
Trace Inclusion for One-Counter Nets Revisited

Piotr Hofmana, Patrick Totzkeb

aUniversity of Warsaw, Poland
bUniversity of Edinburgh, UK

Abstract

One-counter nets (OCN) consist of a nondeterministic finite control and a
single integer counter that cannot be fully tested for zero. They form a
natural subclass of both One-Counter Automata, which allow zero-tests and
Petri Nets/VASS, which allow multiple such weak counters. The trace in-
clusion problem has recently been shown to be undecidable for OCN. In this
paper, we contrast the complexity of two natural restrictions which imply
decidability.

We show that trace inclusion between a OCN and a deterministic OCN
is NL-complete, even with arbitrary binary-encoded initial counter-values as
part of the input. Secondly, we show that the trace universality problem
of nondeterministic OCN, which is equivalent to checking trace inclusion
between a finite system and a OCN-process, is Ackermann-complete.

Keywords: counter-automata, vector addition systems, equivalence
checking

1. Introduction

A fundamental question in formal verification is if the behaviour of one
process can be reproduced by – or equals that of – another given process.
These inclusion and equivalence problems, respectively have been studied
for various notions of behavioural preorders and equivalences and for many
computational models. Trace inclusion/equivalence asks if the set of traces,
all emittable sequences of actions, of one process is contained in/equal to
that of another. Other than for instance simulation preorder, trace inclusion
lacks a strong locality of failures, which makes this problem intractable or
even undecidable already for very limited models of computation.

Preprint submitted to Theoretical Computer Science May 29, 2017

We consider one-counter nets, which consist of a finite control and a single
integer counter that cannot be fully tested for zero, in the sense that an
empty counter can only restrict possible moves. They are subsumed by One-
counter automata (OCA) and thus Pushdown Systems, which allow explicit
zero-tests by reading a bottom marker on the stack. At the same time, OCN
are a subclass of Petri Nets or Vector Addition Systems with states (VASS):
they are exactly the one-dimensional VASS and thus equivalent to Petri Nets
with at most one unbounded place.

Related Work. Valiant and Paterson [1] show the decidability of the trace
equivalence problem for deterministic one-counter automata (DOCA). This
problem has subsequently been shown to be NL-complete by Böhm, Göller
and Jančar [2], assuming fixed initial counter-values. The equivalence of
deterministic pushdown automata is known to be decidable [3] and primitive
recursive [4], but the exact complexity is still open.

Valiant [5] proves the undecidability of both trace inclusion for DOCA
and universality for nondeterministic OCA. Jančar, Esparza and Moller [6]
consider trace inclusion between Petri Nets and finite systems and prove
decidability in both directions. Jančar [7] showed that trace inclusion be-
comes undecidable if one compares processes of Petri Nets with at least two
unbounded places. In [8], the authors show that trace inclusion is undecid-
able already for (nondeterministic) one-counter nets. Simulation preorder
however, is known to be decidable and PSPACE-complete for this model
[9, 10, 11], which implies a PSPACE upper bound for trace inclusion on
DOCN as both relations coincide for deterministic systems.

Higuchi, Tomita and Wakatsuki [12, 13] compare the classes of languages
defined by DOCN with various acceptance modes and in a series of papers
consider the respective inclusion problems. They derive procedures that ex-
haustively search for a bounded witness that work in time and space poly-
nomial in the size of the automata if the initial counter-values are fixed. We
show that for monotone relations like trace inclusion or the inclusion of lan-
guages defined by acceptance with final states, one can speed up the search
for suitable witnesses.

Our contribution. We fix the complexity of two well-known decidable decision
problems regarding the traces of one-counter processes. We show that trace
inclusion between deterministic OCNs is NL-complete. Our upper bound
holds even if only the supposedly larger process is deterministic and if (bi-
nary encoded) initial counter-values are part of the input. Technically, we

2

show a small witness property for the existence of (possibly long) distinguish-
ing traces. Our certificates are similar to the linear path schemes in [14] and
our characterization can be interpreted as showing that the 2-dim. product
automaton is flattable in the sense of [15]. The sizes of certificates is polyno-
mial in the number of states of the finite control and they can be verified in
space logarithmic in the binary representation of the initial counter-values.

Our second result is that trace universality of nondeterministic OCN is
Ackermann-complete. This problem is (logspace) inter-reducible with check-
ing trace inclusion between a finite process and a process of a OCN.

2. Background

We write N for the set of non-negative integers. For any set A, let A∗

denote the set of finite strings over A and ε ∈ A∗ the empty string.

Definition 1. A one-counter automaton A = (Q,Act , δ, δ0) is given by fi-
nite sets of control states Q, action labels Act, transitions δ ⊆ Q × Act ×
{−1, 0, 1}×Q and zero-test transitions δ0 ⊆ Q×Act×{0, 1}×Q. It induces
an infinite-state labelled transition system over the state set Q × N, whose
elements will be called processes and written as pm where p ∈ Q and m ∈ N.
The transition relation −→ = −→+ ∪ −→0 is partitioned into positive and
zero-testing steps. For states p, p′ ∈ Q and m,m′ ∈ N these are defined by

1. pm
a−→+ p

′m′ ⇐⇒ (p, a, (m′ −m), p′) ∈ δ and

2. pm
a−→0 p

′m′ ⇐⇒ (p, a,m′, p′) ∈ δ0 and m = 0.

Such an automaton is called a one-counter net if δ0 = ∅, i.e., if the automaton
cannot test if the counter is equal to 0.

When defining a OCN we will omit δ0 and simply define the net as triple

N = (Q,Act , δ). Abusing notation, we moreover write pm
t−→qn if a transi-

tion t = (p, a, d, q) ∈ δ ∪ δ0 justifies a step pm
a−→qn.

Definition 2 (Traces). Let pm be a process of the OCN N . The traces of
pm are the elements of the set

TN (pm) = {a1a2 . . . ak ∈ Act∗ | ∃qn pm a0−→ ◦ a1−→ ◦ · · · ◦ ak−→qn}.

We will omit the index N if is clear from the context. Trace inclusion is
the decision problem that asks if TA(pm) ⊆ TB(p′m′) holds for given pro-
cesses pm and p′m′ of nets A and B, respectively. Trace universality asks if
Act∗ ⊆ T (pm) holds for a given process pm.

3

An important property of one-counter nets is that the step relation and
therefore also trace inclusion is monotone with respect to the counter:

Lemma 1 (Monotonicity). If pm
a−→p′m′ then p(m + 1)

a−→p′(m′ + 1).
This in particular means that T (pm) ⊆ T (p(m + 1)) holds for any OCN-
process pm.

Remark 1. In this paper we consider what are sometimes called realtime
automata, in which no silent (ε-labelled) transitions are present. This is no
restriction: the usual syntactic requirement for DPDA, that no state with out-
going ε-transition may have outgoing transitions labelled by a 6= ε, together
with the monotonicity of steps in OCN, implies that all states on ε-cycles
are essentially deadlocks. One can thus eliminate ε-labelled transitions in
logarithmic space.

Normal form. An OCN is deterministic if for every p ∈ Q and a ∈ Act , there
is at most one (p, a, d, q) ∈ δ, at most one (p, a, d, q) ∈ δ0 and moreover, if
(p, a, d, p′) ∈ δ0 and (p, a, d′, p′′) ∈ δ, then d′ = −1. It is complete if for every
p ∈ Q and a ∈ Act at least one transition (p, a, d, q) ∈ δ exists.

We will w.l.o.g. assume input nets in a certain form, justified by the next
lemma. A pair A,B of OCNs is in normal form if A is deterministic and B
is complete.

Lemma 2 (Normal Form Assumption). Given OCNs A and B with state
sets N and M , one can construct nets A′,B′ in normal form, with states N
and M ′ ⊇M , respectively, such that for all (p, n, q,m) ∈ N × N×M × N

TA(pm) ⊆ TB(qn) ⇐⇒ TA′(pm) ⊆ TB′(qn). (1)

Moreover, the constructed net B′ is deterministic if the original net B is.

Proof. Let A = (N,Act , δA) and B = (M,Act ′, δB). If A is not already
deterministic, we can make it so by uniquely re-labeling all its transitions t
by actions at and adding corresponding transitions (p′, at, d

′, q′) to the other
net B for any existing (p′, a, d′, q′) ∈ δB, where a is the original label of
t ∈ δA. So assume A is deterministic and pick a new action label $ 6∈
Act. We add $-labelled cycles with effect 0 to all states of A: The new
net A′ = (N,Act ∪ {$}, δA) has transitions δA = δA ∪ {(s, $, 0, s)|s ∈ N}.
To compensate this, we add $-cycles to all states of B in the same way.

