EPJ manuscript No.
(will be inserted by the editor)

Analysis methods of safe Coulomb-excitation experiments with
radioactive ion beams using the GOSIA code

M. Zieliriska'®, L. P. Gaffney?P¢, K. Wrzosek-Lipska??, E. Clément?, T. Grahn®%, N. Kesteloot!:”, M. Klintefjord®,
P. Napiorkowski®, J. Pakarinen®%, P. Van Duppen?, and N. Warr®

CEA Saclay, IRFU/SPhN, F-91191 Gif-sur-Yvette, France

GANIL, BP-5027, F-14076 Caen Cedex, France

© W N O O W N

Received: date / Revised version: date

KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
Heavy Ion Laboratory, University of Warsaw, PL-00-681 Warsaw, Poland

University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014, University of Jyvaskyla, Finland
Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki, Finland

Belgian Nuclear Research Centre, SCK.CEN, 2400 Mol, Belgium

Department of Physics, University of Oslo, PO Box 1048 Blindern, 0316 Oslo, Norway

Institut fiir Kernphysik, Technische Universitat Darmstadt, D-64289 Darmstadt, Germany

Abstract. With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies
becomes an important experimental tool in nuclear structure physics. The usefulness of the technique to
extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960’s
with stable beam and target combinations. New challenges present themselves when studying exotic nuclei
with this technique, including dealing with low statistics or number of data points, absolute and relative
normalisation of the measured cross sections and a lack of complimentary experimental data, such as
excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents
analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit

code, GOSIA.

PACS. 25.70.De Coulomb excitation — 21.10.Ky Electromagnetic moments — 29.38.GGj Reaccelerated

radioactive beams — 29.85.Fj Data analysis

1 Introduction

Recent advances in radioactive ion beam (RIB) technol-
ogy, in particular the increasing range of species and post-
acceleration energies available from ISOL facilities such as
REX-ISOLDE at CERN, SPIRAL at GANIL and ISAC
at TRIUMF, has led to a resurgence of the use of nuclear
reactions to study the structure of nuclei [1, 2]. Specif-
ically, Coulomb excitation at safe energies with RIBs is
now giving us a wide range of information on the electro-
magnetic properties of exotic nuclei, leading to knowledge
of the nuclear shape or, more precisely, nuclear charge dis-
tribution.

“Safe” Coulomb excitation is defined as the process of
inelastic scattering of nuclei via the electromagnetic force
such that the energy in the centre-of-mass frame ensures
negligible contribution to the reaction process from the
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strong force. This is fulfilled by maintaining a minimum
distance of 5 fm between the nuclear surfaces, what is of-
ten called Cline’s “safe energy” criterion [3]. Exploiting
the well-understood electromagnetic interaction allows a
model-independent interpretation of the observed data.
With the use of light-ions as probes, the excitation modes
are often limited to single electric-multipole transitions
from the ground state. This data can be interpreted in
terms of a semi-classical description using first-order per-
turbation theory. However, the use of high-Z probes has
meant that multiple-step excitation is now common, and
a large number of states can be accessed from ground or
isomeric states. The technique of data analysis based on
coupled-channel calculations with the GOSIA code [4] have
allowed for the determination of large, and in some cases
complete, sets of low-lying E2 and E3 matrix elements
in multi-step Coulomb-excitation experiments, including
diagonal matrix elements related to the static electromag-
netic moments. Due to this completeness of measurement,
low-energy Coulomb excitation with heavy ions (or high-Z
targets) is an extremely sensitive probe of collective nu-
clear structure. Used in conjunction with complementary
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spectroscopic data, such as excited-state lifetimes, y-ray
and conversion electron branching ratios, multipole mix-
ing ratios, electric and magnetic moments, mean-square
charge radii etc., a pure experimental understanding of
low-lying collective modes and shapes can be achieved.

When studying exotic nuclei with this technique how-
ever, new challenges emerge. These include dealing with
low statistics and a lack of complimentary experimental
data such as excited-state lifetimes and branching ratios.
For many short-lived nuclei, especially on the neutron-rich
side, precise information on the lifetimes of excited states
is not known and thus another solution for the normali-
sation of the measured Coulomb-excitation cross sections
needs to be applied. In general two options are possible:
either normalisation to the excitation of target nuclei with
known electromagnetic matrix elements or to the number
of elastically scattered beam particles.

This paper attempts to address some of the common
problems and solutions encountered with the extraction
of electromagnetic matrix elements from RIB Coulomb-
excitation experiments in general, with examples taken
from studies performed at REX-ISOLDE and GANIL.
Here, the Gosia code (see Section 2) is most commonly
used for this purpose. Firstly though, the observables from
such experiments must be clearly defined; this is done in
Section 3. Methods utilising the GOSIA code for the analy-
sis are presented in Section 4 and a summary and outlook
is given in Section 5.

2 The Go0Ss1A code

Experiments performed in the 1950’s utilising light-ion
beams as a means of exciting target nuclei were relatively
simple to interpret using first- and second-order perturba-
tion theory. Later, heavy-ion beam experiments populated
many excited statesvia multiple-step Coulomb excitation.
Early versions of computer codes designed to handle the
analysis of these data, most notably that of Winther and
de Boer [5], employed the semi-classical theory of multiple
Coulomb excitation developed by Alder and Winther [6].
This code allowed quantitative calculations of excitation
amplitudes for the first time, using a set of reduced elec-
tromagnetic matrix elements as an input. With this phi-
losophy, the GOsIA code [4] was designed in 1980 to achieve
an extraction of the electromagnetic matrix elements from
a set of Coulomb-excitation data by performing a fitting
routine using the matrix elements as parameters. Both ex-
citation and the consequent y-ray de-excitation, governed
by the very same set of matrix elements, are calculated
within the code, allowing for a direct comparison to ex-
perimental data [4].

