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Abstract
[bookmark: _GoBack]To meet the great needs for high-performance of piezoelectric nano-scaled structures, the study of their dynamic behaviour is essential in the design of stable and controllable nano-devices, such as energy harvesters, actuators and so on. Brittle wrinkled thin nanoribbons of lead zirconate titanate (Pb(Zr1−xTix)O3, abbreviated as PZT) bound to an elastomeric substrate form a wavy configuration, whose amplitude and wavelength can be designed to accommodate different deformation ranges that would suit real operating environments, including vibration. In this paper, the PZT nanoribbon is modelled as an elastic nonlinear beam with von Karman approximation, and the elastomeric substrate is modelled as a semi-infinite linearly elastic medium. Electrical-mechanical coupling is considered in the constitutive relation of the PZT nanoribbon. By utilizing the extended Lagrangian principle, the equation of motion of the PZT nanoribbon-substrate structure with damping, which can more accurately characterise the electromechanical dynamic behaviour of the structure, is derived. To evaluate the dynamic performance of the partly buckled structure, the symplectic Runge–Kutta method (SRK), which has been developed to solve linearly damped ordinary differential equations, is adopted to solve the corresponding equations. Bifurcation diagrams are depicted, and the effects of the applied voltage and pre-strain to the elastomeric substrate on the static bifurcation are analysed, indicating that the pre-strain can easily induce surface wrinkling and the applied voltage can be used to more precisely control surface wrinkling. Moreover, the effect of damping on the dynamic behaviour is discussed through the results of time histories and phase portraits for different values of the applied voltage and pre-strain, confirming that as time progresses, the motion gradually vanishes around the static buckling amplitude. The conclusions of this study are useful for the wavy-design strategy of the PZT nanostructure-based stretchable electronics devices, and for the prediction and passive control of the dynamic behaviour of these devices.
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1. Introduction 

Due to their excellent characteristics, such as higher energy density and lower energy consumption [1], electro-mechanical coupling properties [2] where the direct and converse piezoelectric effects are useful for the design of sensor, being able to harvest ambient mechanical energy and so on [3], piezoelectric nanostructured materials have been widely used in novel micro/nano-devices [4, 5]. To meet the increasing demands for piezoelectric nanostructured materials, highly flexible lead zirconate titanate (Pb(Zr1−xTix)O3, abbreviated as PZT) [6], with high performance of piezoelectric characteristics, for example, its piezoelectric coefficient is about 10 times higher than that of Polymeric polyvinylidine fluoride (PVDF) [7], has attracted tremendous interest in the research community. However, as PZT is very brittle and hard to process (its maximum tensile strain is  before fracture [7] [8]), it cannot extend much in use, which limits its capability. 

