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Abstract: A pedestrian segmentation algorithm in the presence of cast shadows is presented in this paper. The novelty of this
algorithm lies in the fusion of multiview and multiplane homographic projections of foregrounds and the use of the fused data to
guide colour clustering. This brings about an advantage over the existing binocular algorithms in that it can remove cast shadows
while keeping pedestrians’ body parts which occlude shadows. The phantom detections, which are inherent with the binocular
method, are also investigated. Experimental results with real-world videos have demonstrated the efficiency of this algorithm.

1  Introduction

Intelligent video surveillance is receiving more and more atten-
tion from the computer vision community and industry. It aims to
automatically detect, track, recognize moving targets (e.g. pedestri-
ans and vehicles) and identify abnormal events. It has been widely
used for the security of public spaces, traffic monitoring, battlefield
surveillance, etc. The recent progresses in artificial intelligence and
GPUs foster the growth in intelligent video surveillance.

The success of an intelligent video surveillance system greatly
depends on the robustness of its detection algorithm for moving tar-
gets. On the other hand, the background subtraction method, which
is the most favourable one for foreground detection, is sensitive to
the cast shadows of moving targets. As moving cast shadows change
the local scene appearance in the same way as moving objects, they
are often misclassified as foregrounds. These misclassified cast shad-
ows can distort the shape, size and colour distribution of the relevant
foreground regions and connect foreground regions which are not
adjacent to each other. This may mislead the tracking algorithm [1],
because the shape, size and colour of a foreground region usually
constitutes the measurements for a tracker and each moving target
in a multi-target foreground region has independent dynamics as
well as different paths. In these cases, the individual targets cannot
be readily separated and the further processing becomes unreliable.
Therefore, moving cast shadows are one of the major challenges in
intelligent video surveillance.

In this paper, we present a novel algorithm for the detection of
moving cast shadows by using multiview geometric projection and
colour segmentation. In this algorithm, the foregrounds extracted
from individual camera views are projected to a virtual top view
according to the homographies for the ground plane and a parallel
plane at the average height of pedestrians’ waists. The intersec-
tions of multiview foreground projections by using the ground-plane
homographies correspond to the locations of moving cast shad-
ows on which the pedestrians are standing. On the other hand,
the intersections of multiview foreground projections by using the
waist-plane homographies report the locations and widths of the
pedestrians. In the second stage of this algorithm, pairs of such fore-
ground intersection regions are warped back to the original camera
views. K-means colour clustering is carried out on each shadow
region to identify pedestrians’ body parts from the shadow region.
The clustering is initialized on the basis of the pair of warped back
intersection regions, which makes the clustering converge quickly.
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The contributions of the proposed algorithm are fourfold. Firstly,
unlike the previous shadow detection algorithms using binocu-
lar vision, this algorithm can remove moving cast shadows while
keeping pedestrians’ body parts (e.g. feet and legs) which occlude
shadows. Secondly, it is the first work in using multi-plane fore-
ground projections to guide and accelerate the colour clustering
in the shadow region. Thirdly, it is innovative to investigate the
phantom detections which are inherent with shadow detection using
binocular vision. Finally, a scale-space Hough transform is proposed
to estimate the vertical vanishing point from the head-foot obser-
vations of pedestrians, which adds robustness to the estimation of
the multiplane homography when camera calibration data is not
available.

The remaining part of this paper is organized as follows: In
Section 2, related work is discussed. Section 3 details the multi-plane
homography estimation by using either calibrated or uncalibrated
cameras. In Section 4, the extraction of pairs of foreground inter-
action regions is introduced. Section 5 describes the strategy to
filter out phantom detections in the foreground intersection regions.
Section 6 details the colour clustering to segment shadow regions.
Experimental results are shown in Section 7. The conclusions are
presented in Section 8.

2  Related Work

Shadows can be divided into cast shadows and self shadows, or mov-
ing shadows and static shadows. We will focus on the detection of
moving cast shadows in video sequences. The reason is that, by using
the background subtraction method, static cast shadows in videos
can be correctly detected as backgrounds and moving self shadows
can be correctly detected as foregrounds. In addition, we need to dif-
ferentiate our target from the research works on shadow detection
in still images in which supervised shadow learning can be carried
out in an off-line manner. There exists a large volume of literature
on moving shadow detection. Prati et al. [2] classified these methods
into three categories according to the types of features used, that is,
spectral, spatial and temporal features. Sanin et al. [3] further divided
spectral features into intensity, chromaticity and physical proper-
ties, and divided spatial features into geometry and textures. A more
recent survey can be found in [4], which further subdivides geometry
features in terms of shapes and light directions, and separates edges
from textures.

