-coarse) in which the out-of-domain relation learning
task is more challenging due to the lack of correlations between Rs and Rt. Consistently,
pre-trained GloVe and CBOW behave similarly to the embeddings we trained on ukWaC
corpus and used extensively throughout the thesis. More interestingly, MnnPL shows
comparable results for the held-out relations in DiffVec-coarse setting, which confirms
that the proposed method can be transferred to resource-lean target relations without any
training instances.

To compare the performance of the relation representation methods across different
out-of-domain target relation sets, Table 5.5 presents the 1NN accuracy for all the five
rounds from the DiffVec and BATS. For the DiffVec dataset, which includes lexicographic
semantic relations, the MnnPL consistently outperforms the baselines across most of the
relations individually and reports the best average for each randomly selected target set
for GloVe and CBOW embeddings There are some relations where all the methods fail to
represent using only word embeddings, such as Sign: Significant in which all the methods
perform poorly and the difference of PairDiff with the MnnPL is small 0.031. The best
accuracy reported for this relation is 0.152 with MnnPL operator on GloVe embeddings.

In the case of BATS dataset, there are differences as the relational instances in this set
3https://nlp.stanford.edu/projects/glove/
4https://code.google.com/archive/p/word2vec/

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
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Table 5.4: Results for the out-of-domain evaluation using pre-trained 300-dimensional GloVe
and CBOW.

Pre-trained GloVe Pre-trained CBOW

DiffVec-coarse DiffVec-fine BATS DiffVec-coarse DiffVec-fine BATS
Method Acc MAP Acc MAP Acc MAP Acc MAP Acc MAP Acc MAP

PairDiff 0.300 0.280 0.311 0.317 0.622 0.516 0.230 0.282 0.275 0.321 0.520 0.412
Concat 0.029 0.204 0.107 0.263 0.386 0.559 0.063 0.264 0.128 0.315 0.423 0.570
Add 0.057 0.185 0.113 0.238 0.387 0.505 0.086 0.226 0.123 0.273 0.444 0.538
Mult 0.151 0.206 0.171 0.241 0.344 0.306 0.150 0.214 0.125 0.195 0.494 0.412
BiLin 0.282 0.274 0.376 0.327 0.633 0.517 0.343 0.317 0.358 0.319 0.601 0.524

MnnPL 0.415 0.380 0.470 0.410 0.706 0.569 0.522 0.457 0.520 0.425 0.723 0.622

are classified to various relation types and a method that works for one relation type might
not be suitable for others. To be consistent in the evaluation, we excluded two Encyclopedic
(E) relations and two Lexicographics (L) for each target set Rt. Overall, as in Table 5.5,
MnnPL achieves the best results for the most of L relations and for the average 1NN
accuracy for the five different target sets in the two word embeddings types. There are few
exceptions as can be seen in Table 5.5. In CBOW embeddings, for R(3)

t set Mult shows
the best average 0.579 compared to 0.532 of the MnnPL. We can observe that E relations
are easier than L relations, as all the methods can gain higher performance on E than
L relations. Despite that, MnnPL reports good performance for both types of semantic
relations.

Effect of Lexical Overlaps

As elaborated in Section 2.5.4, PairDiff is biased towards the attributional similarity between
words when two word-pairs are compared. To evaluate the effect of this, we group test cases
in the DiffVec dataset into two categories: (a) lexical-overlap (i.e., there are test cases
that have one word in common between two word-pairs) and (b) lexical-nonoverlap (i.e.,
no words are common between the two word-pairs in all the test cases). In other words,
given the test word-pair (a, b), then if there is a train word-pair (a, c), (b, c), (c, a) or (c, b)

we consider this case in the lexical-overlap set. For example, (animal, cat) and (animal, dog)
has lexical-overlap because animal is a common word in the two pairs. Figure 5.2 shows
the average 1-NN classification accuracy for the best unsupervised operator PairDiff and
MnnPL. We see that the performance drops significantly from lexical-overlap to lexical-
nonoveralp by ca. 10% for PairDiff, whereas that drop is ca. 1.8% for MnnPL. This result
indicates that MnnPL is affected less by attributional similarity compared to PairDiff.
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Table 5.5: 1NN classification accuracy for relations in different target relation sets in out-of-
domain evaluation using pre-trained GloVe and CBOW. Best performance for each relation
type in each embedding model is shown in bold.

DiffVec Pre-trained Glove Pre-trained CBOW

Round Target relations PairDiff Concat Add Mult BiLin MnnPL PairDiff Concat Add Mult BiLin MnnPL

R(1)
t Location-Process:Product .370 .000 .037 .074 .481 .593 .481 .074 .037 .185 .630 .704

EnablingAgent: Object .206 .000 .000 .000 .441 .500 .294 .235 .324 .088 .353 .618
Light-Verb-Construction .897 .983 .914 .810 1.0 .914 .810 .914 .586 .397 .414 .948
Sign: Significant .242 .000 .000 .091 .273 .455 .091 .030 .061 .121 .121 .424
Cause:CompensatoryAction .500 .107 .143 .071 .286 .357 .393 .286 .214 .214 .393 .643
Average .443 .218 .219 .209 .496 .564 .414 .308 .244 .201 .382 .667

R(2)
t Object: TypicalAction(n.v) .152 .000 .000 .182 .152 .455 .333 .061 .000 .030 .483 .485

Sign: Significant .121 .000 .030 .030 .121 .152 .061 .000 .061 .091 .091 .121
Knowledge .926 .593 .333 .333 .667 .667 .926 .704 .370 .296 .704 .741
Time-Action:Activity .206 .059 .147 .294 .441 .235 .265 .176 .176 .147 .294 .294
Instrument:Goal .069 .000 .000 .034 .000 .310 .034 .000 .000 .034 .241 .207
Average .295 .130 .102 .175 .276 .364 .324 .188 .121 .120 .363 .370

R(3)
t Object: TypicalAction(n.v) .152 .000 .000 .333 .182 .515 .242 .000 .000 .000 .485 .424

Object:State (n.n) .250 .031 .031 .062 .219 .562 .031 .000 .062 .062 .125 .562
Hypernym .420 .000 .020 .040 .700 .700 .260 .000 .040 .200 .400 .680
Attachement .185 .259 .259 .296 .037 .407 .074 .074 .185 .074 .111 .407
Instrument:Goal .069 .000 .000 .069 .172 .483 .034 .000 .000 .000 .241 .276
Average .215 .058 .062 .160 .262 .533 .128 .015 .057 .067 .272 .47

R(4)
t Event .540 .060 .120 .200 .580 .780 .440 .060 .100 .040 .740 .820

Location-Process:Product .259 .000 .037 .037 .519 .704 .407 .000 .000 .111 .444 .593
EnablingAgent: Object .059 .000 .000 .118 .088 .265 .000 .029 .088 .059 .353 .412
Instrument:Goal .172 .000 .000 .103 .345 .621 .103 .034 .069 .069 .343 .552
Plan .171 .057 .143 .143 .286 .200 .171 .086 .286 .229 .229 .543
Average .240 .023 .060 .120 .364 .514 .224 .042 .109 .102 .422 .584

R(5)
t Location:AssociatItem .031 .000 .000 .062 .250 .094 .094 .000 .000 .188 .281 .125

LocationAction:Activity .667 .048 .000 .095 .667 .667 .762 .095 .048 .048 .571 .619
Meronym .180 .000 .000 .040 .120 .300 .047 .000 .000 .040 .160 .500
Hypernym .460 .020 .020 .080 .560 .60 .280 .000 .040 .100 .400 .500
Representation .067 .000 .133 .300 .233 .300 .133 .000 .100 .167 .300 .400
Average .281 .014 .031 .115 .366 .392 .262 .019 .038 .109 .342 .429

BATS

R(1)
t country-capital(E01) 1.0 .560 .000 .580 .860 .720 .757 .405 .135 .432 .514 .622

country-language(E02) 1.0 .720 .180 .200 .980 .920 .861 .278 .167 .222 .472 .472
meronyms-member(L05) .520 .240 .340 .460 .580 .580 .531 .163 .286 .367 .571 .878
hypernyms-misc(L02) .500 .200 .240 .200 .540 .800 .420 .360 .460 .380 .580 .820
Average .755 .430 .190 .360 .740 .755 .642 .302 .262 .350 .534 .698

R(2)
t country-capital(E01) 1.0 .980 .880 .640 .960 1.0 .784 .973 .973 .973 .973 .973

animal-sound(E07) .740 .060 .040 .080 .680 .580 .880 .500 .320 .340 .640 .760
hypernyms-animals(L01) .500 .140 .080 .120 .380 .580 .444 .6 .378 .889 .844 .933
hyponyms-misc(L03) .400 .220 .200 .220 .600 .740 .260 .220 .300 .600 .440 .860
Average .660 .350 .300 .265 .655 .725 .592 .573 .493 .701 .724 .882

R(3)
t UK_city-county(E03) .800 .600 .740 .580 .740 .960 .560 .560 .640 .480 .320 .360

country-capital(E01) 1.0 .880 .820 .420 .820 .860 .595 .892 .919 .946 .946 .703
antonyms-binary(L10) .320 .480 .560 .560 .560 .440 .200 .340 .420 .380 .400 .760
synonyms-exact(L08) .380 .000 .000 .160 .320 .400 .184 .000 .020 .510 .143 .306
Average .625 .490 .530 .430 .610 .665 .385 .448 .500 .579 .452 .532

R(4)
t UK_city-county(E03) .920 .960 1.0 .640 .920 .840 .560 1.0 1.0 .800 .880 .880

animal-young(E06) .340 .020 .460 .040 .280 .680 .440 .380 .500 .440 .640 .740
meronyms-part(L06) .200 .000 .000 .100 .120 .240 .152 .000 .022 .174 .196 .326
synonyms-exact(L08) .220 .020 .040 .560 .260 .360 .163 .041 .041 .469 .347 .429
Average .420 .250 .375 .335 .395 .530 .329 .355 .391 .471 .516 .594

R(5)
t animal-shelter(E08) .640 .180 .560 .080 .740 .900 .920 .740 .780 .440 .800 .94

name-nationality(E04) 1.0 .900 .820 .220 1.0 1.0 .875 .958 1.0 .917 .958 1.0
antonyms-gradable(L09) .600 .520 .580 .720 .860 .640 .640 .540 .740 .400 .920 1.0
meronyms-substance(L04) .360 .040 .200 .300 .460 .800 .592 .327 .490 .245 .796 .918
Average .650 .410 .540 .330 .765 .835 .757 .641 .753 .501 .869 .965
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Figure 5.2: Effect of lexical overlaps in measuring word-pairs relational similarity.

5.2.4 Evaluating In-Domain Relations

We evaluate the performance of the relation representation operators considering the in-
domain setting, wherein we test the performance on relational instances that belong to
relation types used in the training set. Recall that R and D refer to the set of relations
and the set of relational instances covering such relations, respectively. In the in-domain
setting, we do not need to split R to source and target relation sets. Instead, we implement
5-stratified folds cross-validation considering the set of relational instances in the dataset D.
We used 1-NN and MAP metrics for the evaluation. So the in-domain experiment setting
is very similar to the out-of-domain experiment except in the latter we use Rs 6= Rt for
the evaluation. Detailed results for in-domain evaluation are presented in Table 5.6. As
shown in the table, MnnPL reports the best results for the in-domain setting for the two
datasets. As expected, the performance for the in-domain setting is significantly better than
the out-of-domain setting.

5.2.5 Measuring the Degree of Relational Similarity

Recall that the relational similarity is the correspondence between the relations that exists
in two word-pairs. To measure a relational similarity score between two pairs of words, one
must first identify the relation in each pair to perform such a comparison. Suitable relation
embeddings should correlate highly with human judgments of relational similarity between
word-pairs. For this task, we use the dataset proposed by Chen et al. (2017)5 which is
inspired by SemEval-2012 task 2 dataset (Jurgens et al., 2012). In this dataset, humans
are asked to score pairs of words directly focusing on a comparison between instances
with similar relations. For examples, in Location:Item relation, the pairs (cupboard, dishes)
and (kitchen, food) are assigned a higher relational similarity score (6.18) than the pairs

5https://github.com/sdawnchen/vector-space-analogy-analysis

https://github.com/sdawnchen/vector-space-analogy-analysis
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Table 5.6: 1-NN relation classification results for in-domain setting.

CBOW SG

DiffVec BATS DiffVec BATS
Method Acc MAP Acc MAP Acc MAP Acc MAP

PairDiff 0.686 0.386 0.484 0.329 0.621 0.334 0.399 0.263
Concat 0.717 0.385 0.417 0.284 0.673 0.336 0.344 0.240
Add 0.573 0.323 0.303 0.227 0.524 0.296 0.261 0.196
Mult 0.480 0.268 0.182 0.119 0.453 0.275 0.182 0.123
BiLin 0.700 0.520 0.599 0.492 0.648 0.464 0.462 0.349

MnnPL 0.797 0.656 0.600 0.483 0.765 0.619 0.497 0.379

GloVe LSA

DiffVec BATS DiffVec BATS
Method Acc MAP Acc MAP Acc MAP Acc MAP

PairDiff 0.662 0.371 0.442 0.288 0.642 0.339 0.398 0.279
Concat 0.672 0.349 0.385 0.261 0.667 0.345 0.344 0.260
Add 0.516 0.299 0.282 0.205 0.534 0.301 0.270 0.213
Mult 0.423 0.261 0.177 0.108 0.460 0.256 0.226 0.151
BiLin 0.692 0.510 0.501 0.383 0.694 0.511 0.438 0.366

MnnPL 0.796 0.655 0.531 0.416 0.785 0.639 0.479 0.387

(cupboard, dishes) and (water, ocean), which is rated 3.8. Instances of this relation can be
expressed by multiple patterns such as “X holds Y” or “Y in the X”, and one reason that
the second example is assigned low score is that the words in the pair (water, ocean) are
ordered reversely compared to other pairs. Chen et al. (2017) dataset consists of 6,194
word-pairs across 20 semantic relations. We calculated the relational similarity score of two
pairs as the cosine similarity between the corresponding relation vectors generated by the
considered operators. Then, we measured the Pearson correlation coefficient between the
average human relational similarity ratings and the predicted scores by the methods. For
this task, we choose to train the supervised methods on BATS as the overlap of the relation
set between BATS and Chen datasets are small. We exclude any word-pairs in the Chen
dataset that appears in the training data.

Table 5.7 shows Pearson correlations for all the four embedding models and the relational
representation methods across all relations, where high values indicate a better agreement
with the human notion of relational similarity. As can be observed, the proposed MnnPL

correlated better with human ratings than the supervised and unsupervised baselines.
According to the Fisher transformation test of statistical significance (Fisher, 1915), the
reported correlations of MnnPL is statistically significant at the 0.05 significance level.
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Table 5.7: Results of measuring relational similarity scores (Pearson’s correlations).