3 Observables in Coulomb-excitation
experiments

The direct observables in Coulomb-excitation experiments
are usually the y-ray intensities corresponding to the scat-
tering of the projectile particle defined by the observation
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Fig. 1. Coulomb-excitation probabilities (dashed lines) and
cross sections (solid lines; product of the Rutherford cross sec-
tion and Coulomb excitation probability) for populating the 2,
state in '®*Hg incident on a '*°Sn at 2.8 MeV /u under the dif-
ferent assumptions for the spectroscopic quadrupole moment,
Qs. The oblate (black) assumption is that of Qs = 1.15 eb,
extracted from the measured B(E2;2f — 07) [7, 8] and the
rigid-rotor model (K = 0), while the prolate assumption (red)
has the same magnitude, but a negative sign for Qs. The spher-
ical assumption (Qs=0) is shown in blue.

of at least one of the collision partners in a given angu-
lar and energy range. In contrast, the deduced matrix el-
ements are not direct observables and usually occur as
strongly correlated parameters in a fit of the v-ray inten-
sity data. In order to relate these gamma-ray intensities
to the excitation cross sections of the populated states,
which can be calculated for a given set of scattering and
nuclear parameters like the example shown in Figure 1,
normalisation factors need to be introduced as described
in Section 4.

Data sets introduced to GOSIA are most often described
in terms of “experiments”. These may be defined by dif-
ferent combinations of beam and target, beam energy and
scattering-angle range. With the use of segmented particle
detectors, such as the Double-Sided Silicon Strip Detectors
(DSSSD) or Parallel Plate Avalanche Counters (PPAC),
subdivision of the data can be made in terms of scatter-
ing angle, gaining sensitivity to second-order effects such
as the spectroscopic quadrupole moment, (). This can be
further increased by the use of different targets to disen-
tangle contributions from single- and multiple-step exci-
tation processes.

It should be noted that in contrast to other spectro-
scopic methods Coulomb excitation is not only sensitive
to magnitudes of the electromagnetic matrix elements, but
also to their relative signs that directly influence excita-
tion probabilities. As an example one can consider a state
A that can be populated in one-step E2 excitation from
the ground state or in a two-step F2 excitation process
via an intermediate state B. For each of the two possi-
ble excitation paths the contribution to the total exci-
tation amplitude is proportional to the relevant matrix
elements: (A||E2||g.s.) for the direct excitation and the
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Fig. 2. Relative population of excited states in *°Ru Coulomb
excited on 2°®Pb at 430 MeV beam energy, calculated for two
different signs of (2 ||F2||27): negative (solid lines) and posi-
tive (dotted lines), while all other matrix elements remain the
same. The 07 ground state is not shown, but dominates the
remainder of the population at all angles.

product of (A||E2||B) and (B]||E2||g.s.) for the two-step
process. The excitation probability is proportional to the
square of the sum of excitation amplitudes and therefore
it contains not only quadratic terms ((A||E2|g.s.)?, re-
lated to B(E2;A — g.s.), and (A| E2||B)%(B||E2||g.s.)?)
but also interference terms between possible excitation
paths, such as (A||E2|g.s.)(A| E2||B){B|E2|g.s.). The
signs of these interference terms depend on the relative
signs of matrix elements. This is illustrated by the exam-
ple of 1%9Ru on 2°8Pb presented in Fig. 2 where for large
scattering angles the population of the 2; state depends
very strongly on the sign of (2] ||E2]|25) with respect to
these of (2 ||E2(|07) and (25 || £2||0]). This effect can be
strong enough to be visible even in low-statistics RIB mea-
surements and thus for several exotic nuclei complete sets
of matrix elements including their relative signs have been
determined [8-11].

4 Coulomb-excitation data analysis
4.1 Normalisation of measured cross sections

In order to extract nuclear structure parameters (matrix
elements) from Coulomb-excitation data, the measured ~-
ray intensities have to be converted to absolute excitation
cross sections. Possible complications arise from the fact
that the efficiency of the particle detection set-up, dead-
time, beam intensity etc. are not always known with good
precision. To deal with this, GOSIA uses normalisation con-
stants, which relate the calculated and experimental in-
tensities. These can be fitted or given by the user, as de-
scribed in the following sections. In the most general form,
the normalisation constant used in GOSIA is a product of
the Rutherford cross section, the time integrated beam
current, the absolute efficiency of particle and v-ray de-
tection and the particle solid angle factor. If the statistics

are not sufficient to make use of particle-y-ray angular cor-
relations (which is usually the case for radioactive beam
studies), y-ray spectra from individual detectors may be
summed together, reducing the number of necessary nor-
malisation constants to one per experiment. In such cases,
the relative y-ray detection efficiency as a function of en-
ergy has to be provided for each detector.

The normalisation constant, C', for a given experiment
is fitted to all measured ~-ray intensities I¢ observed in
an experiment by minimising the expression:

So(Cr; - 1) /o

(2

(1)

where IY denotes the calculated vy-ray intensity for the -
th observed transition integrated over beam energy and
scattering angle, I¢ its measured intensity and o; its ex-
perimental uncertainty. The normalisation constants are
defined as the product of Rutherford cross section, the
absolute efficiency of particle detection and the solid an-
gle covered by the particle detector, and may be calculated
from a reliable measurement of the number of elastically
scattered particles. Moreover, it is possible to introduce
relative normalisation constants C), that link data sets re-
sulting from the subdivision of data collected during one
physical run into m slices of scattering angle. If for each of
m coupled experiments a relative normalisation constant
C,, is defined in GosIA, during the minimisation of the y?
function the following expression is minimised and only
one global normalisation constant Cyiohal is fitted:

ZZ(CglobaICmIf —If)*Jo} (2)

It should be noted that the C,, factors can be arbitrarily
rescaled, as the scaling factor can be always incorporated
in Cglobal- The normalisation constants are fitted in GOSIA
at the same time as the matrix elements, during the min-
imisation of the y? function described in Section 4.2.

The products Cp,I{ that are compared to experimen-
tal y-ray intensities depend obviously both on the matrix
elements and on the normalisation constants. Especially
in the case of one-step excitation, one can easily com-
pensate a modification of the relevant matrix elements
by adjusting the normalisation constant. Therefore, in or-
der to obtain a reliable set of matrix elements, additional
constraints on either the matrix elements or the normal-
isation constants have to be provided. The possible tech-
niques, depending on the specifics of the experiment, are
presented in the following sections.