4

We add a sink state L (for losing), which has counter-decreasing cycles for
all actions, and connect all states without outgoing a-transitions to L by
a-labelled transitions. B′ = (M ∪ {L},Act ∪ {$}, δB) where

δB = δB ∪ {(s, $, 0, s) | s ∈M}
∪ {(s, a, 0, L) | a ∈ Act and s

a−→s′ 6∈ δ for any s′ ∈M)}
∪ {(L, a,−1, L | a ∈ Act ∪ {$}}.

We see that if a word w of length k witnesses non-inclusion TA(qn) 6⊆ TB(q′n′)
then there is a word that witnesses non-inclusion TA′(qn) 6⊆ TB′(q

′n′) To see
this, observe that in this case, any w-labelled path in B′ that starts in state q′

must end in state L. This means any such path takes the initial process q′n′ to
some process Ln′′ where n′′ ≤ n′+k and now by playing n′′ times a label $ we
get a new witness. Conversely, if there is a witness w for TA′(qn) 6⊆ TB′(q

′n′)
then the shortest such witness must be of the form w = w′$k where w′ does
not contain actions $ because as $-labelled steps leave any process not in
state L unchanged. This means w′ witnesses TA(qn) 6⊆ TB(q′n′). �

Due to the undecidability of trace inclusion for OCN [8], a direct conse-
quence of Lemma 2 is that TA(pm) ⊆ TB(qn) is already undecidable if we
allow the net B to be nondeterministic. Unless otherwise stated, we will
from now on assume a DOCN A = (QA,Act , δA) and a complete DOCN
B = (QB,Act , δB).

3. Trace Inclusion for Deterministic One-Counter Nets

We characterize witnesses for non-inclusion TA(pm) 6⊆ TB(qn), starting
with some notation to express paths and their effects.

Definition 3 (OCN Paths). Let N = (Q,Act , δ) be a OCN and let t =
(p, a, d, p′) ∈ δ be a transition. We write source(t) = p, target(t) = p′ and
∆(t) = d for its source and target states and effect, respectively. A path
in N is a sequence π = t0t1 . . . tk ∈ δ∗ of transitions where target(ti) =
source(ti+1) for every i < k. Let iπ denote its prefix of length i. The effect
∆(π) and guard Γ(π) of π are

∆(π) =
k∑
i=0

∆(ti) and Γ(π) = −min{∆(iπ) | 0 ≤ i ≤ k}.

5

The path π is enabled in process pm (write pm
π−→) if Γ(π) ≤ m. We

write pm
π−→p′m′ if π takes pm to p′m′, i.e., if pm

π−→, target(π) = p′ and
m′ = m+ ∆(π).

The guard Γ(π) is the minimal counter-value that is sufficient to traverse
the path π while maintaining a non-negative counter-value along the way.
This value is always non-negative. Notice that the absolute values of the
effect and guard of a path are bounded by its length. We consider the
synchronous product of the control graphs of two given deterministic one-
counter nets.

Definition 4 (Products). The product of nets A and B is the finite graph
with nodes V = QA × QB and (Act × {−1, 0, 1} × {−1, 0, 1})-labelled edges
E, where

(p, q)
a,dA,dB−−−−→ (p′, q′) ∈ E iff p

a,dA−−→ p′ ∈ δA and q
a,dB−−→ q′ ∈ δB.

A path in the product is a sequence π = T0T1 . . . Tk ∈ E∗ and defines
paths πA and πB in nets A and B, respectively. It is enabled in (pm, qn)
if πA and πB are enabled in pm and qn, respectively. In this case we write
(pm, qn)

π−→(p′m′, q′n′) to mean that pm
πA−→p′m′ and qn

πB−→q′n′. We lift the
definitions of source and target nodes to paths in the product: source(π) =
(source(πA), source(πB)) ∈ V , target(π) = (target(πA), target(πB)) ∈ V .
Moreover, write ∆A(π), ∆B(π), ΓA(π) and ΓB(π) for the effects and guards
of π in nets A and B, respectively.

Since bothA and B are deterministic and B is complete, due to our normal
form assumption, a trace w ∈ TA(pm) uniquely determines a path from state
(p, q) in their product. We therefore identify witnesses for non-inclusion with
the paths they induce in the product.

Definition 5 (Witnesses). Assume TA(pm) 6⊆ TB(qn) for processes pm
and qn of A and B. A witness for (pm, qn) is a path π in the product of A
and B such that (pm, qn)

π−→(p′m′, q′n′) and for some a ∈ Act, p′m′
a−→ but

q′n′ 6 a−→ .

Every witness π for (pm, qn) completely exhausts the counter in the process
of B: (pm, qn)

π−→(p′m′, q′0). This is because a process of a complete net
can only not make an a-step in case the counter is empty.

6

Example 1. Consider two nets given by self-loops p
a,0−→p and q

a,−1−→q, re-

spectively. Their product is the cycle L = (p, q)
a,0,−1−−−→ (p, q) with effects

∆A(L) = 0 and ∆B(L) = −1. The only witness for (pm, qn) for initial
counter-values m,n ∈ N is Ln, which has length polynomial in the sizes of
the nets and the initial counter-values, but not in the sizes of the nets alone.

The previous example shows that if binary-encoded initial counter-values
are part of the input, we can only bound the length of shortest witnesses
exponentially. However, we will see that it suffices to consider witnesses of a
certain regular form only. This leads to small certificates for non-inclusion,
which can be stepwise guessed and verified in space logarithmic in the size
of the nets.

A crucial ingredient for our characterization is the monotonicity of wit-
nesses, a direct consequence of the monotonicity of the steps in OCNs stated
in Lemma 1:

Lemma 3. If π is a witness for (pm, qn) then for all m′ ≥ m and n′ ≤ n
some prefix of π is a witness for (pm′, qn′).

The intuition behind the further characterization of witnesses is that in
order to show non-inclusion, one looks for a path that is enabled in the
process of A and moreover exhausts the counter in the process of B. Since
any sufficiently long path will revisit control states in the product, we can
compare such paths with respect to their effect on the counters and see that
some are “better” than others. For instance, a cycle that only increments the
counter in B and decrements the one inA is surely suboptimal considering our
goal to find a (shortest) witness. The characterization Theorem 1 essentially
states that if a witness exists, then also one that, apart from short paths,
combines only the most productive cycles.

Definition 6 (Loops). A non-empty path π in the product is called a cycle
if source(π) = target(π). Such a cycle is a loop if none of its proper subpaths
is a cycle. The slope of loop π is the ratio S(π) = ∆A(π)/∆B(π), where for
n > 0 and k ∈ Z we let n/0 = ∞ > k, 0/0 = 0 and −n/0 = −∞ < k.
Based on the effect of a loop we distinguish four types of loops: (<,<), (>,≥
), (≤,≥), and (≥, <). The type of π is Type(π) = (J,I) iff ∆A(π) J 0 and
∆B(π) I 0.

Note that no loop is longer than |V | because it visits exactly one node twice.

7

Example 2. Consider two DOCN such that their product is the graph de-
picted below, where we identify transitions with their action labels for sim-
plicity and let v0 = (p, p′) ∈ V . The paths t0t1t2, t3t4 and t6 are loops with
slopes 3/1, 2/1 and 1/1 and types (>,≥), (>,≥) and (<,<), respectively.

v0

v1 v2

v3

t0, 1, 1

t1, 1, 0

t2, 1, 0

t3, 1, 1t4, 1, 0

v4
t5, 0, 0

t6,−1,−1

October 9, 2013 1

The path (t0t1t2)(t3t4)
9t5(t6)

20 is a witness for
(p0, p′10) of length 42. By replacing 8 occur-
rences of the loop (t3t4) with (t0t1t2)

8 we derive
the longer witness (t0t1t2)

9(t3t4)t5(t6)
20, which

has essentially the same structure but is more
efficient in the sense that for the same effect
on B it achieves a higher counter-effect on A.

