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Abstract19

Ice mass loss from the Amundsen Sea Embayment ice streams in West Antarctica is a20

major source of uncertainty in projections of future sea-level rise. Physically-based ice-21

flow models rely on a number of parameters that represent unobservable quantities and22

processes, and accounting for uncertainty in these parameters can lead to a wide range23

of dynamic responses. Here we perform a Bayesian calibration of a perturbed-parameter24

ensemble, in which we score each ensemble member on its ability to match the magni-25

tude and broad spatial pattern of present-day observations of ice sheet surface elevation26

change. We apply an idealized melt-rate forcing to extend the most likely simulations27

forward to 2200. We find that diverging grounding-line response between ensemble mem-28

bers drives an exaggeration in the upper tail of the distribution of sea level rise by 2200,29

demonstrating that extreme future outcomes cannot be excluded.30

1 Introduction31

Despite considerable advances in physically-based models of ice dynamics over the32

last decade (Pattyn et al., 2017), there are still large uncertainties in the projections of33

future sea-level rise from the Antarctic ice sheets. One major focus of uncertainty is the34

dynamic response of fast-flowing ice streams in regions that are grounded well below sea35

level, in particular the Amundsen Sea Embayment (ASE). Specifically, there is uncer-36

tainty regarding the onset, speed and extent of large-scale grounding line retreat given37

the Marine Ice Sheet Instability theory (Favier et al., 2014; Joughin et al., 2014; Seroussi38

et al., 2014). Quantifying likely sea-level rise over the coming centuries is critical to the39

adequate provision of coastal defences.40

The aim of this work is to demonstrate how spatial data of present-day observa-41

tions can be used to calibrate an ensemble of ice-flow model simulations, in order to con-42

struct a probability distribution of future sea-level rise from the ASE. Quantification of43

uncertainty has been an integral part of global climate model projection for a number44

of years and features heavily in the IPCC assessment reports (Collins et al., 2013). How-45

ever, only in the last few years has the ice-sheet-modelling community begun to formally46

consider uncertainty when estimating future contributions to sea-level (Applegate et al.,47

2012; Gladstone et al., 2012; Little et al., 2013; Levermann et al., 2014; Edwards et al.,48

2014a, 2014b, 2019; Chang et al., 2014; Ritz et al., 2015; Ruckert et al., 2017; Tsai et49

al., 2017; Schlegel et al., 2018). This delay is due, in part, to computational issues mak-50

ing it difficult to produce sufficiently large ensembles of simulations to investigate pa-51

rameter uncertainty with available computational resources (Chang et al., 2014).52

Several of the previous studies that do consider uncertainty focus on Greenland,53

where the fate of the ice sheet tends to be dependent on the modelled relationship be-54

tween surface mass balance and surface elevation (Applegate et al., 2012; Edwards et al.,55

2014a, 2014b); ocean-driven dynamics, while under-resolved, play a less important role56

in the ice sheet’s behavior (Fürst et al., 2015; Goelzer et al., 2018), compared with the57

ASE. Studies that focus on Antarctica vary in model resolution, complexity and spatial58

extent. Many Antarctic-wide studies use low-resolution models, which has consequences59

for the treatment of grounding line migration, often relying on parameterization (Levermann60

et al., 2014; Ritz et al., 2015; DeConto & Pollard, 2016; Edwards et al., 2019).61

Depending on the magnitude of the step change in basal sliding and melt rate at62

the grounding line (Gladstone et al., 2017), explicitly simulating fine-scale grounding line63

dynamics (i.e. without relying on parameterization), requires sub-kilometer grid reso-64

lution at the grounding line (Cornford et al., 2016), which is computationally expensive.65

We use the BISICLES ice-flow model, which relies on adaptive mesh refinement, where66

the vicinity of the grounding line is modelled at a considerably higher resolution (250 m)67

than the interior of the ice sheet (4 km). We focus on a smaller area – the ASE, rather68

than the whole of Antarctica – as this region is likely to dominate the Antarctic mass69
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loss signal in the next one to two centuries (Levermann et al., 2014; Ritz et al., 2015; De-70