Method MnnPL BiLin PairDiff Concat Add Mult

CBOW 0.309 0.258 0.172 0.277 0.223 0.204
GloVe 0.263 0.207 0.161 0.208 0.147 0.021
SG 0.251 0.176 0.161 0.208 0.147 0.021
LSA 0.266 0.199 0.154 0.245 0.197 0.190

Interestingly, the Concat baseline shows a stronger correlation coefficient than PairDiff.
Moreover, for CBOW and LSA embeddings, Add and Mult are considered stronger than
PairDiff. Consistent with the out-of-domain relation prediction task, CBOW embeddings
perform better than other embeddings for measuring the degree of relational similarity.
Indeed, measuring the degree of relational similarity is a challenging task and required
qualified fine-grained relation embeddings to obtain accurate scores of relational instances.

5.3 Generalising Co-occurrences Between Word-Pairs and Pat-
terns to Unseen Pairs

Although the supervised operator MnnPL that is proposed in the previous section has
shown to be effective in representing relations of word-pairs, we argue that the information
contained in co-occurring patterns can still provide guidance to such a supervised operator
to enhance relation representation quality. As already described in Chapter 2, two main
approaches can be identified in the literature for representing semantic relations between
two words: pattern-based and compositional approaches. The pattern-based approaches use
lexical patterns in which two words of interest co-occur, while the compositional approaches,
on the other hand, attempt to represent the relation between two words from their word
embeddings. Each of these approaches has drawbacks. While the main problem of the
pattern-based approach is data sparseness, methods that rely only on word embeddings
for the related pairs suffer from lack of relational information. Prior work on relation
embeddings has predominantly focused on either one type of those two resources exclusively.

We believe that word embeddings and co-occurrence contexts collectively provide comple-
mentary information for the purpose of learning relation embeddings. For example, Bollegala
et al. (2010) observed a duality between word-pair and pattern-based approaches for rep-
resenting relations where they refer to the former as an intentional definition of relation
representation and the latter an extensional definition of relation representation. The
authors used this duality to propose a sequential co-clustering algorithm for discovering
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relations from a corpus. In prior work on relation representation learning, however, the two
types of information sources are often used independently. Thus, the question of whether
we can learn more expressive and superior relation representations by combining the two
sources of information needed to be explored.

Hybrid approaches for relations aim to balance between the data sparsity in the pattern-
based approach and the lack of relational information in the compositional methods. However,
few recent studies have been devoted to incorporate the two types of information to improve
the relation representations (refer to Section 2.6). In response to this gap, this section
presents a proposed relation representation method that uses the contextual information
from a text corpus to generalise the learnt operator for unobserved word-pairs. We refer to
such methods as Context-Guided Relation Embeddings (CGRE). Our proposed method
differs from existing pattern-based approaches in two important ways. First, we do not
require the two words to co-occur within the same sentences in a corpus to be able to
represent the relation between them. Second, the parametrised operator we learn generalises
in the sense that it can be applied to any new word-pair or relation type, not limited to the
words and relations that exist in the training data. Empirically, relation representations
obtained by our proposed CGRE model yields improvements in ranking word-pairs according
to their prototypicality of the relation.

The section is structured as follows. The proposed CGRE is explained in Section 5.3.1.
In Section 5.3.2, experimental setups including training datasets and implementation details
are presented. Experimental results on the SemEval-2012 task 2 benchmark is presented
in Section 5.3.3, which show the ability of the learnt operator to generalise to unobserved
word-pairs outperforming previously proposed relational operators.

5.3.1 Context-guided Self-Supervised Relation Embeddings

Recall that our main goal is to accurately represent relations between words. We propose to
learn a parametrised operator for relations that maps a word-pair to a relation embedding
considering two sources of information: (a) word embeddings of related words, and (b) the
contexts in which two related words co-occur. We want the learnt operator to overcome the
sparseness problem in the pattern-based relation representations. Motivated by this, our
objective is to create relation representations for word-pairs that do not co-occur or belong
to unseen relations.

Given a set D of related word-pairs (a, b) along with their relation labels r, pre-trained
word embeddings that represent the semantics of words, and a text corpus, we propose a
method for learning δ-dimensional relation embeddings rcd ∈ Rδ for an unseen word-pair
(c, d). Relation labels for word-pairs can be manually annotated gold labels provided in the
relational dataset such as in the case of DiffVec, Google analogies, and BATS, or can be
pseudo labels generated from word-pair features as described later in this section. Figure 5.3
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Figure 5.3: An illustration of the proposed CGRE for relation representations.

is an illustration of our proposed model. Following the prior work (Hakami and Bollegala,
2019b; Washio and Kato, 2018a,b; Joshi et al., 2019), a word-pair (a, b) is fed to a deep
multilayer neural network with a nonlinearity activation for the hidden layers (as described
in Section 5.2.1). In our proposed CGRE, the input layer of the network is the concatenation
of embeddings a and b and their difference, (a⊕b⊕b−a). As described earlier with respect
to the MnnPL, the penultimate layer of the neural network that is given by f(a, b, θf ) is
considered as a representation for a word-pair, and is passed to a fully connected softmax
layer and the overall network is trained to predict the relation label for the given pair. For
this purpose, we use the `2 regularised cross-entropy loss defined in (5.7) as the training
objective.

JC = −
∑

(a,b,r)∈D

log p(r|f(a, b, θf )) (5.7)

Here, θf collectively denotes the parameters of the network.
JC given in (5.7) does not consider the co-occurrence contexts. Therefore, we consider

a relation representation operator, g(P(a, b), θg), that encodes a set of contextual co-
occurrences between a and b according to (5.8).

g(P(a, b), θg) =
∑

p∈P(a,b)

w(a, p, b)h(a, p, b, θh) (5.8)

Here, P(a, b) is a set of lexical patterns that co-occur with a and b. We model h(a, p, b, θh)

by using Long Short-Term Memory (LSTM) that maps a sequences of words w1, w2, . . . , wT

in each pattern p (including a and b) to a fixed-length vector p. The LSTM is a type of
recurrent neural networks that have been proposed to encode sequential data (Hochreiter
and Schmidhuber, 1997). Generally speaking, given the current input of a sequence, LSTM
combines the current input representation with the previous state to generate a new hidden
state that encodes the input sequence so far. The representation for a hidden state at time
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t is computed as in (5.9).

et = tanh (Wewt + Ueht−1 + se)

it = σ (Wiwt + Uiht−1 + si)

f t = σ (Wfwt + Ufht−1 + sf )

ot = σ (Wowt + Uoht−1 + so)

ct = it � et + f t � ct−1

ht = ot � tanh (ct) (5.9)

Here, wt is the embedding of the input word w at time t, and ht−1 is the hidden state at
the previous time step t− 1. The initial hidden state at time 0 is typically initialised by
a zero vector h0 = 0. The first line in (5.9) shows a standard recurrent neural network
that considers et as a new hidden state, which obtained by a bias vector se and learnable
weighting matrices We and Ue that perform an affine transformation of the current word
embedding and the previous hidden state, respectively, followed by the tanh function. LSTM
has additional input, forget and output gates that are respectively parametrised with Wi,
Wf and Wo to transform wt, Ui, Uf and Uo to transform ht−1. σ is the sigmoid non-linear
function that squashes the input to be in a range [0, 1] to act as closed and open gates,
and is defined as follows: σ(x) = 1

1+exp(−x) . The memory cell of the LSTM ct is computed
using the input gate it that modulates et and the forget gate f t on the previous memory
cell ct−1, where � indicate an element-wise multiplication. Finally, the hidden state of
LSTM is calculated using the output gate as in (5.9). The output at the last time step
hT is considered as a representation for the input pattern. It is worth noting that other
models such as simple averaging or convolutional neural networks can also be used to encode
contextual patterns, but it is not our focus here to compare all possible embeddings for
patterns; rather, we aim to show the effectiveness of regularising the compositional method
(i.e., f(a, b, θf )) with contextual information. To incorporate the representativeness of a
pattern for a relational instance, we assign a weight w(a, b, p) given by (5.10).

w(a, p, b) =
c(a, p, b)∑

t∈P(a,b) c(a, t, b)
(5.10)

Here, c denotes the number of co-occurrences between p and (a, b). We have experimented
with a number of normalisation strategies and found that the selected strategy works best
for our settings. After encoding and weighting all the patterns in the set P(a, b), the sum of
the pattern vectors is considered as the pattern-based relation representation for the given
word-pair.

Because the holistic and compositional methods represent the same semantic relation
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we require them to be close in the `2 space, captured by the constraint given by (5.11).

JPatt =
1

2

∑
(a,b)∈D

||f(a, b, θf )− g(P(a, b), θg)||22 (5.11)

We would like to learn word pair embeddings that simultaneously minimise both (5.7) and
(5.11). Therefore, we formulate the objective function of the proposed CGRE as a linear
combination of (5.7) and (5.11) as follows:

J = JC + λJPatt (5.12)

Here, λ ∈ R is a regularisation coefficient that determines the influence of the contextual
patterns of the word-pairs for the learnt relational operator. After learning CGRE, we
generate a relation representation for an unseen word-pair (c, d) by concatenating f(c,d, θf )

and f(d, c, θf ).

Pseudo Relation Labels

To train CGRE, we require a dataset containing word-pairs annotated with relation labels.
However, the cost of annotating word-pairs with relation labels can be high for specialised
domains such as biomedical (Patel et al., 2018). To make our proposed method self-
supervised, we induce pseudo labels for word-pairs via clustering. Specifically, we cluster
the PairDiff vectors of the training word pairs using the k-means clustering algorithm
with different k numbers of clusters. Because the ground truth class labels are given
in DiffVec training data, we evaluate the quality of the generated clusters using the V-
measure (Rosenberg and Hirschberg, 2007), which is an entropy-based measure for a harmonic
mean between homogeneity and completeness of the clusters. Homogeneity (or purity)
requires each cluster to contain only word-pairs of a single relation type. On the other hand,
completeness is satisfied when all word-pairs of a specific relation type are assigned to the
same cluster. Given a set of ground-truth classes C and a set of clusters K, the V-measure
is computed as defined in (5.13).

Homogeneity h = 1− H(C|K)

H(C)

Completeness c = 1− H(K|C)

H(K)

V-measure = 2× h× c
h+ c

(5.13)

V-measure scores are between 0 (imperfect) and 1 (perfect). We examine k from 10 to 80, in
steps of 10. Consistent the findings of Vylomova et al. (2016), we find that k = 50 clusters
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Table 5.8: Examples for extracted patterns along with their weights for related word-pairs
from the DiffVec training data and Wikipedia corpus.

X Y Pattern Weights for patterns

cathedral steeple X's Y 0.667
X without a Y 0.333

vaccine virus X for the Y 0.429
X against the Y 0.200

cottage wood X in the Y 0.364
X including a Y 0.091

cost cottage X of the Y 0.333
X for each Y 0.333
X of this Y 0.333

hit rifle X by Y 0.500
X with Y 0.500

radio battary X's Y 0.286
X ran out of Y 0.071

performs well with a V-measure of 0.416.

5.3.2 Experimental Setup

Training Data

We used the DiffVec dataset that contains 12, 458 triples (a, b, r), where words a and b

are connected by an asymmetric relation r out of 36 fine-grained relation types. We use
the word-pairs set D of the training relations and their reverse pairs to obtain relational
patterns. Word-pairs in DiffVec that also appear in the test data are excluded from the
training set. Following Turney (2008), we extract the context of one to five words in between
the two related words considering the order in which they appear in the specified context
(i.e., P(a, b) consists of all patterns where a occurs before b). To reduce noise, we filter
out the patterns that occur between less than ten distinct word-pairs in the corpus. As
a result, we obtain 5, 017 contextual patterns and the number of training triples (a, b, p)

after removing out-of-vocabulary words is 158, 920. The TensorFlow-based coding, training
data and pre-trained relation representations are publicly available for reproducibilitiy6.
Examples of some obtained patterns along with their weights according to (5.10) are listed
in Table 5.8. We experimented with pre-trained 300-dimensional GloVe embeddings that are

6https://github.com/Huda-Hakami/Context-Guided-Relation-Embeddings. Our implemen-
tation for the NLRA model is also included in the released GitHub repository.

https://github.com/Huda-Hakami/Context-Guided-Relation-Embeddings


Chapter 5. Learning Compositional Operators for Relation Representations 115

trained on the Wikipedia 2014 and Gigaword (6 billion tokens)7. To extract co-occurrence
contexts, we use the English Wikipedia corpus, which consists of ca. 337 million sentences.

Comparison methods

We compare the proposed method with unsupervised compositional operators PairDiff and
Concat for the given pre-trained word embeddings. We also compare against the supervised
MnnPL method proposed earlier in this chapter that learns a relation classifier using a
relation labelled word-pairs and does not use contextual patterns (corresponds to λ = 0

in (5.12)).
We compare the proposed CGRE with Neural Latent Relational Analysis (NLRA) pro-

posed by Washio and Kato (2018b). NLRA learns compositional word-pair representations
from their embeddings using a feed-forward neural network, and also encode patterns using
LSTM. The authors adopt CBOW-like objective function that is defined in (2.1), wherein
the inner products of the compositional and pattern representations have high values for
observed patterns and low values for randomly generated negative samples. Based on the
contextual patterns provided by the original authors, NLRA is trained in an unsupervised
fashion using all the word-pairs in the dataset (including those pairs in the test set). Because
we are interested in relation representation methods that can generalise to word-pairs that
do not co-occur in the corpus, we re-train NLRA using the same training data that we used
for our proposed method such that NLRA doe not observe the word-pairs in the test dataset.
The LRA relation representation method (introduced in Section 2.4.2) requires all word-pairs
to be represented using lexical patterns extracted from the co-occurrence contexts. Because
we strictly focus on evaluating relation representations for word-pairs without using their
contextual patterns, LRA is excluded from the evaluations. Following Washio and Kato
(2018b), we also evaluate the performance of each learnt relation representation method
when it is combined with PairDiff. Simply, we average the scores of a learnt method and
the PairDiff score for each target word-pair.

Implementation Details

For a given word-pair (a, b), we compose their embeddings a and b using a multi-layer
feedforward neural networks with three hidden layers followed by the batch normalisation
and the tanh nonlinearity function. Batch normalisation is a technique proposed by Ioffe
and Szegedy (2015) for accelerating deep network training by reducing internal covariate
shift. Word embeddings were first normalised to unit `2 length before feeding them to the
neural net. The size of the hidden layers, and thus relation embeddings, are set to 300. We
did not update the input word embeddings during training to preserve their distributional

7http://nlp.stanford.edu/data/glove.6B.zip
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Table 5.9: Average MaxDiff accuracy and Spearman correlation for the 69 test relations in
SemEval 2012 Task 2. Best results are in bold.

