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Abstract 12 

Despite existing evidence of pronounced seasonality in arbuscular mycorrhizal (AM) fungal communities, 13 

little is known about the ecology of AM fungi in response to grazing intensity in different seasons. Here, 14 

we assessed AM fungal abundance, represented by soil hyphal length density (HLD), mycorrhizal root 15 

colonisation intensity (MI) and arbuscule intensity (AI) throughout three seasons (spring, summer, 16 

autumn) in a farm-scale field experiment in typical, grazed steppe vegetation in northern China. Seven 17 

levels of field-manipulated, grazing intensities had been maintained for over 13 years within two 18 

topographies, flat and slope. We also measured soil nutrients and carbon content throughout the growing 19 

season to investigate whether seasonal variation in AM fungal abundance was related to seasonal shifts 20 

in soil resource availability along the grazing gradient. We further examined the association between AM 21 

fungal metrics in the different grazing treatments through the growing season. Our results showed a 22 

pronounced seasonal shift in HLD but there was no clear seasonality in MI and AI. HLD was significantly 23 

negatively related to grazing intensity over the course of the growing season from spring to autumn. 24 

However, MI and AI were related negatively to grazing intensity only in spring. In addition, differential 25 

mailto:yi.zou@xjtlu.edu.cn


2 
 

responses of AM fungal abundance to grazing intensity at the two topographical sites were detected. No 26 

strong evidence was found for associations between AM fungal abundance and soil resource availability. 27 

Moreover, AM fungal internal and external abundance were correlated positively under the different 28 

grazing intensities throughout the growing season. Overall, our study suggests that external AM fungal 29 

structures in soil were more responsive to seasonal variation and grazing than internal structures in roots. 30 

The findings also suggest that early grazing may be detrimental to AM fungal root colonization of newly-31 

emerged plants.  32 

Keywords: spring grazing, topography, soil resource availability, grazing management, external hyphae, 33 

seasonal variation   34 

 35 

Introduction 36 

Grasslands play a crucial role in global ecosystem functioning and human well-being (O'Mara 2012; 37 

Steinfeld et al. 2006). However, many grasslands are currently facing many pressures, of which over-38 

grazing is one of the key drivers reducing grassland productivity and sustainability (Conant 2010; O'Mara 39 

2012). Pervasive excessive grazing has altered above-ground plant communities, soil water and nutrient 40 

availability in grasslands (Conant 2010; McSherry and Ritchie 2013). This could translate to changes in the 41 

intimately-connected below-ground microbial community including the most common symbionts in 42 

grasslands, arbuscular mycorrhizal (AM) fungi (Birgander et al. 2014; Regan et al. 2014). 43 

AM fungi are keystone soil micro-organisms that play a vital role in maintaining grassland ecosystem 44 

productivity and stability (Asmelash et al. 2016; Moora and Zobel 2010). Root symbiotic mycorrhizal fungi 45 

establish these mutualistic symbioses with a large proportion of terrestrial plant taxa (over 80%) 46 

(Brundrett and Tedersoo 2018). This association is fundamentally a nutritional symbiosis: AM fungi rely 47 

on photosynthetic carbon received from the plant in exchange for transfer of nutrients, in particular 48 
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phosphorus (Doubková et al. 2013; Zavalloni et al. 2012). As such, AM fungi can enhance plant grazing-49 

tolerance by improving nutritional status, and thereby improving plant productivity (Moora and Zobel 50 

2010; Walling and Zabinski 2006).  51 

On the other hand, long-term grazing can alter AM fungal function and communities (Ba et al. 2012; Guo 52 

et al. 2016). The effect of grazing on mycorrhizal fungi can be explained in part by the carbon limitation 53 

hypothesis; clipping and removing plant photosynthetic tissues through long-term grazing may cause a 54 

decrease in carbon allocation to roots and mycorrhizal fungi as a result of competition between the plant 55 

and AM fungi for limited carbon resources (Gehring and Whitham 2003). Therefore, a negative response 56 

of AM fungi to long-term herbivory is expected. However, contradictory results have been reported (Barto 57 

and Rillig 2010; Faghihinia et al. 2020), so research is needed to improve our predictions of grazing effects 58 

on ubiquitous symbiotic AM fungi. 59 

The extent of the grazing impact on AM fungal function and community structure depends largely on 60 

grazing intensity (Ba et al. 2012; Yang et al. 2020) as it has disparate impacts on above- and below-ground 61 

productivity and biodiversity (Yan et al. 2013). Whilst overgrazing has destructive and irreversible negative 62 

impacts on plant community and soil properties, under-grazing can be just as harmful as overgrazing to 63 

grassland biodiversity and functioning through less stimulation of plant growth and loss of grazing-64 

dependent legumes and grasses (Metera et al. 2010). However, under-grazing is not a common practice 65 

worldwide at the moment. On the other hand, moderate grazing has been indicated as a benefit to 66 

grassland plant and soil conditions through natural fertilization, seed dispersal, making room for annual 67 

and bi-annual plant species growth and expansion, and periodic above-ground defoliation which regulate 68 

succession in plant communities (Metera et al. 2010). However, the effects of different grazing intensities 69 

on AM fungi have not been sufficiently addressed (van der Heyde et al. 2019). 70 
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In addition, the impact of grazing intensity on AM fungal structures may not be significant at particular 71 

time points throughout the growing season (Faghihinia et al. 2020). Many studies address the response 72 

of AM fungi to grazing at a single seasonal time point (Bai et al. 2013; van der Heyde et al. 2017), with few 73 

assessing the seasonal shift in AM fungal responses to herbivory, particularly in temperate systems 74 

(Cavagnaro et al. 2019; Staddon et al. 2003b; Wang et al. 2014). Cavagnaro et al. (2019) showed that AM 75 

fungal root colonization was significantly greater in summer compared with autumn in both sheep-76 

preferred and non-preferred plant species in a steppe grassland, Argentina. Similarly, Staddon et al. 77 

(2003b) and Wang et al. (2014) reported greater mycorrhizal root colonization in the summer but lower 78 

values during the autumn in temperate ecosystems. The same seasonal pattern has been reported for 79 

fungal hyphal length density in soil (Staddon et al. 2003b). Summer peaks in AM fungal abundance are 80 

expected due to greater plant mineral nutrient demand, rapid vegetative growth and root production as 81 

a result of high light availability for photosynthesis. In addition, plants may need additional mineral 82 

nutrients to fund shoot regrowth, thus allocating more carbon to AM fungi during summer when grazing 83 

is most intense (Cavagnaro et al. 2019).  84 

Moreover, the temporal dynamics of AM fungal abundance are confounded by ecosystem complexity, 85 

often with no consistent pattern being reported. For instance, no seasonal variation in AM fungal root 86 

colonization between summer and winter was reported in a Danish coastal, sandy, temperate grassland 87 