To overcome this limitation [9], a wavy configuration of thin nanoribbons or films of PZT on a pre-strained polydimethylsiloxane (PDMS) was conceived, which could make the PZT structure more stretchable () [10] by changes in wave amplitudes and wavelengths. A recent study showed that the buckled regions of the structure could enhance the piezoelectric response, which would be helpful for designing stretchable energy harvesting devices [7]. Hence, it is essential to have a quantitative understanding and hence to be able to predict and even control the mechanical behaviour of PZT-nanostructures in thin, soft, flexible/stretchable formats.
In recent years, the mechanisms of the wrinkling (buckled or wavy) pattern formation of PZT-based devices have attracted much attention from researchers [4, 11, 12]. To achieve large- strain deformations, Feng et al. [13] reported a manufacturing strategy to integrate PZT nanoribbons on a stretched soft elastomeric substrate to form a wavy configuration. Combining experimental and theoretical results, they found that the wave amplitudes could be controlled by the applied electric field. SoltanRezaee et al. [14] found that by applying a voltage, the controllability of the PZT based-structure can be increased. Considering the influence of surface effect on the mechanism of PZT nanoribbons on compliant substrate, which is induced by an applied voltage on the nanostructures, Li et al. [15] analytically obtained the expressions of the amplitude and critical voltage. Because the performance of piezoelectric nanostructured devices could be influenced by the piezoelectric nanoribbon/substrate interface, especially when a mechanical load is applied, Chen et al. [16] discussed the interface behaviour of a PZT nanostructure subjected to an in-plane electrical load; their results showed that by increasing the effective Young's modulus of the PZT nanostructure, the interfacial shear stress and the axial stress would be reduced. 
As mentioned in the above, though those studies were on the static mechanism of the partly buckled structure, the real structures are also subjected to dynamic loadings [17-20]. In addition, by exploiting the motion or deformation associated with vibration, the buckled PZT nanoribbons can be used for the design of energy harvesting devices [7, 21-23]. Hence, the dynamic behaviour of the partly buckled structure is of great importance. In a recent paper, Wang et al. [24] studied the out-of-surface dynamic buckling of a nanowire-substrate structure, taking into account the nano-scale surface effect and geometrical nonlinearity of nanowires.
However, there is no study on the dynamic behaviour of the wavy pattern formation of a PZT structure. On the other hand, a PZT structure is a basic element of the piezoelectric nanostructured devices, and many efforts have been devoted to studying its dynamic behaviour [25-27]. Taking the piezoelectric material nonlinearity and geometric nonlinearity into account, Patel et al.[27] discussed the incorporation nonlinearity effects on the dynamical behaviour of highly flexible piezoelectric devices, and they found that material nonlinearities prevailed over the geometric nonlinearity, leading to the reduction of the resonant frequency with the increase of acceleration. Considering the influence of flexoelectricity, Liang et al. [28] investigated the buckling and vibrational behaviours of piezoelectric nanofilms, and they found that when the thickness of the piezoelectric nanofilms was small, flexoelectricity was dominant. When the beam thickness or size is close to the internal material length scale parameter (for example, the distance between two atoms), the size effects become important and should be considered [29, 30]. A similar conclusion can be found in Su [11]: when the thickness of the film/ribbon is less than 10 nm, the scale effect (for example the surface effect) is significant and should be considered. As energy conversion and storage efficiency were commonly ignored for nanoscale flexible piezoelectric energy harvesters, Lü et al. [31] developed a generalized theoretical model for a PZT structure and optimized its energy conversion and storage efficiency, and their results showed that an independent optimization criterion was indispensable for standard storage circuits. Though these afore-mentioned studies investigated the dynamic behaviour of PZT structures, mechanical behaviour of PZT nanoribbons on a soft, flexible/stretchable substrate has not been reported in the open literature.
Therefore, in this study, the focus is on the dynamic behaviour of a buckled PZT nanoribbon-substrate structure. This work is outlined as follows. The geometry and constitutive relationships of piezoelectric nanoribbons are presented in Section 2. The buckling governing equation, taking into account could be replaced by involving or considering, is derived in Section 3. In Section 4, the symplectic Runge-Kutta method is introduced for solving the equation in Section 3. Section 5 carries out the numerical examples, and Section 6 summarises the conclusions.

2. The geometry and constitutive relationships of partly buckled structure
In this paper, nonlinear vibration of piezoelectric nanoribbons on a flexible substrate, shown in Fig. 1, is studied. The piezoelectric nanoribbon is modelled as a beam by using the von Karman plate theory under plane strain conditions [32], assuming the width of nanoribbons is much greater than their thickness [15]. The normal strain on the beam’s cross-section is the sum of the membrane strain and bending strain [13, 33]: 

[bookmark: ZEqnNum356205]	 	




where  is the in-plane displacements along the  axis; is the out-of-plane displacement along  axis. 
[image: ]
(a) Nanoribbons-on-substrate structure		(b) simplified theoretical model
Figure 1. A schematic of the partly buckled piezoelectric nanoribbons with a substrate 
The constitutive relations of the piezoelectric nanoribbons are written as [15],
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where  denotes the axial stress;  represents the electric displacement in the  direction. , and  indicate the effective elastic, piezoelectric and dielectric constants, respectively. , ,  and  denote the elastic, piezoelectric and dielectric constants, respectively.  represents electric field along the  axis, induced by the external applied electric potential , and it can be calculated as,

