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A B S T R A C T

The central dogma of molecular biology, developed from the study of simple organisms such as Escherichia coli,
has up until recently been that RNA functions mainly as an information intermediate between a DNA sequence
(gene), localized in the cell nucleus, serving as a template for the transcription of messenger RNAs, which in turn
translocate into the cytoplasm and act as blueprints for the translation of their encoded proteins. There are a
number of classes of non-protein coding RNAs (ncRNAs) which are essential for gene expression to function. The
specific number of ncRNAs within the human genome is unknown. ncRNAs are classified on the basis of their
size. Transcripts shorter than 200 nucleotides, referred to as ncRNAs, which group includes miRNAs, siRNAs,
piRNAs, etc, have been extensively studied. Whilst transcripts with a length ranging between 200 nt up to 100
kilobases, referred to as lncRNAs, make up the second group, and are recently receiving growing concerns.
LncRNAs play important roles in a variety of biological processes, regulating physiological functions of organ-
isms, including epigenetic control of gene regulation, transcription and post-transcription, affecting various
aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. LncRNAs are
also capable of tuning gene expression and impact cellular signalling cascades, play crucial roles in promoter-
specific gene regulation, and X-chromosome inactivation. Furthermore, it has been reported that lncRNAs in-
teract with DNA, RNA, and/or protein molecules, and regulate chromatin organisation, transcriptional and post-
transcriptional regulation. Consequently, they are differentially expressed in tumours, and they are directly
linked to the transformation of healthy cells into tumour cells. As a result of their key functions in a wide range
of biological processes, lncRNAs are becoming rising stars in biology and medicine, possessing potential active
roles in various oncologic diseases, representing a gold mine of potential new biomarkers and drug targets.

1. Introduction to lncRNAs

The central dogma of molecular biology, developed from the study
of simple organisms such as Escherichia coli, has up until recently been
that RNA functions mainly as an information intermediate between a
DNA sequence (gene), localized in the cell nucleus, serving as a tem-
plate for the transcription of messenger RNAs, which in turn translocate
into the cytoplasm and act as blueprints for the translation of their
encoded proteins [1] (Fig. 1).

Gene expression is required for all aspects of life, and its regulation
defines development and homeostasis of all cells, tissues, and organ-
isms. There are a number of classes of non-protein coding RNAs
(ncRNAs) which are essential for gene expression to function. These
include small nuclear RNAs (snRNAs), mainly involved in mRNAs
splicing events; transfer RNAs (tRNAs) which are responsible for spe-
cifically recognising three-nucleotide sequences of mRNAs, decoding

the mRNA sequence into peptide or protein, and recruiting amino acids
into ribosomes in the correct order. The most abundant cellular RNA
molecules are represented by ribosomal RNAs (rRNAs), forming the
framework of ribosomes. snRNAs, tRNAs, rRNAs are referred to as
housekeeping RNAs and are constitutively expressed and are essential
for normal cellular function [1].

Next generation sequencing methods and progress in transcriptome
analysis have led to the discovery that up to 70% of the human genome
is transcribed into RNA, however, only up to 2% of this serves as
blueprints for proteins [2–6]. Moreover, the number of protein coding
genes has remained quite steady during evolution in metazoan (G value
paradox), whereas the size of genomes tends to increase. The advent of
tiling resolution genomic microarrays and whole genome and tran-
scriptome sequencing technologies showed that the human tran-
scriptome is more complex than a collection of protein-coding genes
and their splice variants; showing extensive antisense, overlapping and
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non-coding (ncRNA) expression [3,7]. In fact, 46% of the human
genome, making up the largest part, consists of repetitive elements
(such as transposons), and these have probably been the driving forces
of evolution [7,8]. Moreover, it is also worth mentioning that in most
cases transposons do not code for proteins and have been recently
discovered to be related to cancer processes [9,10].

The term ncRNA is commonly used to refer to RNA which does not
encode a protein. However, this does not imply that such RNA mole-
cules do not contain any information and serve no function.
Traditionally, it has been assumed that most genetic information is
transacted by proteins. Recent evidence through the development of
new techniques have revolutionised the molecular world and have
shown that the majority of the mammalian and other complex organ-
isms’ genomes is in fact transcribed into ncRNAs, which appear to
comprise a hidden layer of internal signals controlling various levels of
gene expression in physiology and development, including chromatin
structure, epigenetic memory, transcription, RNA splicing, editing,
translation and turnover [11].