The chromaticity approach assumes that in outdoor environments
the sunlight and ambient illumination is white so that cast shadows
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reduce luminance values while maintaining the chromaticity values
of background pixels. These methods often choose a colour space,
which separates chromaticity from intensity, such as normalized rgb
space in [5][6] and HSV space in [7][8]. This approach has a low
computational cost. However, the chromaticity or hue component is
poorly defined and very noisy in dark shadows. In addition, a part
of foreground regions may meet this assumption and thus are lost
in detection. The physical approach [9][10][11][12][13][14] realizes
that there are two light sources (the sun and sky) in outdoor envi-
ronments and cast shadows are bluish, due to the scattered light by
the sky, rather than proportional to the background in RGB compo-
nents. The methods in this approach model both light sources and
learn the appearance of shadow pixels to better predict the colour
change of shadow regions. They are more accurate than the chro-
maticity approach but still suffer from the colour similarity between
moving objects and shadows. The geometry approach [15][16] uti-
lizes the prior knowledge in light source orientation and specific
object types to separate shadows from objects. Hsieh et al. [15]
assumes that pedestrians are standing upright and have a different
orientation from their shadows. The vertical histogram projection of
each foreground region was used to split a coarse shadow region
from the foreground region. Then the location, size and intensity of
the coarse shadow region are modelled by a mixture of Gaussians,
which is later used to refine the shadow detection. The geometry
approach cannot deal with multiple light sources and objects with
shadows in the same orientation as the objects. The texture approach
[17][18][19][20][21][14] assumes that background regions under
shadows maintain their texture. Therefore, coarse shadow regions
are detected first by using spectral features and they are further clas-
sified into shadows or foregrounds by using texture correlation with
the backgrounds. The disadvantage of this approach is in its slow
speed. These approaches to moving shadow removal are summarized
in Table 1.

Table 1 Methodology in moving shadow removal.

Methods Pros Cons

Chromaticity | simple, fast white light sources, poor
on dark shadows

Physical more accurate objects and backgrounds
with similar chromaticity
Geometry simple known light source direc-
tion, upright people
Texture insensitive  to | slow correlation
illumination
Binocular any object type | shadows on flat planes and

in overlapping field of view

With the deployment of multi-camera video surveillance sys-
tems, one good solution for moving shadow removal is to utilize
the information redundancy in multiple camera views by exploit-
ing multiview homographies [22][23][24][25][26]. Although more
synchronized cameras are required, it improves the robustness of
the detection owing to information fusion. Onoguchi [22] proposed
an algorithm using two cameras and assuming that moving objects
are standing on the ground plane. Then one camera view is warped
to the other by a homographic transformation based on the ground
plane. The intensity at each location of the second view is com-
pared with that of the warped image from the first camera view.
If they are highly correlated, then that pixel is classified as back-
ground or a cast shadow. The disadvantage of this algorithm is that,
if a part of the cast shadow is occluded by a foreground object in
one camera view but visible in the other view, it is classified as
foregrounds in both camera views because the corresponding pix-
els in both camera views are not similar in their colours. In [23],
Lanza et al. extracted the change mask image in each of the mul-
tiple camera views. These change mask images are projected to a
virtual top view by homographic transformations. It was found that
pedestrians and their cast shadows are always located in the intersec-
tions of these projected change masks from the multiple views. Then
the intersection regions are warped back to and subtracted from the

single-view change masks. This method often gives rise to phantom
detections due to the intersections of the projected foregrounds of
non-corresponding objects, e.g. between two pedestrians or between
a pedestrian and the cast shadow of another pedestrian. These two
methods remove not only the shadows but also the pedestrians’ body
parts. In [24], Jeong and Jaynes used Onoguchi’s method to detect
coarse shadow regions in two camera views and applied a Gaussian
mixture model to learn the colours in such shadow regions at ini-
tial frames. The colour model was then used to refine coarse shadow
regions. This paper differs from their work in that it does not rely on
the assumptions of the same colour sensitivity in multiple cameras,
the ground plane being a uniform colour and a dominant shadow
area in each coarse shadow region. In addition, phantom detections
are also considered in this paper. In [25] foreground regions are pro-
jected from multiple camera views to a stack of parallel planes and
the across-plane intersections are used to compensate the lost feet in
[23]. However, it is sensitive to pedestrians’ poses such as striding
people. In this paper, the foreground intersections on the waist plane
are used to guide the colour clustering in the foreground intersection
regions on the ground plane. There is no across-plane foreground
intersection.

3  Homography Estimation

Planar homography is defined by a 3 x 3 transformation matrix
between a pair of captured images of the same plane from two cam-
era views. Let u and u’ be the image coordinates of a point on such
a plane in the two views. They are associated by the homography
matrix H as follows:

~1

u =~ Hu (1)

where = denotes the equivalence defined up to scale and the vectors
with a tilde represent their homogeneous coordinates.

