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ABSTRACT 

Variable Selection Methods for Classification: Application to 
Metabolomics Data 

by 

Nurain Binti Ibrahim 

 Metabolomics is an emerging field, which focuses on the study of small 

molecules (metabolites) and their chemical processes. Metabolomics data are highly 

dimensional, with p>>n where p is the number of variables and n is the sample size. 

Variable selection is therefore a key step in metabolomics studies. There are three 

categories of variable selection, such as filter, wrapper and embedded methods.  

 Common univariate filter methods such as the t-test and ANOVA (analysis of 

variance) have been often used in the literature to identify important metabolites for a 

given clinical problem. A challenge in metabolomics research is that metabolite 

variables tend to be highly correlated. Multivariate approaches that take into account 

the correlation among variables, such as PCA (principal component analysis), have 

been applied to reduce the dimensionality of metabolite datasets. The correlation-

sharing t-test method (corT) is a filter method that also considers the correlation 

among variables, but to my knowledge it has only been applied to genomic data. 

Penalized regression, and in particular the embedded method Lasso, has also been 

applied for variable selection with the aim of minimising the problem of overfitting 

that often affects prediction models in this area.  

 In this thesis I presented a literature review on variable selection methods and 

classification methods applied to metabolomics data. I proposed an extended version 

of the variable selection method corT, which I name adjusted correlation-sharing t-
test (adjcorT). Simulation studies were carried out to compare the performance of 

several variable selection methods (T, corT, adjcorT and Lasso) using logistic 

regression for data classification. Simulations assumed a set of 200 variables of which 

2 variables were discriminators. A range of sample sizes (n=50, 76, 100, 300, 500, 

1000, 2000 and 20000) and of different correlation values among the discriminant 

variables (!=-0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8) were considered to explore the effect that 

sample size and correlation have on the classification accuracy of each method. These 

methods were also applied to metabolomics datasets, including data from patients with 

colorectal cancer (aimed at discriminating between non-cancer vs colorectal cancer 

groups, and healthy control vs adenoma groups) as well as, kidney disease and infant 

sepsis datasets. R code was developed to analyse the datasets. Cross validation, with 

data split into two sets (80% for training and 20% for validation) was used to compare 

the performance of the variable selection methods using classification accuracy, 

sensitivity, specificity and area under ROC.  

 Results from the simulation studies indicate that for small sample sizes (n=50, 

76), T, corT, adjcorT and Lasso often failed to select the two discriminatory variables. 

For example, for !=0.5 and n=50, only 3%, 12%, 11% and 0% of the times the two 
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discriminatory variables were selected. Nevertheless, the detection rates for adjcorT 

and Lasso improved for negative strong correlations (Table 4.3). These results are 

consistent with the better performance in classification accuracy observed for adjcorT 

and Lasso for negative strong correlations ( -0.5 ≤ ! < -1.0; Table 4.4). As the sample 

size increased towards n=300, all methods increased their ability to select the two 

discriminatory variables, with Lasso underperforming for positive strong correlations 

and corT underperforming for moderate and strong negative correlations. These 

differences can explain the dissimilarities observed across methods in classification 

accuracy for sample sizes n=300, 500 and 1000; with Lasso showing poorer 

performance than T, corT and adjcorT for positive strong correlations, and corT 

showing poorer performance than T, corT and adjcorT for moderate and strong 

negative correlations (Tables 4.5 and 4.6). As the sample size increases, T, adjcorT 

and Lasso offered a similar level of accuracy but corT still underperforms for moderate 

and strong negative correlations and larger sample sizes (Table 4.7). 

 In the clinical applications, corT and adjcorT show a similar level of 

classification accuracy, possibly due to the positive correlation that exists among most 

metabolites. For non-cancer and cancer discrimination, the method T showed the 

worst classification accuracy followed by Lasso. Methods corT and adjcorT achieved 

the best level of discrimination although this was still low (AUC of 0.60; Table 5.3). 

For healthy control and adenoma discrimination however, methods corT and adjcorT 

showed the lowest AUC, followed by the T method. Lasso achieved the best level of 

discrimination, although this remained low (AUC of 0.65; Table 5.8). For the 

discrimination between bacterial and non-bacterial sepsis cases, Lasso exhibited a 

better performance that the other variable selection methods with 83.1% classification 

accuracy (Table 5.13). Lasso also offered the best level of discrimination between 

healthy controls and kidney disease (AUC=0.90, Table 5.21), although the four 

methods showed a comparable performance (AUCs=0.86 and 0.87 were achieved with 

the T and with the corT and adjcorT methods respectively). 

 My work based on simulations shows that adjcorT offers a flexible approach 

for variable selection aimed at clinical classification, especially for datasets involving 

negative correlations between discriminators for medium and large samples where 

adjcorT consistently shows a better performance than corT. These findings were 

however not reproduced by the analyses on real data. I believe this is possibly due to 

the lack of negative correlations among metabolites in the datasets considered. 

 

 Both adjcorT and corT are filter variable selection methods. Given that adjcorT 

showed a better performance compared to corT for negative correlations and a similar 

performance for positive correlations across all sample sizes investigated, adjcorT is 

expected to offer advantages compared to corT as a variable selection method for the 

analysis of some metabolomics data.  
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Chapter 1  

Introduction 

 
 

1.1 Clinical Classification 
 

 Classification techniques are often applied to allocate individuals into 

groups (e.g., disease/non-disease) and are widely used in biomedical and clinical 

applications. Examples of classification methods include logistic regression, K 

nearest neighbours, support vector machine, linear discriminant analysis and 

multivariate generalized linear mixed model among others. For example, Wah et 

al. [1] used logistic regression to identify patients with diabetes using the Pima 

Indian Diabetes dataset. The authors also used the Breast Cancer Wisconsin 

dataset to identify patients with malignant and benign tissue. They also applied 

logistic regression to a Spam base dataset in order to identify spam emails. 

 

 Classification methods are widely used in cancer research to make 

prediction by assigning tumours to known classes (class prediction) or 

investigating new cancer classes (class discovery) [2]. Chudova et al [3], for 

example, applied support vector machine to genomics data in order to distinguish 

benign from malignant thyroid nodules. Mishra et al. [4] also applied support 

vector machine and neural network to classify the important biomarkers into acute 

lymphocytic leukemia (ALL) and acute myelocytic leukemia groups. 

 

 Linear discriminant analysis was employed to distinguish the 

difference between Bacillus species (one of the bacterial species) by using the lda 
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function (to perform linear discriminant analysis) and predict function (to assess 

prediction accuracy for linear discriminant analysis) in MASS package (R 

software) [5]. Discriminant analysis can be also applied to longitudinal data to 

classify individuals by taking into account changes over time of relevant 

biomarkers. In 2018, Hughes et al [6] developed a multivariate generalized linear 

mixed model and applied a dynamic discriminant approach to model changes of 

number of seizures and treatment history over time, to identify people with 

epilepsy who will not achieve 12 months seizure remission within 5 years of 

starting treatment.  

 

 Clinical datasets can be highly dimensional where the number of 

variables is larger than number of samples or patients (i.e., each patient/sample is 

characterized by hundreds/thousands of variables). One of the key challenges 

when modelling high dimensional datasets is how to avoid overfitting. One 

common approach to deal with the challenge of overfitting is reducing the 

dimensionality of the datasets with variable selection techniques [7].  

 

1.2 Variable selection within the context of clinical classification 
 

 In order to accurately classify a sample into groups of interest, 

sometimes it is necessary to first reduce the number of variables, especially when 

the dataset contains a large number of potential predictors compared to the sample 

size (i.e., number of individuals or samples). The idea is that the reduced set of 

variables should still capture the most important predictor variables. Variable 

selection is widely used in many areas, including metabolomics. Some of the 

objectives of variable selection are to facilitate data understanding, reduce the 

storage requirement, reduce the processing time and reduce the dimensionality of 

the dataset while achieving a good prediction performance. There are several 

variable selection methods, such as correlation-based feature selection [8]–[10], 

principal component analysis (PCA) [11]–[16], T-test feature selection method (T 

method) [15]–[17], and Lasso [15], [18]–[20]. 

 

 Principal component analysis (PCA) is one of the most common 

variable selection methods, which generates a low-dimensional representation of 
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data that describes most of the variability in the dataset. PCA uses a mathematical 

procedure to do the data reduction which produces new variables as linear 

combinations of the original variables. It transforms the original data onto a 

smaller number of principal components. For example, Shahamat and Pouyan [21] 

used PCA in order to reduce the number of functional magnetic resonance imaging 

(fMRI) time points and linear discriminant analysis was used for classification of 

patients into schizophrenia and control groups. Rao, Sui and Zhang [22] 

investigated the significant walnut kernels by using PCA as the variable selection 

method and these kernels were used as the basis for further studies on walnut 

kernel metabolism.  

  The applications of this thesis focus on metabolomics studies. 

Metabolomics is an emerging field, which focuses on the study of small molecules 

(metabolites) and their chemical processes. Metabolomics datasets can be used to 

differentiate between two or more groups of outcomes such as disease or non-

disease groups based on thousands of metabolites. The challenge in this area is that 

metabolomics data are highly dimensional, with p>>n where p is the number of 

variables and n is the sample size. Hence, variable selection is therefore a key step 

in metabolomics studies. Common univariate tests such as the t-test and ANOVA 

(analysis of variance) have been often used in the literature to identify important 

metabolites for a given clinical problem. Multivariate tests, such as PCA (principal 

component analysis), DA (discriminant analysis) and PLS-DA (partial least square-

discriminant analysis) have also been applied in this area. Another challenge in 

metabolomics research is that metabolite variables tend to be highly correlated. 

Some researchers have used penalized regression methods, such as Lasso since this 

method takes into account the correlation among the metabolites within the variable 

selection process. 

1.3  Objectives of the thesis 

The specific objectives of this thesis are: 

 Objective 1: Literature review on variable selection methods for classification 

applied to metabolomics data. Variable selection methods include correlation-

adjusted t-scores (cat scores), forward selection and principal component analysis 
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(PCA), among others. Additionally, the classification methods involved in the 

literature review are partial least square-discriminant analysis (PLS-DA), 

discriminant analysis (DA), and support vector machine. Briefly, variable selection 

methods are characterized into three categories namely filter, wrapper and 

embedded methods: 

a) Filter variable selection methods: These methods constitute the simplest 

approach. They use variable ranking and variable score methods through a 

univariate framework. 

b) Wrapper variable selection methods: These methods use a multivariate 

approach as they consider variables simultaneously. 

c) Embedded variable selection methods: Combination of filter and wrapper 

methods.  

 

Objective 2: Development of a new approach for variable selection and comparison 

with existing variable selection methods in terms of classification accuracy via 

simulations. 

 

 Objective 3: Application of existing methods and of my proposed method to real 

metabolomics datasets. Three metabolomics datasets are considered, including a 

colorectal cancer dataset, an infant sepsis dataset and kidney disease dataset.  

 

1.4  Datasets 
 

        I aim to apply the variable selection methods discussed in this thesis to 

real metabolomics datasets in order to assess their performances. The three clinical 

datasets used in this thesis are described below.  

1.4.1 The Colorectal Cancer Dataset 
 

  The colorectal cancer dataset consists of 137 samples (samples from 

60 healthy controls, 56 adenoma and 21 colorectal cancer patients) and 146 

variables. Therefore, the number of samples in the non-cancer group is 116 samples 

and the number of samples in the colorectal cancer group is 21. I am interested in 

developing prediction models that allows for the classification of patients into non-
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cancer and cancer, and also normal and adenoma. This colorectal cancer dataset 

was used in a previous study with the aim of identifying the Volatile Organic 

Compounds (VOCs) emitted from stool that can discriminate patients between 

cancer and no neoplasia groups [23]. This colorectal cancer dataset was gathered 

by mass-spectrometry (MS) technique. A. Bond et al used Student’s t-test, Man-

whitey tests, Fisher’s exact test, ANOVA in order to determine the significant 

variables. Partial least squared discriminant analysis (PLS-DA) and logistic 

regression were used as the classification methods.  

 

1.4.2  The Infant Sepsis Dataset 

 

 Clinicians at the Alder Hey Hospital in Liverpool are investigating 

better ways to discriminate between bacterial and viral sepsis in children. They 

collected blood samples from patients in intensive care and transferred the samples 

to the University of Liverpool NMR Metabolomics Centre with the aim of 

acquiring 1H NMR spectra of 25 samples from infants with bacterial sepsis and 91 

samples from non-bacterial sepsis infants. This data has 144 metabolites, and 116 

children participated in this study. Data is publicly available in the database 

MetaboLights with ID MTBLS653. 

 

1.4.3  The Kidney Disease Dataset 
 

   Chronic kidney disease (CKD) leads to a decreased sensitivity of the 

metabolic effects of insulin. The plasma metabolome was examined in 93 adults 

without diabetes in the fasted state, out of which 56 showed moderate-severe CKD 

and 37 a normal glomerular filtration rate. This data, which contains data on 124 

metabolites, was used in the previous study [24]. 

 

 

1.4.4  Summary of datasets 
 

 This subsection provides a summary of datasets considered for this 

thesis. Table 1.1 shows the list of datasets. 
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Table 1.1: Summary of datasets that I considered in this thesis 

 
No. 

 
Datasets  

Name 

Where  
the data  

come from? 

 
Sample  

size 

 
Number 

of 
variable

s 
1. Colorectal 

cancer 

 [25] 137 146 

2. Infant Sepsis MetaboLights website 

https://www.ebi.ac.uk/metabolights/ 

91 144 

3. Kidney disease [24] 93 124 

 

1.5   Structure of the thesis 
 

 The structure of this thesis is as follows. In Chapter 2 I present a 

literature review on variable selection methods and classification methods applied 

to metabolomics data. In Chapter 3, I outline algorithms of existing variable 

selection methods (T, corT and Lasso) and I propose a new method that I name 

adjcorT. I present the results of a simulation study in Chapter 4 where the novel 

adjcorT is compared to T, corT and Lasso; and where the logistic regression is used 

as the classification method. In Chapter 5, I present the results of the application of 

T, corT, adjcorT and Lasso to three clinical datasets. Finally, in Chapter 6 I present 

a summary and discussion of the work I have completed for this thesis and 

recommendations for future work.   
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Chapter 2  

Variable selection methods for 

classification in the area of metabolomics 
 

 

2.1 Introduction  
 

 This thesis focuses on metabolomics which is the study of global metabolite 

profiles in a system (cell, tissue or organism) under a given set of conditions. 

Metabolomics has a number of features: 1) As the metabolome is the final downstream 

product of gene transcription, any changes in metabolome capture the changes in the 

transcriptome and the proteome, 2) Metabolome is the closest to the phenotype 

(physical appearance) of the biological system (e.g.: cell / organ / entire organism) 

compared to genome and proteome and 3) Metabolome is more diverse than genome 

and proteome as it contains many different biological molecules. Metabolomics 

datasets are often highly dimensional, with the number of metabolites being greater 

than the number of  samples [26]. The number of sample is often limited since 

collection of this type of data is relatively expensive [27]. The problem of metabolite 

selection is complex as highlighted in the previous chapter. Metabolomics datasets 

commonly consist of many correlated metabolites and a small sample size (i.e., small 

number of samples or individuals). Several statistical methods of variable selection 

are available to identify important clinical predictor variables [11], [18], [28]–[30]. 

However, existing methods may have limitations when applied to metabolomics data 

due to the nature of metabolomics datasets.  

 



8 

 

 This chapter highlights the importance of metabolomics and describes the 

range of variable selection methods and classification methods used in the area of 

metabolomics. The structure of this chapter is therefore as follows. I review the 

importance of metabolomics in Section 2.2. A literature review that focuses on 

variable selection methods for metabolomics is conducted in Section 2.3. The variable 

selection methods for metabolomics (filter, wrapper or embedded) are discussed in 

Section 2.4. In Section 2.5 I present a workflow of variable selection methods of 

metabolomics for classification application to metabolomics data. Additional variable 

selection methods are explained in Section 2.6, and classification methods used in 

metabolomics are explained in Section 2.7. The discussion is in Section 2.8. 

 

2.2 Importance of metabolomics 

 

  Metabolomics is an emerging field which combines strategies to identify and 

measure quantitatively cellular metabolites from biofluids, such as blood and urine, 

present in organisms, cells, or tissues, from either animals or humans using advance 

analytical techniques with the application of statistical and multi-variant methods. 

Metabolomics is widely used in order to find novel biomarkers in biological systems, 

biofluids and for discovery of dietary and health biomarkers. Biofluids such as urine 

seem more advantageous as they are easy to collect. To understand the complicated 

biochemical systems and to uncover mechanism such as metabolic pathways related 

to disease, gender, diet and etc. remains a challenge. Recently, metabolomics emerged 

for disease diagnosis, biomarker identification, a deeper understanding of cancer 

metabolism and drug toxicity, the potential for improved early disease detection or 

therapy monitoring [19], [30]–[33]. Additionally, metabolomics has successful 

applications in environmental science, nutrition, characterizes biochemical systems 

and reveal insights into the mechanisms of pathophysiological processes [12], [34]–

[36]. 

 

  The two most commonly used analytical technologies are nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS). The combination of 

NMR and MS variables make them more attractive compared to variables of NMR or 

variables of MS alone. However, the majority of metabolomics studies used either 

NMR or MS separately. Djukovic et al. [30] combined NMR and MS data but they 
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claimed this approach has not been well developed. They proved that the results were 

promising as using both NMR and MS data significantly improved predictive accuracy 

in all the pairwise comparisons among colorectal cancer, polyps and healthy controls. 

    

 Metabolomics data are typically high-dimensional (1 ≥ ", where " is the 

sample size and 1 is the metabolites) and the metabolites are correlated to each other. 

Hence, appropriate variable selection methods and classification methods should be 

applied to metabolomics data in order to effectively reduce the dimensionality of the 

datasets and to accurately classify individuals into two or more than two different 

groups of datasets (for example, disease/non-disease groups). Metabolomics provides 

an important approach in the investigation of biological systems and the effect of 

internal and external perturbations through the study of changes in metabolite 

concentration. Yengo et al. [19] conducted a metabolomics study by developing 

predictive models of type 2 diabetes using logistic regression and cox regression. They 

also used Lasso as the variable selection methods in order to find the novel biomarkers 

to detect type 2 diabetes. Metabolomics showed an improvement in prediction of type 

2 diabetes. Meanwhile, Everett J.R. [37] studied the metabolic profiling to predict drug 

efficacy and safety. The notable advantages of conducting the metabolic profiling are 

that it reflects the physiological status of the patient in real time and its ability to be 

sensitive to both genetic and environment factors such as the status of gut microbiome. 

Xu et al. [20] used metabolomics data as potential resources for prediction of yield in 

hybrid rice. 

 

 As described earlier, metabolomics is the study of small molecules. These 

molecules are synthesized by a diversity of enzymes. Although the association among 

the metabolites can be low, moderate or high, with either positive or negative 

correlations, metabolites in metabolomics data tends to be highly correlated due to 

stronger mutual control by a single enzyme [38]. There are often missing values in 

metabolomics data since certain compounds cannot be identified/quantified in certain 

samples. The missing values might be produced by random error or stochastic 

fluctuations during the data acquisition [39]. Additionally, other factors of missing 

values are: i) computational detection failure, ii) measurement error, iii) signals of low 

intensity which is distracted by background noise and iv) imperfection of the detection 

method used [40]. In terms of metabolomics data distribution, certain metabolites tend 
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to demonstrate right-skewed distributions and certain metabolites displays a 

substantial proportion of zero values that may be regarded as true zero values based 

on biological grounds [41]. 

 

 Metabolites can be negatively correlated to each other as shown in the previous 

studies [41],[42]. It is important to deal with negative correlation metabolomics 

datasets in order to capture dynamics in the correlation structure of the metabolites 

which can improve the classification accuracies when these metabolites are included 

into the classification model [42]. 

  Since metabolomics data is highly dimensional, a variable selection process is 

an important step in metabolomic studies where often the goal is to find the most 

informative of metabolites. Variable selection methods have been applied to 

metabolomics datasets in order to identify a minimal set of strongest biomarkers 

related to a predefined research outcome; for example, to identify potential 

diagnostic or prognostic biomarkers of disease and non-disease. Biomarker 

discovery is an important goal in metabolomics. This thesis focuses on variable 

selection methods for classification, and therefore the interest is not merely on the 

discovery of metabolites that are highly associated with the outcome of interest (e.g., 

development of a disease) but also on their predictive ability. In the next section I 

will discuss the categorisation of variable selection methods for metabolomics. 

 

2.3 Literature search 
 

 In this literature review I focus on variable selection methods that are applied         

to metabolomics. The literature search applies the following terms: “variable 

selection” AND “metabolomics” in the full text articles. The search considered 

research papers and publications written in English and published within the last 10 

years (i.e., from 2009 to 2019).  