[bookmark: ZEqnNum621531]	 	
In the absence of free electric charges, the electric displacement is required to satisfy the Gauss’ Law,

[bookmark: ZEqnNum585149]	 	

Utilizing the electrical boundary conditions  [34], and submitting Eq.  into Eq. , Eqs.  and  yield,

	 	

where  is the applied voltage.
The displacement in the buckling mode piezoelectric nanoribbons along z-axis has the form [13],

[bookmark: ZEqnNum409463]	 	


where  denotes the ‘modal coordinate’ and is the wave number of the buckled nanoribbon.



As the piezoelectric nanoribbons are bound to an elastic compliant substrate, it is assumed that [35, 36] there is no plastic deformation in nanoribbons, and the in-plane displacement and the out-of-plane displacement must be continuous at the interface if the nanoribbons do not separate for the substrate during vibration. On the interface, the equilibrium requires that the axial force distributed over , , and the shear traction  on the interface to satisfy,

	 	

For the nanoribbon-substrate structure, the shear stress at the interface can be assumed to be zero as done in [13, 15] for buckled PZT nanoribbons on a compliant substrate. This assumption was not thought to lead to a big error for a thin-stiff-nanoribbon-thick-substrate structure [35, 37]. In this paper, the elastic constants are a thousand times higher than the substrate’s elastic modulus. Thus, the shear traction  can be neglected and set as zero [36]. Thus, the axial force is a constant, and the membrane strain would not vary with position [13]. This allows the in-plane displacement to be derived as [38]

[bookmark: ZEqnNum312219]	 	


Absence of the rigid body displacement of the nanoribbons means; and if taking [38], Eq.  can be re-expressed as 

[bookmark: ZEqnNum806266]	 	

where  is the pre-stretched strain in the nanoribbons, which is due to the relaxation of the pre-stretched substrate.

3. Governing equation
The total energy of the buckled PZT nanoribbon-structure consists of the kinetic and potential energy in the nanoribbons, and the strain energy in the substrate,


[bookmark: ZEqnNum474519]	 	 
The kinetic energy is the sum of the energies caused by the in-plane and out-of-plane motion [39],

[bookmark: ZEqnNum228426]		


where and  represent the nanoribbon width and length, respectively.
The potential energy is the sum of the bending, membrane and electric energy,

[bookmark: ZEqnNum184216]		
For the wavy piezoelectric nanoribbons on a soft substrate, because the ratio of the Young’s modulus of nanoribbons (PZT, 148 GPa) to the Young’s modulus of substrate (PDMS, 2.6MPa) [13] is extremely large, it is assumed that the semi-infinite substrate is subjected to the normal stress between the nanoribbons and the top surface of the substrate, and vanishing longitudinal shear traction on the top surface of substrate [35, 36, 40]. The energy in the substrate can be calculated as [41, 42]

[bookmark: ZEqnNum792980]	 	



where is plane-strain modulus of the soft substrate.  is the Young’s modulus of the compliant substrate, and  is the Poisson’s ratio of the substrate. 
To more accurately predict the dynamic behaviour, the power dissipated due to damping should be included [43] and is described as [44],

	 	

where  is the damping coefficient in N s/m. 
In order to obtain the dynamic equilibrium equation of nanoribbon-substrate structure, submitting Eq.  and Eq.  into Eq. , Eq.  and Eq. , the Lagrangian can be given as,

	 	
The extended Lagrange equation is used to derive the electromechanical dynamic equation of the partly buckled structure [44]. The former can be written as follows,

	 	
From which one can get

[bookmark: ZEqnNum131870]	 	


where  and .
For convince, some non-dimensional parameters are introduced as follows,

[bookmark: ZEqnNum796323]	 	
Submitting the non-dimensional parameters Eq.  into Eq. , Eq.  can be re-written as,