3.1  Homography Estimation with Calibrated Cameras

As the homography transformation H is a special variation of
the projective transformation, a 3 x 4 projection matrix M =
[mj, my, mg, my], which is built by using the intrinsic and extrin-
sic parameters of ecach camera, can be used to determine the
homography matrix for a specific plane.

The homography, from the top view to camera view ¢, for the
ground plane is [27]:

H, = (H;") ™ = [m1, mo, my] . )

The homography, from the top view to camera view ¢, for the plane
parallel to the ground plane and at a height of A is as follows [27],
where [0] is a 3 X 2 zero matrix:

HZC = [ml, ms, hms + m4] = HB'C + [0|hm3] . 3)

3.2 Homography Estimation with Uncalibrated Cameras

When camera calibration data is not available, a three-step process
can be used to estimate the homographies for the parallel planes at
different heights:

1. Estimate the ground-plane homography HZ,’] from at least four
pairs of corresponding landmark points in two camera views.

2. Estimate the vertical vanishing point v.

3. Calculate the homography Hi{J for a plane parallel to and at a
height /. above the ground plane, by using (??)[28], where v o h:

L . 1
H;/ = (Hy? + [03x2]7v) <I3><3 - m[ﬂaxﬂ’yv) G

The vanishing point is where parallel lines converge, when they
are projected from 3D space to an image plane under a perspec-
tive projection. The vertical vanishing point can be estimated from

IET Research Journais, pp. 1-9
© The Institution of Engineering and Technology 2015

cvib.pdf M ainDocument

IET Review Copy Only



Auto-generated PDF by ReView

IET Computer Vision

static scene structures such as the vertical lines of buildings [29][30].
In the scenarios which lack these vertical lines, the principal axes
of pedestrians can be used to estimate the vertical vanishing point
[31]. Due to the measurement errors and outliers in line segment
extraction, the most favoured approaches for vanishing point detec-
tion are based on the Hough transform [29][32][33], RANSAC or
RANSAC-like algorithms [30][34] or the clustering of the intersec-
tion points of line segment pairs [35]. To cope with the measurement
errors, Shufelt [29] cast a swath of uniformly distributed votes into
the Hough accumulator space; Szeliski [32] assigned more weights
to long, non-collinear line segments; Xu et al [30] modelled the
two end points of each line segment with Gaussians and measured
the consistency between that line segment and each vanishing point
candidate.

In this paper, the vertical vanishing point was estimated, from
the head and foot positions of pedestrians, by using a scale-space
Hough transform. A graphical interface was used to browse the video
sequence of each camera view and collect the image coordinates u g
for the feet and uy, for the top of the head of each selected pedestrian
standing upright. The outcome of this process is a set of foot-and-
head landmark pairs {(u', uj)}|"; for a specific camera view.
Although an automatic tool to collect such image coordinates may
be developed by extracting the principal axes of the observed pedes-
trians, it is not trivial to reliably identify outliers such as shadows,
vehicles, grouped pedestrians, cyclists, people with prams or luggage
etc.

As the top of the head of each pedestrian can be easily identi-
fied and the majority of the observation errors come from the feet of
striding pedestrians, it is assumed that: (1) the top of the head of each
pedestrian is accurately observed; (2) the line L; which connects uj,
and u} is most likely the direction of the i-th pedestrian’s torso; (3)
while u’f is most likely the foot position of the pedestrian, the other

positions along the two sides of u% may be the ground-truth foot
location with decreased likelihoods. This is illustrated in Fig. 1(a),
where the potential foot points are located along an circular arc with
the circle centre at uj, and with the arc centre at u}. The closer a

foot candidate is to u’, the more likely it is the foot point. 6 rep-
resents the largest span for this fan-shaped region and is determined
by the averaged width to height ratio of the pedestrians.

To determine the projection from the torso line of each pedestrian
into the Hough accumulator, a projection template in the vertical
direction is built as a fan-shaped Gaussian, as shown in Fig. 1(b).
The angle between any pixel u’ in this template and the u’-axis is
calculated as:

o
6 = arccos (M> . 5)

IR

where uj, is a unit vector in the u’-axis. The projection template is
defined as:

if 0<6)
otherwise

Au) = { gfp(—%/(zazn, ©)

where oy = 6p/3.

The projection A;(u) from the torso line of the i-th pedestrian
into the Hough accumulator (see Fig. 1(c)) is obtained by applying
an image rotation and translation operation on A (u’):

(m) o

TuollTuy — )|

[

cosp;  sing;

_ / i
v (—sind)i Cos ¢ )u +up ®)

where uy is a unit vector in the u-axis of the original camera view,
which is facing downwards; ¢; is the angle between the torso line
L; and the u-axis, and its sign is determined by whether u? is to the

left or right of uﬁl.
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(©) (d)

Fig. 1: (a) The head point and potential foot points of a pedestrian,
(b) the image coordinates for a projection template, (c) the projection
from a pedestrian into the Hough accumulator, and (d) the Hough
accumulator and the vanishing point.