Method MaxDiff Correlation

PairDiff 43.48 0.31
Concat 41.67 0.29

NLRA 42.32 0.29
NLRA+PairDiff 44.35 0.33
MnnPL(λ = 0) 43.75 0.31
MnnPL+PairDiff 45.42 0.35

CGRE-Gold 44.87 0.34
CGRE-Gold+PairDiff 45.92 0.37
CGRE-Proxy 44.34 0.34
CGRE-Proxy+PairDiff 45.49 0.36

regularity. A unidirectional LSTM with a 300 dimensional hidden state is used to encode
the contextual patterns. AdaGrad (Duchi et al., 2011) with mini-batch of size 100 is used to
learn the parameters of the proposed operator. All parameters are initialised by uniformly
sampling from [−1,+1] and the initial learning rate is set to 0.1. The best model was
selected by early stopping using the MaxDiff accuracy on a validation set.

5.3.3 Measuring the Degrees of Prototypicality

We evaluate the relation embeddings on measuring degrees of relational similarity task
using SemEval-2012 Task 2 dataset (refer to Section 3.3.2). Recall that the task is to rank
word-pairs in a relation according to their degrees of prototypicality (i.e., the extent to
which they exhibit the relation). Following the standard practice, we report performance on
the test set (69 relations) and use train set (ten relations) for setting hyperparameters.

Table 5.9 shows the macro-averaged MaxDiff accuracy and Spearman correlations for
the 69 test relations in the SemEval2012 Task 2 dataset. Our proposed method (CGRE)
achieved the best results on both evaluation metrics when combined with PairDiff. CGRE
trained using pseudo labels (CGRE-Proxy) can successfully reach the performance of CGRE
trained using the gold labels in the DiffVec dataset (CGRE-Gold). This is encouraging
because it shows that GCRE can be trained in a self-supervised manner, without requiring
manually labelled data. Overall, for all the methods, adding the relational similarity
scores from PairDiff improves the performance of ranking the word-pairs, which confirm
the complementary properties between the two approaches when it comes to representing
relations. As seen in Table 5.9, NLRA performs poorly when it is trained on DiffVec using
patterns extracted for the word-pairs in DiffVec and tested on SemEval8. This shows that

8The accuracy of NLRA when its trained on pattern extracted using word pairs in the entire SemEval
dataset is 45.28%, which is similar to the result reported in the original NLRA paper.
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Table 5.10: Average MaxDiff (top) and Spearman correlation (bottom) for each major
relation in the test set of SemEval 2012-task2. The values between parentheses indicate the
performance of a method combined with PairDiff. Best results for each relation are in bold.

MaxDiff

Relation PairDiff MnnPL CGRE-Gold CGRE-Proxy

Class-Inclusion 48.50 52.00 (51.60) 51.40 (51.67) 50.45 (49.35)
Part-Whole 43.50 41.33 (43.36) 39.61 (42.80) 43.35 (44.38)
Similar 41.26 36.20 (41.15) 40.02 (40.82) 41.68 (41.10)
Contrast 33.72 38.57 (38.73) 40.21 (38.44) 36.39 (36.67)
Attribute 46.32 44.84 (47.23) 46.19 (47.97) 45.44 (47.83)
Non-Attribute 39.11 42.45 (41.82) 42.41 (42.79) 43.00 (41.85)
Case Relations 46.49 49.53 (49.57) 52.04 (51.67) 49.46 (50.21)
Cause-Purpose 44.43 44.17 (46.89) 47.57 (48.59) 47.74 (48.17)
Spase-Time 49.48 45.53 (48.50) 48.62 (50.21) 45.36 (49.79)
Reference 41.92 45.94 (47.84) 41.32 (44.74) 41.52 (45.74)

Correlation

Relation PairDiff MnnPL CGRE-Gold CGRE-Proxy

Class-Inclusion 0.375 0.519 (0.537) 0.533 (0.516) 0.515 (0.462)
Part-Whole 0.287 0.245 (0.288) 0.228 (0.292) 0.314 (0.321)
Similar 0.252 0.186 (0.260) 0.245 (0.286) 0.280 (0.282)
Contrast 0.113 0.160 (0.202) 0.209 (0.226) 0.157 (0.171)
Attribute 0.410 0.351 (0.409) 0.396 (0.444) 0.387 (0.437)
Non-Attribute 0.209 0.264 (0.265) 0.287 (0.279) 0.313 (0.274)
Case Relations 0.383 0.425 (0.467) 0.475 (0.466) 0.419 (0.445)
Cause-Purpose 0.343 0.332 (0.384) 0.422 (0.436) 0.400 (0.404)
Spase-Time 0.422 0.373 (0.433) 0.432 (0.455) 0.385 (0.437)
Reference 0.303 0.323 (0.377) 0.212 (0.323) 0.295 (0.375)

NLRA is unable to generalise well to the relations in the SemEval dataset, not present in
the DiffVec dataset.

To evaluate the performance for different relation types, we breakdown the results for the
ten major relations in the 69 SemEval test set as presented in Table 5.10. By incorporating
contextual patterns when training CGRE, we obtain better performance in eight out of the
ten test relations in terms of MaxDiff and Spearman correlation. These improvements are
statistically significant according to a paired t-test (p < 0.01). MnnPL reports the best
accuracy and correlation for Class-Inclusion and Reference relations (either without or with
the addition of PairDiff). Although the training DiffVec includes these two types of relations,
the superiority of the compositional MnnPL, which does not incorporate relational patterns,
is an indication of the effectiveness of using word embedding features to extract relation
embeddings for these types of relations.
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5.4 Summary

This chapter considered the problem of learning relation embeddings from word embeddings
using parametrised operators that can be learnt from relation-labelled word-pairs. We
experimentally show that the penultimate layer of a feed-forward neural network trained for
classifying relation types (referred to as MnnPL) can accurately represent relations between
two given words. In particular, some of the disadvantages of the popular PairDiff operator
can be avoided by using MnnPL, which works consistently well for both lexicographic
and encyclopaedic relations. The relation representations learnt by MnnPL generalise
well to previously unseen (out-of-domain) relations, even though the number of training
instances was typically small in our experiments. The analysis of near and far analogies
highlighted some important limitations in the evaluation protocol used in prior work for
relation composition operators. The presented work questions the belief that non-parametric
operators such as PairDiff can discover rich relational structures in the word embedding
space. More importantly, we show that simple supervised relational composition operators
can accurately recover the relational regularities hidden inside word embedding spaces.

Prior work showed that accessing lexical relations, such as hypernym, relying only on
distributional word embeddings that are trained considering 2-ways co-occurrences between
words is insufficient (Roller et al., 2018). Although data sparsity is one of the main obsta-
cles in pattern-based relation representation methods, the advantages of using contextual
patterns have been proven to detect such relation types. Indeed, it is expected that the
pattern-based and compositional approaches for representing relations have complementary
properties. In this chapter, we sought to unify the two approaches for relation representations
while overcoming the sparsity problem at the same time. We proposed CGRE, which is a
method that uses the contextual patterns in a corpus to improve the compositional relation
representation using word embeddings of the related word-pairs. In particular, CGRE is
learnt using the contexts where two words co-occur in a corpus requiring that a pattern
representation being similar to a compositional representation computed using the corre-
sponding word embeddings. We demonstrated that by supplying a relation representation
method with pattern-level information during the training improves the performance and
make usage of compositional operators more efficient. Experiments on measuring degrees of
relational similarity between word pairs show that we can overcome the sparsity problem of
the pattern-based approaches for relations.

The next chapter will consider representing relational facts in structured KGs. The
chapter will introduce a proposed relational walk generative model for KGEs. The motivation
for the proposed relational walk model is to provide theoretical understanding of KGE
methods.
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Relations in Knowledge Graphs

6.1 Introduction

Earlier chapters were dedicated for using a text corpus in multiple ways as a source to
infer relations between words, either by applying compositional operators on pre-trained
word embeddings that are learnt using a corpus; or by incorporating contextual patterns in
which related words co-occur in the corpus. Another source of information that organises
relational facts is structured KGs, where entities are represented by nodes and relations
between two entities are represented by the edges that connect the corresponding nodes.
Nodes in KGs can be words as in the WordNet or named entities as in FreeBase or Cyc,
to name a few. If we consider the nodes and the edges in a KG as words and co-occurring
patterns, respectively, the KG can be seen as a corpus in which the contexts of a node are
the neighbouring nodes with their relations. However, a KG is considered as a well-defined
explicit source for relational facts, whereas relational information in an unstructured text is
latent and based on linguistic features.

In NLP, KGs have been used widely for various tasks such as dialogue systems (Young
et al., 2018; Moon et al., 2019), named entity recognition (Sui et al., 2019; López et al., 2019)
and question answering (Zhang et al., 2016; Sydorova et al., 2019). The critical issue of
most existing large scale KGs is that they are hard to manipulate because of sparseness (i.e.,
few valid links and many missing facts). As discussed earlier in Section 2.7.2, embedding
methods for NLP have been spread widely from the level of words in a textual context to
relations and entities in KGs. Previous work has shown that by embedding the entities
and relations of a KG in some (possibly latent low-dimensional) space, we can predict links
(relations) that do not exist between entities in the graph without requiring extra knowledge.
This is particularly useful for expanding otherwise sparse (i.e., incomplete) KGs by reasoning
in KG embedding space.

This chapter focuses on representing relations between entities in KGs. The chapter

119
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is divided into two sections as follows. In the first section, 6.2, we develop a theoretical
model, Relational Walk (RelWalk), that performs a random walk over a KG to explain what
latent structure is being captured by KGEs. The proposed model is an extension of the
random walk model of word embeddings (Arora et al., 2016) for KGEs to derive a scoring
function that evaluates the strength of a relation r between two entities h (head) and t
(tail) using their embeddings. By doing so, we also propose a learning objective, motivated
by theoretical analysis, to learn KGEs from a given KG. Then, in Section 6.3, the problem
of representing novel relation types is considered to further combat the incompleteness
problem of most existing KGs by dealing with emerging new relations. In particular, relation
composition is introduced as the task of inferring embeddings for unseen relations (not in
training data) by combining existing relations in a KG assuming that the set of relations
that holds between two entities are not independent. Relation composition can be seen as
an instance of the zero-shot learning setting, where the representations we compute do not
correspond to any of the relations we have in the training data.

6.2 A Latent Variable Model Approach to KGEs: RelWalk

KGE can be seen as a two-step process. Given a KG represented by a set of relational triples
(h, r, t), where a semantic relation r holds between a head entity h and a tail entity t, first a
scoring function is defined that measures the relational strength of a triple (h, r, t). Second,
the entity and relation embeddings in a latent semantic space that optimise the defined
scoring function are learnt using some optimisation method. Despite the wide application
of entity and relation embeddings created via KGE methods, the existing scoring functions
(refer to Section 2.7.2) are heuristically motivated to capture some geometric requirements
of the embedding space.

Despite the good empirical performance of the existing KGE methods, theoretical
understanding of KGE methods is comparatively underdeveloped. For example, it is not
clear how the heuristically defined KGE objectives relate to the generative process of a
KG. In this work, we attempt to fill this void by providing a theoretical analysis of KGEs.
Specifically, we propose a random walk generative process where we explain the formation
of a relation r between two entities h and t using the corresponding relation and entity
embeddings. We refer to our model as Relational Walk (abbreviated to RelWalk), where the
set of all entity and relation embeddings are the latent variables for the RelWalk generative
model which in turn correspond to semantics. Following this generative story, we derive
a relationship between the probability of r holding between h and t, p(h, t | r), and the
embeddings of r, h and t. Interestingly, the derived relationship is not covered by any of the
previously proposed heuristically-motivated scoring functions, providing the KGE method
with a provable generative explanation.
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The proposed RelWalk model extends the random walk analysis by Arora et al. (2016),
where the authors aimed to figure out the property of a language that causes the PMI
co-occurrence matrix to have approximate low rank under SVD decomposition. In particu-
lar, Arora et al. (2016) proposed a latent variable model where the words in a corpus are
generated by a probabilistic model parametrised by a time-dependent discourse vector that
performs a random walk. This random walk analysis derives a useful connection between the
joint co-occurrence probability of two words and the `2 norm of the sum of the corresponding
word embeddings. However, unlike RelWalk, they do not consider the relations between
two co-occurring words in a corpus. Moreover, Bollegala et al. (2018) extended the model
proposed by Arora et al. (2016) to capture co-occurrences involving more than two words.
Bollegala et al. (2018) defined the co-occurrence of k unique words in a given context as
a k-way co-occurrence, where Arora et al. (2016)’s result could be seen as a special case
corresponding to k = 2. Moreover, Bollegala et al. (2018) showed that it is possible to
learn word embeddings that capture some types of semantic relations such as antonymy and
collocation using 3-way co-occurrences more accurately than using 2-way co-occurrences.
However, their model does not explicitly consider the relations between words and uses only
a corpus for learning the word embeddings.

This section of the chapter is organised as follows. We introduce the RelWalk model in
Section 6.2.1. Then, in Section 6.2.2, we show that the margin loss, a popular objective
used in much prior work in KGEs, naturally arises as the log-likelihood ratio maximisation
under the probabilities estimated from the KGEs according to our theoretical relationship.
In this light, we derive a training objective that we subsequently optimise for learning
KGEs that empirically satisfies our theoretical relationship. Using standard benchmark
datasets proposed in prior work on KGE learning, we evaluate the learnt KGEs on a link
prediction and a triple classification as shown in Section 6.2.3. Experimental results show
that the learnt KGEs obtain good performance on standard benchmarks for KGE methods,
thereby providing empirical evidence to support the theoretical analysis of RelWalk. In
Section 6.2.4, we experimentally evaluate the assumptions made for proving our theorem.
Since RelWalk represents relations by matrices, low-rank approximations to the RelWalk
relation embeddings have been discussed in Section 6.2.5.

6.2.1 Relational Walk

Let us consider a knowledge graph D where the knowledge is represented by relational triples
(h, r, t) ∈ D. Here, r is a relational predicate with two arguments, where h (head) and t
(tail) entities respectively filling the first and second arguments. In this part of the work, we
assume relations to be asymmetric in general. In other words, if (h, r, t) ∈ D then it does not
necessarily follow that (t, r, h) ∈ D. A KG can then be seen as a directed edge-labelled graph
where vertices represent entities and an edge connecting two vertices represents a semantic
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relation that exists between the corresponding entities (Lao et al., 2011; Lao and Cohen,
2010; Gardner et al., 2013). The goal of KGE is to learn embeddings for the relations and
entities in the KG such that the entities that participate in similar relations are embedded
closely to each other in the entity embedding space, while at the same time relations that
hold between similar entities are embedded closely to each other in the relational embedding
space. We call the learnt entity and relation embeddings collectively as KGEs. Following
prior work on KGEs (Bordes et al., 2011; Yang et al., 2015; Trouillon et al., 2016), we
assume that entities and relations are embedded in the same vector space, allowing us to
perform linear algebraic operations using the embeddings in the same vector space.