[bookmark: ZEqnNum790757]	 	
Dropping those terms of the first and second derivative of time in Eq., the equilibrium amplitude and wavenumber of the buckled PZT-substrate structure in static buckling are given as

[bookmark: ZEqnNum498841]	 	
4. Numerical method

Because of the nonlinear terms in Eq., it is not so easy to get the analytical solution of the amplitude of the out-of-plane ‘deflection’. A proper numerical method is needed to solve that equation. Symplectic Runge-Kutta method, which combines the symplectic method and Runge-Kutta method, is implemented to solve Eq. , which has some nice properties (for example, momentum-preserving [45] and volume-preserving [46]), and can avoid energy divergence and thus the divergence of the numerical solution over a long simulation period. Recently, Brian and Moore [47] developed this kind of symplectic Runge-Kutta method for ODEs which have time-dependent and damping terms. Since Eq.  is also a nonlinear equation with time-dependent and damping terms, symplectic Runge-Kutta method is utilized for solving Eq. .
In order to use the symplectic Runge-Kutta method, new variables are introduced to transform the order of Eq.(3.10) from two to one,

	 	
Eq.  could be rewritten as below: 

[bookmark: ZEqnNum245304]	 	 

where .
A fourth-order, two stage, symplectic RK method is adopted as [47],

	 	




where  is the time step size. The coefficients, and are given in matrix and vector forms:

	 	
5. Results and Discussion
In this section, numerical examples are analysed to reveal the effects of the applied voltage and pre-strain on the mechanical behaviour of the structure. The geometric and materials properties of the PZT nanoribbon-substrate structure are tabulated in Table 1 [13].
Table 1 The materials and geometric properties of the wavy structure [13]
	

	

	

	


	

	

	

	


	

	

	

	


	

	

	

	




5.1 Numerical verification
The Hamilton energy of the undamped nanoribbon-substrate structure can be derived as,

[bookmark: ZEqnNum258955]	 	 
To validate the numerical method in this paper, the errors of the Hamilton function are obtained by the proposed method and the well-known 2-stage, 4th-order Runge-Kutta method using the same time step size of 0.1, in comparison with the exact value given in Eq.  as shown in Figure 2. From Fig. 2, it can easily be seen that the error of the proposed method is not only much smaller than that of the classical Runge-Kutta method, but also stable over a long time period, which shows both the validity and the superiority of the proposed symplectic method. This conclusion could be also obtained from Ref. [24].
[image: ]
Figure 2 Comparisons of the absolute errors of the Hamilton energy 
5.2 Static bifurcation

In order to investigate the nonlinear dynamics of the buckled nanoribbon actuated by the voltage and pre-strain, bifurcation diagrams are plotted in Fig. 3 and Fig. 4. To highlight the effects of the pre-strain and applied voltage on the static bifurcation, the pre-strain and applied voltage are taken as zeros in Fig.3 and Fig.4, respectively. Letting of Eq.  be zero, one can analytically obtain the expressions of the equilibrium (stable and/or unstable) points and the critical voltage as,

	 	

[bookmark: ZEqnNum552166]	 	
It is noted that the expression of the critical voltage, Eq. , is mathematically equivalent to Eq. (6) of Ref. [13]. When the pre-strain in Eq.  is temporarily neglected, the equilibrium amplitude and wavenumber Eq.  of the buckled PZT-substrate structure in static buckling are also mathematically equivalent to Eq. (4) and Eq. (5) of Ref. [13]. By using Eq. , one can get the critical voltage as 0.66 V, which is the same as the theoretical and experimental results reported in Ref. [13]. Thus, the model established in this paper is considered validated.

