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Abstract—In addition to active energy management, this paper 

proposes active planning as another critical feature of active 

distribution networks (ADNs). To develop this set of tasks, this 

paper introduces a three-layer active planning framework 

consisting of a physical layer, cyber layer and socioeconomic layer. 

Furthermore, a three-step developing strategy for ADNs based on 

virtual microgrid (VM) is put forward. Then, according to this 

framework, this paper focuses on a specific and fundamental issue 

that often arises: the optimal allocation of distributed generation 

(DG). A two-stage scheme based on VMs is a proposed solution. In 

the first stage, VM boundaries are determined based on the 

characteristics of network structure. Using the identified VM 

boundaries as constraints, a bi-level hierarchical optimization 

method is applied to determine the optimal DG allocation in the 

second stage. The proposed method is verified in the popular 

PG&E 69-bus distribution network. 

 
Index Terms—Distributed generation (DG), electrical coupling 

strength (ECS), active planning, genetic algorithm (GA), virtual 

microgrids (VMs). 

I. INTRODUCTION 

 

ONVENTIONAL distribution networks (CDNs) are 

facing many challenges from increasing load demand, 

limited expansion space, environmental issues, and aging 

infrastructures [1]. Power supply in CDNs has obvious passive 

characteristics: (1) Lack of distributed energy devices that can 

be actively controlled; (2) Power supply passively follows 

variation of demands without flexible operational modes; (3) 

Passive accommodation of variation in loads and renewable 

power generation (wind or solar power) depends on modulation 

of power sources from high voltage transmission networks. 

Therefore, a number of studies have been performed that 

target the development and operation of future distribution 

networks, such as smart distribution networks [2] and active 

distribution networks (ADNs) [3] (active distribution systems 
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[4]). ADNs emphasize the capabilities of active energy 

management for future distribution networks [5]. ADNs are 

expected to have the following active characteristics: (1) 

Abundant controllable distributed energy devices; (2) Active 

energy management (such as active power flow management, 

active voltage regulation and demand side management) that 

can supply power with more flexibility, improved efficiency 

and better reliability; (3) Accommodation of power variation in 

loads and renewable power generation by active control of 

distributed energy devices, and supply of flexibility to variation 

in high voltage transmission networks. 

Many planning strategies for constructing ADNs have 

already been proposed. In [4], a multi-level model was 

introduced to characterize high penetration of DG and storage 

devices. It resolved operation and planning issues by 

minimizing cost, maximizing reliability and renewable DG 

penetration. In [6], a multistage coordinated planning of ADN 

development was proposed. The location, capacity and 

installation time of new distribution lines, substations, capacitor 

banks and voltage regulators were determined while 

minimizing investment costs and considering a variety of active 

network management schemes during the planning stage. In this 

work, the allocation of DG was assumed known. In [7], an 

expansion planning of an active distribution system was 

proposed. Topology changes, DG integration, rewiring and new 

load points were determined by applying different 

methodologies. In [8], a co-optimization model is developed by 

considering both investment decisions and operation strategies. 

The model determined the optimal reconfiguration of the ADN 

and the DG output.  

Although plenty of works have targeted ADN planning, most 

of them have ‘Passive’ features: (1). Passive continuation of 

conventional centralized decision-making and hierarchical 

controls via a unique monopoly unit. Future trends in 

distributed control via multiple control units which have equal 

positions are not considered. (2). Technical or economical 
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objective functions without considering the impact (restrict or 

support) of planning on  the capabilities in active management. 

(3). Decisions on deployment of DG and decisions on network 

operation are made by different entities; conflicting interests 

may impact the effects of active management. (4). More 

concern is placed on expanded or new ADNs, while little 

concern is placed on utilizing existing structures and devices to 

improve active management capabilities. 

In the last decade, Cyber-physical systems (CPSs) have been 

considered in the planning of ADNs, and ADNs are considered 

CPS systems [9], [10]. The interaction of physical parts and 

cyber parts in the planning ensures that ADNs are more efficient 

during operation and more responsive to customers [11]. 

Energy transformation and consumption are driven by the 

requirements of social production and life. Therefore, in [12], 

an extended version of CPS is proposed: extended cyber-

physical-socioeconomic system (ECPS). ECPS is a more 

comprehensive version that can reflect the interaction 

relationship among different aspects in a system. However, 

most existing studies for ADN planning only focus on physical 

systems, few of them have involved novel control decision 

strategies in cyber systems, but none of them considered future 

market evolvement and novel trading mechanism in 

socioeconomic systems. 

Future power systems may have fully distributed control via 

decentralized decision-making with swarm intelligence. This is 

the Web of Cells (WoC) concept proposed by the European 

Liaison on Electricity grid Committed Towards long-term 

Research Activities (ELECTRA) project [13]. Similar to the 

WoC concept, many studies propose to upgrade CDNs by 

partitioning a distribution network into several smaller units 

[14]–[20]. In some papers, these partitioned units are called 

virtual microgrids (VMs) [17], [18]. VMs have similar 

characteristics to normal microgrids. VMs are autonomous 

systems that can make a connection with other VMs through 

intelligent devices such as soft open point (SOP) [21]. This is 

consistent with the decentralized control of the future power 

system vision, and can be seen as a possible way to develop 

ADNs. However, all of these studies consider to construct VMs 

only in physical systems, but following conventional 

centralized decision-making mechanism in cyber systesms, as 

well as traditional organization with unique monopoly 

distribution companies in socioeconomic systems. 

