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Thermostats are dynamic equations used to model thermodynamic variables in molecular dynam-
ics. The applicability of thermostats is based on the ergodic hypothesis. The most commonly used
thermostats are designed according to the Nosé-Hoover scheme, although it is known that it often
violates ergodicity. Here, following a method from our recent study [1], we have extended the classic
Nosé-Hoover scheme with an additional temperature control tool. However, as with the NH scheme,
a single thermostat variable is used. In the present study we analyze the statistical properties of the
modified equations of motion with an emphasis on ergodicity. Simultaneous thermostatting of all
phase variables with minimal extra computational costs is an advantage of the specific theoretical
scheme presented here.

I. INTRODUCTION

Molecular dynamics (MD) [2–6] is an essential part of
research in a range of disciplines in natural sciences and
in engineering including such popular branches as the
design of new functional materials and the drug discov-
ery. MD simulations are performed under certain ther-
modynamic conditions, typically at fixed temperature or
pressure. Many different dynamic temperature control
tools (thermostats), deterministic and stochastic, have
been proposed [5–10]. Recently, we have shown that a
range of thermostats can be derived in the framework
of a unified approach based on the fundamental princi-
ples of statistical physics [1]. However, this result has
been presented in a rather formal theoretical form, so
the benefits of the unified approach presented may not
seem obvious in terms of practical use. To address this,
particular cases of abstract results can be compared with
well-known thermostat schemes though obviously with
loss of mathematical generality.

The Nosé–Hoover (NH) method [11, 12]) is commonly
used in applications. This deterministic thermostat al-
lows the canonical distribution for modeled physical sys-
tem to be obtained by means of a single extra degree
of freedom. The usability of NH schemes relies on the
ergodic hypothesis which claims that a physical phase
space trajectory will spend an equal amount of time in
each phase space volume of equal probability [13, 14]. In
other words, this hypothesis equates the long-time av-
erage of a physical observable to its ensemble average.
While it is known that deterministic NH thermostats of-
ten violate ergodicity, they are assumed to be applicable
for practical purposes. In order to improve the ergodic-
ity of the NH method, a series of modifications have been
proposed, e.g. [15–20]. At the same time, many studies
have been done on the ergodicity violation of NH ther-
mostats applied to low-dimensional systems, primarily
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to the harmonic oscillator [21–25], where rigorous results
have been obtained [26, 27].

Characteristic features of the NH thermostat are 1) it
is deterministic; 2) a single extra variable is added; 3) ki-
netic temperature is used. In the NH scheme, the extra
variable is introduced in a formal way, so that its physi-
cal interpretation is missing. In contrast, the theoretical
scheme from [1] is firmly based on the fundamental laws
of statistical physics. It is assumed that the physical
system, S, placed in the thermal reservoir, Σ, should to
some extent perturb it and will itself be affected by the
backward influence of this perturbation. Thus, the ther-
mal reservoir is naturally divided into two parts, namely,
the part that is involved in joint dynamics with system,
S∗, and the unperturbed part, Σ \ S∗, staying in per-
manent thermal equilibrium. An important assumption
made is that all the systems involved in a joint dynamics
are statistically independent at equilibrium. In such a
framework, the extra variable is related to the perturbed
part, S∗, of the thermal reservoir. Therefore, a dynamic
temperature control related to this extra degree of free-
dom is as fundamental as the kinetic energy of S system.

All of the above poses the question as to whether an
NH type dynamics, which includes temperature expres-
sions related to both systems, S and S∗ and involves a
single additional dynamic variable, is able to improve the
ergodicity of the thermostat. We show in the study pre-
sented that the answer to this question is positive.