 

 Bramer et al. suggested to use multiple databases to search relevant references 

in order to conduct efficient searches [44]. Three databases were used for literature 

search purpose in this thesis: Public MEDLINE (PubMed), Medical Literature 

Analysis and Retrieval System Online (MEDLINE) and American Chemical Society 

(ACS) publications databases. PubMED and MEDLINE databases focus on 
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biomedical and life sciences publications. Meanwhile, ACS publications had the 

potential to capture metabolomics data publications. Figure 2.1 shows the databases 

used while searching the literature, the number of articles excluded, and the number 

of articles selected. Using the PubMed database, 44 articles were identified. By using 

multi-field search in MEDLINE database, 62 articles were found. Additionally, ACS 

publications database identified 117 articles. In overall, 82 articles have been 

reviewed. 
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Databases 

Public MEDLINE (PubMED) 
Medical Literature Analysis and Retrieval 

System Online (MEDLINE) 
American Chemical Society 

(ACS) publications 

Variable selection of 
metabolomics (n=44) 

Variable selection of 
metabolomics (n=62) 

Variable selection of 
metabolomics (n=117) 

Variable selection of 
metabolomics (n=192) 

Excluded due to repetitions (n=31) 

Variable selection of 
metabolomics (n=82) 

Excluded due to variable selection not 
being discussed or conducted (n=110) 

• Metabolite pathway (n=31) 

• Pre-processing (n=20) 

• Software (n=15) 

• Methods used to tackle missing values 
problem (n=12) 

• Metabolic profiling (n=32) 
 

  
 
 Figure 2.1: Databases used to search research articles, indicating the number of papers excluded 

and the reasons, and the number of articles selected to be reviewed 
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2.4 Variable selection methods of metabolomics 
 

Table 2.1: List of variable selection methods and classification to analyse metabolomics data 
Variable selection methods 

Univariate approach Multivariate approach 
Filter Wrapper Embedded Other 

• Correlation-adjusted t-scores 
(cat score) [44]  

• Analysis of Variance (ANOVA) 
[12], [13], [49], [50], [14]–[16], 
[18], [45]–[48] 

• Error rate p-values (ERp) [27]  

• Extension of ERp (XERp) [51]  

• T-tests [15]–[17], [52]–[55] 

• Rank aggregation [52]  

• Selectivity ratio [56], [57] 

• Relief algorithm[52] 

• Wilcoxon rank-sum [52], [53] 
• Correlation-based feature 

selection (CFS) [8]–[10] 

• Mutual information [58] 

• Signal to Noise Ratio [59] 

• Chi Square [50] 

• Sensitivity ratio [57] 
 

• Minimum 
Regularized 
Redundancy 
Maximum 
Robust 
Relevance 
(MRRMRR) 
[58]  

• Forward  
selection [60]  

• Stepwise  
regression 
[61] 

• Backward 
selection [49] 

• Least Absolute 
Shrinkage and 
Selection Operator 
(Lasso)[15], [18], 
[65]–[67], [19], 
[20], [33], [35], 
[50], [62]–[64] 

• Elastic Net [15], 
[18], [65], [68] 

• MUVR[69]  

• Sparse Group Lasso 
[65], [68] 

• Group Lasso [68] 

• Adaptive group-
regularized ridge 
regression [68]  

• Principal Component Analysis  
(PCA) [11], [12], [54], [55], [59], [60], [70]–[75], [13], [76]–[85], [14], 

[86], [87], [15], [16], [31], [42], [50], [53]Logit-Normal Continuous 

Analogue  

of the Spike-and-Slab Prior (LN-CASS) [65]  

• Horseshoe [65] 

• Ordinary Least Square [65] 

• Multi-block Variable Influence  
on Orthogonal Projections (MB-VIOP) [73] 

• Orthogonal Projections to  
Latent Structures (OnPLS)[73] 

• Wisdom of artificial crowd (WoAC) [66] 

• SVM-RFE [47] 

• RF-RFE [47] 
• Best linear unbiased prediction (BLUP) [20] 

• Boruta[88] 

• Kruskall-wallis non-parametric test [15] 

• Genetic Algorithm [89], [90] 

• Variance of the b regression vector[91] 
Classification methods 

• Partial Least Square – Discriminant Analysis (PLS-DA) [5], [11], [48], [52]–[54], [57], [58], [60], [67], [69], [71], [12], [74], [78], [80], [89], [92]–[97], [14], [98]–[104], 
[15], [28]–[30], [37], [46] 

• Logistic regression [19], [47], [49], [55], [61] 

• Kernel-based PLS [105] 
• Sparse PLS-DA [99], [106], [107] 

• Discriminant Analysis (DA) [5], [26], [50], [72], [77] 

• Support Vector Machine (SVM) [5], [26], [47], [65], [72], [95] 

• Random Forest (RF) [5], [26], [35], [47], [65], [66], [69], [72], [95], [108] 

• K-nearest neighbour (KNN) [26] 

• Neural Network [65]  
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Table 2.1 shows the list of variable selection and classification methods 

applied to metabolomics data.  The variable selection methods are categorised into 

filter, wrapper and embedded methods in univariate or multivariate approaches. Some 

additional variable selection methods are listed in ‘Other’ column. In addition, some 

of the classification methods applied metabolomics data including Partial Least 

Square-Discriminant Analysis (PLS-DA), Discriminant Analysis (DA) and Neural 

Network. However, this thesis focuses on the variable selection methods of 

metabolomics only.  

 

 T-test and Analysis of Variance (ANOVA) can be applied for variable 

selection. The assumptions of these methods are normality of the data and 

homogeneity of variance. Havlicek, L. L. & Peterson N. L. (1979) studied the 

empirical effects of quantified violations of assumptions underlying t-test and 

ANOVA using Monte Carlo procedure. They concluded that t-test and ANOVA are 

remarkably robust to deviations from normality and different sample sizes [110]. 

Blanca et. al. (2018) investigated the robustness of t-test and ANOVA in relation to 

variance homogeneity using the Monte Carlo simulation. The ratio of the largest to 

smallest variance (variance ratio) is a measure of variance homogeneity. The results 

suggest that a variance ratio above 1.5 may be established as a rule of thumb for 

considering the robustness under homogeneity for t-test and ANOVA [111].  

 

Filter, wrapper and embedded variable selection methods are explained in the sub 

sections 2.4.1, 2.4.2, and 2.4.3, respectively.  

 

2.4.1 Filter variable selection methods 
   
 The goal of filter variable selection is to extract the most important metabolites 

from metabolome gathered by NMR or MS by using a variable ranking or variable 

score. Filter variable selection methods are the simplest methods and most widely used 

in metabolomics studies [29].  

 

 Most filter methods follow a univariate approach. Univariate approaches are 

useful for uncovering simple associations between biomarkers and responses. They 

offer simplicity as well as inexpensive and computational efficiency when applied to 
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complex datasets such as metabolomics data. However, univariate approaches are 

unable to reveal some key features of the data such as patterns of correlation among 

the biomarkers since each variable is considered independently. As a result, this leads 

to redundancy issue. It is one of the common issues in metabolomics which there are 

recurrent detection of adducts that greatly inflate the number of detected peaks [109]. 

In addition, the classification and prediction are also affected if the key features of the 

data are not revealed. Some metabolites might be non-significant on their own but 

become significant when analysed in combination with other metabolites (as they have 

association among them). Hence, in order to overcome this problem, some filter 

methods that considers the correlation have been proposed such as correlation-based 

feature selection [8]–[10]. 

 

 The most commonly used univariate filter method is the Analysis of Variance 

(ANOVA). This method calculates a p-value for each metabolite in order to find the 

most significant metabolites. ANOVA is often used to identify variables that 

significantly differ between two or more independent groups through the p-values. 

ANOVA partitions the total variance of the metabolomics dataset into a number of 

components, so that the significant contributions of identified sources of variance to 

the total variation in responses can be determined. As a result, the ANOVA coefficient 

!, is calculated to allow the differences between means of groups to be assessed. 

Previous research used ANOVA in their studies [12], [14]–[16], [110]. Kirpich et al. 

studied a software named SECIMtools, which a suite of metabolomics data analysis 

tools. The authors claimed that ANOVA was in this software and it was commonly 

used to analyse metabolomics data. ANOVA equations can be expressed as follows in 

Equations 2.1-2.5 [111]: 

 
! =

#$%

#$&
 (2.1) 
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where ! is the ANOVA coefficient, where #$% = ::;

2<4
 is the mean sum of squares due 

to treatment and #$& = ::=

∑ 89
>
9?@ <2

 is the mean sum of squares due to error. SST, where 

$$% = ∑ +,(.̅, − .̅)
12

,34 , is the sum of squares due to treatment and $$& =

∑ ∑ (.,6 −	 .̅,)
189

634
2
,34 is the sum of squares due to error. The total number of groups 

(treatments) is denoted as ', +, is the total number of samples in the A-th group, .̅, is 

the mean value for each group, .,6 is the data value for each sample A and .̅ is the mean 

value for all data. ANOVA uses the null hypothesis that there is no difference in means 

between the groups versus the alternative hypothesis that means differ across groups. 

Hence, if more than two groups are of interest in the study, and the null hypothesis is 

rejected, further analysis needs to be conducted to determine which groups differ (such 

as Tukey test) [14], [45], [112].  ANOVA may not be appropriate when the variance 

across groups are not equal and/or the data is not normally distributed. Some other 

univariate filter methods of metabolomics are rank aggregation, selectivity ratio, relief 

algorithm, mutual information, signal-to-noise ratio, chi square and sensitivity ratio. 

Wilcoxon rank-sum test is a non-parametric test for non-normal metabolomics data.  

 

  The Chi square filter variable selection is less complex computationally than 

Gain Ratio as the latter requires a decision tree [113]. However, Chi Square can only be 

used for categorical datasets. Since metabolomics datasets also involve continuous 

independent variables, Chi square was not applied to our datasets [114]. 

 

The next subsection will discuss the wrapper variable selection methods. 

   

2.4.2 Wrapper variable selection methods 
 

  Wrapper methods are not commonly used in metabolomics since this method 

is more complicated and costly compared to filter methods. They commonly use a 
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multivariate approach as they consider metabolites simultaneously. Wrapper methods 

are wholly data-driven, do not require interpretation of variable importance score and 

they are independent of the chosen modelling methodology. One of the wrapper 

methods is forward selection which starts the procedure with a null set of variables [1], 

[115]–[117]. The algorithm starts with the empty variable set S. Then, continuously add 

variables selected by some evaluation function that minimizes the mean square error 

(MSE). At each looping, the algorithm will select among the remaining available of the 

variable set which has not been added to the variable set. The algorithm will stop when 

the maximum appropriate number of variables is reached. Marcano-Cedeno et al. [118] 

claimed that if the optimal subset of a number of variables is low, less computational 

time is needed to employ forward selection. Forward selection uses the parsimony 

concept and it only shows the “most important” biomarkers. This method also is less 

susceptible to multicollinearity when applied to metabolomics data. There is possibility 

of redundancy when using this method. Let say, forward selection method was selected 

.4 as the first variable and .1B was selected as the second variables. However, actually 

.4 and .1B are highly correlated and there is redundancy issue in the variable selection 

process. Other disadvantage of forward selection is that it does not include a mechanism 

for removing variables after these have been included in the model, even if the model 

is insignificant or irrelevant. The complement of forward selection is backward 

elimination. This method initializes the full set of variables which is opposite to forward 

selection. Forward selection computes faster than backward elimination because 

forward selection evaluates very small variables sets, compared to backward 

elimination that evaluates an almost full set of variables. Guyon Isabelle [119] claimed 

that backward elimination has the ability to remove the “worst” biomarkers early, and 

consequently, relatively few models are considered by leaving only “important” 

biomarkers. Besides that, the first model is the most complicated and it is susceptible to 

multicollinearity when applying this method to metabolomics data. 

 

   An additional wrapper method is stepwise regression and it is a hybrid method 

which combines both backward elimination and forward selection. This method 

checked all variables and only includes significant variables that have the most 

contribution to the classifier into the model. At the same time, it removes non-

significant variables from the model. Stepwise regression has the ability to manage large 

amounts of the potential biomarkers. However, some variables (especially dummy 
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variables) may be excluded from the model despite being truly important for the model. 

Nishiumi et al. [61] used stepwise regression after the pre selection process of the 

metabolites through the p-values obtained by the Mann-Whitney U test which is used 

for not normal metabolomics data. There are two limitations of wrapper methods, which 

may explain why these methods are not commonly used in metabolomics (see Table 

2.1). One limitation is the substantial computation time that is required for a large 

number of variables. A second limitation is that when the number of observations is 

relatively small (compared to the number of variables), the risk of overfitting increases. 

 

   Another wrapper method applied in the previous study is the Minimum 

Regularized Redundancy Maximum Robust Relevance (MRRMRR) method, which is 

insensitive to the presence of outliers in the continuous measurements [58]. This method 

is an extension version of the Minimum Redundancy Maximum Relevance (MRMR) 

approach which is sensitive to outliers. MRRMRR is suitable for high-dimensional data 

and it combines the principle of regularization and robust statistics. Nevertheless, it is 

complex computationally. 

 

 2.4.3 Embedded variable selection methods 
   

 An embedded method is a hybrid method which combines both filter and 

wrapper methods. It takes advantage of the selection process by performing variable 

selection and classification simultaneously. This method is more complicated and 

expensive compared to filter and wrapper methods as they are model dependent, and 

they assess the model performances while selecting the important metabolites. The most 

commonly used embedded methods in metabolomics is the Least Absolute Shrinkage 

and Selection Operator (Lasso). The formula of Lasso is explained in Chapter 3 

(Methodology) since Lasso is used in this thesis. Yengo et al. [19] used Lasso to 

determine the impact of this method on the prediction of type 2 diabetes using 293 non-

targeted metabolomics profiling and 1172 subjects. The difference between this study 

and other studies is the authors used non high dimensional metabolomics datasets. In 

particular, area under the receiver operating characteristic curve (AUROC) was used as 

the predictive tool. The authors used Lasso to predict of type 2 diabetes with the aim of 

maximizing the out-of-sample AUROC. As a result, Lasso improves the prediction of 

type 2 diabetes on top of known clinical and biological markers and it achieved 90% in 
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total AUROC. In my point of view, even though Lasso achieves high percentage of 

AUROC, I think, this study does not need to used Lasso as the sample sizes are larger 

than number of variables and this data can only use the internal variable selection in 

logistic regression. Xu et al. [20] claimed that Lasso is one of the best methods for 

prediction of metabolomics dataset compared to transcriptomics and genomics dataset. 

Yengo et al. [19], Xu et al. [20] and Marco-Ramell et al. [67] used Lasso as variable 

selection method in order to make predictions. Marco-Ramell et al. [67] used Lasso as 

a predictive biomarker model to identify samples with high insulin resistance and it 

reached a high predictive power which is 80.1% of AUROC percentage. Meanwhile, 

Newman et al. [18] used Lasso in order to investigate its performance for a small sample 

size which is less than 100. The study used a simulation study and two real datasets 

(including maize data and genomic expression dataset for type 1 diabetes). Other 

methods also used in this study including ANOVA an Elastic Net and the authors only 

made a conclusion that ANOVA is an excellent choice if the goal of a study is to 

advance a set of variables to the next round of testing for biological relevance because 

the Type II error rate for the ANOVA is lower than other methods.  

 

  The second most common embedded method used in metabolomics is Elastic 

Net, which is the weighted combination of both Lasso and ridge regression penalties. 

First of all, Elastic Net was introduced for prediction involving linear models. Then, it 

was extended for generalized linear model, such as logistic regression which can be 

used for classification. There is little difference between the formula of Lasso and 

Elastic Net. Lasso is using a L1 penalty term which is equal to the absolute value of the 

magnitude of the coefficients C, ‖C‖4 = ∑ FC6F
G
634  . When using this penalty Lasso 

selects at most H biomarkers before it saturates and if there is a group of highly 

correlated biomarkers, Lasso tends to select only one variable from the group. Elastic 

Net was used in order to overcome these limitations by adding a quadratic part to the 

L2 penalty (‖C‖1) which used in ridge regression where (‖C‖1) = 	∑ FC6F
G
634

1. The 

formula of Elastic Net can be expressed as follows in Equation 2.6: 
 

 
CI = 	

C
JK'LA+

	(‖M − NC‖1 + P1‖C‖
1 + P4‖C‖4) 

(2.6) 
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where C represents coefficients of all parameters. P1 is the value of the lambdas for 

L2 penalty and P4 is the value of the lambdas for L1 penalty. A special case of Elastic 

Net is where P4 = P, P1 = 0, or P4 = 0,	P1 = P. The choice of the penalty parameter 

affects the result. Increasing of bias and a poor prediction in the result might be 

happening because this method uses a two-stage procedure, where for each fixed P1	it 

finds the ridge regression coefficients followed by a Lasso type shrinkage. Lasso and 

Elastic Net are quite computationally demanding since they are going through the 

validation stage while selecting the “important” biomarkers. Lu et al. [120] compared 

the predictive performance of Lasso and Elastic Net using stability-based selection 

and it was implemented in the R package with the name BioMark. Newman et al. [18] 

claimed that Elastic Net has an inflated Type I error compared to ANOVA. Elastic 

Net lacks of makes the interpretation of the estimates based on values of the original 

measurement challenging. Elastic Net also can be found in SECIMTools: a suite of 

metabolomics data analysis tools [15].  

 

2.5 Workflow of variable selection methods for classification  
 

Variable selection methods for classification can be categorised into filter, 

wrapper and embedded methods. This is illustrated in Figure 2.2. When using filter 

methods, the variables are ranked, and a number of top ranked variables can be 

included into a prediction model as the filter methods regard these variables as the 

most ‘important’ variables. Wrapper methods evaluate subsets of variables based on 

their classification performance, but a feature selection algorithm is not embedded in 

the processes as with embedded methods. Embedded methods tend to choose variables 

to be included into the model via penalization methods and the classification 

performance is calculated simultaneously. Therefore, embedded methods, in contrast 

to wrapper methods, do not separate the learning and the feature selection processes, 

they are part of the same procedure. 
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  In term of model performance, here is the description of different accuracy 

parameters used in the previous studies. Baratloo et. al. described a simple description 

of Accuracy, Sensitivity and Specificity in their paper [121]. They provided three 

simple examples in order to explain these accuracy parameters for easy understanding 

of the reader. In addition, Janecek et. al. [122] used classification accuracy in order to 

assess performances of Information Gain and Wrapper variable selection methods. As 

the results, the classification accuracy for Information Gain is better than Wrapper 

method as it offers simplicity. Additionally, Wah et. al. [1] compared Correlation-

based Feature Selection, Information Gain, Sequential Forward Selection and 

Sequential Backward Elimination and they used six different accuracy parameters 

including the AIC, BIC, AUC, Accuracy, Sensitivity and Specificity. As we can see, 

Accuracy, Sensitivity, Specificity and AUC are commonly used in previous study. 

Hence, these parameters will be used in this thesis and will briefly explained in 

Chapter 3.  

 

 

 

Metabolomic data 

Filter Wrapper 
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Classification Embedded 
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Classification 
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Performance 
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Figure 2.2: Workflow of variable selection methods for classification 
applied to metabolomics data 



22 
 

2.6 Other variable selection methods for metabolomics 
 
 A commonly used variable selection method, which is not regarded as a filter, 

wrapper or embedded method, is Principal Component Analysis (PCA). PCA is an 

unsupervised multivariate statistical technique which aims to capture most of the 

variation in the data in as few components as possible. It also aims to reveal the major 

patterns in the data. In other words, PCs focuses on data reduction and it can be used 

to summarize the similarities and differences between variables using the score plot 

which shows the amount of explained variance on each pair of PC.  PCA requires the 

calculation of new variables, known as principal components (PCs) that are weighted 

linear combinations of the original variables. The computation of PCA is reduced to 

an eigenvalue-eigenvector problem. Firstly, an adjusted data matrix, N that consists of 

the data from + observations (rows) and H variables (columns) is defined. PCA deals 

with the covariances among the original variables, hence, means are irrelevant. The 

new variables or PCs are also known as factors. Their specific values on a specific 

row are known as the factor scores or the component scores. Equations and 

explanations below give a better understanding of calculation of PCA. The matrix of 

scores are referred as matrix R and the basic equation of PCA is in Equation 2.7:  

 

 R = S′N (2.7) 

 

where S is a matrix of coefficients that are determined by PCA. Equation 2.7 is also 

written as in Equation 2.8: 

 M,6 = U4,.46 +	U1,.16 + +. . . . . +UG,.G6 (2.8) 

 

The factors are a weighted average of the original variables and when the weights, S, 

are generated, the variance of	M4, WJK(M4) and 	M1, WJK(M1) are maximized. The 

implication is the correlation between 	M4 and 	M1 becomes zero. The remaining 	M,′X 

are calculated so that their variances are maximized, with the constraint of the variance 

between 	M,and 	M6, for all A and Y (A not equal to Y), is zero. The weights, S is 

calculated from the variance-covariance matrix, $ and it is calculated using the 

formula in Equation 2.9: 

 
X,6 =

∑ (.,Z − .̅,)(.6Z − .̅6)
8
Z34

+ − 1
 

(2.9) 
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The singular value decomposition of $ provides the solution to the PCA problem and 

it can be expressed as in Equation 2.10: 

 [′$[	 = \ (2.10) 

 

where \ is a diagonal matrix of the eigenvalues of $, and [ is the matrix of 

eigenvectors of $. S is calculate from the \ and U as follows in Equation 2.11: 

 
S = [\<

4
1 (2.11) 

 

 

PCA can be calculated using the correlation or variance-covariance. The formula for 

the correlation between an A]^ factor and the Y]^ original variable is shown in Equation 

2.12: 

 
K,6 =

_,6`a,
X66

 
(2.12) 

 

where _,6 is an element of [, a, is a diagonal element of \ and X66 is a diagonal element 

of $. The correlations are also known as the factor loadings. If the correlation is used 

instead of variance-covariance, the equation for R is changed as follows in Equation 

2.13: 

 
R = S′b<

4
1N (2.13) 

 

where b is a diagonal matrix made up of the diagonal elements of $. Hoyos Ossa et 

al. [77] used PCA to check the behaviour of the QC samples as a measure of technical 

variability. Additionally, López-Álvarez et al. [110] used PCA with three objectives 

such as to examine the structure of the data, to assess whether the observed groupings 

were consistent with the taxonomic circumscriptions proposed for three groups and to 

evaluate the level of covariation in variables.  

   

 One advantage of PCA is that it accounts for correlated variables. As 

mentioned previously, most of metabolomics data are highly correlated. Hence, it is a 

key step to reduce the number of variables before developing the classification tool. 

PCA is able to produce new uncorrelated variables, which explain most of the 

variability in the dataset. PCA can deal with normally distributed and non-normally 
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distributed datasets. In addition, PCA may improve algorithm performance. With so 

many variables in the data, the computation of the algorithm might be slow. PCA is 

an efficient way to improve the efficiency of the machine learning algorithms by 

removing correlated variables that are irrelevant in any decision making. The risk of 

overfitting may be reduced with PCA by reducing the number of variables. It is 

difficult to visualise and understand high dimensional data. Principal components are 

linear combinations of the original variables. Hence, the independent PCs tend to be 

more difficult to interpret than the original variables, especially for high dimensional 

data such as metabolomics data. Although the first principal components tend to 

capture the maximum variance of the original variables, information loss may also 

occur depending on the number of principal components selected. 