The projections overlaid in the Hough accumulator and the
vertical vanishing point, as shown in Fig. 1(d). are:

Alw) = D Ai(w) ©
i=1
v = argmaxA(u). (10)

4 Coarse Shadow Detection

The homography which reveals the position transformation for
coplanar objects between different camera views is utilized to
acquire coarse shadow regions.

4.1  Single-View Foregrounds

The foreground regions, in each camera view, are detected through
a background subtraction approach. The intensity of each pixel
throughout a video is modeled by a mixture of Gaussians [36]. The
most stable Gaussians correspond to the adaptive background. If the
value of a pixel in the new frame is significantly different from that
of the background, that pixel becomes a foreground pixel. Connected
component analysis is used to connect the foreground pixels into
foreground regions, which is followed by a morphological closing
operation to bridge split body parts and a size filter to remove noise.
The cast shadows of pedestrians are included in such a foreground
change mask M as they make significant changes to the background
appearance.
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4.2 Ground-Plane Foreground Intersections

The foreground change mask of each camera view (say camera view
), M€, is projected onto the top view ¢ with the homography for the
ground plane, which is formulated as:

My© =Hy (M) (1

The matrix Hf,’t denotes the ground-plane homography from camera
view ¢ to the top view. The intersections of the projected change
masks from multiple camera views, M;, are as follows:

Mg = Mg* (12)

c

which are also the intersection patches of moving objects with the
ground plane. The intersection patches include pedestrians’ feet and
cast shadows, since both touch the ground.

The intersection patches for the ground plane are then warped
back to the individual camera views, according to the ground-plane
homography:

Mg = (Hg") (M) (13)

The warped back region Mg is usually located on the ground. To
cope with the inaccuracy in the homography estimation and fore-
ground detection, the warped back patches are morphologically
dilated by a square structure element B before being intersected with
the original change mask M€. The size of B is proportional to the
tolerance of the inaccuracy.

Mg =M°n (Mg ® B) (14)

The rectified ground region My then fits well with the corresponding
foreground mask. Since the ground region Mg contains both pedes-
trians’ feet and shadows, it can be thought of as a coarse shadow
region. Some previous work used M© — My for pedestrian detec-
tion and thus lost the pedestrians’ body parts such as feet and legs
[23].

4.3 Waist-Plane Foreground Intersections

The foreground change mask of each camera view, M€, is projected
onto the top view ¢ with the homography for a plane parallel to the
ground and at the average waist height. The intersection of the multi-
view foreground projections, according to the waist-plane, is a patch
representing the waist section in that plane:

MY = (HGH(M®) (15)

c

where Hff denotes the waist-plane homography from camera view
¢ to the top view. When it is warped back to the individual camera
views according to the ground-plane homography,

Mg, = (HGh (M) (16)

the warped back patch is like the projection of a pedestrian’s torso on
the ground and is usually close to the pedestrian’s feet. Therefore, it
is referred to as a bottom region. The position and size of the bottom
region can be used as a reference in the subsequent colour clustering
method on the ground region.

5 Phantom Pruning in Foreground Intersections

Phantoms may appear in the warped back region M, when there are
more than one pedestrian adjacent to each other in a camera view.
This is due to the intersection of foreground projections of different
pedestrians in the top view [37]. For the ground-plane based projec-
tions, real ground regions are usually located at the bottom of each

Algorithm 1 Validation of ground and bottom regions

Input: Foreground maps M€, ¢ € [1,C]:
Input: Ground region maps M} and Mg, c€1,Cl;
Input: Bottom region maps My, and Mg, ¢ € [1,C];
Output: Validated ground and bottom regions Rg, R, ¢ € [1,CT;
1: $ step 1: validate ground regions
2: for each intersection region in M, g do
if its counterpart in Mg is at the bottom of a region in M¢
then

%)

4 It joins Rg for all camera views
5: end if
6: end for
7: % step 2: validate bottom regions
8: for cach intersection region in MY, do
9: if its counterpart in My, is outside any region of Rg then
10: Remove it in all camera views
11: end if
12: end for
13: for each intersection region in MY, do
14: if its counterpart in M, is the only one in a region of Ry
then
15: It joins Ry, for all camera views
16: else if its counterpart in M, is the lowest in a region of Ry
then
17: It joins Ry, for all camera views
18: end if
19: end for
20: return [Rg. Ry ], ¢ € [1,C]

foreground region in a single view, while the phantoms are always
hidden behind the pedestrians in the top view and above the ground
region in the single view. On the other hand, a pedestrian hidden
behind others may have a foreground intersection region above the
ground region in the single view.