2. lncRNAs

The specific number of ncRNAs within the human genome is un-
known. ncRNAs are classified on the basis of their size. Transcripts
shorter than 200 nucleotides, referred to as ncRNAs, which group in-
cludes miRNAs, siRNAs, piRNAs, etc, have been extensively studied.
Whilst transcripts with a length ranging between 200 nt up to 100
kilobases, referred to as lncRNAs, make up the second group, and are
recently receiving growing concerns. The latter transcripts lack a sig-
nificant open reading frame [6,7,12].

Long non-coding RNAs (lncRNAs), encompassing nearly 30,000
different transcripts in humans, represent the most prevalent and
functionally diverse class of ncRNAs [11]. There is no universal defi-
nition based on biological argumentation. Certain groups argue that
lncRNAs may be classified into antisense, intergenic, overlapping, in-
tronic, bidirectional, and processed subtypes, depending on the tran-
scription position and direction in relation to other genes [13,14]..
However, the most commonly used definition, an arbitrary one indeed,
is based on the threshold of 200 nucleotides (nt) of RNA length [11] a
lack of protein-coding potential and often harbour a poly-A tail and can
be spliced, similar to mRNAs [1]. Conventionally, this divides RNAs
into two groups; the lncRNAs which are> 200 nt in length, and the
remaining ones, referred to as “small” RNAs which are therefore<
200 nt in length. The latter group includes many different RNAs, such
as microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), piwiRNAs
(piRNAs) [11]. [15] attempted to distinguish between lncRNAs and
small ncRNAs, by defining the former group as those ncRNAs which
function either as primary or spliced transcripts, independent of extant
known classes of small ncRNAs [3,15]. Such a definition places ncRNAs
such as BC1 and snaR in the lncRNA database, even though these are
less than or close to 200 nt in length [15].

LncRNas are observed in a large diversity of species, including an-
imals [16], plants [17], yeast [18], prokaryotes [19], and even viruses
[3,20]. However, lncRNAs have been poorly conserved among different
species when compared with the well-studied RNAs (such as mRNAs,
miRNAs, snoRNAs). This in turn has invoked uncertainty as to whether
a given lncRNA is function at all. Otherwise, the fact that there is poor
interspecies conservation may convey functional species-specific char-
acteristics. In addition, lncRNAs are usually low expressed [21,22],
making them look more as transcriptional noise [11].

LncRNAs play important roles in a variety of biological processes,

regulating physiological functions of organisms, including epigenetic
control of gene regulation, transcription and post-transcription [5,6],
affecting various aspects of cellular homeostasis, including prolifera-
tion, survival, migration and genomic stability. LncRNAs are also cap-
able of tuning gene expression and impact cellular signalling cascades
[23], play crucial roles in promoter-specific gene regulation, and X-
chromosome inactivation [1]. Furthermore, it has been reported that
lncRNAs interact with DNA, RNA, and/or protein molecules, and reg-
ulate chromatin organisation, transcriptional and post-transcriptional
regulation [23]. Consequently, they are found to be differentially ex-
pressed in tumours, and they are directly linked to the transformation
of healthy cells into tumour cells. As a result of their key functions in a
wide range of biological processes, lncRNAs are becoming rising stars in
biology and medicine, possessing potential active roles in various on-
cologic diseases, representing a gold mine of potential new biomarkers
and drug targets [3,23,24].

Research is also showing that lncRNAs are deregulated in a number
of human cancers, and their aberrant expression leads to cell pro-
liferation, tumour initiation, growth and metastasis of cancer cells
[25–28]. More specifically [24], reported that they have identified 707
potential cancer-related lncRNAs, which act as scaffolds, interacting
physically with other RNA species, resulting in a direct impact on cell
signalling cascades. In this chapter, we seek to understand the link
between cellular processes influenced by lncRNAs to the hallmarks of
cancers [3–5]. This should serve to stimulate new research directions
and therapeutic options, where lncRNAs can serve the purpose of novel
prognostic markers, and therapeutic agents. However, even though the
functional classification and link of lncRNAs to cancer is well-estab-
lished, further studies are required so as to obtain a clearer character-
isation with respect to phenotypic outputs, to suitably identify candi-
dates which enable the development of new therapeutic strategies,
together with the design of novel diagnostic approaches [13].

