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Electronic and Steric Manipulation of the Agostic Interaction in 

benzo[h]quinoline Complexes of Pd(II) and Implications for the 

Formation of η1-Pd–C Bonds 
 

Alastair J. Nielson,*[a] John A. Harrison,*[a] M. Arif Sajjad[a]  and Peter Schwerdtfeger[b]   

 

Abstract: Structures and properties were obtained by density 

functional (DFT) calculations for the complexes [PdCl2(L)] (L = 

benzo[h]quinolines) containing aromatic ring agostic interactions. The 

inflexibility of the benzenoid rings of the ligands keep the structures  

of the complex relatively constant when electron withdrawing 

substituents are added to the aromatic ring para to the agostic carbon 

but electron donation causes a change to η1-Pd–C bond complexes 

in which agostic donation is significantly reduced and π-syndetic 

donation no longer features. Increasing the steric size at the α-carbon 

through the series H, Me, CHMe2, CMe3 or Ph, changes the manner 

in which the ligand sits in relation to the coordination plane but a 

change in the way the nitrogen atom of the ligand tilts in relation to the 

coordination plane does not effectively reduce the agostic or syndetic 

donations. CPh3 reduces the agostic donation but not the syndetic 

donation and C(Ph-2,6-Me2) turns both donations off and installs η2 

π-donation on one aromatic ring. Placing ortho-substituents on the 

ring can influence the interplay of electronic and steric effects when 

η1-Pd complexes are formed. 

Introduction 

Cyclometallation reactions,[1] important in the development of 

transition metal catalysed C–H bond functionalisations,[2] have 

been shown to rely on the agostic interaction[3] to activate the C–

H bond. In this regard, we have recently reported that in addition 

to the known participation of aromatic ring agostic C–H bond 

electron density donation to palladium occurring during the 

accepted Concerted Metallation Deprotonation/Ambiphilic Metal 

Ligand Activation (CMD/AMLA) mechanism for 

cyclopalladation,[4] there can be additional donation to the metal 

centre which involves π or σ-bond orbital electron density from 

the ring localized uniquely in the vicinity of the carbon atom to be 

metallated.[5] This type of donation which appears to assist the 

agostic interaction, was termed ‘syndetic donation’ and pointed to 

a much more complex interaction overall.[5a,b] We have also 

referred to the involvement of electrostatic attraction and 

repulsion being important based on the charge differences[5] and 

the nature of this charge separation has been expanded in a 

recent in-depth investigation of this coulombic component by 

other workers which showed a multi-pole environment for the  

agostic interaction.[6]  

  A key feature of our computational studies involving aromatic 

ring agostic interactions has been to assess the effect of adding 

electron withdrawing or donating substituents to the aromatic ring 

to try and influence the various contributing components.[5] In 

addition, we have also looked at how steric aspects carry out this 

function.[5c,d] These studies have focused on aromatic ring 

systems where the ring can rotate to assist the interaction or 

distort outside the agostic C–H bond ring system to achieve the 

same result. We have now turned to a much less flexible system 

in an attempt to force a very close agostic C–H bond approach to 

ascertain how the various components can be influenced. We 

present here the results of computation studies on the electronic 

and steric manipulation of the agostic bonding characteristics in 

such a ligand, with a focus on implications of structural changes 

in the molecules. 

Results and Discussion 

1) DFT structure and properties of 

[PdCl2(benzo[h]quinoline)]. As an entry into the characteristics 

of close approaches made to palladium, the benzo[h]quinoline 

ligand (figure 1) was chosen on the basis that with two benzenoid 

ring junctions present, the system would be expected to be mostly 

inflexible which should allow little opportunity for the C–H 

hydrogen to avoid close contact with the metal centre in an  

 

 

 

                        

 

 

 

 

Figure 1. Structure of the benzo[h]quinoline ligand showing the A, B and C 

rings and the potential C–H bond agostic hydrogen. 

[a] Prof. Dr. A. J. Nielson, Dr. J. A. Harrison, Dr. M. A. Sajjad 

           Institute of Natural and Mathematical Sciences, Massey University 

Auckland, Private bag 102904, North Shore Mail centre, 

Auckland, New Zealand 

E-mail: a.j.nielson@massey.ac.nz 

[b] Prof. Dr. P. Schwerdtfeger 

           Centre for Theoretical Chemistry and Physics, Institute of Advanced 

Studies, Massey University Auckland, Private bag 102904, North 

Shore Mail centre, Auckland, New Zealand. 

           E-mail: peter.schwerdtfeger@gmail.com 

 Supporting information for this article is given via a link at the end of 

the document. 

A
B

C

H  

10.1002/ejic.202000348

A
cc

ep
te

d 
M

an
us

cr
ip

t

European Journal of Inorganic Chemistry

This article is protected by copyright. All rights reserved.

mailto:peter.schwerdtfeger@gmail.com


FULL PAPER    

 

 

 

 

 

agostic interaction once the N atom coordinates. In addition, the 

ligand is relevant to the present study of palladium-based 

agostic interactions as it is known to cyclometallate for this 

metal.[7] In a previous study where we looked at the anagostic 

separations in rhodium complexes containing the 

benzo[h]quinoline ligand (L in [RhCl(CO)2(L)]), it was found that 

electrostatic repulsion keeps the C–H bond hydrogen away from 

the Rh centre and electrostatically attractive Rh···C interactions 

are prevented from closing up by ligand inflexibility.[8] 

  For the present computational study, we have used the PBE-D3 

functional[9] that includes dispersion which has been shown to be 

a fundamental component of agostic interactions,[10] is known to 

perform well for this type of weak interaction[11] including the 

coulombic component[6] and is the functional we have used in our 

other computational work on agostic interactions.[5] In terms of the 

type of complex we have used, agostic structures for 

[PdCl2(benzo[h]quinoline)] complexes were calculated which 

contain chloro ligands so that the agostic hydrogen would not be 

influenced by ligand proximity as is found in the CMD/AMLA 

mechanism involving acetato ligands.[4,5d] 

  The energy minimised agostic structure for 

[PdCl2(benzo[h]quinoline)] (1) (figure 2) shows that the ligand 

rotates into but slightly above the N and Cl atom coordination 

plane so that the C2-hydrogen (numbering used for the pertinent 

sections of the aromatic C-ring containing the agostic interaction 

are shown in figure 2a) lies slightly below the coordination plane 

and the C2-carbon slightly above it so that the Pd···H separation 

is 1.768 Å and the Pd···C2 separation is 2.219 Å (figures 2a and 

2b, all relevant metrics in table 1). As seen in figure 2b, the A-ring 

section of the ligand lies quite flat with respect to the coordination 

plane and the extent of this is shown by the Cl–Pd–N–C torsion 

angle involving the Cl ligand that lies cis to N, being large at 

156.1o. The angle the C-ring makes with the coordination plane 

 

 

 

                        
                                                                 (a) 

                              
                                                    (b) 

                           
                                                  (c)   

Figure 2. Computed structure for the agostic [PdCl2(benzo[h]quinoline)] 

complex (1). (a) Capped stick model for the energy minimised structure 

showing the coordination geometry, ring numbering and close approaches (Å). 