(Lekberg et al. 2013). However, another study of seasonal dynamics of AM fungal abundance in five 88 

Mediterranean plant species found that the percentage mycorrhizal root colonization and density of 89 

external hyphae was greater in autumn than in spring (Varela-Cervero et al. 2016). Further research is, 90 

therefore, required to unravel the underlying mechanisms of seasonality impact on AM fungal function 91 

and community which has prominent implications for grassland ecosystem management and stability. 92 

Pronounced seasonality in AM fungal abundance also is likely to be attributed to soil resource availability 93 

which changes seasonally (Hewins et al. 2015; Wang et al. 2014). Hewins et al. (2015) showed that plant 94 
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nitrogen and phosphorus content increased from late summer to early spring and the observed trend was 95 

associated with a decline in mycorrhizal root colonization in a forest herb in northeastern Ohio, USA. Wang 96 

et al. (2014) found a positive correlation between temporal changes of AM fungal root colonization and 97 

spore richness as well as soil acid phosphatase activity and available phosphorous in temperate grasslands 98 

in the north of China. Seasonal shift in below-ground carbon allocation to AM fungal storage lipids (16:1ω5 99 

NLFA) was observed in a coastal grassland in Denmark (Lekberg et al. 2013). In addition, soil resource 100 

availability alters along topographic gradients through topographical-induced changes in soil moisture and 101 

nutrient availability and solar exposure (Faghihinia et al. 2020; Murray et al. 2010; Schowalter 2016). 102 

Topography also affects animal behavior and distribution via greater livestock density and larger loads of 103 

dung and urine in low-lying areas compared with areas at higher elevation (Johnson et al. 2016). 104 

Topographic gradients of moisture and nutrient availability may interact with grazing to influence AM 105 

fungal variables, but the interaction under natural environments has yet to be discerned. How seasonal 106 

variation in AM fungal abundance relates to topographic-induced change in soil resource availability also 107 

requires further exploration.  108 

An additional consideration is that AM fungi inhabit two different environments, inside host plant roots 109 

and in the surrounding soil. Given that these two media differ in terms of AM fungal community structure 110 

(Li et al. 2018; Stevens et al. 2020) and are exposed to disparate biotic interactions (Jansa et al. 2013), 111 

various responses of AM fungal internal and external structures to environmental disturbance is highly 112 

likely. The external hyphal network in soil has a shorter life-span and higher turnover than internal hyphae 113 

within the roots (Varma and Hock 2013), thus, external hyphae respond very quickly to seasonal 114 

environmental variations such as pulses in soil moisture and nutrient availability (Treseder et al. 2010). 115 

Yet, whether any association exists between AM fungal root colonization and external hyphae in response 116 

to grazing intensity over growing seasons is unclear. Examining the linkage between AM fungal abundance 117 
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in roots and soil is fundamental for some of the crucial functional features of plant-fungal symbiosis 118 

including plant nutrient acquisition from the soil and host plant productivity (Jansa et al. 2013).  119 

As far as we are aware, no information is available concerning the interaction of grazing intensity, season 120 

and topography on AM fungal abundance (represented by soil hyphal length density (HLD), mycorrhizal 121 

root colonization intensity (MI) and arbuscule intensity (AI)). We aimed, therefore, to answer the following 122 

three questions (1) Is there a temporal change in mycorrhizal abundance in response to grazing intensity?, 123 

(2) Does seasonal variation in AM fungal abundance relate to seasonal shifts in soil resource availability 124 

along a grazing gradient in two topographic locations? (3) Is there any association between AM fungal 125 

abundance in soil and roots throughout the growing season? 126 

 127 

Methods 128 

Study Site 129 

This study was conducted at the Sino-German grazing experimental site in the Xilin River Basin of Inner 130 

Mongolia, China (116° 42′ E; 43° 38′ N), a steppe grassland ecosystem with a semi-arid, continental climate. 131 

We set up our experiment in 14 plots located in two topographic blocks, flat and slope. The “slope block” 132 

had a topographical slope of about 8 degrees, and the “flat block” had no noticeable slope. The two 133 

topographic blocks, were significantly distinct in terms of soil moisture, soil bulk density and soil nutrient 134 

availability as well as plant community structure and species aggregation (Li et al. 2017; Li et al. 2015; Ren 135 

et al. 2018). Each experimental plot, encompassing an area of 2 ha, was subjected to one of seven levels 136 

of grazing intensity (GI), from 0 to 9 ewes per ha with an interval increase of 1.5 ewes (35 kg live-weight 137 

female sheep). Hereafter, we represent GI by the number of grazers per hectare as 0 (no grazing), 1.5 138 

(very light), 3 (light), 4.5 (light-moderate), 6 (moderate), 7.5 (heavy) and 9 (overgrazing). Ewes were put 139 
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in plots for 90 days during the grazing season from June to September each year. Until we took samples 140 

in 2018, the grazing experiment had been run continuously for 13 years. Plant communities of both 141 

topographies are dominated by two perennial C3 grasses, Leymus chinensis (Trin.) Tzvel. a rhizomatous 142 

grass, and Stipa grandis P. Smirn. a bunchgrass, which together account for more than 75% of the total 143 

above-ground biomass (Li et al. 2017). A detailed description of the climate, vegetation cover, soil 144 

characteristics and the design of the experimental site can be found in previously published papers 145 

(Schönbach et al. 2011; Wan et al. 2011)  and in the supplementary information (SI-1).   146 

Soil sampling 147 

Five evenly-distributed double soil core samples (2 × 20 cm) were collected from each plot over the 148 

growing season at three sampling times in 2018 (2 topographical locations × 7 levels of grazing intensity 149 

× 3 seasons × 5 samples). In total 210 soil core samples for mycorrhizal measurement and 210 for soil 150 

properties analyses were collected. In the study area, the growing season begins in May, peaks in July and 151 

ends in September while the grazing season starts from June continuously to the end of September (Wan 152 

et al. 2011). We took samples in early–May, when grazing had not been started yet, mid-July, in the middle 153 

of the grazing season and late-September, at the end of the grazing season, representing spring, summer 154 

and autumn collections, respectively. Soil samples were kept in an ice box with a temperature of around 155 