The high penetration of DG in distribution networks is a 

widely accepted trend in future power grid technology. 

According to some existing policies, such as the Ontario’s 

Standard Offer Program in Canada, customers are allowed to 

own DG units, and the associated cost of owning DG units, such 

as investment, operation and maintenance costs, are paid by 

customers but not local distribution companies [22]. Currently, 

there are almost no DGs in the majority of CDNs. If DG 

integration is completely determined by customers and not 

preplanned well, this may lead to disorder and poor efficiency 

in future operations, which may conflict with the characteristics 

required for future distribution networks. Therefore, the 

reasonable allocation of DG is an important topic. 

So far, many DG allocation methods with different objectives 

have been proposed [23]–[25]. However all these models 

followed conventional organization structure and relations from 

socioeconomic perspective. So decisions on installation of DGs 

are made by individual customers and the optimization from 

global perspective is difficult to be accepted and performed by 

these independent decision-makers.  

Based on the discussion above, the contributions of this paper 

is summarized as: 

(1) In addition to active energy management, the concept of 

active planning as another critical characteristic of ADN is 

introduced.  

(2) A three-layer active planning framework based on ECPS 

and VMs is proposed to upgrade CDNs to ADNs.  

(3) A more specific and fundamental planning issue, the 

allocation of DG is studied with a two-stage scheme based on 

VMs.  

The paper is organized as follows: Section Ⅱ introduces the 

idea of active planning. A three-layer active planning 

framework and a two-stage strategy for optimizing DG 

allocation are introduced. Section Ⅲ introduces the algorithm 

for partitioning based on a functional community structure. 

Section Ⅳ explains the DG modelling methods and the 

operating scenarios adopted in the DG allocation process. The 

algorithm for DG allocation is explained in Section Ⅴ . In 

Section Ⅵ, the partitioning and DG allocation are verified in 

the PG&E 69-bus distribution network. The conclusion is 

drawn in Section Ⅶ. 

II. ACTIVE PLANNING IN DISTRIBUTION NETWORKS 

This paper proposes a new concept called “Active Planning” 

for ADNs. The planning from CDNs to ADNs should reflect 

following ‘Active’ characteristics: (1). It has a guidance from a 

long-term development perspective to cover all physical, cyber 

and socioeconomic systems and their relations. (2). It is 

oriented to maximization of capability in future active energy 

management. (3). It actively adapts to and utilize the existing 

characteristics of CDNs, including network structure and 

devices.  

According to characteristics of active planning and ECPS, we 

propose a three-layer framework for upgrading CDNs to ADNs, 

based on VMs as presented in Fig. 1. In this framework, VMs 

are basic units that can determine the decentralized control of 

ADNs. 

In the bottom layer of the three-layer framework (physical 

system), a CDN is divided into several units. The allocation of 

new resources and devices, such as DG and other energy 

storage devices, is optimized to form VMs. Moreover, based on 

VM systems, the integration of other energy resources (e.g., 

gas, thermal and cooling) can contribute to form local energy 

networks. Through the interconnection of these local energy 

networks, global energy internet could be constructed. 
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Fig. 1.  An active planning framework based on VMs. 

 

In the top layer of the three-layer framework (socioeconomic 

system) , considering the decentralized structure of VMs, each 

VM should have its own VM operator (VMO) who takes 

similar responsibilities as an EV aggregator [26]. A VM should 

be invested and constructed by its corresponding VM operator 

who will get profits from system operation. So the cost of DG 

installation and operation will be paid by VM operators, but not 

customers. Therefore, the optimized DG allocation from system 

perspective could be easily accepted and performed by VM 

operators. VM operators could receive the information from 

cyber systems and send the transaction decision to cyber 

systems to perform transactive energy control which is similar 

to networked microgrids [27]. VM operators are independent 

and autonomous in operating VMs. 

The intermediate layer of this framework is the cyber system, 

which joins the other two layers together; its ability of 

information collection and data analysis affects the behavior 

and performance of the whole system. As the physical system 

is constructed based on a VM, the measurement layout and 

information utilization of the cyber system should also be 

consistent with VM structures. Furthermore, the cyber layer 

should also support information in decision making of 

socioeconomic interactions, so its models should be consistent 

with the socioeconomic relations. Therefore, a multi-agent 

system could be constructed in this layer. Intelligent agents can 

help VM operators in decision making. 

Before emergence of VMs, there are already some studies 

about Networked Microgrids (NMGs) or Multiple Microgrids 

(MMGs) [27]-[29]. NMGs or MMGs are often confounded with 

VMs. However, they have quite different characteristics and 

problems. Fig. 2. indicates the general difference between 

NMGs and VMs. NMGs are connected through a CDN and 

VMs are partitioned from a CDN. A distribution network 

operator for CDN with individual assets and interests are 

responsible for coordination in NMGs, but VMs are 

decentralized operated by multiple independent VM operators 

with equal technical and socioeconomic positions. NMGs are 

newly constructed normal MGs with clear boundaries, but VMs 

are virtually partitioned with possibly dynamic boundaries. 