 

2.7 Classification methods of metabolomics 
 

  As we can see from Table 2.1, Partial Least Square – Discriminant Analysis 

(PLS-DA) is the most common classification method used in metabolomics. PLS-DA 

is a supervised linear classification model for the discrimination structure in the data 

using the VIP variable selection method. Given data with group labels it produces a 

set of latent variables (similar to PCA) that maximise correlation between variables 

and the labels. The risk of overfitting issue can be reduced imposing cross validation. 

 

 There were a number of researches that used PLS-DA in their studies. One of 

the studies was a study that analysed the stool samples as they believed that analysis 

of fecal metabolites can offer new possibilities of routine diagnostics of the helminths 

infections. They used a metabolomics dataset consisting of 30 stool samples and 429 

variables in order to classify a sample into ‘no infection detected’ class or ‘infected’ 

class [53]. Kostidis et al. [53] argued that PCA failed to describe a clear pattern in the 

data, hence, the authors built PLS-DA and the model proved that there is a lack of 

association between the infection status and metabolic composition of the faeces. In 

addition, Djukovic et al. [30] used PLS-DA to classify colorectal cancer, polyps and 

healthy control groups and they proposed a backward variable elimination PLS-DA 

combined with Monte Carlo cross validation (MCCV-BVE-PLSDA), which are 

applied to a combination of NMR and MS variables. Other classification methods of 

metabolomics are k-nearest neighbours, discriminant analysis, support vector machine 



25 
 

and random forest. The authors recommended to use MCCV-BVE-PLSDA as the 

variable selection step for biomarker discovery as it is straightforward and easy to 

implement compared to other methods. Even though SVM can be applied to 

metabolomics data, it may be computationally intensive compared to logistic 

regression [126]. SVM output class label is +1 and -1. It does not compute 

probabilities as the logistic regression does, which allow to assess ROC curves for 

model performance [56]. An additional limitation of SVM is the lack of test statistics, 

such as scores and loadings, available for easy visualization and interpretation [127]. 

KNN can be also computationally intensive and it is does not work well with high 

dimensional datasets, such as metabolomics data since it is difficult for the algorithm 

to calculate the distance in each dimension [125]. Random Forest can be time 

consuming when constructing the decision tree [129]. Neither SVM, KNN nor 

Random Forest were used as the classification method. I focused on logistic regression 

in order to produce a simpler equation, easy to use and to interpret. This will be 

described in Chapter 3. 

 

2.8 Discussion 
 

 I have reviewed the literature related to variable selection methods in 

metabolomics. Metabolomics data often consist of a large number of correlated 

metabolites from a small number of samples. Hence, the variable selection process is 

an important step in metabolomics studies. The aim of variable selection is to 

determine the most significant and important metabolites that can discriminate 

between classes with minimum error and make an accurate prediction. Many variable 

selection methods used in previous studies were either filter, wrapper or embedded 

methods, with filter methods being the commonly used. More specifically, in 

metabolomics ANOVA is the most popular univariate filter method. It is easy to use 

and fast for selecting the most informative metabolites. However, it ignores the 

correlation among the metabolites and only considers each metabolite at a time. 

Additionally, ANOVA is unable to provide good results if the data do not meet the 

assumptions (i.e., same variance across groups and data normally distributed). PCA 

and PLS-DA are often used for variable selection methods and classifications 

respectively. On the other hand, wrapper methods are rarely used in metabolomics and 

only a few embedded methods have been applied. 
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This thesis considers the corT method (see Chapter 3). This method is a filter 

variable selection method that has been applied to genomic data and it takes into 

account the correlation among variables. However, this method can only be used to 

datasets that involve positive correlations. It can be applied to metabolomics data if 

the data having positive correlation. There will be a problem if the metabolomics data 

having negative correlation. Hence, to address this problem, an extension of this 

method namely adjusted corT (adjcorT) method is proposed in this thesis for the 

analysis of metabolomics area. None of the previous studies have applied this method 

to metabolomics data. As far as I know, none of the previous studies compared Lasso 

and corT even though both methods consider correlations among the variable. In this 

thesis I compare the performance of Lasso, corT and adjcorT as variable selection 

methods. Since corT is based on t-tests (T method), I also consider the T method for 

comparison purposes. 
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Chapter 3  
Methodology 
 
 
3.1 Introduction 
 

In Chapter 2 I conducted a literature review of the variable selection methods 

commonly used in metabolomics. I identified limitations of the existing methods 

which motivated me to propose a new variable selection algorithm (adjcorT) and to 

compare the proposed method with already available variable selection methods. 

Hence, the goal of this chapter is to describe the rationale and application of adjcorT. 
 

 In order to fully identify the most important compounds in metabolomics 

datasets for clinical classification, and thus develop an appropriate model, a number 

of steps need to be followed. These include data pre-processing, variable selection, 

classification and assessment of the model performance. The performance of a 

model, which assess the ability of a model to provide accurate predictions, can be 

assessed in different ways. Model performance is in this thesis was assessed by using 

classification accuracy, sensitivity, specificity and Area Under ROC (AUC). Please 

see Section 2.5 in Chapter 2 for a description of the different accuracy parameters. 

The higher the model performance, the better the variable selection method is in 

selecting the most important compounds. Before any analysis is conducted, it is 

helpful to explore the structure of the dataset via a scatter plot in order to assess the 

correlation between variables and patterns of the data. In addition, data pre-

processing is often conducted in order to deal with missing values and data scaling 

of the data before any further analysis is done. Methods that are used during this 

process (from data pre-processing to classification) are discussed in this chapter and 

explored in the subsequent chapters. 
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Section 3.2 describes the data pre-processing, which as described above, 

includes ways of dealing with missing values and data scaling. Several variable 

selection algorithms are described in Section 3.3, including adjusted correlation 

sharing t-statistics (adjcorT), least absolute shrinkage and selection operator (Lasso), 

t-statistics (T) and correlation sharing t-statistics (corT). Logistic regression, as a 

method for classification, is discussed in Section 3.4. Meanwhile, Section 3.5 

describes commonly used measures to assess the classification performance of a 

classifier (for example, a classifier that is generated from a logistic regression model). 

This is followed by a discussion in Section 3.6.  

 

3.2 Data pre-processing 
 

Pre-processing involves the evaluation of missing values, checking for 

duplicate samples, assessment of noise in the data, and assessment of aspects related 

to the relationships within the dataset (e.g., which may indicate multicollinearity). 

 

Data pre-processing may affect greatly the outcome of the analysis and 

different data pre-processing may generate different results. 

 

 3.2.1 Missing values 
 

 

 Having missing values is common with real datasets. Two methods known as 

listwise deletion and pairwise deletion are commonly used to handle missing values. 

In terms of clinical application, listwise deletion is a complete case analysis which 

simply removes those patients with the missing data and analyse the remaining data. 

However, this technique often produces bias in the estimation of parameters since it 

rarely supports the assumption of missing completely at random (MCAR). If the 

sample size of the data is large enough, and the assumption of MCAR is satisfied, 

listwise deletion may be a reasonable technique to handle missing data. Pairwise 

deletion, on the other hand, removes certain data points only when those data points 

are missing.  All remaining existing information are used in the statistical analysis. 

This technique preserves more information as it uses all information observed. 

However, if most of the entire variables consist of a large number of missing values, 

these methods are not appropriate because the researcher may lose important 
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information of the dataset, especially when the sample size is small. Imputation 

methods provide an alternative way to deal with missing values. In general, different 

imputation methods, especially when the rate of missing data is large, will affect the 

accuracy of the classifier differently. Multiple imputation and other sophisticated 

imputation methods are often preferable in real data application. Multiple imputation 

may minimise bias and increase the level of precision of the estimates of the model 

parameters [130]. Additional imputation methods can be used, such as k nearest 

neighbors (KNN). KNN can be used for datasets that are continuous, discrete, ordinal 

and categorical, which makes it useful for dealing with all type of missing data jointly 

[131]. KNN requires the selection of the number of nearest neighbours and a distance 

metric. KNN is easy to implement, however, this method is computationally expensive 

and is very sensitive to outliers. It is not often used with high dimensional data as it 

becomes difficult to calculate the distance in each dimension [129]. As metabolomics 

datasets are highly dimensional, imputation using KNN is has not been considered in 

this thesis [130]. Other imputation method, such as regression imputation, have also 

its limitations [40],[134]. 

 

Wei et al. compared eight imputation methods (zero, half minimum, mean, median, 

random forest, Singular Value Decomposition (SVD), k nearest neighbors and 

quantile regression imputation), which were applied to metabolomics data. They used 

four real metabolomics datasets containing different missing values scenarios in order 

to compare these eight imputation methods.  Normalized root mean squared error 

(NRMSE) was used to evaluate their performance. The authors found that mean 

imputation was an acceptable method to use when tackling the missing values in 

metabolomics data [39]. The authors also displayed the results of SVD imputation 

applied to metabolomics data and showed that this method did not perform well. Based 

on the results, for the dataset with a proportion of missing values of 0.3, the NRMSE 

for mean imputation was 1.0 and for KNN imputation was 1.2, which do not greatly 

differed. 

 

Simple imputation methods such as the mean (applied in this thesis) and median 

imputations allow to maintain the sample size and are easy to use. Other imputation 

methods could be explored in order to minimise the bias introduced by missingness. 
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 3.2.2 Data scaling  
 

After applying mean imputation, the datasets are scaled with the aim of 

limiting the range of the variables so that they can be easily compared. The scaling 

methods are based on the data dispersion or size measure [131]. Autoscaling, range 

scaling and pareto scaling are the scaling methods based on data dispersion such as 

standard deviation. Meanwhile, level scaling is a scaling method that uses a size 

measure such as the mean. This thesis uses the autoscaling method which uses the 

standard deviation as the scaling factor. The advantage of using this method in 

metabolomics is that all metabolites are given the same importance. In the clinical 

applications, once missing values were imputed by the mean the data were scaled 

using the scale function in R.  

 

3.3 Variable selection algorithms 
 
 This thesis focuses on the performances of variable selection methods in the 

area of metabolomics in order to tackle the limitation of the existing variable selection 

methods (some methods are ignoring correlations among variables and some other 

methods are only considers positive correlations among variables), in this section I 

propose a new method for variable selection named adjcorT. I also explore three 

existing variable selection methods: Lasso, corT and T methods. 

 3.3.1 Variable selection algorithm: adjcorT 
 

 The method adjcorT is an extension of the correlation sharing t-statistics 

(corT), which is described in Section 3.3.4. Metabolomics data might exhibit both 

positive and negative correlations. The aim of using adjcorT is to identify important 

biomarkers in metabolomics data while allowing for both negative and positive 

correlation among biomarkers. This method examines the correlation between 

biomarkers from -1 to 1, and therefore it includes both negative and positive 

correlations as opposed to corT, which only considers positive correlation among 

predictors (corT is explained in Section 3.3.4). CorT was applied to genomic data in 

the previous study [136] and, to my knowledge, no study has applied corT to 

metabolomics data. Tibshirani R. & Wasserman L. [136] applied corT to four datasets, 

of which all datasets are highly dimensional. Based on the results, corT performed 
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well for all datasets, where corT often exhibits lower false discovery rates than the 

simple t-test. However, corT do not consider negative correlation in the algorithm. 

Hence, an extension of corT is proposed by adding the algorithm that finds both 

positive and negative correlations while searching the important biomarkers. 
 

Let N be a matrix that consist of H x + of expression values, for H variables and + 

samples. I assume that the samples fall into two groups Y = 0 and 1 (e.g., disease, non-

disease). I start with the standard (unpaired) t-statistics as shown in Equation 3.1: 

 
%, =

.̅,4 − .̅,B
X,

 (3.1) 

 

 Here .̅,6 is the mean of the A-th variable 	(A = 1,2, … . . , H) in group 0 or 1 and 

X, is the pooled within-group standard deviation of the A-th variable. Let ., denote the 

A]^ row of N. For each variable A, I define the set ef(A) = {h: |klKK(.,, .Z)| ≥ n} 

where n ≥ 0, which is the set of the indices of the variables with correlation (absolute 

value) equal or larger than n with variable .,. Additionally, U is the cardinal of the set 

ef(A). For example, if ef(1) = {.4, .pB, .41B} then U = 3. I define _, and K,  in 

Equation 3.2 and Equation 3.3 respectively: 

 
_, = LJ.(Brfr4)

1

U
* |%6|

6∈tu(,)

 (3.2) 

 

 K, = XA'+(%,)	. _, (3.3) 

 

 where, LJ.	is the maximum. In addition, each variable is assigned a score K, 

which equals to the average of all t-statistics for variables having correlation (absolute) 

at least n with variable A, choosing the best value of n to maximize the average. 

AdjcorT is a filter method and it is easy to use. This method is only applicable for 

continuous variables as it calculates the t-scores of each variable and assesses the 

correlation with the other independent variables. 

 3.3.2 Lasso 
 

 In this thesis, the selection method Lasso was used and the results were 

compared with the adjcorT method as Lasso is one of the most commonly used in 
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metabolomics area. Lasso was introduced in geophysics literature in 1986 and later 

rediscovered by Robert Tibshirani in 1996 [133]. Briefly, Lasso stands for Least 

Absolute Shrinkage and Selection Operator and it is a regression method that includes 

a penalty term during the variable selection process to increase the classification 

accuracy with minimum error. In other words, Lasso aims at reducing variance in 

models that contain a large number of useless variables. This makes the final model 

simpler and easier to interpret. Lasso penalises the absolute values of the model 

coefficients, known as \4 penalty term and which can be expressed as  ∑ FC6F
G
634 . The 

mathematical equation of Lasso can be expressed by the Equation 3.4: 
 

CIvwxxy =
LA+ALAz{

C |*}M, − CB −*.,6C6

G

634

~

1
�

,34

+ P*FC6F

G

634

Ä 
(3.4) 

 

 subject to 

 
* FC6F

G

634
	≤ Ç (3.5) 

 

 where Ç is the upper bound of the summation of the absolute coefficients, P 

is the tuning parameter that controls the strength of the penalty [134]. P is often set 

using cross-validation in the cv.glmnet package in R software. The larger P, the larger 

the amount of shrinkage. When the P is equal to zero, the Lasso will produce the 

classical the least square coeficients (the penalty term has no effect). When we 

increase the P  value, the coefficients of informative variables will shrink a little bit 

and the non-informative variables will go all the way to zero. If P becomes ∞, all the 

coefficients will be equal to zero. There is reverse relationship between P and Ç. That 

means, Ç becomes 0 as P goes to ∞. Vice versa, Ç becomes ∞ as P goes to 0. Lasso 

will be computed as a quadratic programming problem. The ten-folds cross-

validation approach is used as the default approach in cv.glmnet package.  
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Figure 3.1 illustrates the estimation process for Lasso. It shows the contours 

of the error (in red) and the constraint regions (solid blue area; eg: |C4| + |C1| ≤ Ç). 

Lasso finds the first point where the least square regression border touches the 

constraint region. Based on the figure, the constraint region for Lasso is a diamond, 

it has corners. It means that if the first point touches the corner, then that coefficient 

C6 equal to 0.  

 

Figure 3.1: Estimation process for the Lasso approach 

 Source: Hastie, Tibshirani, and Friedman, 
 The elements of statistical learning, 2009 

 

Commonly, Lasso is used in high dimensional data where the number of 

variables is larger than the sample size. High dimensional data is usually costly and 

that is why the sample size is relatively small. 

 

Lasso has a number of limitations. First, for high dimensional data with a large 

number of covariates (H) and small sample size (+), Lasso tends to select at most + 

variables before it saturates. Secondly, if there are correlated variables, Lasso tends to 

select one variable and ignore the other variables in that correlated group. One of the 

methods that can overcome Lasso limitation is Elastic Net method which is a 
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hybridisation of ridge regression and Lasso. However, I used Lasso in this thesis since 

the computational cost of Elastic Net is expensive due to \4 and \1 penalty terms. 

 

3.3.3 T-test Feature Selection Method (the T-method) 

  

The t-statistics was introduced by William Sealy Gosset in 1908, a chemist 

working in Dublin, Ireland. Specifically, this research used the idea of independent 

sample t-test. T-test assumes the cases are independent of each other: an inaccurate p-

values will occur if the assumption is violated. Furthermore, the next assumption is it 

should be random samples of the data from the population. The t-test assumes 

homogeneity of variances across groups and no outliers in the data.  

 

The T method is a method of variable ranking that uses the t score. As defined 

earlier, let N be the H	x + matrix of expression values, for H variables and + samples. 

I assume that the samples fall into two groups Y = 0 and 1. I start with t standard 

(unpaired) t-statistics for each variable as shown in Equation 3.6: 

 

 %, =
Ñ̅9@<Ñ̅9Ö

x9
  where  A = 1,2, . . . . , H (3.6) 

 

 Here .̅,6 is the mean of variable ., in group 0 or 1 and X, is the pooled within 

group standard deviation of variable .,. Mathematically, .̅,6can be calculated as in 

Equation 3.7: 

 
.̅,6 =*

.,6
+6

8

,34

 
(3.7) 

 

Meanwhile, X, can be calculated using the following Equation 3.8:  
 

 
X, = Üá

1

+B
+
1

+4
à ∗ X,

1 
(3.8) 

 

 The strength of using the T method is that it can be used to discriminate 

between the two groups based on the t scores, simply by estimating the differences in 
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means between the two groups divided by its standard error. No difference in means 

between the two groups would imply that the variable does not offer any degree of 

discrimination between the groups. To apply the T method, I used an adjusted version 

of the cst.stat function from the st package in R environment since it can calculate the 

t-scores for each variable. 

 

3.3.4 corT method 

 
corT stands for correlation sharing t-statistics. CorT method was proposed by 

Tibshirani and Wasserman in 2008 [132]. CorT method is a method of variable 

ranking that takes into account the t scores as well as the correlation among the 

variables. 

 

corT uses the same procedure to adjcorT. As mentioned in section 3.3.1, the 

main different between the corT and adjcorT is the set ef(A) = {h: klKK(.,, .Z) ≥ n}  

where n ≥ 0, which is the set of the indices of the variables with correlation equal or 

larger than n with variable .,. Additionally, this method only considers positive 

correlation among predictors. It does not account for negative correlations. The 

limitation of this method is it not design to select the correct discriminators when there 

is negative correlation between discriminators. The corT method uses the function 

cst.stat. Limitation of corT is that it was design only for continuous covariates and it 

has a slow computational speed for large sample sizes. 

In this thesis I applied corT to metabolomics data. To my knowledge, no 

previous study in the area of metabolomics has applied corT to metabolomics data. 

CorT can be regarded as an extension of the T method. CorT was used in this thesis 

to compare its performance with the performance of the T method and assess whether 

there is any improvement when the correlation is taken into account. In addition, I was 

interested in comparing corT with the proposed method adjcorT to explore their 

performance when dealing with negative correlations among variables.  

 

3.4 Logistic regression for classification methods 
 

Logistic modelling can be used to develop a classification rule. Logistic 

regression was developed by David Cox in 1958. Logistic regression can be regarded 
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as an extension of simple linear regression when the dependent variable is 

dichotomous or binary. Logistic regression was here used to model the relationship 

between binary outcome variables (eg: disease and non-disease groups) and predictor 

or explanatory variables. The predictor variables can be categorical (nominal/ordinal) 

or continuous (interval/ratio). Both simple linear regression and logistic regression 

aim to find the best fitting model and the most parsimonious model. Logistic 

regression generates probabilities, which can be used to classify new patients using 

continuous and discrete measurements. 

 

 Logistic regression was chosen as the classification method since this is a 

simple approach and it is commonly used in the metabolomics literature for 

classification. Logistic regression can be used for parameter estimation, prediction and 

classification. L1/L2 regularization can be also used, which means that Lasso or ridge 

regression can be incorporated. Logistic regression also tends to provide a simple 

equation compared to other classification methods. When the independent variables 

don’t satisfy these assumptions, the estimates of the coefficients and standard errors 

might be large. Consequently, the confidence intervals tend to be wider and fail to 

detect truly statistically significant differences. Meanwhile, when the assumptions of 

the logistic regression classifier do not hold (such as the independent variables are not 

linearly related to the log of odds, the dependent variable is not binary and the 

observations are dependent to each other), the model interpretations might also be not 

valid [139].  

 

Other assumptions also apply. Logistic regression assumes that the 

observations are independent of each other. Strictly speaking, the observations should 

not come from repeated measurements. It also assumes that there is little or no 

multicollinearity among the predictors. The predictors are assumed to have a linear 

association with the log odds. In addition, logistic regression requires a large sample 

size. However, it does not mean that the analysis is wrong if the sample size is small, 

but if the ratio of number of samples per number of predictors is low, the estimates 

might be biased.  

 
Let R be an outcome and . be the independent variables. Mathematically, 

ä(.) = &(R|.) was used in logistic regression to represent the conditional mean of R 



37 
 

given ..  The mathematical equation for a logistic regression model reads as in 

Equation 3.9: 

 

 
ä(.) =

{ãÖåã@Ñ@åãçÑçå.......ãéÑé

1 + {ãÖåã@Ñ@åãçÑçå.......ãéÑé
 

(3.9) 

 

where CB + C4 + C1. . . . C8 is the linear predictors (CB, C4, C1, . . . C8 to be 

predicted). A logit transformation represents the transformation of ä(.). The equation 

is in Equation 3.10: 
 

 
'(.) = a+ è

ä(.)

1 − ä(.)
ê 

             =	CB + C4.4 + C1.1+. . . . . . . C8.8 

 

(3.10) 

 

'(.) shows linearity with predictors, which is one of the assumptions in 

logistic regression. The method of maximum likelihood yields values for the unknown 

parameters (ë = CB, C4, C1, . . . C8), which maximises the probability of obtaining the 

observed set of data given the model. Likelihood function needs to be constructed in 

order to get the maximum likelihood. Then, the maximum likelihood is chosen as it is 

maximise the likelihood function. Generally, the likelihood function represents the 

probability of the observed data as a function of the unknown parameters.  