For the waist-plane based projections My, phantoms may appear
above or below the ground region. The phantoms above the ground
region in a single view are those foreground intersections behind
the pedestrians in the top view. Those below the ground region are
the intersections in front of pedestrians. In the assumption that each
pedestrian is not simultaneously hidden behind others in all camera
views, Algorithm 1 is developed to identify validated ground regions
and bottom regions.

6  Colour Clustering on Ground Regions

The ground region My contains both the feet and shadows. To dis-
tinguish between these two regions, the colour intensity values of
both regions in each ground region are modeled by two Gaussians
and then a rectified K-means algorithm is applied to identify these
two regions in each ground region.

6.1 Initialization of K-Means Algorithm

The K-means algorithm [38] is an iterative process for cluster anal-
ysis. On the basis of several initial means, the algorithm proceeds
by alternating between an assignment step and an update step. The
assignment step is performed by assigning each observation to a
cluster so that the least within-cluster sum of squared distances is
achieved. Then the update step is conducted through calculating the
new means as the centroids of the observations in the new clusters.
In practice, an initial mean must be assigned to each cluster. The
ground region Rg and bottom region Ry, for each foreground region
are used in the selection of the initial means.

A staged process is followed to remove the cast shadows. A
fixed number of Nggmple points are randomly sampled from the
ground region Rg. A distance list is acquired by calculating the
L2 distances between each of these points and the centre of RS,.
This list is sorted in ascending order of the distances. Then, the top
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Nyamplelarea(RS,) /area(Rg)] points with the nearest distance to
the centre of RY, are averaged in colour intensity and the mean is
used as the seed point for the foot region. The other sample points
with farther distances to the centre of RS, are used to estimate the
seed point for the shadow region.

6.2 Implementation of Modified K-Means Algorithm

Let @ denote the label of the class which the pixels in the ground
region belong 1o, i.e., ® = {Cshadow; Cfeet }- Then label decision
for the pixels in the ground region could be modeled with a Bayesian
maximum posterior optimization, i.e.,

Coptimal = argmax p(c|T) . 17
ced

where I is the colour intensity observation and c,ptimar i the
optimal label to interpret I. The term p(c|I) could be further
decomposed, with the Bayesian rule, into:

p{lo)p(c)

(el = 2

oc p(Ije)p(e) - (18)
The likelihood p(I|c;) for class ¢; can be formulated as:

N —i 1 Ta—1
p(les) = (2m) = 2] Feap{—5 (T — ps)” By (I - i)}
(19)
where p; is the mean colour of each cluster and IV is the dimen-
sion of the colour space (N = 3). The prior probability p(c¢;) can be
approximated with the area ratio in the ground region:

p(ci) = area(Ry,)/area(RY), if ¢i=Cpeet
PED=A 1~ area(RG) farea(RG),  if ¢ = Cohadow

where Ry, is the bottom region approximating the foot region. Based
on the modeling process above, the modified K-means algorithm can
be processed in four steps:

1. Initialization: k initial means (k=2) are generated.

2. Assignment: Assign each pixel to its corresponding cluster based
on (17) and (18).

3. Updating: calculate the new means to be the centroids of the
observations in the new clusters.

4. Tteration: Alternate between steps 2 and 3.

Based on the modified K-means algorithm, the shadow region
and foot region can be identified effectively. Fig. 2 shows the colour
histogram and the clustering result of the K-means algorithm for a
ground region at frame 329 (Fig. 5) of the EPFL Campus dataset
[39]. As the foot region is darker and much smaller than the shadow,
its colour histogram is concentrated on the left and is of lower
magnitudes.

7 Experimental Results

The proposed scale-space Hough transform for vanishing point
detection and the shadow removal algorithm have been tested using
real-world videos and/or Monte Carlo simulation tests. Both quali-
tative and quantitative performance evaluations were carried out.

7.1  Performance Evaluation of Vanishing Point Estimation

A number of experiments were carried out on the vanishing point
estimation by using both real-world surveillance videos, such as the
EPFL Campus [39] and PETS 2001 datasets [40], and a few Monte
Carlo simulation tests. Fig. 3 shows the estimation results of the van-
ishing point and multi-plane homographies by using camera view 2
of the PETS’2001 dataset. Fig. 3(a) is the 3D visualization of the
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Fig. 2: The colour histogram and the result of the K-means cluster-
ing for a ground region. The subfigures from top to bottom are the
R, G and B channels, respectively

Hough accumulator, where the top of the ridge in dark red corre-
sponds to the vanishing point. Fig. 3(b) shows the sampled torso
lines in the original camera view (at the top) and projected into the
Hough accumulator space. As pedestrians are short targets and may
change poses during walking, these torso lines are very noisy and
contain some outliers.

