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Abstract 

Redundant design has become the commonly used technique for ensuring the reliability of complex 

systems, which calls for great concern to common cause failure problems in such systems. Incomplete 

data in combination with vague judgments from experts introduce imprecision and epistemic 

uncertainties in the performance characterization of components. These issues need to be taken into 

account for assessing the system reliability. In this paper, a comprehensive reliability assessment 

method is presented by adopting the concept of survival signature to estimate the reliability of complex 

systems with multiple types of components. Particular attention is devoted to common cause failures 

(CCFs), which are modeled and quantified by decomposed partial α-decomposition method. 

Uncertainties caused by incomplete data for CCF events are reduced by hierarchical Bayesian inference. 

The component importance measure is enhanced to assess the importance of various possible CCF 

scenarios and to identify their potential impact on system reliability. The presented method is used to 

analyze the reliability of a dual-axis pointing mechanism for communication satellite, which is a 

commonly used satellite antenna control mechanism. The engineering application demonstrates the 

effectiveness of the method.   
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1. Introduction 

Redundant design has become one of the critical measures to ensure the high reliability and long 

lifetime requirement of large complex systems, such as nuclear systems [1]-[3], aerospace 

systems[4][5], etc., especially for nonrepairable systems[6]. Common cause failure (CCF), which is 

failure or degradation of multiple components that triggered by shared causes [7], has become the 

dominating type of dependent failure in modern complex system. CCFs can lead to a decrease of 

system reliability, which is critical in view of the original intention of improving system reliability by 

redundant design. Dependent failure and CCF have attracted a large number of concerns in past 

decades. In the early stage, the CCFs modeling was introduced for probability safety assessment (PSA) 

of systems in nuclear industry, explicit and implicit methods have proposed for modeling of CCF [8]. 

Many parametric models such as the basic parameter model, β-factor model, α-factor model, etc. have 

been developed for quantification of CCF parameters. Hokstad and Rausand [9] presented a review and 

trends of CCF modeling in 2008, especially focused on the development of the β-factor model and its 

extension.  

After the aforementioned CCF quantification parameter models have been proposed, 

comprehensive work on CCF modelling and evaluate the effect of CCFs is devoted to system reliability. 

O’Connor summarized the CCF quantification models and proposed an extended α-factor model and a 

general dependency model based on a Bayesian network (BN) for system risk and reliability 

assessment [10][11]. Some extension works have been implemented to integrate the effect of CCF with 

other impact factors, such as uncertainties, on system reliability. Mi et al. [12][13] proposed an 

evidential network (EN)-based method and a Belief universal generation function (UGF)-based method 

for reliability analysis of complex multi-state systems (MSSs) with CCF and epistemic uncertainty.  Le 

Duy and Vasseur [1] put forward a new practical method of modelling multi-unit CCFs in a nuclear 

PSA context. To further investigate the influence of coupling causes on CCFs and system reliability, 

Zheng et al. [14] proposed a α-factor decomposition method to combine the coupling common cause 

information in traditional models. Troffaes et al. [15] presented a robust Bayesian approach to 

modelling epistemic uncertainty in α-factors. Zubair and Amjad [16] used an α-factor model and Bayes 

theory to calculate and update the system unavailability with consideration of CCF. Recently, George-

Williams, et al. [17] has investigated the sensitivities of multiple component failure modes to system 

survivability, and the critical common cause component group can be identified. However, this 
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sensitivity work performed till common-cause component groups level, and did not drill down to the 

vaiours CCF event and common cause layers. Therefore, all those works investigated the relationship 

between CCFs with system reliability without distinguishing various scenario of CCFs which are 

caused by several coupling common causes. It is necessary to find a proper method to model the 

system reliability with different CCF modes and quantify the importance of various CCF scenario to 

system reliability. 

Except for the classical reliability modeling methods, i.e. binary decision diagram (BDD) [18][19], 

fault tree (FT) model [20], Bayesian networks (BNs) [21][22] etc., survival signature has been 

proposed by Coolen and Coolen-Maturi [23] based on the concept of system signature [24], as an 

effective method for system reliability modeling especially for redundant systems with multiple types 

of component groups. Furthermore, they quantified the uncertainty and dependability of a system with 

several kinds of components, where the lifetime follows different distributions, by survival signature 

[25]. When CCFs are considered in system, this research included an investigation of CCFs with non-

parametric predictive inference method for system reliability [26]. Moreover, an efficient simulation-

based reliability analysis method was proposed by Feng et al. [27] for complex non-repairable systems 

following CCFs. Some other extension works are presented by Liu et al. [28][29] to analyze stress-

strength reliability (SSR) and dynamic SSR of systems with multiple types of components based on 

survival signature. Survival signature has the prominent advantage that can separate the structure of 

system from the failure time distribution of its components, and provides a better way to integrate the 

CCFs and imprecise into system survival function with less time consuming.  

