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Abstract. Few-shot learning, namely recognizing novel categories with
a very small amount of training examples, is a challenging area of ma-
chine learning research. Traditional deep learning method requires mas-
sive training data to tune the huge number of parameters, which is often
impractical and prone to over-fitting. In this work, we further work on
the well-known few-shot learning method known as prototypical networks
for better performance. Our contributions include (1) a new embedding
structure to encode relative spatial relationships between features by
applying capsule network; (2) a new triplet loss designated to enhance
the semantic feature embedding where similar samples are close to each
other while dissimilar samples are farther apart; and (3) an effective non-
parametric classifier termed attentive prototypes in place of the simple
prototypes in current few-shot learning. The proposed attentive proto-
type aggregates all of the instances in a support class which are weighted
by their importance defined by the reconstruction error for a given query.
The reconstruction error allows the classification posterior probability to
be estimated, which corresponds to the classification confidence score.
Extensive experiments on three benchmark datasets demonstrate that
our approach is effective for the few-shot classification task.

Keywords: Few-shot learning · Meta learning · Capsule network · Fea-
ture embedding · Attentive prototype learning

1 Introduction

Deep learning has been greatly advanced in recent years, with many successful
applications in image processing, speech processing, natural language processing
and other fields. However, the successes usually rely on the condition to access
a large dataset for training. If the amount of training data is not large enough,
the deep neural network would not be sufficiently trained. Consequently, it is
significant to develop deep learning for image recognition in the case of a small
number of samples, and enhance the adaptability of deep learning models in
different problem domains.

Few-shot learning is one of the most promising research areas targeting deep
learning models for various tasks with a very small amount of training dataset
[41], [36], [31], [39], [33], [26] , i.e., classifying unseen data instances (query exam-
ples) into a set of new categories, given just a small number of labeled instances
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in each class (support examples). The common scenario is a support set with
only 1∼10 labeled examples per class. As a stark contrast, general classification
problems with deep learning models [17], [40] often require thousands of exam-
ples per class. On the other hand, classes for training and testing sets are from
two exclusive sets in few-shot learning while in traditional classification problems
they are the same. A key challenge in few-shot learning, therefore, is to make
best use of the limited data available in the support set in order to find the right
generalizations as required by the task.

Few-shot learning is often elaborated as a meta-learning problem, with em-
phasis on learning prior knowledge shared across a distribution of tasks [41],
[23], [36]. There are two sub-tasks for meta-learning: an embedding that maps
the input into a feature space and a base learner that maps the feature space to
task variables. As a simple, efficient and most popularly used few-shot learning
algorithm, prototypical network [36] tries to solve the problem by learning the
metric space to perform classification. A query point (new point) is classified
based on the distance between the created prototypical representation of each
class and the query point. While the approach is extensively applied, there are
a number of limitations that we’d like to address and seek better solutions.

Firstly, the prototypical representations [41], [36] generated by deep Convo-
lutional Neural Networks, can not account for the spatial relations between the
parts of the image and are too sensitive to orientation. Secondly, a prototypi-
cal network [36] divides the output metric space into disjoint polygons where
the nearest neighbor of any point inside a polygon is the pivot of the polygon.
This is too rough to reflect various noises effects in the data, thus compromising
the discrimination and expressiveness of the prototype. It has been well-known
that the performance of such a simple distance-based classification is severely
influenced by the existing outliers, especially in the situations of small training
sample size [8].

From the aforementioned discussion, we intend to improve the prototype net-
work by proposing a capsule network [34] based embedding model and reconstruction-
based prototypical learning within the framework of the meta-learning. There
are two main components in the proposed scheme: a capsule network-based
embedding module which create feature representation, and an improved non-
parametric classification scheme with an attentive prototype for each class in
the support set, which is obtained by attentive aggregation over the representa-
tions of its support instances, where the weights are calculated using the recon-
struction error for the query instance. The training of the proposed network is
based on the metric learning algorithm with an improved triplet-like loss, which
generalizes the triplet network [35] to allow joint comparison with K negative
prototypes in each mini-batch. This makes the feature embedding learning pro-
cess more tally with the few-shot classification problem. We further propose a
semi-hard mining technique to sample informative hard triplets, thus speeding
up the convergence and stabilize the training procedure.