Let us consider a random walk characterised by a time-dependent knowledge vector ck,
where k is the current time step. The knowledge vector represents the knowledge we have
about a particular group of entities and relations that express some facts about the world.
For example, the knowledge that we have about people that are employed by companies
can be expressed using entities of classes such as people and organisation, using relations
such as CEO-of, employed-at, works-for. We assume that entities h and t are represented by
time-independent d-dimensional vectors, respectively h, t ∈ Rd.

We assume the task of generating a relational triple (h, r, t) in a given KG to be a
two-step process as described next. First, given the current knowledge vector at time k,
c = ck and the relation r, we assume that the probability of an entity h satisfying the first
argument of r to be given by (6.1).

p(h | r, c) =
1

Zc
exp

(
h>R1c

)
. (6.1)

Here, R1 ∈ Rd×d is a relation-specific orthogonal matrix that evaluates the appropriateness
of h for the first argument of r. For example, if r is the CEO-of relation, we would require a
person as the first argument and a company as the second argument of r. However, note that
the role of R1 extends beyond simply checking the types of the entities that can fill the first
argument of a relation. For our example above, not all people are CEOs and R1 evaluates
the likelihood of a person to be selected as the first argument of the CEO-of relation. Zc
is a normalisation coefficient such that

∑
h∈V p(h | r, c) = 1, where the vocabulary V is

the set of all entities in the KG. We can use different vocabularies for the first and second
arguments. However, for simplicity, we use a common vocabulary.

After generating h, the state of our random walk changes to c′ = ck+1, and we next
generate the second argument of r with the probability given by (6.2).

p(t | r, c′) =
1

Zc′
exp

(
t>R2c

′
)
. (6.2)

Here, R2 ∈ Rd×d is a relation-specific orthogonal matrix that evaluates the appropriateness of
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t as the second argument of r. Zc′ is a normalisation coefficient such that
∑

t∈V p(t | r, c′) = 1.
Following our previous example of the CEO-of relation, R2 evaluates the likelihood of an
organisation to be a company with a CEO-of position. Importantly, R1 and R2 are
representations of the relation r and independent of the entities. Therefore, we consider
(R1 and R2) to collectively represent the embedding of r. Orthogonality of R1,R2 is a
requirement for the mathematical proof and also act as a regularisation constraint to prevent
overfitting by restricting the relational embedding space. Intuitively, orthogonality of the
relation embedding matrices ensures that the length of the head and tail entity embeddings
are not altered during the generation of the tuple. In prior work, Ethayarajh (2019) shows
that orthogonal matrices can represent relations.

The knowledge vector ck performs a slow random walk (meaning ck+1 is obtained from
ck by adding a small random displacement vector) such that the head and tail entities of a
relation are generated under similar knowledge vectors. More specifically, we assume that
||ck − ck+1|| ≤ ε2 for some small ε2 > 0. This is a realistic assumption for generating the
two entity arguments in the same relational triple because, if the knowledge vectors were
significantly different in the two generation steps, then it is likely that the corresponding
relations are also different, which would not be coherent with the above-described generative
process. Moreover, we assume that the knowledge vectors are distributed uniformly in the
unit sphere and denote the distribution of knowledge vectors by C.

To relate KGEs to the connections in the KG, we must estimate the probability that h
and t satisfy the relation r, p(h, t | r), which can be obtained by taking the expectation of
p(h, t | r, c, c′) w.r.t. the two consecutive knowledge vectors c, c′ ∼ C given by (6.3).

p(h, t | r) = Ec,c′
[
p(h, t | r, c, c′)

]
(6.3)

= Ec,c′
[
p(h | r, c)p(t | r, c′)

]
(6.4)

= Ec,c′

[
exp

(
h>R1c

)
Zc

exp
(
t>R2c

′)
Zc′

]
. (6.5)

Here, (6.4) follows from our two-step generative process where the generation of h and t in
each step is independent given the relation and the corresponding knowledge vectors. The
partition functions Zc and Zc′ are given by:

Zc =
∑
h∈V

exp
(
h>R1c

)
(6.6)

Zc′ =
∑
t∈V

exp
(
t>R2c

′
)

(6.7)

Computing the expectation in (6.5) is generally difficult because of the two partition
functions Zc and Zc′ . However, in the next section, we show that the partition functions are



124 Huda Hakami

narrowly distributed around a constant value for all c (or c′) values with high probability.

Concentration of Partition Functions

Lemma 1 (Concentration Lemma). If the entity embedding vectors satisfy the Bayesian
prior v = sv̂, where v̂ is from the spherical Gaussian distribution, and s is a scalar
random variable, which is always bounded by a constant κ, then the entire ensemble of entity
embeddings satisfies that:

Pr
c∼C

[(1− εz)Z ≤ Zc ≤ (1 + εz)Z] ≥ 1− δ, (6.8)

for εz = O(1/
√
n), and δ = exp(−Ω(log2 n)), where n ≥ d is the number of entities and Zc

is the partition function for c given by
∑

h∈V exp
(
h>R1c

)
.

Proof of Lemma 1: To prove the concentration lemma, we show that the mean Eh[Zc] of Zc
is concentrated around a constant for all knowledge vectors c and its variance is bounded.

If P is an orthogonal matrix and x is a vector, then
∣∣∣∣P>x∣∣∣∣2

2
= (P>x)>(P>x) =

x>PP>x = ||x||22, because P>P = I. Therefore, from (6.6) and the orthogonality of the
relational embeddings, we see that R1c is a simple rotation of c and does not alter the
length of c. We represent h = shĥ, where sh = ||h|| and ĥ is a unit vector (i.e.,

∣∣∣∣∣∣ĥ∣∣∣∣∣∣
2

= 1)

distributed on the spherical Gaussian with zero mean and unit covariance matrix Id ∈ Rd×d.
Let s be a random variable that has the same distribution as sh. Moreover, let us assume
that s is upper bounded by a constant κ such that s ≤ κ. From the assumption of the
knowledge vector c, it is on the unit sphere as well, which is then rotated by R1.

We can write the partition function using the inner-product between two vectors h and
R1c, Zc =

∑
h∈V exp

(
h>(R1c)

)
. Arora et al. (2016) showed that (Lemma 2.1 in their

paper) the expectation of a partition function of this form can be approximated as follows:

Eh[Zc] = nEh

[
exp

(
h>R1c

)]
(6.9)

≥ nEh

[
1 + h>R1c

]
= n. (6.10)

where n = |V| is the number of entities in the vocabulary. (6.9) follows from the expectation
of a sum and the independence of h and R1 from c. The inequality of (6.10) is obtained by
applying the Taylor expansion of the exponential series and the final equality is due to the
symmetry of the spherical Gaussian. From the law of total expectation, we can write

Eh[Zc] = nEh

[
exp

(
h>R1c

)]
= nEsh

[
Ex|sh

[
exp

(
h>R1c

)
| sh
]]
. (6.11)

where, x = h>R1c. Note that conditioned on sh, h is a Gaussian random variable with
variance σ2 = s2

h. Therefore, conditioned on sh, x is a random variable with variance
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σ2 = σ2
h. Using this distribution, we can evaluate Ex|sh

[
exp

(
h>R1c

)]
as follows:

Ex|sh
[
exp

(
h>R1c

)
| sh
]

=

∫
x

1√
2πσ2

exp

(
− x2

2σ2

)
exp(x)dx

=

∫
x

1√
2πσ2

exp

(
−(x− σ2)

2

2σ2
+ σ2/2

)
dx

= exp(σ2/2). (6.12)

Therefore, it follows that

Eh[Zc] = nEsh
[
exp

(
σ2/2

)]
= nEsh

[
exp

(
s2
h/2
)]

= n exp
(
s2/2

)
, (6.13)

where s is the variance of the `2 norms of the entity embeddings. Because the set of entities
is given and fixed, both n and σ are constants, proving that Eh[Zc] does not depend on c.

Next, we calculate the variance Vc[Zc] as follows:

Vh[Zc] =
∑
h

Vh

[
exp

(
h>R1c

)]
≤ nEh

[
exp

(
2h>R1c

)]
= nEsh

[
Ex|sh

[
exp

(
2h>R1c

)
| sh
]]
. (6.14)

Because 2h>R1c is a Gaussian random variable with variance 4σ2 = 4s2
h, from a similar

calculation as in (6.12) we obtain:

Ex|sh
[
exp

(
2h>R1c

)
| sh
]

= exp(2σ2). (6.15)

By substituting (6.15) in (6.14) we have that

Vh[Zc] ≤ nEsh
[
exp

(
2σ2
)]

= nEsh
[
exp

(
2s2
)]
≤ Λn (6.16)

for Λ = exp(8κ2) a constant bounding s ≤ κ as stated.
From above, we have bounded both the mean and variance of the partition function by

constants that are independent of the knowledge vector. Note that neither exp
(
h>R1c

)
nor exp

(
t>R2c

′) are sub-Gaussian nor sub-exponential. Therefore, standard concentration
bounds derived for sub-Gaussian or sub-exponential random variables cannot be used in
our analysis. However, the argument given in Appendix A.1 in Arora et al. (2016) for a
partition function with bounded mean and variance can be directly applied to Zc in our
case, which completes the proof of the concentration lemma. From the symmetry between
h and t, Lemma 1 also applies for the partition function Zc′ =

∑
t∈V
(
t>R2c

′).
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Under the conditions required to satisfy Lemma 1, we proved the RelWalk theorem in
the next section, which relates KGEs to the connections in the KG.

RelWalk Theorem and Proof

Theorem 2. Suppose that the entity embeddings satisfy Lemma 1. Then, we have

log p(h, t | r) =

∣∣∣∣R1
>h+ R2

>t
∣∣∣∣2

2

2d
− 2 logZ ± ε. (6.17)

for ε = O(1/
√
n) + Õ(1/d), where

Z = Zc = Zc′ . (6.18)

Proof. Let us consider the probabilistic event that (1− εz)Z ≤ Zc ≤ (1 + εz)Z to be Fc and
(1− εz)Z ≤ Zc′ ≤ (1 + εz)Z to be Fc′ . From Lemma 1 we have Pr[Fc] ≥ 1− δ. Then from
the union bound we have,

Pr[F̄c ∪ F̄c′ ] ≤ Pr[F̄c] + Pr[F̄c′ ]

= 1− Pr[Fc] + 1− Pr[Fc′ ]

= 2δ. (6.19)

where F̄ is the complement of event F . Moreover, let F be the probabilistic event that
both Fc and Fc′ being True. Then from Pr[F ] = 1 − Pr[F̄c ∪ F̄c′ ] we have, Pr[F ] ≥
1− 2 exp

(
−Ω

(
log2 n

))
. The R.H.S. of (6.5) can be split into two parts T1 and T2 according

to whether F happens or not.

p(h, t | r) = Ec,c′

[
exp

(
h>R1c

)
Zc

exp
(
t>R2c

′)
Zc′

1F

]
︸ ︷︷ ︸

T1

+Ec,c′

[
exp

(
h>R1c

)
Zc

exp
(
t>R2c

′)
Zc′

1F̄

]
︸ ︷︷ ︸

T2

.

(6.20)

Here, 1F and 1F̄ are indicator functions of the events F and F̄ given as follows:

1F =

1 if F is True,

0 otherwise,
and 1F̄ =

0 if F is True,

1 otherwise.

Let us first show that T2 is negligibly small. For two real integrable functions ψ1(x) and
ψ2(x) in [a, b], the Cauchy-Schwarz’s inequality states that

[∫ b

a
ψ1(x)ψ2(x)dx

]2

≤
∫ b

a
[ψ1(x)]2dx

∫ b

a
[ψ2(x)]2dx. (6.21)
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Applying (6.21) to T2 in (6.20) we have:(
Ec,c′

[
1

ZcZc′
exp

(
h>R1c

)
exp

(
t>R2c

′
)
1F̄

])2

≤
(
Ec,c′

[
1

Z2
c

exp
(
h>R1c

)2
1F̄

])(
Ec,c′

[
1

Z2
c′

exp
(
t>R2c

′
)2

1F̄

])
=

(
Ec
[

1

Z2
c

exp
(
h>R1c

)2
Ec′|c [1F̄ ]

])(
Ec′
[

1

Z2
c′

exp
(
t>R2c

′
)2

Ec|c′ [1F̄ ]

])
(6.22)

Note that Zc ≥ 1 because Zc is the sum of positive numbers and if h>R1c > 0 for at least
one of the h ∈ V , then the total sum will be greater than 1. Therefore, by dropping Zc term
from the denominator we can further increase the first term in (6.22) as given by (6.23).

Ec
[

1

Z2
c

exp
(
h>R1c

)2
Ec′|c [1F̄ ]

]
≤ Ec

[
exp

(
h>R1c

)2
Ec′|c [1F̄ ]

]
(6.23)

Let us split the expectation on the R.H.S. of (6.23) into two cases depending on whether
h>R1c > 0 or otherwise, indicated respectively by 1(h>R1c>0) and 1(h>R1c≤0).

Ec

[
exp

(
h>R1c

)2 Ec′|c [1F̄ ]
]

= Ec

[
exp

(
h>R1c

)2
1(h>R1c>0)Ec′|c [1F̄ ]

]
+ Ec

[
exp

(
h>R1c

)2
1(h>R1c≤0)Ec′|c [1F̄ ]

]
(6.24)

The second term of (6.24) is upper bounded by

Ec,c′ [1F̄ ] ≤ exp
(
−Ω(log2 n)

)
(6.25)

The first term of (6.24) can be bounded as follows:

Ec
[
exp

(
h>R1c

)2
1(h>R1c>0)Ec′|c [1F̄ ]

]
≤ Ec

[
exp(αh>R1c)

2
1(h>R1c>0)Ec′|c [1F̄ ]

]
≤ Ec

[
exp(αh>R1c)

2Ec′|c [1F̄ ]
]

(6.26)

where α > 1. Therefore, it is sufficient to bound Ec
[
exp(αh>R1c)

2Ec′|c [1F̄ ]
]
when ||h|| =

Ω(
√
d).
Let us denote by z the random variable 2h>R1c. Moreover, let r(z) = Ec′|z[1F̄ ], which

is a function of z between [0, 1]. We wish to upper bound Ec[exp(z)r(z)]. The worst-case
r(z) can be quantified using a continuous version of Abel’s inequality (proved as Lemma
A.4 in Arora et al. (2015)), we can upper bound Ec [exp(z)r(z)] as follows:

Ec [exp(z)r(z)] ≤ E
[
exp(z)1[t,+∞](z)

]
(6.27)
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where t satisfies that Ec[1[t,+∞](z)] = Pr[z ≥ t] = Ec[r(z)] ≤ exp(−Ω(log2 n)). Here,
1[t,+∞](z) is a function that takes the value 1 when z ≥ t and zero elsewhere. Then, we
claim Prc[z ≥ t] ≤ exp(−Ω(log2 n)) implies that t ≥ Ω(log.9 n).