Compared with limited normal NMGs, the scale of existing 

CDNs is much larger which may not be impacted much by these 

NMGs. Therefore, NMGs cannot completely solve the 

upgrading from CDNs to ADNs. 

 

 
Fig. 2.  Difference between NMGs and VMs. 

 

However, upgrading CDNs to ADNs based on VMs cannot 

be accomplished at one stroke. This paper proposes a three-step 

developing strategy as shown in Fig. 3. In step 1, VMs are 

constructed only in the physical layer. The whole system 

operation is still performed by centralized control in the cyber 

layer under supervisory of a unique power distribution 

company in the socioeconomic layer. Most previous studies 

about VMs are at step 1 [14]-[20]. With increasing penetration 

of large-scale Distributed Energy Resources (DER), centralized 

control may have lots of challenges and difficulties. Therefore, 

in step 2, decentralized control by multiple agents could be 

performed in the cyber layer. But all agents belong to the same 

unique power distribution company in the socioeconomic layer. 

This is only to improve power supply efficiency and reliability 

but irrelevant to any socioeconomic issues. In step 3, each agent 

will represent a VMO in the socioeconomic layer who has 

independent entitlements and interests. Transactions could be 

reached between VMOs to perform transactive energy control 

in the cyber layer [27][28]. 
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Fig. 3.  Three-step developing strategy for ADN based on VMs. 

In the physical layer of Fig. 1, a comprehensive planning 

scheme is required to determine the VM structure and resource 

allocation of the DGs. Operating states of distribution networks 

may depend on two planning factors: 1). connections and layout 

among buses and lines, i.e., network topological structure and 

corresponding parameters; 2). deployment of distributed energy 

devices including location, type, and size, such as DG and 

energy storage devices. For most CDNs, 1 is a passive factor 

because network structures are established facts without large-

scale network upgrading; therefore, they have to be passively 

accepted. 2 is an active factor since there are still no large-scale 

penetrations of DG in most CDNs. So a factor of 2 can be 

actively optimized during planning. Therefore, we propose a 

two-stage strategy to optimize DG allocation. 

Stage 1: To determine VM boundaries according to the 

functional community structure of the original networks. 

Stage 2: Based on the VM boundaries identified in stage 1, 

to perform DG allocation by optimizing the self-adequacy and 

capabilities of active management in each VM. 

III. VMS PARTITIONING BASED ON  FUNCTIONAL 

COMMUNITY STRUCTURE 

A. Electrical Coupling Strength 

Complex network theory has been widely applied to issues 

in power networks [30]–[32], which have typical features of 

complex networks (such as scale-free and small-world features) 

[33]. In complex network theory, an adjacency matrix is 

frequently used in structure analysis: 

1      there is an edge between vertex v and w

0      otherwise
vwA


= 



.    (1) 

However, this matrix may not be appropriate to describe 

structural features of electrical networks because some physical 

characteristics in electrical engineering cannot be reflected, e.g., 

electrical distance and transmission capacity [34].  

In electrical engineering, the equivalent impedance Zvw 

between bus v and bus w could represent the electrical distance 

between them [35]. 
' ' '2 ,       , Bvw vv vw wwZ Z Z Z v w= − +  ,                 (2) 

where Z’vv, Z’ww and Z’vw are elements in the impedance matrix 

of power networks. 

Considering Power Transfer Distribution Factor (PTDF)  and 

power flow limits of lines, equivalent power transmission 

capacity between any two buses v and w, can be calculated as 

[36] 

maxmin ,      , B, Ll

vw l

vw

P
C v w l

F

 
 =  
 
 

,                (3) 

where Plmax is the maximum power flow limit of line l. Fl
vw is 

the power change on line l when a unit power is injected to bus 

v and withdrawn from bus w. 

The working target of power grids is to transmit electrical 

energy with more power and less losses, so shorter electrical 

distance and larger transmission capacity could represent 

tighter electrical coupling between two buses. Therefore, we 

defined Electrical Coupling Strength (ECS) as [34]: 

      , Bvw vw vwE Y j C v w = +  ,                   (4) 

      , Bvw
vw

C
C v w

C
=  ,                         (5) 

1
      , Bvw vw

vw

Y Z
Y v w

Y Y
= =  ,                       (6) 

where C  is the average power transmission capacity, and Y  is 

the average equivalent admittance, α and β are proportion 

coefficients, and 1 + = . Based on these coefficients, the 

extent to that these two quantities (the electrical distance and 

transmission capacity) affect the ECS is adjustable.  