0 °C until being placed in storage at -20°C. A schematic illustration of the experimental design is presented 156 

in Appendix SI-3 Figure S1.  157 

Soil hyphal length density (HLD) measurement 158 

Soil hyphae were extracted from two sub-samples of 5 g soil from each soil core (420 samples in total) in 159 

500 ml of deionized water (dH2O) following a modified membrane filter technique from Jakobsen et al. 160 

(1992) and Boddington et al. (1999). The hyphae of AM fungi were identified based on microscopic 161 

features; angular, aseptate, and 1.0–13.4 μm in diameter (Boddington et al. 1999; Shen et al. 2016). The 162 
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total length of hyphae (mm) was measured for a minimum 60 fields of view for each filter at × 100 163 

magnification. A modified GIM (Gridline Intersect Method) equation based on (Tennant 1975) was used 164 

for calculating the total length of hyphae (mm) per gram of soil (m g–1) (Shen et al. 2016) (SI-2).  165 

Mycorrhizal root colonization assessment 166 

Roots, comprising multiple plant species, were collected from five soil cores from each plot. The roots 167 

were rinsed carefully with distilled water and a sonicator was used to remove soil particles adhering to 168 

the root surface. Roots were cut into pieces ca. 1 cm long and then approximately 5 g of fine roots of each 169 

sample were cleared in 2% KOH (w/v) at 90°C for 60 min and then rinsed thoroughly on a fine sieve before 170 

being acidified in 2% HCl (v/v) for 30 min and stained in 0.05% (w/v) trypan blue: glycerol: lactic acid (1:2:1) 171 

for 30 min at 90 °C. Root segments of each sub-sample were rinsed with lactic acid: glycerol: dH2O (1:2:1), 172 

selected randomly and mounted on slides in 50% glycerol. Thirty pieces of roots from each root sub-173 

sample were observed under the compound microscope (Nikon eclipse Ci-L) at ×200 and ×400 174 

magnification, and mycorrhizal colonization intensity in the root system (MI%) (Percentage of total 175 

segment length colonized) and arbuscule intensity (AI%) (arbuscular abundance in the root system) were 176 

assessed according to the five-class system of Trouvelot (1986). Although assessed, mycorrhizal frequency 177 

was uniformly high and was not informative (data not shown). 178 

Soil resource availability determination 179 

Fresh soil samples were air-dried and sieved through a 2-mm sieve. Soil organic carbon was determined 180 

by the acid-potassium dichromate oxidation method (Walkley and Black 1934). Soil available phosphorus 181 

(Olsen-P) was extracted with NaHCO3 and determined by spectrophotometry following (Olsen 1954) and 182 

soil available nitrogen was measured by the alkali-hydrolyzed diffusion method according to Bao (2000).  183 

Data analysis 184 
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We used a three-way nested design to test the interactive effects of grazing intensity, topography and 185 

season on AM fungal measures. The data are nested in the sense that sampling was conducted at two 186 

sites with contrasting topography; flat and slope. At each topographic location, samples were collected 187 

from seven plots, each with different levels of grazing intensity, and sampling was repeated in three 188 

seasons (Appendix SI-3, Figure SI1). 189 

We conducted three analyses on our nested hierarchical data. First, we assessed grazing, topography and 190 

season effects and their interaction on AM fungal variables by linear mixed effect models (LMEs). 191 

Response variables included (i) soil hyphal length density (ii) mycorrhizal root colonization intensity and 192 

(iii) arbuscule intensity. Explanatory variables were grazing intensity with interaction with season, and 193 

study plot (nested by topography and grazing intensity) was a random variable. LME models fitted by 194 

maximum likelihood were applied separately for each AM fungal response variable. Due to the design of 195 

this large scale long-term field experiment, we treated grazing intensity as a continuous variable. We first 196 

fitted a model with all terms as well as all their interactions. Then, automated model selection using 197 

Akaike’s information criterion (AIC) were carried out to find the best-fit model.  198 

Second, we assessed the relationship between AM fungal hyphal length density, mycorrhizal root intensity 199 

and arbuscule intensity and soil resource variability including (i) available nitrogen, (ii) organic carbon and 200 

(iii) available phosphorus in topographic sites using linear regression models. As the effect of 201 

environmental conditions on AM fungal responses might not be independent within our soil cores, but 202 

could be homogeneous within each plot, we pooled data from the same plot, and analyzed the 203 

relationship between AM fungal measures and the means of environmental variables for plots. According 204 

to Crawley (2012) and Zuur et al. (2009) statistical analysis on nested data with hierarchical structure 205 

should be carried out on means rather than on individual observations so as to provide a conservative 206 

estimate of significance and to reduce the likelihood of Type I errors.   207 
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Third, we examined the responses of soil resource variables to different grazing intensities by linear mixed 208 

effect models. Linear mixed effect models were applied separately to soil available nitrogen, phosphorus 209 

and organic carbon, and study plot (nested by topography and grazing intensity) was a random variable. 210 

The best-fit models were then selected based on AIC. Finally, to assess relationships between HLD and the 211 

other AM fungal variables, Pearson correlation coefficients (r) among the means per plot were calculated. 212 

All data analyses were conducted with R, version 3.6.2 (R Core Team 2018). Linear mixed effect models 213 

were applied using the lme() function from the “nlme” package (Pinheiro et al. 2018). Automated model 214 

selections were carried out with the package “MuMIn”  using the ‘dredge’ function (Barton 2018) to find 215 

the best-fit models and statistical inference. All models were validated by checking the distribution of 216 

residuals following Zuur et al. (2009). Visual inspection of residual plots did not reveal any noticeable 217 

deviations from normality or homoscedasticity. 218 

 219 

Results 220 

Seasonality and grazing intensity effects on AM fungal abundance at two topographies 221 

A strong negative relationship between grazing intensity and soil hyphal length density (m/g) (HLD) was 222 

detected in all three seasons. HLD decreased significantly with increasing grazing intensity, and this was 223 

evident in all seasons: spring (β=-0.23±0.06, P=0.002), summer (β=-0.27±0.06, P=0.001) and autumn (β=-224 

0.43±0.06, P < 0.001) in the flat area, as well as in spring (β=-0.48±0.06, P < 0.001), summer (β=-0.45±0.06, 225 

P < 0.001) and autumn (β=-0.54±0.06, P < 0.001) in the slope area (Figure1, Table 1).  226 

HLD did vary during the growing seasons but the trends were different in the two topographic locations. 227 

HLD increased in the flat area, but decreased in the slope area over the course of the growing seasons. 228 

HLD significantly increased from spring to summer (β=1.70±0.45, P < 0.001) and from summer to autumn 229 
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(β=2.13±0.45, P < 0.001) in the flat area. In contrast, HLD decreased from spring to summer (β=-1.89±0.45, 230 

