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Abstract 4 

Close modes are not typical subjects in operational modal analysis (OMA) but they do occur in 5 

structures with modes of similar dynamic properties such as tall buildings and towers. Compared to 6 

well-separated modes they are much more challenging to identify and results can have significantly 7 

higher uncertainty especially in the mode shapes. There are algorithms for identification (ID) and 8 

uncertainty calculation but the value itself does not offer any insight on ID uncertainty, which is 9 

necessary for its management in ambient test planning. Following a Bayesian approach, this work 10 

investigates analytically the ID uncertainty of close modes under asymptotic conditions of long data 11 

and high signal-to-noise ratio, which are nevertheless typical in applications. Asymptotic expressions 12 

for the Fisher Information Matrix (FIM), whose inverse gives the asymptotic ‘posterior’ (i.e., given 13 

data) covariance matrix of modal parameters, are derived explicitly in terms of governing dynamic 14 

properties. By investigating analytically the eigenvalue properties of FIM, we show that mode shape 15 

uncertainty occurs in two characteristic types of mutually uncorrelated principal directions, one 16 

perpendicular (Type 1) and one within the ‘mode shape subspace’ spanned by the mode shapes 17 

(Type 2). Uncertainty of Type 1 was found previously in well-separated modes. It is uncorrelated 18 

from other modal parameters (e.g., frequency and damping), diminishes with increased data quality 19 

and is negligible in applications. Uncertainty of Type 2 is a new discovery unique to close modes. It is 20 

potentially correlated with all modal parameters and does not vanish even for noiseless data. It 21 

reveals the intrinsic complexity and governs the achievable precision limit of OMA with close modes. 22 

Theoretical findings are verified numerically and applied with field data. This work has not reached 23 

the ultimate goal of ‘uncertainty laws’, i.e., explicitly relating ID uncertainty to test configuration for 24 

understanding and test planning, but the analytical expressions of FIM and understanding about its 25 

eigenvalue properties shed light on possibility and provide the pathway to it.   26 
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1 Introduction 29 

Modal identification (ID) aims at identifying the in-situ modal properties, e.g., natural frequencies, 30 

damping ratios and mode shapes, of a structure based on vibration data [1][2][3]. ‘Well-separated’ 31 

modes, i.e., a single mode dominating its own resonance band, are typical but ‘close modes’ do 32 

occur. The latter are often referred as modes whose natural frequencies are so close that their 33 

resonance bands overlap, e.g., visually in the power spectral density (PSD) or singular value (SV, i.e., 34 

eigenvalue of PSD matrix) spectrum of data. Figure 1 gives an example of triaxial ambient 35 

acceleration data recorded on a tall building roof. The resonance band indicated by the horizontal 36 

bar contains two close modes that are translational in nature.  37 

 38 

Figure 1 Root PSD and root SV spectrum of triaxial acceleration data on tall building roof. In the 39 
root PSD plot, the top two lines are x and y, bottom line is z. Bar below peak shows band for 40 
modal ID 41 

Close modes most typically occur in various forms of tower having two or more horizontal axes of 42 

symmetry, e.g., tall buildings [4][5], telecommunication (guyed) masts and freestanding lattice 43 

towers [6], cylindrical chimneys [7][8], space launchers [9] and lighthouses [10]. For tall buildings the 44 

stiffness and mass properties along two principal directions can be very similar by design, whereas 45 

for the other structures symmetry and resultant close modes is a natural consequence of the 46 

structural form adopted to fulfil their function against environmental (usually wind) loads. 47 

Identifying close modes is important for these structures because they are the effect of subtle 48 

differences in stiffness and mass distribution within the almost symmetric structure. Close modes 49 

can be found by chance in other structures, such as suspension bridges, e.g., Humber Bridge [11] 50 

where closeness of torsional and vertical mode frequencies can affect in-wind dynamics by 51 

aeroelasticity. 52 
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Unlike well-separated modes, close modes are much more challenging in terms of prediction, ID 53 

formulation, computational algorithm and ID uncertainty. Theoretically, for modes with identical 54 

frequencies, only the subspace spanned by their mode shapes, i.e., ‘mode shape subspace’ (MSS), 55 

rather than the individual ones can be uniquely determined. This is because any linear combination 56 

of mode shapes with identical frequencies satisfies the same eigenvalue equation and hence is also a 57 

mode shape.  Mode shapes with close frequencies have high sensitivity especially within the MSS to 58 

perturbations in structural properties [12][13]. A higher order MAC (modal assurance criterion) was 59 

defined for close modes in terms of their MSS [14]. The entangling of modal dynamics renders 60 

intuition about their behaviour somewhat obscured. In operational modal analysis (OMA) that aims 61 

at modal ID based on output-only data, well-separated modes can often be identified with reliable 62 

quality from data with reasonable signal-to-noise (s/n) ratio but the same is not true for close modes. 63 

Identified mode shapes are inevitably limited to the measured DOFs (degrees of freedom) and so 64 

they need not be orthogonal. Many OMA methods only calculate ‘operational deflection shapes’ for 65 

close modes from matrix decomposition (so necessarily orthogonal) rather than the ones in 66 

structural dynamics theory. Identifying the mode shapes of close modes requires resolving their 67 

coordinates with respect to (w.r.t.) the orthogonal basis spanning their subspace, which are 68 

entangled with other modal properties and require sophisticated iterative algorithms, e.g., [15].  69 

Significant variability especially in the identified mode shapes can occur from data sets of apparently 70 

similar quality. This is often attributed to the sensitivity to underlying properties, e.g., [16] (Section 71 

5.3.3) and [17]; but the authors are not aware of any direct account of ID uncertainty. Calculating ID 72 

uncertainty for given data is another level of sophistication beyond ID algorithm, for which methods 73 

are available depending on the particular modal ID algorithm adopted, e.g., Stochastic Subspace 74 

Identification [18][19][20] and Bayesian OMA (BAYOMA) [21][22]. However, the values of the 75 

uncertainty bounds do not allow one to understand ID uncertainty and how it depends on the test 76 

configuration. The latter aims add to yet another level of challenge that appears intractable, 77 

considering the already high sophistication in the ID and uncertainty calculation algorithms; and may 78 

not even be possible depending on the intrinsic nature of the problem. Remarkably, recent BAYOMA 79 

research on well-separated modes [23] reveals the possibility of insightful asymptotic expressions 80 

for the ID uncertainty in terms of test configuration for long data, small damping and high s/n ratio, 81 

which are nevertheless typical in applications. Such expressions are collectively referred as 82 

‘uncertainty laws’.  83 

This work takes on the challenge of developing uncertainty laws for close modes. It has not reached 84 

the level of insight that has been achieved for well-separated modes but it reports two milestones 85 
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that are critical to the development and reveal the existence of mathematical beauty. The first 86 

milestone is the high s/n asymptotic expression for the Fisher Information Matrix (FIM) explicitly in 87 

terms of modal properties in the problem; inverting the FIM gives the asymptotic ID uncertainty 88 

(Section 4). The second milestone is the discovery of mutually uncorrelated principal directions of 89 

mode shape uncertainty through analytical study on the eigenvalue properties of the asymptotic FIM, 90 

reducing the complexity of problem so that it does not grow with the number of measured DOFs. 91 

These contributions will be explained qualitatively in Section 2 and technically in Section 5 after 92 

overview of theoretical framework in Sections 3 and 4. Section 6 outlines the theory that establishes 93 

the first milestone with details provided in Sections 13 to 15. Sections 7 and 8 deliver the second 94 

milestone. The theoretical findings are verified and applied in Section 10. The paper is concluded in 95 

Section 11. To facilitate reading, Table 1 lists the abbreviations used in this work.  96 

Table 1. Abbreviations used in this work 97 

Short Long 

BAYOMA Bayesian Operational Modal Analysis 

c.o.v. Coefficient of variation 

DOF Degree of freedom 

FFT Fast Fourier Transform 

FIM Fisher Information Matrix 

i.i.d. Independent and identically distributed  

ID Identification 

MAC Modal assurance criterion 

MPV Most probable value 

MSS mode shape subspace 

OMA Operational Modal Analysis 

PSD Power spectral density 

s/n signal-to-noise 

SV Singular value 

w.r.t. with respect to 

2 Key findings in qualitative terms 98 

To have an appreciation of key discoveries, consider modal ID of m  close modes with ambient 99 

triaxial data, i.e., the number of measured DOFs is 3n . The basic assumptions in the ID model (as 100 

in BAYOMA) include linear dynamics with classically damped modes, stationary modal excitations 101 

with constant PSD matrix within resonance band and stationary noise, independent and identically 102 
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distributed (i.i.d.) among measured DOFs with a constant PSD within the resonance band. Data is 103 

assumed to be sufficiently long in the sense that the number of FFT points in the resonance band is 104 

large compared to 1 (see Section 4); and has high s/n ratio (see (47)). Figure 2 conveys the new 105 

knowledge generated. In each case, the big arrow pointing from the origin (black dot) shows the 106 

mode shape iφ  normalised to have unit length. The smaller arrows at the larger arrow tip show 107 

different directions of ID uncertainty. The case of 1m  (well-separated modes) represents what is 108 

currently understood [23]. In this case the uncertainties are all along directions perpendicular to the 109 

mode shape. There are 213 mn  such directions, depicted by y and z in the figure; the 110 

plane in red covers all possible directions. There is no uncertainty along the mode shape direction 111 

because the length is constrained to 1. The uncertainties along the y and z direction are uncorrelated. 112 