 

Let + be number of the independent observations of the pair (.,, M,), A =

1,2… . , +, where M, is the value of a binary outcome variable and ., is the vector of 

value of the predictors for the A]^ observation. The conditional probability that R is 

equal to 1 given . is denoted as í(R = 1|.). Therefore, 1 − ä(.) gives the 

conditional probability that R is equal to 0 given ., i.e., í(R = 0|.). The likelihood 

function can be expressed as follows in Equation 3.11: 

 

 ä(.,)
ì9[1 − ä(.,)]

4<ì9 (3.11) 

 

Any pair of (.,, M,) where M, = 1 contributes to the likelihood function of ä(.) 

and any pair of (.,, M,) where M, = 0 contributes to the likelihood function of 1 −
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ä(.). As mentioned above, one of the assumptions of logistic regression is the 

observations need to be independent of one another, Under independence, the 

likelihood function can be expressed as the following product in Equation 3.12: 

 

 
a(ë) =ñä(.,)

ì9[1 − ä(.,)]
4<ì9

8

,34

 
(3.12) 

 

The log likelihood can be defined as in Equation 3.13: 
 

 
\(ë) = ln[a(C)] =*{M,a+[ä(.,)] + (1 − M,)a+[1 − ä(.,)]}

8

,34

 

 

(3.13) 

 

 In order to find the value of ë that maximises \(ë), the \(ë) is differentiated 

with the respect to CB and C4 and set the equation equal to zero as in Equation 3.14 

and Equation 3.15:  
 

 *[M, − ä(.,)] = 0 (3.14) 

 

and 
 

 *.,[M, − ä(.,)] = 0 (3.15) 

 

The maximum likelihood estimates, ëô will be obtained from Equation 3.14 

and Equation 3.15. “^” denotes the maximum likelihood estimate of the respective 

parameter. It represents the fitted value of the parameters in logistic regression model. 

Consequently: 

 
*M, =*äö(.,)

8

,34

8

,34

 
(3.16) 

 

 The sum of the observed values of M is equal to the sum of the fitted values. 

The glm function from the R environment was used to generate the logistic regression 
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models. The decision boundary for a logistic regression is linear. Logistic regression 

was chosen as the classification methods to the investigate the performance of the T, 

corT, adjcorT and Lasso methods when this classification methods. 

 

3.5 Classification performance of a classifier 
 

 The performance of a variable selection methods is based on the classification 

accuracy, Area Under Receiver operator curve (AUC), as well as sensitivity and 

specificity of the classifier. The accuracy parameters can be described using the two-

by-two confusion matrix (Table 3.1) [92], [112], [136], [137]. 

 

     Table 3.1: An outline of the two-by-two confusion matrix 

  Actual Condition 

    

Predicted 

Condition 

 Definitions: 

 %í = Number of positive samples that are correctly classified as positive 

 !í = Number of negative samples that are incorrectly classified as positive 

 %õ = Number of negative samples that are correctly classified as negative 

!õ = Number of positive samples that are incorrectly classified as negative 

 The accuracy of a test measures its ability to discriminate samples correctly 

into positive and negative. The proportion of true positive and true negative from all 

evaluated samples was calculated to estimate get the accuracy parameters. The 

function misClassError from the package Information Value package in the R 

environment was used to calculate the classification accuracy using:  

 Positive Negative 

Positive True positive 

%í 

False positive 

!í 

Negative False negative 

!õ 

True negative 

%õ 
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úkk_KJkM =

%í + %õ

%í + %õ + !õ + !í
 (3.17) 

 

  Sensitivity is defined as the proportion of true positive samples that are 

correctly classified: 

 
${+XAÇAùAÇM =

%í

%í + !õ
 (3.18) 

 

 Specificity is defined as the proportion of negative samples that are correctly 

classified:  

 
$H{kAûAkÇM =

%õ

%õ + !í
 (3.19) 

 

 ROC curve is a plot of the true positive fraction (sensitivity) on the y-axis and 

false-positive fraction (1-specificity) on the . − J.AX used to evaluate the classifier. 

Figure 3.2 is showing an example of ROC curve.  The area under the curve (AUC) 

of the ROC can take values between 0 to 1. AUC = 1, correspond to a perfect 

prediction, while AUC = 0.5 means a random guess [138]. The higher the AUC value, 

the better the classifier. Additionally, the closer the curve is to the upper left corner, 

the larger the area under the curve. The functions sensitivity and specificity from the 

package Information Value package [139] in the R environment were used to 

calculate sensitivity and specificity, respectively. The AUC value was calculated 

using the function AUROC. 
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Figure 3.2: An example of ROC curve 

Source: Hosmer & Lemeshow, Applied logistic regression, 2001 
 

 

3.6 Discussion 
 
 I started this chapter by describing how I have handled the missing values in 

the metabolomics datasets and the data pre-processing that I have followed. Then I 

introduced the main statistical methods used in this thesis: the method that I proposed, 

adjcorT, and three existing methods: (T, corT and the Lasso). T, corT and adjcorT 

methods are based on t-statistics. The method adjcorT is a filter method, it is easy to 

use and to understand, takes into account both positive and negative correlations. 

adjcorT is however slow computationally for large sample sizes and it is only can be 

applied to continuous variables. 

 

 In the next chapter I will apply T, corT, adjcorT and Lasso for variable 

selection using simulated data that are generated from a multivariate normal 

distribution.  
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Chapter 4  
Comparison the performance of T, corT, 

adjcorT and Lasso: A simulation study 
 
 
4.1 Introduction 
 
 This chapter evaluated the classification accuracy of T, corT, adjcorT and 

Lasso using the simulated datasets. A range of sample sizes and several correlation 

values among some of the variables were applied in order to explore their 

performance.  

 

 The simulated datasets involved variables with some level of discriminatory 

ability and non-discriminators in order to assess whether the T, corT, adjcorT and 

Lasso methods were able to capture the discriminatory variables correctly and/or 

additional non-important variables. The classification performance was subsequently 

studied using logistic regression modelling. 

 

 This chapter is structured as follows. In Section 4.2 I explain how the simulated 

data were generated. The performance of T, corT, adjcorT and Lasso is reported in 

Section 4.3 and the discussion can be found in Section 4.4. 
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4.2  Simulated data 
 

The simulation study presented in this chapter aimed to (i) assess what 

variables the methods T, corT, adjcorT and Lasso are able to select (i.e., discriminatory 

and/or non-discriminatory variables) and (ii) to investigate the effect that both the 

sample size and underlying correlation among variables have on the methods 

performances.  

 

 The choice of model in this simulation study was chosen as a simple way to 

assess the effect that the relationship between variables have on various sample sizes 

(n=50, 76, 100, 300, 500, 1000, 2000 and 20000) and correlations (n=-0.8, -0.5, -0.2, 

0,  0.2, 0.5 and 0.8). I assumed that the variables were normally distributed continuous 

variables to follow a simple, easy to interpret and well documented distribution. The 

variables were simulated using the multivariate normal distribution (mvrnorm function 

in R), and were generated using the following multivariate density function as in 

Equation 4.1:  

 û(.) = û(.4, .1). û(.ü)		⋯ 	û(.1BB) 

																																																							

=
1

(2ä)1BB/1F¢£,§F
4/1 {

<
4
1
(•<¶ß)	¢£,§

®@(•<¶ß)
©

∙ û(.ü)	⋯ 	û(.1BB) 

 

(4.1) 

 

where the corresponding parameters are defined as follows: 

.=[.4, .1, .ü, … , .1BB]  

z=[.4, .1]  

¶ =[´4, ´1, ´ü, … , ´1BB]   

¶ß =[´4, ´1]   

¢£,§= è
Var4 Cov4,1
Cov4,1 Var1

ê = è
1 n
n 1

ê 

 

Variables .4 and .1 were set to be the discriminators as they are having 

different means between the group 0 and group 1 (Table 4.1). The remaining variables 
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(.ü, …	, .1BB) were set to be non-discriminators and therefore have the same means 

across the two groups. The variances of all variables were set as 1 for both groups.  

I considered the same sample size for each group (i.e., +B = +4 and +B + +4 =

+). The sample sizes considered were += 50, 76, 100, 300 500, 1000, 2000 and 20000 

in order to cover small, medium and large sample sizes. For example, when the sample 

size is += 50, the sample size for each group is +B = +4 = 25. In Figures 4.1-4.4 I 

illustrated a number of scenarios applied to different sample sizes including sample 

sizes of 50, 100, 2000 and 20000. A total of 100 iterations (i.e., 100 multivariate 

random samples) were considered for the analyses. I explored 7 scenarios of 

correlations as described in Table 4.1. 

 
Table 4.1: Population means and correlations considered 

 

Population means considered for groups 0 and 1 

¶£ = 0	for	group	0	and		¶£ = 0.5 for group 1 

¶§ = 0	for	group	0	and		¶§ = 1	for	group	1 

¶∏ = 0   A = 3,4, … . , 200 for	groups	0	and	1	 

  

Scenario no. Correlation value between .4 and .1 

1 n = 0.8 

2 n = 0.5 

3 n = 0.2 

4 n = 0 

5 n = -0.2 

6 n = -0.5 

7 n = -0.8 
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        Figure 4.1: Simulated data with + = 50 and scenario 7, n = -0.8. 

 
 
 

 
          Figure 4.2: Simulated data with + = 100 and scenario 7, n = -0.8. 
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   Figure 4.3: Simulated data with + = 2000 and scenario 3, n = 0.2. 

 
 
 

 
               Figure 4.4 : Simulated data with + = 20000 and scenario 4, n = 0. 

 
 As mentioned in Section 4.1, this simulation study investigated whether the T, 

corT, adjcorT and Lasso variable selection methods are able to select the correct 

variables that will be subsequently used for classification. Information on how often 

the discriminatory variables were selected based on the 100 runs for each of the 

variable selection methods is presented in Tables 4.2 and 4.3. In addition, the estimates 
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of classification accuracy, sensitivity, specificity and AUC for average performances 

were calculated and these are presented in Tables 4.4-4.7 (Section 4.3.2). The 

histograms of AUC generated for sample size n=50 are displayed in Section 4.3.3. 

Other histograms for the sample size of 76 and 300 were displayed in the Appendices. 

The sample size of 50 and 76 represent the small sample size and the sample size of 

300 represents the large sample size. 

 

 Interval validation was undertaken with the aim to reducing the effect of 

overfitting on the estimates of the accuracy parameters. Each simulated data was 

partitioned into two sets namely training data (80%) for variable selection and for 

building of the logistic regression model and testing data (20%) for internal assessment 

of the accuracy of the model. For example, with n=50, the number of samples for 

training is 40 and the number of samples for testing is 10. However, bootstrapping can 

also be used to resample simulated data for small sample size. It has a number of 

advantages: 1) it has an equal probability of randomly drawing each original data point 

to be included into the resampled data, 2) it can select a data point more than once in 

order to resample data as long as the property of “with replacement” is being used, 

and 3) The same size of the original data is reproduced. Future research may consider 

this method [146]. 

 

4.3  Results 
 

 This section shows the performance of T, corT, adjcorT and Lasso for a range 

of sample sizes (+=50, 76, 100, 300, 500, 1000, 2000 and 20000) and a range of 

correlation values between .4and .1 (n = 0.8, 0.5, 0.2, 0, -0.2, -0.5 and -0.8). The 

performances of these methods measured using classification accuracy, sensitivity, 

specificity and area under ROC curve (AUC) were displayed in percentages. 

 

4.3.1 Selection of variables by each method for different sample size and 

 correlations between the discriminatory variables. 

 

Table 4.2 and Table 4.3 show how often the discriminatory variables were 

selected by each variable selection method based on 100 iterations for sample sizes 

50, 76, 100, 300, 1000, 2000 and 20000. Specifically, Table 4.2 reports the results for 
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zero and positive correlations and Table 4.3 for negative correlations. For the smallest 

sample size +=50, one or two discriminatory variables (.4and .1) were selected by T, 

corT and adjcorT in most cases (between 9% and 14% of the times none of the two 

variables were selected). Lasso, on the other hand, was not able to identify any of the 

discriminatory variables in 12%-30% of the times when the sample size was equal to 

50. Lasso selected .1 as the unique variable in a number of occasions (between 13% 

and 28% for sample size of 50) as opposed to T, corT and adjcorT, which selected 

additional variables (most of the times non-discriminatory variables) together with .1 

in the majority of the cases.  

 

For the sample size 76, as the correlation changed towards -0.8 Lasso selected 

.4and .1 more often (for correlation -0.8, .4and .1 were selected 57% of the times). 

T, corT and adjcorT mainly selected .1 together with other non-discriminatory 

variables, reaching 90% for correlation 0.2, 0, -0.2, -0.5 and -0.8 for T and corT. 

 

For sample sizes of 100 and 300, all methods were able to select at least one 

of the discriminatory variables in all iterations (either “x1 and x2” or “x2 and others 

“or “x2 only”). For sample size 100, corT and adjcorT selected both .4and .1 in most 

iterations (89% and 90%) when the correlation was highly positive (0.8, 0.5). For low 

correlations (between 0.2 and -0.2) both discriminatory variables were not often 

selected. For highly negative correlations (-0.5 and -0.8) however, only corT showed 

an improvement. Lasso selected both discriminatory variables in the majority of the 

cases for negative correlation.  

 

For + = 300, the methods T, corT and adjcorT outperformed Lasso for 

moderate and highly positive correlation. Lasso selected both discriminatory variables 

in 98% and 100% of the times when the correlation was zero and negative, 

respectively. For non-positive correlations, corT became the worst method with only 

37% to 45% of the times selecting both discriminatory variables (.4and .1). Lasso 

selected both discriminatory variables (.4and .1) in 100% of the times for negative 

correlation datasets. 
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Table 4.2: Selected variables by each method (out of 100 iterations) for sample sizes ! =50, 76, 100 and 300, and " ≥ 0. 
Sample sizes (n) % = 50 % = 76 % = 100  % = 300 

Correlation  
between  

x1 and x2 

Selected  
variables 

Variable selection methods 
T corT adjcorT Lasso T corT adjcorT Lasso T corT adjcorT Lasso T corT adjcorT Lasso 

 
 

0.8 

x2 only    28    33    39    34 
x1 and x2 3 17 17  11 47 48  28 90 89  98 100 100 1 
x1 and others                 
x2 and others 87 73 73 49 89 53 52 63 72 10 11 61 2   65 
Neither x1 nor x2 10 10 10 7             
No selected variable    16    4         

 
 

0.5 

x2 only    21    35    39    33 
x1 and x2 3 12 11  10 46 47  27 90 90 2 98 100 100  
x1 and others                 
x2 and others 84 75 76 50 90 54 53 63 73 10 10 59 2   67 
Neither x1 nor x2 13 13 13 7             
No selected variable    22    2         

 
 

0.2 

x2 only    16    27    39    16 
x1 and x2 3 3 3 6 9 9 7 6 30 25 18 11 98 92 87 73 
x1 and others                 
x2 and others 83 83 83 48 91 91 93 59 70 75 82 50 2 8 13 11 
Neither x1 nor x2 14 14 14 7             
No selected variable    23    8         

 
 
0 

x2 only    28    30    34    2 
x1 and x2 3 3 3 4 8 8 7 17 29 19 19 30 99 45 71 98 
x1 and others 1 1 1              
x2 and others 87 87 87 44 92 92 93 51 71 81 81 36 1 55 29  
Neither x1 nor x2 9 9 9 8             
No selected variable    16    2         
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Table 4.3: Selected variables by each method (out of 100 iterations) for sample sizes !=50, 76, 100 and 300, and ρ < 0 
Sample sizes (n) % = 50 % = 76 % = 100  % = 300 

Correlation  
between  

x1 and x2 

Selected  
variables 

Variable selection methods 
T corT adjcorT Lasso T corT adjcorT Lasso T corT adjcorT Lasso T corT adjcorT Lasso 

 
 

-0.2 

x2 only    23    29    20     
x1 and x2 5 5 5 12 7 6 6 29 27 17 19 70 97 43 89 100 
x1 and others                 
x2 and others 87 87 87 40 93 94 94 39 73 83 81 10 3 57 11  
Neither x1 nor x2 8 8 8 7             
No selected variable    18    3         

 
 

-0.5 

x2 only    24    20    2     
x1 and x2 4 4 12 19 7 7 16 64 27 15 89 98 96 42 100 100 
x1 and others                 
x2 and others 86 86 78 34 93 93 84 16 73 85 11  4 58   
Neither x1 nor x2 10 10 10 7             
No selected variable    16             

 
 

-0.8 

x2 only    13    1         
x1 and x2 2 2 14 57 7 7 65 99 25 16 90 100 96 37 100 100 
x1 and others 2 2 2              
x2 and others 89 89 77 18 93 93 35  75 84 10  4 63   
Neither x1 nor x2 7 7 7 4             
No selected variable    8             
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4.3.2 Methods performance: Overall accuracy, sensitivity, specificity 

and AUC. 
 

 Tables 4.4-4.7 report the average performances of T, corT, adjcorT and 

Lasso in terms of overall accuracy, sensitivity, specificity (reported as a %) and 

AUC (reported as a decimal point) for different sample sizes and different 

correlation values of !" and !#.  

 

 For the lowest sample size $=50 (which, given that the dataset contains 

200 variables, it corresponds to a number of samples per variable ratio of 0.25) 

the T, corT and adjcorT methods show a similar performance and Lasso 

consistency reached lower accuracy level. However, Lasso outperformed the 

other three methods only when % = −0.8. A slight increment in sample size 

(n=76) showed a similar picture with the exception that for negative correlation 

both Lasso and adjcorT seemed to outperformed the methods corT and T. 

 

 For sample sizes $=100 and 300 (which correspond to a ratio of 

number of samples per variable of 0.5 and 1.5, respectively) and no negative 

correlations the T, corT and adjcorT show similar performances (Table 4.5). For 

negative correlations, however, adjcorT and Lasso methods outperformed corT. 

The fact that corT becomes the worst variable selection method in terms of 

accuracy for $=300 is consistent with the results of Table 4.3, where corT was 

not able to select the discriminatory variables as often as the other three methods. 

For example, a reduction of 13.4% and 13.9% in classification accuracy and 

AUC, respectively, is observed with corT when compared with adjcorT for % =
−0.8 and $=300. While the method T seems to offer similar levels of accuracy 

as adjcorT and Lasso for $=300, for $ =100 its performance is poor. In my point 

of view, T method’s results for $ =300 are not valid as logistic regression used 

its internal variable selection. This is again consistent with the ability to detect 

the discriminatory variables as reported in Table 4.2. 

 

 For larger sample sizes ($ =500, 1000, 2000 and 20000), which relate 

to ratios of 2.5, 5, 10 and 100 for the number of samples per variable) the 
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behaviour is similar to what has been observed for n=300. For non-negative 

correlations T, corT and adjcorT showed similar performances while for 

negative correlations corT underperformed adjcorT, Lasso and the T method 

(Tables 4.6, 4.7). For example, the overall classification accuracy when using 

corT is reduced by 11.85%, 12.95%, 12.88% and 5.11% when the sample sizes 

are 500, 1000, 2000 and 20000 respectively when compared to adjcorT.  

 

   These analyses indicate that corT is not able to capture the correct 

discriminators when the discriminators are highly and negatively correlated for 

small, medium and large sample sizes and that adjcorT achieves a better 

performance consistently. 
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Table 4.4: Average performances of T, corT, adjcorT and Lasso sample (! =50 and ! =76) 
 Average performance of T,  corT, adjcorT and Lasso 
 ! =50 ! =76 

Corr T corT adjcorT Lasso T corT adjcorT Lasso 
 

0.8 
Acc 
Sen 
Spe 
AUC 

56.30 
57.70 
57.58 
64.80 

 

Acc 
Sen 
Spe 
AUC 

57.00 
58.97 
57.49 
66.08 

  

Acc 
Sen 
Spe 
AUC 

56.60 
58.97 
56.66 
65.66 

 

Acc 
Sen 
Spe 
AUC 

49.50 
54.68 
55.72 
59.36 

 

Acc 
Sen 
Spe 
AUC 

62.00 
63.78 
62.16 
68.39 

 

Acc 
Sen 
Spe 
AUC 

65.56 
67.89 
64.81 
71.78 

 

Acc 
Sen 
Spe 
AUC 

65.50 
67.79 
64.81 
71.80 

 

Acc 
Sen 
Spe 
AUC 

53.62 
64.47 
50.86 
61.93 

 

 
0.5 

Acc 
Sen 
Spe 
AUC 

55.80 
58.08 
55.76 
64.73 

 

Acc 
Sen 
Spe 
AUC 

56.40 
58.39 
56.45 
65.43 

 

Acc 
Sen 
Spe 
AUC 

56.10 
58.39 
55.78 
65.34 

 

Acc 
Sen 
Spe 
AUC 

50.30 
58.96 
53.88 
60.25 

 

Acc 
Sen 
Spe 
AUC 

60.62 
61.98 
60.82 
67.75 

 

Acc 
Sen 
Spe 
AUC 

62.94 
64.20 
63.29 
69.03 

 

Acc 
Sen 
Spe 
AUC 

63.19 
64.80 
63.34 
69.36 

 

Acc 
Sen 
Spe 
AUC 

54.06 
66.51 
49.77 
62.90 

 

 
0.2 

Acc 
Sen 
Spe 
AUC 

57.80 
60.44 
57.21 
64.65 

 

Acc 
Sen 
Spe 
AUC 

58.00 
60.64 
57.28 
64.79 

 

Acc 
Sen 
Spe 
AUC 

57.70 
60.48 
56.78 
64.67 

 

Acc 
Sen 
Spe 
AUC 

51.30 
59.70 
54.83 
60.58 

 

Acc 
Sen 
Spe 
AUC 

60.25 
62.37 
59.62 
67.86 

 

Acc 
Sen 
Spe 
AUC 

61.06 
63.29 
60.37 
67.14 

 

Acc 
Sen 
Spe 
AUC 

60.88 
63.13 
60.04 
67.47 

 

Acc 
Sen 
Spe 
AUC 

53.94 
65.33 
50.56 
62.65 

 

 
0 

Acc 
Sen 
Spe 
AUC 

58.70 
60.12 
59.63 
63.96 

 

Acc 
Sen 
Spe 
AUC 

58.70 
59.73 
60.58 
64.29 

 

Acc 
Sen 
Spe 
AUC 

58.70 
59.40 
60.68 
64.47 

 

Acc 
Sen 
Spe 
AUC 

50.20 
56.18 
55.89 
57.97 

 