4.1.1 Elastic scattering

Historically, the simplest and most direct method of nor-
malising Coulomb-excitation cross sections is to use the
measured elastic-scattering (Rutherford) cross section. This
requires precise knowledge of the scattering angular range
and well understood dead time if one is to obtain the in-
tegrated beam current. Since the Rutherford cross section
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is very sensitive to scattering angle at low centre-of-mass
angles, uncertainties related to geometry are minimised
for backscattering as demonstrated in Ref. [12, 13]. For
inverse kinematics reactions, the backscattered projectiles
are forward focused in the laboratory frame of reference
and have low energy. The corresponding recoils however,
can be utilised where clean kinematic separation of these
events can be made. In RIB experiments, where beam in-
tensities are low, the highest excitation probability is de-
sired and as such, high-Z targets are usually used. Un-
certainties are introduced because of events from different
scattering angles that can be misinterpreted. This is par-
ticularly true for many experiments utilising silicon strip
detectors at forward angles, such as those at GANIL [9]
and with Miniball at REX-ISOLDE [14].

In cases where absolute Rutherford cross sections are
not reliable (for example when downscaling is applied to
single particle events and thus the dead time is differ-
ent as compared to particle-gamma events), particle sin-
gles events may still be used to calculate relative normal-
isation constants, C),. Commonly, this applies to experi-
ments where data is taken in the same run but is divided
into different angular cuts. For this, one needs knowledge
of the total number of scattered particles in each angular
range, N,,, i.e. without a coincidence condition on ~ rays
or a second particle. The two are related by the following
expression:

where (Af,,, A¢,,) represents the solid angle subtended in
the experiment. Again, C,,, may be arbitrarily rescaled due
to the remaining normalisation fitted by GOsIA, Cgiobal,
but the ratios of each coupled C,, remains the same.

4.1.2 Excited-state lifetimes or B(E2) values

When multiple states are excited, with single- or multiple-
step Coulomb excitation, one or more B(E2) values con-
necting the ground-state and an excited state can be used
to fit the normalisation constants for each experiment in
GosIA, C,,. For this, one must also observe the corre-
sponding population of such a state with good precision,
which means that the «-ray intensity and efficiency, along
with the branching ratio, must be known to good preci-
sion. This is usually the simplest and preferred method in
these cases as everything is fitted by the code and there
are no additional calculations required by the user.

In even-even nuclei, the normalisation is usually ful-
filled by an independent measurement of the 2{ -state life-
time, 7(2]). Two examples of this technique with RIBs,
are the cases of ™70Kr [9] and 1827188Hg [8, 10], where
multiple lifetimes of yrast states were known in the liter-
ature and even re-measured [7, 15, 16] to provide the re-
quired precision. For odd-mass or odd-odd systems, multi-
pole mixing ratios also become important since the
strongest-observed v ray is often a mixed E2/M1 tran-
sition (see also Section 4.4.3). Furthermore, low-energy
transitions in heavy nuclei can also be strongly converted,
meaning that the strongest excitation path may not result

an intense ~-ray decay. In these cases, it is usually possi-
ble to normalise to the next higher-lying transition since
the low-energy of the first-excited state also means that
the probability of two-step excitation approaches that of
the single-step excitation, as was done in the analysis of
24Ra [17).

4.1.3 Target excitation

The electromagnetic interaction between the collision part-
ners causes excitation of either the projectile or target nu-
cleus. The observed excitation of target nuclei can usually
be described with high precision using literature values of
relevant matrix elements and used to normalise the exci-
tation cross sections measured for beam nuclei. The ob-
served number of v rays in the transition de-exciting an
excited state in the target nucleus, can be described in the
following equation:

dN
_ . Pea

N,
t A,

: bte'y(Et)eparto't (4)

where o; is the integrated cross-section of exciting the
given state in the target, b; is the total y-ray branching
ratio for the transition, e,(E;) is the absolute efficiency
of detecting a « ray of energy E}, €par is the efficiency
of detecting a particle in the angular range defined by
the integration limits of the cross-section, pd is the thick-
ness of the target in mg/cm?, N4 is Avogadro’s number,
Ay is the mass number of the target and L is the time-
integrated luminosity of the beam. A similar equation can
be constructed for the number of v rays in the transition
de-exciting an excited state in the projectile, assuming the
same angular range for particle detection:

“bpey (Ep)€partTp (5)

Taking a ratio of Equations 5 and 4 removes both the
intrinsic particle detection efficiency and luminosity:

& _ bpey (Ep)op (6)
Nt th»Y (Et)(ft

meaning that one can solve Equation 6 for o, and there is
no requirement to have knowledge of the integrated beam
current. This is the principle of GOSIA2.

When dealing with RIBs, pure beams are often not
achievable and the target is also excited by beam contam-
inants. If the beam composition is monitored during the
experiment, this can be dealt with rather simply with the
following correction to the experimental y-ray intensities
from the target:

1

F= (ZeA) )
1+3°, (Tc a:(z;’,A))

(7)

where 04(Z, A) is the cross section of the target, excited
by a beam with proton number Z and mass A. For every
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contaminant, ¢, with Z = Z., the ratio to the component
of interest with Z = Zx, can be expressed as r. = I./Ix,
where I. x is the intensity of the respective components
in the beam.

There also exists the possibility of impurities in the tar-
get. In this case the experimental intensities measured for
the beam must be corrected to account for the scattering
on target impurities. For this, knowledge of the isotopic
purity is required. This can be either from the target man-
ufacturer or the observed excitation ratios, deduced from
~-ray intensities, if available. Assuming only two compo-
nents, a correction factor, F;, can be calculated for each
excited state, i:

1
Fi= 1+
O

where 0,(Z, A) and 0;(Z’, A’) are the excitation cross sec-
tions of a given state in the projectile on the main target
species and contaminant, respectively. These can be cal-
culated by GOSIA, obtaining the ratio for each transition
given a set of starting matrix elements. The isotopic pu-
rity, P, is expressed by

ai(Z’,A’)>’ (8)

O'i(Z, A)

Ny

P:
Ny’

(9)

where N4 4/ are the numbers of atoms of mass A, A’. By
taking the ratio of the cross sections with different masses,
at the same laboratory angles, the differences in Ruther-
ford cross section and the centre-of-mass-dependent ex-
citation probabilities are accounted for. However, F; re-
mains an estimation since the excitation probability of
each state will depend in a complex manner on the elec-
tromagnetic matrix elements. A systematic error must be
retrospectively estimated due to this assumption by re-
calculating F; with the final set of matrix elements. Dif-
ferences between the original and final estimations of F;
are usually small if P is large. In the case of 1%°Po on
94(9)Mo(P = 95(2)%), the maximum systematic error in
F; was calculated to be 0.6%, which is much smaller than
the statistical uncertainty.