Theorem 1. Fix a DOCN A, a complete DOCN B, and let K ∈ N be the
number of nodes in their product. There is a bound c ∈ N that depends
polynomially on K, such that the following holds for any two processes pm
and qn of A and B. If T (pm) 6⊆ T (qn), then there is a witness for (pm, qn)
that is either no longer than c or has one of the following forms:

1. π0L
l0
0 π1, where L0 is a loop of type (≥, <) and π0, π1 are bounded by c,

2. π0L
l0
0 π1L

l1
1 π2, where L0 and L1 are loops of type (>,≥) and (<,<) with

S(L0) > S(L1) and π0, π1, π2 are bounded by c,

3. π0L
l0
0 π1, where L0 is a loop of type (<,<) and π0, π1 are bounded by c,

where in all cases, the number of iterations l0, l1 ∈ N are polynomial in K
and the initial counter-values m and n of the given processes.

Notice that the bound c in the claim of Theorem 1 depends only on the
number of states. Section 4 is dedicated to the proof of this characterization.

The proof of our main result (Theorem 2) will reduce to checking in-
equalities of binary numbers in a particular form, which are decidable in
deterministic logspace.

Proposition 1. Inequalities of the form a · b+ c ≥ a′ · b′ + c′ can be verified
in O(log(log(a + b + c + a′ + b′ + c′))) deterministic space, i.e., in logspace
assuming binary encodings.

Proof (sketch). Checking inequalities of binary numbers, as well as ad-
dition and multiplication can be implemented in Boolean circuits of constant
depth and polynomial size: these operations are all in DLOGTIME -uniform

8

A ′

A

A ′

A

A ′

A
Figure 1: Illustration of the changes in counter values during paths of forms 1, 2 and 3 as
given in Theorem 1. The bent blue arrows indicate the effect of short paths πi, the red
and green arrows indicate the counter-effect of loops that are iterated.

TC0 [16], a subclass of deterministic logspace. The claim follows from the
observation that, as a function class, TC0 is closed under composition with
functions f : Z → Z where |f(x)| ∈ O(poly(|x|), which is the case for the
above operations. A more detailed and direct proof can be found in [17]. �

We now derive a decision procedure for trace inclusion that works in nonde-
terministic logspace.

Theorem 2. Let pm and qn be processes of OCN A and DOCN B, respec-
tively, where m,n are given in binary. There is a nondeterministic algorithm
that decides T (pm) ⊆ T (qn) in logarithmic space.

Proof. Let A = (QA,Act , δA) and B = (QB,Act , δB), and let K ∈ N be the
number of states in their product. By Lemma 2, we can assume w.l.o.g. that
A is deterministic and B is complete and deterministic and so Theorem 1
applies.

If the initial counter-values are m = n = 0, Theorem 1 implies a poly-
nomial bound on the length of shortest witnesses. In that case, one can
simply stepwise guess and verify a witness, explicitly storing the intermedi-
ate processes with binary encoded counter-values in logarithmic space. Such
a procedure is impossible with arbitrary initial counter-values as part of the
input, because one does not even have the space to memorize them.

For the general case, we argue that one can nondeterministically guess
a template (consisting of short paths) and verify in logspace that there is
indeed some witness that fits this template. Theorem 1 allows us to either

9

guess a short (≤ c ∈ poly(K)) witness or one of forms 1,2 or 3, together
with matching short paths πi, Li. The effect and guard of these paths are
bounded by their lengths and hence by c. This means O(logK) space suffices
to stepwise compute the binary representation of these values and verify that
the conditions the form imposes on the types and slopes of the loops are met.
It remains to check if exponents l0, l1 ∈ N exist, that complete the description
of a witness π. We use Proposition 1 to these checks can be implemented in
logarithmic space.

For templates of the first two forms, it suffices to check if m ≥ ΓA(π0L0),
because the type of L0 implies that ΓA(π0L

l
0) ≤ ΓA(π0L0) for all 1 < l ∈ N.

This means that the process pm of A can go to, and repeat the loop L0

arbitrarily often. In case its effect in B is negative (in templates of form
1), this immediately implies the existence of a suitable l0. For templates of
form 2) the existence of l0, l1 ∈ N completing the description of a witness
is guaranteed because the slope of the first loop is bigger than that of the
second.

For templates of the third kind recall that, because B is complete, a path
π = π0L

l0
0 π1 is a witness iff there is some edge T in the product such that

∆B(T) = −1 and both m ≥ ΓA(πT) and n + ∆B(πT) = −1. Equivalently,
we can write this as

m+ ∆A(π0L
l0
0) = m+ ∆A(π0) + ∆A(L0) · l0 ≥ ΓA(π1T) and (2)

n+ 1 = −∆B(πT) = −∆B(π0)−∆B(L0) · l0 −∆B(π1T). (3)

Eliminating l0, we see that this is true iff

m+ ∆A(π0) + ∆A(L0) ·
∆B(π0) + ∆B(π1) + n

−∆B(L0)
≥ ΓA(π1). (4)

Simplifying further we can bring this into the form m ·A− n ·B ≥ C where
A,B,C are polynomial in c. Now the claim follows from Proposition 1. �

Remark 2. This argument only provides a PSPACE upper bound for the
case of one-counter nets with arbitrary binary encoded transition effects. The
main reason is that the constant c from Theorem 1, and hence the length of
intermediate paths πi in our path schemes, are bounded by the maximal loop
effects. So the size of path schemes, but also the integers we compare in the
verification phase become exponential in the size of the input.

10

4. Proof of Theorem 1

The overall idea of the proof is to rewrite witnesses into one of the canon-
ical forms. More specifically, we introduce a system of path-rewriting rules
which simplify witnesses by removing, reducing or changing some loops as
in Example 2. We show (in Lemma 4) that these rules preserve witnesses,
and in (Lemma 5), that every sequence of successive rule applications must
eventually terminate with a normalized path, to which none of the rules is
applicable. Such a reduced witness can be decomposed as

π = π0L
l0
0 π1L

l1
1 . . . πkL

lk
k πk+1 (5)

where k is bounded polynomially in the sizes of nets, the Li are (pairwise
different) loops and the πi are short, i.e. polynomially bounded in the sizes of
the nets. Finally, in Lemma 6, we derive polynomial bounds on the exponents
li of all but at most two of these loops, which implies the claim Theorem 1.

For the rest of this section let V and E be the sets of nodes and edges in
the product of A and B.

We start with an easy observation: Because no loop L is longer than |V |,
we conclude that (∆A(L),∆B(L)) ∈ {−V . . . V } × {−V . . . V }, so there are
F0 := (2·|V |+1)2 different values the pair ∆A(L),∆B(L) can have. Moreover,
if a witness exists, then also one that does not contain different loops with
the same effects: if π0L0π1L1π2 is a witness where |π1| > 0 and L0, L1 are
two loops with ∆(L0) = ∆(L1), then either some prefix of π0L

2
0π1π2 (if

∆A(L0) ≥ 0) or some prefix of π0π1L
2
1π2 (if ∆A(L0) < 0) must also be a

witness by Lemma 3. We can therefore consider w.l.o.g. only sane paths,
which are of the form

π = π0L
l0
0 π1L

l1
1 . . . πrL

lr
r πr+1 (6)

where r ≤ F0, all πi are acyclic and all loops have pairwise different effects.

Definition 7 (Path Rewriting Rules). Consider the rules given below.

UUL
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (>,≥)
Type(L1) = (>,≥)
∆B(L0) · x = ∆B(L1) · y
S(L0) ≥ S(L1)
l1 − y > 0
ρ = π0L

l0+x
0 π1L

l1−y
1 π2

UUR
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (>,≥)
Type(L1) = (>,≥)
∆B(L0) · x = ∆B(L1) · y
S(L0) < S(L1)
l0 − x > |π1L1|
ρ = π0L

l0−x
0 π1L

l1+y
1 π2

11

UD
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (>,≥)
Type(L1) = (<,<)
∆B(L0)·x = −∆B(L1)·y
S(L0) ≤ S(L1)
l0 − x ≥ |π1|
l1 − y > 0 ∧ l0 − x > 0
ρ = π0L

l0−x
0 π1L

l1−y
1 π2

DDL
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (<,<)
Type(L1) = (<,<)
∆B(L0) · x = ∆B(L1) · y
S(L0) < S(L1)
l1 > |L0| · x+ 2|π1|
l1 − y > 0
ρ = π0L

l0+x
0 π1L

l1−y
1 π2

DDR
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (<,<)
Type(L1) = (<,<)
∆B(L0) · x = ∆B(L1) · y
S(L0) ≥ S(L1)
l0 − x > 0
ρ = π0L

l0−x
0 π1L

l1+y
1 π2

Each rule consists of conditions (lines above the bar) and a conclusion ρ,
which is a path, below the bar. Their names indicate which type of loops are
handled: E.g., UUL exchanges loops of type (>,≥) (up) for others of the
same type on the left.