With ECS, the traditional adjacency matrix in (1) was 

upgraded as ECS matrix for power networks in [34]: 

   there is a transmission line between bus v and w

0      otherwise

E vw

vw

E
A


= 



 

(7) 

However, in a real power grid, the equivalent impedance and 

transmission capacity defined in (2) and (3) may exist between 

any two buses, whether directly connected or not. The coupling 

strength may be stronger even if there is no line directly 

connecting them. Therefore the ECS defined in [34] can be 

improved via  
UE

vw vwA E=  (for any bus v and bus w).                 (8) 

Therefore, unlike a conventional adjacency matrix, which is 

sparse, all non-diagonal elements in the improved ECS 
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matrix in (8) would be non-zero.  

Community detection is a typical issue in the research of 

complex networks. Nevertheless, community is defined from a 

topological perspective according to the density of connections 

that can be called topological community structures. 

However, partitioning VMs is accomplished from the 

perspective of network functionality. VMs should have  some 

partitioned areas that have strong internal coupling strength to 

perform power transmission function. Hence, we could call 

them functional community structures. The Newman Fast 

Algorithm is a popular method in the detection of topological 

community structures [37], [38] according to traditional 

adjacency matrix. Based on that algorithm, then a specific 

partitioning for a network can be quantitatively evaluated by so-

called modularity. As a general rule: the bigger the modularity, 

the better the partitioning result. The modularity is, therefore, 

expressed as 

( )
1

 ,
2 2

v w

vw v w

vw

k k
Q A C C

m m


 
= − 

 
 ,               (9) 

1

2
vwvw

m A=  ,                         (10) 

where Avw is the element in the vth row and wth column of the 

adjacency matrix, kv and kw are the total number of edges 

connecting to vertex v and w, respectively, and Cv and Cw are 

the communities that vertex v and w respectively belong to. The 

symbol δ(Cv, Cw) is the Kronecker delta and is equal to 1 if 

vertex v and w are in the same community, otherwise, it is equal 

to 0. m is the total number of edges in the network. 

However, considering the specific electrical characteristics, 

it is not appropriate to detect functional community structures 

directly by this modularity. Therefore, in this paper, modularity 

is upgraded based on an improved ECS matrix that the ECS 

matrix characterized by Equation (8) as a so-called electrical 

modularity: 

( )
,

 ,
2 2 2M

UE UE UE

U vw v w

e v w

v w B

A A A
Q C C

M M




 
= −  

 
 ,          (11) 

UE UE

v vi

i B

A A


=  ,                                (12) 

1

2

UE

vwvw
M A=  ,                               (13) 

where 
UE

vwA  is the element in the vth row and wth column of the 

improved ECS matrix. 
UE

vA  is the sum of ECS associated with 

bus v. M is half of the sum of ECS in the network. 

Based on the electrical modularity defined in (11), the 

following detailed partitioning process is similar to the process 

found in [34]. Although the partitioning processes are similar, 

there is a major difference that only the coupling strength 

between directly connected buses are considered in [34], but in 

this paper, the ECS between any two buses are considered (all 

non-diagonal elements are non-zero).  

IV. MODELLING OF DISTRIBUTED GENERATION, LOADS AND 

OPERATING SCENARIOS 

In this section, the modelling of loads and DGs, including 

dispatchable and non-dispatchable DGs, is explained. Based on 

these models, adopted operating scenarios and relevant 

probabilities are also discussed.  

A. Modelling of Dispatchable DG 

As the power generated by dispatchable DG can be adjusted, 

the output power of dispatchable DG is fully controllable within 

its capacity limit [17], [39]. 

B. Modelling of Non-dispatchable DG 

Wind power generation is considered as renewable-based 

non-dispatchable DG in this paper. Considering the fluctuating 

and intermittent nature of wind power, most of the wind turbine 

generator modelling is based on probability density functions 

(PDFs) [22], [40]. In this paper, output power of wind turbine 

generators is determined from historical wind speed data, which 

is modeled by the Johnson SB PDF.  

( )
( )

2

1
exp ln

2 12 1

z
f x

zz z

x

x
z


 

 

  





    
  = − +   −−     


  +
 −
 =



, (14) 

where ψ and γ are shape parameters; ζ is the location parameter; 

λ is a scale parameter. 
TABLE Ⅰ  

PARAMETERS OF WIND TURBINE GENERATORS 

Scenario W1 W2 W3 W4 

Season Spring Fall Summer Winter 

γ 0.40832 0.1866 0.48423 -0.0199 

ψ 0.46673 0.49059 0.55561 0.48906 

λ 0.97881 0.98015 0.97956 0.95746 

ζ -0.0765 -0.00616 -0.00874 0.005568 

Probability 1/4 1/4 1/4 1/4 

 

Because wind speed has seasonal characteristics, four 

seasons are considered. The parameters of a Johnson SB PDF, 

with relevant probability of different seasons, is listed in Table 

Ⅰ [16]. If we assume equally partitioned season, the probability 

of each season is 1/4. 

C. Modelling of Loads 

A load model can be constructed based on Weibull PDF. 

( )
1 x

x
f x e


 

 

 

− − 
− 

 
− 

=  
 

,                     (15) 

where φ is the shape parameter; σ is the scale parameter; μ is 

the location parameter. 