Figs. 3(c) and (d) are used to verify the estimation of the van-
ishing point and homographies. Fig. 3(c) shows the framelets of a
small number of pedestrians overlaid on the background image at
their original locations. There is no building line segment available
in this camera view. Fig. 3(d) is a top view from Google Maps for
the same site and is used as a reference image. The ground-plane
homography between view 2 and the top view was calculated from
the landmarks. The feet of the pedestrians in Fig. 3(c) were manually
localized and labelled with crosses. They are projected into the top
view according to the ground-plane homography. The projections in
the top view, which correspond to the locations of these pedestri-
ans, are then back projected to Fig. 3(c) according to the head-plane
homography and are labelled with circles. If a pedestrian is stand-
ing upright and of average height, the back-projection corresponds
to the head position. In Fig. 3(c), the circles are indeed at the head
positions of the pedestrians. Each circle is also on the line connecting
the pedestrian’s feet with the vanishing point.

Monte Carlo simulation tests were carried out to evaluate the
quantitative performance of the vanishing point estimation. A
greyscale image of 500 x 1000 pixels was used for the Hough accu-
mulator space. Along the top border of this image are 100 points
evenly distributed to simulate the head points of pedestrians, which
are denoted as P = {p1, p2, ..., p100 }- In the middle of this image
is the ground-truth location of the vanishing point v. Therefore, 7;0
simulates the ground-truth torso line of a pedestrian. This is illus-
trated in the left of Fig. 4(a). Then a disturbance, which was sampled
from the Gaussian (1/(@09))%})(—92/(203)), was added into
the angle of each torso line (see the middle of Fig. 4(a)), where
o9 = ¢/3 and ¢ = arctan(1/9) ~ 6.34° is a constant. The Hough
accumulator generated using the largest span 6y = ¢ is shown in the
right of Fig. 4(a).

In the proposed algorithm for vanishing point estimation, 6 is
the only parameter. To investigate its impact on the performance of
the vanishing point estimation. a range of values for 0y were tested.
For each selected value, 100 Monte Carlo simulations were carried
out and the distances between the estimated vanishing points and the
ground truth were compared. Fig. 4(b) shows the Hough accumula-
tors when 2¢, 4¢, or 6¢ was used as the largest span 6, in which
the green dot represents the estimated vanishing point and the cross
is the ground truth. The localization errors of the vanishing points
using different 6y values are shown in Table 2. When the span of
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Fig. 3: The vanishing point estimation in the PETS’2001 dataset:
(a) 3D visualization of the Hough acumulator, (b) the torso lines, (c)
verification of the estimated vanishing point and homographies, and
(d) the corresponding pedestrian locations in a top view.

the projection template varies from ¢ to 9¢, the localization errors
stay at low levels and are not sensitive to the choice of the 6 value.
When the span is less than ¢, the localization errors increase rapidly,
because this approximates the Hough algorithm without considering
the observation uncertainty.

Table 2 Localization errors of the vanishing point under different 6, values.
The unit is one pixel.

Span | 0.3¢ [ 0.5¢ [ 0.7 | ¢ | 1.5¢ | 2¢ | 2.5¢
Mean | 25.6 | 17.8 [ 128 |94 ] 9.0 [ 8.7 ] 8.2
STD | 148 | 128 ] 89 | 6.1 ] 6.6 | 58] 5.9
Span | 3¢ 40 50 | 60| 7o | 8p | 9¢
Mean | 8.9 8.6 8.1 |89 79 |74] 8.2
STD | 6.2 5.5 55 |60 5.1 |52] 5.6

The proposed algorithm was also compared with the RANSAC
algorithm for vanishing point estimation. 200 torso lines were used
in the comparison, in which different outlier numbers 0, 10, 20 and
40 were tested and the other torso lines were randomly disturbed
with oy = ¢/3. For each selected outlier rate, 100 Monte Carlo
simulations were carried out and the distances between the esti-
mated vanishing points and the ground truth were compared. The
localization errors of the proposed and the RANSAC algorithms
are shown in Table 3. The proposed scale-space Hough algorithm
outperforms the RANSAC algorithm with a two-thirds mean and a
halved variance (square of standard deviation STD) for localization
errors.

7.2 Performance Evaluation of Moving Shadow Detection

The proposed algorithm for moving shadow detection was evalu-
ated by using the EPFL Campus video sequences [39]. This video
was selected since it is the only public video dataset which has
been used for multiview shadow detection [23]. It was captured by
three cameras at a frame rate of 25 fps and with a resolution of

(b)

Fig. 4: Simulation tests on vanishing point estimation: (a) the
ground-truth vanishing point and torso lines (left), the torso lines
with disturbance (middle), and the Hough accumulator with the
largest span 0y = ¢ (right); (b) the Hough accumulators with 6y =
2¢ (left), 6y = 4¢ (middle) and 6y = 6¢ (right).

Table 3 Localization error comparisons of the vanishing point using the
proposed and RANSAC algorithms. The unit is one pixel.