They are not correlated with other modal properties (e.g., frequency, damping) either. Their size 113 

diminishes with increased data quality and vanishes for noiseless data. In applications it is typically 114 

small and not of concern.  115 

 116 

Figure 2 Directions of mode shape uncertainty (small arrows at big arrow tip) for 3n  measured 117 
DOFs and different number of close modes m . Uncertainty along small red arrows (Type 1) is 118 
perpendicular to mode shape subspace (MSS) and vanishes for noiseless data. Uncertainty along 119 
small blue arrows (Type 2) is within MSS and prevails even for noiseless data. See also Figure 3. 120 

The cases for 2m  and 3  are close modes, where the new knowledge contributes to. In this case 121 

there are two types of uncertainties, one perpendicular to the mode shapes (Type 1) and the other 122 

within the plane or space they span (Type 2). When 2m , the two mode shapes 1φ  and 2φ  span 123 

over the blue plane (2-D) and there is only one direction (z) perpendicular to it. In addition to the 124 

small red arrow, there is now uncertainty within the blue plane, denoted by the small blue arrow 125 

along the tangential direction of the unit circle. So far recognising these two types of uncertainty 126 

may appear to be mere geometry. The new discovery is that the uncertainties along the two small 127 

red arrows are of a similar nature as their counterpart for 1m , i.e., not correlated with other 128 
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modal properties and diminish with increased data quality. More remarkable is the uncertainty 129 

along the small blue arrows. It is uncorrelated from the uncertainty of the red arrows but is generally 130 

correlated with all other modal properties. It prevails even for noiseless data and hence represents 131 

the achievable ID precision unique to OMA of close modes. When 3m  the mode shapes span over 132 

a 3-D space and there is no direction perpendicular to all mode shapes (so no red arrows). All 133 

uncertainties are along the small blue directions within the MSS. 134 

The above picture is for illustration only. The theory developed in this work applies to general n  and 135 

m  with no regards to spatial context; and the uncertainties can be quantified with analytical 136 

expressions (see Table 2). It is applicable regardless of how close the modes are. All statements will 137 

be established mathematically in the context of Bayesian inference and asymptotics. Up to 138 

modelling assumptions of classically damped dynamics and stochastic stationary data, the limit on ID 139 

uncertainty is what can be best achieved regardless of the modal ID method adopted, because a 140 

Bayesian approach processes information from data consistent with probability and modelling 141 

assumptions.      142 

3 Bayesian OMA 143 

The Bayesian OMA framework adopted in this work is briefly reviewed here. Consider making 144 

Bayesian inference of the properties of classically damped vibration modes based on (output-only) 145 

ambient vibration data at n  DOFs of the subject structure. Without loss of generality, assume that 146 

digital acceleration data 1
0}{ 


N
jjx  ( 1n ) is measured, from which the ‘scaled’ Fast Fourier 147 

Transform (FFT) can be calculated 
Njk

j
N
jk eNt /21

0/2 i
x


 F , where t  (sec) is the 148 

sampling interval and k  is the FFT index at frequency tNkk  /f  (Hz). The FFT (the sum) has been 149 

scaled by Nt /2  so that the expectation ][ *
kkE FF  (‘*’ denotes complex conjugate transpose) 150 

gives the one-sided PSD matrix of data. Only the scaled FFT within a selected resonance band 151 

covering the modes of interest is used for modal ID, which is found to play a balance between ID 152 

precision (information from bands off resonance is negligible) and modelling error (ID results are 153 

immune to activities outside resonance band) . 154 

Within the resonance band the scaled FFT of data is modelled as kiki
m
ik ξφ   1F  where m  is 155 

the number of modes; kξ  ( 1n ) is a vector of data noise, assumed to be i.i.d. among different DOFs 156 

with a common PSD eS  within the resonance band (so only band-limited white); iφ  ( 1n ) is the  157 
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mode shape, real-valued because the mode is assumed to be classically damped; ik  (scalar) is the 158 

scaled FFT of modal acceleration response, whose time-domain counterpart satisfies (omitting 159 

dependence on time) iiiiiii p  22  ; ii f 2  (rad/sec) and if  is the natural 160 

frequency (Hz), i  is the damping ratio, ip  is the modal force (per unit modal mass). Strictly 161 

speaking, the noise PSDs at different DOFs are never the same because no two data channels are 162 

identical. The BAYOMA framework so far has assumed a common noise PSD as it is found to 163 

significantly simplify mathematics, allowing development of fast algorithms for posterior statistics. 164 

Experience reveals that the ID results (both most probable value and ID uncertainty) of other modal 165 

parameters (the main interest) are insensitive to violation of this assumption unless the s/n ratio is 166 

low and the noise PSDs differ by several orders of magnitude. This is also consistent with the 167 

uncertainty law for well-separated modes where for high s/n ratios the noise PSD is asymptotically 168 

uncorrelated from the remaining parameters [23]. The modal forces m
iip 1}{   are assumed to be 169 

stochastic stationary with a constant PSD matrix S  ( mm  Hermitian and positive definite) within 170 

the resonance band (so only band-limited white). The modal properties to be identified comprise 171 

m
iif 1}{  , m

ii 1}{  , S , eS  and ],...,[ 1 mφφΦ  .  Accounting for its Hermitian nature, S  has 2m  172 

parameters: m  for the real diagonal entries and )1( mm  for the complex-valued lower off-173 

diagonal entries. In total there are mnmmnmmm  22 )1(1  parameters, subjected to 174 

m  unit norm constraints on the mode shapes.  175 

Given the scaled FFT as data, the ID results are encapsulated in the ‘posterior’ (i.e., given data) PDF 176 

(probability density function) of modal parameters, which is proportional to the product of the 177 

likelihood function and prior PDF. Assuming long data, the scaled FFT can be shown to follow a 178 

(circularly symmetric) complex Gaussian PDF. The likelihood function is then equal to )exp( L  179 

where kkkkfnNL FF 1*||lnln  EE  is the negative log-likelihood function; ||   denotes 180 

the matrix determinant; the sums without index are over all k  in the resonance band for modal ID 181 

(same notation throughout this work); 182 

ne
T

kk S IΦHΦE            (1) 183 

is the theoretical PSD matrix of data that depends on the modal parameters; nI  is the nn  identity 184 

matrix; 185 
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],...,[ 1 mφφΦ     ||||/ iii φφφ    i
T
ii φφφ 2||||   (2) 186 

is the normalised mode shape matrix; kH  is the theoretical mm  PSD matrix of modal response 187 

whose ),( ji -entry is *
jkikij hhS  where )]2()1/[(1 2

ikiikikh  i  is the frequency response 188 

function between the modal force ip  and modal acceleration i ; kiik f f/ . Leakage has been 189 

neglected in (1) as it is asymptotically small when the data duration is long (in the sense 1fN , 190 

see Section 4), which is assumed in the study of uncertainty laws and holds in typical cases where 191 

the ID uncertainty is under control. Empirically, a value of fN  in the order of a few tens (e.g., 30) 192 

may be considered sufficiently large for this purpose. In situations when leakage is significant there 193 

will be modelling error which is not accounted by the present study or existing uncertainty laws. See 194 

Section 10.2.6 of [18] for a discussion of this issue. 195 

OMA data is often sufficiently long that prior information is irrelevant and hence the prior PDF is 196 

assumed to be uniform. The posterior PDF is then directly proportional to the likelihood function. It 197 

can be well-approximated by a Gaussian PDF (w.r.t. modal parameters). The mean, or equivalently 198 

‘most probable value’ (MPV) of the posterior PDF maximises the likelihood function, or equivalently 199 

minimises the negative log-likelihood function. The covariance matrix of the Gaussian PDF, i.e., 200 

‘posterior covariance matrix’, is equal to the inverse of the Hessian of the negative log-likelihood 201 

function at the MPV. An efficient algorithm (referred as BAYOMA) applicable for multiple (possibly 202 

close) modes has been developed which allows Bayesian OMA to be performed typically in a matter 203 

of seconds; see [22] for original work and Chapter 13 of [21] in consolidated form. See [24]-[27] for 204 

some recent applications.  205 

4 Long data asymptotics 206 

The Bayesian approach in the last section allows one to calculate the ID uncertainty of modal 207 

properties for a given data set but it does not offer any insight on how it depends on the test 208 

configuration or environment. One way to do that is to introduce a ‘frequentist’ assumption that the 209 

data indeed corresponds to some ‘true’ modal properties and study the behaviour of the posterior 210 

covariance matrix under some asymptotic yet realistic conditions such as long data and high s/n 211 

ratio. The resulting expressions are collectively referred as ‘uncertainty laws’. For globally 212 

identifiable problems such as OMA, it has been found that the asymptotic behaviour of the posterior 213 

covariance matrix is intimately related to the Fisher Information Matrix (FIM) [28]. For long data 214 

( 1fN ) the leading order of the posterior covariance matrix C  is equal to the inverse of the FIM, 215 
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i.e., )]/1([1
fNO 