P < 0.001) with no significant difference between summer and autumn in the slope area (β=-0.03±0.45, 231 

P=0.952) (Figure 2). Significantly higher HLDs were observed in the slope site in spring (β=-4.09±0.45, P < 232 

0.001) and autumn (β=1.66±0.45, P < 0.001) compared with the flat site (Table 1).   233 

There was a negative relationship between mycorrhizal root intensity (MI) and grazing intensity in spring 234 

but no such relationship in summer and autumn. As grazing intensity increased, MI decreased marginally 235 

in spring (β=-0.91±0.43, P=0.057) in the flat area, and significantly in spring (β=-2.02±0.43, P < 0.001) in 236 

the slope area (Figure1, Table 1).  237 

MI variation along the growing season differed at the two topographic locations: MI increased in the flat 238 

area while it decreased in slope area during the growing seasons (Figure 2). No significant difference was 239 

observed between spring and summer (β=-6.43±3.29, P=0.052) but MI significantly increased from 240 

summer to autumn (β=9.16±3.29, P=0.006) in the flat area. In contrast, MI significantly decreased from 241 

spring to summer (β=-11.21±3.29, P=0.001) and remained unchanged from summer to autumn (β=-242 

1.60±3.29, P=0.627) in the slope area (Figure 2, Table 1). Topography significantly impacted MI with higher 243 

abundance in slope site in spring (β=-9.57±3.29, P= 0.004) but not in summer (β=-4.79±3.29, P=0.1473) 244 

and autumn (5.97±3.29, P=0.072) (Table 1). 245 

Arbuscule intensity (AI) showed the same pattern as MI to grazing intensity with a negative relationship 246 

with grazing intensity in spring in the flat (β=-0.42± 0.15, P=0.017) and slope sites (β=-0.56±0.15, P=0.003) 247 

(Figure 1, Table 1). No grazing intensity effect on AI was found in summer and autumn. No seasonal shifts 248 

were found in AI in the flat area, while AI significantly decreased from summer to autumn (β=-3.88±1.14, 249 

P=0.001) in the slope area (Figure 2, Table 1). AI was significantly higher in the slope site throughout the 250 

growing season in spring (β=0.42±0.15, P=0.017), summer (β=-2.62±1.14, P=0.023) and autumn 251 

(β=2.48±1.14, P=0.031) compared with the flat site (Table 1). 252 
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The interaction of grazing intensity and topography was only significant for HLD but not for MI and AI. 253 

Model fitting and selection revealed non-significant effects of three way interactions between grazing 254 

intensity, topography and season on HLD, MI and AI (Table 1).  255 

Seasonality and grazing intensity effects on soil resource availability at two topographies 256 

Soil available nitrogen (AN) (mg/kg) was not related to grazing intensity at the two topographic locations 257 

but it did change over the growing season in the flat area; AN increased from spring to summer 258 

(β=10.28±3.38, P=0.003) and then decreased from summer to autumn (β=-8.21±3.38, P=0.016). AN 259 

marginally increased from spring to summer (β=5.99±3.38, P=0.079) while it remained unchanged from 260 

summer to autumn in the slope site (Table 1, Figure S3). The flat site exhibited significantly higher 261 

availability of soil nitrogen in summer (β=-10.52±3.38, P=0.002) and autumn (β=-7.63±3.38, P=0.025) 262 

compared with the slope site (Table 1, Figure S3). 263 

 Soil available phosphorus (AP) (mg/kg) was related positively to grazing intensity in spring in the flat area 264 

(β=0.31±0.08, P=0.004) and in autumn in the slope area (β=0.43±0.08, P < 0.001) (Table 1, Figure S2). AP 265 

did not change along the growing season in the flat area but it significantly, though marginally, decreased 266 

from summer to autumn in the slope area (β=-1.32±0.64, P=0.042) (Table 1, Figure S3). There was 267 

significantly greater phosphorus availability in summer (β=-1.79±0.64, P=0.006) and autumn (β=-268 

3.43±0.64, P < 0.001) in the flat site compared to the slope site (Table 1, Figure S3). 269 

Soil organic carbon (SOC) (%) was related negatively to grazing in spring (β=-0.06±0.03, P=0.052) and 270 

autumn (β=-0.07±0.03, P=0.033) in the flat area and in summer (β=-0.1±0.03, P=0.005) in the slope area 271 

(Table 1, Figure S2). Pronounced seasonality was observed for SOC but the pattern differed between the 272 

topographic locations. SOC decreased from spring to summer (β=-0.69±0.22, P=0.002) and then increased 273 

in autumn (β=0.49±0.22, P=0.027) in the flat area. In contrast, SOC significantly increased from spring to 274 
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summer (β=0.60±0.22, P=0.007) and decreased from summer to autumn (β=-0.78±0.22, P=0.001) in the 275 

slope area (Table 1, Figure S3).  276 

Relationship between AM fungal abundance and soil resource availability 277 

HLD was not related to any measured variables (Table S1, Figure S4 and S5). MI was related negatively to 278 

soil available nitrogen in the flat site (β=-0.36±0.15, P=0.029) and AI was significantly negatively related 279 

to soil available phosphorus (β=-0.84±0.29, P=0.01) in the flat site (Table S1, Figure S4 and S5).  280 

Relationship between AM fungal abundance in soil and roots 281 

There was a significant positive association between HLD and MI in both the flat (Pearson r =0.49, P= 282 

0.024) and the slope sites (Pearson r =0.61, P=0.003) throughout the growing season (Figure 3). HLD was 283 

significantly correlated with AI in flat site (Pearson r =0.54, P=0.011), but no significant association was 284 

detected for the slope site (Pearson r =0.37, P=0.103).  285 

Discussion 286 

Climatic seasonality and inter-annual variations in temperature and precipitation are expected to 287 

moderate the effects of grazing on plant and soil related factors, and thereafter on below-ground biota 288 

including mycorrhizal fungi. Nevertheless, the interaction of seasonality and grazing effects on AM fungal 289 

abundance has not been investigated fully, particularly for HLD (Faghihinia et al. 2020). Our findings 290 

demonstrated significant negative relationships between HLD and grazing intensity and this trend 291 

persisted in all three seasons (Figure 1). The negative response of HLD to grazing has been reported 292 

previously in several studies in grassland ecosystems (Ren et al. 2018; van der Heyde et al. 2017; Vowles 293 

et al. 2018). Grazing-induced reduction in above-ground vegetation cover and below-ground root biomass 294 

