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RENORMALIZATION GROUP FUNCTIONS OF QCD IN

LARGE Nf
∗

J.A. GRACEY

Department of Mathematical Sciences, University of Liverpool, P.O. Box 147,

Liverpool, L69 3BX, United Kingdom

We review the application of the critical point large Nf self-consistency method to
QCD. In particular we derive the O(1/Nf ) d-dimensional critical exponents whose

ǫ-expansion determines the perturbative coefficients in MS of the field dimensions,
β-function and various twist-2 operators which occur in the operator product ex-
pansion of deep inelastic scattering.

1 Introduction

The renormalization group equation, (RGE), plays an important role in com-
paring predictions made in a quantum field theory with observations of na-
ture. The fundamental ingredients in the RGE are the renormalization group
functions. Since these are rarely known exactly even for the simplest of field
theories one has to be content with approximate perturbative solutions; the
accuracy being dependent upon how many orders in the perturbative coupling
constant one can compute the RGE functions. This is a highly technical and
tedious exercise partly because the number of Feynman diagrams at even one
loop can sometimes be excessive. Also the results depend on how one removes
the ultra-violet infinities. For theories which particle physicists are interested
in such as quantum chromodynamics, (QCD), which is the gauge theory de-
scribing the strong interactions, most high order calculations of these functions
are performed in the MS scheme.1−4 For instance, the β-function of QCD has
been deduced at third order in this scheme. Recently information on various
scattering amplitudes has been produced at the same level in an impressive set
of papers.5 Due to the complexity of such calculations, having independent and
alternative methods to check the high order structure of the RGE functions is
important.

One such method has been made available through the properties of the
RGE in the neighbourhood of a fixed point which is defined to be a non-
trivial zero of the β-function. There it is known that the critical exponents
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which characterize the phase transition correspond to the functions of the RGE
evaluated at the critical coupling. So if one can compute exponents directly
then information on the RGE functions is obtainable.6 This has been achieved
in impressive articles by Vasil’ev et al for the O(N) σ model.7 There critical
exponents were determined in arbitrary dimensions order by order in powers of
1/N whenN is large. Those results are in total agreement with the ǫ-expansion
at the fixed point of the same exponents deduced explicitly at 5-loops in MS.
Garnered by that success it is therefore a worthwhile exercise to develop the
1/Nf method for QCD, where Nf is the number of quark flavours, in relation
to the present state of the art calculations.

2 Basic ideas

We recall the basic ideas for deducing arbitrary dimensional critical exponents
in the 1/Nf expansion. First from the two loop β-function of QCD in d-
dimensions,1,2 there is a fixed point at

gc =
3ǫ

T (R)Nf

+
1

4T 2(R)N2
f

[

33C2(G)ǫ − (27C2(R) + 45C2(G)) ǫ
2

+

(

99

4
C2(R) +

237

8
C2(G)

)

ǫ3 +O(ǫ4)

]

+O

(

1

N3
f

)

(1)

where d = 4 − 2ǫ. If, for example, a general RGE function takes the form

γ(g) = c1g + (c2Nf + d1)g
2 + (c3N

2
f + d2Nf + e1)g

3 +O(g4) (2)

where the coefficients {ci, di, ei . . .} are independent of Nf , then the associated
exponent at leading order in 1/Nf is

γ(gc) =
1

Nf

∞
∑

r=1

cr[3ǫ/T (R)]
r + O(1/N2

f ) (3)

So provided γ(gc) can be computed directly in the largeNf limit its ǫ-expansion
gives the leading order sequence of coefficients {ci} of γ(g).

The exponents are defined with reference to the action of the theory one
is interested in. For QCD this takes the form

L = iψ̄iID/ψiI −
(Ga

µν)
2

4e2
(4)

where ψiI is the quark field, Aa
µ is the gluon field, Dµ = ∂µ + T aAa

µ, G
a
µν =

∂µA
a
ν − ∂νA

a
µ + fabcAb

µA
c
ν , T

a
IJ is the generator of the colour group whose
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structure constants are fabc, 1 ≤ i ≤ Nf , 1 ≤ I ≤ Nc and 1 ≤ a ≤ (N2
c − 1).