4.2 \? square minimisation in GOSIA

The set of electromagnetic matrix elements is extracted
by performing the minimisation of the x2? function. The
total x? function is built of measured v-ray intensities and
other known spectroscopic data, and those calculated from
a set of matrix elements between all relevant states. The
calculated ~-ray intensities are corrected for effects such
as: internal conversion of electromagnetic transitions, the
energy-dependent efficiency of the «-ray detectors and the
angular distribution of the emitted radiation. A proper re-
production of the experimental y-ray intensities requires
integration over the scattering angular ranges, defined by
the particle detection set-up, and over the range of inci-
dent projectile energies resulting from the energy loss in
a target. The convergence of the x? fit can be improved

by using known spectroscopic data, e.g. v-ray branching
ratios, multipole mixing ratios or lifetimes.

The x? function consists of three components resulting
from various subsets of data:

X2 = Sy + S+ 5. (10)

The first contribution, S, comes from the comparison

of 7-ray intensities observed in the experiment, I, and

those calculated with the fitted matrix elements, i, and
is defined as:

1 c e\2
Sy = E Wi E ?(Cijlk_lk) ;
iJ

k(ij) F

(11)

The summations extend over all defined experiments, 4, y-
ray detectors, j, and the detector- and experiment- depen-
dent number of observed transitions indicated by k. The
coefficients C;; are normalisation constants connecting ex-
perimental and calculated intensities. These are equivalent
to Cy, described in Section 4.1, but the summation now
extends independently over the number of independent
~v-ray detectors as well as experiments or sub-divisions.
These are defined individually for each experiment and
detector combination and fitted on the same basis as the
matrix elements. The weights, w;;, ascribed to the various
subsets of data defined by different experiments and ~y-ray
detectors, can be set independently by user.

The second contribution, Sj, is related with the user-
defined “observation limit” and is defined as follows:

Li(i.g) >2 1
S; = d —u(e . .
: ;(150',3') ) 1

u? (i, 7)

(12)

An experiment and detector dependent upper limit of -
ray intensities, u(i,j), is expressed as a fraction of the
normalising transition specified by the user (usually it is
the strongest observed transition, i.e., 2] — 0] for even-
even nuclei). If the calculated intensity of any unobserved
~-ray transition, divided by the intensity of the normal-
ising transition, I¢(7,J), exceeds this upper limit then it
is included in the calculation of the least squares fit. The
summation extends over the calculated ~-ray transitions
in each experiment and detector combination not defined
as experimentally observed, provided that the upper limit
has been exceeded. A proper set of upper limits prevent
finding unphysical solutions yielding the production of ~-
ray transitions not observed in experiment.

The remaining term of Eq. 10, Sy, accounts for the
additional spectroscopic data which can be included in the
fit: lifetimes, branching ratios, multipole mixing ratios and
known matrix elements. The summation extends over the
number of such data points, ng, given for each data type,
d, and user-defined weights, wy, which are common for a
given group of spectroscopic data.

1
Sa = dez N (D5, — Dﬁd)za
d ng Nd

where Dy and Dj  are the values of the spectroscopic
data calculated using the current set of best-fit matrix
elements and the experimental value, respectively.

(13)
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A simultaneous fit of a large number of unknown pa-
rameters (matrix elements), having in general very differ-
ent influences on the data, prevents precise determination
of degrees of freedom, which in a standard approach are
defined as a result of the subtraction of the number of ex-
perimental data points and the number of fitted parame-
ters. The x? function resulting from the GOsIA calculations
is normalised to the number of data points, including ex-
perimental intensities, branching ratios, lifetimes, mixing
ratios and known matrix elements. In practical situations
one deals exclusively with total x? values, thus the nor-
malised x? value yielding from the GOsIA code should be
multiplied by the number of data points given, regardless
of the user-defined weight, w.

4.2.1 The GOSIA2 code

When lifetimes of the lowest excited states are not known
with sufficient precision, the measured Coulomb-excitation
cross-sections need to be normalised in a different way,
for example to the target excitation, as described in Sec-
tion 4.1.3. The GOSIA2 code was developed to handle the
simultaneous analysis of both target and projectile exci-
tation. The x? function of Eq. 10 is minimised simulta-
neously for the target and projectile whilst sharing the
normalisation factors as parameters across both functions.
Using literature values of relevant matrix elements in the
target nucleus, the normalisation constants can be con-
strained by the y-ray intensities of the target de-excitation.
The solution then corresponds to the global minimum of
the total x? function defined as the sum of x? functions
for both reaction partners. If only two matrix elements
are used to describe the excitation of the nucleus under
study, a two-dimensional plot of the y? surface may be
used to evaluate uncertainties of fitted matrix elements, as
described in more detail in Section 4.3.2. However, there
are certain limitations of the code: when more unknown
matrix elements are involved, estimation of their errors
becomes more complicated and one of the procedures de-
scribed in Sections 4.4.2 and 4.4.3 are required.