II. TEMPERATURE EXPRESSIONS AND
THERMOSTATS

As we have shown in [1] thermostat schemes are based
on the notion of temperature expressions. Let the system
at hand, S, when it is isolated, be defined by the phase
space M, the Hamiltonian function H(x), x ∈ M, and
equations of motion ẋ = Jx∇xH(x), and similarly, let
correspondingly S∗ be defined by M∗, H∗(y), y ∈ M∗,
and ẏ = Jy∇yH

∗(y). Here, Jx and Jy are symplectic
units. The function of system state, Θ(x, ϑ), x ∈ M, is
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called a temperature expression if it explicitly depends
on the temperature (ϑ = kBT , where T is the tempera-
ture and kB is the Boltzmann constant) and satisfies the
condition,∫

M
Θ(x, ϑ)dµϑ(x) = 0 for all ϑ > 0,

dµϑ(x) = ρϑ(x)dx, where ρϑ(x) ∝ exp{−ϑ−1H(x)} is
the canonical (Gibbs) distribution. Similarly,∫

M∗
Θ∗(y, ϑ)dµ∗ϑ(y) = 0 for all ϑ > 0,

where dµ∗ϑ(y) ∝ exp{−ϑ−1H∗(y)}dy = ρ∗ϑ(y)dy. The er-
godic hypothesis implies that for invariant densities ρϑ(x)
and ρ∗ϑ(y),

lim
T→∞

1

T

∫ T

0

{
Θ(x(t), ϑ)dt = 0

Θ∗(y(t), ϑ)dt = 0

for almost all trajectories.
Among others, we have arrived at deterministic equa-

tions of motion involving temperature expressions related
to the S system (x-variables) as well as to the S∗ system
(y-variables) ([1], Section 3.B),

ẋ = Jx∇xH(x) +
∑
(k)

Θ∗k(y, ϑ)ϕk(x),

ẏ = Jy∇yH
∗(y)−

∑
(l)

Θl(x, ϑ)ϕ∗l (y), (1)

where {ϕk(x)}(k) is a set of vector fields onM, {ϕ∗l (y)}(l)
is a set of vector fields onM∗, and the following temper-
ature expressions are chosen,

Θl(x, ϑ) =ϕl(x) ·∇xH(x)− ϑ∇x ·ϕl(x), (2)

Θ∗k(y, ϑ) =ϕ∗k(y) ·∇yH
∗(y)− ϑ∇y ·ϕ∗k(y). (3)

The canonical density

ρ∞ ∝ ρϑ(x)ρ∗ϑ(y) = exp{−ϑ−1[H(x) +H∗(y)]} (4)

is invariant for dynamics (1), provided that
ϕ∗k(y) exp[−ϑ−1H∗(y)] → 0 as |y| → ∞ and

ϕl(x) exp[−ϑ−1H(x)] → 0 as |x| → ∞. The Liouville
equation associated with the system (1) has the explicit
form ∂tρ = −L∗ρ, where L∗ρ = ∇x · (ẋρ) + ∇y · (ẏρ).
Invariant probability densities are determined by the
equation L∗ρ = 0. The proof that L∗ρ∞ = 0 is by direct
calculation [1].

The classical NH thermostat scheme is a particular
case of dynamical system (1) corresponding to the spe-
cific selection of vector fields ϕ , ϕ∗, and the Hamiltonian
function H∗. For example, for a physical system with one
degree of freedom, x = (p, q) ∈ R2,

H (p, q) =
1

2m
p2 + V (q) , (5)

the system S∗, y = (λ, ξ) ∈ R2,

H∗ =
1

2Q
λ2, (6)

and ϕ∗(y) = (−Q, 0), ϕ(x) = (p, 0), where Q > 0 is a
parameter, we arrive at the classical NH equations,

q̇ =
p

m
,

ṗ =− V ′(q)− λp, (7)

λ̇ =Q

(
p2

m
− ϑ

)
.

The invariant density corresponding to system (7) has
the form of (4). The proof is by direct calculation. How-
ever, the dynamics (7) appear to be non-ergodic for this
density [21–27]. We can reformulate NH dynamics in a
slightly generalized form with H∗ = h(λ), where h(λ) is
a suitable function and then arrive at the equations of
motion

q̇ =
p

m
,

ṗ =− V ′(q)−Qh′(λ)p, (8)

λ̇ =Q

(
p2

m
− ϑ

)
.