In association with system reliability analysis, component importance analysis is useful for system 

design, reliability improvement and system control. Depending on the purpose of the analysis, a 

number of different importance measures have been defined. The most commonly used importance 

measures address structural importance, probability importance and critical importance. Birnbaum [30] 

categorized importance measures into three classes, including structural importance measures, 

reliability measures and lifetime importance measures. Kuo and Zhu [31] gave a review of reliability 

importance measures. Wei et al. [32]-[34] published a comprehensive review on variable importance 

analysis, and performed considerable work on importance analysis of structural system. Feng et al. [35] 

integrated the modelling advantage of survival signature, presented a new component importance 

measures and quantified the effect of impression on the system survival function. Further, Eryilmaz et 
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al. [36][37] reported considerable developments on joint reliability importance for all kind of systems 

under several complex system characters, and proposed an extension on marginal and joint reliability 

importance based on survival signature. Although the research achievements on importance measures 

are considerable, most of the works are concentrated on the components importance measure. For the 

importance analysis of CCFs, Guey [38] gave a review of the state-of-the-art of CCF analysis methods, 

from the sensitivity study of CCF parameters, a conclusion that prevention of CCFs is more important 

than other analysis technical was given. To solve the problem that how to prevent CCFs, Pan and 

Nonaka [39] was firstly extended the importance analysis method to the field of CCF analysis, and 

attempted to find a better time and resources allocation strategy for system reliability analysis. Kamyab 

[40] et al. performed sensitivity analysis and estimated the importance measures of software CCFs, 

through this method, the specific contribution of software CCF in the trip failure probability can be 

revealed. All those works did not distinguish the various CCF types caused by different coupling 

common causes, there is not yet a proper method to identify the importance of CCF events associated 

with common causes to system reliability.  

Synthesis above works, for complex system with various kinds of redundant mechanisms, such as 

aerospace system which always consist of components which belong to different types, CCFs are of 

great importance in reliability evaluation of such systems. There are mainly three problems within the 

above research works: (1) several coupling common causes will lead to various CCF scenarios which 

increase the modeling difficulty. For instance, when system reliability is modeled by fault tree or 

Bayesian network, the relationship between failure causes and events should be analyzed, then the 

basic common cause events or nodes should be added, which increases the size and complexity of 

models. (2) Evaluate the system reliability with consideration of CCFs, especially caused by several 

coupling factors, is time consuming. After the modeling of CCFs in system reliability model, the 

computing of minimal cut sets for fault trees and the reasoning of Bayesian networks will take much 

more time corresponding to complex model structures. (3) The research on importance of CCF events 

caused by different causes needs to further investigate, especially when influenced by other factors, 

such as missing data, uncertain information, etc. Therefore, it is necessary to perform reliability and 

importance analysis on system susceptible to CCFs with various scenarios. The importance measure of 

CCFs would help engineers to find the most significant factor and most efficient defence strategies 

against CCFs.  
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In this paper, we aim for advancement in this direction and propose a comprehensive system 

reliability and importance analysis method that quantifies information and uncertainty of CCF effects 

driven by the coupling mechanisms in the system. The remainder of this paper is organized as follows. 

Section 2 presents the problems to be addressed in this paper. Then, a comprehensive system reliability 

analysis approach will be proposed in Section 3. In this section, a decomposed partial α factor model is 

deduced, system reliability model, the importance of components and CCF events are developed based 

on survival signature. Reliability evaluation and importance analysis of an aerospace subsystem with 

consideration of dependent failure and coupling causes are discussed in Section 4. Section 5 gives a 

brief conclusion as well as directions for future work. 

2. Problem statement 

This paper considers the problem of evaluating the reliability and CCF importance of complex 

redundant system with incomplete data. For most of the situations, it is possible to observe the total 

frequencies of common cause and CCF events occurrence by experiment or engineering statistics, but it 

is not easy to investigate the exact common cause of one particular CCF events. This causes an 

uncertainty challenge for CCF analysis in engineering system, especially when estimating the 

parameters of CCF models. The importance measure of interest in this paper has two levels of meaning, 

including the importance of components and importance of different common cause scenarios. Both of 

them will be analyzed with respect to the comprehensive system reliability. The assumptions for the 

problem are listed as follows [39][41]. 

1) The system and components are binary, and only have two states: complete work or failed.  

2) The occurrences of different coupling common causes are mutually s-independent, and each 

cause has two states: appear or disappear. 

3) Each component can be affected by multiple common causes. When no common cause exists, 

the failures of components are mutually s-independent.   

4) A hypothetical database includes common cause occurrence frequencies and CCF events 

occurrence frequencies is given.  

3. Comprehensive system reliability analysis approach 

3.1 Methodologies overview 

In redundant system, because there are several types of components and the number of each type 

of components are more than one, one impact factor always can cause two or more than two 
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components with the same type fail simultaneously. So, the common cause failures (CCFs) must be 

considered in such systems.   

There are existing several kinds of CCF models which can be preliminarily divided into four 

categories including direct estimates, ratio models, shock models and interference models. The most 

commonly used category of models in engineering practice is ratio models, which can be estimated by 

specific collected failure data base and success data is not required. On most simple and popular model 

named β factor model, which was proposed by Fleming in 1975 [42], has been widely used in all kind 

of engineering practice outside the nuclear industry. This model ignores the size of common cause 

component groups and only use one parameter β to express the common cause part. When it is used in 

practice, β factor always defined as a real number which usually between 0.01 to 0.3, it makes this 

model has a strong dependence on expert’s experience which brings subjective uncertainty in systems. 