IJC , where I  denotes the identity matrix, )/1( fNO  is the remainder 216 

that depends on data and is of the order of fN/1 ; fN  is the number of FFT points in the 217 

selected band, equal to the product of bandwidth and data duration. The matrix J  is the FIM, equal 218 

to the expectation of the Hessian of negative log-likelihood function evaluated at the ‘true’ 219 

parameter values and assuming that the scaled FFT data is indeed distributed as the likelihood 220 

function. As the scaled FFT is complex Gaussian, it follows from a standard result in multivariate 221 

statistics [29] that the entry of FIM corresponding to generic parameters x  and y  is given by 222 

][
)(1)(1 y

kk
x

kkxy trJ EEEE
          (3) 223 

where )(tr  denotes the trace of a square matrix, i.e., sum of diagonal entries; the superscript ‘ )(x ’ 224 

denotes a derivative w.r.t. x . On the other hand, it should be noted that, with some abuse of 225 

notation, in the FIM, the parameter symbols in the expression represent the ‘true’ value of 226 

properties rather than the dummy variable in Bayesian inference. That is, the FIM is a function of the 227 

true parameter values and not the data (which has already been averaged in the expectation). 228 

It should be noted that the ID uncertainty in this work (as in BAYOMA) refers to that implied by the 229 

posterior PDF of modal parameters in a Bayesian context. The connection with frequentist concept 230 

lies only in the additional assumption that the data indeed follows a distribution for some ‘true 231 

values’ of modal parameters. This assumption is introduced only for the study of uncertainty laws (to 232 

understand uncertainty). It is not involved in the modal identification process where uncertainty for 233 

a given data set is calculated (but whose value provides no understanding). Detailed discussion of 234 

the meaning and interpretation of uncertainty in Bayesian and frequentist sense can be found in [28] 235 

and Section 9.6 of [21]. 236 

5 Key theoretical findings 237 

Developing insights into ID uncertainty requires analytical investigation of FIM and its inverse to give 238 

the asymptotic posterior covariance matrix as the uncertainty law, if possible, in the form of explicit 239 

closed form expressions that link with test configuration and environment. This has been 240 

accomplished for well-separated modes but turns out to be very challenging for close modes. As the 241 

first key contribution of this work, we obtained asymptotic expressions for the FIM for high s/n ratio 242 

( 0eS ). The results are summarised in Table 2. When 1m , it gives the same expressions for 243 
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well-separated modes that have been previously obtained; see Table 16.1 in Section 16.1.1 of [21]. 244 

In Table 2,  245 

TT
n ΦΦΦΦIQ

1)(           (4) 246 

)()( 1 T
iin

TT

nm
i φφIΦΦΦQ  



  



















 mmnm

i

Q

Q

Q 
1

2

][    (5) 247 

ie  is a 1m  zero vector except for the i th entry equal to 1; ][ T
ijee  denotes a 22 mm   matrix 248 

whose ),( ji -partition is T
ijee ; :Φ  is the ‘vectorisation’ of  Φ , i.e., a 1mn  vector obtained by 249 

stacking the columns of Φ  column-wise. In the derivation, it has been assumed that the mode 250 

shapes are linearly independent (but not necessarily orthogonal) and modal forces are not perfectly 251 

coherent (i.e., S  non-singular), for otherwise the modal ID problem degenerates. The derivation will 252 

be outlined in Section 6 with details postponed to Section 13 (appendix) for xyJ  ( },,{, Sfyx  ), 253 

exSJ  and 
eSeSJ ; and to Section 14 and 15 (appendices) for 

ixJ φ , 
ieSJ φ  and ::ΦΦJ . Their 254 

asymptotic correctness will be verified in Section 10.1. 255 

As the second (but no less important) key contribution of this work, based on Table 2, we investigate 256 

analytically the eigenvalue properties of ::ΦΦJ , the full FIM J  (i.e., comprising all parameters) and 257 

hence the high s/n asymptotic posterior covariance matrix. We found that the eigenvectors of the 258 

full FIM, and hence the asymptotic covariance matrix, comprise three types induced by those of 259 

::ΦΦJ  that carry independent and distinctive influence on ID uncertainty. They are summarised in 260 

Table 3; the definitions of N , M  and M  in the table will become apparent in Section 7. 261 

Theoretical details can be found in Section 8. The theoretical findings will be illustrated in Section 10 262 

using synthetic and field data. 263 

As a remark, for well-separated modes a fundamental definition of s/n ratio that directly affects ID 264 

uncertainty is the PSD ratio of modal response to noise at the natural frequency [23]. In this case 265 

high s/n ratio refers to the case when this ratio is large compared to 1. For close modes the present 266 

work has not yet concluded a fundamental definition for s/n ratio with the same success mentioned 267 

above. The condition 0eS  was given earlier as a simple limit condition to qualify for the 268 

theoretical results. See also (47) that is a dimensionless but more involved condition that can 269 

potentially lead to a definition in the future useful for quantifying ID uncertainty for close modes. 270 
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When applying the asymptotic results for cases with clearly different channel noise PSDs, one may 271 

use a value of eS  with a representative order of magnitude, e.g., the geometric mean of channel 272 

noise PSDs. 273 
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Table 2 Asymptotic expressions for FIM for high s/n ratio. ‘ S,,, fyx  ’ denotes that x  and y  are frequency, damping or real/imaginary part of 274 

auto/cross PSDs, i.e., those affecting the PSD matrix of modal response kH . See (4) for Q  and (5) for iQ ; ie  and :Φ  are explained thereafter; ][ iQ  275 

denotes a block diagonal matrix containing the iQ s and ][ T
ijee  denotes a 22 mm   matrix whose ),( ji -partition is T

ijee .    276 

 S,,, fyx   eS  mφφ ,...,1  

S,,, fyx   ][~
)(1)(1 y

kk
x

kkxy trJ HHHH
  ])[(~ 1)(11  

k
x

kk
T

exS trJ HHHΦΦ  ik
x

k
T
i

mn
ixJ QHHeφ )(Re2~ 1)(

1





  

eS   2)(~  efeSeS SmnNJ  ik
TT

i

mn
ieSJ QHΦΦeφ )(Re)(2~ 11

1





  

mφφ ,...,1  Symmetric  )2(
::

)1(
:::: ~ ΦΦΦΦΦΦ JJJ

mnmn




 

QHΦΦ   )(Re2 1)1(
:: keSJ  

  ][][)(Re][2
)2(

:: i
T
ijf

T
kk

T
i NJ QeeHHQΦΦ  
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Table 3 Eigenvalue properties of full FIM J ; MSS = mode shape subspace; assume mode shapes 277 

},...,{ 1 mφφ  appear in the last mn  entries of the full set of modal parameters; see Table 4 for 278 

definitions of N , M  and M  279 

Type Eigenvalues Eigenvectors  Remark 

0 m  zero eigenvalues Of the form ];[ b0  where b  is in 

N  and is given by 

















































mφ

φ

φ

,...,, 2

1

  

- arise from norm constraints 

on mode shapes;  

- carry no ID uncertainty 

1 )( mnm   

eigenvalues, equal to 

i  (multiplicity 

mn ), mi ,...,1  

Of the form ];[ b0  where b  is in 

M  and is given by ji ba  , 

mi ,...,1 ; mnj  ,...,1 ; 

m
ii 1}{ a  are eigenvectors of 

keS H Re2 1
 with eigenvalues 

m
ii 1}{  ; mn

jj

1}{b  are the 

)( mn  eigenvectors of Q  with 

eigenvalue 1 

- induce ID uncertainty of 

mode shape perpendicular to 

MSS 

- induce no ID uncertainty in 

other parameters 

- found previously in single 

mode 

- induced uncertainty vanishes 

for noiseless data, negligible 

for high s/n ratio 

2 
)1()1( 2  mmm  

eigenvalues, equal to 

those of the 

eigenvalue problem 

BxxJ c  in (25)   

Of the form ];[ baθ  , where 

Uαb   is in M ; U  contains a 

basis for M ; ];[ αax   is 

eigenvector of the eigenvalue 

problem BxxJ c  in (25) 

- induce ID uncertainty of 

mode shape within MSS; 

- correlated with ID 

uncertainty of other 

parameters; 

- not found in single mode, 

new discovery unique to close 

modes; 

- induced uncertainty does not 

vanish for noiseless data, can 

be significant regardless of s/n 

ratio 
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6 Outline of derivations 280 

The FIM in (3) is a generic expression that does not tell how it depends on modal properties, which 281 

can be very complicated in general situations. In this section we outline the derivation of the explicit 282 

expressions for the FIM in Table 2, which are asymptotically correct for high s/n ratio, i.e., as the 283 

noise PSD 0eS . The first step is to approximate the inverse of ne
T

kk S IΦHΦE   in (1) by 284 

a Taylor expansion for small eS . For this purpose, one should not take T
kk ΦHΦE ~  because 285 

T
kΦHΦ  is rank deficient. One proper way is to use the matrix inverse lemma [30][31] to obtain  286 