The probability density (4) is invariant for this dynamics
[28–30], while the ergodicity property is still question-
able [31, 32]. Note that thermostats (7) and (8) include
only the kinetic temperature expression and a single ex-
tra variable.

III. EXTENDED TEMPERATURE CONTROL

To answer the question posed at the end of Section I,
we consider the dynamical equations (1) under the fol-
lowing sets of vector fields ϕ and ϕ∗ , supposing that
both S and S∗ are systems with one degree of freedom,

ϕ1(x) = (p, 0) , ϕ∗1(y) = (−Q, 0) ;

ϕ2(x) = (ϕp(q), 0) , ϕ∗2(y) = (λ, 0) ;

ϕ3(x) = (0, ϕq(p)) , ϕ∗3(y) = (λ, 0) ;

where ϕq(p) and ϕp(q) are arbitrary functions that can
be set by our choice. With Hamiltonian functions (5)
and (6) we arrive at the equations of motion,

q̇ =
p

m
+ ϕq(p)

(
λ2

Q
− ϑ

)
,

ṗ =− dV (q)

dq
− λp+ ϕp(q)

(
λ2

Q
− ϑ

)
, (9)

λ̇ =− ϕq(p)
dV (q)

dq
λ− ϕp(q)

p

m
λ+Q

(
p2

m
− ϑ

)
.

The required conditions are all fulfilled for this dynam-
ics, that is, dynamical equations (9) involve: 1) a single
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thermostat dynamic variable; 2) the kinetic temperature
expression related to S system; 3) the density (4) is in-
variant for dynamics (9) (this is easily verified by direct
calculation); and 4) the classical NH dynamics is a par-
ticular case of equations (9) (indeed, with ϕq(p) ≡ 0 and
ϕp(q) ≡ 0 we obtain system (7)).

Furthermore, when H∗ = h(λ) we straightforwardly
obtain the following equations,

q̇ =
p

m
+ ϕq(p)

(
λ
dh(λ)

dλ
− ϑ

)
,

ṗ =− dV (q)

dq
− dh(λ)

dλ
p+ ϕp(q)

(
λ
dh(λ)

dλ
− ϑ

)
, (10)

λ̇ =− ϕq(p)
dV (q)

dq
λ− ϕp(q)

p

m
λ+

(
p2

m
− ϑ

)
,

so that the probability density (4) is invariant for dy-
namics (10). Θλ(λ, ϑ) = λh′(λ) − ϑ is a temperature
expression related to the system S∗.

Note that the following specific forms of the ϕ-
functions,

ϕp(q) ∝
(
q
dV (q)

dq
− ϑ

)
, ϕq(p) ∝

(
p2

m
− ϑ

)
, (11)

include virial [15] and kinetic temperature expressions.

IV. NUMERICAL EXPERIMENTS

In this section, we numerically compare the two forms
of NH thermostat equations: the classic NH equations (7)
and the advanced temperature control equations (9). As
a model physical system we take the harmonic oscillator,
V (q) = 1

2kq
2, the system that has a well-documented

problem of ergodicity. In what follows we explicitly com-
pare three sets of functions {ϕp(q), ϕq(p)}:

ϕ1: {ϕp(q) ≡ 0, ϕq(p) ≡ 0} (classical NH thermostat);

ϕ2: {ϕp(q) = q, ϕq(p) = p};