The α factor model, which was first proposed by Mosleh and Siu in 1987 [11], is another famous ratio 

model for CCF modeling. Various multiplicities of failure can be modeled by a series of α factors 

which can be directly calculated from observed failure data. Some extension models are also proposed 

based on β factor model and α factor model. In this paper, in order to measure the impact of different 

CCF modes and various coupling factors on reliability of whole system, α factor model and 

decomposed partial α factor model will be introduced in Section 3.2.1. 

Survival signature, which was proposed by Coolen and Coolen-Maturi in 2012 [23], has proved to 

be an efficient method for system reliability analysis, especially for redundant systems with multiple 

types of components and multiple lifetime distributions. Survival signature has the prominent 

advantage that can separate the structure of system from the failure time distribution of its components 

[35]. This provide an effective way to deal with the system with imprecise failure time of components, 

the details can refer from Ref. [35]. In this paper, the survival signature method is introduced to 

integrate CCFs into system reliability model, the detail will be illustrated in Section 3.2.2 

3.2 Proposed comprehensive reliability analysis approach 

3.2.1 Common cause failure modeling with incomplete data 

3.2.1.1 α factor model extension for common cause failure modelling 

(1) Global α factor 
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In this section, the α factor parameter model is introduced to quantify the CCFs in system. Global 

α factors are defined as fractions of failure probability for particular groups of components without 

consider the common causes. 

For systems with several redundant components, a failure event ratio-based model called α factor 

model has become a popular quantification model for CCFs. All components which may fail 

simultaneously by one common cause can be classified within the same common cause component 

group (CCCG). For the system with K types of components and the k-th type of components are 

grouped in a CCCG with mk components, the common cause factor km
jα represents the frequency of 

there are j (1 kj m≤ ≤ ) components failing within this CCCG. Then the α factors can be defined and 

estimated using the following maximum likelihood estimator, 

 
-1

1

ˆ =
kk

k k k

k

mm
jm m m

j j j m
j total

n
n n

n
α

=

 
=  
 
∑   (1) 

where km
jn is the number of failure events with j  (1 kj m≤ ≤  ) components failing within a CCCG with 
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=∑ . km
jn can be calculated by the weighted impact vector method [12][43], which can further 

reflect the multiple failure modelling ability of the α factor model. Besides, the ability of integrating 

experts’ judgments of system and past data makes α factor model be a more proper parameter model in 

practice engineering than other parameter models, such as β factor model can only get an approximate 

scope by engineering experiences. 

For staggered test data, when km
totalQ  is the total probability of failure accounting for both the CCF 

and the independent failure, the probability of a common cause basic event involving failure of k 

components in the CCCG of mk components can be calculated by, 
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For non-staggered test data,  
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(2) Gamma factor: Risk-significance measurement of common causes 

Assume that there are w coupling factors representing common causes can lead to failure of a 

component, and all causes have the ability to propagate within CCCGs. In order to represent the 

portion of system failures which have the potential to propagate through common causes, the Gamma 

factors are introduced and the maximum likelihood estimate for a Gamma factor of common cause iC  

(1 i w≤ ≤ ) is [11] 

 
( ) ( )

( )
, ,

,1

=
k

k

m
k i i i total i total

i wm
totalk i totali

P X C P C n n
E E

nP X n
γ

=

    = =      ∑
  (4) 

where km
kX  is the failure event of component type k, ,i totaln  is the total number of failure events caused 

by coupling factor i , and totaln  is the total number of failure events in the whole system. From the 

definition of  iγ  in Eq.(4), it is obvious that the iγ  have practical engineering meaning; they represent 

the occurrence rate of common cause i  over the occurrence of all causes. That is there are 100%iγ ×  

failures generated by cause i  among all failures. This index can be used to measure the risk-

significance of various causes [14]. 

(3) Decomposed partial α factors 

The inchoate α factor model only considers the concept of an impact vector and cannot make full 

use of information about failure causes. The record of failure causes for a single failure data has 

provided the opportunity to model the influence of common causes for CCCGs. Then the α 

decomposition method and partial α factor model was developed to assess the events and 

comprehensively considering the knowledge of failure causes [10][14][16] . 

When there are w coupling factors or shared causes which all have a potential to induce the failure 

of a CCCG with mk components, the partial α factor ,
km

i jα  is the portion of system failure events, which 

includes j  (1 kj m≤ ≤ , 1 k K≤ ≤ ) failure components resulting from the i -th (1 i w≤ ≤ ) failure cause 

(coupling factor). ,j in  is the number of failure events which resulted in j  ( 1 j m≤ ≤ ) component 

failures by coupling factor i . Then the maximum likelihood estimation of the partial α factor model is 
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provides ,k jFM  is the failure event of component type k caused by coupling factor j; ,i totaln  is the total 

number of failure events caused by coupling factor i . The partial α factor represents the probability of 

a failure to propagate to other components which in the same CCCG through a particularly common 

cause. ,
km

i jα  is a risk characteristic of possible causes which also represent different CCF triggering 

abilities.  

Figure 1 shows the decomposition of global α factors and representation of partial α factors. The 

global α factors are affected by decomposed partial α factors and coupling causes. 