Based on the load data of IEEE-RTS in [39], the difference 

in seasons and between weekday and weekend is also 

considered. Therefore, 8 scenarios are modeled. For each 

scenario, a Weibull PDF represents the deviation of actual load 

data from mean load value. Parameters of the Weibull PDF and 

probability are shown in TABLE Ⅱ [16]. With 5 weekdays and 

2 weekend days of each week, for each season, the probability 

of a weekend is 1/4 × 2/7 = 1/14 while the probability of a 

weekday is 1/4 × 5/7 = 5/28. 
TABLE Ⅱ  

PARAMETERS OF LOADS 
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SEASON SCENARIO φ σ μ PROBABILITY 

SPRING 
L1 2.4226 0.09934 -0.08812 5/28 

L2 1.7979 0.05353 -0.04758 1/14 

FALL 
L3 5.247 0.22676 -0.20872 5/28 

L4 5.1698 0.16188 -0.14876 1/14 

SUMMER 
L5 8.2088 0.21547 -0.20307 5/28 

L6 17.046 0.29313 -0.28402 1/14 

WINTER 
L7 8.2088 0.21547 -0.20307 5/28 

L8 17.046 0.29313 -0.28402 1/14 

V. DG ALLOCATION BASED ON VM PARTITIONING RESULTS 

In this paper, allocation of DG in VMs is performed, 

including so-called dispatchable and non-dispatchable DG. For 

each type, DG location, number and size need to be optimized. 

In this section, a bi-level hierarchical optimization model is 

constructed accordingly. 

A. Bi-level Optimization Model 

The resources for active management during operation 

depend on their allocation during planning. The active planning 

proposed in this paper maximizes the capabilities of resources 

for active energy management in system operation. The impact 

that planning decisions have on active management, during 

system operation, should be evaluated. Therefore, a bi-level 

optimization model consisting of an outer planning 

optimization and an inner operating optimization is shown in 

Fig. 4.  

 
Fig. 4.  Bi-level hierarchical optimization. 

In the inner optimization, active energy management is 

represented by Optimal Power Flow (OPF) which adjusts the 

output power of DG to minimize generation cost.  

_ , _ ,_ _

1

 (Cost Cost )
b

nd DG i d DG i

N
real real

inner nd DG d DG

i

OF Power Power
=

=  +  ,  (17) 

where Nb is the total bus number. Costnd_DG is the operating and  

maintenance cost of non-dispachable DG and Costd_DG is the 

operating and maintenance cost of dispachable DG. 
_ ,nd DG i

realPower

and 
_ ,d DG i

realPower  are real output power of non-dispachable DG 

and dispachable DG on bus i. If there is no corresponding DG 

on bus i, then 
_ ,

0
nd DG i

realPower = , and 
_ ,

0
d DG i

realPower = . 

Start

Input data: distribution network structure, 

virtual microgrid boundaries,  and 

probability density function (PDF) of non-

dispatchable DGs and loads

Randomly generate the initial population, 

J = 1

S = 1

Based on PDF, obtain the sampling points 

of non-dispatchable DGs and loads using 

MCS-SRS method

Using the optimal power flow calculation 

method, obtain the optimal operating 

states, including boundary flow, power 

losses 
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H = Hmax?
No

Yes

Calculate the mean value of power flow on 

boundaries, power losses corresponding to 

Hmax sampling points

S = Nsc?

Yes

Calculate individual fitness values FJ

Generate the new population after 
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Outer Optimisation 
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Fig. 5.  Flowchart of the DG allocation optimization 

The outer planning optimization determines the optimal DG 

allocation (DG type, location, number and capacity). The effect 

of active management is  represented by power losses managed 

by inner OPF, so one target for this optimal planning is to 
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Power flow distribution
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minimize power losses by allocating optimal resources. 

Furthermore, as most studies consider self-adequacy as one 

critical feature of VM [16]-[18], another target is to minimize 

the power flow on boundaries. That is to say, the self-adequacy 

of each VM should be guaranteed by reasonable DG allocation 

and provide better indepedency and security in system 

operation. 

( ), ,

1

 
scN

outer boundaries j loss j j

j

OF P P T
=

= +                 (16) 

where Nsc is the total scenario number. Pboundaries,j is the total 

active power of all the VM boundaries in scenario j. Plosses,j is 

the total power loss in scenario j. Tj is the probability of scenario 

j. Based on the results of the method introduced in section III, 

the VM boundaries are detected. Then by minimizing power 

flow on boundaries, VMs may keep independence and 

flexibility for operation.  

For dispatchable DG, the output power can be controlled by 

any value that is within the rated capacities. A wind turbine 

generator, a possible resource for non-dispatchable DG in 

active management, is supposed to be adjusted to any output 

power within the limits determined by the real-time wind speed. 

B. Constraints 

In practical engineering, investment in planning is often 

limited by the actual conditions and design targets. So this 

limitation is approximately modeled as a constraint of total DG 

capacity in the whole network: 

 

 

,

1

bN

DG i

i

C R
=

 .                                  (18) 

where Nb is the total bus number and CDG,i is the DG capacity 

on bus i. If there is no DG on bus i, CDG,i=0. R is the total DG 

capacity limitation. 