[image: ]
Figure 3 Bifurcation diagram of the partly buckled structure versus the voltage (lines with solid triangles and solid circles represent the stable equilibrium points from different surface mode; line with hollow squares represents the unstable equilibrium points)







From Fig. 3 (in which pre-strain is zero), it is found that with the increase of the voltage, the nonlinear dynamics of the wavy piezoelectric nanoribbon on an elastomeric substrate exhibits pitch-fork bifurcation at the critical voltage. When the applied voltage is smaller than , the applied voltage cannot induce surface wrinkling (no buckling mode) for the nanoribbon-substrate structure, and the structure is stable (line with solid blue circles represents the stable point ). When the applied voltage is greater than , surface buckling takes place, and the nanoribbon-substrate structure is unstable (line with solid red triangles represents the stable point , line with hollow rectangles represents the unstable point ). 
[image: ]
Figure 4 Bifurcation diagram of the partly buckled structure versus the pre-strain (lines with solid triangles and solid circles represent the stable equilibrium points from different surface mode; line with hollow squares represents the unstable equilibrium points)

Fig. 4 (in which the applied voltage is zero) shows a bifurcation against the applied pre-strain. From Fig. 4, one can easily notice that the pre-strain can easily induce surface wrinkling for the piezoelectric nanoribbon-substrate structure than the applied voltage in Fig. 3; on the other hand, the applied voltage can be used to execute more precise control of the buckling form. When the pre-strain is greater than a small critical value, pitch-fork bifurcation also occurs and the structure becomes unstable. In addition, one can get the critical pre-strain as follows,

[bookmark: ZEqnNum728493]	 	
Investigation on the potential energy of the nanoribbon-based structure is one of the efficient ways to understand its dynamic performance. Potential energy curves with different pre-strain and applied voltage are shown in Fig. 4, and the potential energy can be calculated as,

[bookmark: ZEqnNum876930]	 	
To show the potential energy of the buckled PZT nanoribbon-substrate structure at continuously varying pre-strains and voltages, Fig. 5 is plotted, obtained by using Eq. . Three discrete values of the pre-strains and voltages are chosen to show the potential energy of the buckled PZT nanoribbon-substrate structure, which are illustrated in Fig. 6a and Fig. 6b
 [image: ] [image: ]
Figure 5. The curved surface of the potential energy with varying pre-strains and voltages





In Fig.6a, the applied voltage is taken as . From Fig. 6a, it is easy to note that the locations of stable equilibrium points (, denoted by solid pentagrams) are away from the initial displacement, implying that the static buckling amplitude of the structure becomes larger and the stretchability of electronic devices is improved, when the pre-strain increases. In Fig. 6b, the pre-strain is set as . From Fig. 6a, it is also found that with the increasing applied voltage, the stable equilibrium points move far away from the initial displacement. When these results in Fig. 6a with those in Fig. 6b are compared, it can be found that the potential energy and the locations of stable equilibrium points are more easily affected by the pre-strain, which implies that the stretchability of PZT nanoribbon-substrate structure can be made much higher by increasing pre-strain than that by increasing voltage. 
Furthermore, when the applied voltage and pre-strain are greater than their corresponding critical values in Eq.  and Eq. , respectively, the PZT nanoribbon-substrate structure would buckle and the corresponding buckling amplitude is given in Eq. . The static buckling amplitude can be also obtained from a potential energy curve, and it is the abscissa of the lowest point (solid pentagrams) in Fig. 6b in [34].
[image: ][image: ]
(a) At different pre-strains					(b) at different voltages
Figure 6 Potential energy curves of nanoribbon (solid pentagrams represent the locations of stable equilibrium points)

To demonstrate the global dynamic performance of the buckled PZT nanoribbon-substrate structure, and to further illustrate the effects of continuously varying pre-strains and voltages on the potential energy of the buckled PZT nanoribbon-substrate structure, the energy barrier is calculated,

	 	



and Fig. 7 is plotted. From Fig. 7, it is easy to see that with the increase of the pre-strain and voltage, the energy barrier increases. In Fig. 7a, the applied voltage is taken as . In Fig. 7b, the pre-strain is set as .
[image: ][image: ]
Figure 7 Influence of the pre-strain and voltage on the potential barrier.