We say a rule is applicable to a sane path π if there are 0 < x, y, l0, l1 ∈ N
and two different loops L0 and L1 such that all conditions are satisfied. In
this case the rule can rewrite π to ρ, its conclusion and we say ρ is the result
of applying the rule to π.

Example 3. Consider Example 2 again: The substitution suggested there
is an application of the rule UUL to the path π = (t0t1t2)(t3t4)

9t5(t6)
20,

where L0 = (t0t1t2), L1 = (t3t4) and x = y = 8. The result is a reduced
witness for (p0, p′10) of length 50. Shorter reduced witnesses for (p0, p′10)
exist, for example (t0t1t2)

6t5t
16
6 , but because of their different loop structure,

these cannot be obtained from π by applying rewriting rules, as these do not
change the structure, i.e., which loops occur and in which order, of a path.
This means that our rules do not necessarily preserve minimality of witnesses.

In the next two Lemmas 4 and 5, we show that the rewriting rules preserve
witnesses and that continuous rule application must eventually terminate.

Lemma 4. If π is a sane witness for (pm, p′m′) and ρ is the result of apply-
ing one of the rules to π, then ρ is also a sane witness for (pm, p′m′).

Proof. Each rule only modifies the number of times some loops are iterated,
and never completely removes a loop. Therefore, sane paths are always
rewritten to other sane paths.

Let’s say we rewrite π = π0L
l0
0 π1L

l1
1 π2 to ρ. The key observation is that

the conditions of the rule imply that we can always decompose the paths π

12

and ρ into π = αγ and ρ = βγ, s.t. ∆B(α) = ∆B(β) and ∆A(α) ≤ ∆A(β).
By monotonicity (Lemma 1) and the assumption that π is a witness, it is
therefore sufficient to show that the result ρ is still enabled in the initial
position (pm, p′m′). We proceed by case distinction for the used rule.

UUL. Since π is a witness, its prefix α = π0L
l0
0 π1L

l1
1 must be enabled in

(pm, p′m′) and because Type(L0) = (>,≥), so is the prefix β = π0L
l0+x
0 π1L

l1−y
1

of the result ρ. Assume that (pm, p′m′)
α−→(qn, q′n′) and (pm, p′m′)

β−→
(qn̂, q′n′). The condition S(L0) ≥ S(L1) of the rule implies that n̂ ≥ n ≥
Γ(π2) and therefore that ρ is enabled in (pm, p′m′).

UUR. The prefix π0L
l0−x
0 of π must be enabled and since the last condi-

tion of the rule demands that l0−x > |π1L1|, so is the path π0L
l0−x
0 π1L1. The

fact that Type(L1) = (>,≥), means that also π0L
l0−x
0 π1L

l1+y
1 and therefore

the result ρ is enabled in (pm, p′m′).
UD . Type(L1) = (<,<) implies S(L1) < ∞. Since S(L0) < S(L1), we

know that S(L0) < ∞ and hence ∆B(L0) > 0. The path π0L
l0−x
0 is a prefix

of π and is therefore enabled in (pm, p′m′). As l0 − x ≥ |π1| by assumption,
we get that

m+ ∆A(π0L
l0−x
0) ≥ l0 − x ≥ |π1| ≥ Γ(π1) (7)

and similarly, by ∆B(L0) > 0,

m′ + ∆B(π0L
l0−x
0) ≥ l0 − x ≥ |π1| ≥ Γ′(π1). (8)

This means that the prefix β = π0L
l0−x
0 π1 of ρ is enabled in (pm, p′m′). Let

us now consider the prefix α = π0L
l0−x
0 Lx0π1L

y
1 of π. Because ∆B(L0) · x =

−∆B(L1) · y we get ∆B(α) = ∆B(β). By S(L0) < S(L1) we obtain that
∆A(α) ≤ ∆A(β). Because π = αLl1−y1 π2 is a witness for (pm, p′m′), we can
apply Lemma 1 to conclude ρ = βLl1−y1 π2 must be a witness for (pm, p′m′).

DDL. We know that m + ∆A(π0L
l0
0) + ∆A(π1) ≥ Γ(Ll11), because π

is enabled in (pm, p′m′). As L1 is a type (<,<) loop we also know that
∆A(L1) < 0. Therefore, Γ(Ll11) ≥ l1 and

m+ ∆A(π0L
l0
0) ≥ l1 −∆A(π1). (9)

Assume towards a contradiction that m+∆A(π0L
l0
0) < Γ(Lx0π1). This means

that
m+ ∆A(π0L

l0
0) < Γ(Lx0) + |π1| ≤ |L0| · x+ |π1|. (10)

This, together with Eq. (9) yields l1 − ∆A(π1) < |L0| · x + |π1| and thus
l1 < |L0| · x+ 2|π1| which contradicts the condition that l1 > |L0| · x+ 2|π1|.

13

Hence, m + ∆A(π0L
l0
0) ≥ Γ(Lx0π1). By the same argument we get that

m′ + ∆B(π0L
l0
0) ≥ Γ′(Lx0π1). So the prefix β = π0L

l0+x
0 π1 of ρ is enabled in

(pm, p′m′). Consider the prefix α = π0L
l0
0 π1L

y
1 of π. By the assumption that

∆B(Lx0) = ∆B(Ly1) we get that ∆B(α) = ∆B(β). Because of S(L0) < S(L1)
we get ∆A(Lx0) ≥ ∆A(Ly1) and therefore that ∆A(α) ≤ ∆A(β). By Lemma 1
we conclude that the path ρ = βLl1−y1 π2 is a witness for (pm, p′m′).

DDR. Let α = π0L
l0
0 π1 and let (pm, p′m′)

α−→(qn, q′n′). Due to the type
of L0 and because π is a witness, we know that the prefix β = π0L

l0−x
0 π1L

y
1

of ρ is enabled in (pm, p′m′). Since ∆B(L0) · x = ∆B(L1) · y, we get that

(pm, p′m′)
β−→(qn̂, q′n′) for some n̂ ∈ N. The condition S(L0) ≥ S(L1) of

the rule implies that ∆A(Lx0) ≤ ∆A(Ly1) < 0, and therefore that n̂ ≥ n.
We conclude that the path Ll11 π2 is enabled in (qr, q′r′) and therefore that
ρ = π0L

l0−x
0 π1L

l1+y
1 π2 is enabled in (pm, p′m′) as required. �

Lemma 5. Any sequence of successive applications of rules to a given path
π must eventually terminate.

Proof. Consider a path π to wich we apply the rewriting rules. W.l.o.g. as-
sume that π is sane, as otherwise no rule is applicable by definition. The
decomposition of π is the sequence

Dec(π) = (π0, L0, l0)(π1, L1, l1) . . . (πk, Lk, lk)πk+1 (11)

in (E∗ × E∗ × N)∗E∗ such that π = π0L
l0
0 π1L

l1
1 . . . πkL

lk
k πk+1, where k ≤ F0

and for all indices 0 ≤ i ≤ k,

1. Li is a loop,

2. πi is acyclic,

3. for any two transitions t ∈ πi and t′ ∈ Li with target(t) = target(t′)
holds that target(Li) = target(t).

The last condition demands that any loop Li shares exactly one node with
the acyclic path πi it succeeds and thus ensures that the decomposition of a
path is unique.

As no application of a rule completely removes all occurrences of loops
nor introduces new ones nor touches the intermediate paths, we observe that
rule applications only change the exponents li in the decomposition of the
path.

14

Based on the order of loops in the decomposition of π, and their potential
for rule application, we now define a notion of weights for paths, and show
that these weights have to strictly decrease along a well-order whenever a
rule is applied.

Let (L0, L1, . . . , Lk) be the sequence of loops that occur in the decompo-
sition of π. Let us fix some linear order ≺ on {L0, L1, . . . , Lk} that satisfies
the following conditions for any two different loops Li, Lj with i < j.