4.3 Methods of error estimation
4.3.1 Standard error estimation in GOSIA

Statistical errors of the matrix elements are estimated af-
ter the convergence of the global minimum of the x? func-
tion and can be obtained from the probability distribution
around the minimum. The applied method involves two
steps. At first, the diagonal, or uncorrelated, uncertainties
are calculated by sampling each matrix element about the
minimum of the y? surface, finding the point where an in-
crease in x? is achieved, satisfying the 1o condition. This
condition is defined by requesting that the total integrated
probability distribution in the space of the fitted param-
eters be equal to the 1o confidence limit — 68.27 % [4].
At the same time, a multi-dimensional correlation matrix
is built, which is then used in the second step in order

1.8
R 2T
= 16F i 5.6
g B 5.5
= 1.4 :\\ 5.4
2 0F T 5.3
E\j 12 5.2
1B 5.1
C 5.0
0.8 4.9
- 4.8
[0 6] A A B I S B B S
<4 -3 -2 -1 0 1 2 3 4
(2711E2[127) [eb]
Fig. 3. A two-dimensional x? surface with respect to

(27 1E2]|0F) and (2] ||F2||2F) for 2°*Rn [20]. A 1o cut is ap-
plied with the condition that x? < xZ;, + 1 . The data is
normalised to the excitation of a 4.0-mg/cm? thick '°°Ag tar-
get at a beam energy of 2.90 MeV /u using GOsIA2. The data
was sub-divided into five different scattering angular ranges
and their individual 1o limits are represented by the different
bands; in increasing order of centre-of-mass scattering angle
these are: solid black, dashed black, dotted black, solid grey
and dashed gray.

to compute the fully correlated errors on each matrix ele-
ment, satisfying the same condition.

4.3.2 Two-dimensional x2 surface analysis

In a multi-parameter analysis, the global best fit can be
found by constructing a x? hyper-surface with respect to
all parameters. In the case of a two-parameter system one
is able to visualise a 2-dimensional x2? surface. The mini-
mum of such a surface, x2; , can easily be found and the
lo-uncertainty contour can be defined as the region of the
surface for which x? < x2. 4+ 1 [18]. This technique was
used for the analysis of %4%°Kr [19].

If one of the parameters is independently measured,
e.g. via lifetime measurements, the x2 surface can be eas-
ily recalculated by adding the x? contribution of the new
measurement at every point. This goes too for other in-
dependent Coulomb excitation measurements, which may
come from the segmentation of a data set into angular
ranges (see example in Figure 3) or different targets as
described earlier. The final uncertainties are obtained by
projecting the 1o uncertainty contour on the respective
axes. While the projected uncertainties are useful for un-
derstanding the precision on a given spectroscopic observ-
able, such as B(FE2) values or spectroscopic quadrupole
moments, the existing correlation between these parame-
ters is lost.

In the past, the assumption that the influence of the
spectroscopic quadrupole moment, s, is negligible, or
that otherwise its value can be assumed to be equal to
zero has sometimes been used. In some cases only a single,
integrated Coulomb-excitation cross-section is measured
and there are no additional constraints from previously
measured B(E2) values or lifetimes. This leads to a lo
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uncertainty contour that is not constrained in two dimen-
sions. One possibility here is to project such a surface with
a single value of Qg, or calculate only a 1-dimensional sur-
face at a fixed value of Q5. However, this would greatly
underestimate the uncertainty, since correlations are ig-
nored. In the 2°4Rn example of Figure 3, this leads to a
factor of 3.5 reduction in the true uncertainty. Instead, it
would be preferable in these cases to use a model assump-
tion where necessary to provide limits of Q4 as a function
of (21||F2[|0]), for example the rigid rotor model [21].
The total surface can then still be constrained but with
a reasonable consideration of the uncertainty due to the
influence of Q5.

The graphical method however, becomes computation-
ally time consuming and visually useless as the number
of parameters increases. Therefore alternative solutions of
error estimation are proposed and some examples are pre-
sented in the following sections. Their applicability de-
pends on the strength of the correlations between matrix
elements.

4.4 Selected applications

4.4.1 Normalisation to the B(FE2) extracted from data sets
where no correlations are observed

The influence of the quadrupole moment of a given state
on its excitation probability varies significantly with scat-
tering angle as shown in Figure 1. This dependence can be
exploited in order to determine both the transition prob-
ability and the diagonal matrix element, even if only one
~-ray transition is observed in the nucleus of interest. If
the particle detector covers a sufficiently broad range of
centre-of-mass scattering angles, the simplest solution de-
scribed in Ref. [22] can be applied. Here, in the first step,
the B(E2;2] — 07) value is derived from the excitation
cross-section of the 2] state for the lowest scattering an-
gles. The influence of the quadrupole moment, Q,(27),
on the excitation probability of the 2] state for this range
of scattering angles was estimated at 4% , which was be-
low the statistical error of 7% of the corresponding ~-
ray intensity. It was therefore a reasonable approxima-
tion to assume that in this case the observed transition
strength depends only on the transitional matrix element.
The adopted uncertainty of the B(E2;2] — 07) included
contributions from the statistical error of measured -ray
intensities in **Ar and '°°Ag, as well as the uncertainty
on the relative v-ray efficiency, target matrix elements
and the systematic error of 4% resulting from neglect-
ing Q4(27) in the Coulomb-excitation calculations. In the
second step, this B(F2;2] — 0]) and its uncertainty was
used in the further analysis as an additional data point
in a GOSIA fit. The remaining data was then subdivided
into three angular ranges, with the width and number of
ranges being chosen to obtain the maximum sensitivity to
Qs(27). The 7-ray intensities of **Ar from these ranges
were normalised to the intensity measured for the first
range, with relative normalisation factors fitted using the

corresponding '%°Ag ~-ray intensities. Then the standard
version of the GOSIA code was used to simultaneously fit
all the transitional and diagonal matrix elements to the
measured intensities.

4.4.2 Multiple Coulomb excitation and normalisation with a
dominant transition to target excitation: combined
GOSIA-GOSIA2 analysis

In multiple Coulomb excitation of even-even nuclei, sev-
eral states can be populated. In such cases the 21+ state
is usually dominantly populated as compared to other
excited states. When the lifetime of the 2 state is not
known with sufficient precision and the B(FE2;2{ — 07)
value cannot be extracted as described in Section 4.4.1,
measured Coulomb-excitation cross sections need to be
normalised in a different way using e.g., target excitation.
However, a full analysis with the cOsiA2 code, as pre-
sented in Section 4.4.3, is not possible as the number of
parameters increases significantly. The error estimation in-
cluding correlations between all matrix elements involved
becomes very complex and practically impossible. A differ-
ent solution needs to be found that handles both aspects:
(i) normalisation to the target excitation and, (ii) error
calculations including correlations between all matrix ele-
ments. In such cases a combined analysis is required with
the use of both standard c¢osiA and GOSIA2 codes.