System Failure DataSystem Successful Data

Comp.T1 ... Comp.Tk Comp.TK...

FMk,1 FMk,j FMk,mk......
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...
...

α1,mk 

αi,mk 

αw,mk 

...
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αi,1 

αw,1 

...
...

... ...
 C1: γ1

 Ci : γi

 Cw: γw

AFM

PAFM

Global α Factors

De
-composed 
α Factors

Common 
Causes

 
 Figure 1  Global α factors decompose into partial α factors 

For a component km
kX  in CCCG k, the probability of component can be expressed by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 ...k k k km m m m
k k k k w wP X P X C P C P X C P C P X C P C= + + +   (6) 

And the probability of component caused by cause 1 (C1) can be expressed as the sum of different 

failure mode caused by cause 1, which is 

 ( ) ( ) ( ) ( )1 ,1 1 ,2 1 , 1...k

k

m
k k k k mP X C P FM C P FM C P FM C= + + +   (7) 

Then, from Eqs. (5)-(7), the relation among decomposed α factors for common cause i can be 

further deduced and 
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 The probability of the j-th failure mode (j components fail in k-th CCCG) is 
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Because ( ) ( ), / k km m
k j k jP FM P X α=  , the Eq. (9) can be written as the following equation when 

both sides are divided by  ( )km
kP X ,  
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The following simple form of global α factors km
jα can be considered as weighted averages of all 

decomposed partial α factors ,
km

i jα , and can be obtained by taken Eq.(5) into Eq. (10), 
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Then, a common cause matrix km
CCCGM is defined to represent the effect degree of different 

common cause on each failure mode in a common cause component group with km  components of 

type k . 
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When the Gamma factors are packed into matrix [ ]1,..., ,...,i wγ γ γ=γ  , a global common cause 

matrix km
CCCG′M will be gotten and  
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For example, for a common cause group with 4 components, there are two coupling causes, for 

each cause, the collected failure data vectors are [ ]1 45,6,2,3=I and [ ]2 35,4,3,2=I , then the Gamma 

factors can be calculated as ( ) ( ) [ ]1 2=56/ 56+44 , =44/ 56+44 = 0.56,0.44γ γ=   γ , and the decomposed 

partial α factors are calculated as, 

 1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

45 / 56 6 / 56 2 / 56 3 / 56
35 / 44 4 / 44 3 / 44 2 / 44CCCG

α α α α
α α α α

= = = = 
=  = = = = 

M   (14) 
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Then the global α factor matrix CCCG′M  of the CCF of common cause group will be calculated by 

Eq. (13) and 

 
[ ]

[ ]
= 0.45+0.35 0.06+0.04 0.02+0.03 0.03+0.02

= 0.8 0.1 0.05 0.05
CCCG CCCG′ = ×M γ M

  (15) 

And the former matrix CCCG′M can be split into two matrix based on coupling causes, and for cause 

1 and 2 the partial α factor matrixes are [ ]0.45 0.06 0.02 0.03  and [ ]0.35 0.04 0.03 0.02  

respectively.  

3.2.1.2 Hierarchical Bayesian inference with incomplete data 

In this section, a standard Bayesian inference approach is used to reduce the epistemic uncertainty 

caused by incomplete data in decomposed α factor estimation. Different data sources of CCF failure 

events and coupling causes occurrence can be combined by a Bayesian regression model and obtained 

posterior distributions so that a result with less uncertainty. The detail two-stage hierarchical Bayesian 

inference process is shown in Figure 2.  
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Prior

Hyper Variable

[ ]T k

 

 

   

   

[ ]=1iδ ,: ~ ( )i kC m
i j iddirichα δα

,1
[ ] ( [ ]) [ ]k

w m
i ji

j r i T kθ α
=

= ×∑θ:

[ ]: ~ ( )km
j ddirich jα θα

: ~ ( , [ ])km
jt dmulti T kαt

( )1
iCπ α

( ),iCpθ θ α r

( ), ,iCpα α α r θ

( )tp t α

( ) ( )2 2, , , , , di iC Cπ π= ∫α r θ t α α r θ t α ( ) ( )2 2, , , , , di i iC C Cπ π= ∫α r θ t α α r θ t α

( ) ( ) ( ) ( ) ( )2 1, , , , , ,i i i iC C C C
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Figure 2 Hierarchical Bayesian inference process 

The prior distributions for decomposed partial α factors ,
km

i jα  are modelled by noninformative 

distributions. A precise Dirichlet distribution with all parameters iδ  equal to 1 is most commonly 

chosen as the prior distribution which is conjugate to multinomial likelihood 

( , [1: ]~ ( [1: ])km
i j k km ddirich mα δ ). The global α factors km

jα   is also assumed as a Dirichlet distribution 

( [1: ]~ ( [1: ])km
j k km ddirich mα θ ). Then through updating the Dirichlet prior with observed data, the 

posterior distribution can be obtained, which is still a Dirichlet distribution [14][44]-[46]. The data of 

CCF events t  is assumed as a multinomial distribution ( [ ,1: ]~ ( [ ,1: ], [ ])km
k j kt k m dmulti k m T kα  , [ ]T k  
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is the total failure events in k-th CCCG). The Bayes’ theorem for decomposed partial α factors can be 

given by 

 ( ) ( )
( )