Conto & Pollard, 2016). These decisions allow us to perform a sufficient number of sim-71

ulations using a sophisticated, high-resolution model to explore the likely range of dy-72

namic response of the ASE to an idealized increase in sub-ice-shelf melting.73

Firstly, we perform a Bayesian calibration of a perturbed-parameter ensemble of74

ice-sheet model simulations, by comparing the model results with observations of sur-75

face elevation change. We then extend the calibrated ensemble to 2200 using an ideal-76

ized melt-rate forcing, and explore the uncertainty in the ice-sheet response given this77

forcing scenario.78

2 Perturbed-parameter Ensemble Calibration79

2.1 Model and Observation Data80

The perturbed-parameter ensemble is described in Nias et al. (2016); here we will81

outline the relevant details. The BISICLES ice flow model is initialised to present-day82

conditions by performing an iterative procedure to find unknown quantities such as the83

basal traction coefficient (C), the ice viscosity stiffening factor (ϕ) and the sub-ice-shelf84

melt rate (Mb) (Nias et al., 2016). C and ϕ are found by solving an inverse problem given85

observations of velocity (Rignot et al., 2011). Mb is determined from the flux divergence86

over floating ice, but is parameterized to be spatially smooth and to have the highest rates87

close to the grounding line. Two alternative initial states are created; one that uses the88

Bedmap2 geometry (Fretwell et al., 2013), and one that modifies the bed topography and89

grounded ice thickness to smooth spurious thickening signals in the flux divergence, which90

have been attributed to incorrect thickness measurements (Morlighem et al., 2011; Nias91

et al., 2018).92

In total there are four optimal parameter sets, for all combinations of the two bedrock93

geometries and two Weertman sliding laws (m = 1 and m = 1/3), which form the ba-94

sis of the ensemble. Nias et al. (2016) use Latin hypercube sampling to create 64 dis-95

tinct parameter vectors in which C, ϕ and Mb vary between a halving and a doubling96

of the optimised values, which, with the addition of the optimal member and six end mem-97

bers, produces a 284-member ensemble. The 50-year simulations are run under present98

conditions, i.e. there is no time-dependent climate forcing.99

Observed rates of surface elevation change (dh/dt) over grounded ice are obtained100

from swath processing of CryoSat-2 radar altimetry measurements from 2010 to 2015101

(Gourmelen et al., 2017). This processing technique is able to capture thinning rates in102

the swath rather than just the Point Of Closest Approach (POCA). In doing so it pro-103

vides a greater spatial coverage of dh/dt measurements compared to traditional POCA104

technique (Foresta et al., 2016). The spatial resolution of the data is approximately 500 m.105

2.2 Bayesian Calibration106

Bayes’ theorem states that the posterior probability distribution (P (θ|Y ) – the prob-107

ability of θ given Y ) is proportional to the prior probability distribution (P (θ) – the prob-108

ability of θ) multiplied by a likelihood function (P (Y |θ) – probability of Y given θ):109

P (θ|Y ) ∝ P (θ)P (Y |θ) . (1)

In other words, we are trying to find the probability of an event (e.g. a magnitude of sea110

level rise) produced by a particular parameter vector θ (e.g. the scaling factors used to111

vary C, ϕ and Mb), given observations Y (e.g. dh/dt). We are not trying to find a sin-112

gle estimate of θ, rather a distribution.113

Each ensemble member is assigned a likelihood score based on discrepancies be-114

tween the model output and observed dh/dt, assuming Gaussian, independent errors (Edwards115
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et al., 2014b). The likelihood score sj for the jth simulation in the ensemble is116

sj = exp

[
−1

2

∑
i

(f ji − z
j
i )2

(σj
i )2

]
, (2)

where f is the modelled dh/dt and z is the observed dh/dt, and i is a spatial index.117

σ2 is the discrepancy variance, which is a combination of observational error and118

structural error, and represents the mismatch between the model, given the optimum pa-119

rameter set, and the real world (Murphy et al., 2009; Edwards et al., 2019). Observa-120

tional error is found from the covariance matrix of the parameters used to derive the swath-121

processed dh/dt (Foresta et al., 2016). Structural error has numerous sources related to122

the structural properties of the model; for example missed physical processes, spatial res-123

olution of the grid and the numerical representation. Structural error is poorly constrained124

and so we conservatively assign it a value of double the observational error (Fig. S4).125