In summary, we proposed a new embedding approach for few-shot learning
based on capsule network, which features of the capability to encode the part-
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whole relationships between various visual entities. An improved routing proce-
dure with DeepCaps mechanism [29] is designed to implement the embedding.
With class-specific output capsule, the proposed network can better preserve
the semantic feature representation, and reduce the disturbance of irrelevant
noisy information. The proposed attentive prototype scheme is query-dependent,
rather than just averaging the feature points of a class for the prototype as in
the vanilla prototype network, which means all of the feature points from the
support set are attentively weighted in advance, and then the weighting values
completely depend on the affinity relations between two feature points from the
support set and the query set. By using reconstruction as an efficient expression
of the affinity relation, the training points near the query feature point acquire
more attention in the calculation of the weighting values.

The proposed approach has been experimentally evaluated on few-shot im-
age classification tasks using three benchmark datasets, i.e., the miniImageNet,
tieredImageNet and Fewshot-CIFAR100 datasets. The empirical results verify
the superiority of our method over the state-of-the-art approaches. The main
contributions of our work are two-fold:

– We put forward a new few-shot classification approach with a capsule-based
model, which combines the 3D convolution based dynamic routing proce-
dure to obtain semantic feature representation while preserving the spatial
information between visual entities.

– We propose a novel attentive prototype concept to take account of all the
instances in a given support class, with each instance being weighted by the
reconstruction errors between the query and prototype candidates from the
support set. The attentive prototype is robust to outliers by design and also
allows the performance to be improved by refraining from making predictions
in the absence of sufficient confidence.

2 Related work

2.1 Few-shot learning

Few-shot learning aims to classify novel visual classes with very few labeled sam-
ples available [4], [5]. Current methods usually tackle the challenge using meta-
learning approaches or metric-learning approaches, with representative works
elaborated below:

Metric learning methods aim to learn a task-invariant metric, which pro-
vide an embedding space for learning from few-shot examples. Vinyals et al. [41]
introduced the concept of episode training in few-shot learning, where metric
learning-based approaches learn a distance metric between a test example and
the training examples. Prototypical networks [36] learn a metric space in which
classification can be performed by computing distances to prototype representa-
tions of each class. The learned embedding model maps the images of the same
class closer to each other while different classes are spaced far away. The mean of
embedded support samples are utilized as the prototype to represent the class.
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The work in [19] goes beyond this by incorporating the context of the entire
support set available by looking between classes and identifying task-relevant
features.

There are also interesting works that explore different metrics for the em-
bedding space to provide more complex comparisons between support and query
features. For example, the relation module proposed in [39] calculates the rela-
tion score between query images to identify unlabeled images. Some recent ap-
proaches [9], [21] have also explored graph-based similarity for few-shot learning
with the node-labeling framework, which implicitly models the intra-cluster simi-
larity and the inter-cluster dissimilarity. Kim et al. [14] proposed an edge-labeling
GNN (EGNN) for few-shot classification. Metric-based task-specific feature rep-
resentation learning has also been presented in many related works. Our work
is a further exploration of the prototype based approaches [36], [39], aiming to
enhance the performance of learning an embedding space by encoding the spa-
tial relationship between features. Then the embedding space generates attentive
prototype representations in a query-dependent scheme.

2.2 Capsule Networks

The capsule network [13] is a new type of neural network architecture proposed
by Geoffrey Hinton, with the main motivation to address some of the shortcom-
ings of Convolutional Neural Networks (CNNs). For example, the pooling layers
of CNNs lose the location information of relevant features, one of the so-called
instantiation parameters that characterize the object. Other instanced parame-
ters include scale and rotation, which are also poorly represented in the CNNs.
Capsule network handles these instantiation parameters explicitly by represent-
ing an object or a part of an object. More specifically, a capsule network replaces
the mechanisms of the convolution kernel in CNNs by implementing a group of
neurons to encode the spatial information and the probability of the existence
of objects. The length of the Capsule vector is the probability of the features
in the image, and the orientation of the vector will represent its instantiation
information.

Sabour et al. [34] first proposed a dynamic routing algorithm for capsule
network in 2017 for the bottom-up feature integration, the essence of which is
the realization of clustering algorithm for the information transmission in the
model. In [34], Gaussian mixture model (GMM) was integrated into the feature
integration process to adjust network parameters through EM routing. Since
the seminal works [13], [34], a number of approaches have been proposed to
implement and improve the capsule architecture [15], [45], [18],[29].