ϕ3:
{
ϕp(q) = (qV ′(q)− ϑ) , ϕq(p) =

(
1
mp

2 − ϑ
)}

;

for two sets of initial conditions,

i1: q(0)=0.5, p(0)=0, λ(0)=0;

i2: q(0)=0, p(0)=0.5, λ(0)=0;

ceteris paribus, which we set equal to unity, that is,
m = 1, k = 1, Q = 1, ϑ = 1. We gener-
ate phase-space trajectories of length t = 104 us-
ing the fourth-order Runge-Kutta method with time
step ∆t = 0.01. We have performed a series of
six numerical experiments corresponding to the fol-
lowing combinations of ϕ-functions and initial con-
ditions: (a)={ϕ1, i1}; (b)={ϕ2, i1}; (c)={ϕ3, i1};
(d)={ϕ1, i2}; (e)={ϕ2, i2}; (f)={ϕ3, i2}. The results
of these experiments are shown in Fig. 1 and Fig. 2.

FIG. 1. Computed trajectories (up to t = 104) on the
(p, q) plane of a harmonic oscillator. Sub-pictures are ar-
ranged according to the nomenclature of numeric experiments
as described above, that is, (a)={ϕ1, i1}, (b)={ϕ2, i1},
(c)={ϕ3, i1}, (d)={ϕ1, i2}, (e)={ϕ2, i2}, (f)={ϕ3, i2}.
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FIG. 2. (Color online) The probability densities of the mo-
mentum variable p computed for the trajectories shown in
Fig. 1. The corresponding theoretical densities are shown in
red.

Fig. 1 and Fig. 2 clearly show that the joint temper-
ature control for the systems S ans S∗, which still in-
volves a single extra variable, allows a practical ergod-
icity to be maintained. The trajectories (b), (c), (e)
and (f) fill up the entire phase space and properly sam-
ple the canonical density. Dependence on initial condi-
tions is not visually observed. Fig. 3 shows coincidence
of the computed and exact theoretical probability den-
sity curves for the momentum variable p for the longer
trajectory (t = 106) generated in numerical experiment
(f)={ϕ3, i2} (selected solely for the sake of example).
For this trajectory, one can see that the computed prob-
ability density fits the exact theoretical curve perfectly.

The results of numerical experiments presented in
Figs. 1-3 give us the prospect for further detailing of
the equations (9) and (10) since the functions ϕp(q) and
ϕq(p) are still of our choosing.
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FIG. 3. (Color online) The probability density of the momen-
tum variable p computed for the trajectory of length t = 106

in numeric experiment (f)={ϕ3, i2}. The theoretical curve
is shown in red.

V. SUMMARY

In this article, we have examined the importance of in-
terpreting a deterministic thermostat as the part, S∗, of
the heat reservoir, Σ, that is involved in the joint dynam-
ics with the physical system under study, S. The rest of
the heat reservoir, Σ\S∗, manifests itself only in the form
of the parameter ϑ, the temperature. In this framework,
the thermal control of the system S∗ should be considered
on the same basis as the thermal control of the physical
system S. To this end, we have modified the NH scheme
so that it uses a temperature control tool associated with
the S∗ system, which applies to all variables of the phys-
ical system S . The modified equations of motion, which

involve a single extra variable associated with the kinetic
energy control, is derived as a special case of equations
proposed in [1]. With a single extra variable, we obtain
the classical NH thermostat equations as a particular case
of the modified equations, where all variables are subject
to temperature control.

Then, we compare the classical NH equations and the
modified equations in terms of their ergodicity in respect
of the canonical distribution. We show that the modi-
fied equations manifest the ergodic property significantly
better, while the computational costs involved remain
minimal. For systems with many degrees of freedom,
we expect the modified NH thermostat to be even more
beneficial both in terms of ergodicity and computational
costs. Indeed, in this case, the NH single extra vari-
able controls only the total kinetic energy, but a com-
plex molecular system can contain both fast and slow
degrees of freedom or can be inhomogeneous such as to
consist of weakly interacting subsystems, which can pre-
vent the maintenance of the same temperature for all
degrees of freedom. On the contrary, the modified NH
dynamics provides simultaneous control of the temper-
ature of all degrees of freedom with minimal computa-
tional costs. However, this remains a problem that needs
further study.
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