5.3 Time history and phase portrait 


Fig. 8 and Fig. 9 illustrate the dynamic behaviour of the piezoelectric nanoribbon substrate structure actuated by pre-strain and applied voltage. Fig. 8 shows the phase portraits at different pre-strains and voltages. Fig. 9 plots the time histories at different pre-strains and voltages. The initial magnitude is equal to 0.1 andis equal to zero. The damping ratio is 0.015 [43]. 
 [image: ][image: ]
(a) At different pre-strains 		                (b) at different voltages
Figure 8 Phase diagrams (solid circles and triangles represent the locations of stable equilibrium points)
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(a) At different pre-strains 	            (b) at different voltages
Figure 9 Time histories (lines with hollow circles and hollow triangles represent the lower and upper bounds for magnitudes)



Fig. 8a shows the phase portrait at different pre-strains, and Fig. 9a illustrates the corresponding time history. The applied voltage is taken as  in Fig. 8a and Fig. 9a. As illustrated in Fig. 3, the applied voltage  is greater than the critical voltage, the piezoelectric nanoribbon would wrinkle.


From Fig. 8a and Fig. 9a, it can be observed that the motion of the partly buckled structure is a non-periodic, the structure vibrates around the static buckling amplitude (line with solid circles and triangles); and as time progresses, the vibration magnitude would decrease to the static buckling amplitude . From Eq.  and Eq. , it is easy to see that these equations describe a weakly dissipative system, and these results could confirm the influences of the axial vibration and damping on the dynamic behaviour of the partly buckled structure, as inferred in Eq. . In addition, it is also noted that the greater the pre-strain, the greater the amplitude in static buckling, as inferred from Eq. .


Fig. 8b and Fig. 9b illustrate the influence of the applied voltage on the phase graph and the corresponding time history. In Fig. 8b and Fig. 9b, the pre-strain is set as , and this value is greater than the critical pre-strain, and thus this pre-strain can induce surface wrinkling, which indeed occurs. 

As shown in Fig. 8b and Fig. 9b, the presence of the applied voltage in Eq. , the greater the applied voltage, the greater the static buckling amplitude. As time goes by, the vibration of the buckled nanoribbon-substrate structure decays at low damping, and the damped vibration can be explained in Eq. . It may be predicted that the structure would become motionless after a long time, and the lower and upper bounds for magnitudes (line with hollow circles and triangles) decrease to the static buckling amplitude, where the upper and lower bounds of the vibration magnitude represent the minimum and maximum vibration magnitude. Furthermore, one can also find that the vibrations at these bounds are asymmetric. 


To further illustrate the mechanism of the buckled PZT nanoribbon-substrate structure, the curved surface of the potential energy with varying  and  is presented in Fig. 10.
[image: ]


Figure 10. Surface figure of the potential energy with varying  and 

From Fig. 10, it is found that the potential energy of the PZT nanoribbon-substrate structure has two symmetric potential wells. However, neither potential well is in a symmetric shape. Taking the damping into account, the intra-well vibration of the structure will decay and reach the steady state in the end. 
From the projection of the potential energy surface onto the horizontal plan in Fig. 10 and Fig. 8, within the same time, the displacement range of the lower bound is longer than that of the upper bound, which apparently means that the lower bound of the vibration attenuates faster than its upper bound. Additionally, one can find that Eq.  describes a time-varying Duffing oscillator that has a negative linear stiffness but positive nonlinear stiffness. So there are three equilibrium points and two potential wells, which can also be observed from Fig. 10. A certain level of the initial displacement can cause the vibration to grow before it decays to a limit cycle or zero. So the lower bound and upper bound are asymmetric due to the combined action of the negative linear stiffness and positive nonlinear stiffness. Both are important because if they are too big the nanoribbon would fail.

5.4 Vibration attenuation of the partly buckled structure
To highlight the respective influences of the pre-strain and applied voltage on the dynamic performance of the PZT nanoribbon-structure, and to show clearly the asymmetric bounds of the vibration magnitude in Fig. 9, Figs. 11 and 12 are plotted. In these two figures, the upper and lower bounds of the vibration magnitude of the structure are discussed.
As Eq.  is a nonlinear equation with damping, it is not so easy to get the analytical expressions for the lower and upper bounds. So the results are obtained by the proposed numerical method.
In order to quantitatively describe the attenuation of the vibration magnitude, a new parameter is introduced,

	 	 (5.7)



where  and  are the upper and lower bounds of the vibration, respectively.  is a to-be-determined coefficient, and it can be calculated by numerical fitting. 