In the first step, a simplified analysis is performed aim-
ing to determine the B(E2;2] — 0]) value for the projec-
tile. Only one-step excitation of the 2f state is considered,
taking into account that population of the 2f state de-
pends predominantly on both the B(E2; 21+ — Of) value
and spectroscopic quadrupole moment, Q5(21+). In order
to gain sensitivity on the extraction of the quadrupole
moment of the 2] state, the data are divided in terms
of particle-scattering angular range. The influence of the
multi-step excitations resulting in population of higher-
lying states is not usually included at this stage, although
the level energies and a set of fixed “starting” matrix
elements can be declared if reasonable assumptions can
be made concerning their magnitudes and relative signs.
The analysis is performed as described in Section 4.2.1
using the GOSIA2 code. As a result a two-dimensional x?
surface as a function of the B(E2;2{ — 0) value and
the quadrupole moment Q) (21+) is determined and reflects
correlations between these two parameters. The final val-
ues are determined by the minimum of the y? function
and their error bars are obtained by projecting the lo-
contour on the respective axes, as in Section 4.3.2. The
extracted B(E2;2] — 07) value is a first approximation.
Its uncertainty includes: (i) the uncertainties of the v-ray
intensities originating from the target excitation, (ii) the
uncertainties of the -ray intensities originating from the
projectile excitation and, (iii) the uncertainties of the rel-
evant, literature B(E2) values for the target nucleus.

In the second step, correlations with all remaining ma-
trix elements, which couple higher-lying excited states ob-
served in the experiment have to be investigated. This is
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performed using the standard GOsIA code with full error
estimation procedure (see Section 4.3.1) implemented in
GOsIA. All states populated in the Coulomb-excitation ex-
periment, together with all observed ~y-ray intensities are
taken into account in this part of analysis. All involved
electromagnetic matrix elements are now introduced as
well. Data extracted from the simplified GOSIA2 analysis,
specifically (07 ||E2||2]), serves as an absolute normali-
sation for the standard GOSIA calculations. It is declared
together with its uncertainty as an additional data point
and thus it is treated in the fit on equal rights as the v-ray
intensities. Other spectroscopic data i.e., y-ray branching
ratios, mixing ratios, can also be included at this stage of
analysis if known. Note that the (2] || E2]|2]) diagonal ma-
trix element extracted for the projectile in the first part of
the analysis is not included as an additional data point in
the fit when switching to the standard GOSIA calculations.
Information on (2] || E2||2]") is implicitly given by the rel-
ative normalisation constants extracted from the target
excitation linking different angular data subdivisions.

In order to link each data set resulting from subdi-
vision into several particle-scattering angular ranges, the
relative normalisation constants are required. These are
usually calculated from the target excitation. The stan-
dard GOsIA fit of observed 7-ray intensities depopulating
excited states in the target nucleus is performed using
literature values of all relevant matrix elements (see Sec-
tion 4.1.2). Calculated relative normalisation constants,
Cjj;, for each data set are then further used to fit the
projectile excitation. A small correction is applied here
to achieve the same relative normalisation constants ob-
tained in the GOSIA2 solution, where the projectile data
is also considered. This is calculated using the ratio of
the calculated yields for the normalisation transition in
the target, I¢(4,7), from the GOSIA2 and standard GOSIA
solutions. The fixed coupling of the relative normalisa-
tion constants removes the knowledge of the uncertainty
in their ratio. In order to preserve such information in the
fit, it is included indirectly. The uncertainty of the ~-ray
intensities related to the 2] — 0] transition in the pro-
jectile, AIZ';(ZT — 07), to which we are normalising, is
defined in GOSIA so that it encompasses the uncertainty
from the target excitation:

-1
2 2 2 1

AR = AP+ 1P (ZM> , (14)
Vi

%

where I and A I7 are the efficiency-corrected intensity

and its associated uncertainty, of the 2 — 0] transition
in the projectile, respectively, and AI,tYi can be expressed

as:
ATEN? [ AB(E2:i — g.s)\°
AI&Q:( p”) +< B(§32~7'Z gs>> -
L i1 — g.8.)

where Ify and A’ I,ty are the sum of efficiency-corrected
intensities and associated uncertainties (in quadrature) of
transitions depopulating a state ¢ in the target, respec-
tively. This assumes that this state is dominated by single-

GOSIA2; first approximation

47

2f |

0F (o7 |1B2)121)

’standard GOSIA; target standard GOsIA; full minimisation‘

(of 12]|27)

best-fit
NO matrix elements
of | E2)12¢
comverged.m (0711227 ! GOos1A2; MEs fixed ‘
— 2t | E2lI2{) |
YES

Fig. 4. A scheme of the combined analysis performed with the
standard GosiA and GOSIA2 codes. The presented method is
used when normalisation to the target excitation is required in
multiple-step Coulomb excitation of even-even nuclei. The red
matrix elements in the level scheme of the figure are kept fixed
during the GOSIA2 calculations, while the blue matrix elements
are scanned to produce a 2-dimensional x? surface plot (top
right). All matrix elements are varied in the full GOSIA min-
imisation and the best fit values are used in the next GOSIA2
calculation. Convergence is reached when the blue matrix ele-
ments are consistent in both GOSIA and GOSIA2 calculations.

step excitation from the ground state and consequently by
B(E2;i — g.s.) and its uncertainty, AB(E2;i — g.s.).