1. If Type(Li) = Type(Lj) = (>,≥) and S(Li) ≥ S(Lj) then Li ≺ Lj.

2. If Type(Li) = Type(Lj) = (>,≥) and S(Li) < S(Lj) then Li � Lj.

3. If Type(Li) = Type(Lj) = (<,<) and S(Li) < S(Lj) then Li ≺ Lj.

4. If Type(Li) = Type(Lj) = (<,<) and S(Li) ≥ S(Lj) then Li � Lj.

Surely, such a linearization exists, as the conditions above only restrict ≺
between loops of the same type and slopes are linearly ordered. Consider the
permutation σ : N≤k → N≤k given by σ(i) < σ(j) ⇐⇒ Li ≺ Lj. The weight
of π is

W (π) = (lσ(k), lσ(k−1), . . . , lσ(0)) ∈ Nk+1. (12)

The weight of π is the ordered tuple of exponents li of loops that occur in π.
Because rules do not change the order of loop occurrences, the path before
and after applying a rule have comparable weights. The very definition of
weights ensures that rule applications must strictly reduce the weight of a
path.

Claim 1. If ρ is the result of applying a rewriting rule to π then W (ρ) @lex
W (π) where @lex is the lexicographic extension of the pointwise ordering of
tuples of naturals.

Assume the decompositions of π, ρ are

Dec(π) = (π0, L0, l0)(π1, L1, l1) . . . (πk, Lk, lk)πk+1 and

Dec(ρ) = (π0, L0, l
′
0)(π1, L1, l

′
1) . . . (πk, Lk, l

′
k)πk+1.

(13)

We show for every type of rule that if the occurrences of loop Li increase
then those of some loop Lj with Li ≺ Lj strictly decrease.

If the rule used to derive ρ was UUL then l′i = li + x and l′j = lj − y for
some i < j, 0 < x, y and type (>,≥) loops Li, Lj with S(Li) ≥ S(Lj). By
condition 1) in the definition of ≺ we get Li ≺ Lj.

15

For rule UUR we know l′i = li − x and l′j = lj + y for some 0 < x, y
and type (>,≥) loops Li, Lj with S(Li) < S(Lj). By condition 2) in the
definition of ≺, we get Li � Lj.

For rule DDL we know l′i = li + x and l′j = lj − y for type (<,<) loops
Li, Lj with S(Li) < S(Lj). By condition 3) in the definition of ≺, we know
Li ≺ Lj.

For rule DDR we know l′i = li − x and l′j = lj + y for some 0 < x, y
and type (<,<) loops Li, Lj with S(Li) > S(Lj). So condition 4) in the
definition of ≺, implies Li � Lj.

Lastly, if the rule used to derive ρ was UD we immediately see that l′i < li
and l′j < lj, which implies the claim. �

Lemmas 4 and 5 allow us to focus on witnesses that are reduced, i.e.,
which are sane and to which none of the rewriting rules is applicable. We
can now derive bounds on the multiplicities of loops in reduced paths.

Lemma 6. Let π = π0L
l0
0 π1L

l1
1 π2 be a reduced path where L0, L1 are loops

occurring with multiplicities l0 > 0 and l1 > 0.

1. If Type(L0) = Type(L1) = (>,≥) and S(L0) ≥ S(L1) then l1 ≤ |V |
2. If Type(L0) = Type(L1) = (>,≥) and S(L0) < S(L1) then l0 ≤ |π1|+

2|V |
3. If Type(L0) = Type(L1) = (<,<) and S(L0) < S(L1) then l1 < |V |2 +

2|π1|
4. If Type(L0) = Type(L1) = (<,<) and S(L0) ≥ S(L1) then l0 < |V |
5. If Type(L0) = (>,≥), Type(L1) = (<,<) and S(L0) ≤ S(L1) then
l0 ≤ |π1|+ |V | or l1 ≤ |V |.

Proof. The fourth condition of any rule is satified e.g. by x = ∆B(L1) and
y = ∆B(L0). So if 0 < x, y ∈ N is the smallest satisfying pair we know
x, y ≤ |V |. The bounds are now easily derived by contradiction:

1. If l1 ≥ |V | then l1 − y ≥ l1 − |V | > 0 and rule UUL is applicable.

2. If l0 > |π1| + 2|V | then l0 − x > |π1| + 2|V | − x ≥ |π1| + |L1| ≥ |π1L1|
and therefore rule UUR is applicable.

3. If l1 ≥ |V |2 + 2|π1| then l1 ≥ |L0| · x+ 2|π1| and l1 − y ≥ l1 − |V | > 0,
so rule DDL is applicable.

4. If l0 > |V | then l0 − x > 0, so rule DDR is applicable.

16

5. If l1 > |V | and l0 > |π1| + |V |, then l1 − y > 0, l0 − x > 0 and
l0 − x > |π1|, so rule UD is applicable.

In each case we conclude that one of the rules is applicable, which contradicts
the assumption that π is reduced. �

Finally, we are ready to prove Theorem 1.

Theorem 1. Fix a DOCN A, a complete DOCN B, and let K ∈ N be the
number of nodes in their product. There is a bound c ∈ N that depends
polynomially on K, such that the following holds for any two processes pm
and qn of A and B. If T (pm) 6⊆ T (qn), then there is a witness for (pm, qn)
that is either no longer than c or has one of the following forms:

1. π0L
l0
0 π1, where L0 is a loop of type (≥, <) and π0, π1 are bounded by c,

2. π0L
l0
0 π1L

l1
1 π2, where L0 and L1 are loops of type (>,≥) and (<,<) with

S(L0) > S(L1) and π0, π1, π2 are bounded by c,

3. π0L
l0
0 π1, where L0 is a loop of type (<,<) and π0, π1 are bounded by c,

where in all cases, the number of iterations l0, l1 ∈ N are polynomial in K
and the initial counter-values m and n of the given processes.

Proof. We show that we can choose c sufficiently large such that whenever
T (pm) 6⊆ T (qn) but no witness exists that is shorter than c or of forms 1) or
2), then there must be a witness of form 3).

Assume T (pm) 6⊆ T (qn) and consider a reduced witness π, that is minimal
in length: no shorter witness is reduced. Recall that this also means that
π is sane: it is of form described in Eq. (6). By monotonicity (Lemma 3)
and because π is of minimal length among the reduced witnesses, we see
that it cannot contain loops of type (≤,≥). Moreover, because π is not of
form 1), we can safely assume that it contains only loops of types (>,≥)
and (<,<). This is because if a witness contains two or more different type
(≥, <) loops, then there exists another (sane) witness, that only unfolds the
first such loop. If we choose the bound on the length of paths between loops
as F1 := F0(2|V |+ |V |2), we can write π as

π = π0L
l0
0 π1L

l1
1 . . . πkL

lk
k πk+1 (14)

where k ≤ F0, all |πi| < F1 and the number of iterations of loop Li is li > |V |.
Consider a block πpos = Llii πi+1L

li+1

i+1πi+2 . . . πjL
lj
j that is part of the

decomposition above, such that all loops are type (>,≥). If for indices

17

i ≤ x < y ≤ j we have S(Lx) ≥ S(Ly), then by Lemma 6.1 we get ly ≤ |V |.
Therefore, πpos can be rewritten to the form

πpos = Llii πi+1L
li+1

i+1πi+2 . . . πjL
lj
j πj+1 (15)

where the lengths of πi are bounded by F2 := F0 · (|V |2 + F1) and the slopes
of loops are strictly increasing: S(Lx) < S(Ly) for any two indices i ≤ x <
y ≤ j. By Lemma 6.2 this means that lx ≤ |πx+1|+ 2|V | ≤ F2 + 2|V | =: F3.