[image: ]
Figure 11 Influence of the pre-strain on the lower and upper bounds for magnitudes


In Fig. 11, the effect of the pre-strain on the lower and upper bounds for vibration magnitudes is plotted. In Fig. 11, the applied voltage is set as . From Fig. 11, it is clear that with time going on, the upper bound decreases, and the lower bound increases. At the same pre-strain, the lower bound decays faster than that of the upper bound. At the same bound, the greater the pre-strain, the higher rate of the attenuation.


Fig. 12 illustrates the influence of the applied voltage on the lower and upper bounds for vibration magnitudes, and the pre-strain  used is . From Fig. 12, it is worth noting that at the same applied voltage, the lower bound decays more quickly than the upper bound. 
[image: ]
Figure 12 The upper and lower bounds at different applied voltages


Figure 13 presents the influences of the pre-strain and applied voltage on the attenuation coefficient. It is shown that, the applied voltage and the pre-strain have influences on the attenuation coefficient. The damping effect is considered, and the damping ratio is taken as 0.015 [43]. From Fig. 13, it is easy to see that the attenuation coefficient is smaller than that value. Two new terms have been introduced in Eq. , when the in-plane motion in Eq.  is considered. Hence, though the in-plane motion has a smaller influence on the dynamic behaviour of PZT nanoribbon-structure, for high frequency or other high dynamic performance nano-devices, the axial vibration can affect the mechanical behaviour. Furthermore, the pre-strain has a slightly larger influence on the attenuation coefficient, in comparison with that for the applied voltage.
[image: ]
Figure 13 The relationships of the attenuation coefficient with the applied voltage and the pre-strain

5.5 The basins of attraction 
Since Eq.  describes a second-order nonlinear dissipative differential system, it possesses a state space volume decreasing on average along the trajectory in the phase diagrams in Fig. 8a and Fig. 8b [48]. Thus, the orbit approaches an attractor with zero measure in the state space. For dissipative nonlinear dynamics, basins of attraction can be used to predict the future state for long time dynamics. Characterizing a basin of attraction can be useful for the design of robust nonlinear control strategy of wavy piezoelectric nanoribbon-substrate structure [49, 50]. 
To predict the response behaviour, the basins of attraction are analysed, depicted in Fig. 14 and Fig. 15. 
[image: ][image: ]


(a) At  	                      (b) at 
Figure 14 Basins of attraction of the buckled nanoribbon-structure with pre-strain (hollow circle represents the unstable point, and hollow triangles represent the stable points)





In Fig. 14, the effect of the pre-strain on the basins of attraction is plotted, and the applied voltage is taken as . From Fig. 14, one can find that there are two attractive stable equilibrium points  of the phase plane. It is clear that the greater the pre-strain, the further the locations of the stable equilibrium points away from the initial point [51]. In addition, the basin of attraction appears less deformed for larger pre-strain, which may imply that the structure of the basins of attraction with  is simpler than that at . Furthermore, it is interesting to note that the system which is described by Eq.  is not only dissipative but also bistable.


Fig. 15 illustrates the effect of the applied voltage on the basins of attraction, and the pre-strain is set as . Observing the basins of attraction in Fig. 14, it is easy to note that the stable equilibrium points are away from the initial point  when the applied voltage increases. In addition, compared the results of Fig. 15a with those in Fig. 15b, it is seen that the basin of attraction without the applied voltage appears more deformed than that with the applied voltage.
When the results in Fig. 14 are compared with those in Fig. 15, one can observe that the locations of the stable equilibrium points and the orbits approaching attractors with zero measure are much easier influenced by the pre-strain than those by the applied voltage. 
[image: ][image: ]


(a) At  	                      (b) at 
Figure 15 Basins of attraction of the partly buckled structure versus the applied voltage (hollow circle represents the unstable point, and hollow triangles represent the stable points)

The above results and the related discussion helps arrive at a good design of stretchable electronics in the form of a buckled nanoribbon-structure and their control.