(Hao and He 2019) would reduce the range of plants root types and the range of root exudates (Wilson et 295 

al. 2018) which would consequently impact soil microbes including AM fungi (Wang et al. 2014). Given 296 
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that hyphal extension and germination of AM fungal spores is known to take place preferentially in the 297 

presence of roots and root exudates (Smith and Read 2008; Tahat et al. 2010), reduction in HLD with 298 

increasing grazing intensity is expected. Noteworthy, however, is the consistent trend in the response of 299 

HLD to long-term grazing intensity from early in the season to the end of the growing season supporting 300 

the hypothesis that the effects of grazing intensity on external hyphal abundance is moderated by 301 

seasonality.  302 

Seasonal dynamics were not pronounced in mycorrhizal root colonization variables. MI and AI were 303 

significantly negatively related to grazing intensity only in spring but not in the summer and autumn 304 

(Figure 1). One possible explanation is that plants allocate less carbon to below-ground root colonizers in 305 

spring due to lack of mature leaf tissues and thus lower total photosynthetic activity (Hewins et al. 2015). 306 

Plants generally allocate more carbon to leaf elongation rather than root growth at the early stages of 307 

their growth (Waterton and Cleland 2016), suggesting that mycorrhizal root colonization is most likely 308 

governed by plant physiological status. Moreover, herbaceous vegetation is susceptible to herbivory 309 

during the early stage of the growing season due to small plant sizes, undeveloped physical (e.g., hard 310 

shells, thorns or spines) and low chemical defense mechanisms (e.g., producing secondary metabolites 311 

such as alkaloids, terpenoids, phenolics) as well as high palatability and nutritional quality (Quintero et al. 312 

2014). This finding suggests that the potential impact of early grazing would not only be detrimental to 313 

newly emerged plants, as reported in previous studies (Quintero et al. 2014; Waterton and Cleland 2016), 314 

but also to AM fungal root colonizers. This impact on the mycorrhizal symbiosis has large implications for 315 

grassland management in term of the timing of grazing within the growing season. These insights can help 316 

with management decisions aimed at maintaining sustainable grassland productivity and soil biodiversity.  317 

Clear differential responses of AM fungal abundance to grazing intensity were observed between the two 318 

topographic locations. Overall, we observed higher HLD, MI and AI in the slope site compared with the 319 

flat site, particularly in the spring (Figure 2). Previous studies in the same site have shown that the two 320 
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topographies are distinct in terms of soil properties and plant communities. The flat site has a greater 321 

plant richness, above-ground biomass, soil nitrogen and phosphorus availability, soil moisture and pH 322 

compared with the slope site (Li et al. 2017; Ren et al. 2018; Schönbach et al. 2011; Wan et al. 2011).  The 323 

slope area is therefore more nutrient-limited than the flat area. Given that the arbuscular mycorrhizal 324 

symbiosis involves a carbon and nutrient trade-off between the plant and fungal partners (Hodge et al. 325 

2010), it is likely that plants are more dependent on mycorrhizal fungi for obtaining nutrients in the slope 326 

area and allocate more carbon below-ground in the search for additional nutrients (Johnson 2010). Plant 327 

demand for nutrients is greater in spring when they are in their rapid vegetative growth stage and leaf 328 

elongation takes place. There might not be as high a demand in the flat site at early stage of the growing 329 

season when soil mineral nutrients are abundantly available to plants compared with the more nutrient-330 

limited slope area. 331 

Furthermore, previous studies reported greater plant species  richness (41 vs. 20 plant species) and above-332 

ground biomass (129.02 vs. 77.06 g m-2) in the flat area compared to the slope area (Li et al. 2017; Wan 333 

et al. 2011). The heterogeneity of the plant community has resulted in a higher ecological threshold of 334 

community structure and ecosystem functioning to grazing intensity in the flat (3.75 sheep ha-1) compared 335 

with the slope site (3 sheep ha-1). As a result, it has been suggested that the plant community composition 336 

in the flat site is more resistant and resilient to grazing disturbance than that in the slope site (Li et al. 337 

2017). Accordingly, AM fungi appeared more tolerant to some perturbations associated with grazing 338 

intensity in the flat site compared with the slope site because the corresponding plant community is itself 339 

more resilient to grazing impacts. This may in part explain the increasing HLD and MI from spring, when 340 

no grazing happens, to the end of growing season when grazing intensity is becoming intense. In contrast, 341 

reduction in HLD and MI throughout the growing season in the slope site was linked to lower nutrient 342 

availability and concomitant lower capability of plant species to respond to grazing pressure and 343 

defoliation.   344 
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The differential responses of AM fungal abundance at the two topographies can also be explained by 345 

differences among plant community composition and grazers’ diet preferences. The vegetation at our 346 

experimental site is dominated by L.chinensis and S.grandis. The above-ground biomass and richness of L. 347 

chinensis is greater than that of S. grandis in the flat site (Schönbach et al., 2011; Wan et al., 2011). It has 348 

been shown that the above-ground biomass of palatable and highly mycorrhizal L. chinensis decreased 349 

substantially with increasing grazing intensity, whereas the biomass of relatively unpalatable, less 350 

mycorrhizal S. grandis remained unchanged along the grazing gradient (Wan et al. 2011). Thus, lower AM 351 

fungal abundance in the flat site could have been caused by the strong negative effects of grazing on 352 

dominant, palatable L. chinensis.  353 

Seasonal differences in AM fungal abundance have been shown to be driven by shifts in relative 354 

abundance of soil resource availability (Hewins et al. 2015; Lekberg et al. 2013). However, we did not find 355 

similar seasonal trends in AM fungi and soil resources, and the relationships are not particularly strong 356 

for these variables. We found a marginally-significant negative relationship between (1) MI and soil 357 

available nitrogen, and (2) AI and soil available phosphorus in the flat site. Whether the seasonal shifts in 358 

AM fungal abundance are directly associated with soil resource availability cannot be confirmed in this 359 

current study and requires further investigation.  360 

We found a strong positive association between hyphal length density in soil and the intensity of root 361 

colonization (Figure 3) suggesting that changes in AM fungal internal abundance in roots are positively 362 

associated with those of external abundance in soil over the growing season. The positive correlation 363 

between HLD and MI in our grazed study sites is not surprising because thin, fragile runner hyphae can be 364 

easily disrupted by the activities of large herbivores leading to lower nutrient uptake by the associated 365 

plants and lower redistribution of recently fixed carbon through the soil, thereby reduced colonization 366 

capacity of the fungi (Gui et al. 2018; van der Heyde et al. 2017). Such a relationship between the various 367 

metrics of AM fungal dynamics rarely has been reported in previous studies, particularly in grassland 368 
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ecosystems. Considering that nutrient uptake and carbon use differ among and within AM fungal 369 

structures (Smith and Read 2008) and that AM fungal isolates differ in their rates of colonization and 370 

hyphal extension (Hart and Reader 2005), this relationship between AM fungal structures may change 371 

across different ecosystems. Studies are needed to unravel underlying mechanisms.  372 