Acc 
Sen 
Spe 
AUC 

60.94 
61.08 
61.73 
67.62 

 

Acc 
Sen 
Spe 
AUC 

60.50 
60.20 
61.67 
67.35 

 

Acc 
Sen 
Spe 
AUC 

60.75 
60.59 
61.99 
67.52 

 

Acc 
Sen 
Spe 
AUC 

53.88 
62.04 
52.36 
62.09 

 

 
-0.2 

Acc 
Sen 
Spe 
AUC 

60.90 
63.78 
60.16 
62.75 

 

Acc 
Sen 
Spe 
AUC 

61.10 
64.13 
60.36 
62.36 

 

Acc 
Sen 
Spe 
AUC 

60.60 
63.73 
59.76 
62.52 

 

Acc 
Sen 
Spe 
AUC 

52.00 
56.97 
58.19 
57.72 

 

Acc 
Sen 
Spe 
AUC 

61.62 
63.28 
60.71 
66.07 

 

Acc 
Sen 
Spe 
AUC 

61.38 
62.97 
60.65 
65.63 

 

Acc 
Sen 
Spe 
AUC 

61.00 
62.17 
60.44 
65.67 

 

Acc 
Sen 
Spe 
AUC 

55.75 
64.10 
53.28 
61.56 

 

 
-0.5 

Acc 
Sen 
Spe 
AUC 

60.10 
62.95 
58.99 
62.63 

 

Acc 
Sen 
Spe 
AUC 

60.00 
62.78 
59.49 
62.30 

 

Acc 
Sen 
Spe 
AUC 

60.20 
62.64 
59.75 
63.26 

 

Acc 
Sen 
Spe 
AUC 

53.80 
56.97 
59.41 
59.41 

 

Acc 
Sen 
Spe 
AUC 

61.69 
62.49 
61.36 
66.72 

 

Acc 
Sen 
Spe 
AUC 

61.62 
62.37 
61.45 
66.45 

 

Acc 
Sen 
Spe 
AUC 

67.81 
69.73 
65.95 
76.28 

 

Acc 
Sen 
Spe 
AUC 

63.87 
70.41 
59.76 
71.57 

 

 
-0.8 

Acc 
Sen 
Spe 
AUC 

60.00 
60.76 
61.96 
64.34 

 

Acc 
Sen 
Spe 
AUC 

60.00 
60.58 
62.66 
64.49 

 

Acc 
Sen 
Spe 
AUC 

61.80 
61.51 
64.13 
66.69 

 

Acc 
Sen 
Spe 
AUC 

66.90 
67.97 
70.60 
74.71 

 

Acc 
Sen 
Spe 
AUC 

61.88 
61.60 
62.56 
67.73 

 

Acc 
Sen 
Spe 
AUC 

62.06 
61.48 
63.19 
67.60 

 

Acc 
Sen 
Spe 
AUC 

75.94 
73.92 
78.11 
83.37 

 

Acc 
Sen 
Spe 
AUC 

84.06 
79.60 
88.32 
92.49 
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Table 4.5: Average performance of T, corT, adjcorT and Lasso sample (! =100 and ! =300) 
 Average performance of T,  corT, adjcorT and Lasso 
 ! =100 ! =300 

Corr T corT adjcorT Lasso T corT adjcorT Lasso 
 

0.8 
Acc 
Sen 
Spe 
AUC 

61.75 
62.82 
62.50 
69.59 

 

Acc 
Sen 
Spe 
AUC 

66.75 
68.41 
66.29 
76.21 

 

Acc 
Sen 
Spe 
AUC 

66.70 
68.41 
66.19 
76.14 

 

Acc 
Sen 
Spe 
AUC 

53.05 
57.18 
55.92 
61.59 

 

Acc 
Sen 
Spe 
AUC 

68.78 
70.69 
67.48 
78.40 

 

Acc 
Sen 
Spe 
AUC 

68.77 
70.58 
67.59 
78.42 

 

Acc 
Sen 
Spe 
AUC 

68.77 
70.58 
67.59 
78.42 

 

Acc 
Sen 
Spe 
AUC 

59.30 
61.76 
60.55 
66.72 

 

 
0.5 

Acc 
Sen 
Spe 
AUC 

59.75 
60.21 
61.32 
67.63 

 

Acc 
Sen 
Spe 
AUC 

63.40 
65.38 
62.85 
72.62 

 

Acc 
Sen 
Spe 
AUC 

63.40 
65.38 
62.85 
72.62 

 

Acc 
Sen 
Spe 
AUC 

53.80 
56.66 
58.17 
61.72 

 

Acc 
Sen 
Spe 
AUC 

67.43 
70.02 
65.47 
75.70 

 

Acc 
Sen 
Spe 
AUC 

67.43 
69.97 
65.55 
75.76 

 

Acc 
Sen 
Spe 
AUC 

67.43 
69.97 
65.55 
75.76 

 

Acc 
Sen 
Spe 
AUC 

59.45 
63.61 
59.18 
66.49 

 

 
0.2 

Acc 
Sen 
Spe 
AUC 

59.60 
60.25 
60.80 
67.69 

 

Acc 
Sen 
Spe 
AUC 

60.45 
61.23 
61.43 
68.49 

 

Acc 
Sen 
Spe 
AUC 

61.35 
62.04 
62.18 
69.44 

 

Acc 
Sen 
Spe 
AUC 

54.50 
56.84 
59.41 
62.26 

 

Acc 
Sen 
Spe 
AUC 

68.50 
69.44 
68.09 
76.51 

 

Acc 
Sen 
Spe 
AUC 

68.42 
69.50 
67.93 
76.62 

 

Acc 
Sen 
Spe 
AUC 

68.18 
69.48 
67.52 
76.53 

 

Acc 
Sen 
Spe 
AUC 

64.98 
66.47 
65.44 
71.97 

 

 
0 

Acc 
Sen 
Spe 
AUC 

61.80 
61.83 
63.89 
68.21 

 

Acc 
Sen 
Spe 
AUC 

63.55 
63.60 
65.53 
69.45 

 

Acc 
Sen 
Spe 
AUC 

63.50 
63.85 
65.11 
69.75 

 

Acc 
Sen 
Spe 
AUC 

56.05 
60.22 
58.97 
63.54 

 

Acc 
Sen 
Spe 
AUC 

71.48 
73.34 
69.84 
78.33 

 

Acc 
Sen 
Spe 
AUC 

68.98 
70.56 
67.92 
76.57 

 

Acc 
Sen 
Spe 
AUC 

70.03 
71.63 
68.79 
77.00 

 

Acc 
Sen 
Spe 
AUC 

71.10 
73.15 
69.36 
77.86 

 

 
-0.2 

Acc 
Sen 
Spe 
AUC 

61.05 
60.99 
63.28 
69.16 

 

Acc 
Sen 
Spe 
AUC 

64.50 
65.87 
65.15 
71.47 

 

Acc 
Sen 
Spe 
AUC 

64.05 
64.48 
64.99 
72.05 

 

Acc 
Sen 
Spe 
AUC 

58.95 
59.68 
63.11 
71.05 

 

Acc 
Sen 
Spe 
AUC 

72.17 
71.48 
73.00 
80.17 

 

Acc 
Sen 
Spe 
AUC 

69.12 
69.78 
68.73 
76.71 

 

Acc 
Sen 
Spe 
AUC 

71.87 
71.47 
72.43 
79.61 

 

Acc 
Sen 
Spe 
AUC 

72.43 
71.79 
73.21 
80.51 

 

 
-0.5 

Acc 
Sen 
Spe 
AUC 

62.80 
62.78 
64.95 
70.10 

 

Acc 
Sen 
Spe 
AUC 

65.55 
65.87 
67.43 
71.56 

 

Acc 
Sen 
Spe 
AUC 

70.55 
71.79 
71.19 
82.13 

 

Acc 
Sen 
Spe 
AUC 

71.75 
72.49 
73.17 
83.97 

 

Acc 
Sen 
Spe 
AUC 

76.86 
76.67 
76.98 
85.04 

 

Acc 
Sen 
Spe 
AUC 

71.15 
71.90 
70.58 
78.68 

 

Acc 
Sen 
Spe 
AUC 

77.33 
77.23 
77.41 
85.79 

 

Acc 
Sen 
Spe 
AUC 

77.33 
77.23 
77.41 
85.79 

 

 
-0.8 

Acc 
Sen 
Spe 
AUC 

65.75 
66.56 
66.52 
72.36 

 

Acc 
Sen 
Spe 
AUC 

67.85 
68.60 
68.72 
72.65 

 

Acc 
Sen 
Spe 
AUC 

84.15 
85.05 
83.68 
92.20 

 

Acc 
Sen 
Spe 
AUC 

87.10 
87.50 
86.69 
95.42 

 

Acc 
Sen 
Spe 
AUC 

86.98 
86.89 
87.07 
94.23 

 

Acc 
Sen 
Spe 
AUC 

74.48 
75.68 
73.61 
81.48 

 

Acc 
Sen 
Spe 
AUC 

87.88 
87.92 
87.87 
95.38 

 

Acc 
Sen 
Spe 
AUC 

87.88 
87.92 
87.87 
95.38 

 

 
 
 
 



55 
 

 
Table 4.6: Average performance of T, corT, adjcorT and Lasso sample (! =500 and ! =1000) 

 Average performance of T,  corT, adjcorT and Lasso 
 ! =500 ! =1000 

Corr T corT adjcorT Lasso T corT adjcorT Lasso 
 

0.8 
Acc 
Sen 
Spe 
AUC 

68.09 
68.92 
67.48 
77.81 

 

Acc 
Sen 
Spe 
AUC 

68.09 
68.92 
67.48 
77.81 

 

Acc 
Sen 
Spe 
AUC 

68.09 
68.92 
67.48 
77.81 

 

Acc 
Sen 
Spe 
AUC 

63.46 
60.93 
67.72 
69.59 

 

Acc 
Sen 
Spe 
AUC 

72.10 
73.08 
71.18 
78.59 

 

Acc 
Sen 
Spe 
AUC 

72.10 
73.08 
71.18 
78.59 

 

Acc 
Sen 
Spe 
AUC 

72.10 
73.08 
71.18 
78.59 

 

Acc 
Sen 
Spe 
AUC 

68.19 
68.96 
68.10 
74.11 

 

 
0.5 

Acc 
Sen 
Spe 
AUC 

66.70 
66.53 
67.22 
75.24 

 

Acc 
Sen 
Spe 
AUC 

66.70 
66.53 
67.22 
75.24 

 

Acc 
Sen 
Spe 
AUC 

66.70 
66.53 
67.22 
75.24 

 

Acc 
Sen 
Spe 
AUC 

61.54 
60.07 
65.07 
68.33 

 

Acc 
Sen 
Spe 
AUC 

68.54 
69.26 
67.86 
75.91 

 

Acc 
Sen 
Spe 
AUC 

68.54 
69.26 
67.86 
75.91 

 

Acc 
Sen 
Spe 
AUC 

68.54 
69.26 
67.86 
75.91 

 

Acc 
Sen 
Spe 
AUC 

60.61 
61.39 
62.02 
66.09 

 

 
0.2 

Acc 
Sen 
Spe 
AUC 

68.45 
68.03 
69.27 
76.35 

 

Acc 
Sen 
Spe 
AUC 

68.45 
68.03 
69.27 
76.35 

 

Acc 
Sen 
Spe 
AUC 

68.45 
68.03 
69.27 
76.35 

 

Acc 
Sen 
Spe 
AUC 

68.27 
67.35 
69.65 
76.12 

 

Acc 
Sen 
Spe 
AUC 

69.83 
70.69 
69.01 
76.87 

 

Acc 
Sen 
Spe 
AUC 

69.83 
70.69 
69.01 
76.87 

 

Acc 
Sen 
Spe 
AUC 

69.83 
70.69 
69.01 
76.87 

 

Acc 
Sen 
Spe 
AUC 

69.83 
70.69 
69.01 
76.87 

 

 
0 

Acc 
Sen 
Spe 
AUC 

70.93 
69.28 
72.87 
78.06 

 

Acc 
Sen 
Spe 
AUC 

69.64 
68.55 
71.10 
76.25 

 

Acc 
Sen 
Spe 
AUC 

69.37 
68.43 
70.64 
75.49 

 

Acc 
Sen 
Spe 
AUC 

70.93 
69.28 
72.87 
78.06 

 

Acc 
Sen 
Spe 
AUC 

71.28 
71.83 
70.90 
78.12 

 

Acc 
Sen 
Spe 
AUC 

70.21 
71.47 
69.08 
76.11 

 

Acc 
Sen 
Spe 
AUC 

70.09 
71.48 
68.80 
75.91 

 

Acc 
Sen 
Spe 
AUC 

71.28 
71.83 
70.90 
78.12 

 

 
-0.2 

Acc 
Sen 
Spe 
AUC 

73.38 
72.83 
74.09 
80.23 

 

Acc 
Sen 
Spe 
AUC 

70.10 
69.40 
70.95 
77.01 

 

Acc 
Sen 
Spe 
AUC 

73.01 
72.31 
73.87 
79.82 

 

Acc 
Sen 
Spe 
AUC 

73.38 
72.83 
74.09 
80.23 

 

Acc 
Sen 
Spe 
AUC 

72.12 
72.11 
72.32 
80.73 

 

Acc 
Sen 
Spe 
AUC 

70.11 
69.86 
70.53 
77.12 

 

Acc 
Sen 
Spe 
AUC 

72.12 
72.11 
72.32 
80.73 

 

Acc 
Sen 
Spe 
AUC 

72.12 
72.11 
72.32 
80.73 

 

 
-0.5 

Acc 
Sen 
Spe 
AUC 

76.83 
75.57 
78.20 
85.47 

 

Acc 
Sen 
Spe 
AUC 

71.74 
70.94 
72.79 
78.88 

 

Acc 
Sen 
Spe 
AUC 

76.83 
75.57 
78.20 
85.47 

 

Acc 
Sen 
Spe 
AUC 

76.83 
75.57 
78.20 
85.47 

 

Acc 
Sen 
Spe 
AUC 

76.75 
75.94 
77.74 
85.90 

 

Acc 
Sen 
Spe 
AUC 

71.78 
71.67 
72.08 
79.09 

 

Acc 
Sen 
Spe 
AUC 

76.75 
75.94 
77.74 
85.90 

 

Acc 
Sen 
Spe 
AUC 

76.75 
75.94 
77.74 
85.90 

 

 
-0.8 

Acc 
Sen 
Spe 
AUC 

86.26 
84.71 
87.93 
94.96 

 

Acc 
Sen 
Spe 
AUC 

74.41 
73.86 
75.28 
81.49 

 

Acc 
Sen 
Spe 
AUC 

86.26 
84.71 
87.93 
94.96 

 

Acc 
Sen 
Spe 
AUC 

86.26 
84.71 
87.93 
94.96 

 

Acc 
Sen 
Spe 
AUC 

87.78 
87.58 
88.02 
95.27 

 

Acc 
Sen 
Spe 
AUC 

74.83 
75.48 
74.27 
81.35 

 

Acc 
Sen 
Spe 
AUC 

87.78 
87.58 
88.02 
95.27 

 

Acc 
Sen 
Spe 
AUC 

87.78 
87.58 
88.02 
95.27 
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Table 4.7: Average performance of T, corT, adjcorT and Lasso sample (! =2000 and ! =20000) 
 Average performance of T,  corT, adjcorT and Lasso 
 ! =2000 ! =20000 

Corr T corT adjcorT Lasso T corT adjcorT Lasso 
 

0.8 
Acc 
Sen 
Spe 
AUC 

71.34 
70.74 
71.98 
78.19 

 

Acc 
Sen 
Spe 
AUC 

71.34 
70.74 
71.98 
78.19 

 

Acc 
Sen 
Spe 
AUC 

71.34 
70.74 
71.98 
78.19 

 

Acc 
Sen 
Spe 
AUC 

71.34 
70.74 
71.98 
78.19 

 

Acc 
Sen 
Spe 
AUC 

71.41 
71.43 
71.40 
78.63 

 

Acc 
Sen 
Spe 
AUC 

71.41 
71.43 
71.40 
78.63 

 

Acc 
Sen 
Spe 
AUC 

71.41 
71.43 
71.40 
78.63 

 

Acc 
Sen 
Spe 
AUC 

71.41 
71.43 
71.40 
78.63 

 

 
0.5 

Acc 
Sen 
Spe 
AUC 

68.21 
67.38 
69.06 
75.67 

 

Acc 
Sen 
Spe 
AUC 

68.21 
67.38 
69.06 
75.67 

 

Acc 
Sen 
Spe 
AUC 

68.21 
67.38 
69.06 
75.67 

 

Acc 
Sen 
Spe 
AUC 

68.34 
67.83 
68.89 
75.55 

 

Acc 
Sen 
Spe 
AUC 

69.18 
69.20 
69.18 
76.12 

 

Acc 
Sen 
Spe 
AUC 

69.18 
69.20 
69.18 
76.12 

 

Acc 
Sen 
Spe 
AUC 

69.18 
69.20 
69.18 
76.12 

 

Acc 
Sen 
Spe 
AUC 

69.18 
69.20 
69.18 
76.12 

 

 
0.2 

Acc 
Sen 
Spe 
AUC 

69.55 
69.16 
69.98 
76.73 

 

Acc 
Sen 
Spe 
AUC 

69.55 
69.16 
69.98 
76.73 

 

Acc 
Sen 
Spe 
AUC 

69.55 
69.16 
69.98 
76.73 

 

Acc 
Sen 
Spe 
AUC 

69.55 
69.16 
69.98 
76.73 

 

Acc 
Sen 
Spe 
AUC 

69.95 
70.04 
69.87 
77.11 

 

Acc 
Sen 
Spe 
AUC 

69.95 
70.04 
69.87 
77.11 

 

Acc 
Sen 
Spe 
AUC 

69.95 
70.04 
69.87 
77.11 

 

Acc 
Sen 
Spe 
AUC 

69.95 
70.04 
69.87 
77.11 

 

 
0 

Acc 
Sen 
Spe 
AUC 

71.29 
70.70 
71.91 
78.19 

 

Acc 
Sen 
Spe 
AUC 

68.61 
68.10 
69.13 
76.03 

 

Acc 
Sen 
Spe 
AUC 

68.55 
68.19 
68.92 
75.90 

 

Acc 
Sen 
Spe 
AUC 

71.29 
70.70 
71.91 
78.19 

 

Acc 
Sen 
Spe 
AUC 

71.00 
71.46 
70.56 
78.48 

 

Acc 
Sen 
Spe 
AUC 

70.82 
71.23 
70.42 
78.17 

 

Acc 
Sen 
Spe 
AUC 

70.57 
70.93 
70.22 
77.77 

 

Acc 
Sen 
Spe 
AUC 

71.00 
71.46 
70.56 
78.48 

 

 
-0.2 

Acc 
Sen 
Spe 
AUC 

72.78 
72.71 
72.87 
80.60 

 

Acc 
Sen 
Spe 
AUC 

70.78 
70.98 
70.61 
77.61 

 

Acc 
Sen 
Spe 
AUC 

72.78 
72.71 
72.87 
80.60 

 

Acc 
Sen 
Spe 
AUC 

72.78 
72.71 
72.87 
80.60 

 

Acc 
Sen 
Spe 
AUC 

73.00 
72.79 
73.21 
80.71 

 

Acc 
Sen 
Spe 
AUC 

71.71 
71.61 
71.82 
79.19 

 

Acc 
Sen 
Spe 
AUC 

73.00 
72.79 
73.21 
80.71 

 

Acc 
Sen 
Spe 
AUC 

73.00 
72.79 
73.21 
80.71 

 

 
-0.5 

Acc 
Sen 
Spe 
AUC 

76.96 
77.08 
76.84 
85.87 

 

Acc 
Sen 
Spe 
AUC 

72.56 
72.43 
72.71 
79.85 

 

Acc 
Sen 
Spe 
AUC 

76.96 
77.08 
76.84 
85.87 

 

Acc 
Sen 
Spe 
AUC 

76.96 
77.08 
76.84 
85.87 

 

Acc 
Sen 
Spe 
AUC 

77.72 
77.51 
77.93 
85.96 

 

Acc 
Sen 
Spe 
AUC 

75.31 
75.19 
75.43 
83.19 

 

Acc 
Sen 
Spe 
AUC 

77.72 
77.51 
77.93 
85.96 

 

Acc 
Sen 
Spe 
AUC 

77.72 
77.51 
77.93 
85.96 

 

 
-0.8 

Acc 
Sen 
Spe 
AUC 

88.22 
88.11 
88.33 
95.39 

 

Acc 
Sen 
Spe 
AUC 

75.34 
75.26 
75.45 
82.16 

 

Acc 
Sen 
Spe 
AUC 

88.22 
88.11 
88.33 
95.39 

 

Acc 
Sen 
Spe 
AUC 

88.22 
88.11 
88.33 
95.39 

 

Acc 
Sen 
Spe 
AUC 

88.31 
88.19 
88.43 
95.43 

 

Acc 
Sen 
Spe 
AUC 

83.20 
83.11 
83.29 
90.27 

 

Acc 
Sen 
Spe 
AUC 

88.31 
88.19 
88.43 
95.43 

 

Acc 
Sen 
Spe 
AUC 

88.31 
88.19 
88.43 
95.43 
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     4.3.3 Variability of the estimators of accuracy parameters.  
 

4.3.3.1 Distributions of the estimates of accuracy, sensitivity,   
  specificity and AUC (based on100 iterations).    

      

   In this subsection I examine the distributions of the estimates of the 

accuracy parameters, namely overall accuracy, sensitivity, specificity and AUC 

based on 100 iterations. Figures 4.5, 4.6, 4.7 and 4.8 display the histograms for T, 

corT, adjcorT and Lasso respectively, for sample size equal to 50 and correlation 

between !"and !# equal to -0.8. Histograms for sample sizes 76 and 300 were 

displayed in Appendix I.  

 

   As expected, the distributions showed a large level of variability when 

the sample sizes are small, especially for $ =50, and were less spread for large 

sample sizes. For sample size 50 and correlation between !"and !# equal to -0.8, 

Lasso showed the lowest variability compared to the other three methods. The 

distributions for the overall accuracy, specificity and AUC seemed more skewed 

towards 1 when Lasso was used. The distributions of the accuracy parameters 

showed similar features for T, corT and adjcorT (Figure 4.5-4.8). 