We conclude that the prefix π′ = Llii πi+1L
li+1

i+1πi+2 . . . πj−1L
lj−1

j−1 is no longer
than (j − i) · (|V | · F3 + F2) and therefore

πpos = π′L
lj
j πj+1 (16)

where |π′| is bounded by F4 := F0(|V | · F3 + F2) and |πj+1| by F2.
We continue to show by a similar argument that we can bound the

number of iterations of all but the most productive loop in a block con-
sisting of only decreasing (type (<,<)) loops. Consider a block πneg =

Llii πi+1L
li+1

i+1πi+2 . . . πjL
lj
j that is part of the decomposition in Eq. (14), where

all loops are type (<,<). If S(Lx) ≥ S(Ly) for some indices i ≤ x < y ≤ j,
then by Lemma 6.4 we know ly < |V |. This means that πneg is of the form

πneg = πiL
li
i πi+1L

li+1

i+1πi+2 . . . πjL
lj
j πj+1 (17)

where all πi have lengths bounded by F2 and S(Lx) < S(Ly) for any two
indices i ≤ x < y ≤ j. By Lemma 6.3 we get ly ≤ |V |2+2|πx| ≤ |V |2+2F2 =:

F ′3 and conclude that the suffix π′′ = πi+1L
li+1

i+1πi+2 . . . πjL
lj
j πj+1 is no longer

than (j − i) · (|V | · F ′3 + F2). Therefore, πneg is of the form

πneg = πiL
li
i π
′′ (18)

where πi is bounded by F2 and π′′ by F ′4 := F0(|V | · F ′3 + F2).
Eqs. (16) and (18) characterize the form of maximal subpaths of the

witness π in Eq. (14), along which the type of loops does not change. They
allow us to write π as

π = π0L
l0
0 π1L

l1
1 π2 . . . πkL

lk
k πk+1 (19)

where for all indices 0 ≤ i < k:

1. πi is no longer than F5 := F3 + F ′3 + F4 + F ′4.

18

2. All li > |V |.
3. Consecutive loops Li and Li+1 have different types.

4. If loops Li, Lj for 0 ≤ i < j ≤ k have the same type then S(Li) < S(Lj).

In the remainder of this proof, we further increase the polynomial bound for
the gaps πi between the loops; this allows to conclude that π contains at
least one type (<,<) loop and finally, that π is of form 3).

Observe that if all loops Li in Eq. (19) are of type (>,≥) then the witness
is already of form π = π0L

lπ1 as in Eq. (16), where π0, π1 are short and L is
the most effective loop. In this case, consider the run

(pm, qn)
π0Ll

−→(p′m′, q′n′) (20)

induced by the prefix π0L
l. Because B is complete we know ∆B(π) = −n.

together with ∆B(π1) ≤ |π1| ≤ F5 we get n′ ≤ F5. Because ΓA(π1) ≤ |π1|,
we know that l ≤ |π1| ≤ F5 as otherwise, fewer iterations l would result in a
shorter witness and we assumed π to be minimal in length. Hence, we could
bound π by F6 := F5 + |V | ·F5 +F5. So if we let c ≥ F6, our witness π must
contain type (<,<) loops as it is assumed not to be no shorter than c.

Finally, fix an index 0 ≤ x ≤ k such that in Eq. (19), Lx is a loop of type
(<,<) with most efficient decrease (minimal slope). That is, π is of form

π = π0L
lx
x π1. (21)

We now bound both π0 and π1 and thereby prove that π is of form 3). We
start with the suffix π1.

If Lx is the only loop of type (<,<), we are done as then |π1| ≤ F5.
Suppose we have two indices 0 ≤ y < y+ 2 ≤ k, where both Ly and Ly+2 are
type (<,<). This means that Ly+1 is of type (>,≥) with S(Ly+1) < S(Ly+2).
By Lemma 6.5 and the fact that ly+2 > |V | we know that ly+1 < |πy+1|+|V | ≤
F6. So πy+1L

ly+1

y+1πy+2 is no longer than 2 · F5 + |V | · F6 =: F7. Applying
Lemma 6.3 to Ly and Ly+2 we get ly+2 ≤ |V |2 + 2 · F7 =: F8 and thus

πy+1L
ly+1

y+1πy+2L
ly+2

y+2 is no longer than F9 := F5 + (|V | · F6) + F5 + (|V | · F8).
Now the above argument can be repeated for any successive pair of type
(<,<) loops in π1 of which there are at most F0. So, |π1| < F0 · F9.

To bound the prefix π0 in Eq. (21), we recall (point 3 above) that consecu-
tive loops in Eq. (19) have different types and therefore x ≤ 1. In case x = 0,
we immediately get |π0| ≤ F5. If x = 1, then L0 is a type (>,≥) loop with

19

S(L0) < S(Lx) and so by Lemma 6.5 and point 2), we get l0 ≤ |π1|+|V | < F6.
This means |π0| ≤ 2F5 + |V | · F6 = F7.

We conclude that c := F9 · F0 is sufficient to ensure that any witness π,
longer than c which is not of form 1) or 2) must have form 3). This completes
our argument for the existence of witnesses in the claimed forms.

To see why l0 and l1 can always be bounded polynomially in |V | and m′

can be seen by looking at the types of the loops involved. For paths of form 1
and 3, L0 decreases the counter on the right at least once in every iteration.
Since the value m′ + ∆B(π0) before the first iteration is at most m′ + c, we
have l0 ≤ m′ + c.

Paths of the second form can be decomposed into a prefix π0L
l0
0 and a

suffix π1L
l1
1 π2, which is a path of form 3. Let y0 ∈ N be minimal such

that the effect of the path γ0 = π0L
0
0π1L

y0
1 π2, in which L0 is not iterated

at all is sufficient to reduce the initial value m′ below 0. That is, we have
m′+ ∆B(π0L

0
0π1L

y0
1 π2) ≤ 0. Note that as for forms 1 and 3, we can bound y0

by m′+ 2c and therefore, |γ0| is no larger than 3c+ |V | · (m′+ 2c). This path
might not be a witness because it is not enabled on the left side. However,
because of the condition on the slopes, there are x, y ≤ |V | such that the
effect of the loops satisfy

∆B(L0) · x = −∆B(L1) · y and ∆A(L0) · x > −∆A(L1) · y. (22)

This means, increasing the iterations of the loops L0 and L1 by x and y,
respectively, does not change the effect of the path on the right, but strictly
increases the effect on the left. We increase the iterations (l0, l1) = (0, y0)
in γ0 as suggested above for Γ(γ0) < |γ0| < 3c + |V | · (m′ + 2c) times. The
resulting path γ1 = π0L

x1
0 π1L

y1
1 π2 is then surely witness, and iterates the

loops not more than x1 = 3c+ |V | · (m′+2c) and y1 = m′+5c+ |V | · (m′+2c)
times. �

5. Universality of Nondeterministic One-Counter Nets

To contrast the result of the previous section we now turn to the problem
of checking trace inclusion between a finite process and a nondeterministic
OCN. This problem is known to be decidable, even for general Petri nets
[6] and it can be easily seen to be (logspace) inter-reducible with the trace
universality problem, because OCNs are closed under products with finite
systems.

20

For OCN, trace universality can be decided using a simple well-quasi-
order based saturation method that determinizes the net on the fly. We will
see that this procedure is optimal: The problem is Ackermannian, i.e. it
is non-primitive recursive and lies exactly at level ω of the Fast Growing
Hierarchy [18].

Let N⊥ be the set of non-negative integers plus a special least element ⊥
and let max be the total function that returns the maximal element of any
nonempty finite subset and ⊥ if no such maximal element exists. Consider
a set S ⊆ Q × N of processes of a OCN N = (Q,Act , δ). We lift the
definition of traces to sets of processes in the natural way: the traces of S
are T (S) =

⋃
qn∈S T (qn). By the monotonicity of trace inclusion (Lemma 1),

the traces of a finite set of processes are determined only by the traces of its
maximal elements.

Definition 8. Let Q = {q1, q2, . . . , qk} be the states-set of some OCN. For
a finite set S ⊆ Q × N define the macrostate as the vector MS ∈ Nk

⊥ where
for each 0 < i ≤ k, MS(i) = MS(qi) = max{n | qin ∈ S}. In particular,
the macrostate for a singleton set S = {qin} is the vector with value n at
the i-th coordinate and ⊥ on all others. The norm of a macrostate M ∈ Nk

⊥
is |M |∞ = max{M(i) | 0 < i ≤ k}. We define a step relation

a
=⇒ for all

a ∈ Act on the set of macrostates as follows:

(n1, n2, . . . , nk)
a

=⇒(m1,m2, . . . ,mk) (23)

iff mi = max{n | ∃nj 6= ⊥. qjnj
a−→qin} for all 0 < i ≤ k. The traces of

macrostate M are T (M) =
⋃

0<i≤k T (qiM(i)), where T (q⊥) = ∅. For two
macrostates M,N we say M is covered by N and write M v N , if it is
pointwise smaller, i.e., M(i) ≤ N(i) for all 0 < i ≤ k. For convenience,
we will write {q1 = n1, q2 = n2, . . . , ql = nl} for the macrostate with value
M(i) = ni whenever qi = ni is listed and ⊥ otherwise.

