On the Optimality of Treating Inter-Cell Interference as Noise: Downlink Cellular Networks and Uplink-Downlink Duality



Joudeh, Hamdi, Yi, Xinping ORCID: 0000-0001-5163-2364, Clerckx, Bruno and Caire, Giuseppe
(2020) On the Optimality of Treating Inter-Cell Interference as Noise: Downlink Cellular Networks and Uplink-Downlink Duality. IEEE TRANSACTIONS ON INFORMATION THEORY, 66 (11). pp. 6939-6961.

[img] Text
TIN-IBC.pdf - Author Accepted Manuscript

Download (600kB) | Preview

Abstract

We consider the information-theoretic optimality of treating inter-cell interference as noise (multi-cell TIN) in downlink cellular networks. We focus on scenarios modeled by the Gaussian interfering broadcast channel (IBC), comprising K mutually interfering Gaussian broadcast channels (BCs), each formed by a base station communicating independent messages to an arbitrary number of users. We establish a new power allocation duality between the IBC and its dual interfering multiple access channel (IMAC), which entails that the corresponding generalized degrees-of-freedom regions achieved through multi-cell TIN and power control (TINA regions) for both networks are identical. As by-products of this duality, we obtain an explicit characterization of the IBC TINA region from a previously established characterization of the IMAC TINA region; and identify a multi-cell convex-TIN regime in which the IBC TINA region is a polyhedron (hence convex) without the need for time-sharing. We then identify a smaller multi-cell TIN regime in which the IBC TINA region is optimal and multi-cell TIN achieves the entire capacity region of the IBC, up to a constant gap. This is accomplished by deriving a new genie-aided outer bound for the IBC, that reveals a novel BC-type order that holds amongst users in each constituent BC (or cell) under inter-cell interference, which in turn is not implied by previously known BC-type orders (i.e. degraded, less noisy and more capable orders). The multi-cell TIN regime that we identify for the IBC coincides with a corresponding multi-cell TIN regime previously identified for the IMAC, hence establishing a comprehensive uplink-downlink duality of multi-cell TIN in the GDoF (and approximate capacity) sense.

Item Type: Article
Uncontrolled Keywords: Tin, Power control, Intercell interference, Integrated circuits, Downlink, Cellular networks, Transmitters, Treating interference as noise (TIN), generalized degrees-of-freedom (GDoF), interfering broadcast channel (IBC), Gaussian networks, capacity region
Depositing User: Symplectic Admin
Date Deposited: 08 Jun 2020 07:51
Last Modified: 17 Mar 2024 08:40
DOI: 10.1109/TIT.2020.3001219
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3089716