Many applications have been attempted by applying the capsule networks,
for example, intent detection [42], text classification [27] and computer vision
[43], [44]. A sparse, unsupervised capsules network [30] was proposed showing
that the network generalizes better than supervised masking, while potentially
enabling deeper capsule networks. A group equivariant capsule network [18] was
proposed as a framework to introduce guaranteed equivariance and invariance
properties. Rajasegaran et al. [29] proposed a deep capsule network architecture
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called DeepCaps that adapts the original routing algorithm for 3D convolutions
and increases its performance on more complex datasets. A variant of capsule
network was investigated in [3] in which all capsules are divided into different
groups and perform group reconstruction routing algorithm to obtain the corre-
sponding high-level capsules.

In this work, we further work on the prototype network to improve the few-
shot learning performance, with novel contributions including (1) extending the
concept of prototype from simple average for each category to attentive proto-
type which takes account of all of the instances, and (2) establishing an em-
bedding space with capsule network which provides a description of the images
components at various ’levels’ of semantics. With the aid of 3D convolution based
dynamic routing, our model can capture part-whole relationships between the
corresponding deeper and shallower capsules.

3 Method

3.1 Problem definition: Few-shot classification

Few-shot learning is to recognize novel categories with only one or few labeled ex-
amples by transferring visual patterns obtained from base categories to describe
the novel categories. The problem is usually formulated with three datasets: a
training set Dtrain, a support set Dsupport and a query set Dquery. The cate-
gories in Dtrain are defined as base categories Cbase. The categories in Dsupport

and Dtest are novel categories which are exclusive with the training set Dtrain. If
the support set contains M categories and each category has K image examples,
this few-shot learning problem is defined as M -way K-shot learning. We follow
the practice of episodic training in [41] which is the most popular and effective
meta learning methodology [36], [39].

3.2 Approach Details

In this section, we first revisit the DeepCaps network [29], which designed for
more complex image datasets. We then extend it to the scenario of few-shot
learning, and describe the proposed algorithm in detail.

DeepCaps Revisit DeepCaps is a deep capsule network architecture proposed
in [29] to improve the performance of the capsule networks for more complex
image datasets. It extends the dynamic routing algorithm in [34] to stacked
multiple layers, which essentially uses a 3D convolution to learn the spatial
information between the capsules. The model consists of four main modules:
skip connected CapsCells, 3D convolutional CapsCells, a fully-connected capsule
layer and a decoder network. The skip-connected CapsCells have three ConvCaps
layers, the first layer output is convolved and skip-connected to the last layer
output. The motivation behind skipping connections is to borrow the idea from
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Fig. 1. Framework of the proposed method for few-shot learning. We perform joint
end-to-end training of the Embedding Module (modified DeepCaps) together with the
Prototypical Learning via an improved triplet-like loss from the training dataset. The
well-learned embedding features are used to compute the distances among the query
image and attentive prototype generated from the support set. The final classification
is performed by calculating the posterior probability for the query instance.

residual network to sustain a sound gradient flow in a deep model. The element-
wise layer is used to combine the outputs of the two capsule layers after skipping
the connection.

DeepCaps has a unit with a ConvCaps3D layer, in which the number of route
iterations is kept at 3. Then, before dynamic routing, the output of ConvCaps is
flattened and connected with the output of the capsule, which is then followed
by 3D routing (in CapsCell 3). Intuitively, this step helps to extend the model
to a wide range of different datasets. For example, for a dataset composed of
images with less rich information, such as MNIST, the low-level capsule from cell
1 or cell 2 is sufficient, while for a more complex dataset, we need the deeper 3D
ConvCaps to capture rich information content. Once all capsules are collected
and connected, they are routed to the class capsule through the fully-connected
capsule layer.

Network Architecture As explained in Section 1, our proposed model has
two parts: (1) a modified DeepCaps network with improved triplet-like loss that
learns the deep embedding space, and (2) an non-parameter classification scheme
that produces a prototype vector for each class candidate, which is derived from
the attentive aggregation over the representations of its support instances, where
the weights are calculated using the reconstruction errors for the query instance
from respective support instances in the embedding space. The final classification
is performed by calculating the posterior probability for the query instance based
on the distances between the embedding vectors of the query and the attentive
prototype. Figure 1 schematically illustrates an overview of our approach to
few-shot image classification. We describe each of the parts in detail below.
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Fig. 2. The architecture of embedding module in which obtain only the activity vectors
of the predicted class.