(b) View down the trans-Cl–Pd–N bond. The orange line traces a line parallel 

to the coordination plane. (c) View down the Cl–Pd bond trans-to the agostic 

C–H bond.  

 

at 146.4o (Ar/CP torsion in table 1) Is not much smaller which 

reflects the structural inflexibility of the ligand.  In other complexes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Selected Structural Data for Complexes 1 - 5 

Complex 1 2 3 4 5 

Para-Substituent H SO2Cl N2PO(OEt)2 B(OH)3
- S- 

Bond Length      

  Pd-N 2.061 2.060 2.059 2.057 2.054 

  Pd-Cl(trans) 2.274 2.269 2.273 2.315 2.357 

  Pd-Cl(cis) 2.277 2.273 2.277 2.295 2.303 

  C-H 1.166 1.173 1.169 1.151 1.127 

Separations      

  Pd···H 1.768 1.756 1.766 1.826 1.989 

  Pd···C1 2.934 2.936 2.938 2.939 2.921 

  Pd···C2 2.219 2.199 2.193 2.204 2.162 

  Pd···C3 3.290 3.255 3.246 3.280 3.239 

Torsions      

  Ar/CP 146.4 144.8 145.7 149.8 151.4 

  Pd-N-C-C1 5.9 5.1 5.2 5.0 6.4 

  N-C-C(1)-C2 8.6 8.6 8.0 9.2 10.6 

  Cl-Pd-N-C 156.1 154.7 155.4 161.0 164.0 

  C-H bond deformation 30.4 31.4 32.6 33.1 39.1 

Angles      

  Pd-N-Cp deformationa 8.7 8.1 8.1 8.2 9.2 

  Pd-N-C 113.9 114.1 114.0 114.1 114.1 

  N-C-C1 117.3 117.2 117.3 117.3 116.5 

   Pd···H-C 96.2 95.2 94.5 92.7 82.9 

   Pd···C-H 52.4 52.7 53.4 55.8 65.9 
a Cp = A-ring para-carbon; measured angle is Pd-N-Cp; deformation angle shown is 180o– Pd-N-Cp angle. 
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we have calculated structures for where the analogous C-ring 

can rotate or there are distortions outside the aromatic ring 

containing the agostic C–H bond, these angles are much 

steeper[5] (ca 129o) which presents more of the C-ring plane to 

the metal centre. 

  The positioning of the aromatic C-ring with respect to the 

coordination plane, now places the C2–H bond facing the 

palladium centre so that a line drawn through the coordination 

plane and projected to the right, cuts this bond half way down 

(figure 2b) and a line-of-sight through the Cl–Pd bond points 

slightly to the right of it (figure 2c). The N–C–C1–C2 torsion angle 

of only 8.6o shows again that the benzo[h]quinoline ligand hardly 

distorts from planarity and  reflects the ligand inflexibility.  

  As to how the ligand manages to cooordinate at all with an 

agostic interaction involved is achieved partly by the C2–H bond 

distorting significantly out of the plane of the aromatic C-ring (C–

H deformation angle in table 1, 30.4o). This type of distortion is 

well recorded for the somewhat rare aromatic ring agostic C–H 

bond interactions[3b,12] but is much larger in magnitude in the 

present case than found for the computed stuctures of less 

constrained aromatic ring systems (ca. 20o)[5]. The other way 

coordination is achieved at all is seen at the benzo[h]quinoline 

ligand nitrogen atom where the pyridine A-ring is not in the same 

plane as the trans-related Pd–Cl bond but deviates by 8.7o (the 

Pd–N–Cp deformation angle of 8.7o  in table 1 is actually 

measured as 171.3o; Cp is the carbon at the para-position of the 

nitrogen A-ring).  

  To gain insight about the orbital interactions involved in the 

close approaches of the agostic C–H bond in 1, we have used 

Natural Bond Orbital (NBO) analysis[13] which provides an 

estimation of the energies involved using the second order 

perturbation energy, E(2). It should be noted here that this type 

of analysis is required as orbital interactions obtained from 

molecular orbitals are descriptive only and do not give a 

meaningful quantified approach[13]. Whereas the E(2)values are  

 

   

 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not comparable to other types of energies, they are themselves 

directly comparable and we have used them previously in this 

manner for series comparisons within the same functional and 

basis set for both agostic and anagostic interactions.[5,8] At this 

point it should be emphasised that an agostic interaction is not 

an example of a hydrogen bond due to both the H atom and Pd 

centres possessing positive charges. In this regard, the 

applicability of NBO analysis to hydrogen bonded dimers has 

been the subject of some discussion due to basis set 

superposition error (BSSE)[14] but recent work has shown that 

BSSE doesnot overtly effect agostic interactions.[6,15]   

  The NBO analysis for the agostic C2–H bond for 1 (table 2), 

shows C−Hσ bond electron density donations to both the 

Pd−Clσ*(trans) and Pd−Clσ*(cis) orbitals  with E(2) values of 

52.0 and 3.6 kcal mol-1 respectively. The dual nature of the 

donations is similar to other PdCl2(ligand) agostic complexes we 

have reported but the total E(2) value for 1 of 55.6 kcal mol-1 is 

slightly lower than that observed for these others [range of E(2) 

values, 61.7 to 73.7 kcal mol-1][5a-d]  but higher than in a variety of 

C–H bond activation ligand-directing groups when the 

coordinating atom is oxygen rather than nitrogen [range of E(2) 

values, ca 30 to 40 kcal mol-1].[5e]  

  Looking at the syndetic π-donations (table 2) which are from 

the C2−C3 aromatic ring π-orbital to the same metal based 

orbitals as are the agostic donations, the E(2) value of 12.8 kcal 

mol-1 for the two is much lower than that seen for other 

PdCl2(ligand) agostic complexes where the E(2) values range 

from 61.7 to 73.7 kcal mol-1.[5a,b] This significant change for 1, 

appears to be related in part to the N–C–C1–C2 torsion angle of 

8.6o which as already mentioned shows that the 

benzo[h]quinoline ligand hardly distorts from planarity and does 

not allow the aromatic C-ring to face the palladium centre as in  

the other more flexible PdCl2(ligand) agostic complexes where 

the aromatic ring can rotate or distort away from the metal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. NBO Analysis E(2) data for Complexes 1 – 5. 