If c was distributed as N (0, 1
dI), this would be a simple tail bound. However, as c is

distributed uniformly on the sphere, this requires special care, and the claim follows by
applying the tail bound for the spherical distribution given by Lemma A.1 in (Arora et al.,
2015) instead. Finally, applying Corollary A.3 in (Arora et al., 2015), we have:

E[exp(z)r(z)] ≤ E[exp(z)1[t,+∞](z)] = exp(−Ω(log1.8 n)) (6.28)

From a similar argument as above we can obtain the same bound for c′ as well. Therefore,
T2 in (6.20) can be upper bounded as follows:

Ec,c′
[

1

ZcZc′
exp

(
h>R1c

)
exp

(
t>R2c

′
)
1F̄

]
≤
(
Ec
[

1

Z2
c

exp
(
h>R1c

)2
Ec′|c [1F̄ ]

])1/2(
Ec′
[

1

Z2
c′

exp
(
t>R2c

′
)2

Ec|c′ [1F̄ ]

])1/2

≤ exp(−Ω(log1.8 n)) (6.29)

Because n = |V|, the size of the entity vocabulary, is large (ca. n > 105) in most knowledge
graphs, we can ignore the T2 term in (6.20).

Combining the above analysis of T2 term with (6.20) we obtain an upper bound for
p(h, t | r) given by (6.30).

p(h, t | r) ≤ (1 + εz)
2 1

Z2
Ec,c′

[
exp

(
h>R1c

)
exp

(
t>R2c

′
)
1F

]
+ |D|exp(−Ω(log1.8 n))

= (1 + εz)
2 1

Z2
Ec,c′

[
exp

(
h>R1c

)
exp

(
t>R2c

′
)]

+ δ0 (6.30)

where |D| is the number of relational tuples (h, r, t) in the KB and δ0 = |D|exp(−Ω(log1.8 n)) ≤
exp(−Ω(log1.8 n)) by the fact that Z ≤ exp(2κ)n = O(n), where κ is the upper bound on
h>R1c and t>R2c

′, which is regarded as a constant.
On the other hand, we can lower bound p(h, t | r) as given by (6.31).

p(h, t | r) ≥ (1− εz)2 1

Z2
Ec,c′

[
exp

(
h>R1c

)
exp

(
t>R2c

′
)
1F

]
≥ (1− εz)2 1

Z2
Ec,c′

[
exp

(
h>R1c

)
exp

(
t>R2c

′
)]
− |D|exp(−Ω(log1.8 n))

≥ (1− εz)2 1

Z2
Ec,c′

[
exp

(
h>R1c

)
exp

(
t>R2c

′
)]
− δ0 (6.31)

Taking the logarithm of both sides, from (6.30) and (6.31), the multiplicative error translates
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to an additive error given by (6.32).

log p(h, t | r) = log
(
Ec,c′

[
exp

(
h>R1c

)
exp

(
t>R2c

′
)]
± δ0

)
− 2 logZ + 2 log(1± εz)

= log
(
Ec
[
exp

(
h>R1c

)
Ec′|c

[
exp

(
t>R2c

′
)]]
± δ0

)
− 2 logZ + 2 log(1± εz)

= log
(
Ec
[
exp

(
h>R1c

)
A(c)

]
± δ0

)
− 2 logZ + 2 log(1± εz) (6.32)

where A(c) := Ec′|c
[
exp

(
t>R2c

′)].
We assumed that c and c′ are on the unit sphere and R1 and R2 to be orthogonal

matrices. Therefore, R1c and R2c
′ are also on the unit sphere. Moreover, if we let the

upper bound of the `2 norm of the entity embeddings to be κ′
√
d, then we have ||h|| ≤ κ′

√
d

and ||t|| ≤ κ′
√
d. Therefore, we have

〈R1h, c
′ − c〉 ≤ ||h||

∣∣∣∣c− c′∣∣∣∣ ≤ κ′√d ∣∣∣∣c− c′∣∣∣∣ (6.33)

Then, we can upper bound A(c) as follows:

A(c) = Ec′|c
[
exp

(
t>R2c

′
)]

= exp
(
t>R2c

)
Ec′|c

[
exp

(
t>R2(c′ − c)

)]
≤ exp

(
t>R2c

)
Ec′|c

[
exp

(
κ′
√
d
∣∣∣∣c′ − c∣∣∣∣)]

≤ (1 + ε2) exp
(
t>R2c

)
(6.34)

For some ε2 > 0. The last inequality holds because

Ec|c′
[
exp

(
κ′
√
d
∣∣∣∣c′ − c∣∣∣∣)] =

∫
exp

(
κ′
√
d
∣∣∣∣c′ − c∣∣∣∣) p(c′|c)dc′

= exp(κ′
√
d)︸ ︷︷ ︸

≥1

∫
exp(

∣∣∣∣c− c′∣∣∣∣)p(c′|c)dc′︸ ︷︷ ︸
≥1

= 1 + ε2 (6.35)

To obtain a lower bound on A(c) from the first-order Taylor approximation of exp(x) ≥
1 + x we observe that

Ec|c′
[
exp

(
κ′
√
d
∣∣∣∣c′ − c∣∣∣∣)]+ Ec|c′

[
exp

(
−κ′
√
d
∣∣∣∣c′ − c∣∣∣∣)] ≥ 2. (6.36)

Therefore, from our model assumptions we have

Ec|c′
[
exp

(
−κ′
√
d
∣∣∣∣c′ − c∣∣∣∣)] ≥ 1− ε2 (6.37)
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Hence,

A(c) = exp
(
t>R2c

)
Ec′|c

[
exp

(
t>R2(c′ − c)

)]
≥ exp

(
t>R2c

)
Ec′|c

[
exp

(
−κ′
√
d
∣∣∣∣c′ − c∣∣∣∣)]

≥ (1− ε2) exp
(
t>R2c

)
(6.38)

Therefore, from (6.35) and (6.38) we have

A(c) = (1± ε2) exp
(
t>R2c

)
(6.39)

Plugging A(c) back in (6.32) we obtain

log p(h, t | r) = log
(
Ec

[
exp

(
h>R1c

)
A(c)

]
± δ0

)
− 2 logZ + 2 log(1± εz)

= log
(
Ec

[
exp

(
h>R1c

)
(1± ε2) exp

(
t>R2c

)]
± δ0

)
− 2 logZ + 2 log(1± εz)

= log
(
Ec

[
exp

(
h>R1c

)
exp

(
t>R2c

)]
± δ0

)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= log
(
Ec

[
exp

(
h>R1c+ t>R2c

)]
± δ0

)
− 2 logZ + 2 log(1± εz) + log(1± ε2)

= log
(
Ec

[
exp

((
R1
>h+ R2

>t
)>c)]± δ0)− 2 logZ + 2 log(1± εz) + log(1± ε2)

(6.40)

Note that c has a uniform distribution over the unit sphere. In this case, from Lemma
A.5 in Arora et al. (2016), (6.41) holds approximately.

Ec
[
exp

((
R1
>h+ R2

>t
)
>c
)]

= (1± ε3) exp

(∣∣∣∣R1
>h+ R2

>t
∣∣∣∣2

2

2d

)
(6.41)

where ε3 = Õ(1/d). Plugging (6.41) in (6.40) we have that

log p(h, t | r) =

∣∣∣∣R1
>h+ R2

>t
∣∣∣∣2

2

2d
+O(εz) +O(ε2) +O(ε3) +O(δ′0)− 2 logZ (6.42)

where δ′0 = δ0 ·
(
Ec
[
exp

(
(R1

>h+ R2
>t)>c

)])−1
= exp(−Ω(log1.8 n)). Therefore, δ′0 can

be ignored. Note that ε3 = Õ(1/d) and εz = Õ(1/
√
n) by assumption. Therefore, we obtain

that

log p(h, t | r) =

∣∣∣∣R1
>h+ R2

>t
∣∣∣∣2

2

2d
+O(εz) +O(ε2) + Õ(1/d)− 2 logZ (6.43)

The relationship given by (6.17) indicates that head and tail entity embeddings are first
transformed respectively by R1

> and R2
>, and the squared `2 norm of the sum of the
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transformed vectors is proportional to the probability p(h, t | r). In the next section, we
will infer a learning objective for KGEs from the proven theorem.

6.2.2 Learning KG Embeddings

In this section, we derive a training objective from Theorem 2 that we can then optimise
to learn KGE. The goal is to empirically validate the theoretical result by evaluating the
learnt KGEs. KGs represent information about relations between two entities in the form of
relational triples. The joint probability p(h, r, t) given by Theorem 2 is useful for determining
whether a relation r exists between two given entities h and t. For example, if we know that
with a high probability that r holds between h and t, then we can append (h, r, t) to the
KG. The task of expanding KGs by predicting missing links between entities or relations
is known as the link prediction problem. In particular, if we can automatically append
such previously unknown knowledge to the KG, we can expand the KG and address the
knowledge acquisition bottleneck.

To derive a criteria for determining whether a link must be predicted among entities and
relations, let us consider a relational triple (h, r, t) ∈ D that exists in a given KG D. We
call such relational triples as positive triples because from the assumption it is known that r
holds between h and t. On the other hand, consider a negative relational triple (h′, r, t′) ∈ D̄
formed by, for example, randomly perturbing a positive triple. A popular technique for
generating such (pseudo) negative triples is to replace h or t with a randomly selected
different instance of the same entity type. As an alternative for random perturbation, Cai
and Wang (2018) proposed a method for generating negative instances using adversarial
learning. Here, we are not concerned about the actual method used for generating the
negative triples but assume a set of negative triples, D̄, generated using some method, to be
given.

Given a positive triple (h, r, t) ∈ D and a negative triple (h′, r, t′) ∈ D̄, we would like
to learn KGEs such that a higher probability is assigned to (h, r, t) than that assigned to
(h′, r, t′). We can formalise this requirement using the likelihood ratio given by (6.44).

p(h, t | r)
p(h′, t′ | r)

≥ η (6.44)

Here, η > 1 is a threshold that determines how higher we would like to set the probabilities
for the positive triples compared to that of the negative triples. By taking the logarithm of
both sides in (6.44) we obtain

log p(h, t | r)− log p(h′, t′ | r) ≥ log η

log η + log p(h′, t′ | r)− log p(h, t | r) ≤ 0 (6.45)
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If a positive triple (h, r, t) is correctly assigned a higher probability than a negative triple
p(h′, r, t′), then the left hand side of (6.45) will be negative, indicating that there is no
loss incurred during this classification task. Therefore, we can re-write (6.45) to obtain
the marginal loss, a popular choice learning objective in prior work of KGEs, as shown in
(6.46).

L(D, D̄) =
∑

(h,r,t)∈D
(h′,r,t′)∈D̄

max
(
0, log η + log p(h′, t′ | r)− log p(h, t | r)

)

= max
(

0, 2d log η +
∣∣∣∣∣∣R1

>h′ + R2
>t′
∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣R1

>h+ R2
>t
∣∣∣∣∣∣2

2

)
(6.46)

We can assume 2d log η to be the margin for the constraint violation.
Theorem 2 requires R1 and R2 to be orthogonal. To reflect this requirement, we add two

`2 regularisation terms
∣∣∣∣R1

>R1 − I
∣∣∣∣2

2
and

∣∣∣∣R2
>R2 − I

∣∣∣∣2
2
with regularisation coefficients

λ1 and λ2 to the objective function given by (6.46). In our experiments, we compute the
gradients (6.46) w.r.t. each of the parameters h, t, R1 and R2 and use SGD for optimisation.

Learning with Multiple Negative Triples

We want to show how the marginal loss learning objective derived in Section 6.2.2 can
be extended to learn from more than one negative triple per each positive triple. This
formulation leads to rank-based loss objective used in prior work on KGE. Considering that
negative triples are generated via random perturbation, it is important to consider multiple
negative triples during training to better estimate the classification boundary.

Let us consider that we are given a positive triple, (h, r, t) and a set of K negative triples
{(h′k, r, t′k)}Kk=1. We would like our model to assign a probability, p(h, t | r), to the positive
triple that is higher than that assigned to any of the negative triples. This requirement can
be written as (6.47).

p(h, t|r) ≥ max
k=1,...,K

p(h′k, t
′
k | r) (6.47)

We could further require the ratio between the probability of the positive triple and
maximum probability over all negative triples to be greater than a threshold η ≥ 1 to make
the requirement of (6.47) to be tighter.

p(h, t | r)
max

k=1,...,K
p(h′k, t

′
k | r)

≥ η (6.48)

By taking the logarithm of (6.48) we obtain

log p (h, t | r)− log
(

max
k=1,...,K

p
(
h′k, t

′
k | r

))
≥ log(η) (6.49)
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Therefore, we can define the marginal loss for a misclassification as follows:

L
(
(h, r, t) , {

(
h′k, r, t

′
k

)
}Kk=1

)
= max

(
0, log

(
max

k=1,...,K
p(h′k, t

′
k | r)

)
+ log (η)− log p (h, t | r)

)
(6.50)

However, from the monotonicity of the logarithm we have ∀x1, x2 > 0, if log(x1) ≥ log(x2)

then x1 ≥ x2. Therefore, the logarithm of the maximum can be replaced by the maximum
of the logarithms in (6.50) as shown in (6.51).

L
(
(h, r, t) , {

(
h′k, r, t

′
k

)
}Kk=1

)
= max

(
0, max

k=1,...,K
log
(
p
(
h′k, t

′
k | r

))
+ log (η)− log p (h, t | r)

)
(6.51)

By substituting (6.17) for the probabilities in (6.51) we obtain the rank-based loss given by
(6.52).

L
(
(h, r, t), {(h′k, r, t′k)}Kk=1

)
= max

(
0, 2d log(η) + max

k=1,...,K

∣∣∣∣∣∣R1
>h′k + R2

>t′k

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣R1

>h+ R2
>t
∣∣∣∣∣∣2

2

)
(6.52)

In practice, we can use p(h′k, t
′
k | r) to select the negative triple with the highest probability

for training with the positive triple. The next section will empirically assess entity and
relation embeddings of a given KG that are learnt under the scoring function derived by the
RelWalk model.

6.2.3 Empirical Evaluation of RelWalk Embeddings

To empirically evaluate the theoretical result stated in Theorem 2, we learn KGEs (using
the proposed RelWalk approach) by minimising the marginal loss objective derived in
Section 6.2.2 considering a given KG. We generate negative triples by replacing a head
or a tail entity in a positive triple by a randomly selected entity and learn KGEs. The
model is trained until convergence or at most 1000 epochs over the training data where
each epoch is divided into 100 mini-batches. The best model is selected by early stopping
based on the performance of the learnt embeddings on the validation set (evaluated after
each 20 epochs). We selected the initial learning rate (α) for SGD in {0.01, 0.001}, the
regularisation coefficients (λ1, λ2) for the orthogonality constraints of relation matrices in
{0, 1, 10, 100}. The number of randomly generated negative triples nneg for each positive
example is varied in {1, 10, 20, 50, 100} and d ∈ {50, 100}. The RelWalk is implemented
based on the open-source toolkit OpenKE1 (Han et al., 2018). Source code and pre-trained

1https://github.com/thunlp/OpenKE/tree/OpenKE-Tensorflow1.0

https://github.com/thunlp/OpenKE/tree/OpenKE-Tensorflow1.0
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embeddings for considered KGs are publicly available2. We conduct two evaluation tasks:
link prediction and triple classification, as presented in the next sections.