 

  As the sample size increases to 76, the distributions of accuracy, 

sensitivity, specificity and AUC still show a large level of variability for T and corT 

(Figures S4.1-2, Appendix II). The distributions for adjcorT and Lasso on the other 

hand, seem to be more confined, with a more clear reduction in variability for Lasso 

(Figures S4.3-4, Appendix II).  

 

   For sample size 300, T, adjcorT and Lasso showed a lower level of 

variability compared to corT method (Figures S4.5-8). AdjcorT and Lasso exhibits 

very similar distributions, with accuracy estimates between 80% and 100%, 

sensitivity and specificity estimates between 75% and 100% and AUC estimates 

between 90% and 100% 

 

   The level of variability observed from the histograms have an effect on 

the mean values of of accuracy, sensitivity, specificity and AUC displayed in 
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Tables 4.4 and 4.5, and on their precision. As expected, larger values of the sample 

size imply that the estimates of the accuracy parameters are less spread and 

clustered around the true values of the parameters. In addition, I have identified 

that corT requires a larger sample size (compared for example to adjcorT) to 

achieve similar acceptable levels of variability and precision. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.5: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size $ =50 and %= -0.8 for the T method (based 
on 100 iterations). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.6: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size $ =50 and %= -0.8 for the corT method 
(based on 100 iterations). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.7: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size $ =50 and %= -0.8 for the adjcorT method 
(based on 100 iterations). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.8: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size $ =50 and %= -0.8 for the Lasso method 
(based on 100 iterations). 
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Figure 4.9: Distribution of the AUCs for sample size n=50 and !=0.8 across the methods 
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4.3.3.2   Distributions of the estimates of AUC (based on 1000 iterations) 
 

 Figure 4.10 shows the histogram of AUC (based on 1000 iterations) for 

a model which contains !" and !# for sample sizes 50, 76, 1000 and 20000. The aim 

of this analysis was to assess the effect the number of iterations has on the distribution 

of the accuracy parameters, and in particular, of the AUC. As described earlier, 

simulated data was split into two partitions namely a training set and a test set. The 

accuracy measure AUC was used to assess the performance of T, corT, adjcorT and 

Lasso methods. 

  

 Figures 4.10a and 4.10b show that the distributions of AUC are quite 

spread out for smaller sample sizes, especially for sample sizes 50 and 76. In contrast, 

the distributions of AUC showed a low degree of variability for larger sample size 

such as 1000 and 20000. The shape of the distributions of AUC affected the average 

of estimate of AUC that displayed in Tables 4.4, 4.5, 4.6 and 4.7. For larger sample 

sizes such as 1000 and 20000, T, corT, adjcorT and Lasso were selected the 

discriminators (!" and !#) most of the times. Hence, these discriminators are included 

into logistic models in order to calculate the accuracy, sensitivity, specificity and 

AUC. By looking at Figure 4.10c and Figure 4.10d, the distributions of AUC are 

having lower variability (values are between 0.70 and 0.90) when the discriminators 

included into the logistic model for large sample sizes. Based on Figure 4.10, as the 

sample size increases, the distributions of AUC are getting smaller level of variability.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.10: Histogram of AUC (a) $ = 50, scenario 4 (%= 0), (b) $ = 76, scenario 7 
( %= -0.8), (c) $ = 1000, scenario 4 (%= 0),  and (d) $ = 20000, scenario 2 (% = 0.5). 
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4.3.4 Estimation of accuracy parameters based on 1000 iterations compared 
 to 100 iterations  
  

As described at the beginning of this chapter, I used 100 iterations to conduct 

the analyses of the simulation study. In this subsection I considered 1000 iterations to 

investigate whether increasing the number of iterations has an effect on the calculation 

of the performance measures for each variable selection method. Table 4.8 shows the 

performance measures for the four variable selection methods based on 1000 iterations 

for three different sample sizes ($ = 50, 76, 300) and for fixed correlations between 

!"and !# (-0.8, 0 and 0.5). Overall, I observed that the estimates of the overall 

accuracy, sensitivity, specificity and AUC based on 100 iterations were similar to the 

estimates based on 1000 iterations. The two approaches differed by small amounts, 

mainly within 4% as shown in Tables 4.8-4.10. The exception is given by adjcorT for 

sample size 50 and correlation 0.5, where the difference in specificity and AUC 

reached values around 4% and 8%, respectively. 

 

 In terms of the distributions of performance measures, the corresponding 

histograms show a considerable spread even when 1000 iterations were used, 

especially for small sample sizes. This result suggests that the degree of variability 

observed in accuracy measures for a given sample size is mainly due to the stochastic 

nature of the process (random training sets show some level of variability in 

sensitivity, specificity, overall accuracy and AUC) and the refinement that could come 

from increasing the number of iterations would not be substantial enough to reduce 

the intrinsic level of variance captured by the histograms. Figures 4.11-4.14 displayed 

the histograms for sample size 50. Histograms for sample sizes 76 and 300 and for 

correlation equal to -0.8 are displayed in Appendix III (Figures S4.10-S4.17). 
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Table 4.8: Results from 100 and 1000 iterations and differences in performance (! = 0.5) 
Sample 

size  
(n) 

Performance 
Measures 

 
Variable selection methods 

 
Differences 

(%) 100 iterations 1000 iterations 
  T corT adjcorT Lasso T corT adjcorT Lasso T corT adjcorT Lasso 

50 Acc 
Sen 
Spe 

AUC 

55.80 
58.08 
55.76 
64.73 

56.40 
58.39 
56.45 
65.43 

63.40 
65.38 
62.85 
72.62 

50.30 
58.96 
53.88 
60.25 

57.62 
58.10 
59.34 
64.95 

57.32 
58.29 
58.52 
64.59 

57.44 
58.32 
58.82 
64.67 

52.34 
58.24 
56.43 
61.52 

1.82 
0.02 
3.58 
0.22 

0.92 
0.10 
2.07 
0.84 

5.96 
7.06 
4.03 
7.95 

2.04 
0.72 
2.55 
1.27 

76 Acc 
Sen 
Spe 

AUC 

60.62 
61.98 
60.82 
67.75 

62.94 
64.20 
63.29 
69.03 

63.19 
64.80 
63.34 
69.36 

54.06 
66.51 
49.77 
62.90 

59.93 
60.30 
61.03 
66.94 

63.37 
65.17 
62.94 
69.69 

63.23 
64.97 
62.88 
69.48 

53.61 
60.54 
53.64 
61.05 

0.69 
1.68 
0.21 
0.81 

0.43 
0.97 
0.35 
0.66 

0.04 
0.17 
0.46 
0.12 

0.45 
5.97 
3.87 
1.85 

300 Acc 
Sen 
Spe 

AUC 

67.43 
70.02 
65.47 
75.70 

67.43 
69.97 
65.55 
75.76 

67.43 
69.97 
65.55 
75.76 

59.45 
63.61 
59.18 
66.49 

67.16 
68.42 
66.27 
75.18 

67.19 
68.49 
66.28 
75.26 

67.19 
68.49 
66.28 
75.26 

60.02 
61.83 
61.22 
66.78 

0.27 
1.60 
0.80 
0.52 

0.24 
1.48 
0.73 
0.50 

0.24 
1.48 
0.73 
0.50 

0.57 
1.78 
2.04 
0.29 
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Table 4.9: Results from 100 and 1000 iterations and differences in performance (! = 0) 
Sample 

size  
(") 

Performance 
Measures 

 
Variable selection methods 

 
Differences 

(%) 100 iterations 1000 iterations 
  T corT adjcorT Lasso T corT adjcorT Lasso T corT adjcorT Lasso 

50 Acc 
Sen 
Spe 

AUC 

58.70 
60.12 
59.63 
63.96 

58.70 
59.73 
60.58 
64.29 

58.70 
59.40 
60.68 
64.47 

50.20 
56.18 
55.89 
57.97 

58.25 
59.03 
59.76 
63.48 

58.31 
59.14 
59.74 
63.36 

58.20 
58.90 
59.81 
63.34 

51.67 
57.93 
55.59 
59.81 

0.45 
1.09 
0.13 
0.48 

0.39 
0.59 
0.84 
0.93 

0.50 
0.50 
0.87 
1.13 

1.47 
1.75 
0.30 
1.84 

76 Acc 
Sen 
Spe 

AUC 

60.94 
61.08 
61.73 
67.62 

60.50 
60.20 
61.67 
67.35 

60.75 
60.59 
61.99 
67.52 

53.88 
62.04 
52.36 
62.09 

59.79 
59.01 
61.75 
66.24 

60.00 
59.16 
62.00 
66.61 

59.98 
59.00 
62.10 
66.48 

52.51 
58.78 
53.10 
59.94 

1.15 
2.07 
0.02 
1.38 

0.50 
1.04 
0.33 
0.74 

0.77 
1.59 
0.11 
1.04 

1.37 
3.26 
0.74 
2.15 

300 Acc 
Sen 
Spe 

AUC 

71.48 
73.34 
69.84 
78.33 

68.98 
70.56 
67.92 
76.57 

70.03 
71.63 
68.79 
77.00 

71.10 
73.15 
69.36 
77.86 

71.21 
72.63 
70.09 
78.22 

69.04 
70.11 
69.35 
76.19 

69.99 
71.21 
69.09 
76.93 

71.13 
72.70 
69.94 
78.17 

0.27 
0.71 
0.25 
0.11 

0.06 
0.45 
1.43 
0.38 

0.04 
0.42 
0.30 
0.07 

0.03 
0.45 
0.58 
0.31 
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Table 4.10: Results from 100 and 1000 iterations and differences in performance (! = -0.8) 
Sample 

Size 
(") 

 
Performance 

Measures 

 
Variable selection methods 

 
Differences (%) 

100 iterations 1000 iterations 
T corT adjcorT Lasso T corT adjcorT Lasso T corT adjcorT Lasso 

 
50 

Acc 
Sen 
Spe 

AUC 

60.00 
60.76 
61.96 
64.34 

 

60.00 
60.58 
62.66 
64.49 

 

61.80 
61.51 
64.13 
66.69 

 

66.90 
67.97 
70.60 
74.71 

60.48 
61.90 
61.45 
63.79 

 

60.32 
61.80 
61.17 
63.42 

 

61.07 
62.35 
61.84 
64.33 

 

65.84 
68.35 
69.75 
74.19 

0.48 
1.11 
0.51 
0.55 

0.32 
1.22 
1.49 
1.07 

0.73 
0.84 
2.29 
2.36 

1.06 
0.38 
0.85 
0.52 

 
76 

Acc 
Sen 
Spe 

AUC 

61.88 
61.60 
62.56 
67.73 

 

62.06 
61.48 
63.19 
67.60 

 

75.94 
73.92 
78.11 
83.37 

 

84.06 
79.60 
88.32 
92.49 

61.16 
60.49 
63.32 
67.21 

 

61.14 
60.27 
63.43 
67.29 

 

74.13 
72.79 
76.34 
81.80 

 

85.12 
82.83 
87.79 
93.91 

0.72 
1.11 
0.76 
0.52 

0.92 
1.21 
0.24 
0.31 

1.81 
1.13 
1.77 
1.57 

1.06 
3.23 
0.53 
1.42 

 
300 

Acc 
Sen 
Spe 

AUC 

86.98 
86.89 
87.07 
94.23 

 

74.48 
75.68 
73.61 
81.48 

 

87.88 
87.92 
87.87 
95.38 

 

87.88 
87.92 
87.87 
95.38 

87.14 
87.09 
87.40 
94.71 

 

76.03 
76.77 
75.58 
82.90 

 

87.87 
87.85 
88.11 
95.55 

 

87.87 
87.85 
88.11 
95.55 

0.16 
0.20 
0.33 
0.48 

1.55 
1.09 
1.97 
1.42 

0.01 
0.07 
0.24 
0.17 

0.01 
0.07 
0.24 
0.17 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.11: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=50 and != -0.8 for the T method (based 
on 1000 iterations). 

 



 71 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.12: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=50 and != -0.8 for the corT method 
(based on 1000 iterations). 
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 (a) 

 
(b) 

 
 (c) 

 
 (d) 

 
Figure 4.13: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=50 and != -0.8 for the adjcorT method 
(based on 1000 iterations). 
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(a) (b) 

 
 

 
 

(c) (d) 
 
 

Figure 4.14: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=50 and != -0.8 for the Lasso (based on 

1000 iterations). 
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4.4 Discussion  
 
 In this chapter, I compared the performance of T, corT, adjcorT and Lasso 

methods in a simulation study. Various sample sizes and correlation values among the 

discriminators have been considered as both elements may impact the performance of 

these variable selection methods 

 
T, corT and adjcorT show a similar performance for sample sizes n=50, 76, 

100, 300, 500, 1000, 2000 and 20000 with non-negative correlation datasets as 

shown in Tables 4.4-4.7. Lasso outperformed all other three methods for highly 

negative (-0.8) correlation for sample size " =50 (Table 4.4). Additionally, Lasso 

and adjcorT outperformed corT for highly negative correlation for sample sizes n=76 

and n=100 (Tables 4.4, 4.5). As the sample size increases, T seems to offer similar 

level of accuracy as adjcorT and Lasso for non-negative correlation datasets (Tables 

4.5, 4.6 and 4.7).  

 

In a nutshell, these simulation results demonstrate that different sample sizes 

and different correlations among discriminators have an impact on the performance of 

T, corT, adjcorT and Lasso. Based on the simulation study, I also noticed that corT 

requires a larger sample size to achieve similar acceptable performance (for example, 

when compared to adjcorT). AdjcorT achieves a better performance consistently. Both 

adjcorT and corT are filter variable selection methods. Given that adjcorT showed a 

better performance compared to corT for negative correlations and a similar 

performance for positive correlations across all sample sizes investigated, adjcorT 

may offer advantages compared to corT as a variable selection method for the analysis 

of metabolomics data.  

 

In Chapter 5 I investigate the application of T, corT, adjcorT and Lasso to clinical 

datasets. 
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Chapter 5    

Application to Real Data 
 
 
5.1 Introduction  
 
 Simulations were conducted in Chapter 4 to explore the performance of the 

adjcorT variable selection method and to compare it to a set of existing variable 

selection methods. The advantage of simulations is that one can create scenarios where 

the association between the variables, their discriminatory ability and the sample size 

are specified. Such framework is useful to assess the effect that each factor separately 

has on the classification accuracy. However, the main limitation of a simulation study 

is its generalisability to real settings. In this chapter, I apply the variable selection 

algorithms to several clinical datasets and I assess their performance. 

 

 There are several challenges when dealing with clinical datasets. The true joint 

distribution of the variables under study is often unknown and assumptions are made 

based on the distribution of the data available. This contrasts with simulated datasets, 

where the distribution of the data is known. Real datasets, and in particular 

metabolomics data, may contain a high percentage of missing values and one of the 

challenges is to find the best way to deal with missingness. Multicollinearity among 

the variables in metabolomics datasets is another aspect that needs considerations.  

 

  This chapter will explore the performance of the T, corT, adjcorT and Lasso 

methods when applied to three clinical datasets: colorectal cancer, infant sepsis and 

kidney datasets (Sections 5.2, 5.3 and 5.4 respectively). The discussion about this 

chapter are presented in Section 5.5. 
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Each clinical dataset was split into two sets, 80% of the dataset was used for 

training and the remaining 20% for testing. For each approach, the variable selection 

process was run 100 times (100 iterations). Hence, there were 100 training sets that 

were used for selecting the variables and for building the logistic model, and 100 

testing sets were used for estimation of accuracy parameters. Consequently, I 

generated 100 values for each accuracy parameters: overall classification accuracy, 

sensitivity, specificity and AUC and their averages were calculated and displayed in 

the results section. All the analyses used VOCs information only during the variable 

selection process, except for the colorectal cancer datasets. The colorectal cancer 

datasets were used age and VOCs information during the variable selection process 

since it was provided by the authors. Hence, in other words, kidney and infant sepsis 

datasets used VOCs only as the starting set of variables for selecting the most 

important variables. 

  

5.2 Discrimination of colorectal cancer using volatile organic 
 compounds 
 

 5.2.1 Colorectal cancer dataset and aims 
 

 The purpose of this analysis was to develop a diagnostic model that could 

accurately discriminate between colorectal cancer cases and non-cancer cases using 

the VOCs data. Non-cancer cases included patients with adenoma and healthy 

controls. Within the non-cancer cases, I was also interested in discriminating between 

healthy controls and adenoma patients. 

 

  The colorectal dataset consists of 137 samples (samples from 60 healthy 

controls, 56 adenoma and 21 colorectal cancer patients) and 146 variables [23]. 

Therefore, the number of samples in the non-cancer group is 116 and the number of 

samples in the colorectal cancer group is 21. There are 27 variables having more than 

90% of zero values. The proportion of variables having more than 90% of zero values 

is 18.6%. After removing those variables, the number of variables left is 119 variables. 

Table 5.1 shows the summary of this dataset. There are a number of measures collected 

for colonoscopy, which includes Bowel Cancer Screening Programme (BCSP), Iron-

deficiency anaemia (IDA), change in bowel habit diarrhoea, surveillance previous 
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neoplasia/family history (FH), inflammatory bowel disease (IBD) 

assessment/surveillance, gastrointestinal (GI) bleeding and unknown.  

 

   Table 5.1: Description of the colorectal cancer dataset  
Total Healthy 

control 
Adenoma Colorectal 

Cancer 

Number, # (%) 137 (100) 60 (100) 56 (100) 21 (100) 

Age, mean (SD) 64.3 

(16.2) 

61.9 

(12.4) 

65.6 

(17.5) 

72.7 

(20.6) 

Indication for 
colonoscopy (binary 
variables) 

 

Bowel Cancer 
Screening Programme 
(BCSP), " (%) 

38 (27.7) 13 (21.6) 22 (39.3) 3 (14.3) 

Iron-deficiency 
anaemia (IDA), " (%) 

23 (16.8) 16 (26.0) 6 (10.7) 1 (4.8) 

Change in bowel habit 
diarrhoea, " (%) 

16 (11.7) 11 (18.3) 4 (7.1) 1 (4.8) 

Surveillance previous 
neoplasia/ family 
history (FH), " (%) 

35 (25.5) 10 (16.0) 24 (42.9) 1 (4.8) 

Inflammatory bowel 
disease (IBD) 
assessment/surveillance
, " (%) 

9 (6.6) 9 (15.0) 0 (0) 0 (0) 

Gastrointestinal (GI) 
bleeding, " (%) 

1 (0.7) 1 (1.6) 0 (0) 0 (0) 

Unknown, " (%) 15 (10.9) 0 (0) 0 (0) 15 (71.3) 

  

  Volatile organic compounds (VOCs) were gathered by mass-spectrometry 

(MS). Autoscaling was subsequently applied in order to give all variables the same 

weight (i.e., initially regarded as equally important). The datasets were randomly 

partitioned into a training set and a test set (see Results section). The T, corT, adjcorT 

and Lasso variable selection methods were applied to the training datasets and the top 

10 discriminatory variables were identified (Table 5.2). Lasso was used as a variable 

selection method and the top 10 variables selected by Lasso were included into the 

classification model. To classify the samples, a logistic regression model was fitted 

using the top 10 important variables selected by T, corT, adjcorT and Lasso. 
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 5.2.2 Volatile organic compounds 
   

  Volatile organic compounds are a large group of carbon-based molecules. 

Most vapours emitted from biological samples such as breath, sweat, blood, urine and 

faeces contain VOCs which may have a potential link to a specific disease [141].  For 

example, 3-methyhexane, decane, caryophyllene naphthalene have been detected at 

significantly lower level in the breath of breast cancer patients [142].  

 

  Faecal samples contain VOCs which may be used to identify gastrointestinal 

(GI) disease. Distinctive VOCs are generated from faeces of patients suffering from 

GI diseases such as Crohn’s diseases, chronic pancreatitis or intestinal infections 

[141]. Other example is the identification of the VOCs that are being detected by 

canine olfaction which has the potential of improving the detection of melanoma in 

contemporary clinical practice [143]. This study reported that VOCs obtained in urine 

can be used as biomarkers of bladder cancer.  

 

 Rossi et. al used VOCs from faeces in order to investigate its association with 

response to dietary interventions in patients with irritable bowel syndrome [144]. 

Aggio et. al. suggested that VOCs profiling are able to differentiate patients with 

irritable bowel syndrome (IBS), inflammatory bowel disease and healthy controls with 

a minimum errors [145].  

 

  A solvent-free extraction technique that is used for metabolite extraction is the 

solid phase micro-extraction fibre (SPME) technique. SPME minimises contact with 

possible infectious agents from biological samples (blood, stool and urine samples). 

SPME can be coupled to gas chromatography-mass spectrometry (GC-MS) and it is 

one of the most popular methods for the analysis of VOCs emitted from stool samples 

[141].   

 

 5.2.3 Results 
 

  In terms of data partition, the data were partitioned into a training set (" =109) 

and a test set (" =28). Table 5.2 shows the top 10 important metabolites selected by 

the methods T, corT, adjcorT and Lasso. Methods T, corT and adjcorT selected 

X27.19_Pentane..2.3.4.trimethyl as the most important metabolite to discriminate 
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non-cancer and colorectal cancer patients. The methods corT and adjcorT selected the 

same ten metabolites but in different order, giving them a different level of 

importance. In addition, eight variables selected by the T method were also selected 

by corT and adjcorT. In contrast to other methods, Lasso selected 

X33.44_Hexanoic.acid..2.methylbutyl as the most important variable. In addition, 

Lasso selected six common variables that were also selected by T, corT and adjcorT 

(these are represented in bold in Table 5.2). The coefficients of the logistic model 

based on 100 iterations are very similar (Table 5.2). Hence, the model coefficients 

displayed in Table 5.2 are based on one iteration. 