Complex 1 2 3 4 5 

Para-Substituent H SO2Cl N2PO(OEt)2 B(OH)3
- S- 

LP N to Pd 90.5 89.9 90.7 70.8 70.8 

LP N to Pd 9.6 9.3 9.4 5.6 3.9 

 Total 100.1 99.2 100.1 76.4 71.7 

Agostic      

C−Hσ -Pd−Clσ*(trans) 52.0 55.3 54.0 14.5 11.0 

C−Hσ - Pd−Clσ*(cis) 3.6 3.8 3.6 - - 

  Total agostic 55.6 59.1 57.6 14.5 11.0 

Syndetic      

C2−C3π - Pd−Clσ*(trans) 11.1 11.0 12.2 - - 

C2−C3π -Pd−Clσ*(cis) 1.7 1.7 1.9 - - 

  Total π-syndetic 12.8 12.7 14.2 - - 

C1−C2σ - Pd−Clσ*(trans) 1.8 1.9 1.9 1.8 2.2 

C1−C2σ -Pd−Clσ*(cis) 0.4 0.5 0.5 - - 

  Total σ-syndetic 2.2 2.4 2.4 1.8 2.2 

C2−C3σ - Pd−Clσ*(trans) 0.3 0.4 0.3 - - 

C2−C3σ -Pd−Clσ*(cis) - - - - - 

  Total σ-syndetic 0.3 0.4 0.3 - - 

Back Donation      

Pd - C−Hσ* 9.7 10.3 9.9 5.7 3.1 

Pd - C2−C3π 3.7 3.3 3.5 - - 

Pd - C2−C3σ 0.8 0.9 0.9 0.9 1.0 

Pd - C1−C2σ 0.6 0.7 0.7 0.6 0.7 
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centre (comparative N–C–C1–C2 torsion angles range from 14.7 

to 18.5o)[5]. There are some other small positioning changes  

which collectively also contribute to the difference but the 

benzo[h]quinoline ring inflexibility appears to be the most  

important factor. In general, the C1−C2 syndetic σ-donation for 1 

at 2.2 kcal mol-1 is marginally larger than the other complexes 

mentioned. In NBO terms, small E(2) values such as these are 

at the limit of the analysis[16] but they are quoted here for 

comparative indications only.  

 

2) Electronic Effects 

In our previous computational work on agostic interactions with 

the more flexible acetophenone and 1-tetralone oxime ligands, 

we found that there was a pronounced substituent electronic 

effect on the strength of both the agostic and π-syndetic 

donations and that both components could be manipulated by 

changing the electronic environment.[5a-d] In these studies and 

the present one, we have used substituents on the carbon that 

lies para-to the agostic C2-carbon as in general  aromatic ring 

substituent chemistry, the effects are more pronounced at this 

position[17] compared to meta-substituents[17] and the ortho-

position can involve both steric and electronic effects.[18] 

  For the present study, as with our previous computational work, 

we have used the strongest electron donating or withdrawing 

groups available to influence either the σ or π systems of the 

aromatic ring but not both at the same time. The substituent 

used for σ-electron withdrawing is SO2Cl (F value 1.16; R value 

–0.05[17]), complex (2), π-electron withdrawing, N2PO(OEt)2 (F 

value -0.05; R value 0.79[17]),  complex (3); σ-electron donation 

B(OH)3
– (F value -0.42; R value -0.02[17]), complex (4) and π-

electron donation, S– (F value -0.03; R value -1.24[17]), complex 

(5) (see scheme 1). The effects were then compared to where 

the substituent is H, similar to Hammett protocol.[18]  It should be 

remembered here that as the substituents do not have the same 

electron donating or withdrawal abilities in terms of F or R 

values,[17] direct comparison of data magnitudes are unrealistic. 

However, trends relating to electron withdrawal or donation can 

be made and these are used throughout the present electronic 

influence studies.  

  Based on the C2–H bond length which can be used as a 

measure of the agostic donation as electron donation to the 

metal weakens and thus lengthens it, σ-electron withdrawing 

group SO2Cl in complex 2 increases the agostic donation 

marginally compared to 1 (C2–H bond lengths, 1.173 and 1.166 

Å for 2 and 1 respectively, see comparison of the metrics in 

table 1) and this occurs when the only significant change to the 

structural features is a small decrease in the Pd···C2 and Pd···C3 

separations (distances 2.199 and 2.219 Å; 3.255 and  3.290 Å)  

meaning that the C2 and C3 ring carbons have moved closer to 

the metal.The small increase in agostic donation is confirmed by 

NBO data where the E(2) values are 59.1 and 55.6 kcal mol-1 for 

2 and 1 respectively. This seemingly unusual increase in agostic 

donation with strong σ-withdrawal from the aromatic ring was 

also found for the SO2Cl substituent in the less flexible nitrogen 

ligands we have studied earlier and was related to the C-H bond 

electron density becoming more symmetrical so that increased 

electron density was available for agostic donation.[5b]  However, 

we have not looked at this effect for the present 

benzo[h]quinoline ligand. For the other donations, inspection of  

                    

C

Pd H

Cl

R1

R3

R2

Cl

 

 

 

                         (1)    R1, R2, R3 = H 
 (2)    R1, R2 = H, R3 = SO2Cl 
 (3)    R1, R2 = H, R3  = N2PO(OEt)2 
 (4)    R1, R2 = H, R3  = B(OH)3

- 

 (5)    R1, R2 = H, R3  = S- 

  
Scheme 1. Structures showing the electronic substituents on ring C.               

 

table 2 shows that the syndetic π and σ-donations to the metal 

as well as the Pd to C–H* orbital back-donation do not vary 

much individually.  

  In our previous work on agostic interactions where we have 

utilised more flexible nitrogen ligands, we noted that an increase 

in negative charge at the agostic carbon occurs along with 

shortened Pd···C separations[5a-d] and as mentioned in the 

introduction, a more indepth study has indicated the importance 

of colombic effects in agostic interactions in general.[6]  In this 

regard it is noted that the small decrease in the Pd···C2 

separation in going from 1 to 2 (2.219 to 2.199 Å) involves a 

small decrease in negative charge on C2 (see table S4 in the 

ESI)  [q(H) values (QTAIM atomic basin charge[19]), -0.0809 and 

-0.0717 e] which is associated with a slight increase in positive 

charge on Pd [q(H) values, 0.6207 and 0.6312 e).  

  Turning to the N2PO(OEt)2 substituent which is somewhat 

uncommon but does have the strongest π-withdrawing effect (R 

value 0.79[17]), the C2–H bond length for complex 3, is only a little 

shorter than for the SO2Cl substituent in 2 (1.169 and1.173 Å 

respectively) indicating that it has very little effect on the agostic 

interaction. The Pd···C2 separation is a little shorter at 2.193 Å 

compared to 2.199 Å but as with the other metrics, there is very 

little change. The NBO analysis shows little change for the 

agostic and syndetic donations as is found for the Pd to C–H* 

orbital back-donation and there is little change in the various 

atomic charges. Overall, σ and π-withdrawing substituents have 

very little effect on the various donations and charges. This 

contrasts with the more flexible nitrogen ligands where the 

effects are more discernable.[5] 

  For σ-donating substituent B(OH)3
-, table 1 shows that the 

metrics change in that the C2–H bond length for complex 4 is 

now significantly shorter than for where the substituent is H in 

complex 1(1.151 and 1.166 Å respectively) indicating that the 

agostic interaction has been reduced in magnitude. This occurs 

10.1002/ejic.202000348

A
cc

ep
te

d 
M

an
us

cr
ip

t

European Journal of Inorganic Chemistry

This article is protected by copyright. All rights reserved.