Link Prediction

Link prediction is a task of predicting the missing head or tail entity in a given triple ((? , r, t)
or (h, r, ? ) (Bordes et al., 2011). We use the FB15K-237 (a subset of Freebase FB15K)
and WN18RR (a subset of WordNet WN18) datasets, which are standard benchmarks
for KGE methods (see Table 6.1). It has been found that FB15K and WN18 suffer from
the existence of inverse relations wherein a large number of test triples can be obtained
by inverting triples in the training data. To avoid such a flaw, Toutanova et al. (2015)
introduced FB15K-2373, and Dettmers et al. (2018) introduced WN18RR4, where inverse
relations in the original KGs are deleted. Since then, proposed methods for KGEs are being
evaluated using the amended KGs. We use the standard training, validation and test split
as detailed in Table 6.1. Optimal hyper-parameter settings on validation sets were: d = 100,
λ1 = λ2 = 10, nneg = 20 for FB15K-237 and 100 for WN18RR, α = 0.001 for FB15K-237
and 0.01 for WN18RR.

Following previous studies, the performance is evaluated using three metrics, namely,
Mean Reciprocal Rank (MRR), Mean Rank (MR) and hits at ranks k(H@k). MR is the
average of the rank assigned to the original head or tail entity in a corrupted triple (the
lower is better), whereas MRR is the average of the reciprocal ranks (the higher is better).
On the other hand, H@k is the proportion of correct entities that have been ranked among
the top k candidates (k = 1, 3, 10). We only report scores under the filtered setting, which
removes all triples appeared in training, validating and testing sets from candidate triples
before obtaining the rank of the ground truth triple (Bordes et al., 2013). During the
corruption process, we consider all entities that appear in the corresponding argument in
the entire KG as candidates (known as type constraint setting). Under filtering and type
constraint settings, the set of head corruptions from test triples (h, r, t) can be formally
defined as in (6.53). We similarly generate the tail corrupted triples.{

(h′, r, t) | h′ ∈ {h ∈ V | ∃t : (h, r, t) ∈ D} ∧ (h′, r, t) /∈ D
}

(6.53)

We compare the KGEs learnt by RelWalk against prior work using the published
results for link prediction as shown in Table 6.2. We see that RelWalk obtains competitive
performance on both WN18RR and FB15K237 under all the evaluation measures. In
particular, it is outperformed only by the current state-of-the-art KGE method proposed
by Lacroix et al. (2018) (CP-N3), which uses nuclear 3-norm regularisers with canonical

2Will be released upon paper acceptance to facilitate the double blind policy.
3https://www.microsoft.com/en-us/download/details.aspx?id=52312
4https://github.com/TimDettmers/ConvE/blob/master/WN18RR.tar.gz

https://www.microsoft.com/en-us/download/details.aspx?id=52312
https://github.com/TimDettmers/ConvE/blob/master/WN18RR.tar.gz
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Table 6.1: Statistics of the KGs used in this study.

Dataset Relations Entities Train Test Validation

FB15K-237 237 14,541 272,115 17,535 20,466
WN18RR 11 40,943 86,835 3,134 3,034
WN11 11 38,588 112,581 10,544 2,609
FB13 13 75,043 316,232 23,733 5,908

Table 6.2: Results of Link prediction. Results marked with [?] are taken from (Dettmers
et al., 2018), [•] from (Nguyen et al., 2016), [/] from and (Cai and Wang, 2018). All other
results for the baselines are taken from their original papers.

FB15K237 WN18RR

Method MRR MR H@1 H@3 H@10 MRR MR H@1 H@3 H@10

TransE• 0.294 347 - - 0.465 0.226 3384 - - 0.50
TransD/ 0.280 - - - 0.453 - - - - 0.43
DistMult? 0.241 254 0.155 0.263 0.419 0.43 5110 0.39 0.44 0.49
ComplEx? 0.247 339 0.158 0.275 0.428 0.44 5261 0.41 0.46 0.51
ConvE 0.325 244 0.237 0.356 0.501 0.430 4187 0.40 0.44 0.52
CP-N3 0.360 - - - 0.540 0.47 - - - 0.54
RelWalk 0.329 105 0.243 0.354 0.502 0.451 3232 0.42 0.47 0.51

tensor decomposition. RelWalk’s consistent good performance on both versions of this
dataset shows that it is considering the global structure in the KG when learning KGEs.

Triple Classification

Triple classification is the task of predicting whether a relation r holds between h and t in
a given triple (h, r, t). This binary triple classification task for evaluating KGEs has been
established by Socher et al. (2013a), who released the FB13 and WN115 datasets with the
standard splits as shown in Table 6.1. Optimal hyper-parameter settings were: d = 100,
λ1 = λ2 = 10, nneg = 50 for FB13 and 20 for WN11, α = 0.001 for FB13 and 0.01 for
WN11. Socher et al. (2013a) sampled a negative triple for each triple (h, r, t) in the test
split of a KG by switching h or t under the type constraint setting, which considered entities
that appeared in the corresponding argument in the KG. For example, (Thomas Elyot,
profession, philologist) is a negative example of (Thomas Elyot, profession, lexicographer).
Following Socher et al. (2013a), each relation r is assigned a threshold Tr to conduct the
classification such that if p(h, r, t) ≥ Tr we predict (h, r, t) as a positive relation, otherwise
it is labelled as negative. The validation split is used to find the appropriate thresholds for

5https://cs.stanford.edu/~danqi/data/nips13-dataset.tar.bz2

https://cs.stanford.edu/~danqi/data/nips13-dataset.tar.bz2
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Table 6.3: Results of Triple classification. Best results are in bold.

Accuracy
Method WN11 FB13

SE 53.0 75.2
TransE 75.9 81.5
TransR 85.9 82.5
TransG 87.4 87.3
NTN 70.4 87.1
RelWalk 76.3 88.6

the relations. We report the percentage of the correctly classified test triples (i.e., accuracy)
as the evaluation metric for this task.

Table 6.3 compares the accuracy of different KGE methods for relation triple classifi-
cation. As shown in the table, RelWalk reports the best performance on FB13, whereas
TransG (Xiao et al., 2016) reports the best performance on WN11. TransG is a generative
model based on the Chinese restaurant process to model multiple semantics of relations,
however, the relation embeddings are designed to satisfy vector translation similar to TransE.
Considering that both TransG and RelWalk are generative models, it would be interesting
to further investigate generative approaches for KGE in the future. Overall, the experi-
mental results support our theoretical claim and emphasise the importance of theoretically
motivating the scoring function design process.

6.2.4 Validity of Key Assumptions

Our theoretical analysis depends on two main assumptions: (a) concentration of the partition
function Zc (Lemma 1), and (b) the orthogonality of the relation embedding matrices R1,R2.
In this section, we empirically study the relationship between these assumptions and the
performance of the RelWalk embeddings.

Given R1 and R2 learnt by RelWalk for a particular r, we can measure the degree to
which the orthogonality, νr, is satisfied by the sum of the non-diagonal elements as given
in (6.54).

νr =
∑
i 6=j
|R1

>R1|ij+|R2
>R2|ij (6.54)

If a matrix A is orthogonal, then the non-diagonal elements of the inner-product A>A will
be zeros. Therefore, the smaller the νr values, the more orthogonal the relation embeddings
are. The values of νr are measured for the 11 relation types in the WN18RR dataset as
shown in Table 6.4. From the table, we see that νr values are indeed small for different
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Table 6.4: Empirical analysis of the concentration of the partitioning functions and the
orthogonality of the relation embeddings, and their Pearson correlation coefficients against
H@10 for the relations in WN18RR dataset.

Relation #tuples H@10 νr σc σc′
√
σ2
c + σ2

c′

hypernym 1251 0.188 3.249 68.89 64.41 94.31
derivationally_related_form 1074 0.955 1.690 63.44 65.33 91.07
instance_hypernym 122 0.541 0.362 63.11 64.56 90.28
also_see 56 0.670 0.234 70.76 61.51 93.76
member_meronym 253 0.281 4.389 63.78 66.09 91.84
synset_domain_topic_of 114 0.513 0.727 65.66 65.48 92.73
has_part 172 0.247 0.548 66.21 66.50 93.84
member_of_domain_usage 24 0.688 0.045 65.24 63.16 90.81
member_of_domain_region 26 0.442 0.065 67.53 66.31 94.64
verb_group 39 0.974 0.038 64.22 63.19 90.09
similar_to 3 1.000 0.111 63.67 63.96 90.25

Correlations -0.515 -0.392 -0.496 -0.700

relation types indicating that the orthogonality requirement is satisfied as expected. νr
reports the lowest score for verb-group relation that achieves the best H@10 accuracy of 0.974.
Interestingly, a moderately high (-0.515) negative Pearson correlation between H@10 and νr
shows that orthogonality correlates with the better the performance. To visualise how the
orthogonality affects different relation types, the elements in R1

>R1 and R2
>R2 are plotted

for four relations in the WN18RR dataset in Figure 6.1 for 100× 100 dimensional relational
embeddings. For the two relations also_see and similar_to we see that the corresponding
inner-products are sparse except in the main diagonal, compared to that in hypernym and
member_meronym relations. On the other hand, according to Table 6.4 the H@10 values for
also_see and similar_to are higher than that for hypernym and member_meronym as implied
by the negative correlation.

To test for the concentration of the partition functions, for a relation r we compute
Zc and Zc′ values using respectively (6.6) and (6.7) over a set of randomly sampled 10,000
head or tail entities as the knowledge vectors c (or c′) `2 normalised to unit length. We
compute the standard deviations σc and σc′ respectively for the distributions of Zc and Zc′
and their geometric mean as shown in Table 6.4. We observed a Gaussian-like distributions
for the partition functions for different relations and smaller standard deviations indicate
stronger concentration around the mean. Interestingly, from Table 6.4 we see a strong
negative correlation between H@10 and the standard deviations (−0.7) indicating that the
performance of RelWalk depends on the validity of the concentration assumption.
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Figure 6.1: Heatmap visualisation of the orthogonality in different relation embeddings from
the WN18RR.

6.2.5 Compression of Relation Embeddings

RelWalk uses (orthogonal) matrices to represent relations, which require more parameters
compared to vector representations of relations. Prior work studying lower-rank decomposi-
tion of KGEs has shown that, although linear embeddings of graphs can require prohibitively
large dimensionality to model certain types of relations (Nickel et al., 2014) (e.g., sameAs),
nonlinear embeddings can mitigate this problem (Bouchard et al., 2015). In this section,
we propose memory-efficient low-rank approximations to the proposed RelWalk relation
embeddings.

From the definition of orthogonality, it follows that the relation embeddings R1,R2 ∈
Rd×d learnt by RelWalk for a particular relation r are both full-rank and cannot be factorised
as the product of two lower rank matrices. This prevents us from directly applying matrix
decomposition methods such as non-negative matrix factorisation on relation embeddings
to obtain low-rank approximations. Therefore, we subtract the identity matrix I ∈ Rd×d

from the relation embedding R(∈ {R1,R2}) and factorise the remainder R′ ∈ Rd×d as the
product of two low-rank matrices using the eigendecomposition of R′ as given by (6.55).

R = I + R′

= I + URDUR
>

≈ I +
K∑
k=1

D(k,k)UR(k,:)UR(:,k) (6.55)

Here, U is the matrix formed by arranging the eigenvectors of R′ as columns, and D is a
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Figure 6.2: Results for the approximated relation embeddings for link prediction on WN18RR
and FB15K-237.

diagonal matrix containing the eigenvalues of R′ in the descending order.6 We can then
use the largest K ≤ d eigenvalues and corresponding eigenvectors to obtain a rank-K
approximation in the sense of minimum Frobenius distance between R′ and its rank-K
approximation. In the case we use K factors in the approximation, we must store dK real
numbers corresponding to the d-dimensional eigen vectors per each of the K components as
opposed to d2 real numbers in R.7 The compression ratio in this case becomes dK/d2 = K/d.
When K<< d, this results in a significant compression.

To empirically evaluate the trade-off between the number of eigen vectors used in the
compression and the accuracy of the learnt relation embeddings, we use the approximated
relation embeddings for link prediction on WN18RR and FB15K-237 as shown respectively
in the left and right plots in Figure 6.2. We use d = 100 dimensional relation embeddings
learnt by RelWalk and we approximate using top-K eigenvectors. From Figure 6.2, we see
for K > 60 components the performance saturates in both datasets. On the other hand,
we need at least K = 30 components to get any meaningful accuracy for link prediction
on these two datasets. With K = 60 and d = 100 this approximation results in an 60%

compression ratio.
In the next section, we move to consider the problem of inferring relational embeddings

for unseen relation types, where we propose a supervised relation composition method that
composes existing relation embeddings.

6Although R′ is square it is not symmetric. Therefore, some of the eigenvalues of R′ can be complex in
general. The absolute values are used to sort the eigenvalues in the descending order in D.

7We can scale each eigen vector by the square root of the corresponding eigen value as a pre-processing
step, thereby avoiding the need to store the K eigen values.
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6.3 Learning to Compose Relational Embeddings in Knowl-
edge Graphs

Let us recall that KGE methods learn lower-dimensional representations for entities and
relations in KGs, which can be used to infer previously unobserved links (relations) between
pairs of entities in the KG. However, the relation types that can be predicted using KGEs
are confined to R, the set of relation types that already exists in the KG. Although KGEs
can predict links of relations that currently do not exist between two entities in the KG,
these links are limited to the relation types that exist in the training data. In other words,
using the pre-trained KGEs alone, we cannot predict representations for previously unseen
(no in training data) relations that are encountered during test time. On the other hand,
the relations that exist in a KG are often closely related (Takahashi et al., 2018). For
example, given the embeddings for the relations country-of-film and currency-of-country, we
can compose the embedding for a previously unseen relation such as currency-of-film_budget
because entities are shared across many tuples such as (Movie, country-of-film, Country),
(Country, currency-of-country, Currency). In this example, Movie, Country, and Currency
can be replaced respectively by valid entities such as The Italian Job, UK and GBP.

To address the aforementioned issue, we propose a relation composition as a task of
inferring relation embeddings for novel relation types by composing pre-trained embeddings
for existing relation types. The proposed method of relation composition assumes the
availability of compositional constraints for relations that contains rules of two relations
rA ∧ rB imply a third one rC . Our problem setting differs from that of KGE methods in
two important ways. First, we do not learn relation embeddings from scratch for a given
KG, but instead use pre-trained KGEs and learn a composition operator to predict the
embeddings for the relations that currently do not exist in the KG. Relations are fixed with
pre-trained representations because during the inference time we will generate embeddings
for never seen relations and hence their representations never get updated. Second, the
composition functions we learn are universal (Riedel et al., 2013) in the sense that they are
not parametrised by the entities or relations in the KG, thereby making the composition
function independent from a particular KG. This is attractive because, theoretically the
learnt composition function can be used to compose any relation type, not limited to the
relations that exist in the KG used for training.