	 
  Table 5.3 shows the performances of the T, corT, adjcorT and Lasso methods 

in discriminatory accuracy when applied to the colorectal cancer dataset. Method T is 

the worst method followed by Lasso. The methods corT and adjcorT showed a similar 

performance; they achieved the best level of discrimination although this is still low, 

with an AUC of 0.60. The correlation that exists among the selected VOCs is displayed 

in Table S5.1 for T, Table S5.2 is for corT and adjcorT, and in Table S5.3 for Lasso 

in Appendix IV. Given that the sample size is 137 and the number of variables is 119 

in this application, the ratio number of samples per variables is 1.15. The simulation 

study conducted in Chapter 4 with 1.5 ratio (i.e, " =300 and 200 variables) indicated 

that for positive correlations between the discriminatory variables, the methods corT 

and adjcorT achieved similar level of discrimination, and that these were better than 

with Lasso (Table 4.6). With the colorectal cancer dataset, a similar behaviour was 

observed, although the difference in accuracy between the methods here is not 

substantial. A direct comparison is nevertheless not possible given that the set of 

selected discriminatory variables is different across methods with a different 

correlation structure.  

 

  Most of the discriminators selected by T, corT and adjcorT show a positive 

correlation (low, moderate and high; Table S5.1 and Table S5.2) and most 

discriminators selected by Lasso show low negative and low positive correlations 

(Table S5.3). In order to visualise the correlation matrix, I displayed the correlogram 

of discriminators obtained by all variable selection methods. High correlations are 

associated with a dark colour in the correlogram and low correlations with a light 

colour. Therefore, colour intensity is proportional to the absolute value of the 
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correlation coefficients. Positive correlations are displayed in blue and negative 

correlations in peach colour. For negative correlations, as the correlation increases 

towards -1, the colour changes from peach to red. Based on Figure 5.1, the 

correlograms of corT and adjcorT are darker than the correlograms of T and Lasso. 

Figure 5.2 shows one of the ROC curves (selected from the 100 iterations). 

 

           T method            corT and adjcorT                   Lasso 

 
Figure 5.1: Correlogram of the top 10 VOCs selected by T (left), corT and adjcorT 

(middle) and Lasso (right) 
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Table 5.2: Top 10 selected VOCs and model coefficients by each variable selection methods for colorectal cancer and non-cancer discrimination 
Variables Coefficients  

T, coefficients(SE) corT, coefficients(SE) adjcorT, coefficients(SE) Lasso, coefficients(SE) 
Intercept 0.45 (0.17) 0.49 (0.20) 0.49 (0.20) 1.51 (0.25) 
X27.19_Pentane..2.3.4.trimeth        0.29 (0.05) 0.55 (0.25) 0.55 (0.25) 0.43 (0.09) 
X33.44_Hexanoic.acid..2.meth 0.59 (0.03) 0.75 (0.33) 0.75 (0.33) 0.74 (0.21) 
X22.19_2.Heptanol                         0.43 (0.10) 0.49 (0.21) 0.49 (0.21) 0.51 (0.03) 
X17.93_Propanoic.acid..propy    0.38 (0.08) 0.35 (0.15) 0.35 (0.15) 0.65 (0.21) 
X29.18_3.Carene                           -0.42 (0.14) -0.40 (0.17) -0.40 (0.17) -0.41 (0.10) 
X31.48_Cyclohexanecarboxylic.        -0.55 (0.15) -0.51 (0.29) -0.51 (0.29) -0.50 (0.12) 
X25.32_Propanoic.acid..pentyl 0.18 (0.01) 0.31 (0.10) 0.31 (0.10)  
X22.01_Acetic.acid..pentyl. 0.44 (0.06) 0.64 (0.20) 0.64 (0.20)  
X29.47_Heptanoic.acid                     0.22 (0.02)    
X28.53_Benzeneacetaldehyde 0.02 (0.00)   -0.04 (0.00) 
X23.49_Butanoic.acid..2.  -0.25 (0.09) -0.25 (0.09)  
X27.52_Butanoic.acid..4.pentenyl  -0.25 (0.08) -0.25 (0.08)  
X32.25_dl.Menthol                         0.14 (0.01) 
X24.00_Propanoic.acid..pentyl.ester        0.29 (0.05) 
Age    -0.02 (0.00) 

 
 

Table 5.3: Performances of T, corT, adjcorT and Lasso variable selection methods to discriminate between colorectal cancer and non-cancer cases 
Measure of 

performances 
T corT adjcorT Lasso 

Acc (%) 54.93 58.68 58.68 57.54 
Sen (%) 51.50 57.23 57.23 54.96 
Spe (%) 59.83 64.19 64.19 62.23 

AUC 0.56 0.60 0.60 0.58 
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Figure 5.2: Representative ROC curves for each of the variable selection 

approaches: (a) T method (b) corT (c) adjcorT (d) Lasso 

 

I conducted a second analysis to identify VOCs that may be used to 

differentiate between healthy (! =60) and adenoma patients (! =56). Table 5.4 shows 

the top ten selected variables by T, corT, adjcorT and Lasso. Eight of the VOCs 

selected by the T method were also selected by corT and adjcorT. In addition, the 

top ten variables selected by the corT and adjcorT were the same and consequently, 

the measures of performances of both methods were equal. The methods corT, 
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adjcorT and Lasso selected X28.53_Benzeneacetaldehyde as the most important 

discriminatory variable.  

 

 Table 5.5 shows the accuracy measures of the classifier when using the 

methods T, corT, adjcorT and Lasso to discriminate between healthy and adenoma 

cases. Methods corT and adjcorT showed the lowest AUC, followed by the T 

method. Lasso achieved the best level of discrimination, although this is still 

relatively low, with the AUC of 0.65 (see also Figure 5.4). One of the simulation 

studies carried out in Chapter 4 with 1.5 ratio (i.e, ! =300 and 200 variables) claimed 

that for positive correlations between the discriminatory variables, the methods corT 

and adjcorT performed similar level of discrimination (Table 4.6). With the 

colorectal cancer dataset to discriminate healthy control and adenoma cases, a similar 

behaviour was observed. 

 

 Tables S5.4-S5.6 (in Appendix IV) show the correlation between the 

discriminators selected by T, corT or adjcorT and Lasso respectively. Positive 

correlations and negative correlations (either low, moderate or high) were observed 

between discriminators selected by corT or adjcorT, while the discriminators 

selected by Lasso showed low positive and low negative correlations.  

                    T method  corT and adjcorT  Lasso 

 

Figure 5.3: Correlogram of the top 10 VOCs selected by T (left), corT and adjcorT 

(middle) and Lasso (right)
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Table 5.4: Top 10 selected VOCs, model coefficients and standard error (SE) of each coefficient by each variable selection methods for healthy control and 

adenoma discrimination 

Variables Coefficients  
T, coefficients (SE) corT, coefficients (SE) adjcorT, coefficients(SE) Lasso, coefficients(SE) 

Intercept 0.14 (0.05) 0.11 (0.02) 0.11 (0.02) 0.27 (0.01) 
X27.19_Pentane..2.3.4.trimeth        0.42 (0.11) 0.84 (0.11) 0.84 (0.11) 0.57 (0.12) 
X28.53_Benzeneacetaldehyde               -0.46 (0.15) -0.59 (0.13) -0.59 (0.13) -0.52 (0.11) 
X33.44_Hexanoic.acid..2.methylbutyl  0.79 (0.21) 0.75 (0.24) 0.75 (0.24) 0.62 (0.17) 
X25.32_Propanoic.acid..pentyl.ester     0.60 (0.18)    
X22.01_Acetic.acid..pentyl.ester 0.19 (0.03) 0.24 (0.05) 0.24 (0.05)  
X23.39_Methional                        -0.06 (0.00) -0.16 (0.05) -0.16 (0.05)  
X22.19_2.Heptanol  0.64 (0.15) 0.77 (0.21) 0.77 (0.21) 0.54 (0.12) 
X25.22_Dimethyl.trisulfide             0.39 (0.06) 0.45 (0.21) 0.45 (0.21)  
X24.97_Pentanoic.acid..propyl.ester 0.12 (0.01)    
X27.52_Butanoic.acid..4.pentenyl.ester -0.67 (0.02) -0.54 (0.14) -0.54 (0.14)  
X23.49_Butanoic.acid..2.methylpropyl  -0.72 (0.23) -0.72 (0.23)  
X12.47_Butanal..3.methyl.                  0.09 (0.00) 0.09 (0.00)  
X29.18_3.Carene    -0.28 (0.00) 
X23.27_S.Methyl.3.methylbutane    -1.98 (0.70) 
X31.48_Cyclohexanecarboxylic.acid    0.64 (0.18) 
X25.22_Dimethyl.trisulfide    0.28 (0.00) 
X33.63_Phenol..4.ethyl.                   0.15 (0.04) 
X24.26_2.Heptanone..6.methyl.      0.41 (0.19) 

 
 

Table 5.5: Performances of T, corT, adjcorT and Lasso variable selection methods to discriminate between healthy control and adenoma cases 
Measure of 

performances 
T corT adjcorT Lasso 

Acc (%) 62.83 60.46 60.46 64.79 
Sen (%) 60.46 59.04 59.04 63.95 
Spe (%) 68.60 65.67 65.67 66.72 

AUC 0.63 0.61 0.61 0.65 
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Figure 5.4: Representative ROC curves for each of the variable selection approaches: (a) T method (b) corT 

(c) adjcorT (d) Lasso 
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5.3 Discrimination between bacterial and non-bacterial sepsis in infants 
  

 Clinicians at the Alder Hey Hospital in Liverpool are investigating better ways 

to discriminate between bacterial and viral sepsis in children. They collected blood 

samples from patients in intensive care and transferred the samples to the University 

of Liverpool NMR Metabolomics Centre with the aim of acquiring 1H NMR spectra 

of 25 samples from infants with bacterial sepsis and 91 samples from non-bacterial 

sepsis infants. This data has 144 metabolites and 116 children participated in this study 

(which gives a ratio of number of samples/variable equal to 0.81). Data is publicly 

available in the database MetaboLights with ID MTBLS653. For this analysis, the data 

were partitioned into a training set (! =92) and a test set (! =24). Table 5.6 shows the 

top 10 selected variables by each variable selection method (T, corT, adjcorT and 

Lasso). 

 

Table 5.7 shows the performances of the classifier when using T, corT, adjcorT 

and Lasso as a variable selection method to discriminate bacterial and non-bacterial 

sepsis. Method T showed the worst performance followed by corT and adjcorT. CorT 

and adjcorT had equal performance with a classification accuracy of 75.83%. The 

simulation study conducted in Chapter 4 showed that corT and adjcorT achieved 

similar performances for sample size 300 and number of variables 200 for positive 

correlation datasets, similarly to what I observed in the application to infant sepsis 

dataset. Lasso exhibited a better performance than the other variable selection methods 

with 83.08% classification accuracy, which is approximately 7% higher than the 

classification accuracy of corT, adjcorT and the T-method (Table 5.7). 

 

 This dataset has known VOCs (which are named) and unknown VOCs. An 

unknown VOC is a metabolite that is repeatedly detected but whose chemical identity 

has not been identified yet. An example of unknown VOC is unknown_7. All methods 

except Lasso selected unknown_7 as the most important variable in discriminating 

bacterial and non-bacterial sepsis. Lasso selected unknown_7 as the seventh important 

variable. Methods corT and adjcorT selected the same 10 top variables (Table 5.6). 

The discriminators selected by the T method showed highly positive correlation 

values, except for mobile.lipids_132 and mobile.lipids_18 as shown in Table S5.7 and 

mobile.lipids_132 only in Table S5.8, for corT and adjcorT. These high positive 
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correlations among discriminators were proved by the VIF values of each VOC. A 

VIF greater than 10 are suggest multicollinearity issue (Table 5.8 and Table 5.9). Table 

S5.9 shows the correlation values among the selected variables by Lasso, which 

involved low negative correlations as well as low, moderate positive and high positive 

correlation.  

 

 As can be seen from Tables S5.7 and S5.8, most of the correlations between 

the selected variables by T, corT and adjcorT demonstrated very strong correlations, 

which are 0.99 or 1.00. In metabolomics area, these values are quite common and 

acceptable and it can be supported by the previous study [146]. The authors studied 

on the approach to stool sample acquisition (home collected, or endoscopy collected) 

and its impact on VOC metabolome that emitted from the stool. Based on the findings, 

there are 39% of the total VOCs had strong correlation (correlation > 0.9).  Camacho, 

Fuente and Mendes were investigated the origin of correlation in metabolomics data 

through simulation study [38]. It suggested that the highly correlation between 

metabolites are due to chemical equilibrium (the metabolites having near chemical 

equilibrium and their concentration ratio reaching the equilibrium constant). 

 

 Figure 5.5 shows the correlogram of the top 10 selected variables by T, corT, 

adjcorT and Lasso. The colour of correlogram is dominated by dark colours, which 

indicate that the correlation among discriminators tend to be high. Figure 5.6 shows a 

representative ROC curves generated from one of the 100 iterations. 
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T method  corT and adjcorT   Lasso 

 
Figure 5.5: Correlogram of the top 10 selected variables by T (left), corT and 

adjcorT (middle) and Lasso (right). 
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Table 5.6: Top 10 selected VOCs, model coefficients and standard error (SE) of each coefficient by each variable selection methods bacterial and non-bacterial 

sepsis discrimination 
Variables Coefficients  

T, coefficients(SE) corT, coefficients(SE) adjcorT, coefficients(SE) Lasso, coefficients(SE) 
Intercept -0.01(0.00) -0.02 (0.00) -0.02 (0.00) 0.19 (0.02) 
unknown_7 -0.38 (0.08) -0.41 (0.12) -0.41 (0.12) -0.59 (0.15) 
unknown_129 -0.16 (0.02) -0.19 (0.01) -0.19 (0.01)  
phenylalanine_8 -0.18 (0.05) -0.21 (0.02) -0.21 (0.02)  
unknown_34 0.13 (0.04) 0.11 (0.02) 0.11 (0.02)  
phenylalanine_6 -0.06 (0.00) -0.07 (0.00) -0.07 (0.00)  
unknown_10 -0.54 (0.12) -0.58 (0.12) -0.58 (0.12) -0.57 (0.17) 
creatine40_33 0.08 (0.00) 0.06 (0.01) 0.06 (0.01)  
acetoacetate_111 -0.09 (0.00) -0.11 (0.00) -0.11 (0.00)  
mobile.lipids_132 1.68 (0.82) 1.44 (0.25) 1.44 (0.25) 0.89 (0.25) 
mobile.lipids_18 -0.21 (0.07)    
glucose_35  0.21 (0.03) 0.21 (0.03)  
unknown_94    -0.78 (0.20) 
glucose_45    -0.43 (0.14) 
phenylalanine_4    1.86 (0.29) 
glucose_65    0.66 (0.21) 
desaminotyrosine_16    -2.58 (0.30) 
glucose_58    1.15 (0.25) 
glucose_62     1.16 (0.26) 

 
 

Table 5.7: Performances of T, corT, adjcorT and Lasso variable selection methods to discriminate between bacterial and non-bacterial sepsis cases 
Measure of 

performances 
T corT adjcorT Lasso 

Acc (%) 75.79 75.83 75.83 83.08 
Sen (%) 66.45 66.70 66.70 74.43 
Spe (%) 85.60 85.51 85.51 91.35 

AUC 0.76 0.76 0.76 0.83 
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Table 5.8: VIF values for each VOC selected by T method 
VOCs VIF 

unknown_7 15.17 
unknown_129 14.40 
phenylalanine_8 14.67 
unknown_34 14.24 
phenylalanine_6 13.80 
unknown_10 15.77 
creatine40_33 14.30 
acetoacetate_111 14.61 
mobile.lipids_132 4.55 
mobile.lipids_18 4.52 

 
 
 

 
Table 5.9: VIF values for each VOC selected by corT and ajdcorT 

VOCs VIF 
unknown_7 15.72 
unknown_129 14.91 
phenylalanine_6 14.09 
phenylalanine_8 15.16 
unknown_34 14.74 
acetoacetate_111 15.02 
creatine40_33 14.81 
unknown_10 16.41 
glucose_35 14.96 
mobile.lipids_132 1.14 
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Figure 5.6: Representative ROC curves for each of the variable selection approaches: (a) T 

method (b) corT (c) adjcorT (d) Lasso 
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5.4 Discrimination between healthy control and kidney disease 

 

  Chronic kidney disease (CKD) leads to a decreased sensitivity of the metabolic 

effects of insulin. The plasma metabolome was examined in 93 adults without diabetes 

in the fasted state, out of which 56 showed moderate-severe CKD and 37 a normal 

glomerular filtration rate. This data, which contains data on 124 metabolites, was used 

in the previous study [24]. Table 5.10 shows the descriptive statistics of this kidney 

dataset, and which includes demographic characteristics (such as age, sex, ethnicity) 

and medical history and lifestyle, medication use and physical characteristics.  

 

Table 5.10: Descriptive statistics for the kidney dataset 

 Healthy control Kidney disease 
Number 37 56 

Demographics 
characteristics: 

  

Age, mean (sd) 60.6 (12.5) 63.4 (13.9) 

Sex: Female, ! (%) 17 (46) 30 (52) 

Ethnicity, ! (%)   

     European descent, ! (%) 32 (86) 40 (69) 

     Black, ! (%) 4 (11) 13 (22) 

Asian/ Pacific Islander, ! 

(%) 

1 (3) 5 (9) 

Medical history and 
lifestyle (binary variables) 

  

History of Kidney Disease, 

! (%) 

1 (3) 19 (33) 

Current smoking, ! (%) 2 (5) 10 (17) 

Medication use (binary 
variables) 

  

Any antihypertensive 

medications, ! (%) 

12 (32) 52 (90) 

    Diuretics, ! (%) 2 (5) 26 (45) 

				# Blockers, ! (%) 2 (5) 22 (38) 

    CCBSs, ! (%) 3 (8) 26 (45) 

    RAASi, ! (%) 7 (19) 37 (64) 

Physical characteristics 
(continuous variables) 

  

Height (cm), mean (sd) 172.7 (10.9) 170.4 (10.4) 

Weight (kg), mean (sd) 82.9 (21.1) 87.5 (19.6) 

Fat-free mass (kg), mean 

(sd) 

55.7 (13.4) 53.3 (11.5) 

Fat mass (kg), mean (sd) 28.4 (14.0) 31.6 (11.6) 

Systolic blood pressure 

(mmHg), mean (sd) 

123.5 (13.1) 134.6 (15.3) 

Diastolic blood pressure 

(mmHg), mean (sd)  

77.0 (10.2) 80.6 (9.5) 
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 For the analysis, data were partitioned into a training set ($ =74) and a test set 

($ =19). The variable selection approach was applied on the VOCs only (without 

demographic characteristics, medical history and lifestyle, medication use and 

physical characteristics) with the aim of findings the informative VOCs for healthy 

control and kidney disease discrimination. Table 5.11 shows the top 10 selected VOCs 

by each variable selection method (T, corT, adjcorT and Lasso) and the common 

selected VOCs are presented in bold. All methods selected creatinine as the most 

informative variable and methods corT and adjcorT selected the same top 10 variables 

(Table 5.11). Lasso offered the best level of discrimination (AUC=0.90; Table 5.12), 

although the four methods showed a comparable performance (and AUCs equal to 

0.86 and 0.87 were achieved with the T and with the corT and adjcorT methods 

respectively). One of the simulation studies conducted in Chapter 4 was generated by 

using 100 samples and 200 variables, which gives the ratio of number of samples per 

number of variables equal to 0.5 and there is a similar performance for corT and 

adjcorT for positive correlations (Table 4.5). CorT and adjcorT achieved similar 

accuracy either in simulation study or application to real datasets. For example, in 

simulation study, both accuracy for corT and adjcorT are 84.30%. In real data 

applications, both accuracy for corT and adjcorT are 88.21%. 

 

The correlation that exists among the selected VOCs is displayed in Table 

S5.10 for T and Table S5.11 for corT and adjcorT, and in Table S5.12 for Lasso. 

Tables S5.10 and S5.11 report the correlation structure for the top 10 important 

variables selected by T, corT or adjcorT, showing that the discriminators selected by 

adjcorT are highly correlated to each other, which is consistent with the dark colours 

observed in the corresponding correlogram (Figure 5.7). On the other hand, the 

correlation among the discriminators selected by Lasso showed low negative as well 

as low, moderate and high positive correlations, showing a wider range of associations 

in the correlation structure (Table S5.12). A representative ROC curve is plotted for 

each method in Figure 5.8.  
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       T method      corT and adjcorT                Lasso 

 
Figure 5.7: Correlogram of the top 10 VOCs selected by T (left), corT and adjcorT 

(middle) and Lasso (right). 
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Table 5.11: Top 10 selected VOCs, model coefficients and standard error (SE) of each coefficient by each variable selection methods for healthy control and 
kidney disease discrimination 

Variables Coefficients  
T, coefficients(SE) corT, coefficients(SE) adjcorT, coefficients(SE) Lasso, coefficients(SE) 

Intercept 2.34 (0.30) 2.24 (0.40) 2.24 (0.40) 2.05 (0.35) 
Creatinine 0.21 (0.05) 0.16 (0.02) 0.16 (0.02) 0.59 (0.27) 
Hydroxyphenylpyruvic.acid 0.88 (0.18) 0.81 (0.31) 0.81 (0.31)  
Methylmalonate 0.12 (0.01) 0.34 (0.14) 0.34 (0.14)  
D.Glucoronic.acid 2.39 (0.27) 3.45 (0.52) 3.45 (0.52) 0.79 (0.29) 
Myoinositol 0.73 (0.30) 0.72 (0.28) 0.72 (0.28) 1.70 (0.31) 
X1.Methyladenosine 1.17 (0.03) 1.24 (0.30) 1.24 (0.30) 1.07 (0.22) 
Choline -0.12 (0.02) 0.01 (0.00) 0.01 (0.00)  
X2.Aminoisobutyric.acid 0.40 (0.06) 0.56 (0.21) 0.56 (0.21) 0.35 (0.02) 
Fumaric.Acid 1.20 (0.02)   1.01 (0.12) 
Xanthosine 0.79 (0.11)   0.86 (0.22) 
X2.Hydroxyglutarate  -0.05 (0.00) -0.05 (0.00)  
Oxaloacetate  0.23 (0.11) 0.23 (0.11)  
Urate    0.82 (0.11) 
Guanidinoacetate    -0.96 (0.34) 
X1.Methylhistidine    0.87 (0.23) 

 
 
 

Table 5.12: Performances of T, corT, adjcorT and Lasso variable selection methods to discriminate healthy control and kidney disease cases 
Measure of 

performances 
T corT adjcorT Lasso 

Acc (%) 87.63 88.21 88.21 90.89 
Sen (%) 90.70 91.36 91.36 93.12 
Spe (%) 83.22 83.52 83.52 87.09 

AUC 0.86 0.87 0.87 0.90 
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Figure 5.8: Representative ROC curves for each of the variable selection approaches: (a) T 

method (b) corT (c) adjcorT (d) Lasso 
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5.5 Discussion 
 

 The superiority of adjcorT to select discriminatory features, when compared 

to corT, T and Lasso methods, has not been reproduced in the clinical applications 

conducted in this chapter. I believe that this might be partly due to the lack of negative 

correlations among the discriminant variables. 