( ) ( )
( )

1

2

, , ,, , , ,
, , ,

, , , , , ,

i ii

i

C CC
C

LP

P P

π
π = =

r θ α t α αα r θ α t
α r θ α t

r θ α t r θ α t
  (16) 

where r , α  and iCα  are the vectors of the common causes’ occurrence rates, global α factors and 

decomposed partial α factors, respectively. ( )1
iCπ α  is the prior distribution for decomposed partial α 

factors ,
km

i jα ,  2π  is the posterior distribution, and ( ), , , iCL r θ α t α  is the likelihood of parameters. The 

posterior joint probability density can be written as 

 ( ) ( ) ( ) ( ) ( )2 1, , , , , ,i i i iC C C C
tp p pα θπ π∝α α r θ t t α α α r θ θ α r α   (17) 

where ( )tp t α  is likelihood function, ( ), ,iCpα α α r θ  is called prior distribution and ( , )iCpθ θ α r  is 

hyper prior distribution. Based on Eqs. (6)-(11), the parameters in the hyper prior distribution 

( , )iCpθ θ α r  can be expressed by decomposed partial α factors and occurrence rates, which can be 

represented as ,1
[ , ] ( [ , ]) [ ]k

w m
i ji

k j r k i T kθ α
=

= ×∑ . Therefore, the marginal density of global α factors and 

decomposed partial α factors can be computed  

 ( ) ( )2 2, , , , , di iC Cπ π= ∫α r θ t α α r θ t α   (18) 

 ( ) ( )2 2, , , , , di i iC C Cπ π= ∫α r θ t α α r θ t α   (19) 

Finally, the posterior distribution of decomposed partial α factors and global α factors can be 

calculated. All the calculation of hierarchical Bayesian inference is conducted by OpenBUGS version 

3.2.3, the detailed script for this inference process can refer to Ref. [14]. 

3.2.2 Comprehensive system reliability modeling by survival signature with common cause failures 

In [27], Feng et al. had proposed a simulation method to analyze system reliability with CCFs, this 

section proposes a simple theoretical method for system reliability analysis with consideration of CCF 

for redundant systems. The CDF of type k component is assumed to be ( )kF t , which can be obtained 

from independent experimental data in the design stage. Thus, it is reasonable to consider the original 

CDF of the component as the independent part of the component failure probability. The dependent 

part of failures is caused by external environmental; the interior component ageing; the design, 

manufacturing, and installation quality; and human errors, etc. [12]. The corresponding weighted 
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impact vector of different impact factor can be calculated by the stress strength interference (SSI) 

model and the classical life distribution of components, which have described in Ref. [12] in detail. 

Furthermore, based on the definition of the α factor model, the total failure probability of each 

component with consideration of CCF will be  

 ( ) ( ) ( ) ( ) ( )
-1 -1

, 1 1

1
=

1 1
k kk m m

k CCF k k

m
F t F t F tα α

− 
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  (20) 

And the failure probability of a common cause event with j components failure will be 
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  (21) 

Then, the Eq. (20) can be further derived by the following process, 
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Based on the definition of survival probability in Ref. [23] and [35], the survival probability of the 

k-th CCCG with ( )kC t   ( ( )k kC t l= ) components working at time t  can be expressed as the following 

equation, and this is based on the assumption that the failure components of different type are 

independent.  

 ( ){ }( ) ( ) ( ), ,, 1k k km l mk
k k k CCF k CCF

k

m
P C t l CCF F t F t

l
− 

   = = −     
 

  (23) 

Based on the definition of survival signature in Ref. [23], the system survival function with CCF 

can be extended and will be expressed as,  
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 (24) 

where ( )1,..., Kl lΦ  is the survival signature of system. The survival signature defines the probability 

that the system functions when lk of its mk components of type k function, where 0,1,...,k kl m=  for 

1,...,k K= . It can be defined by the following equation [23][25][26] 
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where ( )
1 ,..., 1,...,

Km m Kr l l  denotes the total number of path sets for a system with kl  components of 

type k working, and  1 k K≤ ≤ .  Then, combining Eqs. (23) and (25) with Eq.(24), the system survival 

probability can be computed.  For this purpose, to calculate the system survival signature and reliability 

with high efficiency, a number of methods are available. The most advanced developments in this 

regard the R package “ReliabilityTheory” [47] and the sampling approach proposed in [48]. An 

alternative approach to compute the exact signature for systems with reduced computation time was 

proposed by Reed [49], based on reduced order binary decision diagrams (ROBDDs). 

Using the numerical example shown as the Fig. 2 in Ref. [35]. The 6 components are grouped into 

to two CCCGs by the type of components. The lifetime distribution of each type of components is 

assumed to follow exponential distribution, and ( ) 0.8
1 1 tF t e−= −  , ( ) 1.6

2 1 tF t e−= − . 