Outlier Rate (%) 0 5 10 20

Mean (proposed) | 9.4 | 10.5 ] 10.9 | 11.8
Mean (RANSAC) | 15.7 ] 169 | 153 ] 17.5
STD (proposed) 6.1 6.5 168 | 7.7

STD (RANSAC) | 8.7 | 93 ] 9.0 | 10.7

360 x 288 pixels. The ground-plane homography matrix from each
camera view to a virtual top view is provided but camera calibra-
tion data is not available. In our experiments, only two camera views
(view 0 and view 2) were used; the waist-plane homography, from
each camera view to the top view, was estimated from the vertical
vanishing point and the given ground-plane homography. The verti-
cal vanishing point was estimated by using the scale-space Hough
transform of the observed torso lines.

Fig. 5 shows the results of the shadow removal algorithm at frame
329, which contains a single pedestrian. The original images. the
single-view change masks M¢ and the final foregrounds in both
camera views are shown in the 1st row of Figs. 5. It is observed
that the cast shadows are removed but the feet and legs remain. The
single-view change masks M ¢ are projected and intersect in the top
view with the ground-plane homography and with the waist-plane
homography. respectively. as shown in the 2nd row of Fig. 5. There
is no phantom foreground intersection in the top view. Warping the
intersection patches from the ground plane to both camera views
leads to the black ground region that contains both the pedestrian’s
feet and their shadow. On the other hand. warping the intersection
patches from the waist plane to both camera views leads to the black
bottom region of the pedestrian.

Fig. 6 shows the results of the shadow removal algorithm at
frame 3638, which contains two pedestrians. The original images,
the single-view change masks and the final foregrounds are shown in
the 1st row of Figs. 6. The cast shadows are removed but the feet and
legs remain. The single-view change masks are projected and inter-
sect in the top view with the ground-plane homography, as shown in
the 2nd row of Fig. 6. The two intersection regions behind the pedes-
trians are phantoms due to different people. The intersection patches
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Fig. 5: Shadow removal for one pedestrian at frame 329 of the Campus dataset. lst row: the two original camera views, the single-view

change masks and the final foregrounds. 2nd row: (left) the ground-plane foreground intersections and the warped back intersections after

morphological dilation, (right) the waist-plane foreground intersections and the warped back intersections after morphological dilation.
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Fig. 6: Shadow removal for two pedestrians at frame 3638 of the Campus dataset. 1st row: the two original camera views, the single-view
change masks and the final foregrounds. 2nd row: the ground-plane foreground intersections, and the warped back intersections before or after
phantom removal and morphological dilation. 3rd row: the waist-plane foreground intersections, and the warped back intersections before and

after phantom removal and morphological dilation.

are warped back to both camera views and shown in black. The black
region at the bottom of each foreground region is a ground region,
while those above the ground region are phantoms. The results after
the phantom removal and morphological dilation are shown in the
right of the 2nd row. The top-view foreground intersections using
the waist-plane homography is shown in the left of the 3rd row of
Fig. 6. The two intersection regions in front of or behind the pedes-
trians are phantoms. The intersection patches are warped back to
both camera views. The black regions within or partly overlapping
the ground region are bottom regions, while the others are identified
as phantoms. The results after the phantom removal are shown in the
right of the 3rd row.

To evaluate the quantitative performance of the shadow removal
algorithm, the detection errors of both pedestrians and shadows
were investigated. As the detected foreground regions for pedes-
trians and cast shadows were obviously affected by the foreground
detection algorithm and the morphological closing operation, man-
ual segmentation of the foreground regions as ground truths was not
justified. Instead, extraction of the ground-truth foregrounds for each
pedestrian and the corresponding shadow was based on the detected
foreground regions. Then the ground-truth region of the pedestrian
was manually segmented from the detected foreground region and
the remaining foreground region was thought of as the ground-truth
region for the pedestrian’s shadow.

IET Research Journals, pp. 1-9
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Fig. 7: The detection errors of a pedestrian: (a) the ground-truth
foreground region, (b) the ground-truth foreground region (grey) and
false positives (black), and (c) the detected ground-truth foreground
region (grey) and false negatives (black).

The results of the proposed algorithm were compared with the
ground-truth regions for both the pedestrian and the correspond-
ing shadow, as shown in Fig. 7. The pixels, which belong to the
ground-truth region of the pedestrian but are detected as shadows,
were thought as false negatives for the pedestrian and false positives
for the shadow. The pixels, which belong to the ground-truth region
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Fig. 8: A qualitative comparison of shadow removal algorithms in both camera views of frames 4253 and 5087 in the EPFL Campus dataset.
Ist column: the original images, 2nd column: foreground regions, 3rd column: Onoguchi algorithm, 4th column: Lanza A (general purpose)
algorithm, Sth column: Lanza B (shadow focused) algorithm, and 6th column: the proposed algorithm.

of the shadow but are detected as its corresponding pedestrian, were
thought as false positives for the pedestrian and false negatives for
the shadow. Fig. 7 illustrates the ground truth and detection errors of
a pedestrian at frame 329. Fig. 7(a) is the ground-truth region of the
pedestrian. Fig. 7(b) compares the ground-truth and the false posi-
tives of the pedestrian. Fig. 7(c) compares the detected ground-truth
region and the false negatives of the pedestrian.