)( 111 T
knek S ΦPΦIE
           (6) 287 

where 288 

1 ke
T

k S HΦΦP           (7) 289 

Assuming mn   and the columns of Φ  are linearly independent, ΦΦ
T

 ( mm ) has full rank and 290 

so ΦΦP
T

k ~  is a legitimate 0th order approximation. However, it turns out that this does not give 291 

the correct approximation for 
1

kE  w.r.t. parameters affecting kH . Up to second order,  292 

1111 )]()([)(~   ΦΦεΦΦεεΦΦΦΦP
T

k
T

kk
TT

k   1 kek S Hε   (8) 293 

Substituting into (6) gives 294 

  
order 2nd

11

order1st 

1

order0th 

11 )(~ RεΦΦεRRεRQE k
T

k
T

ek
T

eek SSS        (9) 295 

where TT
n ΦΦΦΦIQ

1)(   was defined in (4); and   296 

TT
ΦΦΦR

1)(            (10)  297 

The matrices Q  and R  appear frequently in the derivation and their properties are worth-noting. 298 

First, mIΦR   and 0Ru   for any u  orthogonal to the ‘mode shape subspace’ (MSS), i.e., space 299 

spanned by mode shapes 
m
ii 1}{ φ . The matrix Q  is a zero mapping in the MSS and an identity 300 

mapping in the orthogonal complement of MSS. The zero mapping can be seen from 0ΦQ  . The 301 

identity mapping can be seen from 0uΦ T  for any u  orthogonal to MSS. These properties imply 302 

that Q  has m  zero eigenvalues with an orthogonal basis of eigenvectors in the MSS. The remaining 303 

mn  eigenvalues are all equal to 1 with an orthogonal basis of eigenvectors in the orthogonal 304 

complement of the MSS.  305 

 The derivatives in (3) w.r.t. different groups of parameters are given by  306 
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Tx
k

x
k

ΦHΦE
)()(

  ( S,,fx  )   n
eS

k IE 
)(

    (11) 307 

)()()( ri
k

T
k

riri
k


 ΦHΦΦHΦE        (12) 308 

where ri  denotes the ),( ir -entry of Φ . Using (9) and (11), considering the leading order terms 309 

and simplifying gives xyJ , 
exSJ  and 

eSeSJ  in Table 2 ( },,{, Sfyx  ). Details can be found in 310 

Section 13. For the entries in FIM related to mode shapes, using (12), considering the leading order 311 

terms and simplifying gives (see Section 14 for details):  312 

][Re2~
)(1)( ri

k
x

krix trJ


  ΦRHH       S,,fx   (13) 313 

])[(Re2~
)(11 ri

k
T

rieS trJ


  ΦRHΦΦ        (14) 314 

)2()1(~ xyxyxy JJJ          Φyx,  (15) 315 

where ‘ Φyx, ’ denotes that x  and y  are entries in Φ ; and  316 

])(Re[2 )()(1)1( Ty
k

x
exy trSJ ΦHΦQ        Φyx,  (16) 317 

][Re2][2 )()(1)()()2( Ty
k

x
k

Tyx
fxy trtrNJ ΦHΦRHRΦRΦR

   Φyx,  (17) 318 

To express in more explicit form, the derivative )( ri
Φ  from (61) in Appendix I of [22] is used:  319 

T
ir

T
iini

ri
m

riri eeφφIφφφΦ )(||||][ 1)()(
1

)(
        (18)   320 

Substituting (18) into (13) to (17), considering the leading order term, simplifying and assemblying in 321 

matrix form gives the final expressions of 
ixJ φ , 

ieSJ φ  and ::ΦΦJ  in Table 2. See Section 15 for 322 

details.  323 

7 Principal subspaces of mode shape uncertainty 324 

The eigenvalue properties of the high s/n asymptotic FIM in Table 2 will be investigated analytically 325 

in Section 8. For this purpose, some important concepts are reviewed/introduced in this section. The 326 

mode shape iφ  of a particular mode i  is an 1n  vector in the n -dimensional Euclidean space, 327 

denoted by 
nR . The mode shape subspace (MSS), denoted by M , is the subspace in 

nR  spanned 328 

by },...,{ 1 mφφ , i.e., the collection of all  vectors of the form ii
m
i a φx 1  where 

m
iia 1}{   are real 329 
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numbers. The orthogonal complement of M , denoted by M , is the subspace in 
nR  comprising all 330 

vectors orthogonal to those in M , i.e., the collection of all vectors y  such that 0xy
T

 for any x  331 

in M . Assuming },...,{ 1 mφφ  are linearly independent, M  has dimension m  and M  has 332 

dimension mn  . Symbolically this can be written as  MMnR . The same is also true for their 333 

dimensions, i.e., )( mnmn  . For a given i , let 1
1}{ 


m
jiju  be a basis in the orthogonal 334 

complement of iφ  in M . That is, iφ  and 1
1}{ 


m
jiju  form a basis in M  but iφ  is orthogonal to iju . 335 

Let also mn
jij

1}{v  be a basis in M . Then iφ , 1

1}{ 


m
jiju  and mn

jij

1}{v  together form a basis in nR .  336 

As a note, 
1
1}{ 


m
jiju  are linearly independent but need not be orthogonal. One geometrically 337 

intuitive possibility is for iju  to be a vector along the tangential direction from iφ  that rotates from 338 

iφ  towards jφ  in the hyperplane formed by them: 339 

ijijij rφφu     

i
T
i

j
T
i

ijr
φφ

φφ
     ij    (19)   340 

As a check, iju  lies in the plane formed by iφ  and jφ ; and 0ij
T
i uφ . Another possibility is for 341 

1
1}{ 


m
jiju  to be a set of orthogonal basis from the Gram-Schmidt procedure [30]. The choice of 342 

1
1}{ 


m
jiju  is discussed here for concreteness only. It does not affect the theory developed.  343 

The nn  posterior covariance matrix of iφ  only informs the uncertainty of iφ  but not its 344 

correlation with other mode shapes. A complete description of the uncertainty with m  modes 345 

requires one to study the mnmn  posterior covariance matrix of the 1mn  vector 346 

];...;[: 1 mφφΦ  , (‘;’ denotes stacking column-wise). Although it may appear artificial at this stage, 347 

it is useful to introduce three orthogonally complementary spaces in 
mnR , namely, N , M  and 348 

M , which are induced by iφ , iju  and ijv , respectively. They are defined in the first three 349 

columns of Table 4; the remaining columns will become apparent in Section 8. Symbolically, 350 

 MMNmnR . In the basis vector for N , the Kronecker product ii φe   ( 1mn ) puts iφ  351 

in the i th partition and the remaining )1( m  partitions (each 1n ) are all zero. Similarly, the basis 352 

vectors iji ue   (for M ) and iji ve   (for M ) have their i th partition equal to iju  and ijv , 353 

respectively; and the remaining partitions are zero. Figure 3 illustrates the three subspaces. As we 354 

will see in Section 8, N  is associated with mode shape norm constraint and carries no uncertainty; 355 
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M  is associated with mode shape uncertainty within the MSS; M  is associated with uncertainty 356 

orthogonal to the MSS. 357 
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Table 4 Principal subspaces of mode shape uncertainty in 
mnR ; MSS = mode shape subspace 358 

Subspace Dimension Basis )1(
::ΦΦJ  

)2(
::ΦΦJ  ::ΦΦJ  Remark 

N  m  ii φe   

mi ,...,1   

Null space Null space Null space Norm-constrained subspace 

M  )1( mm  iji ue   

mji ,...,1,   

ij   

Null space Non-zero 

eigenvalues, 

non-trivial 

Eigenvalues and 

eigenvectors equal 

to those of 
)2(

::ΦΦJ  in 

this space 

Subspace containing all possible 

mode shape deviations within MSS 

M  )( mnm   iji ve   

mi ,...,1  

mnj  ,...,1  

Eigenvalues equal 

to those of 

keS H Re2 1
, 

each with 

multiplicity mn  

Null space Eigenvalues and 

eigenvectors equal 

to those of 
)1(

::ΦΦJ  in 

this space 

Subspace containing all possible 

mode shape deviations orthogonal 

to MSS 
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Figure 3 Example of basis for N , M  and M  for 3n  measured DOFs and different number of 359 

modes m . When 1m , M  (mode shape subspace) is the line along 1φ ; when 2m , M  is the 360 

2-D plane spanned by 1φ  and 2φ ; when 3m , M  is the whole 3-D space; )/()( i
T
ij

T
iijr φφφφ   361 

 362 

8 Eigenvalue properties 363 

In the derivation of uncertainty laws the mode shapes always present the major hurdle because of 364 

their dimension growing with the number of DOFs. For well-separated modes this has been resolved 365 

by discovering that the mode shape is asymptotically uncorrelated from the remaining parameters. 366 

Numerical experiments reveal that this is not the case for close modes and the correlation structure 367 

is non-trivial. In this section we analyse analytically, in turn, the eigenvalue properties of 
)1(

::ΦΦJ , 368 

)2(
::ΦΦJ , ::ΦΦJ  and the full FIM J  in Table 2; and finally the high s/n asymptotic posterior covariance 369 

matrix 1 JC . This allows us to understand the principal directions in which the ID uncertainty of 370 

modal parameters, especially the mode shapes, takes place.  As we will see, the results are 371 

remarkably definitive and characteristic, despite complexity of the close modes problem and the 372 

mathematics involved. 373 
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8.1 )1(
::ΦΦJ  (Type 1) 374 