For component type 1 (X11, X12, X13), the corresponding α factor are assumed and 1
1 0.8,α =  

1
2 0.1,α =  1

3 0.1α = ; and for type 2 components, 2
1 0.9,α =  2

2 0.05,α = 2
3 0.05α = . Then the survival 

function of system with CCF and without CCF can be gotten by Eqs. (24) and (25) which is shown in 

Figure 3. From Figure 3 we can see that the survival function is reduced by consideration of CCF, 

which means CCFs have remarkable influence on system reliability, it is necessary to take into account 

of CCFs when analyzing system reliability. 

 
Figure 3 Survival function of sample system 

3.2.3 Importance analysis 

3.2.3.1 Importance of component to system 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

S
ur

vi
va

l F
un

ct
io

n

 

 

System survival function
 (without CCF)
System survival function
 (with CCF)

14 
 



 

For estimating the importance of component i at time t in the system, Feng et al. proposed the 

Birnbaum’s measure-based relative importance index [27][30], which can be used to identify the most 

critical components for system reliability, and this relative importance index can be expressed as, 
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Take the components in Section 3.2.2 as an example, the procedure of computing the importance 

of 23X  can be illustrated as following steps: 1) 23X  is set to be functioning, replace 23X  by a forward 

path in the system reliability diagram, calculate the system survival signature and expressed as 

( )
23 =1 1 2,X l lΦ  ; 2) 23X  is set to be failed, 23X  should be taken away, and the path  should be 

disconnected in system reliability diagram, the system survival signature will be expressed as 

( )
23 =0 1 2,X l lΦ  . Then based on the definition of relative importance index in Eq. (26) the importance of  

23X  can be calculated by 

 
( ) ( ) ( )

( ) ( )( ) ( ){ }
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∑∑
 (27) 

Similarly, the relative importance indexes of all components in this example can be calculated and 

shown in Figure 4(a), when CCF are considered in this system, the importance of components can be 

shown as Figure 4(b). In order to shown the difference between importance of components with 

consideration of CCF and without CCF, the importance of 13X  is shown in Figure 5.  
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(a)                                                                         (b) 

Figure 4  Importance of components (a) without CCF; (b) with CCF 

 
Figure 5 Importance of component X13 

3.2.3.2 Importance of common cause failure to system 

In order to measure the effect of two or more components on system performance, the time 

dependent joint reliability importance (JRI) is induced to measure the joint contribution of common 

cause event to system reliability. And based on Ref. [37] the JRI of two components is defined as 

 
( ) ( ) ( )

( ) ( )
, , ,

, ,

s i j s i j

s i j s i j

JRI i j P T t T t T t P T t T t T t

P T t T t T t P T t T t T t

= > > > − > > ≤

− > ≤ > + > ≤ ≤
  (28) 

where, 0JRI > means one component will become more important when the other is functioning;  

0JRI = means the importance is unchanged; and 0JRI < means one component will become less 

important when the other is functioning. This definition can straightforwardly be extended to several 

common cause events. In this paper, only the effect of common causes to the same types of 

components are considered, which means the failure of different type of components are assumed to be 

time independent.  

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Im
po

rta
ce

 o
f c

om
po

ne
nt

s

 

 
Importance of X11
Importance of X12
Importance of X13
Importance of X21
Importance of X22
Importance of X23

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

t

Im
po

rta
nc

e 
of

 c
om

po
ne

nt
s 

w
ith

 C
C

F

 

 
Importance of X11
Importance of X12
Importance of X13
Importance of X21
Importance of X22
Importance of X23

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

Im
po

rta
nc

e 
of

 X
13

 

 
without CCF
with CCF

16 
 



 

On the basis of definition of JRI and RI, in order to further identify the potential impact of 

different various possible CCF scenarios on the system reliability, the relative importance index of 

CCF events can be defined as, 
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where,  

( ) ( )( ) ( ) ( ){ }
1

1

2

1=0, 0 10 0 0
, = ... ... ,...,

k K
k k

m mk k
i j

k K

mm m K
m m

CCF s i j K k kx x kl l l
P T t T x t T x t l l P C t l

−

= =
= = =

 > ≤ ≤ Φ = 

∩


∑ ∑ ∑   (30) 

Here, only the CCFs that occur in the same type of components are considered. That is, the 

failures of different type of components are still assumed to be independent of one another.  

4. Case study 

4.1 System description：Dual-axis pointing mechanism for communication satellite 

As a key part of realizing the large scope of satellite antenna rotation and high precise positioning, 

dual-axis positioning mechanism is prone to fail, therefore, its reliability analysis is of a great 

significance. According to different functions, the entire dual-axis positioning mechanism can be 

divided into two subsystems: the transmission system and the control system. The transmission system 

achieves accurate positioning of satellite antenna system through adjusting the direction of the pitch 

axis and azimuth axis. Each axis is mainly composed of a motor, a reducer, and the shafts. The proper 

control voltage transmits to stepper motor and drives shaft to rotate, then the force and torque go 

through a harmonic reducer, and drive the antenna to rotate around the corresponding axis to the 

predetermined angle. After precise direction adjustment of pitch axis and azimuth axis, the accurate 

positioning of whole satellite can be performed. According to the basic operating principle and the 

structure of the transmission system, the reliability block diagram can be expressed as a parallel-series 

structure and shown in Figure 6. Each axis consists of stepper motor, drive shaft, and harmonic reducer 

which are in series. In this paper, the pitch axis and azimuth axis are simplified as parallel units, i.e. 

one axis failure does not cause the failure of the entire system [42]. 
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Figure 6 The reliability block diagram of transmission subsystem 

Since the pitch axis and the azimuth axis of the positioning mechanism are in a parallel structure, 

the relationship between the states of the two sets of components (A1 is the state of the pitch axis, A2 is 

the state of the azimuth axis) and the system state (X) is as follows: the failure of both sets of 

components will cause the failure of the whole transmission system. If one set of components is failed 

and the other is partially failed, the system is failed too. The system is working properly only when at 

least one of the two sets of components are working perfectly.  