The canonical dimensions of the fields of Eq. 4 at gc are defined by demanding
that the action is dimensionless. The anomalous dimensions are defined to be
the extra portion of the full dimension of the field or operator and essentially
are a measure of the effect of radiative corrections. For instance, in the scaling
region where the propagators of Eq. 4 behave in the limit k2 → ∞, as,8

ψ(k) ∼
Ak/

(k2)µ−α
, Aµν(k) ∼

B

(k2)µ−β

[

ηµν − (1− b)
kµkν
k2

]

(5)

where A and B are momentum independent amplitudes and b is the covariant
gauge parameter, we define

α = µ − 1 +
1

2
η , β = 1 − η − χ (6)

with d = 2µ. Here χ is the dimension of the quark gluon vertex operator
and η is the quark anomalous dimension. Expressions for these anomalous
dimensions are deduced from studying the scaling dimensions of the next to
leading order corrections to the 2 and 3 point Green’s function using Eq. 5.7

For an arbitrary gauge parameter, the leading order results are,8

η =
C2(R)[(2µ− 1)(µ− 2) + µb]ηo1

(2µ− 1)(µ− 2)T (R)Nf

(7)

η + χ = −
C2(G)[(2µ− 1) + b(µ− 1)]ηo1

2(2µ− 1)(µ− 2)T (R)Nf

(8)

where ηo1 = − (2µ− 1)(2− µ)Γ(2µ)/[4Γ2(µ)Γ(µ+ 1)Γ(2− µ)].
In computing these results, which agree with 3-loop perturbative calcu-

lations in the Landau gauge,4 we made use of another well known feature of
critical point theory. Ordinarily more than one model can be used to de-
duce exponents at a fixed point and such models are said to be in the same
universality class. A well known example is the equivalence of the O(N) σ
model and O(N) φ4 theory in three dimensions. For the present case QCD is
equivalent9 at leading order in 1/Nf to a non-abelian version of the Thirring
model, (NATM), which is renormalizable in strictly two dimensions. Its la-
grangian is

L = iψ̄iID/ψiI −
(Aa

µ)
2

2λ
(9)

where λ is the coupling constant which is dimensionless in 2 dimensions. Elim-
inating the auxiliary spin-1 field Aa

µ yields a 4-fermi term. The benefit of using
this model, Eq. 9, is that it has a simpler structure to Eq. 4 as the 3 and 4
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point gluon self interactions are absent. So one need only consider diagrams
built with the quark gluon interaction. It was shown, though,9 that in the 1/Nf

limit the 4-fermi model correctly reproduced the 3 and 4 point gluon Feynman
rules in the approach to four dimensions. In other words with Eq. 9 the effect
of the 3-point gluon interaction is contained in the graphs with a quark loop.
This feature occurs implicitly in the calculations we report on later. Further
in using a covariant gauge, ghost fields have to be included in each lagrangian
but they give no contribution at leading order.

3 β-function

With this basic formalism the O(1/Nf ) correction to the QCD β-function can
be computed.10 Ordinarily this is the first step in determining O(1/N2

f ) infor-
mation as it will encode the next order correction to gc to all orders in ǫ. To
determine this we compute the related exponent ω = − β′(gc)/2. It is deduced
from the last term of Eq. 4 which gives the scaling law

ω = η + χ + χG (10)

where χG is the critical dimension of the composite operator G = (Ga
µν )

2 when
computed as an insertion in a Green’s function in the non-abelian Thirring
model. For QED ω was originally deduced in 1/Nf by explicitly performing the
MS renormalization with an infinite chain of electron bubbles.11 The extension
to the non-abelian case is simpler in the critical approach. Three 2-loop and
one 3-loop graphs need to be evaluated which are illustrated in Fig. 1. The

Figure 1: Graphs for O(1/Nf ) contribution to ω.

first two graphs correspond to the QED sector, whilst the remaining two would
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be absent by Furry’s theorem in QED as their colour group factor is C2(G).
Consequently, using the critical propagators we find

ω = (µ− 2) − [(2µ− 3)(µ− 3)C2(R)

−
(4µ4 − 18µ3 + 44µ2 − 45µ+ 14)C2(G)

4(2µ− 1)(µ− 1)

]

ηo1
T (R)Nf

(11)

The ǫ-expansion of Eq. 11 correctly reproduces the O(1/Nf ) coefficients of
the 3-loop MS β-function.1−4 With this agreement we can deduce several new
higher order coefficients. Using the notation