2.1. lncRNA and their link to cancer

A broad definition of cancer, also referred to as malignancy, is an
abnormal and uncontrolled growth of cells, with the potential of in-
vading or spreading of the affected cells to other parts of the body [29].
Cancer is primarily caused by genetic alteration which result in the
deregulation of the gene networks that are responsible for the main-
tenance of cellular homeostasis, resulting due to interactions of somatic
and germline mutations with various environmental factors [5]. There
are more than 100 types of cancer, categorised according to the tissue
of origin [30]. As a result, symptoms of cancer vary considerably with
the type of tissue involved, location of origin, and type of genetic al-
teration causing the disease [29]. Research has pinpointed genetic al-
terations as being the main culprit behind this deadly disease. Several
lifestyle and environmental related factors, including smoking, physical
inactivity, high body fat, alcohol and caffeine intake, exposure to ul-
traviolet radiation, poor nutrition and high cholesterol intake diet, and
use of aspirin [29,31], may also increase the risk of transforming
normal cells to cancerous cells, altering the expression, at least in part,
of various genes related to cellular proliferation and differentiation.

Several studies, particularly with the recent application of next-
generation sequencing to a growing number of cancer transcriptomes,
comparing malignant cells with their corresponding normal cells have
revealed that many transcription factors, post-transcriptional regulators
such as RNA binding proteins, microRNAs, and lncRNAs are crucial
regulators for promoting or inhibiting tumour development [6,12,29].
LncRNAs have been gaining significant attention in terms of regulating

Fig. 1. The central dogma of molecular biology.
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the neoplastic transformation and progression [29], as well as being
involved in the regulation of various cellular functions, including pro-
liferation, migration, and DNA stability [29,32] even though only a few
of these have been functionally characterised [12]. Fig. 2 below depicts
the various ways lncRNAs are linked to the hallmarks of cancer.

[5] reported that prostate cancer associated 3 (PCA3, also referred
to as DD3) and prostate-specific transcript 1 (PCGEM1) were the first
lncRNAs that were associated with cancer because of their aberrant
expression, found to have differential display analysis of prostate tu-
mours and normal tissue [5]. PCA3 is currently used as a prostate
cancer biomarker [33].

[6] have reported that a number of lncRNAs are involved in im-
portant processes of breast cancer (BC), including 1. Promotion and
proliferation of BC or apoptosis inhibition of BC (lncRNAs include: H19,
SRA, LINC01296); 2. Promotion of drug resistance in BD cells (lncRNAs
include: UCA1, CRALA, lnc-ATB); 3. Promotion of invasion and me-
tastasis of BC cells (lncRNAs include: HOTAIR, MALAT1, CCAT2) [5,6].
Some other lncRNAs have been shown to inhibit these processes [6]. So
much so that lncRNAs have the potential to serve as biomarkers in

certain cancer types [29], more specifically in those malignancies
where the alternation of these ncRNAs are associated with cancer de-
velopment, progression, and metastasis [34]. Moreover, a unique pat-
tern of expression of some lncRNAs in specific types of cancer has made
them attractive targets for drug development [35]. The following table
(Table 1) highlights the expression of lncRNAs in different types of
cancer.

Moreover [12,12], have reported that the upregulation of certain
lncRNAs, including HOTAIR, MALAT1, CCAT2, and the downregulation
of LOC285194, UC.388, and LET have been implicated in promoting the
metastasis of colorectal cancer (CRC). However, the biological and
pathological functions of their mechanism remains a field to be studied,
since most lncRNAs which were expected to be prognostic and pre-
dictive in cancer patients have unfortunately failed to perform these
functions when tested in vivo [12].

2.2. Mechanism(s) of lncRNA action

A number of studies using next generation sequencing have revealed

Fig. 2. The various ways lncRNAs contribute to the hallmarks of cancer. Adopted from Ref. [5].

Table 1
lncRNAs in different types of cancers.

Cancer types lncRNAs Description References

Colorectal and prostate cancers CCAT2, PCAT-1 Over-expressed [36–39]
Non small cell lung cancer MALATI, HOTAIR, CCAT2, AK126698 Cancer progression, metastasis and invasion [40–43]
Liver cancer HULC Promotes tumor angiogenesis [44]
Breast cancer ATB Over-expression is associated with the highly metastatic phenotype [6,45]
Gastric cancer AP001631.9 Promotes cell migration [46]
Prostate cancer DRAIC and PCAT29 Over-expression inhibit the migration and invasion of cancer cells [47–49]
Hepatocellular carcinoma HNF1A-AS1 Stimulates proliferation and suppressor of apoptosis [50,51]
Pancreatic ductal adenocarcinoma lncRNA-MIR31HG Upregulated expression [52–54]
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that a significant portion of the mutation associated with cancer de-
velopment lies within the non-coding region of the human genome,
which mutation has a particular effect on the expression of lncRNAs,
which in turn may regulate various cancer phenotypes by interacting

with DNA, RNA, and proteins [35]. Research has demonstrated that a
number of lncRNAs have been reported to be aberrantly expressed in
tumours, showing crosstalk with key cancer-related signalling pathways

Fig. 3. Mechanism depicting how the expression of lncRNA BCAR4 is associated with advanced breast cancer.