FULL PAPER    

 

 

 

 

 

when the Pd···C2 separation at 2.204 Å in 4 has dereased from 

that found for 1 (2.219 Å) and the Pd···H separation has 

increased a little (1.826 Å compared to 1.768 Å). Also, the Ar/Cp 

torsion has flattened a little (149.8 and 146.4o in 4 and 1 

respectively) as has the Cl–Pd–N–C torsion (161.0 versus 

156.1o) whereas the other metrics are not significantly affected.  

The NBO data now shows there is a signifiant impact with 

B(OH)3
-  as the substituent, in that the total lone pair donation 

from nitrogen to the metal is reduced [E(2) values, 76.4 and 

100.1 kcal mol-1 for 4 and 1 respectively], the total agostic 

donation is much smaller [E(2) values, 14.5 and 55.6 kcal mol-1] 

and the π-syndetic donation has been completely switched off. 

There still remains a small amount of σ-syndetic donation that 

was present in 1 but with the much reduced agostic donation, 

the Pd to C–H* backdonation is significantly reduced [E(2) 

values, 5.7 and 9.7 kcal mol-1 for 4 and 1 respectively]. 

   Further inspection of the NBO data shows that there are 

components present consistent with the presence of a Pd–C σ-

bond (see table S5 of the ESI) so that the complex is now an η1-

complex of palladium[20] but essentially on the fairly weak side as 

the Pd–C bond distance of 2.204 Å is to the upper end of of the 

values for this type of bond for palladium.[20] For the more 

flexible ligands we have reported previously, the B(OH)3
- 

substituent did not achieve η1-complex formation.[5] Inspection of 

the atomic charges in table S4 of the ESI shows that the C2-

atomic charge at -0.1133 e for this type of complex is now much 

more negative than in 1 (-0.0809 e) which reflects the build-up of 

electron density at C2 resulting from the para-substituent 

donation. The H-atomic charge has become slightly less positive 

(0.0507 e in 4; 0.0566 e in 1) and the metal less positive with the 

formation of the η1-Pd–C bonding system (0.6004 e in 4; 0.6207 

e in 1). 

   Placing the strongly π-donating S- substituent in the para-

position in complex 5, now causes the C–H bond length to drop 

to 1.127 Å indicating even less agostic donation than in B(OH)3
- 

complex 4 and the Pd···C2 separation closes right down to 1.162 

Å  which is now well inside the range of values recorded for η1- 

palladium complexes.[20] It is now seen that the C2–H bond 

deformation has moved out to the value of 39.1o which is 

significantly larger in magnitude than for complexes 1-4 where 

the range is 30.4 to 33.1o. The other metrics are however not 

significantly different to B(OH)3
- complex 4.   

  Inspection of the NBO data for 5 shows that the E(2) value for 

the agostic donation has reduced to 11.0 kcal mol-1 compared to 

14.5 and 55.6 kcal mol-1 in 4 and 1 respectively. As found for 4, 

there is no π-syndetic donation observed for 5, the σ-syndetic 

donation is similar and along with the reduced agostic donation 

already mentioned, the Pd to C–H* backdonation is slightly less 

[E(2) values 3.1 and 5.7 kcal mol-1 for 5 and 4 respectively]. The  

C2-atomic charge in 5 is slightly less negatve in comparison to 4 

(-0.1077 and -0.1130 e) whereas with the S- substituent present, 

the Pd atomic charge is significantly less positive (0.5684 e in 5; 

0.6004 e in 4). The NBO analysis also shows the η1-Pd–C2 

bonding as in 4 but now there is significant charge density 

donated from S- through the aromatic ring π-orbitals to the Pd–

C2 bonding orbitals (see table S5 in the ESI). In this case, the 

C1–C2 and C2–C3 ring bond distances are only a little longer than 

the other ring C–C bond distances indicating that the C2-carbon 

does not attain much sp3 character. In the more flexible ligands 

with the S- substituent we have studied, some sp3 character has 

been observed[5] but it is not found to any extent in the present 

less-flexible benzo[h]quinoline ligand. 

 

2) Steric effects at the Carbon ortho to nitrogen in Ring A   

 In the present complexes, the benzo[h]quinoline ligand 

coordinates at a fairly flat angle as shown in complex 1 where 

the Ar/Cp torsion angle is 146.4o and the Cl–Pd–N–C torsion 

angle is 156.1o. As such, the C–H bond hydrogen lying ortho to 

the aromatic A-ring nitrogen atom lies slightly below the 

coodination plane (see figure 2) and quite close to the adjacent 

chloro ligand with a Cl···H distance of 2.590 Å. With this 

relatively close approach and the Cl atomic charge of –0.4634 e 

and H atomic charge of 0.0874 e, a weak hydrogen bond can be 

expected but probably is not strong enough to influence the 

coordination mode of the ligand. Inspection of the NBO data 

shows that the backbonding from Cl lone pairs to the C–H* 

orbital has a total E(2) value of 2.3 kcal mol-1 which is weak for 

this component of a hydrogen bond.     

  Given the closeness of the ortho-hydrogen in the nitrogen ring 

A to this Cl ligand, it was of interest to see if an increase in 

substituent size at this position could exert a steric effect and 

disrupt the agostic interaction at the other side of the molecule. 

In our previous work with the more flexible ligands it was found 

that a steric clash at this part of the molecule could affect both 

the agostic and syndetic components[5] and so in the present 

work the interest was to ascertain if these components could be 

detuned or manipulated even to the point of completely 

switching them off. 

    The substituent size was initially the progression shown in 

scheme 2 from methyl through to tert-butyl (complexes 6 – 8) 

and Ph (complex 9). Looking at the change in C2–H bond 

  

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

Scheme 2. Structures showing position of the steric substituents on ring A of 

the benzo[h]quinoline ligand. 

 

A

Pd H

Cl

R1

Cl

 
 
      (6)    R1 = Me   
      (7)    R1 = CHMe2 
      (8)    R1 = CMe3 
      (9)    R1 = Ph 
      (10)  R1 = CPh3 
      (11)  R1 = C(Ph-2,6-Me2)3  
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length as an indicator of the agostic interaction (the metrics for 

all the complexes are contained in table S2 of the ESI whereas 

graphical representations accompanied by data are used here 

for some metrics for ease of visualisation of the changes), 

methyl and isopropyl groups do not change significantly from the 

value of 1.166 Å and even with a tert-butyl group the value only 

drops to 1.156 Å but reaches 1.164 Å for a phenyl (Ph) group 

(see the graphical trend in figure 3). 

   In terms of the other metrics for these substituents, the Ar/Cp 

torsion angles reduce in magnitude as do the Cl–Pd–N–C 

torsion angles (see figure 4) which reach 121.7o for CMe3 

(156.1o for R = H) indicating that the aromatic ring containing the 

agostic interaction is able to face the coordination plane at 

steeper angles. Progressing through the substituent series, the 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3. Graphical presentation of the change in the agostic C–H bond length 

for complexes 1 and 6 – 11. 

 

N–C–C1–C2 torsion angles which are a measure of the planarity 

of the ligand, are still small, reflecting the inflexibility of the ligand 

and actually decrease (8.6o for H, 7.5o for Me and CHMe2, 4.3o 

for CMe3; Ph which has other metrics similar to CHMe2 is 6.8o). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Graphical presentation of the change in the agostic Cl–Pd–N–C and 

Ar/CP torsion angles for complexes 1 and 6 – 11. 