Steps on macrostates correspond to the classical powerset construction
and each macrostate represents the finite set of possible processes the OCN
can be in, where all non-maximal ones (w.r.t. their counter-value) are pruned
out.

The next lemma directly follows from these definitions and monotonicity
(Lemma 1).

Lemma 7.

21

1. The covering-order v is a well-quasi-order on Nk
⊥, the set of all macro-

states. Moreover, M v N implies T (M) ⊆ T (N).

2. If M
a

=⇒N then |N |∞ ≤ |M |∞ + 1.

3. For any finite set S ⊆ Q× N it holds that T (S) = T (MS).

Dealing with macrostates allows us to treat universality as a reachability
problem: By point 3 of Lemma 7 we see that a process qn is not trace
universal, Act∗ 6= T (qn), if and only if M{qn}=⇒∗ (⊥,⊥, . . . ,⊥). We take the
perspective of a pathfinder, whose goal it is to reach (⊥)k.

We can decide universality by stepwise guessing a shortest terminating
path from the initial macrostate, and thus a witness for non-universality.
Whenever we see a macrostate that covers one of its predecessors, we can
safely discard this candidate, because omitting the intermediate path would
result in a shorter witness by Lemma 7.1.

We show non-primitive recursiveness by reduction from the control state
reachability problem for incrementing counter machines [19, 18].

Definition 9 (Counter machines). A (Minsky)-counter machine (CM) is
an automaton with finitely many states Q, finitely many counters C1, . . . , Ck,
and transitions are of the form Q × Act × Q where Act is {inc, dec, ifz} ×
{1, 2, . . . , k}. A configuration of such a CM consists of a state and a valuation
of the counters. Performing a transition (p, (op, i), q) changes a configuration
precisely: the state changes from p to q and we make operation op on the
counter ci, where inc, dec and ifz mean increment, decrement and zero-test,
respectively. Such a step is forbidden if the requested operation is dec and
the value of ci is 0, or if ci > 0 and the operation is ifz.

An incrementing counter machine (ICM) is a CM in which counters can
spontaneously increment without performing any transitions. Such incre-
ments we call incrementing errors. Control state reachability is the decision
problem that asks if there is a run of a given CM from an initial configuration
to some given state qf ∈ Q.

Our reduction is based on the following simple observation. Consider a
OCN N = (Q,Act , δ) that contains a universal state U : it has self-loops

U
a,0−→U ∈ δ for every action a ∈ Act . A Pathfinder who wants to prove

non-universality must avoid macrostates with M(U) 6= ⊥, because no con-
tinuation of a path leading to such a macrostate can be a witness. We can
use this idea to construct macrostates that prevent Pathfinder from making
certain actions.

22

Definition 10 (Obstacles). Let S ⊆ Act be a set of actions in a OCN
that contains a universal state U . A state q ∈ Q is called an S-obstacle if

q
a,0−→U ∈ δ for all actions a ∈ S. We say q ignores S, if q

a,0−→q ∈ δ for all
a ∈ S.

Note that if a macrostate contains an S-obstacle, then Pathfinder must avoid
all actions of S. In order to remove an obstacle, Pathfinder must play an
action that is not the label of any of its incoming transitions.

Theorem 3. Trace universality for OCN is not primitive recursive.

Proof. By reduction from the control state reachability problem for ICM,
which has non-primitive recursive complexity [19]. We construct a OCN-
process Init(0) that is not universal iff a given ICM reaches a final state
from its initial configuration. The idea is to enforce a faithful simulation
of the ICM by pathfinder, who wants to show non-universality of the OCN
by stepwise rewriting the initial macrostate {Init = 0} to the all-bottom-
macrostate ⊥l.

We construct a OCN N which has a unique action for every transition
of the ICM, as well as actions τi that indicate incrementing errors for every
counter ci, and actions] and $ to mark the beginning and end of a run,
respectively. This way we make sure there is a strict correspondence between
words and ICM-runs. The states of N are

• a new initial state Init and a universal state U ,

• a state qi for every state qi of the ICM,

• a state Ci for every counter ci of the ICM,

• a state Z , which ignores every action but the end marker $. State Z
will be used to access the constant 0.

A configuration q(c1, c2, . . . , ck) of the ICM is represented by a macrostate
{q = 0,Z = 0, C1 = c1, C2 = c2, . . . , Ck = ck}. We will define the transitions
of N such that the only way for Pathfinder to reach ⊥l is by rewriting
the initial macrostate {Init = 0} to the one representing the initial ICM
configuration and then to stepwise announce the transitions of an accepting
run of the ICM. Using the idea of obstacles, we define the rules of the net N
so that the only way Pathfinder can avoid the universal state U and reach the

23

macrostate ⊥k is by first transforming the initial macrostate {Init = 0} to
the one that represents the initial ICM configuration and then announcing
transitions (as well as actions demanding increment errors) of a valid and
accepting run of the ICM.

Initialization. To set up M0 = {q0 = 0,Z = 0, C0 = 0, C1 = 0, . . . , Ck = 0},
representing the initial ICM configuration, we add]-labelled transitions with
effect 0 from Init to q0,Z and Ci for all 0 ≤ i ≤ k. Moreover, we make Init
an obstacle for every action but]. This way, Pathfinder has to play] as the
first move (and set up M0) in order to avoid a universal macrostate.

Finite control. For any transition t = q
(a,i)−→q′ of the ICM, we add a transition

q
t,0−→q′ to N that, in a macrostate-step, will replace the value 0 in dimension

q by ⊥ and introduce value 0 in dimension q′. Moreover, we make every state
q an obstacle for all actions announcing ICM-transitions not originating in
q. This prevents Pathfinder from announcing transitions from q unless the
current macrostate has M(q) = 0 and M(qi) = ⊥ for all qi 6= q.

Simulation of the Counters. Every transition operates on one of the counters
ci for 0 ≤ i ≤ k. Below we list the corresponding transitions in the OCN
N for this counter. Every state of N not explicitly mentioned ignores the
action in question. In the macrostate, the values of these states are therefore
unchanged.

increments For ICM-transitions t that increase the ith counter, N contains
a t-labelled transition from state Ci to Ci with effect +1. Additionally,
to deal with spontaneous increment errors, there is a τi-labelled increas-
ing self-loop in state Ci.

decrements For ICM-transitions t that decrease the ith counter,N contains
a t-labelled transition from state Ci to Ci with effect −1.

This means that the next macrostate M could lose the value for this
counter and have M(Ci) = ⊥ if previously, the value was 0. In that
case, the decrementing step from value 0 to value 0 is valid in the
ICM because it can first (silently) increment and then do the (visible)
decrement step. In order to avoid losing the state Ci in the macrostate,

the OCN contains a transition Z
t,0−→Ci from the constant-zero state Z

to state Ci. Recall that Z is present in the macrostate because Z

24

ignores every action except end marker $. Consequently, no correctly
set up macrostate will set M(Ci) = ⊥.

zero-tests For ICM-transitions t that test the ith counter for 0, we add a

t-labelled transition Ci
t,−1−→U from state Ci to the universal state. This

prevents Pathfinder from using these actions if the current macrostate
has M(Ci) > 0 because it would make the next macrostate universal. If
however M(Ci) = 0, such a step is safe because the punishing transition
is not enabled in the OCN-process Ci0.

Lastly, we only add transitions to N so that the final state qf is the only
original ICM-state which is not an obstacle for $. This prevents Pathfinder
from playing the end-marker $ unless the simulation has reached the final
state. �

In order to estimate an upper bound, we recall a recent result of Figueira,
Figueira, Schmitz, Schnoebelen [18], that allows us to provide the exact com-
plexity of the OCN trace universality problem in terms of its level in the
Fast-Growing Hierarchy. The main idea is to estimate the maximal length of
a path in the well quasi order based algorithm using bounds on the difference
of sizes of consecutive configurations.

Theorem 4. Trace universality of OCN is Ackermannian.

Definition 11 (Fast-Growing Hierarchy). Consider the family of func-
tions Fn : N→ N where for x, k ∈ N,

F0(x) = x+ 1 and Fk+1(x) = F x+1
k (x).

Here, F k denotes the k-fold application of F . Moreover, define Fω(x) =
Fx(x) for the first limit ordinal ω. For k ≤ ω, Fk denotes the least class of
functions that contains all constants and is closed under substitution, sum,
projections, limited recursion and applications of functions Fn for n ≤ k.