 373 

Conclusions 374 

In summary, we showed that the effects of grazing intensity on AM fungal abundance is mediated by both 375 

topography and seasonality in this Inner Mongolia grassland. While we acknowledge that true replicates 376 

of each individual plot at a given grazing intensity and topography would have added increased robustness 377 

to our conclusions, to repeat such a large scale experiment with multiple large plots, in this case a total of 378 

14 plots of 2 hectares each, is extremely expensive and unrealistic. By careful application of appropriate 379 

statistical analyses, our results clearly showed that, in the study site, HLD was negatively related to grazing 380 

intensity over the course of the growing season and MI and AI were significantly negatively related with 381 

grazing intensity only at the early stage of the growing season at both topographic locations.   382 

That seasonal shifts in mycorrhizal abundance were more pronounced in HLD, but not so marked in MI 383 

and AI, suggest that external AM fungal structures in soil are more responsive to seasonal variation than 384 

internal mycorrhizal structures in roots. This can be explained by the mycorrhizal hyphae in the soil 385 

experiencing a much broader range of environmental conditions than those within the relatively stable 386 

conditions within plant roots. Indeed, soil HLD, containing a large proportion of AM fungal hyphae with 387 

short longevity and high turnover rate (Staddon et al. 2003a) is more susceptible to environmental 388 

disturbance compared with AM fungal hyphae inside roots (Varma and Hock 2013). MI and AI were 389 

significantly negatively related to grazing intensity only in spring which suggests that mycorrhizal root 390 

colonization is driven by plant physiology rather than by sampling time per se. Furthermore, our data 391 
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suggest that early grazing can be detrimental to AM fungal root colonization of newly emerged plants. 392 

Overall, early-spring grazing should be avoided in Inner Mongolia grazed steppe to prevent damage of 393 

plant growth and thereby their root-associated symbiotic partners. This will lead to maintaining healthy 394 

plant communities and soil biota with sustainable function of the grassland ecosystem.  395 
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 557 

 558 

 559 
Figure 1. Soil hyphal length density in flat (a) and slope sites (b), mycorrhizal root intensity in flat (c) and slope sites 560 
(d) and arbuscule intensity in flat (e) and slope sites (f) in response to grazing intensities at three seasonal time 561 
points. Solid and hollow circles indicate mean and individual observations at each grazing intensity, respectively. 562 
Lines represent regressions from linear mixed-effects models, with solid and dashed lines indicating significant 563 
(P<0.05) and non-significant (P>0.05) relationships, respectively.   564 

 565 

 566 
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 567 

Figure 2. Estimated coefficients from general linear mixed models applied to (a) soil hyphal length density, (b)     568 

mycorrhizal root intensity and (c) arbuscule intensity in response to season in the flat and slope sites.  Asterisks 569 

represent significance levels obtained from the model results, p < .001, "***", p < .01, "**", p < .05, "*", NS: non-570 

significant. 571 
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GI Tp Slope 
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Summer 
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Autumn 
GI: Tp Slope 

GI: Season 

Summer 

GI: Season 

Autumn 

Tp Slope: 

Season 

Summer 

Tp Slope: 

Season 

Autumn 

GI: Tp Slope: 

Season 

Summer 

GI: Tp Slope: 

Season 

Autumn 

AICc 

Soil hyphal 

length 

density 

(m/g) 

1 
-0.23±0.06 

(0.005) 

4.09±0.51 

(0.000) 

1.70±0.45 

(0.004) 

3.83± 0.36 

(0.000) 

-0.25±0.08 

(0.003) 

-0.04±0.08 

(0.613) 

-0.20±0.08 

(0.003) 

-3.59±0.75 

(0.000) 

-5.749±0.54 

(0.000) 

0.07± 0.14 

(0.594) 

0.14± 0.09 

(0.257) 
555.93 

2 -0.27±0.05 
(0.000) 

3.76±0.31 

(0.000) 

1.54±0.33 

(0.000) 

3.51±0.29 

(0.000) 

-0.18±0.04 

(0.000) 

-0.01±0.05 

(0.906) 

-0.13±0.05 

(0.007) 

-3.26±0.41 

(0.000) 

-5.11±0.29 

(0.000) 
- - 553.75 

 Mcorrhizal 

root 

intensity 

1 -0.91±0.43    

 (0.057) 

9.56±3.29     

  (0.004) 

-6.43±3.76    

  (0.052) 

2.72±3.17     

  (0.391) 

-1.12±0.61    

 (0.069) 

0.87±0.61     

  (0.225) 

0.27±0.59     

  (0.703) 

-4.77±4.83    

 (0.324) 

-15.53±5.37 

  (0.001) 

0.99±0.89     

  (0.264) 

0.84±0.83     

  (0.406) 
1454.76 

2 -1.46±0.31    

 (0.001) 

4.55±1.85     

  (0.015) 

-8.68±2.63    

 (0.001) 

0.84±2.56     

  (0.743) 
- 

1.37±0.41     

  (0.001) 

0.68±0.41     

  (0.098) 

-0.28±2.75    

 (0.920) 

-11.77±2.48 

  (0.000) 
- - 1451.67 

Arbuscule 

intensity 

1 
-0.42±0.15    

 (0.028) 

1.74±1.14     

  (0.130) 

-1.19±1.14    

 (0.359) 

0.02±1.13     

  (0.989) 

-0.15±0.21    

 (0.482) 

0.27±0.21     

  (0.210) 

0.11±0.21     

  (0.609) 

0.88±1.63     

  (0.588) 

-4.212±1.60 

  (0.009) 

0.09±0.30     

  (0.745) 

0.34±0.33     

  (0.257) 
1019.72 

2 -0.49± 0.11   

  (0.001) 

1.06± 0.63    

  (0.092) 

-1.42± 0.91   

 (0.122) 

-0.74± 0.91   

 (0.416) 
- 

0.31± 0.15    

  (0.034) 

0.28± 0.15    

  (0.063) 

1.32± 0.90    

  (0.143) 

-2.70± 0.88   

 (0.003) 
- - 1014.33 

Available 

phosphorus 

(mg/kg) 