The eigenvalue properties of 
)1(

::ΦΦJ  follow directly from the standard result in linear algebra that if 375 

A  ( mm ) has eigenvalue ia  with eigenvector iu  ( mi ,...,1 ) and B  ( nn ) has eigenvalue jb  376 

with eigenvector jv  ( nj ,...,1 ) then the Kronecker product BA  has eigenvalue jiba  with 377 

eigenvector ji vu   ( njmi ,...,1;,...,1  ). Applying this result, the eigenvalues of 
)1(

::ΦΦJ  are the 378 

product of those of keS H Re2 1
 and Q . The eigenvectors are the Kronecker product of the 379 

eigenvectors of keS H Re2 1
 and Q . Since Q  has m  zero eigenvalues with eigenvectors 380 

},...,{ 1 mφφ , 
)1(

::ΦΦJ  has 2m  zero eigenvalues. The basis vectors m
iii 1}{ φe  of N  are among the 381 

eigenvectors with zero eigenvalue, which can be verified by direct substitution and noting that 382 

0φQ ii . In general, for the zero eigenvalues, resulting from Kronecker product the i th partition 383 

of the eigenvector is a multiple of iφ  and hence lies in the MSS. Since a linear combination of 384 

eigenvectors of the same eigenvalue is also an eigenvector, in the context of Table 4 the zero 385 

eigenvalue can be considered to have m  eigenvectors in N  and )1( mm  eigenvectors in M .    386 

Other than the zero eigenvalue, the remaining )( mn   eigenvalues of Q  are all equal to 1 with 387 

eigenvectors in M . The remaining )( mnm   eigenvalues of 
)1(

::ΦΦJ  are then equal to the m  388 

eigenvalues of keS H Re2 1
, each with multiplicity (i.e., repeating) mn . The eigenvectors of this 389 

type lie in the orthogonal complement of N  and M , i.e., M . These results are summarised in the 390 

fourth column of Table 4. 391 

8.2 )2(
::ΦΦJ  (Type 2) 392 

The eigenvalue properties of 
)2(

::ΦΦJ  are complementary to 
)1(

::ΦΦJ . The )( mnm   eigenvectors of 393 

)1(
::ΦΦJ  with non-zero eigenvalue (hence in M ) are eigenvectors of 

)2(
::ΦΦJ  with zero eigenvalue. To 394 

see this, such an eigenvector is of the form ];;[ 1 uuv maa   (‘;’ denotes stacking column-wise), 395 

where T
maa ],...,[ 1  is an eigenvector of keS H Re2 1

 and u  is an eigenvector of Q  with 396 

eigenvalue 1, i.e., in M . Then 0uΦ T  and 0uφ
T
i , and from (5) we can deduce 0uQ i . This 397 

implies that 398 

0

uQ

uQ

u

u

Q

Q





















































mmmm a

a

a

a


1111

      (20) 399 
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and so from the expression of 
)2(

::ΦΦJ  in Table 2 we can deduce 0uΦΦ 
)2(

::J . By a similar argument, 400 

the vectors in N  are also null vectors of 
)2(

::ΦΦJ . Consequently, 
)2(

::ΦΦJ  only has 401 

)1()(  mmmmnmmn  possibly non-zero eigenvalues whose eigenvectors lie in the 402 

orthogonal complement of both N  and M , i.e., M . These results are summarised in the fifth 403 

column of Table 4. 404 

8.3 Mode shape FIM ::ΦΦJ  405 

The eigenvalue properties of ::ΦΦJ  inherit directly from those of 
)1(

::ΦΦJ  and 
)2(

::ΦΦJ . The null space 406 

N  is common to 
)1(

::ΦΦJ  and 
)2(

::ΦΦJ  and is therefore also a null space for ::ΦΦJ . In M  where 407 

)1(
::ΦΦJ  is a zero mapping, the eigenvalues and eigenvectors of ::ΦΦJ  directly inherit from those of 408 

)2(
::ΦΦJ . To see this, if u  in M  is an eigenvector of 

)2(
::ΦΦJ  with eigenvalue  , then 0uΦΦ 

)1(
::J  and 409 

uuΦΦ )2(
::J , and so uuuu ΦΦΦΦΦΦ 

)2(
::

)1(
:::: JJJ , i.e., u  is also an eigenvector of ::ΦΦJ  410 

with the same eigenvalue  . By the same argument, in M  where 
)2(

::ΦΦJ  is a zero mapping, the 411 

eigenvalues and eigenvectors of ::ΦΦJ  inherit directly from those of 
)1(

::ΦΦJ . These are summarised 412 

in the sixth column of Table 4.   413 

8.4 Full FIM J  414 

The eigenvalue properties of the full FIM J  can be reasoned from those of ::ΦΦJ . Let   be a 415 

vector containing all parameters other than mode shapes so that :];[ Φθ   contains all modal 416 

parameters and J  is the full FIM w.r.t. θ . Let ];...;[ 1 mvvv   be an eigenvector of ::ΦΦJ  with 417 

eigenvalue   and it lies either in N  (dim. m , Type 0) or M  (dim. )( mnm  , Type 1). When v  is 418 

in N , ii φv  ; when v  is in M , iv  is in M . In either case 0vQ ii . For all remaining 419 

parameters x  from  , 
ixJ φ  has iQ  on its right end (see Table 2) and so 420 

0vvv φφΦ  ],...,[ 11: mmxxx JJJ . Then 421 
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JJ

JJ
T    ( v  in N  or M ) (21) 422 

This implies that J  has )( mnmm   eigenvectors of the form ];[ v0 , i.e., where mode shape 423 

uncertainty is uncoupled from all other parameters. 424 

There remains )1()1( 2  mmm  eigenvalues. They all contribute to mode shape uncertainties in 425 

M , i.e., Type 2. To see this, let the eigenvector be partitioned as ];[ baθ   where a  is 
2)1( m  426 
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dimensional for   and b  is mn  dimensional for :Φ . Since all eigenvectors of (real-symmetric) J  427 

are orthogonal, ];[ baθ   must be orthogonal to ];[ v0  where v  is in N  or M . This implies 428 

0bv
T

. As v  lies in the subspace formed by 1N  and M , b  must lie in the orthogonal 429 

complement of this subspace, i.e., M .  430 

8.5 Condensed eigenvalue problem for Type 2 431 

The eigenvalue properties of Type 2 can be found from an eigenvalue problem of reduced dimension. 432 

Essentially, one can represent b  in ];[ baθ   as a linear combination of basis vectors in M , i.e.,  433 
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         (22) 434 

where iU  is a )1(  mn  matrix containing in its columns the basis 1
1}{ 


m
jiju  in M  but orthogonal 435 

to iφ  (see Section 7) and iα  is a 1)1( m  vector containing the coordinates w.r.t. the basis. 436 

Determining b  (dim. mn ) reduces to determining α . An eigenvector of Type 2 can then be 437 

represented as  438 
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a
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I

Uα

a
v          (23) 439 

For :];[ Φθ  , the eigenvalue problem for J  involving eigenvectors of Type 2 reads 440 
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       (24) 441 

Left-multiplying by the transpose of the first matrix on the right hand side gives the generalised 442 

eigenvalue problem 443 

BxxJ c            (25) 444 
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a
x    (26) 445 

Note that cJ  has full rank. The original eigenvalue problem with J  of dimension mnm  2)1(  is 446 

now reduced to one with cJ  of dimension )1()1( 2  mmm , which does not depend on the 447 

number of measured DOFs n . The complexity w.r.t. n  is resolved and consolidated into the 448 

associated coordinates in α . The eigenvalue properties of J  are summarised in Table 3. 449 



23 
 

8.6 High s/n asymptotic posterior covariance matrix 450 

The asymptotic posterior covariance matrix C  is equal to the inverse of the full FIM J  ignoring the 451 

m  zero eigenvalues associated with norm constraints, i.e., evaluated as a pseudo-inverse via 452 

eigenvector representation ignoring the zero eigenvalues. It inherits the eigenvectors of J  and its 453 

eigenvalues are equal to the reciprocal of those of J , except for the m  zero eigenvalues. It has m  454 

zero eigenvalues (Type 0) associated with norm constraints. Another )( mnm   eigenvalues are 455 

associated with mode shape uncertainty orthogonal to the MSS (Type 1), equal to m
ii 1

1}{ 
  (each 456 

repeating )( mn   times), where m
ii 1}{   are the eigenvalues of keS H Re2 1 . The remaining 457 

)1()1( 2  mmm  eigenvalues are reciprocals of those of the eigenvalue problem in (25). These 458 

are non-trivial and are associated potentially with all parameters correlated, i.e., no zeros in the 459 

eigenvectors.  460 

9 Dominant mode shape uncertainty 461 

For well-separated modes it has been found in previous studies [23] that mode shape uncertainty is 462 

inversely proportional to s/n ratio. Such uncertainty is perpendicular to the mode shape with a 463 

variance proportional to the noise PSD. It is therefore typically small for data with good s/n ratio and 464 

vanishes for noiseless data, despite the uncertainty in the excitation that remains. Intuitively, for 465 

well-separated modes the mode shape values at different DOFs are directly related to their ratio of 466 

data FFTs where the effect of the modal force is almost cancelled out when s/n ratio is high. For 467 

noiseless data the ratio of data FFTs depends solely on the ratio of mode shape values and hence the 468 

latter can be precisely determined (together with a scaling constraint). Except for the zero 469 

eigenvalue associated with norm constraint, all other eigenvalues of the mode shape covariance 470 

matrix are theoretically the same and hence there is no dominant direction of uncertainty. The 471 

foregoing findings in this work reveal that this is not the case for close modes because the )1( mm  472 

eigenvalues associated with uncertainty within MSS (Type 2) are significantly larger than the 473 