Often in model-data evaluation, spatial comparisons are made at every available126

location. While this is appealing in terms of maximising the number of data points, the127

spatial correlation inherent in most environmental variables means that this tends to overly128

penalise models in regions of coherent spatial patterns. The model error is ‘double-counted’129

for each neighbouring grid cell, even though they arise from a common source. One ap-130

proach is to model this spatial correlation explicitly, but this is challenging and requires131

assumptions about the precise features of grid cell-to-cell correlations everywhere. A more132

common approach is to remove the spatial correlation by averaging or sub-sampling the133

data at a spatial scale at which they are reduced so the model-data discrepancies are suf-134

ficiently independent.135

Using semi-variograms, we empirically investigate the length scales at which the136

covariance is reduced to an acceptable value, and use this to decide upon an appropri-137

ate spatial scale on which to sample the discrepancies. We find this to be approximately138

100 km, both in the x- and y-directions (see the Supporting Information).139

The score for each simulation is normalised to create a weight w,140

wj =
sj∑
j sj

, (3)

where the simulation with the lowest discrepancy with observations has the largest weight.141

These weights, which are akin to P (Y |θ) in Equation 1, are used to weight the prior dis-142

tribution, P (θ), to produce a calibrated (posterior) distribution of sea level contribution,143

P (θ|Y ) (Fig. 1a).144

The most likely (modal) sea-level rise estimate according to the prior distribution145

is 0.26 mm yr−1 (50-year mean), which shifts to 0.30 mm yr−1 in the posterior distri-146

bution (Table 1). The similarity between these estimates and observed rates of mass loss147

from the ASE (Fig. 1a), indicates that these independent methods for quantifying present-148

day mass loss are in good agreement; whether it is BISICLES tuned using velocity ob-149

servations (the prior); the observed spatial field of surface elevation change (the poste-150

rior); or the methods used to estimate total mass loss from the ice sheet (vertical lines,151

Fig. 1a). The spread of the posterior distribution is reduced from the prior distribution,152

indicating that the calibration process is useful for reducing uncertainty in sea level rise153

projections. Future work could test the impact of using different types of observational154

data in the calibration process. For example, maps of observed velocity change could be155

a good candidate, as the dynamic signal is not influenced by changes in surface mass bal-156

ance.157
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Table 1. Quantiles and modes for the prior and posterior distributions of the 50-year mean

rate of sea-level contribution (mm yr−1); and cumulative sea level total (mm) after 100 and 200

years with increased melt forcing.

5% 25% 50% 75% 95% Mode

Rates Prior -0.08 0.14 0.35 0.67 1.35 0.26
(mm yr−1) Posterior 0.02 0.19 0.33 0.46 0.72 0.30

Total 100 years 20.6 38.3 55.7 72.2 123.1 53.7
(mm) 200 years 56.2 106.9 139.7 239.9 424.3 119.6

3 Extended Simulations158

Of the 284-member ensemble, 187 members were within the 5–95% probability in-159

terval of the 50-year mean rate of sea-level contribution (0.02-0.72 mm yr−1, Table 1).160

We exclude the extremes because their implied rates of elevation change perform poorly161

in the comparison with present-day observations (at the 10% probability level). Satel-162

lite observations have consistently shown that the ASE has been losing mass (Mouginot163

et al., 2014; McMillan et al., 2014), and so it is particularly appropriate to discard those164

members with mass gain. In addition, previous regional modelling has suggested that165

a linear-viscous law is not suitable for describing sliding over bedrock and is prone to un-166

derestimate the sensitivity to changes in basal traction at the grounding line (Joughin167

et al., 2009, 2010). Therefore, given limited computational resources, we chose to extend168

to 2200 only the 71 ensemble members that fall within the 5–95% probability interval169

of sea-level contribution and use the non-linear (m = 1/3) Weertman sliding law.170