1 
0.31± 0.08 

(0.004) 

-0.12± 0.64 

(0.854) 

0.63± 0.64 

(0.327) 

0.95± 0.55 

(0.085) 

-0.36± 0.12 

(0.003) 

-0.25± 0.12 

(0.037) 

-0.23± 0.10 

(0.026) 

-1.67± 1.03 

(0.105) 

-3.31± 0.77 

(0.000) 

0.28± 0.19 

(0.140) 

0.71± 0.14 

(0.000) 
725.43 

Available 

nitrogen 

(mg/kg) 

1 
0.92±0.44 

(0.059) 

-6.23±3.38 

(0.067) 

10.28±3.38 

(0.003) 

2.06±2.82 

(0.465) 

-0.60±0.63 

(0.341) 

-1.48±0.63 

(0.019) 

-1.65±0.52 

(0.002) 

-4.29±5.46 

(0.433) 

-1.40±3.99 

(0.726) 

1.16±1.01 

(0.253) 

1.35±0.74 

(0.070) 
1415.57 

2 
0.63±0.31 

(0.068) 

-8.91±1.88 

(0.000) 

7.67±2.51 

(0.003) 

-0.96±2.29 

(0.676) 
- 

-0.90±0.37 

(0.016) 

-0.98±0.37 

(0.009) 

0.92±3.02 

(0.761) 

4.66±2.23 

(0.038) 
- - 1413.36 

Organic 

carbon (%) 

1 
-0.06± 0.03 

(0.052) 

-0.57± 0.22 

(0.011) 

-0.69± 0.22 

(0.002) 

-0.20± 0.14 

(0.161) 

0.049± 0.04 

(0.236) 

0.07± 0.04 

(0.108) 

-0.01± 0.03 

(0.783) 

1.3± 0.39 

(0.001) 

0.03± 0.20  

(0.904) 

-0.15± 0.07 

(0.038) 

0.04± 0.04 

(0.279) 
175.81 

2 
-0.04±0.02 

(0.094) 

-0.35±0.14 

(0.012) 

-0.40±0.14 

(0.004) 

-0.24±0.08 

(0.004) 
- - - 

0.62±0.25 

(0.016) 

0.21±0.11 

(0.066) 
- - 173.25 

 582 

Table-1 Linear mixed-effects models of the effects of grazing intensity (GI), topography (Tp) and season on AM fungi and soil variables. Mixed-583 

effects models were applied to nested (multi levels) data. The data are nested in the sense that samples were taken from two topographic locations 584 

(flat and slope) and in each topography from seven sites (called “plot” hereafter) representing seven levels of grazing intensity. In each plot, 585 

sampling was conducted at three seasons (spring, summer and autumn). The full model (model No. 1) and the best model selected according to 586 

Akaike’s information criteria (AIC) (model No. 2) are presented. Topography flat and season spring are reference groups in data presented here. 587 

Bold numbers represent the significant relationships (p<0.05).  588 

 589 

 590 

 591 
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Figure 3. Pearson correlation coefficients (r) between soil hyphal length density and mycorrhizal root colonization.  

  



26 
 

Appendix A. Supplementary data 

SI-1 Site description 

This experiment was set up at the Sino-German grazing experimental site which is located in the Xilin River 

Basin of Inner Mongolia, China (longitude 116° 42′ E; latitude 43° 38′ N). The experiment site was 

established in 2005 and is ca. 128 ha, with elevations of 1,200 m to 1,280 m asl. The area has a semi-arid, 

continental climate with a mean annual temperature of 0.9°C (1982–2010) and mean annual precipitation 

of 329 mm (1982–2010) with more than 70 % of the annual precipitation falling as rain during the growing 

season from April to September (Wan et al. 2011).  

Two dominant plant species, Leymus chinensis (Trin.) Tzvel. and perennial bunchgrass Stipa grandis P. 

Smirn. together account for more than 75% of the total above-ground biomass (Li et al. 2017). Other 

species that commonly appeared in our experimental site are Cleistogenes squarrosa (Trin.) Keng, 

Agropyron cristatum (L.) Gaertn., Koeleria cristata (L.) Pers., Achnatherum sibiricum (L.) Keng, Carex 

korshinskyi Kom., Potentilla acaulis L., Allium bidentatum Fisch. ex Prokh., Allium tenuissimum L., 

Chenopodium aristatum L., Salsola collina Pall., and Chenopodium glaucum L. (Schönbach et al. 2011, Li 

et al. 2017). The total vegetation cover is about 30-40% in normal years and may reach 60-70% in wet 

years. 

The pastures are generally grazed by sheep and goats. The major soil type is calcic chernozem (IUSS 

Working Group 2006), developed from aeolian sediments deposited on a Pleistocene basalt plateau, with 

mainly a fine-sand loess texture. The soils are defined by a dark Ah horizon followed by an Ach horizon. 

The carbonate-free Ah horizon thickness differs from 20 to more than 100 cm where L. chinensis is 

dominant and from 5 to 45 cm where S. grandis sites is abundant. The Ach horizon containing secondary 

calcium carbonate nodules is located bellow the Ah horizon (Wiesmeier et al. 2009).   
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SI-2 Hyphal length density (HLD) measurement 

Before sub-sampling and hyphal extraction, soil samples were passed through a 2.00 mm sieve to remove 

large particles and roots. A modified membrane filter technique (based primarily on Jakobsen et al. (1992) 

and Boddington et al. (1999) was used for soil hyphal extraction as follows: from each soil core, two 5 g 

sub-samples were taken for external mycorrhizal hyphae extraction (140 samples in total). 5 g soil in 500 

ml of deionized water (dH2O) was stirred at full speed with a magnetic stirrer for 2 min in a beaker, and 

afterward was poured of through a 0.5 mm wire sieve to collect large particles. The solution was agitated 

in 500 ml by stirring for 10 s with a glass rod and allowed to settle for 10 s and then decanted through a 

45 µm sieve. Agitation was repeated three times to ensure most of the hyphae were obtained. Finally, the 

material on the 45 µm sieve was rinsed into a beaker using 250 ml dH2O, then placed in a filter cylinder 

fitted with a 0.45 µm nitrocellulose membrane filter. The samples were left to drain under vacuum. With 

the vacuum on, cylinders were removed and a few drops of Trypan blue staining solution (lactic acid: 

glycerol: Trypan blue (5%v/w); 1:2:1) was carefully added to the filter containing the extracted material. 