 

 In this situation, C2-H deformation does not change much (30.4o 

for H, 28.2o for Me, 28.1o for CHMe2 and 25.3o for CMe3, 28.0 for 

Ph) and the all-important Pd···C2 separations  also do not 

change significantly from methyl group onwards (2.219 Å for H; 

2.195 Å for Me, 2.192 Å for both CHMe2 and CMe3, 2.196 Å for 

CMe3). Graphical presentations of this trend along with those for 

the Pd···C1 and Pd···C3 separations are contained in figures 

included in table S2 of the ESI.   

 The lack of disruption of the agostic donation appears to be 

related to the ability of the ring-A nitrogen to coordinate at 

different angles to palladium as shown by the Pd–N–Cp angle 

(Cp is the carbon para-to the coordinating nitrogen atom)  and 

also the changing Pd–N bond length (figure 5) which essentially 

means that the Pd–N bond flexes and changes the way this 

section of the ligand positions. The NBO analysis shows that the 

agostic C2–H donation does not change very much as indicated 

earlier by the C2–H bond lengths and the syndetic and Pd to C–

Hσ* backbonding show a similar result (see table S3 in the ESI). 

Overall, although there are some indicative changes to the 

metrics caused by the substituents, there appears to be little 

steric effect generated to change the donations.  

 The question then arises as to where significant steric 

disruption might occur. In assessing the effect of a variety of 

other substituents it was found that CPh3 appeared to be a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graphical presentation of the change in the Pd–N–Cp angle shown 

in the diagram but represented by the plane-deviation angle on the graph (top) 

and the Pd–N bond lengths (bottom) for complexes 1 and 8 – 13. 

 

turning point. In this case, complex 10, the C2–H bond shortens 

to 1.141 Å (1.166 Å for H as substituent) when the Ar/Cp and 

Cl–Pd–N–C torsion angles change significantly (99.7 and102.3o 

respectively in 10 compared to 146.4 and 156.1o in 1 where H is 

the substituent) which essentially means the ligand has rotated 

about the Pd–N in response to the steric pressure (see figure 6)  

and pushed the C2-aromatic ring upwards. With this rotation, the  

Pd···C2 separation increases only to 2.225 Å from 2.219  in the 

more in-plane coordination mode in 1 where the substituent is H. 
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Figure 6. Capped-stick computed structure for complex (10). Separation 

distances shown are in Å. 

 

  In addition to this rotation, the Pd–N–Cp angle change to 

154.2o in 10 is smaller than that for the CMe3
 substituent in 8 

(164.4o) and the C2–H bond deformation torsion angle is the 

smallest yet at 23.7o.The NBO analysis now shows that although 

the agostic C2–H σ-bond electron density donation to palladium 

has come down to 37.3 kcal mol-1 in the complex (the range for 

complexes 1 and  6 to 9 is only 54.9 to 56.4 kcal mol-1) with the 

steeper angle that the ligand and thus the agostic C2–H bond C-

ring makes with the coordination plane, the syndetic donations 

do not change much in comparison to complexes 1 and 6 to 9.  

  In further steric manipulation, it was found that by adding 

methyl groups to the 2,6-positions of the phenyl rings of the 

CPh3 substituent, the ligand could be forced to rotate sufficiently 

about the Pd–N bond to  form an above-plane orientation 

consistant with an anagostic interaction (see figure 7). The C2–H 

bond length at 1.095 Å is now not significantly different to the 

other aromatic ring hydrogens and the Pd···H separation at   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Capped-stick computed structure for complex (11). The dashed 

black line shows the above-plane anagostic interaction and the dashed red 

line shows the new below-plane interaction. Aromatic ring C–H bond 

hydrogens apart from that at C2 have been removed for diagram clarity. 

Separation distances are in Å. 

 

2.380 Å is similar to those we have found for other anagostic 

benzo[h]quinoline complexes where the positioning of the C2–H 

hydrogen is similar.[8] That the complex is clearly under extreme 

steric pressure is indicated by the Pd–N–Cp angle which at 

150.9o (i.e the deviation is 29.1o) is the largest observed in the 

present work (for H-substituent complex 1 this angle was 171.3o 

or otherwise 8.7o and for CPh3 substituent complex 10,154.2o or 

otherwise 25.8o). The NBO analysis shows that there is a small 

component of C2–H σ-bond electron density donated to the 

palladium centre with the E(2) value of 4.9 kcal mol-1 being in the 

range of values we have previously suggested may be termed 

‘preagostic‘ rather than ‘anagostic‘.[21] However, there are no 

syndetic donations observed. It is worth noting here that even 

though the C2-aromatic ring is enclined towards the coordination 

plane at a fairly acute angle (Ar/CP angle 60o) the C2-carbon is 

separated from the Pd centre by a distance of 3.072 Å which is 

apparently too far for π-syndetic donation to develop. 

  Inspection of the structural features for complex 11 in figure 7 

also shows that there are now close approaches made to the Pd 

centre by carbons of a 2,6-dimethylphenyl ring that lie to the 

right and below the coordination plane. The shortest of these 

Pd···C separations is to the ipso-carbon at 2.296 Å but there are 

longer but still relatively close separations involving the two 

ortho-carbons on which the methyl groups reside, at 2.581 and 

2.627 Å. The other distinguishing feature is that this phenyl ring 

is pushed back by nearly 20o where there is no such push-back 

seen for the aromatic rings of the other 2,6-dimethylphenyl rings 

of this part of the ligand.  

 The NBO analysis for the complex shows that the major 

bonding component involving these close approaches is π-

donation from the aromatic ring Cipso–Cortho bond that lies 

uppermost towards the palladium centre, to the trans-related 

Pd–Cl* orbital [E(2) value, 34.3 kcal mol-1] and the cis-related 

Pd–Cl* orbital [E(2) value, 10.2 kcal mol-1]  giving what appears 

to be an η2-π-bonded aromatic ring.[20] Even though one ortho-

carbon lies closer to the metal centre (2.581 versus 2.627 Å), 

there is no π-bonding to the metal from the other aromatic ring 

Cipso–Cortho bond and this appears to be related to this bond 

lying more under the coordination plane than the other 

interacting Cipso–Cortho bond which is more in-line with the 

coordination plane. However, the lower Cipso–Cortho bond does 

make a σ-interaction with the metal centre but the E(2) value is 

only 5.4 kcal mol-1, again to the two Pd–Cl antibonding orbitals. 

 

3) Size effect of an ortho electron donating substituent 

  As a departure from adding the substituent only to the position 

para-to the agostic C2–H bond, we have also placed electron 

donating substituents in the ortho-position in an attempt to not 

only reinforce the electron donation but also to assess any steric 

effects for the present benzo[h]quinoline complexes that can 

arise at this position on aromatic rings in general.[18] In our 

earlier work with the more flexible ligands, S- substituents placed 

at these two positions did not give rise to an energy minimised 

structure[5] but for the present benzo[h]quinoline ligand energy 

minimisation did occur to give complex 12 (figure 8). 