The sub-ice-shelf melt-rate is perturbed within the perturbed-parameter ensem-171

ble described above. In addition, we apply a simplified melt-rate forcing anomaly to en-172

sure the direction of change is consistent with the expected behaviour. In the Amund-173

sen Sea, we expect there to be an increase in sub-ice-shelf melt-rates over the coming cen-174

turies due to increasing Circumpolar Deep Water (CDW) intrusions onto the continen-175

tal shelf, as well as potentially direct warming (Timmermann & Hellmer, 2013; Holland176

et al., 2019). Therefore, we apply an idealized melt-rate forcing, based loosely on regional177

ocean modelling, given a ‘business-as-usual’ emissions scenario (Timmermann et al., 2002).178

The ice-shelf averaged melt-rate anomaly increases linearly to 15 m yr−1 by the end of179

the 21st century – as ice shelf contact with the CDW increases – and remains constantly180

elevated in the 22nd century – representing continued CDW intrusion. The mean melt-181

rate anomaly is in addition to the melt rates of the perturbed-parameter ensemble (∼5–182

20 m yr−1 mean), and is distributed to be highest near to the grounding line. Further183

details about the melt-rate forcing can be found in the Supporting Information.184

All the extended simulations continued to lose mass from the ASE, and by the end185

of the two centuries the modal contribution is 12 cm sea level equivalent (Table 1). The186

probability distributions of cumulative sea-level contribution (Fig. 1b) broaden over time,187

particularly in the upper tail of the distribution where the contribution in the second188

century is larger than in the first. This super-linear response persists, even when the melt189

rate remains constant in the second century. However, other simulations maintain an ap-190

proximately linear response at a lower rate throughout the 200-year simulations. These191

two response types can be seen in Figure 2c; approximately 40% of the simulations ex-192

hibit a super-linear trend (blue lines).193

By the end of the 21st century, all ensemble members have experienced a reduc-194

tion in the total ASE grounded area (Fig. 2a). However, retreat is not ubiquitous across195

all ice streams: some members result in grounding line advance, albeit limited, in Pine196
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Figure 1. Distributions of sea level change. a) Histogram (grey boxes) and associated prior

probability density function (prior PDF, black curve) of present-day sea-level contribution rate

(50 year mean) from the original model ensemble, and calibrated posterior PDF (red curve).

Observed rates from 2010 using the input-output method (0.27 ± 0.04 mm yr−1, short dashes)

(Medley et al., 2014) and 2010–2013 derived from Cryosat-2 altimetry (0.33 ± 0.05 mm yr−1,

long dashes) (McMillan et al., 2014) are represented by vertical lines. b) PDFs of the total

sea-level contribution from the calibrated 50-year ensemble (red curve); and from the extended

ensemble after 100 years (grey curve) and 200 years (black curve).

Island and Thwaites glaciers. The group of smaller ice streams to the west of Thwaites197

(Pope, Smith, Kohler glaciers – PSK) do show grounding line retreat in all ensemble mem-198

bers.199

4 Discussion200

During the 200-year simulations, the high-end ensemble members diverge from the201

modal behavior, creating a skewed distribution towards higher values of sea level con-202

tribution (Fig. 1b). This is despite the high-end tail of the original ensemble being down-203

weighted (Fig. 1a), resulting in the most extreme simulations being removed from the204

longer century-scale simulations. Non-normal distributions, characterized by a long tail205

at the high end, are also found in other studies (Levermann et al., 2014; DeConto & Pol-206

lard, 2016; Kopp et al., 2017; Edwards et al., 2019; Robel et al., 2019).207

The super-linear response of the high-end members means that while the mode of208

the distribution increases linearly – the total sea level contribution after 200 years is ap-209

proximately double the total after 100 years – the 95th percentile increases dispropor-210

tionately (Table 1). Given our idealized melt-rate forcing, there is 5% probability that211

the ASE will contribute more than 12 cm of sea level rise by ∼2100 and 42 cm by ∼2200.212

This is in contrast to a study by Ritz et al. (2015), in which the response at the 95th per-213

centile is quasi-linear, with 25 cm of sea level rise from the ASE in the 21st century and214