)( mnm   eigenvalues associated with uncertainty orthogonal to MSS (Type 1). The implication is 474 

that for close modes the mode shape uncertainty does not vanish for noiseless data, which is a 475 

consequence of the fact that the excitation is not known but modelled in a stochastic manner.  476 

Let mn
ii 1}{   and mn

ii 1}{ u  be respectively the eigenvalues and eigenvectors of the covariance matrix 477 

of :Φ . Given data, :Φ  is a Gaussian vector with mean equal to its MPV and uncertain deviation 478 

:Φ  given by 479 
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mn

i

iii

m

Z

1

1

: u

φ

φ

Φ           (27) 480 

where mn
iiZ 1}{   are i.i.d. standard Gaussian random variables. It can be easily verified that the 481 

covariance matrix of :Φ  is equal to the mode shape covariance matrix.    482 

The foregoing findings imply that :Φ  has )1( mm  dominant uncertain directions within the MSS. 483 

The remaining directions are either asymptotically small (orthogonal to MSS, Type 1) for high s/n 484 

ratios or norm-constrained ( m  directions along MPV, Type 0). Analogous results apply to the mode 485 

shape iφ  ( 1n ) of a particular mode. It has )1( m  dominant uncertain directions within the MSS 486 

(Type 2), )( mn   directions orthogonal to the MSS (Type 1) and 1 direction along the MPV that is 487 

norm-constrained.  488 

10 Illustrative examples 489 

10.1 Verification 490 

Here we verify numerically the eigenvalue properties of the mode shape FIM predicted in Section 8. 491 

Consider two close modes with natural frequencies 11 f Hz and 05.12 f Hz, damping ratios 492 

1 1% and 5.12  %, modal force PSDs Hz/)μg(1 2
2211  SS , modal force coherence 493 

4/
221121 5.0/  ieSSS   and mode shapes (confined to measured DOFs) 11 uφ   and 494 

2
2

12 1 uuφ    where 495 

  55/543211
T

u     48.21/5/1403212
T

u   (28) 496 

Check that 1u  and 2u  are orthogonal unit vectors and the MAC (modal assurance criterion) 497 

between 1φ  and 2φ  is  , which is set to be 0.5. Data is acceleration of 1000 sec duration and 498 

sampled at 10 Hz. It is contaminated with white noise of PSD eS . The latter is set to be 499 

 2
111 4/SSe   so that the s/n ratio in terms of PSD at the natural frequency of Mode 1 is  , 500 

which will be varied in the study. The band from 0.9Hz to 1.1Hz is used for Bayesian modal ID. This 501 

example focuses on verifying the mathematical correctness of the asymptotic FIM in Section 8. The 502 

FIMs (asymptotic and exact) are evaluated directly at the actual values of modal properties. In 503 

Section 10.2 with field data they will be evaluated at the MPV calculated for given data, which is the 504 
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best one can do when there is no ‘true’ parameter value. Nevertheless, to give an idea of how close 505 

the modes are in this example, Figure 4 shows the singular value (SV) spectrum of a typical set of 506 

synthetic data when the s/n ratio is 1000. 507 

 508 

Figure 4 (a) Root SV spectrum of a typical set of synthetic data; (b) Eigenvalues of mode shape FIM 509 

::ΦΦJ . Circle – exact based on (3); cross – high s/n asymptotic value based on Table 2. The 510 

spectrum in (a) has been averaged for visualisation and hence has a lower resolution than the ‘raw’ 511 
FFT (i.e., no averaging) used in BAYOMA.  512 

Here, the number of measured DOFs is 5n  and the number of modes is 2m . The dimension of 513 

the mode shape FIM ::ΦΦJ  is then 10mn . According to the theory, there are 2m  zero 514 

eigenvalues of Type 0 (N ) due to norm constraint; 6)( mnm  eigenvalues of Type 1 ( M ) 515 

comprising 2 possibly distinct eigenvalues each repeating 3mn  times; and 2)1( mm  516 

eigenvalues of Type 2 (M ). 517 

Figure 4(b) shows the eigenvalues of the mode shape FIM ::ΦΦJ  based on (3) (circle, ‘exact’) and 518 

the high s/n asymptotic expression in Table 2 (cross, ‘asym.’). As the s/n ratio increases, the two sets 519 

of values converge to each other, verifying the asymptotic correctness of the latter. Each point of 520 

Type 1 in fact contains three visually overlapping points as the eigenvalues of this type repeat three 521 

times. The eigenvalues of Type 1 are greater than those of Type 2 by orders of magnitude and 522 

increase with s/n ratio because they grow with 1
eS  (see 

)1(
::ΦΦJ  in Table 2). The magnitude of Type 523 

2 does not depend on eS  (see 
)2(

::ΦΦJ  in Table 2). A direct implication of this is that Type 1 524 

uncertainty (orthogonal to MSS) will vanish with noiseless data while Type 2 uncertainty (within MSS) 525 

will still prevail. 526 

Figure 5 shows the c.o.v. (coefficient of variation) of frequencies, damping ratios and mode shapes 527 

based on the exact (circle) and asymptotic FIM (cross). For the frequencies and damping ratios, the 528 
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c.o.v. is simply the ratio of posterior standard deviation to MPV. The mode shape c.o.v. is the square 529 

root sum of the eigenvalues of the ( nn ) posterior mode shape covariance matrix. For small 530 

uncertainty it can be interpreted as the expected value of the hyper angle between the uncertain 531 

mode shape and the MPV. As seen in Figure 5, as the s/n ratio increases, the two values converge to 532 

each other, verifying the asymptotic correctness of the asymptotic FIM for high s/n ratio.   533 

 534 

Figure 5 Comparison of c.o.v. based on exact FIM (circle) and asymptotic FIM (cross)        535 

10.2 Application to field data 536 

Consider a set of triaxial (x,y,z) ambient acceleration data of 36 hours at 50Hz measured on the roof 537 

of Tall building B in [4] during Typhoon Koppu (14 Sep. 2009); see Figure 6(a). Figure 1 shows the 538 

root PSD and root SV spectra of 30 minutes data before the main event. The two close modes 539 

around 0.18Hz are translational in nature. Their modal properties were identified (MPV and c.o.v.) 540 

previously by BAYOMA using the FFT in the band indicated. The theory in this work offers an 541 

opportunity for understanding their ID uncertainty especially in the mode shapes.  542 

10.2.1 Mode shape uncertainty from 30 minutes data 543 

We first investigate the ID uncertainty of mode shapes using the set of 30 minutes data. To give a 544 

basic idea of modal ID results (MPV, c.o.v.), the frequencies are identified to be 0.184 Hz (0.2%) and 545 

0.189 Hz (0.2%); the damping ratios are 0.54% (30%) and 0.92% (23%). The s/n ratio in terms of PSD 546 

at natural frequency is high, about a few thousands, which is also evidenced from Figure 1.  547 

Given the 30 minutes data, the full posterior covariance matrix comprising all parameters is 548 

calculated. The 33  posterior covariance matrix of each mode shape is taken from the 549 

corresponding partition in the full covariance matrix. The results are shown in Table 5. The type 550 

indicated below each eigenvalue is determined based on the direction of the eigenvector. For Mode 551 

1, the eigenvalue 8.39e-7 has a MAC of practically 1 with the most probable mode shape and so it 552 
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corresponds to Type 0 (norm-constrained). Its value is not exactly zero due to numerical errors, 553 

which is typical. While the other two eigenvectors have a MAC of practically zero with the most 554 

probable mode shape, the one with eigenvalue 8.21e-9 is also orthogonal to Mode 2, and so it 555 

corresponds to Type 1 (uncertainty orthogonal to MSS). This eigenvalue is not theoretically zero, but 556 

is inversely proportional to the s/n ratio. It can be smaller than the calculated eigenvalue of Type 0 557 

when the s/n ratio is high, as in the present case. The remaining eigenvector with eigenvalue 2.16e-2 558 

corresponds to Type 2 (uncertainty within MSS). Summing the eigenvalues and taking square root 559 

gives a mode shape c.o.v. of 15%, which is clearly dominated by Type 2. Similar observations apply to 560 

Mode 2, which has a c.o.v. of 12%. It should be noted that before this work the mode shape 561 

covariance matrix can be calculated numerically but there is little or no insight on why such values 562 

are obtained. Based on the theory in this work we are now able to understand why the results turn 563 

out the way they appear. For example, there should be no surprise now why in Table 5 the largest 564 

eigenvalue is several orders of magnitude larger than the second eigenvalue – it is of Type 2 that 565 

does not diminish with the quality of data. Without the theory in this work one may wonder if this is 566 

due to numerical error. The large disparity in Type 1 and 2 also suggests that one can simply focus on 567 

Type 2 uncertainty, which is confined within the mode shape subspace with dimension often much 568 

smaller than the whole space.         569 

Table 5 Eigenvalues of mode shape covariance matrix and mode shape c.o.v. 570 

Mode Eigenvalues c.o.v. 