Table 2
Cytoplasmic lncRNAs in cancer signalling pathways. Table adapted from Refs.
[55]].

Gene Main distribution Related signalling
pathway

LINK-A Triple - negative breast tumour HIF - 1 α; PI3 K/A KT
MAYA Majority of human solid tumours Hippo - YA P
Lnc-DC Dendritic cells STAT3
NKILA Normal breast epitheliaor non

-invasivebreast tumours
N F - KB

ACOD1 Most of the cells and organs GOT 2 metabiolic
pathw

Lnc- Lsm 3 b Immune cells and organs IFN1

Fig. 4. A number of lncRNAs regulate c-MYC or p53 9MEG3, LINK-ROR) by affecting their expression, protein levels or activity. Hence, lncRNAs form part of the c-
MYC oncogenic and p53 tumour suppressor networks.

Fig. 5. lncRNAs inhibiting BC development.

J.M. Grixti and D. Ayers Non-coding RNA Research 5 (2020) 77–82

80



[55], with the main mechanism(s) of action of lncRNA on cancer cells
regulate the expression of target genes in the following ways [29]:

i. Facilitating combinatorial actions of different transcription factors
ii. Removing transcription factors and other regulatory protein from

chromatin
iii. Recruiting chromatin modifiers in cis and trans genes
iv. acting as scaffolds bringing multiple proteins together, forming ri-

bonucleoprotein complexes inducing histone modification
v. Interact with DNA methyltransferase enzymes through other protein

mediators, regulating DA methylation in both cis and trans genes

Moreover, lncRNAs are significantly associated with the growth,
survival, migration, and angiogenesis of a number of cancer cell types
by transcriptionally or posttranscriptionally regulating the epigenetic
regulators/modifiers [29,55]. The following (Fig. 3) depicts the role of
lncRNA, BCAR4, in the metastasis of breast cancer via chemokine-in-
duced binding of BCAR4 to two transcription factors having extended
regulatory consequences.

Furthermore, Pei-fen [55] have reported that BCAR4 wires up
Hippo and Hedgehog signalling to reprogram glucose metabolism. Be-
sides, plasma lipid-associated lncRNA has been shown to regulate
normoxic hypoxia-inducible factor 1∝ (HIF-1∝) stabilisation, as de-
picted in Table 2 below.

2.3. Role of lncRNAs as tumour suppressors

LncRNAs can also act as tumour suppressors. Genome-wide studies
have revealed that transcription factors, such as p53 [32,56], MYC
[57,58] or the oestrogen receptor [59] specifically regulate the ex-
pression of a number of lncRNAs. One of the major tumour suppressor
proteins and preserver of cellular homeostasis, identified so far is p53,
playing a vital role in genomic stability, regulating its downstream
target genes by binding specifically to p53 response element (p53RE).
Research has shown that p53RE lies on the genomic region that encodes
lncRNAs, suggesting a possible role of lncRNAs as tumour suppressors.
For example, following DNA damage or oncogenic stress, the tran-
scription factor p53 initiates a tumour suppressor program which in-
volves the induction of many genes, including lncRNAs, and as shown
in Fig. 4, some of these lncRNAs are direct transcriptional targets of
p53.

[6] have reported that there are a number of lncRNAs, as shown in
Fig. 5 below, that are related with inhibiting the development of BC [6].

3. Conclusion

Given the important of lncRNAs in controlling important cellular
processes, it is sound to say that similar to protein-coding regions of the
human genome, genetic regions encoding lncRNAs play equally im-
portant roles in regulating the malignant transformation and progres-
sion. With the improvement of research methods such as the develop-
ment of gene array technologies and high-throughput sequencing
technologies, more categories of lncRNAs are expected to be dis-
covered, which technologies will allow for the effective understanding
of their complex mechanism/s of action, and eventually using recent
CRISPR/CAS gene editing technologies to play certain roles in devel-
oping lncRNAs as tumour suppressor therapies, delivering novel and
alternative treatment strategies for targeting cancer associated
lncRNAs.
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