Our goal of handling new relation types in a KG is similar to that for TransW model
proposed by Ma et al. (2019), which learns a mapping from word embedding space to
knowledge graph space to deal with new relations and entities. Unlike our approach, TransW
does not take into account the relatedness between relation types that can be inferred from
shared entities across the given facts. In particular, our proposed relation composition is
learnt in a supervised fashion considering a list of compositional constraints that connect



Chapter 6. Relations in Knowledge Graphs 141

relations in the form: rA ∧ rB → rC . We adopt global compositional constraints introduced
by Takahashi et al. (2018), which are obtained from multi-hop links over a KG, as will be
described later.

A number of studies have involved multi-hop relational paths between entities (i.e.,
h
rA−−→ e1

rB−−→ t) to improve the KGE methods only trained on direct links (Lin et al., 2015;
Nathani et al., 2019). However, while the existing path-based KGE methods boost the
performance of link prediction, they still cannot generalise over unseen relation types. A
notable exception is a zero-shot relational learning setting proposed in Neelakantan et al.
(2015) study under recurrent neural networks to compose relational paths. The authors
learn a global composition function considering paths of all related entity-pairs in a KG
which: (a) increases the complexity of the model, (b) suffers from noise since not every path
is predictive for a relation in an entity-pair, and (c) based on local-statistics, i.e., individual
pair-paths data. However, our proposed model makes use of global-statistic compositional
constraints, which is more robust to noise as it is necessary “to zoom out” to consider the
entire KG facts and collect such constraints.

Guu et al. (2015) considered path queries in a KG connecting two entities and proposed
a composition method that multiplies the relation embedding matrices corresponding to the
relations along the connecting path. They considered relation composition under the TransE
model (Bordes et al., 2013), where relational embedding vectors are added, and under the
DistMult model (Yang et al., 2015), where relations are represented using diagonal matrices.
These composition operators can be seen as unsupervised in the sense that there are no
learnable parameters in the composition function. In our experiments, we use both matrix
addition and multiplication as unsupervised baseline methods for comparisons. On the other
hand, our proposed method is a supervised relation composition method and we consider
relations represented by orthogonal matrices, which are not diagonal in general.

The rest of this section is structured as follows. In Section 6.3.1, the proposed method
for relation composition is introduced, followed by experimental settings and datasets in
Section 6.3.2. Finally, empirical results are presented in 6.3.3.

6.3.1 Relation Composition

The proposed relation composition model assumes the availability of compositional con-
straints and pre-trained relation embeddings. Our proposed method is agnostic to the
algorithm used to learn the input KGEs. In this regard, it can be used to compose relation
embeddings using KGEs produced by any KGE learning method. In our experiments, we
use relation embeddings learnt using RelWalk, which represent relations using matrices and
report good performance on KGE benchmarks as seen in Section 6.2.3. The benefits of
considering relation composition for RelWalk embeddings is that composing matrices is
more computationally complex and it is also more general than composing vectorial relation
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embeddings (i.e., diagonal matrices can be used to represent vectors).
Let us assume that the two relations rA and rB jointly imply a third relation rC , we use

the notation rA ∧ rB → rC to express this fact. Moreover, let us assume that the relational
embeddings produced by RelWalk for rA and rB to be respectively (RA

1 ,R
A
2 ) and (RB

1 ,R
B
2 ).

For simplify the explanation, let us assume all relation embedding matrices are in Rd×d. We
model the problem of composing the relation embeddings (R̂

C
1 , R̂

C
2 ) for rC as learning two

joint compositional operators (φ1, φ2) such that:

φ1 : RA
1 ,R

A
2 ,R

B
1 ,R

B
2 −→ R̂

C
1 (6.56)

φ2 : RA
1 ,R

A
2 ,R

B
1 ,R

B
2 −→ R̂

C
2 (6.57)

We will first present unsupervised compositional operators for φ1 and φ2 before moving to
introduce the proposed supervised relation composition.

Unsupervised Relation Composition

When the compositional operators φ1, φ2 do not have learnable parameters we call them
unsupervised. In the case of matrix relation embeddings as in RelWalk, we consider the
following unsupervised operators.

Addition:

RA
1 + RB

1 = R̂
C
1

RA
2 + RB

2 = R̂
C
2

Matrix Product:

RA
1 R

B
1 = R̂

C
1

RA
2 R

B
2 = R̂

C
2

Hadamard Product:

RA
1 �RB

1 = R̂
C
1

RA
2 �RB

2 = R̂
C
2

Here, � denotes the Hadamard (elementwise) product of two matrices. Unlike the
matrix product, both addition and Hadamard product are commutative.
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Figure 6.3: An illustration of the proposed relational compositional model using RelWalk
relation embeddings.

Supervised Relation Composition

The unsupervised compositional operators described above are not guaranteed to correctly
predict the embeddings because they cannot be tuned to the relations in a given KG.
Moreover, each unsupervised operator considers either one of R1 or R2, and do not model
their possible interactions. Therefore, we propose to learn two supervised relation composition
operators with shared parameters. The parameter sharing enables the two operators to
learn a consistent relation embedding.

Different models can be used to express φ1 and φ2. In our work, we use feed-forward
neural nets, which are universal approximators for this purpose (Hornik et al., 1989). The
proposed model for predicting relation embeddings is depicted in Figure 6.3. In detail, we
first linearise the input d×dmatrix relation embeddings to d2-dimensional vector embeddings
via a linearisation operator L. We then concatenate the four linearised relational embeddings
L(RA

1 ),L(RA
2 ),L(RB

1 ),L(RB
2 ) and feed it to the neural network. The weight and bias for

the first layer are respectively W1 ∈ R4d2×m and s1 ∈ Rm, where m is the number of
neurones in the hidden layer. A nonlinear activation function is applied at the hidden
layer. In our experiments, we used tanh as the activation function. The weight and bias
for the output layer, respectively W2 ∈ Rm×2d2 and s2 ∈ R2d2 , are chosen such that by
appropriately splitting the output into two parts and applying the inverse mapping of the
linearisation, we can predict R̂

C
1 and R̂

C
2 . Denoting the concatenation by ⊕ and inverse
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linearisation by L−1, we can write the predicted embeddings for rC as follows:

x = L(RA
1 )⊕ L(RA

2 )⊕ L(RB
1 )⊕ L(RB

2 ) (6.58)

h = tanh(W1x+ s1) (6.59)

y = W2h+ s2 (6.60)

R̂
C
1 = L−1y:d2 (6.61)

R̂
C
2 = L−1yd2: (6.62)

Having being provided with a training set of relational tuples {(rA, rB, rC)}, where
rA ∧ rB → rC and their RelWalk embeddings, using Adam (Kingma and Ba, 2015), we find
the network parameters that minimise the squared Frobenius norm given in (6.63).

L(W1,W2, s1, s2) =
∣∣∣∣∣∣RC

1 − R̂
C
1

∣∣∣∣∣∣2
2

+
∣∣∣∣∣∣RC

2 − R̂
C
2

∣∣∣∣∣∣2
2

(6.63)

Experimental settings, datasets and results will be presented in the next sections.

6.3.2 Experimental Settings and Datasets

KG. We use the FB15k-237 dataset created by Toutanova et al. (2015) for training
KGEs using the RelWalk model. This dataset has been introduced in link prediction in
Section 6.2.3. FB15k-237 dataset contains 237 relation types for 14541 entities. To preserve
the asymmetry property for relations, we consider that each relation r< in the relation set
has its inverse r>, so that for each triple (h, r<, t) in the KG (t, r>, h) is also in the KG.
Thus as a total we have 474 relation types to be learnt (we refer to this extended version
as FB15K-474). The train, test and validation parts of this dataset contains respectively
544, 230, 40, 932 and 35, 070 tuples. Following the recommendations by the authors, RelWalk
is trained on FB15K-474 using 100 mini-batches for 1000 epochs until convergence. The
negative sampling rate was set to 50 and we learn KGEs of dimensionalities d = 20, 50 and
100. The matrix relational embeddings and entity embeddings produced by RelWalk are
used in the subsequent experiments when learning supervised compositional operators.

Compositional constraints. To learn the proposed relation composition operator, we
use the global-statistic constraints created by Takahashi et al. (2018) from FB15K-237 as
follows. For a relation r, the authors define the content set S(r) as the set of (h, t) pairs
such that (h, r, t) is a fact in the KG. Likewise, they define S(rA ∧ rB) as the set of (h, t)

pairs such that h
rA−−→ e1

rB−−→ t is a path in the KG. Next, rA ∧ rB → rC is considered as a
compositional constraint if their content sets are similar; that is, if |S(rA ∧ rB)∩S(rC)|≥ 50

and the Jaccard similarity between S(rA∧ rB) and S(rC) is greater than 0.4. They obtained
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Table 6.5: Examples of compositional constraints rA ∧ rB → rC along with Jacard scores,
taken from Takahashi et al. (2018) dataset.

rA ∧ rB rC Jacard score

ceremony> ∧ instance_of_recurring_event> category_of> 0.747
adjustment_currency< ∧ country< currency< 0.557
sport< ∧ team< athlete< 0.556
nationality> ∧ location_of_ceremony< type_of_union> 0.453

154 compositional constraints of the form rA ∧ rB → rC after this filtering process. We
abbreviate the name of this dataset to RCC from Relational Composition Constraint.
Selected examples of compositional constrains are shown in Table 6.5.

Implementation details. We performed five folds cross-validation on the RCC dataset
to train a supervised relation composition operator using our proposed method described in
Section 6.3.1. Using a separate validation dataset, we set the initial learning rate for Adam to
5E-4 and minibatch size to 25. We apply dropout with rate of 0.5 and `2 regularisation with
coefficient 1E-10 to avoid overfitting during training. For d = 20 dimensional embeddings,
we use a single hidden layer of 300 neurones, whereas for d = 50 and 100 we used two hidden
layers, where each has 600 neurones. In all settings, training converged after 25k epochs.
The source code implementation of the proposed method, datasets and FB15K-474 KGEs
are publicly available8.

The section below describes evaluation tasks with experimental results.

6.3.3 Experimental Results

Recall that we assume that the composition of the two relations rA and rB is the relation
rC . We denote the pre-trained RelWalk embeddings for a relation rx to be Rx

1 and Rx
2 ,

where x ∈ {A,B,C}. The composed embedding for rC is denoted by by R̂
C
1 and R̂

C
2 . We

evaluate the efficiency of the composed relation embedding in two tasks namely, relation
composition ranking and triple classification as follows.

Relation Composition Ranking

This task aims to measure the similarity between a composed embedding for an unseen
relation and all other relation embeddings. Following Takahashi et al. (2018), we rank the
test relations rL by its similarity to r̂C , the composed version of rC , using the distance

8https://github.com/Huda-Hakami/Relation-Composition-for-Knowledge-Graphs

https://github.com/Huda-Hakami/Relation-Composition-for-Knowledge-Graphs
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Table 6.6: Performance of relation composition ranking task.

d=20 d=50 d=100

Method MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10

Addition 238 0.010 0.012 250 0.008 0.019 247 0.007 0.000
Matrix Product 225 0.018 0.032 233 0.012 0.025 231 0.010 0.019
Hadamard Product 215 0.020 0.051 192 0.037 0.051 209 0.016 0.032

Supervised Relation Composition 75 0.412 0.581 64 0.390 0.729 49 0.308 0.703

function d(rL, r̂C) given by (6.64).

d(rL, r̂C) =
∣∣∣∣∣∣RL

1 − R̂
C
1

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣RL

2 − R̂
C
2

∣∣∣∣∣∣
F

(6.64)

If the rC is ranked higher than other test relations for R̂C , then it is considered better. We
consider the 474 relation types in FB15K-474 as candidates (i.e., rL) for this ranking process.
Then, we use MR, MRR and Hits@10 to measure the performance of the composition.

Table 6.6 presents the average performance of relation compositions using five folds cross
-validation on RCC compositional constraints. Lower MR, higher MRR and higher Hits@10
indicate better performance. As can be observed, the supervised relation composition
achieves the best results for MR, MRR and Hits@10 with significant improvements over
the unsupervised compositional operators. This observation is consistent for different
dimensionality of relation embeddings d = 20, 50, 100. Hadmard product is the best
among unsupervised relation compositional operators. However, the unsupervised operators
collectively perform as the random baseline, which picks a relation type uniformly at random
from the candidate relations.

Triple Classification

To evaluate the effectiveness of the learnt operators for generating composed relation embed-
dings, we consider the triple classification task using the composed relation embeddings and
entity embedding. This task is presented in detail when we evaluated RelWalk embeddings
in Section 6.2.3. Recall that this task aims to predict whether a triple (h, r, t) is a valid
triple or not given entity and relation embeddings and a scoring function that maps the
embeddings to a confidence score. We use the embeddings learnt by RelWalk for the entities
and the relations in FB15k-474 and the joint probability p(h, r, t) given by Theorem 2 to
determine whether a relation r exists between two given entities h and t.

We perform five folds cross-validation on RCC compositional constraints. Once the
proposed supervised relation composition is learnt using a training set, we perform triple
classification for those triples in FB15K-474 testing set that are linked by the relation types
in the held-out split of the compositional constraints. We evaluate the performance using
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the accuracy which is the percentage of the correctly classified test triples. We use the
validation set to find a classification threshold TrC for each unseen relation rc considering
the predicted relation embeddings.

Table 6.7: Triple classification accuracy for the different relational compositional operators.

Method d=20 d=50 d=100

Addition 68.9 70.44 69.45
Matrix Product 67.6 65.24 75.71
Hadamard Product 58.44 63.01 70.94

Supervised Relation Composition 77.55 77.73 77.62

The performance of the supervised and unsupervised relation composition operators for
triple classification is shown in Table 6.7. Across the relational compositional operators
and for different dimensionalities, the proposed supervised relational composition method
achieves the best accuracy for this task. Despite increasing the dimensionality of relation
embeddings from 20 to 100 leading to a complex model with a large number of parameters
to be tuned using a small set of constraints as in RCC, the trained operator shows better
performance in all the cases.

6.4 Summary

This chapter considered the problem of representing relations in KGs that include facts
about the real world in the form of nodes linked by edges. We proposed RelWalk, a
generative model of KGE and derived a theoretical relationship between the probability
of a triple consisting of head, tail entities and the relation that exists between those two
entities, and the embeddings of the corresponding entities and relations. In RelWalk, we
represent entities by vectors and relations by matrices. We then proposed a learning objective
based on the theoretical relationship we derived to learn entity and relation embeddings
from a given knowledge graph. Experimental results on the link prediction and the triple
classification tasks show that RelWalk performs similar to several previously proposed KGE
learning methods. The key assumptions of RelWalk are validated by empirically analysing
the relationship between such assumptions and the performance of the learnt embeddings
from a KG. Moreover, we studied the compressibility of the learnt relation embeddings
and discovered that using only 60% of the components, we can approximate the relation
embeddings without any significant loss in performance.