Table 4 shows the detection error rates of pedestrians and shad-
ows using the proposed algorithm and benchmark binocular methods
for moving shadow removal. The numbers of the detection errors
were normalised by the ground-truth pixel number for either the
pedestrian or the shadow. As the pedestrians tend to be larger than
their cast shadows in this video, the false positive rate (FPR=FP/GT)
and false negative rate (FNR=FN/GT) for shadows are higher than
those for pedestrians. The average FPR and FNR for pedestrians in
the proposed algorithm are 2.49% and 0.60%, respectively. Those
for their shadows are 2.51% and 9.07%, respectively. The results
were further compared with those of the Onoguchi algorithm [22],
Lanza A (general purpose) method and Lanza B (shadow focused)
method [23]. Since Onoguchi’s algorithm tends to lose a part of
the foregrounds for pedestrians due to intensity correlation with the
pixelwise projection of the other view, it has a higher pedestrian
FNR and shadow FPR; Since the Lanza A method considers ground
regions as cast shadows and underestimates the pedestrian regions,
its shadow FNR and pedestrian FPR are almost zero, but the pedes-
trian FNR and shadow FPR are very high; The Lanza B method tends
to extract incomplete feet and legs of pedestrians and thus gives rise
to higher pedestrian FNR and shadow FPR. To give a fair compar-
ison, the total error rate (TER) was used, where TER=FPR+FNR.
In Table 4, the total error rates in both the pedestrian and shadow
detections using the proposed algorithm are the lowest in these
four binocular methods for moving shadow removal. A qualitative
comparison of these four algorithms is shown in Fig. 8. To give a
fair comparison, the implementations of these four algorithms were
based on the same set of foreground detection results as shown in
column 2. The proposed algorithm demonstrates the best quality in
terms of pedestrian completeness and shadow removal.

Table 4 A comparison on the detection error rates of the proposed and
traditional algorithms.

Pedestrians (%) Shadows (%)
FPR | FNR | TER | FPR | FNR | TER
Onoguchi [19] [ 3.59 | 6.74 1 10.33 [ 25.30 | 14.57 | 39.87
Lanza A [20 0.02]8.85 ] 887 [33.32] 0.08 |33.40
Lanza B [20] LIT]3.62 ] 473 [ 13.61 ] 412 | 17.73
Proposed 2491 0.60 | 3.09 | 2.51 | 9.07 | 11.58

The proposed algorithm was implemented in C/C++. Its speed
was tested by using a PC with an Intel Core i7-9700K CPU (8
cores) running at 3.6GHz and a 16GB RAM. The results are shown
in Table 5. The execution time for running the proposed algorithm
consists of four steps: foreground detection, foreground projection,
phantom pruning and colour clustering. Foreground detection was
carried out by using Gaussian mixture model. Foreground regions
were projected to the top view by using a contour-based real-time
implementation [41]. The average time in processing one frame is
26.5 ms, which corresponds to a frame rate of 37.7 fps.

Table5 Execution time for running the proposed algorithm.

No. | Steps Time (ms) | Percentage (%)
1 | Foreground Detection 3.1 11.7
2 | Foreground Projection 9.7 36.6
3 | Phantom Pruning 0.1 0.4
4 | Colour Clustering 13.6 51.3

Total 26.5 100.0

8 Conclusions and Discussion

We have proposed a moving object segmentation algorithm by using
multiple cameras, which is robust in the presence of cast shadows.
The novelty of the work lies in the foreground fusion by using
multiview and multiplane homography mapping and a novel colour
segmentation technique guided by the outcome of the data fusion.
This algorithm is effective in the scenarios where the shadows are
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cast on a flat road plane and within the overlapping fields of view of
two cameras.

It is worth noting that the proposed algorithm is related to deep
learning based object detection [42] in that both can detect pedestri-
ans in videos. However, significant differences exist: (1) the former
aims to detect general moving objects, while the latter is focused
on specific classes of objects that have been trained; (2) the former
is based on widely used background subtraction inherent to moving
shadows, while the latter is insensitive to shadows; (3) the former
is very efficient, while the latter needs dedicated GPUs for training
with large-scale datasets and is much slower even at the detection
stage; (4) a major challenge of the latter is occlusion, which can be
coped with by using multiple cameras as in the former.
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