1 8.21e-9 

(Type 1) 

8.39e-7 

(Type 0) 

2.16e-2 

(Type 2) 

15% 

2 6.01e-9 

(Type 1) 

6.27e-7 

(Type 0) 

1.47e-2 

(Type 2) 

12% 

 571 

Figure 6(b) shows the most probable mode shapes with an arrow pointing from the origin. The two 572 

mode shapes have a MAC of 0.21 and so they are not orthogonal. The blue arrows show the ‘ two-573 

sigma’ uncertain mode shape deviation of the largest eigenvalue (Type 2), i.e., two times the term 574 

iiu  in (27). Only the xy view is shown because the mode shape component along the z direction 575 

is negligible. The principal mode shape deviations are roughly tangential to the unit circle, which is 576 

consistent with the fact that the mode shapes have unit length (in the unit sphere).  577 
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 578 

Figure 6 (a) Sensor and data logger. (b) MPV of mode shapes (black, pointing from origin) and 579 

two-sigma uncertainty (blue) of Type 2.  580 

10.3 Comparison of c.o.v. from asymptotic FIM, exact FIM and BAYOMA 581 

We next compare the values of posterior c.o.v. based on the high s/n asymptotic FIM (Table 2), exact 582 

FIM (equation (3)) and BAYOMA ([22], for given data). For this purpose we divide the 36 hours data 583 

into non-overlapping windows of 30 minutes and identify the modal properties of the two modes 584 

(MPV and c.o.v.) using BAYOMA. The high s/n asymptotic FIM and exact FIM are then calculated 585 

using the MPV (the best one can do, since there is no ‘true’ value). The pseudo-inverse of these 586 

matrices (ignoring zero eigenvalues from norm constraints) gives the covariance matrix, from which 587 

the c.o.v. can be obtained. Figure 7 summarises the results (Modes 1 and 2 are not distinguished). 588 

The c.o.v. values of BAYOMA are plotted on the x-axis. The c.o.v. values from FIM are plotted on the 589 

y-axis, with the crosses for the high s/n asymptotic FIM and circles for the exact FIM. The crosses and 590 

circles almost overlap, which is consistent with the fact that the s/n ratio of data is quite high (at 591 

least a few thousands). The crosses and circles do not lie along the 1:1 dashed line, indicating a 592 

discrepancy between the c.o.v. from FIM and BAYOMA. This does not discredit the FIM or the high 593 

s/n asymptotic FIM, as the c.o.v. from BAYOMA is for a given data set and it always has a random 594 

part, though theoretically negligible for long data and assuming no modelling error and existence of 595 

‘true’ parameter values. The discrepancy may reveal scenarios of modelling error, e.g., non-flat 596 

spectrum or non-classical damping, although there is little understanding about this aspect. More 597 

comparison and discussion about the meaning of ID uncertainty based on the exact FIM and 598 

BAYOMA can be found in [28]. Recognising that the x-axis is the uncertainty we can only calculate for 599 

given data (but no insight) and the y-axis (cross) is the uncertainty we can explain in the context of 600 

structural dynamics, the clustering of points around the 1:1 lines in Figure 7 represents an important 601 

progress in our understanding of ID uncertainty in close modes.    602 
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 603 

Figure 7 Comparison of posterior c.o.v. from BAYOMA (for given data) and FIM. Cross (‘x’) – based 604 
on high s/n asymptotic FIM (Table 2), circle (‘o’) – based on exact FIM (3). Each point refers to the 605 
result of 30 minutes data out of 36 hours (so total 72 points).  606 

11 Conclusions 607 

This work has performed an analytical study on the ID uncertainty of close modes that contributes to 608 

its understanding and provides a pathway for development of explicit formulae governing 609 

uncertainty, i.e., ‘uncertainty law’, in the future. The basic assumptions in the ID model include 610 

linear dynamics with classically damped modes, stationary modal excitations with constant PSD 611 

matrix within resonance band and stationary noise i.i.d. among measured DOFs with a constant PSD 612 

within the resonance band. Data is assumed to be sufficiently long in the sense that the number of 613 

FFT points in the resonance band is large compared to 1 (see Section 4); and has high s/n ratio (see 614 

(47)).  615 

Before this work it was possible to calculate the posterior covariance matrix for given data using a 616 

Bayesian modal ID algorithm (BAYOMA) but it had not been possible to develop insights such as can 617 

be realised for well-separated modes. The large size of the matrix and its lack of sparseness, i.e., all 618 

parameters (except the noise PSD) are significantly correlated, has been identified as the cause. This 619 

work has discovered analytically the intrinsic correlation structure of the covariance matrix for long 620 

data and high s/n ratio, supported by mathematical proof, numerical verification and application 621 

with field data. The high s/n asymptotic expressions of Fisher Information Matrix (FIM, Table 2) and 622 

the analytical eigenvalue properties (Table 3) discovered are milestones for developing uncertainty 623 

laws for close modes that allow one to master the identification uncertainty and manage in ambient 624 

vibration tests. While the dimension of the posterior covariance matrix grows linearly with the 625 

number of measured DOFs, the theory in this work has reduced it to one independent of the number. 626 

The complexity w.r.t. the measured DOFs, which has been one of the major hurdles, has been 627 

resolved.   628 
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Mode shape uncertainty in well-separated modes is often negligible as it diminishes with increased 629 

data quality. This work has shown that the same is not true for close modes, where for each mode 630 

there is significant uncertainty within the mode shape subspace (MSS). Intuitively the mode shapes 631 

can ‘trade’ their directions within the MSS to give a similar likelihood value in Bayesian inference (or 632 

‘data fit’ in non-Bayesian methods), and hence is less distinguishable.  Such uncertainty does not 633 

diminish even for noiseless data. This puts a limit on the achievable precision of OMA with close 634 

modes. This mode shape uncertainty potentially correlates with all other parameters. Understanding 635 

such correlation structure requires yet another level of advance in the theory.  636 

This work has not reached the ultimate goal of ‘uncertainty laws’, i.e., explicitly relating ID 637 

uncertainty to test configuration for understanding and test planning, but the analytical expressions 638 

of FIM (Table 2) and understanding about its eigenvalue properties (Table 3) shed light on possibility 639 

and provide the pathway to it. Obtaining the uncertainty laws will require further analytical 640 

investigation on the FIM and its inverse to produce explicit and manageable expressions for the 641 

posterior variances of modal properties – a big challenge, considering the large dimension of the FIM 642 

and entangling of modes.  643 
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13 Appendix. Derivation of xyJ , 
exSJ  and 

eSeSJ  ( S,,, fyx  ) in Table 2 650 

The expressions can be derived by substituting the Taylor expansion of 1
kE  from (9) and the 651 

derivatives in (11) into (3), evaluating terms of increasing order and retaining the leading order term. 652 

The expression of 
eSeSJ  is obtained by replacing 1

kE  by its 0th order term, i.e., Q , using 653 

m
eS

k IE 
)(

 in (11) and noting that mntrtr  )()( QQQ .  654 

For xyJ , since 1
kE  appears twice in (3), the 0th order of xyJ  involves the 0th  0th order of 1

kE . 655 

Since the 0th order of 1
kE  is Q  and 0QΦΦQ  T , the 0th order of xyJ  is zero. The 1st order of 656 
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xyJ  involves the 0th  1st order + 1st  0th order of 1
kE . For the same reason as before, these terms 657 

are zero. The 2nd order of xyJ  involves the 0th  2nd  1st x 1st order of 1
kE . The former is zero. The 658 

latter is not zero and hence is the leading order of xyJ  as given in Table 2. To obtain the expression, 659 

note that 660 

Tx
kk

TTx
kk

T
e

x
kk S ΦHHRΦHΦRεREE

)(1)(1)(1 ))(() oforder (1st      (29) 661 

since mIΦR   and 1 kek S Hε . This gives the expression in Table 2: 662 

)(1)(1)(1)(1 ))((~
y

kk
x

kk
Ty

kk
TTx

kk
T

xy trtrJ HHHHΦHHRΦHHR
     (30) 663 

where we have used the cyclic property of trace ( )()( BAtrABtr  ) to move the 
T

Φ  on the right 664 

end to the left end and then m
TTT

IΦRRΦ  )(  to simplify. 665 

Applying the same argument above to 
exSJ  shows that its leading order is also the 1st  1st order of 666 