Similar to normal microgrids, VMs may also have two 

operating modes connected to the main grid or islanding 

operation. To guarantee power supply to critical loads in 

islanding operations, the total capacity of dispatchable DG in 

each VM should be larger than the total peak value of critical 

loads: 

_ , _

1

% C
bVMN

d DG i tot L

i

C K
=

  ,                         (19) 

where NbVM is the total bus number in any VM, Cd_DG,i is the 

dispatchable DG capacity of bus i. If there is no dispatchable 

DG on bus i, Cd_DG,i=0. K% is proportional coefficient, which is 

the percentage of peak critical loads to the total peak loads. 

Ctot_L is total loads in the VM.  

Constraints in Power flow calculation: 

( )

( )

, ,

1

, ,

1

 cos sin

 sin cos

b

b

N

DG i load i i k ik ik ik ik

k

N

DG i load i i k ik ik ik ik

k

P P V V G B

Q Q V V G B

 

 

=

=

− = +

− = −





,      (20) 

where PDG,i and QDG,i are the active and reactive DG output 

power on bus i. Pload,i and Qload,i are the active and reactive loads 

on bus i. Vi and Vk are the voltage on bus i and bus k. Gik and Bik 

are the real and imaginary parts of the ith row and kth column 

in the admittance matrix. θik is the voltage phase angle 

difference, and θik = θi - θk. 

Assuming bus 1 is the slack bus, the voltage and angle on the 

slack bus are 

,1

,1

1

0

j

j

V



=

=
                                  (21) 

The bus voltage limitation is 

 min max

, ,    1,2,3,...,i j i i bV V V i N    ,           (22) 

where Vi
min and Vi

max are the minimum and maximum voltage 

limitation on bus i. 

Feeder power flow limitation 

 max    , 1,2,3,...,ik ik bP P i k N   ,                   (23) 

where Pik
max is the maximum power flow limitation on the 

feeder connecting bus i and bus k. 

C. Optimization Algorithm 

With large-scale decision variables and their complex 

relationships, the outer planning optimization is performed by 

a Genetic Algorithm (GA). The inner operating optimization 

can be implemented as an Optimal Power Flow model to 

determine output power of all DG given the allocation of DGs 

from outer planning decision. The flow chart of the 

optimization algorithm is shown in Fig. 5. J is iteration number. 

S is the number of scenarios and H is the sampling point number 

of a Monte Carlo Simulation (MCS). Hmax is the total number 

of sampling points. Jset and ΔD are setting values of GA. 

In GA, each possible solution is called a chromosome. Each 

variable is a gene of the chromosome, and the number of genes 

should be equal to the number of variables. In this paper, DG 

location, number, type and capacity are optimized and 

determined. The following three vectors are used to represent 

each chromosome, 

,1 ,2 , ,

d_ ,1 d_ ,2 d_ , d_ ,

nd_ ,1 nd_ ,2 nd_ , nd_ ,

  ...  ... ;

                        C  C  ... C  ... C ;

                        C  C  ... C  ... C

yDG yDG yDG i yDG Nb

DG DG DG i DG Nb

DG DG DG i DG Nb

chromosome T T T T =  

  

  

 

(24) 

where TyDG,i is the type of DG on bus i. Three numbers are 

defined to indicate the type and presence of DG. 

,

0        There is no DG allocated on bus i

1        Dispatchable DG is allocated on bus i

2        Non-dispatchable DG is allocated on bus i

yDG iT




= 



(25) 

As in [42], a flowchart for the GA implementation describes 

the optimization process, which is shown in Fig. 5. 

With uncertainty in wind power and loads, probabilistic 

power flow (PPF) is implemented for the inner operating 

optimization [43]. The MCS based on simple random sampling 

(MCS-SRS) is one of the most popular and effective PPF 

methods. The deterministic power flow calculation of the 

sampling points, that is randomly selected according to PDFs, 

is repeated several times. In this paper, MCS-SRS method is 

used to generate the points of non-dispachable DG available 

power and loads according to relevant PDFs; the selected points 
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of non-dispachable DG represent the maximum power limit 

they can supply at that moment. Therefore, the optimal power 

flow calculation is implemented to optimize the power output 

of these DGs by using the tool provided by MATPOWER, 

which is a package for solving steady-state power system 

simulation and optimization. After the optimal power flow 

calculation, the optimal decision from inner optimization for 

each scenario can be utilized in calculating the fitness result of 

GA in outer optimization. A detailed process is shown in Fig. 5. 

VI. CASE STUDY 

In this section, the active planning method is tested on the 

PG&E 69-bus distribution network, where the data are available 

in [44].  

A. Partitioning Results 

To calculate the power transmission capacity, we assume the 

maximum power limit for all lines is the same due to same 

material and linewidths. The proportion coefficients α and β in 

the definition of improved ECS are both adopted as 0.5.  

 
Fig. 6.  Variation of electrical modularity with the number of VMs 

Fig. 6 shows the variation of the electrical modularity with 

different number of partitioned VMs. The maximum electrical 

modularity is 0.2991 when the number of VMs is 6. Because a 

larger electrical modularity indicates a better partitioning 

results, this result with maximum electrical modularity is used 

to determine the VM boundaries, as shown in Fig. 7 and Fig. 8. 