The membrane filters, containing the extracted hyphae, were removed after drying and rinsed in lactic 

acid: glycerol: dH2O (1:2:1) and then cut into two pieces and transferred to microscope slides. Assessment 

of hyphal length per filter was carried out by the gridline intercept method for a minimum 60 fields of view 

for each filter paper at × 100 magnification (using a 10 × 10 grid of 5 mm length formed by 11 horizontal 

and 11 vertical lines intercrossed perpendicularly). The hyphae that were angular, aseptate, and 1.0–13.4 

μm in diameter were deemed to be of AMF origin (Boddington et al. 1999, Shen et al. 2016), and only 

those were considered for the measurements. The developed modified GIM (Gridline Intersect Method) 

equations based on (Tennant 1975) were used for calculating the total length of hyphae (mm) (Shen et al. 

2016) as follows: 

𝐿 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 × 

11

14 
×𝑔 ×𝐴𝑓

𝐴𝑔 ×𝑁
  

Where: 

11

14
  is a constant 

"g" is the grid unit  

Af is the area of the filter  

Ag is the area of the grid unit  

N is the number of fields of view on each filter  

"Total number of intersections" is the count of the number of intersections across vertical and horizontal 

lines for each filter  
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SI-3 Schematic illustration of experimental design 

 

 

Figure S1. Schematic illustration of experimental design, grazing plots and sample collection. Sampling was 

conducted at two locations with contrasting topography; flat and slope. At each topographical location, samples 

were collected from seven plots, each with a different grazing intensity (GI); 0 (no grazing), 1.5 (very light), 3 (light), 

4.5 (light-moderate), 6 (moderate), 7.5 (heavy) and 9 (overgrazing). Each grazing plot has an area of 2 ha. Double 

soil core samples were taken at each sampling point, one for mycorrhizal measurement and assessment and one for 

soil properties analyses. Sampling was repeated in three seasons; spring, summer and autumn. 
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SI-4 Seasonal variations in soil available nitrogen, phosphorus and soil organic carbon along a 

grazing gradient at two topographical locations. 

 

 

 
  

  

 Figure S2. Soil available nitrogen in topography flat (a) and slope (b), soil available phosphorus in topography flat 

(c) and slope (d) and soil organic carbon in topography flat (e) and slope (f) in response to grazing gradient at three 

seasons. Solid and hollow circles indicate means and individual observations at each grazing intensity, respectively.  

Lines represent regressions from linear mixed-effects models, with solid and dashed lines indicating significant 

(P<0.05) and non-significant (P>0.05) relationships, respectively.   
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SI-5 variation in soil resource availability over the course of growing season 1 

 2 

 Figure S3. Estimated coefficients from general linear mixed models applied on available nitrogen (a), available 3 

phosphorus (b), and organic carbon (c) in response to season in flat and slope sites.  Asterisks represent significance 4 

level obtained from the model results, p < .001, "***", p < .01, "**", p < .05, "*", NS: non-significant. 5 

 6 

 7 

SI-6 Linear regression model of the relationship between AMF fungal and soil resource 8 

variables   9 

 10 

Table S1- Linear regression model of the relationship between AMF fungal and soil resource variables   11 

Soil variables Topography 
Soil hyphal length 

density (m/g) 
Mycorrhizal Intensity 

(%) 
Arbuscule Intensity 

(%) 

Organic Carbon (%) Flat 0.03±1.12 (0.978)   1.49±3.37(0.664) 1.25±0.85(0.157) 

 Slope 1.17 ± 1.55(0.462) 7.35±5.26(0.179) 5.22±1.84(0.011)* 

Available Nitrogen (mg/kg) Flat -0.06± 0.06 (0.317)  -0.36±0.15(0.029)*  -0.05±0.044(0.255) 

 Slope -0.10±0.14 (0.483) -0.28±0.50(0.579)  0.27±0.19(0.167) 

Available Phosphorus (mg/kg) Flat -0.67±0.41(0.118) -1.45±1.28 (0.274)  -0.84±0.29 (0.01)** 

 Slope -0.24±0.35(0.509) -0.66±1.24(0.599) -0.29±0.49(0.554) 

Values indicate slope coefficients ± SE (p-value) extracted from linear regression models between AMF variables as dependent variables 12 
and soil resource variables as independent variables. Boldface indicates significant relationships (p<0.05) and asterisks represent 13 
significance level obtained from the model results, p < .001, "***", p < .01, "**" 14 

 15 

 16 

 17 

 18 

 19 

 20 
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SI-7 Correlogram of AMF and soil resource variables in the flat site 21 

 22 

Figure S4.  Correlogram of AMF and soil resource variables in the flat site. Abbreviation: MI: mycorrhizal 23 

intensity (%), AI: Arbuscule intensity (%), HLD: soil hyphal length density (m/g), AN: soil available nitrogen 24 

(mg/kg), AP: soil available phosphorus (mg/kg) and OC: soil organic carbon (%). Bonferroni correction has 25 

been applied to calculate the adjusted p-values. 26 

 27 

 28 

 29 
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SI-8 Correlogram of AMF and soil resource variables in slope site 30 

 31 

 32 

Figure S5.  Correlogram of AMF and soil resource variables in slope site. Abbreviation: MI: mycorrhizal 33 

intensity (%), AI: Arbuscule intensity (%), HLD: soil hyphal length density (m/g), AN: soil available nitrogen 34 

(mg/kg), AP: soil available phosphorus (mg/kg) and OC: soil organic carbon (%). Bonferroni correction has 35 

been applied to calculate the adjusted p-values. 36 

 37 

 38 
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Table S2-The best-fit model of grazing intensity effects on AMF and soil recourse variables based on 39 

AIC. △AIC is the difference in AIC between the full model and the best-fit model.  40 

Note: full model: GI+ Tp + Season+ GI×Tp + GI×Season + GI×Season + GI×Tp×Season. Tp: topography and GI: grazing 41 
intensity. The best fitting model is the model with lowest AIC. 42 

 43 

 44 
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 71 

 The best-fitting model ΔAIC 

Soil hyphal length density (m/g) GI+ Tp + Season+ GI×Tp + GI×Season + Tp×Season 2.180 

Mcorrhizal root intensity (%) GI+ Tp + Season+ GI×Season + Tp×Season 3.094 

Arbuscule intensity (%) GI+ Tp + Season+ GI×Season + Tp×Season 5.374 

Available phosphorus (mg/kg) GI+ Tp + Season+ GI×Tp + GI×Season + GI×Season + GI×Tp×Season 0.000 

Available nitrogen (mg/kg) GI+ Tp + Season+ GI×Season + GI×Season 2.210 

Organic carbon (%) GI+ Tp + Season+ GI×Tp + GI×Season 2.558 