48 cm by 2200. In their model, the representation of ice dynamics is simpler and at a215

lower resolution (15 km) than the model used here. In particular, the grounding line re-216

treat is imposed rather than computed, which may dampen non-linear behaviour.217

We find that the grounding line behavior regulates the linearity of the sea-level re-218

sponse. Indeed, the long tail at the high end of the sea-level rise distribution is mirrored219

in the grounding line retreat: some simulations achieve extreme retreat, whereas many220

simulations experience more modest retreat and advance is limited (Fig. 2). As the ice221

stream grounding lines retreat further into the deep basins they inhabit, the flux across222

them increases with ice thickness and with the lengthening of the flux-gate. The rela-223
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Figure 2. Grounding line position after a) 100 years and b) 200 years. Each coloured line

represents an individual ensemble member: yellow represents a more linear sea-level response

and blue represents a super-linear response (based on the second derivative of the sea level trend

shown in c) the 8-year running-mean of the rate of sea-level contribution from the ASE during

the 200-year simulations). The initial grounding line position is delineated by the thick black

line. Grey scale background indicates initial velocity.

tionship between grounding line retreat and the non-linearity of the sea level response224

over time is illustrated by the colored lines in Figure 2.225

As alluded to above, the non-linearity in the rate of grounding line retreat is re-226

lated to the bedrock topography, as demonstrated for Pine Island Glacier in Figure 3.227

Approximately 18% of our simulations maintain their initial grounding line position (in228

the case of the Bedmap2 simulations), or close to it (in the case of the modified bedrock,229

which has a topographic rise ∼15 km upstream) for much, if not all, of the simulations.230

Others experience only limited retreat, with a number of topographic rises, most notably231

at ∼25 km upstream of the initial grounding line position, producing a step-like pattern232

in retreat (Fig. 3). These modest responses are similar to the first mode of retreat de-233

scribed by Gladstone et al. (2012), in which retreat is gradual on the order of 0.1 km yr−1.234

Gladstone et al. (2012) find a second mode of grounding line behavior character-235

ized by rapid accelerating retreat. In their flow-line model simulations the initial ground-236

ing line retreat off the bedrock high occurs quickly and, once it reaches an uninterrupted237

retrograde slope, the rate of retreat can reach up to 10 km yr−1 and be sustained for up238

to ∼10 years, which is similar to our most extreme results (Fig. 3). The similarities be-239

tween our results and those shown in Figure 3 of Gladstone et al. (2012), despite the sig-240

nificant differences in model physics, indicates that topography, as well as the forcing,241

exerts a strong control on the temporal form of Pine Island Glacier grounding line re-242

treat.243

Robel et al. (2019) demonstrate that an ensemble becomes progressively more skewed244

towards greater retreat when the grounding line is located on a predominantly retrograde245

bedrock slope, because the rate of retreat in the extreme ensemble members diverges fur-246

ther away from the more moderate members – which is seen here in Figure 3. The skew-247
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Figure 3. Pine Island Glacier a) grounding line retreat over time, relative to the initial posi-

tion (0 km), with each curve representing one simulation. Dashed lines act as a guide for linear

retreat rates. b) cross-section of the two geometries: Bedmap2 (Fretwell et al., 2013) (orange)

and the modified bed (Nias et al., 2016) (grey). The top lines represent the initial ice surface,

and the bottom lines gives the bed topography. To the right of 0 km (initial grounding line –

black line), the bed topography diverges from the ice base (i.e. the ice shelf). The colored ver-

tical lines are at the position of the grounding line of the central ensemble members after 200

years, for the two geometries.