As a result of the second part of the analysis with the
use of the standard GOSIA code, a set of electromagnetic
matrix elements between all states populated in the ex-
periment is extracted. Note that the (0 ||£22]) matrix
element, used as an absolute normalisation for the full
standard GOSIA fit, originates from the simplified GOSIA2
calculations where multiple Coulomb excitation was not
necessarily correctly considered. This influence needs to
be taken into account. For this purpose, the GOSIA2 cal-
culations have to be repeated using the set of matrix ele-
ments extracted in the second step of the analysis. Only
(0F[|E2|12]) and (2] ||E2||2]) for the projectile are
scanned as in the first approximation, while all other ma-
trix elements are fixed. As a result a new x? surface for the
investigated nucleus is calculated. Again, the (0] || E2||2])
matrix element is determined from the x? < x2, +1 con-
dition. It may differ from the value obtained from the first
approximation since the correlations with other matrix el-
ements will be different. If this is the case, a full standard
GOSIA analysis with the updated value of the (07 || £2(/2])
matrix element has to be repeated in order to achieve con-
sistency. The whole standard GOSIA — GOSIA2 procedure
should be iterated until the converged solution for both
transitional and diagonal matrix elements for the 2] state
is obtained. A schematic procedure of the GOSIA — GOSIA2
analysis is presented in Figure 4.
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In some cases, such as %Po [11], the y-ray intensity
of higher-lying transitions is too weak to be reliably ob-
served in each of the angular subdivisions. For this data
to be included, an additional data set must be declared
in the GOSIA stage of the analysis that represents the sum
total of all angular ranges. The simplest way to normalise
this data is to use the total intensity of the 2] — 0F
normalisation transition allied with the B(E2) value that
is already declared. This intensity then exclusively con-
strains the absolute normalisation of the total data set
with an uncertainty determined by the combination of the
B(E2) and I,(2f — 0]) uncertainties. During the corre-
lated error calculation, this uncertainty on the absolute
normalisation is effectively propagated to the higher-lying
transitions.

4.4.3 Normalisation to target excitation when multiple
single-step excitations are observed

When multiple, single-step excitations are observed with
similar intensity, such as in odd-mass systems, there are
too many parameters to make an analysis of a full x?
hyper-surface feasible. Instead, a one-dimensional surface
is constructed for each matrix element by scanning the pa-
rameter to be investigated. At each point, the investigated
parameter is kept fixed while all others are minimised
with respect to x2. For this, the minimisation procedure of
GOsSIA2, described in Section 4.2.1, is invoked. This proce-
dure traces the lowest value path through the valley of the
hyper-surface, effectively projecting the correlated surface
to a given parameter. The constructed surface can then
be used in order to extract the 1o uncertainty using the
standard x?2;, + 1 method [18]. There is an assumption
here of parabolic behaviour about the minimum, which
for strongly correlated systems may not necessarily be true
and asymmetric limits may be obtained.

Computationally, the time involved to minimise the
full parameter space hundreds of times is very large. For
this reason, alternative methods of normalisation are pre-
ferred, but Coulomb excitation of odd-mass or odd-odd
systems with RIBs tend to lack the required lifetime and
multipole mixing ratio data to sufficient precision. This
approach has been successfully used for the analysis of
Miniball experiments on odd-mass Sn isotopes [23] and
the odd-odd ?°Na [24].

4.5 Dealing with non-standard particle detectors

Particle detectors used for RIB Coulomb-excitation ex-
periments are usually axially symmetrical and have an
absolute efficiency close to 100%. As long as the efficiency
is uniform, any deviations from 100% are included in the
normalisation constants (see Section 4.1). However, with
the expected increase of RIB intensities, the standard an-
nular Si detectors that are currently used will likely be
replaced by more complicated particle detection set-ups,
possibly consisting of various types of detectors differing

¢ [deg]

-100

-150F

15 20 30 40 45 50 55 60
0 [deg.]
Fig. 5. Example of a complicated detector shape in 6 and ¢
coordinates: an off-centered annular detector with some parts
damaged due to the high flux of incoming particles. The colors
correspond to the number of detected events per pixel.

in efficiency. In addition, radiation damage may deterio-
rate parts of a detector, resulting in a very complicated
shape in the 0-¢ plane.

4.5.1 Complex particle-detector shapes

In the example of *Ar [22], the beam was not well fo-
cused and had a halo of about 0.5% of the total inten-
sity, hitting the particle detector directly. Some parts of
the particle detector had to be excluded from the analysis
due to deterioration caused by the direct beam and re-
sulting impossibility of distinguishing between direct and
scattered beam. Together with a non-axial position of the
beam spot, this resulted in a complicated shape of the de-
tector in the 6-¢ plane (see Figure 5), which had to be
taken into account during the Coulomb-excitation analy-
sis using the standard GOSIA code. The standard methods
of describing the particle detection geometry provided by
the code did not allow a proper handling of this complica-
tion. Therefore a new method was introduced and tested.
Each of the 1536 pixels of the detector (96 strips by 16
annular rings) was approximated by a small circular de-
tector, which size was chosen to optimally reproduce both
the absolute Rutherford cross-section and the calculated
correction factors! for both **Ar and '°°Ag. The results of

! The correction factors, introduced in the GOSIA code in
order to speed up the minimisation process, are defined for each
observed ~-ray transition as a ratio of its intensities calculated
for a given set of matrix elements: the one integrated over the
angular range covered by the particle detector and the range of
incident energies resulting from slowing down of beam particles
in the target, and that calculated for mean values of beam
energy and scattering angle specified by the user.
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such approximation as compared to a standard integration
procedure were verified for each strip and the differences
were below 2% for all transitions. The correction factors
depend weakly on actual values of matrix elements and
thus the verification performed for the initial set of matrix
elements remain valid throughout the minimisation pro-
cedure. The difference between the quadrupole moment
of the 2] state obtained from the analysis with a proper
detector shape taken into account and of that when it
was assumed to be axially symmetric with all segments
working, was around 20%.

4.5.2 Non-uniform particle-detector efficiency

If the efficiency of the particle detector changes as a func-
tion of scattering angle, this information should be in-
cluded in the detector description used by the GOSIA code.
This can be done by modifying the shape of the particle
detector with respect to its real angular coverage. The
simplest solution, used in the analysis of Coulomb exci-
tation of »2Sm [25] is to reduce the detector coverage in
the ¢ plane according to its relative efficiency. The 136Xe
ions scattered on the '°2Sm target were identified in the
focal plane of the VAMOS spectrometer placed at 35°,
which corresponds to the detection of ions scattered at
angles between 28° and 42° in § and -7° and 7° in ¢. The
simulated detection efficiency as a function of 6 scattering
angle [26] is presented in 6(a), and resulting particle de-
tector shape included in GOSIA in 6(b): in the maximum
of the efficiency curve the real coverage in ¢ has been as-
sumed, and for other scattering angles it has been scaled
according to the efficiency.