β(g) = (d− 4)g +

(

2

3
T (R)Nf −

11

6
C2(G)

)

g2 +

∞
∑

r=2

ar[T (R)Nf ]
r−2gr+1

(12)
for the large Nf leading order part of the β-function, then10

a4 = − [154C2(R) + 53C2(G)]/3888

a5 = [(288ζ(3) + 214)C2(R) + (480ζ(3)− 229)C2(G)]/31104

a6 = [(864ζ(4)− 1056ζ(3) + 502)C2(R)

+ (1440ζ(4)− 1264ζ(3)− 453)C2(G)]/233280

a7 = [(3456ζ(5)− 3168ζ(4)− 2464ζ(3) + 1206)C2(R)

+ (5760ζ(5)− 3792ζ(4)− 848ζ(3)− 885)C2(G)]/1679616 (13)

4 Twist-2 operators

With the impressive progress that has been made at 3-loops in MS in the
renormalization of the twist-2 operators of the operator product expansion
used to understand processes in deep inelastic scattering5 it is important to
have some large Nf results available for comparison. Similar to the β-function
calculation the critical exponents corresponding to the anomalous dimensions
of such operators are deduced by inserting the operator into a Green’s function
in the NATM and determining the scaling behaviour of the integrals. The
operators which we consider are,

Oµ1...µn

ns = in−1Sψ̄Iγµ1Dµ2 . . . DµnT a
IJψ

J − trace terms

Oµ1...µn

s = in−1Sψ̄Iγµ1Dµ2 . . . DµnψI − trace terms

Oµ1...µn

g =
in−2

2
S trGa µ1νDµ2 . . . Dµn−1Ga µn

ν − trace terms

where S denotes symmetrization on the Lorentz indices.
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For the fermionic twist-2 flavour nonsinglet and singlet operators, Ons and
Os, we deduce at leading order in 1/Nf respectively12

η
(n)
ns =

2C2(R)(µ− 1)2ηo1
(2µ− 1)(µ− 2)T (R)Nf

[

(n− 1)(2µ+ n− 2)

(µ+ n− 1)(µ+ n− 2)
+

2µ

(µ− 1)
Ψ(n)

]

η
(n)
s =

(µ− 1)C2(R)η
o
1

(2µ− 1)(µ− 2)T (R)Nf

[

2(µ− 1)(n− 1)(2µ+ n− 2)

(µ+ n− 1)(µ+ n− 2)
+ 4µΨ(n)

− µΓ(n− 1)[(n2 + n+ 2µ− 2)2 + 2(µ− 2)(n(n− 1)(2µ− 3 + 2n)

+ 2(µ− 1 + n))]Γ(2µ)/[(µ+ n− 1)(µ+ n− 2)Γ(2µ− 1 + n)]
]

(14)

where n is the operator moment, Ψ(n) = ψ(µ − 1 + n) − ψ(µ) and ψ(x) is
the logarithmic derivative of the Γ-function. One feature of the singlet sector
is that the operators do not mix since the gluonic and fermionic operators
have different canonical dimensions at gc. By contrast in the perturbative
calculation there is mixing and one has to compute a matrix of anomalous
dimensions. To compare the ǫ expansion of Eq. 14 with perturbative results
one realises that in the large Nf calculation the result contained in Eq. 14 is
in fact the anomalous dimension of the predominantly fermionic eigenoperator
of the perturbative mixing matrix. Therefore if one computes the eigenvalues
of the mixing matrix5,13 and evaluates them at gc the coefficients of both ǫ
expansions ought to be in agreement. We record this occurs exactly at the
3-loop level at leading order in 1/Nf .

More explicitly we present the n-dependence of the coefficient c3, in the
notation of Eq. 2, of both the nonsinglet and singlet leading order large Nf

part of the anomalous dimensions. Having the explicit dependence is important
since the inverse Mellin transform of the anomalous dimensions with respect to
n determine the Altarelli Parisi splitting functions. These are a function of the
conjugate variable, x, which is the momentum fraction carried by the partons
contained in the nucleons, and are in effect a measure of the probability that a
parton fragments into other partons. First, we have for the nonsinglet case,12

cns3 =
2

9
S3(n) −

10

27
S2(n) −

2

27
S1(n) +

17

72

−
[12n4 + 2n3 − 12n2 − 2n+ 3]