ness in the distribution towards the high-end of sea level rise is fundamentally linked to248

the non-linearity in the rate of grounding line retreat (Robel et al., 2019).249

Missed processes in the model contribute to its structural error. For example, we250

do not include calving in our model – the ice front is fixed and we impose a minimum251

ice thickness of 10 m. This could have implications for stability as ice shelves can pro-252

vide a buttressing effect on the grounded ice sheet (Gudmundsson, 2013); although in253

many cases here the simulated ice shelf, across the vast majority of the area, is close to254

or at the minimum thickness constraint of 10 m, the buttressing effect of which is neg-255

ligible. The lack of calving and ice shelf collapse, precludes any potential loss through256

marine ice cliff instability (DeConto & Pollard, 2016), although on the timescales of this257

study, it is unlikely that sufficient surface melt will occur to cause ice shelf collapse in258

the ASE (Trusel et al., 2015; Kuipers Munneke et al., 2014). Another source of model259

uncertainty is the sliding law used to determine basal shear stress – the choice of which260

can lead to different ice sheet responses (Brondex et al., 2017, 2019; Nias et al., 2018).261

Given the amount of grounding line retreat experienced by the extreme simulations, we262

would expect interactions with neighboring West Antarctic drainage basins (Feldmann263

& Levermann, 2015; Cornford et al., 2016). However our model configuration has a fixed264

boundary so these dynamics have not been explored here.265

Ocean-driven melt is likely to be a major source of uncertainty in future projec-266

tions of sea level rise (Schlegel et al., 2018; Nowicki & Seroussi, 2018), for example there267

is uncertainty in the future ocean temperature projection, and its relationship to melt268
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rate, and how this is parameterized in BISICLES. Here, we have tested the impact of269

uncertainty in the melt rate obtained during the initialization of BISICLES: halving and270

doubling the optimal melt-rate field results in a 4 cm difference in sea level contribution271

by 2200, when all other parameters are held at their optimal values. This is an order of272

magnitude less than the total spread of the distribution given in Table 1. However, we273

have not investigated the impact of uncertainty in the melt-rate forcing anomaly added274

during the extended simulations. Accounting for different ocean temperature projections275

is likely to add considerable spread to the distribution of future sea level contribution276

(Holland et al., 2019), whereas the precise form of the ocean melt parameterization is277

likely to be less influential (Favier et al., 2019).278

For the PSK group of ice streams, retreat occurs in all ensemble members and there279

is less ambiguity in the future outlook, compared with Pine Island and Thwaites glaciers280

(Fig. 2). Smith Glacier in particular has seen rapid retreat over the last two decades,281

and although there has been a recent slow-down in the retreat, Scheuchl et al. (2016)282

predict that it will continue unabated in the coming years, and they have attributed the283

recent stabilization to a locally prograde slope. The uncertainty in future sea-level rise284

from the ASE lies in the vast range of responses exhibited in Pine Island and Thwaites285

glaciers, not the PSK group, which are relatively consistent with one another and where286

the potential for retreat is much more limited by the topographic constraints.287

Simulations that behave similarly at the beginning of the 200 year simulations do288

not necessarily follow a similar trajectory (Fig. S5). This demonstrates that it is essen-289

tial to use process-based models, which can predict the changing evolution of the ice sheet,290

instead of extrapolation methods when making projections; as also found by others (Ritz291

et al., 2015; Kopp et al., 2017).292

5 Conclusion293

Here we have attempted to constrain and quantify the uncertainty in sea level rise294

from the ASE using BISICLES, a high-resolution ice-flow model capable of capturing295

grounding line dynamics. Using present-day (2010–2015) observations we calibrated the296

perturbed-parameter ensemble of Nias et al. (2016), by scoring each member on its abil-297

ity to match the magnitude and spatial pattern of surface elevation change. Based on298

the resulting posterior distribution of sea-level change rates, the extreme ensemble mem-299

bers, which matched poorly with observations, were discarded. Simulations that start300

out in agreement with the present day can end up contributing more than 42 cm (5%301

probability) by 2200, although the modal estimate is 12 cm. The long high-end tail of302

the sea-level distribution becomes more exaggerated over time due to extreme members303

exhibiting a super-linear sea-level response, and is mirrored in the divergence in grounding-304

line response between ensemble members. Our results only reflect uncertainty in the ice305

dynamics, and the range of potential outcomes would be greater if the uncertainty in the306

projected forcing is also included. Overall the uncertainty in the response of this par-307

ticularly dynamic region of Antarctica is a major challenge in provisions for mitigating308

the impact of sea-level rise, and at this time extreme future outcomes cannot be excluded.309
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