Embedding module. As mentioned in Section 3.1, we construct support
set S and query set Q from Dtrain in each episodes to train the model.

S = {s1, s2, .., sK} ,
Q = {q1, s2, ..., qN} ,

(1)

where K and N represent the number of samples in the support set and query
set for each class, respectively. As shown in Fig. 2, we first fed the samples
S and Q into the convolution layer and CapsCells, then the collected capsules
are routed to the class capsules after the Flat Caps layer. Here, the decision
making happens via L2 and the input image is encoded into the final capsule
vector. The length of the capsule’s output vector represents the probability that
the object represented by the capsule exists in the current input. We assume
the class capsules as P ∈ Y b×d which consists of the activity vectors for all
classes, where b and d represents the number of classes in the final class capsule
and capsule dimension, respectively. Then, we only fed the activity vector of
predicted class Pm ∈ Y 1×d into the final embedding space in our setting, where
m = argmaxi(||Pi||22). The embedding space acts as a better regularizer for the
capsule networks, since it is forced to learn the activity vectors jointly within a
constrained Y d space. The function of margin loss used in DeepCaps enhances
the class probability of the true class, while suppressing the class probabilities
of the other classes. In this paper, we propose the improved triplet-like loss
based on an attentive prototype to train the embedding module and learn more
discriminative features.

Attentive prototype. The prototypical network in [36] computes a D di-
mensional feature representation pi ∈ RD, or prototype, of each class through an
embedding function fφ : RD → RM with learnable parameters φ. Each prototype
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is the mean vector of the embedded support points belonging to its class:

pi =
1

|si|
∑

(xi,yi)∈si

fφ(xi) (2)

where each xi ∈ si is the D-dimensional feature vector of an example from class
i. Given a distance function d : RD × RD → [0,+∞), prototypical networks
produce a distribution over classes for a query point x based on a softmax over
distances to the prototypes in the embedding space:

pφ(y = t|x) =
exp(−d(fφ(x), pt))∑
t′ exp(−d(fφ(x), pt′ ))

(3)

Learning proceeds by minimizing the negative log-probability J(φ) = −logpφ(y =
t|x) of the true class t via SGD. Most prototypical networks for few-shot learning
use some simple non-parametric classifiers, such as kNN. It is well known that
non-parametric classifiers are usually affected by existing outliers [7], which is
particularly serious when the number of samples is small, the scenario addressed
by few-shot learning. A practical and reliable classifier should be robust to out-
liers. Motivated by this observation, we propose an improved algorithm based
on the local mean classifier [24]. Given all prototype instances of a class, we cal-
culate their reconstruction errors for the query instance, which are then used for
the weighted average of prototype instances. The new prototype aggregates at-
tentive contributions from all of the instances. The reconstruction error between
the new prototype and the query instance not only provides a discrimination
criteria for the classes, but also serves as a reference for the reliability of the
classification.

More specifically, with K support samples {xi1, xi2, ..., xiK} selected for class
i, a membership γij can be defined for a query instance q by employing normal-
ized Gaussian functions with the samples in support sets, e.g.,

γij =
exp(

||q−xij ||2
2σ2

i
)∑K

l=1 exp(
||q−xil||2

2σ2
i

)
, j = 1, ...,K, i = 1, ...,M (4)

where xij are the j-th samples in class i, and σi is the width of Gaussian defined
for class i, and we set the value σi relatively small (e.g, σi=0.1).

Then, for each class i, an attentive prototype pattern q̂i can be defined for a
query sample q as below

q̂i =

∑K
j=1 γijxij∑K
l=1 γij

, i = 1, ...,M (5)

where γij is defined in Eq. 4 and q̂i can be considered as the generalized support
samples from class i for the query instance q. Here we want to ensure that an
image qa (anchor) of a specific class in the query set is closer to the attentive
prototype of the positive class q̂p (positive) than it is to multiple q̂n (negative)
attentive prototypes.
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||qa − q̂p||22 + α < ||qa − q̂n||22,∀qa ∈ Q. (6)

f where α is a margin that is enforced between positive and negative pairs, Q is
the query set cardinality MN . The loss that is being minimized is then:

MN∑
m=1

[
||f(qam)− f(q̂pm))||22 − ||f(qam)− f(q̂nm)||22 + α

]
+

(7)