 

 

 

10.1002/ejic.202000348

A
cc

ep
te

d 
M

an
us

cr
ip

t

European Journal of Inorganic Chemistry

This article is protected by copyright. All rights reserved.



FULL PAPER    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  

Figure 8. Capped-stick computed structure for complex (12). Separation 

distances are in Å. 

 

 At this stage, for convenience when there are 3 substituents, we 

introduce a system for ease of identification in the text that is the 

same as shown in the schemes. Thus R1 on the A-ring is 

identified by R1; and the ortho and para-substituents on ring C 

following by R2, R3 so that complex 12 in figure 8 is represented 

by H; S-, S-. The major feature seen in 12 is that the C2–H bond 

length at 1.106 Å is now only marginally longer than the other 

C–H bond lengths in the ligand (range 1.100 to 1.103 Å) 

indicating little lengthening. However, the Pd···C2 separation 

(2.166 Å)  is similar to that found for H; H, S- complex 5 (2.162 

Å) and whereas the C2–H bond deformations are similar in both 

complexes (39.9 and 39.1o for 12 and 5 respectively), the Pd···H 

separation at 2.284 Å in 12 is now significantly longer than in 5 

(1.989 Å). 

  The reason for these changes can be seen as an apparent 

steric effect at C3 in ring C where the S atom is pushed back 

from the ring plane by 11.4o due to a clash with the adjacent 

chloro ligand (a space-filled model for these two atoms is shown 

in figure 9). In addition, the C2-carbon itself is pushed back out of 

the plane of the C-ring by 16.3o resulting in severe distortion of 

the ring and the chloro ligand is pushed upwards out of the 

coordination plane by 8.9o. There are also significant changes to 

the other metrics in 12 (see the values in table S2 of the ESI)  

 

 

 

 

 

 

 

 

 

 

 

 

                                               

Figure 9. Capped-stick computed structure for complex (12)  showing space 

filled Cl and ortho-S atoms. 

 

particularly the Pd···C1 separation has closed up to 2.284 Å (for 

complexes 1 to 5 these separations range from 2.921 to 2.939 

Å), the Pd···C3 separation has increased to 3.309 Å (3.239 to 

3.290 Å in 1 to 5) and as a result, the ring has moved down the 

coordination plane. (see the representations for 12 in figure S2 

of the ESI). 

  The NBO analysis for H; S-, S- complex 12 shows that the 

agostic donation is minimal at 4.8 kcal mol-1, there is no π- 

syndetic component and the Pd to C–H* backdonation is 

virtually zero. However, as for H; H, S- complex 5 where η1-Pd–

C bonding is present, complex 12 shows the presence of Pd–C 

bonding components and backbonding into the aromatic ring, 

particularly from the C3–S- (i.e. ortho-S- substituent) bond. 

Interestingly, the C1–C2 and C2–C3 bond distances are quite long 

at 1.465 and 1.477 Å which would suggest significant sp3 nature 

when the C–C bonds for the other two aromatic rings range from 

1.387 to 1.429 Å and are longer than for the equivalent C–C 

bonds in complex 5 with only the single S- substituent in the 

para-position. For S- substituents at both ortho and para-

positions in 12, the magnitude of the C2-atomic charge now 

decreases to -0.0790 e in comparison to para-S- substituted 5 (-

0.1077 e), the H-atomic charge becomes less positive (0.0335 

versus 0.0587 e) and the Pd atomic charge also becomes less 

positive (0.5401 versus 0.5684 e). 

  Given the result for  complex 12 where size of the ortho-

substituent has an effect in terms of clashing with the adjacent 

chloro ligand, it was of interest to ascertain if electron donation 

could be generated at both the ortho and para-positions but with 

a concommitant closing up of the Pd···C2 separation. To achieve 

this, we speculated that hydrogen bonding from an ortho-

substituent to the adjacent chloro ligand could be beneficial and 

so placed an NH2 substituent (R value, -0.74; F value 0.08[17]) at 

the ring-C C3 position. The energy minimised structure for this H; 

NH2, S- complex, 13, is shown in figure 10. 

  Looking at the metrics for 13, it is seen that an ortho-NH2 group 

does achieve a shorter Pd···C2 separation with the distance now 

being 2.141 Å which is shorter than that found for H; H, S- 

complex 5 or H; S-, S- complex 12 where the separations were 

2.162 and 2.166 Å respectively. The closing up in H; NH2, S-  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Capped-stick computed structure for complex (13)  showing space 

filled Cl and ortho-S atoms with separation distances in Å. 
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complex 13 appears then to be related to  development of weak 

N–H···Cl hydrogen bonding (figures 10 and 11) as was 

envisaged, where the H···Cl separation is 2.086 Å. This is 

accompanied by a very large C2–H bond distortion where the 

torsion angle is 52o. In comparison to H; S-, S- complex 12, the 

C2–H bond is slightly lengthened in 13 to 1.111 Å (1.106 Å in 12) 

and this is reflected in the NBO analysis where the agostic 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Capped-stick structure of (13) showing the space-filled Cl atom and 

the N and H atoms of the ortho-NH2 substituent.   

 

C2–H bond donation shows a slight increase [E(2) values, 6.4 

and 4.8 kcal mol-1 for 13 and 12 respectively] and there is again 

no π-syndetic donation present and as seen for the other 

complexes. As for complex 12, there is evidence for Pd–C bond 

formation in the NBO data for 13  indicating η1-Pd–C2 bonding 

(the Pd···C3 separation at 3.256 Å is too large to indicate η2-Pd 

bonding) and donation components back into the aromatic ring 

particularly from the ortho-nitrogen substituent. In addition, the 

C1–C2 and C2–C3 bond distances are longer than the other ring 

C–C bond distances and similar to those found for complex 12 

which again suggests significant sp3 character. For the atomic 

charges, the C2-atomic charge is a little more negative [q(C) 

values, -0.1001 and -0.079 e for 13 and 12 respectively], the H-

atomic charge is more positive [q(H) values, 0.0464 and 0.0335 

e] and the  Pd-atomic charges are not much different [q(Pd) 

values, 0.5441 and 0.5401 e]. 

 

4) Steric effects at the Carbon ortho to nitrogen and 

electronic manipulation of the agostic interaction. 

We have also looked at some exemplars (complexes 14, 15 and 

16 in scheme 3) where the  size of the substituent at the carbon 

lying ortho to the coordinating nitrogen atom (A-ring α-carbon) is 

increased, in an attempt to gauge any effect on the electronic 

transformation of the agostic interaction into a η1-Pd–C2 bond. 

For this exercise, we have in the first instance compared H and 

Me groups at the α-carbon and used the strongly π-donating S- 

substituent as the electron donor at the position para to the 

agostic carbon which was found to produce the η1-Pd–C2 bond 

transformation.  

  For perspective, as mentioned in section 1, placing an S- 

substituent on complex 1 where the α-carbon is hydrogen to give 

H; H, S- complex  5, results in a shortening of the agostic C–H 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Structures showing the electronic substituents.               

