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STATUS OF TWIST-2 OPERATOR DIMENSIONS AT O(1/Nf )
∗
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We review the computation of the anomalous dimensions of the twist-2 unpolarized
operators in the large Nf expansion. Results are discussed for the predominantly
gluonic singlet operator and the O(1/Nf ) part of the 3-loop splitting function is
given.
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1 Introduction

A current problem in multiloop perturbation theory is the construction of the
3-loop terms of the twist-2 operator dimensions which appear in the operator
product expansion used in deep inelastic scattering. The calculation of the MS
coefficients as a function of the momentum fraction x or equally the operator
moment n, is necessary to perform the full 2-loop coefficient function evolution
using the renormalization group. Currently the full 2-loop results as a function
of n are known for the twist-2 flavour non-singlet and singlet, unpolarized and
polarized operators. 1-4 At three loops exact results are known for the first four
even moments for the unpolarized case and in addition for the non-singlet n =
10 moment.5 However, the full result as a function of n has yet to be determined.
As a first step in this direction, Matiounine et al have recently computed the
finite parts of all the 2-loop diagrams for the twist-2 operators.7 These are
required as they will give contributions at 3-loops when multiplied by 1-loop
counterterms. Aside from the perturbative expansion one can gain insight into
the structure of the dimensions in other approximations. For instance, a low-x
analysis can also be performed.8

Another expansion technique which has been applied to this problem is the
1/Nf method where Nf is the number of quarks. In this reordering of pertur-
bation theory, where chains of quark bubbles form the dominant contribution,
one can probe the perturbative structure beyond currently known orders. In
particular results as a function of n can be provided for the 3-loop coefficients
at O(1/Nf ) as Nf → ∞ as well as at all higher loops.9,10 These have been
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important in verifying the correctness of the results in 5,6 in the region of over-
lap. Currently the 1/Nf method has been applied to the twist-2 non-singlet
and singlet fermionic operators. More recently the anomalous dimension of
the outstanding singlet gluonic operator has been given in 11, which we focus
on here.

2 Formalism

In standard notation the basic twist-2 unpolarized singlet operators are,

O
µ1...µn

q = in−1
Sψ̄Iγµ1Dµ2 . . . DµnψI

− trace terms

O
µ1...µn

g = 1

2
in−2

S trGaµ1νDµ2 . . . Dµn−1Ga µn

ν − trace terms (1)

As the operators Oq and Og have the same canonical dimension they will mix
under renormalization.1 Hence one needs to introduce a mixing matrix, γij(a),
of anomalous dimensions. The Nf dependence in the perturbative expansion

of each entry in γij(a) is not the same. For example, with Ñf = T (R)Nf

γqq(a) = a1a+ (a21Ñf + a22)a
2 + (a31Ñ

2
f + a32Ñf + a33)a

3 +O(a4)

γgq(a) = b1a+ (b21Ñf + b22)a
2 + (b31Ñ

2
f + b32Ñf + b33)a

3 +O(a4)

γqg(a) = c1Ñfa+ c2Ñfa
2 + (c31Ñ

2
f + c32Ñf + c33)a

3 +O(a4)

γgg(a) = (d11Ñf + d12)a+ (d21Ñf + d22)a
2

+ (d31Ñ
2
f + d32Ñf + d33)a

3 +O(a4) (2)

In the 1/Nf approach,9,10,11, one computes sets of these coefficients by consid-
ering QCD at its non-trivial d-dimensional fixed point and studies the scaling
behaviour of the appropriate Green’s function there. For the present prob-
lem the resulting exponents give the eigen-anomalous dimensions of γij(a) at
criticality. In terms of the perturbative coefficients the O(1/Nf ) eigenopera-
tor dimensions involve the combinations (al1 − bl1c1/d11) for Oq and (dl1 +
bl1c1/d11) for Og at the l-th loop.

3 Results

The application to QCD of the basic formalism developed in12 for simple scalar
theories yields an expression for the dimension of Og at O(1/Nf) as a function
of n and the space-time dimension d.11 The full all orders expression is given
explicitly in 11. Its ǫ-expansion, where d = 4 − 2ǫ, agrees with all previous
perturbative calculations.1,2,3,6 At 3-loops the numerical values of the leading
order gluonic eigen-operator coefficients are given in Table 1 and these can
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Table 1: Numerical values of the coefficients of [d31 + b31c1/d11].

n C2(R) coefficient C2(G) coefficient
2 − 11.1769547325 − 17.415637860
4 − 6.1986353909 − 12.475078189
6 − 5.1270609536 − 12.665273968
8 − 4.8386758731 − 13.094409108

10 − 4.7463824737 − 13.507443429
12 − 4.7180193885 − 13.876218903
14 − 4.7136211552 − 14.202839253
16 − 4.7187348148 − 14.493720966
18 − 4.7275177819 − 14.754952547
20 − 4.7374464091 − 14.991545068
22 − 4.7473994042 − 15.207488437
24 − 4.7568866098 − 15.405947998

be compared with the exact coefficients given in 11. Clearly the modulus of
these coefficients increases slowly with the moment. Another feature of the
results is that since b31 depends only on the colour Casimir C2(R), then the
ǫ3 coefficient of C2(G) in the ǫ-expansion of gluonic eigen-dimension gives the
exact 3-loop dependence of d31 as a function of n. Hence we can determine the
x-dependence of the gluonic DGLAP splitting function which is proportional
to C2(G). Using the Mellin transform we deduce

P 3-loop
gg (x,C2(G)) = −

1

54

[

87δ(1− x) + (304 + 172x+ 208x2) lnx

− 48(1 + x) ln2 x + 32 −
32

[1− x]+

+ 192(1 + x)(ψ′(1)− Li2(x))

+
4(1− x)

x
(52 + 19x+ 52x2) ln(1− x)

+
4(1− x)

3x
(236 + 47x+ 236x2)

]

(3)

where Li2(x) is the dilogarithm function and ψ(x) is the derivative of the
logarithm of the Euler Γ-function.
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4 Discussion

The provision of the gluonic operator dimension in 11 now completes the
O(1/Nf ) examination of the twist-2 unpolarized operator dimensions. More re-
cently the same calculation has been completed for the polarized operators.13

Future calculations in this area would involve computing the anomalous di-
mensions to the next order, O(1/N2

f ). The starting point for this would be the
non-singlet sector.
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