27n3(n+ 1)3
(15)

where Sl(n) =
∑n

r=1 1/r
l. To compare with the results of the explicit 3-

loop MS calculation for the first few moments,5 we have evaluated Eq. 15 for
various n and presented them in Table 1. For the singlet sector we can deduce
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n cns3

2 − 28
243

4 − 384277
1944000

6 − 80347571
333396000

8 − 38920977797
144027072000

10 − 27995901056887
95850016416000

12 − 65155853387858071
210582486065952000

14 − 68167166257767019
210582486065952000

16 − 5559466349834573157251
16553468064672354816000

18 − 19664013779117250232266617
56770118727793840841472000

20 − 6730392290450520870012467
18923372909264613613824000

22 − 16759806821032136669044226177
46048135637404510767879321600

Table 1: Values of cns
3

for various n.

the n-dependence of the 3-loop coefficient of the anomalous dimension of the
predominantly fermionic eigenoperator. It is,12

cs3 =
2

9
S3(n) −

10

27
S2(n) −

2

27
S1(n) +

17

72

−
2(n2 + n+ 2)2[S2(n) + S2

1(n)]

3n2(n+ 2)(n+ 1)2(n− 1)

− 2S1(n)[16n
7 + 74n6 + 181n5 + 266n4 + 269n3 + 230n2

+ 44n− 24]/[9(n+ 2)2(n+ 1)3(n− 1)n3]

− [100n10 + 682n9 + 2079n8 + 3377n7 + 3389n6

+ 3545n5 + 3130n4 + 118n3 − 940n2 − 72n

+ 144]/[27(n+ 2)3(n+ 1)4n4(n− 1)] (16)
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Similar to cns3 we have evaluated Eq. 16 for low moments and presented the
results in Table 2. These are in exact agreement with the first four moments of
the explicit three loop MS results after diagonalizing the mixing matrix 5 and
extracting the leading order large Nf piece corresponding to the dimension of
the predominantly fermionic eigenoperator.

n cs3

2 0

4 − 121259
720000

6 − 3166907
13891500

8 − 1328467729
5038848000

10 − 304337312935261
1054350180576000

12 − 842357166098254633
2737572318857376000

14 − 42512567719680559
131614053791220000

16 − 755896148277147625515451
2251271656795440254976000

18 − 1121815282809553973842772849
3235896767484248927963904000

20 − 78640886458671664340562623
220772683941420492161280000

22 − 4248342909129791924572989157741
11650178316263341224273468364800

Table 2: Values of cs
3
for various n.

Aside from agreeing with explicit perturbative results up to three loops,
there are several other checks on the exponents arising from general principles.
First, as the operators are physical their anomalous dimensions are gauge inde-
pendent. We have therefore computed Eq. 14 with a non-zero covariant gauge
parameter b and observed its cancellation in assemblying the contributions
from the relevant Feynman diagrams in each exponent. Second, for certain
values of n the corresponding operators reduce to conserved physical currents.
Provided the conservation of these currents is not spoiled by an anomaly then
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their anomalous dimensions must be zero to all orders in perturbation theory.
For the nonsinglet sector the n = 1 case relates to charge conservation, whilst
the singlet operator with n = 2 corresponds to the energy momentum tensor.
Therefore for both these respective values the critical exponents of Eq. 14
must vanish. It is an easy exercise to verify this. Indeed the zero entry for n
= 2 in Table 2 is a reflection of this general result in the three loop case.

5 Conclusions

The critical renormalization group ideas7 have proved useful in giving some
insight into the structure of the MS perturbative coefficients at higher orders
in QCD. Although we have concentrated on the four dimensional theory the
results have been expressed as functions of d. Therefore we can also obtain
information on the three dimensional model. For example, from Eq. 11

ω = −
1

2
−

10C2(G)

3π2T (R)Nf

+ O

(

1

N2
f

)

(17)

Higher order 1/Nf calculations are possible too. For instance, in the abelian
sector the dimension of the mass operator, ψ̄ψ, is available in d-dimensions.
So when d = 3 the gauge independent electron mass anomalous dimension is,14

γm(gc) = −
32

3π2Nf

−
64[3π2 − 28]

9π4N2
f

+ O

(

1

N3
f

)

(18)

Such results will be useful for comparing with numerical results for the same
quantity computed by other methods. Indeed exponents which are known to
similar orders in other models like the O(N) 4-fermi model and evaluated for
low N have been in good agreement with lattice results.15
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