The control system is responsible for the movement control of dual-axis pointing mechanism, 

including power supply subsystem, operation circuit and control computer. Those three parts are 

modeled as series in system reliability block diagram. In order to improve the system reliability, 

standby strategies are generated in these subsystems. The power supply components are composed by 

one main component and two hot-standby components. The operation circuit and control computer use 

the cold-standby strategy, which are both including one main component and one standby component. 

Based on above structure and function analysis, the reliability block diagram of control subsystem of 

dual-axis pointing mechanism can be obtained and shown in Figure 7. 
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Figure 7 The reliability block diagram of control subsystem 

4.2 Reliability and importance analysis 

In order to simply the problem, in this section, the dual-axis pointing mechanism is supposed to be 

static system, which means the standby strategies are translated into a series and parallel structure. The 

resulting representation of the dual-axis pointing mechanism system with 6 types of components are 

shown in Figure 8. Due to the complexity of the dual-axis positioning mechanism of satellite antenna 
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and the shortage of data, the prior probability of each type of components at mission time 3000t h=  

are given based on experience [42]. When there are two common cause factors to make the components 

with the same type failure, the data of 6 CCCGs including the occurrence of causes and CCF events are 

listed in Table 1. Based on the partial α factor model introduced in Section 3.2.1, when lifetime 

distributions of components are assumed to be exponential distribution, then the failure rates of 

components and CCF model factors can be calculated and listed in Table 2.  
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Figure 8 System static logic block diagram 

Table 1 Database of CCF events 

Component type 
(CCFGs) 

Common cause frequency CCF event frequency 
Cause 1 Cause 2 Total single 2_Comp. 3_comp. 

Type 1 (X11, X12) 14 (70%) 6 (30%) 20 19 1 / 
Type 2 (X21, X22) 4 (40%) 6 (60%) 10 9 1 / 
Type 3 (X31, X32) 11(55%) 9 (45%) 20 19 1 / 
Type 4 (X41, X42, X43) 8 (80%) 2 (20%) 10 18 1 1 
Type 5 (X51, X52) 3 (30%) 7 (70%) 10 9 1 / 
Type 6 (X61, X62) 12 (60%) 8 (40%) 20 19 1 / 

Table 2  Components lifetime distribution parameters 

Comp. type Dist. type Dist. Para. (10-7) CCF Para. MCCCG 
1 Exp 1.00015 {0.95,0.05} 
2 Exp 2.33415 {0.9,0.1} 
3 Exp 2.00060 {0.95,0.05} 
4 Exp 1.33360 {0.9,0.05,0.05} 
5 Exp 1.16687 {0.9,0.1} 
6 Exp 3.00135 {0.95,0.05} 

Based on the Bayesian inference approach which introduced in Section 3.2.1, the estimated global 

α factors and decomposed partial α factors for each type of components can be obtained by using the 

database of CCF events in Table 1. The posterior distributions for decomposed partial α factors are 

summarized and listed in Table 3, and the risk-significance of two common causes are also listed in 

this table. Figure 9 represents the standard deviations of global α factors for each type of components 

(CCCGs), the standard deviations of global α factors without cause information is larger than that with 

consideration of causes information. It is clear that the uncertainty in the model parameter estimation 

has been reduced by integration of all kind of information, including failure occurrence rate, failure 

coupling causes etc. 
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Table 3 Posterior distributions for decomposed partial α factors 

Posterior ,i jα  Mean SD 2.5% Median 97.5% 

alpha.c1[1] 0.8841 0.06343 0.7387 0.8931 0.979 
alpha.c2[1] 0.8149 0.09607 0.6017 0.8254 0.9665 
alpha.c1[2] 0.07816 0.05661 0.003541 0.06764 0.213 
alpha.c2[2] 0.1439 0.08889 0.0111 0.1325 0.3432 
alpha.c1[3] 0.03771 0.02984 0.001891 0.0307 0.1136 
alpha.c2[3] 0.04122 0.03879 0.00113 0.0299 0.1436 
γ.c1 0.57778 γ.c2 0.42222 
 