In [16], a self-adequate microgrid system with dynamic 

boundaries is proposed. The boundaries are determined by the 

lines of least power flow. In [16], a partitioning process is 

developed that is based on a network with preset conditions of 

DG allocation. However, as discussed before, a more common 

factor in most CDNs is that the large-scale penetration of DG 

has not occurred yet. Therefore, a more reasonable approach is 

to optimize the DG allocation after boundary detection. 

Additionally, the electrical modularity of the partitioning that 

results in [16] is 0.2689, which is smaller than the result in this 

paper (0.2991). Therefore, the partitioning result of this paper 

is more consistent with the structural characteristics of the 

network.  

B. DG Allocation for different scenarios 

To directly reveal the relation between planning and 

capabilities of active energy management, three different 

scenarios are constructed: 

Scenario 1: Conventional distribution network which has no 

DG penetration and all power is supplied by the main grid. 

Scenario 2: DG allocation without inner optimization by 

OPF of figure 2. This is to test the planning without considering 

impacts on capabilities and effects of active energy 

management. 

Scenario 3: DG allocation by bi-level optimization model of 

figure 2. This is to test how active planning can improve the 

capabilities and effects of active energy management.  

B-1: Scenario 1 

The total power loss in this mode without DG deployment is 

0.0514 kW. 

B-2: Scenario 2 

 
Fig. 7.  Optimized DG allocation in scenario 2. 

Two types of DG, wind turbine generators and biomass 

generators, are considered. Wind turbine generators and 

biomass generators represent non-dispatchable and 

dispatchable DGs, respectively. Thus, we assume that all buses 

can be selected as possible locations of DGs. The total capacity 

limitation of DG allocation R is assumed to be 4000 kW, and in 

each VM, the critical load accounts for 30% (which is the value 

of K in Equation (19)) of the total load. Considering different 

design requirements, these parameters can be adjusted to 

different values. The possible candidate capacities of all DGs 

are 50 kW, 100 kW, 150 kW, 200 kW. The maintenance and 

operating costs of wind turbine generators and biomass 

generators are 0.01 $/kWh and 0.025 $/kWh [45]. The 

parameter settings for optimization are shown in Table III.  
TABLE III 

PARAMETER SETTING FOR OPTIMIZATION 

Population 

size 

Mutation 

rate 

Crossover 

rate 
Nsc Gset ΔD 

100 0.6 0.001 8 10 10-8 

In this case, active energy management represented by OPF 

is not performed. Wind turbine generators generate the 

maximum power according to weather conditions while 

biomass generators produce constant power according to their 

capacity rating. In the inner optimization, Newton Raphson 

power flow, instead of optimal power flow calculation, is 

applied to get DG allocation results. The power loss after DG 

optimization is 0.0148 kW, which is smaller than scenario 1 

(0.0514 kW). 
TABLE IV 

CAPACITIES OF BIOMASS GENERATORS IN SCENARIO 2 

Location (bus No.) 3 6 8 9 12 13 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

40 41

61 62 63 64 65 66

57 58

59 60 67 68 69

55 56

38 3936 37 44 45 46 47 48 4942 43 50 51 52 53 54

30 31 32 33 34 3528 29

19 20 21 22 23 24 25 26 27
MG

W G

G G G

W G

W

WG GG G

G

VM1

VM5

VM2 VM3

VM4

VM6

G

G G G G G

G

W W

W W W

W

W W

W

W W
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Capacity (kW) 200 50 150 50 150 50 

Location (bus No.) 24 35 36 38 43 44 

Capacity (kW) 100 50 200 200 100 150 

Location (bus No.) 45 46 50 51 64  

Capacity (kW) 200 150 50 50 100  

DG allocation result is shown in Fig. 7. G and W stand for 

biomass generators and wind turbine generators, respectively. 

The capacities of wind turbine generators and biomass 

generators are listed in Table IV and Table V, respectively. The 

total capacities of wind turbine generators and biomass 

generators are 1650 kW and 2000 kW, respective. The capacity 

of DGs with renewable resources accounts for 45% of the total 

DG capacity.  
TABLE V 

CAPACITIES OF WIND TURBINE GENERATORS IN SCENARIO 2 

Location (bus No.) 4 5 15 17 18 

Capacity (kW) 100 50 100 50 150 

Location (bus No.) 23 29 30 40 41 

Capacity (kW) 150 150 50 150 150 

Location (bus No.) 42 53 60 63 67 

Capacity (kW) 50 150 100 150 100 

B-3: Scenario 3 

 
Fig. 8.  Optimized DG allocation in scenario 3. 

In this case, the proposed bi-level optimization is applied to 

obtain the optimal allocation of the DGs. The parameter setting 

is the same with that in scenario 2. The output of DGs is 

optimized via an optimal power flow to represent active energy 

management. By considering impacts on capabilities and 

effects of this active management, the DG allocation result is 

quite different from that of scenario 2. Fig. 8 presents the 

optimal DG distribution, and the number of biomass generators 

(27) is much bigger than that of wind turbine generators (8). 