 

bond when the  η1-Pd–C2 bond is generated as indicated by the 

shorter Pd–C2 bond length (2.162 Å in 5; 2.219 Å in 1). There 

was also a larger C–H bond deformation seen (39.1 and 30.4o 

respectively), a flattening of the Cl–Pd–N–C torsion angle from 

156.1 o in 1 to 164.0o in 5 and the agostic donation E(2) energy 

drops from 55.6 kcal mol-1 in 1 to only 11.0 kcal mol-1 in 5.  

  For further perspective, as mentioned in section 2, the effect of 

adding a methyl group to the α-carbon of H; H, H complex 1 to 

give Me; H, H complex 6 had little effect on the on the agostic 

donation (the C-H bond length only drops from 1.166 to 1.163 Å 

and the agostic donation change is neglible) even though there 

are some quite substantial changes to the way the ligand 

positions with respect to the coordination plane (the Pd–N–Cp 

deformation angle changes from 171.3 to 164.4o; the Cl–Pd–N–

C torsion from 156.1 to 134.8o and the Ar/CP torsion angle 

changes from 146.4 to 129.3o but there is little change to the C–

H deformation angle at 30.4 and 28.2o).  

  Looking now at combining the para-S- ring C substituent of H; 

H, S- complex 5 and the α-carbon methyl group ring A 

substituent of Me; H, H complex 6 to give Me; H, S- complex 14, 

it is found that the η1-Pd–C2 bond length reduces to 2.153 Å 

from 2.195 Å in Me; H, H complex 6  (this bond length was 

2.162 Å in H; H, S- complex 5) even though there is not much 

change in the various torsion angles in the two structures. It is 

then seen, that the agostic donation for 14 only reduces from 

54.9 to 23.7 kcal mol-1 whereas when the α-carbon substituent 

was hydrogen in H; H, S- complex 5 , the analogous reduction 

was greater at 55.6 to 11.0 kcal mol-1. This result thus shows 

that adding a methyl group strengthens the η1-Pd–C2  bond (i.e. 

the observed shorter Pd–C2  bond length for 14)  and decreases 

the loss of agostic donation. 

   In a further examination of a possible interplay of steric and 

electronic effects, it was decided to change the size of the α-

carbon substituent of the ligand A-ring just as was done for Me; 

H, S-  complex 14  above, but to now include ortho-S- or NH2 

substituents as was done in complexes 12 and 13 in section 3. 

However, instead of using an α-carbon Me group as above, a 

A C

Pd H

Cl

R1

R3

R2

Cl

 
 
 (14)  R1 = Me, R2 = H, R3 = S- 
 (15)  R1 = Ph, R2, R3 = S- 

 (16)  R1 = Ph, R2 = NH2, R3 = S- 
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phenyl substituent was used this time (section 2 showed that Ph 

and Me groups produced similar steric effects) giving Ph; S-, S- 

complex 15 and Ph; NH2, S- complex 16.   

  For the exercise of comparing the structures of 15 and 16 with 

those of H; S-, S- complex 12  and H; NH2, S- complex 13  we 

have again employed graphical representations and have also 

included the  parent complexes 1 and 9 where the  α-carbon 

substituent on ring A is either H or Ph, so that multi-component 

comparisons can be carried out. Figure 12 then shows how the 

Pd···C2 separation is significantly shorter for Ph; H, H complex 9 

than for H; H, H complex 1 and then both become much shorter  

in the S-,S- η1-Pd complexes where the ortho-S- group exerts a 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Graphical representation of the change in Pd···C2 separations. Blue 

data, A-ring α-carbon substituent H. Red data, A-ring α-carbon substituent Ph. 

Complex number in parentheses. 

 

steric effect (12 and 15) and then decreases again when the 

ortho-NH2 group pulls the aromatic ring inwards with N–H···Cl 

hydrogen bonding. 

   Turning  to how the ligand positions itself as the Pd···C2 

separations get smaller, it is seen in figure 13 that the Cl–Pd–N–

C torsion angle which represents the rotation around the N–Pd 

bond and essentially how the ligand postions above the 

coordination plane, the angle is much smaller in agostic phenyl 

complex 9 than agostic H complex 1 indicating the ligand rotates 

upwards. The angles then do not increase much in the η1-Pd S-, 

S- complexes 12 and 15 but then increase more with the NH2, S- 

complexes 13 and 16 with the slight flattening of the angle 

indicating the ligand rotates downwards a little.  

  The Pd–N–Cp deformation angles (figure 13; again, the actual 

measured angle which represents the way the ligand is pushed 

upwards at this point) decrease in going from agostic complex 1 

to 9  and then both decrease significantly in the η1-Pd S-,S- 

complexes 12 and 15 as the Pd···C2 separations decrease 

(figure 12 ) and then increase in the η1-Pd NH2, S- complexes 13 

and 16 as the hydrogen bonding pulls the other end of the ligand 

(i.e the C-ring) back inwards. At the same time as these features 

occur, the Pd–N bond length (figure 13) increases on going from 

H; H, H complex 1 to Ph; H, H complex 9. Then, on proceding to 

the S-,S- substituents, for the A-ring Ph complex 15 the bond 

length increases whereas for the  A-ring H complex 12 there is a 

decrease. With the change to NH2 and S-, the Pd–N bond 

lengths then become smaller. Over the 3 different features then 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

 

 

 

 

 

 

 

 

 

 

Figure 13. Graphical representation of the change in Cl–Pd–N–C and the 

measured Pd–N–Cp torsion angles and the Pd–N bond length. Blue data, A-

ring α-carbon substituent H. Red data, A-ring α-carbon substituent Ph. 

Complex number in in parentheses . 

 

there is a subtle rearrangement that accommodates coordination 

of the ligand. 

  The final features being examined here are the C–H bond 

length and deformation from the aromatic ring plane. Figure 14 

shows that both of these do not vary much when the A-ring α-

carbon substituents are H or Ph in the agostic complexes 1 and  
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Figure 14. Graphical representation of the change in Pd–N–C–C1 and Pd–N–

Cp torsion angles and the Pd–N bond length. Blue data, A-ring α-carbon 

substituent H. Red data, A-ring α-carbon substituent Ph. Complex number in 

in parentheses. 

 

9 but when these complexes shift to being η1 with the C-ring S-, 

S- substituents  the bond lengths which are an indication of the 

amount of agostic donation, decrease to the point of a switch-off 

of this interaction. Pulling the ligand back in with the NH2 

substituent increases this donation only marginally. At the same 

time, the C–H bond deformations increase when the η1-Pd–C 

bonds are formed in 12 and 15, reaching the higest value of all 

at 52o in H; NH2, S- complex 13 containing the ortho-NH2 and is 

not much lower when the A-ring α-carbon substituent is Ph 

(47.3o) in 16. The Pd–C2–H angles of the complexes with the 

ortho-S or NH2 substituents range from 82.0o to 87.2o (not 

shown in the figures) and are typical of η1-Pd–C complexes in 

general20] The complexes also exhibit C-ring C1–C2 and C2–C3 

bond lengths that suggest significant sp3 character. This is also 

apparent for the bonds attached to the C-ring para-carbon atom 

whereas the remaining C-ring bonds are more typical of the 

other aromatic rings. The NBO analysis again shows 

delocalisation of the π-electron density away from the para-S 

atom through the ring to C2 and on into the orbitals involving the 

η1-Pd–C bonding components indicating that the C-ring is 

showing significantly reduced aromaticity.  