6. Conclusions
In this work, we present a theoretical investigation on the dynamic responses of a nanoribbon-substrate structure as a major part of stretchable electronics devices. Either a pre-strain or a voltage is applied to produce wrinkled nanoribbons on the flexible substrate. To evaluate its dynamic performance, including the influences of the geometric nonlinearity and damping, its analytical model is established. By utilizing the energy method and extended Lagrangian principle, the nonlinear dynamic equation with damping is derived. The symplectic Runge-Kutta method is adopted to solve the corresponding damped ordinary differential equations. Several numerical examples are analysed to discover the influences of the applied voltage and the pre-strain of the elastomeric substrate on the mechanical behaviour of the partly buckled structure. From a series of numerical analyses, some key conclusions can be drawn as follows:
1. 
Surface wrinkling of the piezoelectric nanoribbon-substrate structure can be induced by the applied voltage and the pre-strain. From a comparison of the way of actuation by the voltage with that by the pre-strain, it is found that the pre-strain easily induces a surface wrinkling mode. The locations of the stable equilibrium points move far away from the original point, when either the applied voltage or the pre-strain increases.
2. The partly buckled structure vibrates around the static buckling amplitude. Because of the damping, as time progresses, the vibration magnitude decreases to the static buckling amplitude. In addition, at the same pre-strain, the greater the applied voltage, the greater the static buckling amplitude; and the lower bound of the vibration magnitude attenuates faster than the upper bound. At the same applied voltage, the greater the pre-strain, the greater the static buckling amplitude and the lower bound of the magnitude is damped more quickly than the upper bound.
3. At the same bound, the greater the pre-strain, the higher the rate of the attenuation; the greater the applied voltage, the faster decay the vibration magnitude. Furthermore, compared with the applied voltage, pre-strain can influence the basins of attraction much more easily.
The present study provides a good understanding for the controlled buckling behaviour of the PZT-nanostructure and the dynamic performance of novel piezoelectric nanostructured devices. The findings should be useful in designs of stretchable electronic devices.
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Figure 2 A schematic of the partly buckled piezoelectric nanoribbons with a substrate
Figure 2 Comparisons of the absolute errors of the Hamilton energy 
Figure 3 Bifurcation diagram of the partly buckled structure versus the voltage (lines with solid triangles and solid circles represent the stable equilibrium points from different surface mode; line with hollow squares represents the unstable equilibrium points)
Figure 4 Bifurcation diagram of the partly buckled structure versus the pre-strain (lines with solid triangles and solid circles represent the stable equilibrium points from different surface mode; line with hollow squares represents the unstable equilibrium points)
Figure 5 The curved surface of the potential energy with varying pre-strains and voltages
Figure 6 Potential energy curves of nanoribbon (solid pentagrams represent the locations of stable equilibrium points)
Figure 7 Influence of the pre-strain and voltage on the potential barrier
Figure 8 Phase diagrams (solid circles and triangles represent the locations of stable equilibrium points)
Figure 9 Time histories (lines with hollow circles and hollow triangles represent the lower and upper bounds for magnitudes)


Figure 10 Surface figure of the potential energy with varying  and 
Figure 11 Influence of the pre-strain on the lower and upper bounds for magnitudes
Figure 12 The upper and lower bounds at different applied voltages
Figure 13 The relationships of the attenuation coefficient with the applied voltage and the pre-strain
Figure 14 Basins of attraction of the buckled nanoribbon-structure with pre-strain (hollow circle represents the unstable point, and hollow triangles represent the stable points)
Figure 15 Basins of attraction of the partly buckled structure versus the applied voltage (hollow circle represents the unstable point, and hollow triangles represent the stable points)
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