According to the capacities of DG, listed in TABLE VI and 

TABLE VII, the total capacity of DGs, including wind turbine 

generators and biomass generators, is 4000 kW, which does not 

exceed the total DG limitation (4000 kW). Capacities of wind 

turbine generators and biomass generators are 1000 kW and 

3000 kW, respectively. The capacity of wind turbine generators 

accounts for 25% of the total DG capacity. The power loss of  

scenario 3 is 0.0041 kW, which is much smaller than that in 

scenario 2 (0.0148 kW) and scenario 1 (0.0514 kW). The 

capability of active energy management supported by active 

planning is much better in scenario 3. Compared to the 

optimization results in scenario 2, a better optimization result is 

achieved as the value of objective in scenario 3 (0.0693 kW) is 

approximately 11 times smaller than that in scenario 2 (0.7638 

kW). Active planning in scenario 3 can support better resources 

allocation to guarantee more effective active management and 

better self-adequacy in operation. However, the proportion of 

DG with renewable resources in this case (25%) is smaller than 

that in scenario 2 (45%).  
TABLE VI 

CAPACITIES OF BIOMASS GENERATORS IN SCENARIO 3 

Location (bus No.) 3 5 7 8 9 11 12 

Capacity (kW) 150 150 150 100 150 100 150 

Location (bus No.) 19 20 25 30 32 35 36 

Capacity (kW) 50 100 50 100 50 50 150 

Location (bus No.) 38 40 44 45 47 49 51 

Capacity (kW) 200 100 100 100 150 150 150 

Location (bus No.) 53 58 60 64 67 68  

Capacity (kW) 150 50 50 150 100 50  

TABLE VII 

CAPACITIES OF WIND TURBINE GENERATORS IN SCENARIO 3 

Location (bus No.) 14 17 24 41 52 56 57 65 

Capacity (kW) 150 150 100 50 150 150 100 150 

C. Comparison of optimization results with different 

proportion of renewable DG 

According to the analysis of scenario 3, a significant 

improvement of the objective function can be achieved by 

active energy management, but the proportion of renewable 

power generation is smaller than that in scenario 2. An essential 

function of ADNs is to accommodate more renewable power 

generation, but the proportion of non-dispatchable DG may 

impact the capabilities of active management significantly. To 

quantitatively assess the impact of this conflict, a constraint is 

set as:  

_DG, _

1

% C
bN

nd i tot DG

i

C T
=

                   (26) 

where Cnd_DG,i is the non-dispatchable DG capacity on bus i. If 

there is no DG on bus i, Cnd_DG,i=0, where T% is a proportional 

coefficient for non-dispatchable DG. Ctot_DG is the total DG 

capacity, including the capacity of dispatchable and non-

dispatchable DG. 

 
Fig. 9.  Objective with different proportional coefficient T. 

Five cases with different values of T are selected to find 

optimal allocation results of DG by applying a bi-level 

optimization method when T is equal to 10, 20, 30, 40, 50 and 

60. Corresponding results of objective functions are presented 

in Fig. 9. Lower objective value indicates improved capabilities 

of active management. The value of objective becomes bigger 

as T increases. When the value of T is less than 50, the change 
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40 41
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in the value of the objective is small. A rapid increase of 

objective can be found when T increases from 50 to 60. 

Therefore, the capability of active energy management is 

affected by the proportion of renewable power generation. To 

balance the conflict between proportion of renewable 

generation and active energy management, the value of T 

should be carefully selected. 

VII. CONCLUSION 

ADN has been considered a promising direction of 

development to solve problems in CDNs. Active management 

is one of the most important characteristics of ADNs, but how 

planning may impact the capabilities of active management has 

not been widely studied. Hence, in this paper, an active 

planning framework that considers all physical, cyber and 

socioeconomic factors and relations are presented. Moreover, a 

three-step developing strategy based on VMs is put forward. 

More specifically, a two-stage planning strategy for optimizing 

DG allocation is introduced. The first stage determines the VM 

boundaries based on structural characteristics of CDNs. With 

the VM boundaries as an important constraint, the second phase 

is to optimize the DG allocation by using a bi-level optimization 

method. 

The effectiveness of the proposed method is verified in the 

case study. From the structural point of view, our partitioning 

result is better compared to other early studies as it has a larger 

electrical modularity. Based on this partitioning result, the 

allocation for both dispatchable and non-dispatchable DG is 

determined. Compared to the original distribution network, that 

does not consider DG allocation, the power losses reduced 

much after DG allocation. Additionally, by comparing the DG 

allocations, with and without considering active management 

by OPF, we found that the autonomy and efficiency of 

distribution networks are improved a lot by considering active 

energy management in planning. Although a better 

performance is achieved via active management, it does not 

accommodate renewable energy solutions. To balance this 

conflict, under the premise of active energy management in 

ADNs, a proportional coefficient should be selected as a 

constraint on the capacities of DG with renewable resources. In 

future research, active energy management can be extended 

from OPF to other methods, such as network control, energy 

storage and demand response. Better index for capability and 

effect of active energy management (not only power losses) 

could be developed. With allocated resources from active 

planning, transactive energy control for optimal ADN operation 

is expected to be performed among independent VM operators. 
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