Such a solution works well if the effects of particle-
~-ray correlations can be neglected, i.e. when the v-ray
detection set-up consists of many detectors placed sym-
metrically in § and ¢ and the ~-ray intensities from all de-
tectors are summed together. The efficiency curve should
also be relatively smooth and simple, which is the case
of the presented example. In other cases, however, such a
modification of the particle detector shape may affect the
calculated particle-gamma angular distributions and, in
consequence, the extracted matrix elements. An alterna-
tive method has therefore been tested, similar to the one
presented in Section 4.5.1. The detector has been approx-
imated by a set of 729 small circular particle detectors. In
the first step the particle detector was assumed to have a
uniform 100% efficiency, which corresponded to a rectan-
gle in the 6-¢ plane or alternatively to all pixels having the
same size. This size was adjusted to reproduce both the
Rutherford cross section and correction factors for *2Sm
calculated for the rectangular particle detector. In the sec-
ond step the size of each pixel was scaled according to the
relative efficiency, as presented in 6(c).

The results of the two approaches were compared and
were compatible within 2% for excitation of states up to
12%. On the other hand, when the reduction of efficiency
at the edges of the detector was neglected, the calculated
relative y-ray yields differed by up to 14% as compared
to that calculated taking the non-uniform efficiency into
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Fig. 6. Two methods to take into account non-uniform particle
detector efficiency in GOSIA analysis. (a) Absolute efficiency of
the particle detector as a function of 6 scattering angle [26].
(b) Detector shape resulting from relating its coverage in ¢ to
the efficiency; dashed lines correspond to the true coverage of
the detector. (¢) Approximation of the detector by a large set
of pixel-like circular detectors, which sizes reflect the efficiency.

account. The effect was the strongest for multi-step exci-
tation and non-yrast states.

4.6 Sources of systematic errors

Numerous approximations are used in the GOSIA code, de-
scribed in details in Ref. [4]. They may amount to up to
5% of the calculated ~-ray intensity and thus very small
error bars that may result from GOSIA error estimation
procedure should be treated as statistical errors only and
further adjusted to take into account the systematic er-
TorS.

The most important source of systematic error is usu-
ally related to the semiclassical approximation of the
Coulomb-excitation process used in the analysis. This sim-
plified treatment is expected to differ from a full Coulomb-
excitation calculation by a factor of 1/v, where v is the
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Sommerfeld parameter [27], which for heavy ions amounts
to a few percent. Other sources of systematic errors arising
from approximations used in the GOSIA code are discussed
for example in Ref. [28, 29] and most of them (corrections
due to atomic screening, vacuum polarisation, relativistic
effects, E4 excitation) are found to be negligible. Similarly,
changing the parameters of the deorientation model [4] by
20% produced less than 2% change in matrix elements in
the 1%Ru case [29)].

The effect of virtual excitation of the giant dipole reso-
nance can influence the excitation of low-lying states. This
is taken into account using the concept of dipole polariz-
ability [27] and applying a correction to the quadrupole
interaction. This effect becomes important for light nuclei.
In the analysis of 1B [30] it was found that the uncer-
tainty of 25% on the polarizability parameter translated
into 20% uncertainty on the diagonal matrix element of
the first-excited state.

The integration procedures used in GOSIA to account
for beam stopping in the target and the angular coverage
of the particle detector may be quite sensitive to user-
defined meshpoints. This is true in particular for compli-
cated shapes of the particle detector, large ranges of in-
cident energies (i.e. ”thick-target” measurements, where
beam is stopped in the target), small scattering angles
and high energies of excited states (above 1 MeV in a
single step). The influence of meshpoints on calculated in-
tegrated -ray intensities should be in any case verified
and, if the differences between the calculated integrated
yields for different sets of meshpoints are comparable with
statistical uncertainties of the ~-ray yields, should be in-
corporated in these.

Especially for well-deformed, or on the contrary, non-
collective nuclei the lifetimes of Coulomb-excited states
may be as long as nanoseconds. In such cases it is essential
to take into account the modification of ~-ray efficiency
due to the modified solid angle covered by the -ray de-
tectors. This effect was observed for example in analyses
of 7Rb [31] and ®Sr [32] MINIBALL data and the af-
fected transition intensities were either excluded from the
analysis [32] or their statistical errors increased to take
into account the modified efficiency [31].

The standard minimisation procedure works best if
only E2 matrix elements are needed to describe the ob-
served excitation. The probability of getting trapped in a
local minimum increases with every multipolarity included
in the calculations. In particular, it is often observed that
the errors on M1 matrix elements are underestimated.
Many sets of starting values of matrix elements, includ-
ing relative signs, should be tested before final values of
matrix elements and their uncertainties are determined.

5 Summary and outlook

In summary, we have presented a number of methods
for normalisation of Coulomb excitation data with Ra-
dioactive Ion Beams (RIBs), using the GOSIA and GOSIA2
codes. Analysis techniques have been presented with ref-
erence to specific cases where the techniques were pio-

neered. While excited-state lifetimes, in combination with
other independent spectroscopic data, provide the sim-
plest method of normalising Coulomb-excitation data, we
have shown that it is possible to treat data in differ-
ent ways, such as normalising to target excitation. These
methods and techniques will gain an even greater im-
portance as a wider range of post-accelerated RIBs be-
come available at the next generation of ISOL facilities,
such as HIE-ISOLDE [33], SPIRAL2 [34], ARIEL [35],
CARIBU [36] and SPES [37]. In particular, the higher
beam energies offered for heavy exotic nuclei will produce
data for which multiple-step Coulomb excitation of iso-
topes with a lack of spectroscopic data in the literature,
becomes standard fare.
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