This chapter also addressed the problem of representing novel relations by composing
pre-trained relation embeddings in KGs. Given a set of compositional constraints over
relations in the form rA∧rB → rC , we proposed a method that learns a supervised operator
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to map the relation embeddings of two relations to a new relation embedding. By doing so,
it effectively tackled the problem of representing novel (or rare) relation types. Evaluating
the predicted relation embeddings for triple classification task indicated the effectiveness
of the proposed relation composition method. There are many further investigations and
evaluations concering composition constraints and semantic composition models for novel
relations that can be done.

We will now move to the last chapter to conclude this thesis by summarising our
contributions, main findings and looking forward to future research.



7
Conclusion

This thesis was devoted to the task of learning semantic representations for relations between
words, which is undoubtedly important in NLP applications. Earlier studies on representing
word semantics from a large text corpus via deep learning techniques revealed the property
of linguistic regularity in a space as linear translations between the embeddings of word-pairs
related by a considered relation. In light of this characteristic about word embeddings,
the focus of this thesis had been to investigate the compositional methods on pre-trained
word embeddings to represent relations between words. Besides linguistic features in a
text corpus to induce relational information, structured KGs provide us with real-world
relational facts in the form of labelled edges between entities. The thesis was also concerned
with embedding methodologies employed for representing relations in KGs.

This chapter concludes the work presented in this thesis in the following sections.
Section 7.1 summarises the work presented in each chapter of the thesis. Then, Section 7.2
recaps the main contributions of the thesis under the research questions and issues raised in
Chapter 1. In Section 7.3, some future directions that build upon the work conducted in
this thesis are discussed.

7.1 Summary of Thesis

The thesis proposed multiple solutions to learn semantic representations for relations between
words. There are mainly two approaches to capture relations between words, which are the
pattern-based (i.e., requires co-occurring context between words) and the compositional
(i.e., applies some operator on pre-trained word embeddings). Chapter 1 presented the main
motivation for moving away from pattern-based to compositional approach for relations,
as the former suffers from the sparsity problem because, even in a large corpus, not every
related pair of words co-occur properly for their relation to be captured. Another line of
research on relation representations is KG-based approaches that depend on an organised
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graph of relations (can be seen as connecting patterns in a text corpus) between entities
covering real-world facts. The data sparsity problem also exists in KGs as a considerable
number of facts are still missing despite the best efforts to create complete KGs because new
entities are constantly emerging and new relations are formed between relations. Embedding
entities and relations of a KG in a low-dimensional latent space show exciting success to
expand otherwise sparse KGs. The research questions for which the study of this thesis
focused were defined in Chapter 1 along with the contributions made to answer them.

In Chapter 2, a literature review concerning related topics was presented. First of all,
the benefits of spending effort to learn relation semantics in the NLP field were discussed.
Historical background about the two approaches to learn relations (pattern-based and
compositional) and their limitations was presented. A discussion about the complementarity
of the two sources of information for relations was also reviewed in the chapter. The last
part of the chapter was about multi-relational KGs and learning relation representations in
KGs using KGE methods.

A systematic study of unsupervised compositional operators for representing relations was
presented in Chapter 3. For various word embedding models and evaluation tasks, PairDiff
was the overall best. However, breaking down the performance by relation type revealed
the fact that the best operator varied from one relation type to another. The chapter also
presented a proposed supervised classification-based method that defines a discriminative
feature space to measure relational similarities of word-pairs. The experimental results
indicated that the effective features for measuring relational similarity are indeed ranked at
the top by the proposed method.

Chapter 4 explored bilinear operators to represent a relation between two words using
their pre-trained word embeddings. The chapter provided a mathematical analysis by
computing the expected `2 loss that minimises the distance between relation representations
from the bilinear operator of analogous word-pairs while maximises it for non-analogous pairs.
The chapter showed that, under specified assumptions, the expected loss was independent
of the bilinear terms.

Chapter 5 tackled the problem of learning parameterised compositional operators to
represent relations between words. The chapter proposed two compositional operators
modelled as non-linear neural networks. The first was called MnnPL, where the penultimate
layer of a feed-forward neural network trained for classifying relation types of input word-pairs
provided accurate representations that generalise well for out-of-domain relations. The second
proposed operator, called CGRE, built on the first by incorporating relational patterns
as a regulariser, and learnt in a self-supervised manner. Taken together, the successful
performance reported by the proposed operators provided evidence that compositional
methods can recover the relational regularities hidden inside word embedding spaces.

Finally, Chapter 6 looked at representing relations between entities in multi-relational
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KGs. In particular, a proposed relational walk model for learning KGEs by performing a
random walk over a KG was presented. The chapter also introduced a novel task – relation
composition that predicts embeddings for novel relations from existing ones.

7.2 Main Contributions and Findings

This section provides a brief recap of the contributions along with the main findings in this
thesis. The key research question considered in this thesis was follows:

“Can we learn relation representations from word representations; and if so what are the
appropriate methods and resources for achieving this? ”

To answer this main research question, a number of subsidiary questions had been raised,
as presented in Section 1.3. These questions will be reviewed in this section in terms of the
main findings of the research presented in the thesis.

1. Given pre-trained word embeddings, what is the best unsupervised compositional operator
to represent relations between words? and how appropriate is such an operator for
various relation types?
It has been shown that prediction-based word embeddings encode features correlated
with relational knowledge, which can be obtained via unsupervised PairDiff operator,
but it remains unclear as to what is the best unsupervised operator to derive relation
representations from word embeddings. In Chapter 3 (Section 3.4), a systematic
comparative study was conducted, which revealed the superiority of the
PairDiff operator among various word embedding models and evaluation
tasks. The appropriateness of the PairDiff operator for different relation types was
evaluated. Overall, our study showed that syntactic relations are easier to capture
using the PairDiff operator than semantic relations. Besides, encyclopedic semantic
relations have shown to be well organised under the PairDiff compared to Lexicographic
semantic relations.

2. Can we discover discriminating relational features from word representations to measure
the relational similarity between two word-pairs?
As elaborated in Section 3.5, the attributional similarity between the corresponding
arguments of two word-pairs can be seen as a reason for considering the two pairs
as instances of the same relation. However, the features that accurately express
the relational similarity between two word-pairs remain unknown. For this case, a
data-driven approach was proposed to discover representative space for
relational similarity measurement from word representations. It was found
that the extracted features are efficient descriptors of semantic relations compared to
linguistically-oriented methods.
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3. Can we systematically investigate a bilinear operator, which is parametrised by a 3D
tensor, to map two given word embeddings into a vector representing a relation between
the two words?
Despite the empirical success of the PairDiff operator for relations, it was remained
unclear as to whether we can learn better parameterised operators to represent
relations. Thus, a theoretical analysis of generalised bilinear operators for
relation representations that can be used to measure the distances between
word-pairs was conducted in Chapter 4. It was demonstrated that, if the word
embeddings are standardised and uncorrelated, such an operator will be independent
of bilinear terms, and can be simplified to a linear form, where the PairDiff is a
special case. The general applicability of the theoretical result was demonstrated by
empirically verifying underlying assumptions.

4. Can we learn better compositional operators for relation representations from word
embeddings?
To answer this question, neural network-based models were considered for the purpose
of learning relation compositional operators. Section 5.2 of Chapter 5 presented
MnnPL, a compositional operator modelled as a non-linear neural network
learnt in a supervised fashion. It had been found that the proposed method could
generalise to out-of-domain settings by representing word-pairs from unseen relations.
This finding demonstrated the fact that simple supervised operators can accurately
discover hidden relational features in word embeddings.

5. Can we improve the performance of compositional relation representation methods
by training such methods using the two sources of information namely: (a) word-
embeddings of related pairs and, (b) co-occurring patterns extracted from a corpus?
As discussed in Section 2.6, bridging the gap between pattern-based and compositional
approaches for learning relations can tackle the limitations of using each approach
separately. To this end, In Chapter 5 (Section 5.3), a context-guided relation
embedding method was proposed that considered co-occurring patterns
at training time, and only word embeddings for unseen word-pairs during
the inference. The proposed model was approached in a self-supervised manner
to get rid of the need to annotate data. Regularising a compositional operator with
relational patterns improved the performance and made the usage of compositional
methods more efficient. Therefore, the combination of word representation features
and relational pattern features are useful for learning relation representations.

6. Given a KG, can we enrich the graph by inferring missing links using a theoretically
motivated approach for relation and entity embeddings?
Despite the good empirical performance of heuristically defined KGE methods, theo-



Chapter 7. Conclusion 153

retical understanding of KGEs is relatively underdeveloped. This thesis attempted
to fill this void by developing a theoretical model, relational walk, that
performed a random walk over a KG and derived a scoring function that
relates KGEs to the connections in the KG. KGEs were learnt from a given
KG such that the relationship given by the proven theorem was empirically satisfied.
Accurate KGEs were leant from the derived objective for benchmark KGs, which in
turn provided empirical evidence in support of the theory.

7. Given pre-trained KGEs, can we infer embeddings for unseen (i.e., novel) relations
using pre-trained embeddings for the existing relations?
Typically, KGE methods learn representations for entities and relations existing
in a given KG, then such representations are used to detect unseen links between
already seen entities and relations. Limitations arise, however, when previously unseen
relation types are encountered during test time. Chapter 6 (Section 6.3) tackled
this problem by proposing a supervised relation composition operator to
predict representations for novel relations. The proposed operator efficiently
outperformed its unsupervised counterparts on relevant evaluations.

After discussing each of subsidiary question, let us return to the main research question:

“Can we learn relation representations from word representations; and if so what are the
appropriate resources and methodologies for achieving this? ”

It can be stated that multiple resources assist in the learning of representations for relations
between words. One of these sources were pre-trained word embeddings that attracted our
attention because they: (a) succeeded initially in analogical reasoning, and (b) tackled the
sparsity problem as exacted co-occurrences between two words are no longer required for their
relation to be represented. The conducted work demonstrated that we can extract hidden
information about relations from pre-trained word embeddings by learning compositional
operators modelled by deep neural networks. According to the results of our study, it was also
found that relational patterns (another source of relational knowledge) co-occurring between
words in a corpus can be leveraged to boost the performance of relation embeddings when
they were incorporated in the learning framework as a regularisation for a compositional
operator. The thesis also took into consideration another ubiquitous source to learn relations,
namely knowledge graphs in which facts are represented as nodes of entities connected
through edges labelled by relation types. Such KGs have been used widely for various NLP
related tasks. The concept of knowledge graph embeddings played a very important role
in reasoning about relations between entities and thus enriching sparse knowledge graphs.
In our work, the relationship between the connections in a graph and the embeddings of
entities and relations were derived theoretically and used to learn efficient relation matrices
that operate on entity vectors to score the relational triples.
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Collectively, the analysis and results obtained in this thesis have shown that relation learn-
ing methods yield meaningful semantic representations for relations that would significantly
benefit numerous NLP applications.

7.3 Future Work

Learning representations for semantic relations between words is a growing research area
as understanding the underlying connections in a text span is an important requirement
for intelligent systems. This section outlines possible future directions for learning relation
representations. In particular, three major themes for future exploration are listed below.

Intrinsic Evaluation of Relation Embeddings

Ideally, we want to obtain relation embeddings that can perform efficiently on downstream
tasks such as textual entailment and metaphor detection. However, evaluating relation
embeddings on such tasks at development time is computationally expensive. Thus, during
our work, we adopted relational similarity tasks as a proxy evaluation that correlated well
with downstream tasks. Nonetheless, a direct interpretation of dimensions themselves, in a
latent semantic space of relations, is still obscured.

In word representations, few studies have attempted to provide explanations of the
dimensions learnt under prediction-based word embedding models. Tsvetkov et al. (2015),
for example, proposed a qualitative intrinsic evaluation method called QVEC, which maps
latent dimensions in word embeddings to linguistic-oriented features. Extending the QVEC
measure from word-level representations to relation representations is possible, but not
straightforward because the features that characterise relations are different from those
associated with word meanings. While, for instance, the dimensions in word embeddings
latently related to POS or senses such as animal, food, motion, relations can be characterised
by contextual patterns such as increase the risk and instance of. Proposing an intrinsic
evaluation of relation representations to facilitate qualitative analysis and interpretability is
thus a potential research avenue.

Inference in Knowledge Graphs

Despite the efforts directed at developing KGs covering a wide range of information about
entities and relations between them, it remains a challenging task to keep KGs up to date
with the latest information because new entities are constantly emerging and new relations
are formed between entities. Such missing knowledge can be populated by performing
inference on a KG. Existing KGEs methods, including the one proposed in the thesis,
RelWalk, reason about individual relations without considering connected paths of edges.
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One way to extend inferences in a KG is to reason with a set o logical rules. For example,
the rule IsA(X,Y )∧ IsA(Y,Z) =⇒ IsA(X,Z) can be used to infer an IsA relation between X
and Z if that relation is already satisfied between (X,Y ) and (Y,Z). Specifying additional
knowledge in the form of logical rules such as first-order Horn clauses is attractive because
of its compactness. Consequently, prior proposals for injecting knowledge into KGs have
used logical rules as the preferred knowledge representation method (Guo et al., 2016;
Demeester et al., 2016; Ding et al., 2018; Minervini and Riedel, 2018). Numerous methods
have been proposed for measuring the strength of a relation between two entities using
embeddings learnt for relations and entities from a given KB. Given such a scoring formula,
we can determine whether the head clause of a first-order Horn-style logical rule could be
entailed by the body clause of the rule. However, it remains unclear as to what is the best
method to compute the entailment score for a logical rule. A possible future work is to
investigate the potential of learning a data-driven approach to find the best scoring formula
satisfying the entailment constraints in a set of logical rules. These logical rules can be
derived automatically via rule mining systems (Galárraga et al., 2015).

Relational Knowledge From Contextualised Word Embeddings

This thesis analysed and experimented semantics of relations considering static word embed-
ding models. Each word in the vocabulary, at the end of training a model on co-occurrence
statistics, is assigned a fixed context-free representation. From 2018 onwards, contextualised
representations, obtained from deep neural language models, emerged as a method to
generate dynamic representations of a word based on the surrounding contexts (Peters et al.,
2018; Devlin et al., 2019). These contextual representation models have shown impressive
performance when fine-tuned for many NLP tasks including question answering, entity
recognition, etc. Interestingly, researchers also considered such rich semantic contextual
representations for KG completion and relation learning (Baldini Soares et al., 2019; Yao
et al., 2019; Petroni et al., 2019; Bouraoui et al., 2020). In particular, it has been shown that
contextual language models can fill the blanks in relational questions such as “London is the
capital of ?”. As such, a worthwile future work is to employ contextualised representations
for predicting lexical patterns of unobserved word-pairs to represent their relations.
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