 
Figure 9 Comparison of uncertainty in global α factors 

To analyze the system reliability, firstly, when CCFs are not considered in this system, the system 

survival function can be calculated with the data presented in Table 1. Then we analyze the system 

survival function with consideration of CCFs in all CCCGs. Furthermore, CCF and coupling causes are 

both taken into account, the system survival function is updated by the renewed global α factors for 

each CCCGs, and the results of those three conditions are shown in Figure 10. The reliability of this 

aerospace subsystem is decreased with CCF, which means CCF has significant influence on the system 

reliability. After implementing coupling cause information in the α factors model, the reliability of the 

system experiences a little decrease. Considering cause information can lead to a relatively 

conservative result of the system reliability analysis. Without considering CCF and coupling causes, 

the reliability of system would be estimated with a much more optimistic result, which leads to a 

potential hazard for the whole system, which is particularly critical for an aerospace system with high 

requirement of reliability and long lifetime. 
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Figure 10  Survival function of aerospace subsystem 

The importance of each type of components without CCFs can be computed by Eq. (26), as shown 

in Figure 11(a). Figure 11(b) represents the importance of all types of components under CCFs. The 

ranking of component importance is 

 ( 2) ( 3) ( 1) ( 5) ( 6) ( 4)RI Type RI Type RI Type RI Type RI Type RI Type> > > ≈ >   (31) 

As shown in Figure 11, the importance of component type 4 stays at a low level. This is because 

there are two hot-standby power supply components, they both have lower importance in the entire 

system, and the change of their reliability will don’t have obvious influence on the reliability of whole 

system. The importance ranking of all type of components can give correct and effective guidance for 

system renewal design. In order to clearly present the effect of CCFs to component importance, 

importance of component type 3 and 4 before and after considering CCFs are extracted and shown in 

Figure 12(a) and (b), respectively. We can see that when the CCFs and coupling causes information are 

both considered, the importance of components will lead to an adjustment but remain in the original 

trend. 

  
(a)                                                                         (b) 

Figure 11 Importance of components (a) without CCFs; (b) with CCFs 
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(a)                                                                         (b) 

Figure 12 Importance of components (a) Type 4; (b) Type 3 

Then based on the definition of importance of CCFs to the system in Section 3.2.3, the importance 

of various of CCFs can be computed, see Figure 13. All kinds of CCF events have crucial importance 

in the system except component with type 4. The reason is that there are 2 hot-spare components for 

the main component type 4. Even when a common cause leads to a two-components failure event, one 

spare component remains functioning to keep the system working properly. The ranking of CCF 

importance for different types of components is approximately 

 
( 2) ( 3) ( 1) ( 5)

( 6) ( 4 _ 2) ( 4 _ 3)
CCF CCF CCF CCF

CCF CCF CCF

RI Type RI Type RI Type RI Type
RI Type RI Type RI Type

> > >
≈ > >

  (32) 

By contrast, it is obvious that the ranking of CCFs importance for different types of CCCGs is 

almost the same as the component’s importance ranking. Figure 14 represents the comparison of 

various CCFs’ importance with and without cause information. Under all information we have gotten, 

failure causes information has unconscious effect on importance of CCFs, but has relative obvious 

influence on importance of components. However, the uncertainty of CCFs could be reduced with 

rational use of all kinds of information. 
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Figure 13 Importance of various CCFs to system without cause information 

 

 
Figure 14 Comparison of CCFs’ importance with and without cause information 

To reflect the computing efficiency of the comprehensive method in this paper, the Bayesian 

network method[50] is used as a comparison method. To avoid the impact of different factors on 

computation time, these two methods are both coded by Matlab R2016b 64-bit (win64), and running on 

the same computer under all the same operating conditions. The computing time of system survival 

function by this comprehensive met9hod is 5.86s, while the time consuming by Bayesian network is 

18.48s. Besides, for the calculation time of various CCF events importance by the proposed method 

and Bayesian network are 17.37s and 27.49s, respectively. From this, we can conclude that this 

comprehensive method is less time consuming and has relatively high efficiency. 
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5. Conclusion  

This paper proposed an effective method for reliability evaluation of redundant system based on 

survival signature and α factor model. CCF events are modelled by the α factor parameter method 

which is only focused on the occurrence frequencies of CCF events. A Gamma factor is introduced to 

quantify the risk-significance of a set of possible common causes. The α-decomposition method and 

partial α factors are developed to determine the CCF triggering ability of various coupling causes. 

However, due to the lack of available failure data, unknown uncertainties always exist in the CCF 

parameters evaluation process. A Bayesian inference method is adopted to reveal the combination of 

critical failure events, and the renewed global α factors for the whole system can be obtained with 

reduced uncertainty.  

The system reliability and the component importance are formulated and analyzed by survival 

signature method. This paper special focus on the importance of various CCF events to system 

reliability, and give a definition of CCF importance based on relative joint importance of components. 

Finally, with a case, system reliability of an aerospace subsystem (the dual-axis pointing mechanism 

which is a commonly used satellite antenna control mechanism for communication satellite) is 

evaluated considering failure frequencies and coupling cause. The importance of components and CCF 

events is also investigated and ranked. The result shows that the reliability will be too optimistic 

compared with system under uncertainty and dependent assumption, which will lead to an 

overestimation of system reliability. The ranking of importance could help to perform maintenance 

actions of repairable systems, but for non-repairable systems such as aerospace systems, this result will 

also give rational guidance for the renewal design. However, the quantification of uncertainty in system 

hasn’t been accurately measured, these imprecision and epistemic uncertainties can be expressed by 

different forms of survival function with optimization algorithm will be an avenue in future work. 
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