For image classification, a query image can be classified based on the com-
parison of the errors between the reconstructed vectors and the presented image.
That is, a query image q is assigned to m∗ class if

m∗ = argmin
m

errm (8)

where errm = ||q − q̂m||,m = 1, ...,M .
Improved Triplet-like loss. In order to ensure fast convergence it is crucial

to select triplets that violate the triplet constraint in Eq. 7. The traditional triplet
loss interacts with only one negative sample (and equivalently one negative class)
for each update in the network, while we actually need to compare the query
image with multiple different classes in few-shot classification. Hence, the triplet
loss may not be effective for the feature embedding learning, particularly when
we have several classes to handle in the few-shot classification setting. Inspired by
[1], [37], we generalize the traditional triplet loss with E-negatives prototypes to
allow simultaneous comparisons jointly with the E negative prototypes instead of
just one negative prototype, in one mini-batch. This extension makes the feature
comparison more effective and faithful to the few-shot learning procedure, since
in each update, the network can compare a sample with multiple negative classes.

In particular, we randomly choose the E negative prototypes q̂ne , e = {1, 2, ..., E}
to form into a triplet. Accordingly, the optimization objective evolves to:

L(qam, q̂
p
m, x̂

n
m) =

MN∑
m=1

1

E

E∑
e=1

[
||f(qam)− f(q̂pm))||22

−||f(qam)− f(q̂ne
m )||22 + α

]
+

(9)

For the sample qam in the query set, the optimization shall maximize the
distance to the negative prototype qnm to be larger than the distance to the
positive prototypes qpm in the feature space. For each anchor sample qam, we then
learn the positive prototype qpm from the support set of the same class as qam and
further randomly select E other negative prototypes whose classes are different
from qam. Compared with the traditional triplet loss, each forward update in our
improved Triplet-like loss includes more inter-class variations, thus making the
learnt feature embedding more discriminative for samples from different classes.

Mining hard triplets is an important part of metric learning with the triplet
loss, as otherwise training will soon stagnate [12]. This is because when the
model begins to converge, the embedding space learns how to correctly map the
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triples relatively quickly. Thus most triples satisfying the margin will not con-
tribute to the gradient in the learning process. To speed up the convergence and
stabilize the training procedure, we propose a new hard-triplet mining strategy
to sample more informative hard triplets in each episode. Specifically, triplets
will be randomly selected in each episode as described above, we then check
whether the sampled triplets satisfy the margin. The triplets that have already
met the margin will be removed and the network training will proceed with the
remaining triplets.

4 Experiments

Extensive experiments have been conducted to evaluate and compare the pro-
posed method for few-shot classification using on three challenging few-shot
learning benchmarks datasets,miniImageNet [41], tieredImageNet [31] and Fewshot-
CIFAR100 (FC100) [26]. All the experiments are implemented based on PyTorch
and run with NVIDIA 2080 GPUs.

4.1 Datasets

miniImageNet is the most popular few-shot learning benchmark proposed by
[41] and derived from the original ILSVRC-12 dataset [32]. It contains 100 ran-
domly sampled different categories, each with 600 images of size 84 × 84 pixels.
The tieredImageNet [31] is is a larger subset of ILSVRC-12 [32] with 608
classes and 779,165 images in total. The classes in tieredImageNet are grouped
into 34 categories corresponding to higher-level nodes in the ImageNet hierar-
chy curated by human [2]. Each hierarchical category contains 10 to 20 classes,
which are divided into 20 training (351 classes), 6 validation (97 classes) and
8 test (160 classes) categories. Fewshot-CIFAR100 (FC100) is based on the
popular object classification dataset CIFAR100 [16]. Oreshkin et al. [26] offer
a more challenging class split of CIFAR100 for few-shot learning. The FC100
further groups the 100 classes into 20 superclasses. Thus the training set has 60
classes belonging to 12 superclasses, the validation and test data consist of 20
classes belonging to 5 superclasses each.