1
kE . Using (29),  667 

1)(111)(1 )())((~   k
x

kk
T

k
T

e
Tx

kk
T

exS trStrJ HHHΦΦRεRΦHHR    (31) 668 

where we have used the cyclic property of trace to move the R  on the right end to the left end;  669 

then 1)(  ΦΦRR
TT , m

TT
IRΦ   and 1 kek S Hε  to simplify. 670 

14 Appendix. Derivation of (13), (14) and (15) in Section 6 671 

Substituting (11) and (12) into  (3) gives 672 

)()(
)()(1)(1 Tri

k
T

k
ri

k
Tx

kkrix trJ


  ΦHΦΦHΦEΦHΦE   S,,fx   (32) 673 

)(
)()(2 ri

k
T

k
ri

krieS trJ


  ΦHΦΦHΦE       (33) 674 

)()( )()(1)()(1 Ty
k

T
k

y
k

Tx
k

T
k

x
k

xy

tr

J

ΦHΦΦHΦEΦHΦΦHΦE 




 Φyx,  (34) 675 

Using (56) and (57) in Section 16 (appendix) to simplify gives 676 
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T
k

ri
k

Tx
kkrix trJ ΦHΦEΦHΦE

)(1)(1Re2


      S,,fx   (35) 677 

T
k

ij
krieS trJ ΦHΦE

)(2Re2


          (36) 678 

)(Re2 )()(1)(1 Ty
k

T
k

y
k

T
k

x
kxy trJ ΦHΦΦHΦEΦHΦE     Φyx,  (37) 679 

Substituting the Taylor expansion of 1
kE from (9) and taking the leading order term gives (13) to 680 

(15). Details are presented separately in Sections 14.1 to 14.3 below.   681 

14.1 
rixJ   in (13) for S,,fx    682 

Substituting (9) into (35) gives the following terms of different orders: 683 

0th order of 
rixJ   involves 0th x 0th order of 1

kE    684 

1st order of 
rixJ   involves 0th x 1st + 1st x 0th order of 1

kE   685 

2nd order of 
rixJ   involves 0th x 2nd + 2nd x 0th + 1st x 1st order of 1

kE   686 

Due to the property of Q , any product involving the 0th order of 1
kE  gives zero. This implies that 687 

the 0th and 1st order of 
rixJ   is zero. The leading order of 

rixJ   is then the second order term 688 

involving the 1st x 1st order of 1
kE . Evaluating it gives the expression in (13): 689 

][Re2           

))()()((Re2~

)(1)(

)()(2

ri
k

x
k

T
k

ri
k

TTx
kk

T
erix

tr

trSJ










ΦRHH

ΦHΦRεRΦHΦRεR
   (38) 690 

where we have used the cyclic property of trace to move T
kΦH  on the right end to the left end; 691 

then m
TT

IRΦ   and 1 kek S Hε  to simplify. 692 

14.2 
rieSJ   in (14) 693 

Using 1
kE  from (9) and expanding the square of 212 )(   kk EE  gives terms of different order. The 694 

0th order of 2
kE  is Q

2
eS  because QQ 2 . Replacing 2

kE  in (36) by Q
2

eS  and using the cyclic 695 

property of trace and 0QΦ T
 gives a zero vector. The leading order of 

rieSJ   should then come 696 

from the higher order terms of 2
kE . The 1st order of 2

kE  comes from the 0th x 1st and 1st x 0th order 697 

term of 1
kE . Using 0QΦΦQ  T

 shows that they are all zero. The next higher order term of 698 

2
kE  is the 2nd order given by the 1st x 1st order term of 1

kE : 699 
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RεΦΦεRRεRRεRE k
T

k
T

ek
T

k
T

ek SS 1222 )())((~        (39) 700 

since 1)(  ΦΦRR
TT . Substituting into (36) gives 701 

])[(Re2             

])([Re2~

)(11

)(12
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T

T
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ri
k

T
k

T
erieS

tr

trSJ










ΦRHΦΦ

ΦHΦRεΦΦεR
     (40) 702 

where we have used the cyclic property of trace to move T
kΦH  on the right end to the left end; 703 

then m
TT

IRΦ   and 1 kek S Hε  to simplify.  704 

14.3 xyJ  in (15) for Φyx,  705 

Substituting (9) into (37) gives the 0th, 1st and 2nd order terms of xyJ , which are denoted by )0(
xyJ , 706 

)1(
xyJ  and )2(

xyJ , respectively. The 0th order )0(
xyJ  involves the 0th x 0th order of 1

kE . Replacing 1
kE  707 

by its 0th order Q  and expanding gives 708 

0][Re2 )()()()(2)0(   Ty
k

T
k

xT
k

yT
k

x
exy trSJ ΦHΦQΦHΦQΦHΦQΦHΦQ  (41) 709 

because the trace of both terms are zero: for the first term, use the cyclic property of trace to move 710 

T
Φ  on the right end to the left end and find 0QΦ T ; the second term has 0ΦQ  .  711 

Next, 
)1(

xyJ  involves the 0th x 1st + 1st x 0th order of 1
kE . The latter can be seen to be zero after using 712 

0QΦ T
. Thus 

)1(
xyJ  only involves the 0th x 1st order of 1

kE : 713 
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   (42) 714 

after using m
TT

IRΦ   and 1 kek S Hε . Multiplying gives two terms. For the first term, use the 715 

cyclic property of trace to move 
T

Φ  on the right end to the left end; then use 0QΦ T  to see 716 

that the first term is zero. This leaves the second term as the expression in (16): 717 

])(Re[2][Re2~ )()(1)()(1)1( Ty
k

x
e

Ty
k

x
exy trStrSJ ΦHΦQΦHΦRΦQ     (43) 718 

after using mIΦR   and carrying Re  inside. 719 

Finally, 
)2(

xyJ  involves the 0th x 2nd + 1st x 1st + 2nd x 0th of 1
kE . Substituting into (37) and simplifying 720 

shows that the 2nd x 0th term is zero. Using similar arguments as before,  721 
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 (44) 722 

where the trace of the first term in the second equality is zero; 723 
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  (45) 724 

after expanding and using the cyclic property of trace. Combining (44) and (45), 725 
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    (46) 726 

Note that )1(
xyJ  in (43) and the first term in (46) both contain )(x

ΦQ  on the left and Ty)(
Φ  on the 727 

right. Assume that the modes are ‘sufficiently linearly independent’ in the sense that (e.g., in terms 728 

of eigenvalues) 729 

m
T

kfe NS IΦΦH   111 )()Re(         (47) 730 

In this case the first term in (46) is negligible compared to )1(
xyJ . Omitting it gives (17).  731 

15 Appendix. Derivation of 
ixJ φ , 

ieSJ φ  and ::ΦΦJ  in Table 2 732 

15.1 
ixJ φ  and 

ieSJ φ   733 

The steps for deriving 
ixJ φ  and 

ieSJ φ  are the same so here we consider 
ixJ φ  only. Substituting 734 

(18) with 1|||| iφ  into (13) and carrying the summation inside, 735 

])()[(Re2~ 1)( T
ir

T
iink

x
krix trJ eeφφIRHH  

       (48) 736 

Using the cyclic property of trace to move T
ie  to the left end so that the product inside )(tr  737 

becomes a scalar, we obtain 738 
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T
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Assembling ],...,[
1 nixixix JJJ φ  and noting nn Iee ],...,[ 1  and i

T
iin QφφIR  )(  gives 740 

the expression in Table 2. 741 

15.2 )1(
::ΦΦJ  in Table 2 742 

Consider 
)1(

sjri
J


, i.e., xyJ  in (16) with rix   and sjy  :743 
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Using (58) in Section 16 (appendix) with QA  and kB H , and noting QφφIQ  )( T
jjn , 745 
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where ),( srQ  denotes the ),( sr -entry of Q ; similar notation for ),( jikH . Assembling 
)1(

sjri
J


 747 

for r  and s  from 1 to n  into a matrix gives the ),( ji -partition of 
)1(

::ΦΦJ : 748 

QH
φφ

)],([Re2 1)1(
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          (52) 749 

Further assembling the partitions for i  and j  from 1 to m  gives the expression in Table 2. 750 

15.3 )2(
::ΦΦJ  in Table 2 751 

Using (18) to obtain 
)( ri

Φ  and 
)( sj

Φ  and substituting into (17), 752 
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where the second equality has used the definition of iQ  in (5). Similarly, 754 
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Combining (53) and (54) and assembling in matrix form for r  and s  from 1 to n , 756 
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Further assembling the partitions for i  and j  from 1 to m  gives the expression in Table 2. 758 

16 Appendix. Some useful identities 759 

For any complex matrix A and Hermitian X , 760 

)(Re2)]([ * XAtrAAXtr           (56) 761 

)]([Re2)]([Re2)]()([ **** BBXAXtrAAXBXtrBBXAAXtr     (57) 762 

For any A  ( nn  complex) and B  ( mm  complex),  763 
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Equation (56) was used to simplify (32) and (33). It can be shown as follow: 765 

)(Re2])([)()()()()]([ ***** XAtrXAXAtrXAtrXAtrXAtrXAtrAAXtr   (59) 766 

where we have used )()( ** XAtrXAtr   (cyclic property of trace) and 
*XX   (Hermitian) in 767 

arriving at the second and third equality, respectively.  768 

Equation (57) was used to simplify (34). It can be shown by noting that **)( XAAX   is Hermitian 769 

and applying (56): 770 
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after using the cyclic property of trace. Swapping A  and B  and using the cyclic property of trace 772 

gives the other equality in (57).  773 

Equation (58) was used to simplify (50). It can be shown as follow. Using (18) for 
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since ),( jiBB j
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i ee , i.e., the ),( ji -entry. Using the cyclic property of trace to move 777 
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