  The movement of electron density towards the Pd centre would 

then suggest that positive charge on the metal should become 

less positive when there are 2 S- substituents present and this is 

seen where q(Pd) for H; S-, S- complex 12 is lower at 0.5041 e 

and higher at 0.5684 e in H; H, S- complex 5. Figure 15 below 

shows a summary of how the Pd atomic charges perform for  the 

various electron donating substituents (to the right of the dashed 

red line) and also includes the trend for the electron withdrawing 

substituents (left of the dashed red line). Keeping in mind again 

that the various electronic substituents do not have the same 

electron donating or withdrawal abilities in terms of F or R 

values, the donation data still shows a decreasing trend in the 

positive q(Pd) values. It is worth noting here that with the 

addition of the η1-Pd–C bonding system to PdCl2, ‘Pd3+‘ could be 

invoked but the reducing positive charge clearly points away 

from this so that a delocalised Pd2+ anion of the form [PdCl2(σ-

bond carbon)]- may be present. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Graphical presentation of the change in Pd atomic charges [q(Pd)] 

for complexes 1 – 5, 12 and 13. The dashed red line shows the change-over 

from electron withdrawal to electron donation. 

 
 
Conclusion 
In summary, we have looked at how agostic interactions and the 

associated π-syndetic donations perform under the conditions of 

electronic and steric influences in the relatively inflexible 

benzo[h]quinoline ligand and then examined how η1-Pd–C bond 

formation can be induced and then influenced. For the first of 

these manipulations, it is found that the σ or π-electron 

withdrawing substituents used at the para-position of the ligand 

C-ring do not effect the agostic or π-syndetic donations to any 

extent, whereas the σ or π-electron withdonating substituents 

cause a dramatic change to η1-Pd–C bond formation where 

there is still some agostic donation present but no longer any π-

syndetic donation. 

 Examination of the influence of steric effects generated at the α-

carbon of ring A, it is seen that moving through the series H, Me, 

Ph, CHMe2, CMe3 causes the ligand to rotate up over the 

coordination plane somewhat but the agostic donations do not 

change that much whereas with the ligand rotation upwards, the 

angle the ligand C-ring faces the metal coordination plane 

decreases significantly (146.4 to119.5o for the series) but the π-

syndetic donations do not increase by much [E(2) values range 

from 12.8 to 15.0 kcal mol-1 for the series]. A CPh3 substituent 

appears to be a turning point for steric influence with the agostic 

donation droping significantly but not the π-syndetic donation 
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and C(Ph-2,6-Me2)3 turns the donations off giving an anagostic 

complex.   

  Introducing an ortho-S- substituent to the C-ring which already 

contains a para-S- substituent, pushes the ring away from the 

metal centre by a steric clash with the adjacent chloro ligand and 

hardly influences the η1-Pd–C bond distance but the reduced 

agostic donation found when only the para-S- substituent is 

present, becomes mostly absent. Replacing the ortho-S- 

substituent with the π-donating NH2 substituent, draws the C-

ring back in by weak N–H hydrogen bonding with the adjacent 

chloro ligand and this shortens the η1-Pd–C bond distance 

significantly but the very small agostic donation found when the 

substituent was S- hardly changes. 

  Throughout the changes to the various substituents of all the 

complexes reported, it is clear that in the absence of much 

ligand flexibility, the benzo[h]quinoline ligand is under some 

stress to coordinate at all. However, with various changes to 

such features as the Pd–C bond distance, distortions in the 

manner the N coordinates to palladium (i.e. the Pd–N–Cp 

angle),  rotation about the Pd–N bond and the severe distortion 

of the C2–H bond out of the C-ring plane, favourable coulombic 

interactions and even the formation of η1-Pd–C bonding,  it is 

clear that the ligand is able to adjust to the various pressures. 

The coordination of the nitrogen atom to Pd is the major 

influencing factor however.  

  Overall, this work shows that agostic and π-syndetic donations 

can still be present  for a ligand such as benzo[h]quinoline  but 

electronic influences can easily convert the system to η1-Pd–C 

bonding. These results are important as in terms of the CMD/ 

AMLA mechanism for Pd-C bond formation, it shows that 

substituent effects can play a significant role. With the ever 

increasing sophistication of ligand directed aromatic ring C-H 

bond activations being seen at present,  electronic and steric 

effects could well determine whether C-H bond activation occurs 

at all.  

 

Experimental Section 
 
Computational details. Density functional theory (DFT) based geometry 
optimizations and vibrational calculations for the complexes were 
performed using the dispersion corrected PBE-D3[9] functional within the 
Gaussian09 (G09)[22] software. A triple-zeta high quality basis set (aug-cc-
pVTZ-PP)[23] was employed for Pd together with a scalar relativistic energy 
consistent Stuttgart pseudopotentials for Pd; cc-pVTZ[24] for the attached 
ancillary ligands (Cl atoms), agostic hydrogen and nitrogen (attached to 
the metals) and double-zeta quality basis set (cc-pVDZ)[24] was used for 
the remainder of atoms. No imaginary frequencies were found in the 
vibrational analysis. The NBO calculations were performed with the 
NBO6.0 package.[25] Comparisons of the present second order 
perturbation energies [E(2) values] with those published elsewhere are 
made within the same basis set and functional and in relation to other 
work[6,15] are not expected to involve significant basis set superposition 
error (BSSE).[14]  For the QTAIM analyses, the input files (.wfx) were 
obtained from G09[22] and the QTAIM calculations were performed with the 
AIMALL software.[26]  
. 
Supporting Information (see footnote on the first page of this article). 
For complexes 1 to 16: Structures showing the A and C-ring substituents; 
Mercury diagrams; Capped-stick structural diagrams showing the close 
approach of the aromatic ring in relation to the metal coordination plane; 
Cartesian coordinates; Selected Structural data; NBO Analysis E(2) data; 
Selected Atomic Charge (q) data; Full data table, second order 

perturbation energy E(2) values (kcal mol-1) for donor-acceptor NBO 
interactions.    
 
 Keywords: C−H bond activation • agostic interactions • syndetic donation  
•  η1-Pd–C bonding  •  cyclometallation reactions  
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DFT calculations show that agostic 

complexes of the form [PdCl2(L)] (L = 

benzo[h]quinoline and substituted 

benzo[h]quinolines) can be converted 

to η1-complexes by electron-donating 

substituents. Various combinations of 

steric and electronic effects are able 

to influence agostic and syndetic 

donations and the magnitude of the 

η1-Pd–C bonding system.   

  

 

* η1-Pd–C complexes 

 

 

 

 

10.1002/ejic.202000348

A
cc

ep
te

d 
M

an
us

cr
ip

t

European Journal of Inorganic Chemistry

This article is protected by copyright. All rights reserved.

http://nbo6.chem.wisc.edu/
http://aim.tkgristmill.com/