4.2 Implementation Details

Following the general few-shot learning experiment settings [36], [39], we con-
ducted 5-way 5-shot and 5-way 1-shot classifications. The Adam optimizer is
exploited with an initial learning rate of 0.001. The total training episodes on
miniImageNet, tieredImageNet and FC100 are 600,000, 1,000,000 and 1,000,000,
respectively. The learning rate is dropped by 10% every 100,000 episodes or when
the loss enters a plateau. The weight decay is set to 0.0003. We report the mean
accuracy (%) over 600 randomly generated episodes from the test set.
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Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot

Matching Networks [41] 43.56 ± 0.84 55.31±0.73
MAML [6] 48.70±1.84 63.11±0.92
Relation Net [39] 50.44±0.82 65.32±0.70
REPTILE [25] 49.97±0.32 65.99±0.58
Prototypical Net [36] 49.42±0.78 68.20±0.66
Predict Params [28] 59.60±0.41 73.74 ± 0.19
LwoF [10] 60.06±0.14 76.39 ± 0.11
TADAM [26] 58.50±0.30 76.70±0.30
EGNN [14] – 66.85
EGNN+Transduction [14] – 76.37
CTM [19] 62.05±0.55 78.63±0.06
wDAE-GNN [11] 62.96±0.15 78.85±0.10
CTM, data augment [19] 64.12±0.82 80.51±0.13

Baseline 59.71±0.35 75.21±0.43
Ours 63.23±0.26 80.17±0.33
Ours, data augment 66.43±0.26 82.13±0.21

Table 1. Few-shot classification accuracies (%) on miniImageNet.

4.3 Results Evaluation

Comparison with baseline model. Using the training/testing data split and
the procedure described in Section 3, the baseline in Table 1, Table 2 and Table
3 evaluate a model with modified DeepCaps, without the attentive prototype.
The accuracy is 75.21±0.43%, 78.41±0.34% and 59.8±1.0% and in the 5-way
5-shot setting on miniImageNet, tieredImageNet and FC100 respectively. Our
baseline results are on par with those reported in [39], [36]. As shown in Ta-
ble 1, Table 2 and Table 3, using the attentive prototype strategy in the model
training with improved triplet-like loss, our method significantly improves the
accuracy on all of the three datasets. There are obvious improvements of ap-
proximately +4.96% (from 75.21% to 80.17%), +4.83% (from 78.41% to 83.24%),
+2.5% (from 57.3% to 59.8%) under the 5-way 5-shot setting for miniImageNet,
tieredImageNet and FC100, respectively. For the one-shot setting, we further an-
alyze the improved triplet-like loss which is based on samples. On miniImageNet,
tieredImageNet and FC100, we achieve improvement of +3.52% (from 59.71% to
63.23%), +2.28% (from 63.25% to 65.53%) and +3.3% (from 44.2% to 47.5%) in
the 5-way 1-shot setting, respectively. These results indicate that the proposed
approach is tolerant to large intra- and inter-class variations and the improved
triplet-like loss produces marked improvements over the baseline.

Comparison with the state-of-the-art methods. We also compare our
method with some state-of-the-art methods on miniImageNet,tieredImageNet
in Table 1 and Table 2, respectively. On miniImageNet, we achieve at a 5-way
1-shot accuracy =63.23±0.26, 5-way 5-shot accuracy =80.17 ± 0.33%
when using the proposed method, which has a highly competitive performance
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Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot

MAML [6] 51.67±1.81 70.30±0.08
Meta-SGD [20], reported by [33] 62.95±0.03 79.34±0.06
LEO [33] 66.33±0.05 81.44±0.09
Relation Net [39] 54.48±0.93 71.32±0.78
Prototypical Net [36] 53.31±0.89 72.69±0.74
EGNN [14] – 70.98
EGNN+Transduction [14] – 80.15
CTM [19] 64.78±0.11 81.05±0.52
CTM, data augment [19] 68.41±0.39 84.28±1.73

Baseline 63.25±0.31 78.41±0.34
Ours 65.53±0.21 83.24±0.18
Ours, data augment 69.87±0.32 86.35±0.41

Table 2. Few-shot classification accuracies (%) on tieredImageNet.

compared with the state-of-the-art. On tieredImageNet, we arrive at 5-way 1-
shot accuracy = 65.53±0.21, 5-way 5-shot accuracy =83.24 ± 0.18%
which is also very competitive. The previous best result is produced by intro-
ducing a Category Traversal Module [19] and data augment that can be inserted
as a plug-and-play module into most metric-learning based few-shot learners.
We further investigate whether the data augment could work on our model. By
training a version of our model with basic data augmentation, we obtain the
improved results 5-way 5-shot accuracy = 82.13±0.21% on miniImageNet.
On tieredImageNet, we also observe a performance 5-way 5-shot accuracy =
86.35±0.41%. For FC100 dataset, our proposed method is superior to all the
other methods [6], [26], [38] in accuracy. The comparisons consistently confirm
the competitiveness of the proposed method on few-shot image classification. In

Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot 5-Way 10-Shot

MAML [6] 38.1±1.7 50.4±1.0 56.2±0.8
TADAM [26] 40.1±0.4 56.1±0.4 61.6±0.5
MTL [38] 45.1±1.8 57.6±0.9 63.4±0.8

Baseline 44.2±1.3 57.3±0.8 62.8±0.6
Ours 47.5±0.9 59.8±1.0 65.4±0.5

Table 3. Few-shot classification accuracies (%) on FC100 dataset.

summary, our proposed attentive prototype learning scheme obviously improve
over the previous methods, mainly due to the better embedding space provided
by the capsule network and the attentive prototyping scheme. The importance
value is used as the weighting value for the support set instances, which is com-
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pletely dependent on the affinity relationship between the two feature points
from the support set and the query. The importance weighting values vary ex-
ponentially, with larger value reflecting nearby pairs of feature points and a
smaller value for the distant pair. This conforms that the feature points from
the support set that are nearer to the query feature point should be paid more
attention.

Ablation Study: To verify the effectiveness of components in proposed
method, we conducted ablation experiments on theminiImageNet and tieredImageNet
dataset. First, to investigate the contribution of the designed attentive prototype
method, we compare the performance of the proposed method with vanilla pro-
totypical networks [36]. Then, we verify the effectiveness of our proposed feature
embedding module by embedding it into the metric-based algorithm Relation
Net [39].Table 4 summarizes the performance of the different variants of our
method.

Method
miniImageNet tieredImageNet

5-Way 5 shot 10-Way 5 shot 5-Way 5-shot 10-Way 5-shot

Prototypical Net [36] 68.20 - 72.69 -
Ours (average mechanism) 76.32 58.41 80.31 62.17
Ours (attentive prototype) 80.17 63.12 83.24 66.33

Relation Net [39] 65.32 – 71.32 –
Relation Net [39]

80.91 64.34 83.98 67.86
(our implementation)

Table 4. Ablation study on attentive prototype and embedding module.

1)Attentive prototype: In vanilla prototypical networks [36], the prototypes
are defined as the averages the embed features of each class in the support set.
Such a simple class-wise feature takes all instances into consideration equally.
Our attentive prototype scheme is a better replacement. A variant of DeepCaps
is applied with improved triplet-like loss to learn the feature embedding instead
of a shallow CNN network. To further verify the effectiveness of our attentive pro-
totype, we also compared the average-based prototypes created from our embed-
ding framework. The experimental results onminiImageNet and tieredImageNet
are summarized in Table 3. It can be observed that the attentive prototype gains
an approximately 3%-4% increase after replacing the average mechanism. This
shows that the attentive prototypes can be more ‘typical’ when compared to the
original average vectors by giving different weights for different instances.

2)Embedding module: The embedding is switched from four convolutional
blocks in Relation Net [39] to the modified DeepCaps model and the supervision
loss is changed to the improved triplet-like loss. Table 3 shows the results ob-
tained by the improvements over the Relation Net. We find that the improved
Relation Net exceeds the original model by approximately +10%. This shows
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(a) 5-way 5-shot setting

(b) 10-way 5-shot setting

Fig. 3. The t-SNE visualization [22] of the improved feature embeddings learned by
our proposed approach..

the ability of the proposed capsule network-based embedding network to im-
prove the performance of the metric based method. Fig. 3 visualizes the feature
distribution using t-SNE [22]. The features computed in 5-way 5-shot setting
and 10-way 5-shot setting. As can be clearly observed, the improved Relation
Net model has more compact and separable clusters, indicating that features are
more discriminative for the task. This descends from the design of the embedding
module.

5 Conclusion

In this paper, we proposed a new few-shot learning scheme aiming to improve
the metric learning-based prototypical network. Our proposed scheme has the
following novel characteristics: (1) the new embedding space created by a capsule
network, which is unique in its capability to encode the relative spatial relation-
ship between features. The network is trained with a novel triple-loss designed to
learn the embedding space; (2) an effective and robust non-parameter classifica-
tion scheme, named attentive prototypes, to replace the simple feature average
for prototypes. The instances from the support set are taken into account to
generate prototypes, with their importance being calculated by the reconstruc-
tion error for a given query. Experimental results showed that the proposed
method outperforms other few-shot learning algorithms on all of miniImageNet,
tieredImageNet and Fewshot-CIFAR100 datasets.
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