Already F2 contains all elementary functions and the union
⋃
k∈N Fk of

all finite levels contains exactly the primitive-recursive functions. A function
is called Ackermannian if it is in Fω \

⋃
k∈N Fk.

A sequence x0, x1, . . . , xl of macrostates is called good if there are indices
0 ≤ i < j ≤ l such that xi v xj and bad otherwise. The sequence is t-
controlled by f : N → N if |xi|∞ < f(i + t) for every index 0 ≤ i ≤ l.

25

Theorem 5 ([18]). Let f : N→ N be a monotone function in Fγ such that
f(x) ≥ max{1, x} for some γ ≥ 1. There is a function Lk,f (t) in Fk+γ−1
that computes a bound on the maximal length of bad sequences in Nk

⊥ that
are t-controlled by f .

Corollary 1. Trace universality of OCN is Ackermannian.

Proof. By Theorem 3, it suffices to show that the problem is in Fω. Recall
the procedure that, for a given process pm of a net with k control states,
guesses a shortest terminating path from the initial macrostate (a witness for
non-universality), and stops unsuccessfully if a macrostate covers one that
has been seen before. The time and space requirements of this procedure
are bounded in terms of the longest non-increasing (w.r.t. covering) sequence
of k-dimensional macrostates. These are bad sequences where the norm of
the initial macrostate is m, the counter-value of the process to check for
universality. By point 2 of Lemma 7, such sequences are m-controlled by the
successor function f(x) = x + 1, which is in F1. By Theorem 5, computing
the bound and running the procedure above is in Fk. As k is part of the
input, this yields a procedure in Fω. �

6. Conclusion

We have shown NL-completeness of the trace inclusion problem for deter-
ministic one-counter nets, where initial counter-values are part of the input.
Our proof is based on a characterization of the shape of possible witnesses
in terms of a small number of polynomially-sized templates. Realizability
of such templates can be verified in space logarithmic only in the size of
the underlying state space. Our procedure is therefore independent of the
number of action symbols and transitions in the input nets. To prove the
characterization theorem we use witness rewriting rules, the correctness of
which crucially depends on the monotonicity of trace inclusion w.r.t. counter-
values. In fact, we only make use of this property in the net on the left but
similarly one can define rules that exploit only the monotonicity in the pro-
cess on the right. With some additional effort one can extend this argument
also for trace inclusion between DOCN and DOCA or vice versa (see [17]).

The second part of the paper explores the complexity of the universality
problem for nondeterministic OCN, and trace inclusion between finite sys-
tems and OCN that easily reduces to OCN universality. Here we show that

26

the simplest known algorithm which uses a well-quasi-order based saturation
technique has already optimal complexity: The problem is Ackermannian,
i.e., not primitive recursive.

Acknowledgements. We are grateful for helpful discussions with Mary Cryan,
Diego Figueira and Sylvain Schmitz and we thank the anonymous reviewers of
an earlier draft for their constructive feedback. Piotr Hofman acknowledges
a partial support by the Polish MNiSW grant N N206 567840.

References

[1] L. Valiant, M. S. Paterson, Deterministic one-counter automata, JCSS
10 (3) (1975) 340 – 350. doi:10.1016/S0022-0000(75)80005-5.

[2] S. Böhm, S. Göller, P. Jančar, Equivalence of deterministic one-counter
automata is nl-complete, in: STOC, 2013, pp. 131–140. doi:10.1145/

2488608.2488626.

[3] G. Sénizergues, L(a) = l(b)?, ENTCS 9 (1997) 43.

[4] C. Stirling, Deciding dpda equivalence is primitive recursive, in: ICALP,
2002, pp. 821–832.

[5] L. Valiant, Decision procedures for families of deterministic pushdown
automata, Ph.D. thesis, University of Warwick (July 1973).

[6] P. Jančar, J. Esparza, F. Moller, Petri nets and regular processes, J.
Comput. Syst. Sci. 59 (3) (1999) 476–503.

[7] P. Jančar, Undecidability of bisimilarity for petri nets and some related
problems, TCS 148 (2) (1995) 281–301.

[8] P. Hofman, R. Mayr, P. Totzke, Decidability of weak simulation on one-
counter nets, in: LICS, 2013, pp. 203–212. doi:10.1109/LICS.2013.26.

[9] A. Abdulla, K. Čerāns, Simulation is decidable for one-counter nets, in:
CONCUR, 1998, pp. 253–268. doi:10.1007/BFb0055627.

[10] P. Jančar, A. Kučera, F. Moller, Simulation and bisimulation over one-
counter processes, in: STACS, 2000, pp. 334–345.

27

http://dx.doi.org/10.1016/S0022-0000(75)80005-5
http://dx.doi.org/10.1145/2488608.2488626
http://dx.doi.org/10.1145/2488608.2488626
http://dx.doi.org/10.1109/LICS.2013.26
http://dx.doi.org/10.1007/BFb0055627

[11] P. Hofman, S. Lasota, R. Mayr, P. Totzke, Simulation over one-counter
nets is pspace-complete, in: FSTTCS, 2013, pp. 515–526.

[12] K. Higuchi, E. Tomita, M. Wakatsuki, A polynomial-time algorithm
for checking the inclusion for strict deterministic restricted one-counter
automata, IEICE Transactions 78-D (4) (1995) 305–313.

[13] K. Higuchi, M. Wakatsuki, E. Tomita, A polynomial-time algorithm for
checking the inclusion for real-time deterministic restricted one-counter
automata which accept by final state, IEICE Transactions 78-D (8)
(1995) 939–950.

[14] M. Blondin, A. Finkel, S. Göller, C. Haase, P. McKenzie, Reachabil-
ity in two-dimensional vector addition systems with states is PSPACE-
complete, in: Proceedings of the 30th Annual ACM/IEEE Symposium
on Logic In Computer Science (LICS’15), ACM Press, Kyoto, Japan,
2015, pp. 32–43. doi:10.1109/LICS.2015.14.
URL http://arxiv.org/abs/1412.4259

[15] J. Leroux, G. Sutre, Flat counter automata almost everywhere!, in:
D. Peled, Y.-K. Tsay (Eds.), Automated Technology for Verification
and Analysis, Vol. 3707 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2005, pp. 489–503. doi:10.1007/11562948_36.
URL http://dx.doi.org/10.1007/11562948_36

[16] W. Hesse, E. Allender, D. A. M. Barrington, Uniform constant-
depth threshold circuits for division and iterated multiplica-
tion, Journal of Computer and System Sciences 65 (4) (2002)
695 – 716, special Issue on Complexity 2001. doi:https:

//doi.org/10.1016/S0022-0000(02)00025-9.
URL http://www.sciencedirect.com/science/article/pii/

S0022000002000259

[17] P. Totzke, Inclusion problems for one-counter systems, Ph.D. thesis,
LFCS, University of Edinburgh (May 2014).

[18] D. Figueira, S. Figueira, S. Schmitz, P. Schnoebelen, Ackermannian and
primitive-recursive bounds with dickson’s lemma, in: LICS, 2011, pp.
269–278. doi:10.1109/LICS.2011.39.

28

http://arxiv.org/abs/1412.4259
http://arxiv.org/abs/1412.4259
http://arxiv.org/abs/1412.4259
http://dx.doi.org/10.1109/LICS.2015.14
http://arxiv.org/abs/1412.4259
http://dx.doi.org/10.1007/11562948_36
http://dx.doi.org/10.1007/11562948_36
http://dx.doi.org/10.1007/11562948_36
http://www.sciencedirect.com/science/article/pii/S0022000002000259
http://www.sciencedirect.com/science/article/pii/S0022000002000259
http://www.sciencedirect.com/science/article/pii/S0022000002000259
http://dx.doi.org/https://doi.org/10.1016/S0022-0000(02)00025-9
http://dx.doi.org/https://doi.org/10.1016/S0022-0000(02)00025-9
http://www.sciencedirect.com/science/article/pii/S0022000002000259
http://www.sciencedirect.com/science/article/pii/S0022000002000259
http://dx.doi.org/10.1109/LICS.2011.39

[19] S. Demri, R. Lazić, Ltl with the freeze quantifier and register automata,
ACM Trans. Comput. Logic 10 (3) (2009) 16:1–16:30. doi:10.1145/

1507244.1507246.

29

http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1145/1507244.1507246

	Introduction
	Background
	Trace Inclusion for Deterministic One-Counter Nets
	Proof of Theorem 1
	Universality of Nondeterministic One-Counter Nets
	Conclusion