 

 Lasso consistently produced better results although the difference in accuracy 

between the methods was not substantial. The fact that Lasso was able to identify 

discriminatory variables with low levels of correlation may have been a relevant 

factor. Highly correlated variables are often expected to capture similar discriminatory 

information, making the addition of highly correlated discriminatory variables 

unimportant. In the simulation study of Chapter 4 the situation was different; there 

were only two discriminatory variables (!", !$) and the ability to select these two 

variables, regardless of their correlation, was key to improve the discriminatory 

accuracy of the model. Even when the correlation was high, such as 0.8 or -0.8, being 

able to select the second discriminator enhanced the level of accuracy because some 

additional discriminatory information was added (this would not have happened for 

correlations 1 or -1).  In the real applications analysed in this chapter however, there 

was potentially larger sets of discriminatory variables with a wider range of 

correlations, and capturing uncorrelated features or features with low level of 

correlation may have contributed to a higher discrimination.  

 

The ratio of the number of samples per variable might have also played a role 

in the results. Lasso showed a slightly better performance than T, corT and adjcort in 

two of the clinical applications when the number of samples per variable ratio was 

below 1 (0.81 in the infant sepsis dataset and 0.75 in the kidney disease dataset). This 

behaviour is nevertheless non-consistent with the results of the simulation studies, 

which showed that Lasso tended to underperformed adjcorT, corT and the T methods 

when the ratio was 0.5 (Table 4.5). 

 

It is important to acknowledge the importance of external validation and their 

role in confirming the accuracy values generated by the test datasets. The true 

accuracy parameters of the models here generated may in fact be worse than the 
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estimates derived from the test dataset, and the small improvement in terms of 

accuracy (e.g., AUC) achieved by the Lasso method may evaporate when the accuracy 

parameters are generated from a separate new set of samples. 
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Chapter 6 

Discussion 
 

6.1  Topics covered and main results 
 

 This thesis focuses on variable selection for classification applied to 

metabolomics datasets. It contains four pieces of original research: literature review 

on variable selection methods for classification in the area of metabolomics 

(Chapter 2), development of a new method, named adjcorT, as a variable selection 

method for selecting the most informative metabolites (Chapter 3), comparison of 

the performance of adjcorT and the existing methods T, corT and Lasso via a 

simulation study (Chapter 4) and application to real data (Chapter 5).  

 

 There were three objectives set out in Chapter 1 which were to be 

investigated in this thesis. The first objective was to conduct a literature review on 

variable selection methods for classification applied to metabolomics data. The 

second objective was the development of a new approach for variable selection and 

comparison with existing variable selection methods in terms of classification 

accuracy via simulations. The third objective was the application of existing 

methods and of the proposed method to real metabolomics datasets. 

 In Chapter 2, the literature related to variable selection methods in 

metabolomics is reviewed. ANOVA [13], [18], [45], [46] and t-tests [17], [53], 

[54], [147] are the most popular univariate filter methods applied to metabolomics 

datasets as they are easy to use and fast for identifying the most important 

metabolites. However, these methods are not optimal for the analysis of metabolite 
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data as metabolite variables tend to be highly correlated. Multivariate techniques, 

such as PCA, is one of the variable reduction methods often used in this area. In 

the previous study, Kostidis et al. [53] argued that PCA failed to describe a clear 

pattern in the data. The correlation sharing t-test method (corT) is a filter method 

that considers the correlation among variables, but it has only been applied to 

genomic data [132]. The limitation of corT is that it considers positive correlations 

only. Wrapper methods are rarely used in metabolomics and only a few embedded 

methods have been applied. Lasso is one of these embedded methods. However, 

Lasso has a number of limitations: for high dimensional data with a large number 

of covariates (&) and small sample size ((), Lasso tends to select at most ( 

variables before it saturates and if there are correlated variables, Lasso tends to 

select one variable and ignore the other variables in that correlated group. In this 

thesis I consider Lasso and corT as variable selection methods for comparison. As 

far as I know, none of the previous studies compared Lasso and corT even though 

both methods consider correlations among the variables. Since corT is based on t-

tests (T method), I also consider the T method in the comparative analyses. This 

thesis compared these three variable selection methods in a simulation study and 

real dataset applications. 

 

 In terms of classification, PLS-DA are often used for classification in 

metabolomics studies [11], [28]–[30], [53]. Other classification methods used in 

metabolomics area are logistic regression [19], [47], [49], discriminant analysis 

[50], [72], [77], support vector machine [47], [65], [72] and random forest [35], 

[65], [66]. Logistic regression was chosen as the classification methods as the 

independent variables do not have to be normally distributed or the variances 

homogenous. Logistic regression also tends to generate simpler and easier to 

interpret equations when compared to other classification methods. For these 

reasons logistic regression is used in this thesis.  

 

  In Chapter 3, the data pre-processing for missing values and data 

scaling are briefly explained. A new variable selection algorithm, adjcorT is 

developed following similar conceptual ideas as with the development of the 

algorithm corT. The aim of using adjcorT is to identify important biomarkers in 

metabolomics data, while allowing for both negative and positive correlation 
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among biomarkers, which tackles the limitation of the existing variable selection 

method, corT. AdjcorT considers, for each variable, the set of the indices of the 

variables with correlation (absolute value) equal or larger than a given threshold.  

 

 In Chapter 4, adjcorT is compared to T, corT and adjcorT. The 

simulation results demonstrate that different sample sizes and different correlations 

among discriminators have an impact on the performance of T, corT, adjcorT and 

Lasso (Tables 4.4-4.7). Based on the simulation study, corT requires a larger 

sample size in order to achieve an acceptable performance. The variability of the 

estimators of the accuracy parameters were also discussed in Chapter 4. The 

distributions showed a large level of variability when the sample size is small, 

especially for (=50. The distributions were less spread for large sample sizes. 

Given that adjcorT showed a better performance compared to corT for negative 

correlations and a similar performance for positive correlations across all sample 

sizes investigated, it is expected that adjcorT offers advantages compared to corT 

as a variable selection method for the analysis of metabolomics data. Additionally, 

the distributions of the estimates of AUC (based on 1000 iterations) were explored 

in order to assess the effect that the number of iterations has on the distributions. 

As the sample size increases, the distributions of AUC show smaller level of 

variability. Furthermore, the differences in accuracy parameters estimates based on 

1000 iterations were compared to 100 iterations. I demonstrated that increasing the 

number of iterations from 100 to 1000 did not have a significant effect on the 

estimates of the overall accuracy, sensitivity, specificity and AUC. 

 

  In Chapter 5, T, corT, adjcorT and Lasso were applied to colorectal 

cancer, infant sepsis and kidney datasets. The superiority of adjcorT to select 

discriminatory features, when compared to corT, T and Lasso methods, has not 

been reproduced in the clinical applications conducted in this chapter, possibly due 

to the lack of negative correlations among the discriminant variables. Lasso 

consistently produced better results although the difference in accuracy between 

the methods was not substantial. The real datasets analysed in this chapter may 

involve several discriminatory variables with a wider range of correlations and 

capturing uncorrelated features or features with low level of correlation may have 

contributed to a higher discrimination by the Lasso method.  
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6.2  Limitations and further work 
  

  Simulations assumed a set of 200 variables of which 2 variables were 

discriminators. However, in practice more than two variables can add an important 

level of discrimination in real datasets and selecting only the top two variables is 

not desirable. Simulation studies where more than two variables are discriminatory 

and where different correlations structures exist (for example, correlation between 

the non-discriminatory variables) is an area of future research. In the clinical 

applications, I only considered the top ten variables as discriminatory variables, 

and these top ten variables were used for building the logistic model.  

 

  Each of the simulated and real datasets applications were split into two 

sets, 80% of the data was used for training and the remaining 20% for testing. For 

each approach, the variable selection process was run 100 times (100 iterations). 

Hence, there were 100 training sets that were used for selecting the variables and 

for building the logistic model, and 100 testing sets were used for estimation of 

accuracy parameters. In future research, the researcher may be able to use different 

partitions of the data for internal validation (depending on the sample size) and 

different number of iterations. Additionally, future research may consider 

bootstrapping sampling to resample the simulated dataset. 

 

In terms of the imputation method, mean imputation was applied in this 

thesis, However, multiple imputation can be considered as a data pre-processing 

step as this method may reduce bias, improve the validity in the results and increase 

precision.  

  

Future research involving datasets with negative correlations can be 

considered in order to explore whether the adjcorT results in the simulation studies 

are reproducible. It is also relevant to acknowledge the importance of external 

validation and their role in confirming the accuracy values generated by the test 

datasets, in order to validate the performance of T, corT, adjcorT and Lasso. 

 

  The proposed variable selection methods, adjcorT was employed to 

analyse metabolomics datasets. Future researcher may focus on applying this 
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method to other areas in order to investigate whether this method can be 

successfully used to other fields (e.g., genetics, transcriptomics and proteomics), 

and in particular for correlation structures where negative correlations are common. 

 

  As mentioned in Chapter 5, the analysis used VOCs information only 

during the variable selection process, except for the colorectal cancer datasets. One 

may be interested in adding or combining additional clinical information with 

VOCs data in the analysis in order to investigate whether is there any improvement 

in the classification accuracy.  
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APPENDICES 
 

Appendix I: R codes 
 
#Simulated data (for example, 200 variables with )*	,-.	)/ 
was set as 2 discriminatory variables and 1 binary outcome 

(group 0 and 1), n=100 and r = 0.8. 

 

#Call the libraries 

library(MASS) 

library(InformationValue) 

library(plyr) 

library(st) 

library(sda) 

library(pROC) 

library(glmnet) 

library(stringi) 

library(corrgram) 

 

#Set the seed as 110 for the reproducible results 

set.seed(110) 

meanx1group0 = 0 

meanx2group0 = 0 

meanx1group1 = 0.5 

meanx2group1 = 1 

stddev = c(1,1) 

 

#Set the correlation matrix 

corMat = matrix(c(1,0.8,0.8,1),ncol = 2) 

corVar = stddev %*% t(stddev) * corMat 

 
#Generate a bivariate data which there is association between 

x1 and x2 (Set them as discriminatory variables) 
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x1x2_group0 = 

mvrnorm(50,c(meanx1group0,meanx2group0),Sigma = corVar, 

empirical = TRUE) 

x1x2_group1 = 

mvrnorm(50,c(meanx1group1,meanx2group1),Sigma = corVar, 

empirical = TRUE) 

x1x2 = rbind(x1x2_group0,x1x2_group1) 

 
#Set x3 until x200 as the not discriminatory variables 
x3to200 = matrix(rnorm(100*198,0,1), 100, 198); 

x <- cbind(x1x2,x3to200) 

colnames(x) <- paste0("x",     1:ncol(x)); 

 

#Set the outcome groups 

y = data.frame(rep(100)) 

y[1:50,1] = 0 

y[51:100,1] = 1 

colnames(y) <- paste0("y") 

mode(x) = "numeric" 

data <- data.frame(y,x) 

 

#Variable selection methods 

#T method function 

Tfunction=function(trainset,data){ 

tmp = centroids(as.matrix(trainset[,2:ncol(data)]), 

as.matrix(trainset[,1]), var.groups = FALSE, 

centered.data = TRUE,  

                lambda.var = 0, lambda.freqs = 0, verbose 

= TRUE ) 

diff = tmp$means[, 1] - tmp$means[, 2] 

n1 = tmp$samples[1] 

n2 = tmp$samples[2] 

v = tmp$variances[, 1] 

sd = sqrt((1/n1 + 1/n2) * v) 

t = abs(diff/sd) 
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idx = order((t),decreasing = TRUE) 

return(idx)} 

 

#corT method function  

    corTfunction=function(trainset,data){ 

    tmp = centroids(as.matrix(trainset[,2:ncol(data)]), 

as.matrix(trainset[,1]), var.groups = FALSE, 

centered.data = TRUE,  

                    lambda.var = 0, lambda.freqs = 0, 

verbose = TRUE ) 

    diff = tmp$means[, 1] - tmp$means[, 2] 

    n1 = tmp$samples[1] 

    n2 = tmp$samples[2] 

    v = tmp$variances[, 1] 

    sd = sqrt((1/n1 + 1/n2) * v) 

    R = cor(tmp$centered.data) 

    t = diff/sd 

    p = length(t) 

    cst.vec = numeric(p) 

    for (i in 1:p) { 

      idx = order(R[i, ], decreasing = TRUE) 

      nonneg = sum(R[i, ] >= 0) 

      z = cumsum(abs(t[idx[1:nonneg]]))/1:nonneg 

      cst.vec[i] = max(z) * sign(t[i]) 

    } 

    idx = order(abs(cst.vec), decreasing=TRUE) 

        return(idx) 

    } 

     

#adjcorT method function 

adjcorTfunction=function(trainset,data){ 

  tmp = centroids(as.matrix(trainset[,2:ncol(data)]), 

as.matrix(trainset[,1]), var.groups = FALSE, 

centered.data = TRUE,  
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               lambda.var = 0, lambda.freqs = 0, verbose 

= TRUE ) 

diff = tmp$means[, 1] - tmp$means[, 2] 

n1 = tmp$samples[1] 

n2 = tmp$samples[2] 

v = tmp$variances[, 1] 

sd = sqrt((1/n1 + 1/n2) * v) 

R = cor(tmp$centered.data) 

t = diff/sd 

p = length(t) 

cst.vec = numeric(p) 

for (i in 1:p) { 

  idx = order(abs(R[i, ]), decreasing = TRUE) 

  nonneg = sum(abs(R[i, ])>= 0) 

  z = cumsum(abs(t[idx[1:nonneg]]))/1:nonneg 

  cst.vec[i] = max(z) * sign(t[i]) 

} 

idx = order(abs(cst.vec), decreasing=TRUE) 

return(idx) 

} 

 

#T, corT, adjcorT, Lasso and logistic model 

#Create matrixes that store the results 

T_results_select=matrix(NA,ncol=2,nrow=100) 

corT_results_select=matrix(NA,ncol=2,nrow=100) 

adjcorT_results_select=matrix(NA,ncol=2,nrow=100) 

select=matrix(NA,ncol = 2,nrow = 100) 

select1=matrix(NA,ncol = 2,nrow = 100) 

dataCorr =matrix(NA,ncol=2,nrow = nrow(trainset)) 

error_T=sen_T=spe_T=auroc_T=error_corT=sen_corT=spe_cor

T=auroc_corT=error_adjcorT=sen_adjcorT=spe_adjcorT=auro

c_adjcorT=error_lasso=sen_lasso=spe_lasso=auroc_lasso=m

atrix(NA,ncol=1,nrow=100) 

i=1 
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#Run the variable selection process in 100 iterations 

for(i in 1:100){ 

set.seed(110+i) 

smp_size <- floor(0.80 * nrow(data)) 

train_ind <- sample(seq_len(nrow(data)), size = smp_size) 

trainset <- data[train_ind, ] 

testset <- data[-train_ind, ] 

dim(trainset) 

dim(testset) 

#trainset[complete.cases(trainset)] 

testset=data.frame(testset) 

trainset=data.frame(trainset) 

 

#Top two variables selected by T 

T_results=Tfunction(trainset,data) 

T_results_select[i,]=T_results[1:2]  

 

#Top two variables selected by corT 

corT_results=corTfunction(trainset,data) 

corT_results_select[i,]=corT_results[1:2]  

 

#Top two variables selected by adjcorT 

adjcorT_results=adjcorTfunction(trainset,data) 

adjcorT_results_select[i,]=adjcorT_results[1:2]  

 

#Logistic regression that includes the top two selected 

variables by T 

model_T<-glm(trainset[,1]~ 

trainset[,(1+c(T_results_select[i,][1]))]+trainset[,(1+

c(T_results_select[i,][2]))], 

family=binomial,data=trainset) 

 

#Logistic regression that includes the top two selected 

variables by corT 
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cormodel_T <- glm(trainset[,1]~ 

trainset[,(1+c(corT_results_select[i,][1]))]+trainset[,

(1+c(corT_results_select[i,][2]))], 

family=binomial,data=trainset) 

 

#Logistic regression that includes the top two selected 

variables by adjcorT 

adjcormodel_T <- glm(trainset[,1]~ 

trainset[,(1+c(adjcorT_results_select[i,][1]))]+trainse

t[,(1+c(adjcorT_results_select[i,][2]))], 

family=binomial,data=trainset) 

 

xbeta_T=exp(model_T$coefficients[1]+model_T$coefficient

s[2]*testset[,(1+c(T_results_select[i,][1]))]+model_T$c

oefficients[3]*testset[,(1+c(T_results_select[i,][2]))]

) 

predicted_T=xbeta_T/(1+xbeta_T) 

model_pred_y_T <- rep("0", nrow(testset)) 

model_pred_y_T[predicted_T > 0.5] = "1" 

 

error_T[i,] =misClassError(testset[,1], 

predicted_T,threshold = 0.5) 

sen_T[i,] = sensitivity(testset[,1], predicted_T, 

threshold = 0.5) 

spe_T[i,] = specificity(testset[,1], predicted_T, 

threshold = 0.5) 

auroc_T[i,]= AUROC(testset[,1], predicted_T) 

 

xbeta_corT=exp(cormodel_T$coefficients[1]+cormodel_T$co

efficients[2]*testset[,(1+c(corT_results_select[i,][1])

)]+cormodel_T$coefficients[3]*testset[,(1+c(corT_result

s_select[i,][2]))]) 

predicted_corT=xbeta_corT/(1+xbeta_corT) 

model_pred_y_corT <- rep("0", nrow(testset)) 

model_pred_y_corT[predicted_corT > 0.5] = "1" 
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error_corT[i,] =misClassError(testset[,1], 

predicted_corT,threshold = 0.5) 

sen_corT[i,] = sensitivity(testset[,1], predicted_corT, 

threshold = 0.5) 

spe_corT[i,] = specificity(testset[,1], predicted_corT, 

threshold = 0.5) 

auroc_corT[i,]= AUROC(testset[,1], predicted_corT) 

xbeta_adjcorT=exp(adjcormodel_T$coefficients[1]+adjcorm

odel_T$coefficients[2]*testset[,(1+c(adjcorT_results_se

lect[i,][1]))]+adjcormodel_T$coefficients[3]*testset[,(

1+c(adjcorT_results_select[i,][2]))]) 

predicted_adjcorT=xbeta_adjcorT/(1+xbeta_adjcorT)   

model_pred_y_adjcorT <- rep("0", nrow(testset)) 

model_pred_y_adjcorT[predicted_adjcorT > 0.5] = "1" 

 

 

error_adjcorT[i,] =misClassError(testset[,1], 

predicted_adjcorT,threshold = 0.5) 

sen_adjcorT[i,] = sensitivity(testset[,1], 

predicted_adjcorT, threshold = 0.5) 

spe_adjcorT[i,] = specificity(testset[,1], 

predicted_adjcorT, threshold = 0.5) 

auroc_adjcorT[i,]= AUROC(testset[,1], predicted_adjcorT) 

 

#Lasso model 

TRfit<-

cv.glmnet(as.matrix(trainset[,2:ncol(trainset)]),as.mat

rix(trainset[,1]),nfolds=10) #initial fit 

lassofit=glmnet(as.matrix(trainset[,2:ncol(trainset)]),

as.matrix(trainset[,1]),family="binomial",alpha = 1, 

lambda=TRfit$lambda.min,standardize=T) 

coef=as.vector(lassofit$beta) 

nonzerocoef=coef[coef!=0][1:lassofit$df] 

coef1=cbind(colnames(trainset[,2:ncol(trainset)],coef)) 
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coef2=cbind(1:(ncol(trainset)-1),coef) 

nonzerocoef2=coef2[coef!=0][1:lassofit$df] 

nonzeroX=coef1[coef!=0][1:lassofit$df] 

 

#The first variable selected by Lasso 

select[i,1] = nonzeroX[1] 

 

#The second variable selected by Lasso 

select[i,2] = nonzeroX[2] 

 

if (!is.na(select[i,1]) && (!is.na(select[i,2]))) 

{ 

 select1[i,] =  stri_sub(select[i,],2) 

} 

   

 

if (is.na(select1[i,1]) && (is.na(select1[i,2]))) 

{ 

  error_lasso[i,] = NA 

  sen_lasso[i,] = NA 

  spe_lasso[i,] = NA 

  auroc_lasso[i,] = NA 

} 

else  

{ 

if (is.na(select1[i,2]) && (!is.na(select1[i,1]))) 

{ 

  model_lasso <- glm(trainset[,1]~ 

trainset[,(1+c(as.numeric(as.character(select1[i,][1]))

))] , family=binomial,data=trainset) 

  

xbeta_lasso=exp(model_lasso$coefficients[1]+model_lasso

$coefficients[2]*testset[,(1+c(as.numeric(as.character(

select1[i,][1]))))]) 

  predicted_lasso=xbeta_lasso/(1+xbeta_lasso)   
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  model_pred_y_lasso <- rep("0", nrow(testset)) 

  model_pred_y_lasso[predicted_lasso > 0.5] = "1" 

   

  error_lasso[i,] =misClassError(testset[,1], 

predicted_lasso,threshold = 0.5) 

  sen_lasso[i,] = sensitivity(testset[,1], 

predicted_lasso, threshold = 0.5) 

  spe_lasso[i,] = specificity(testset[,1], 

predicted_lasso, threshold = 0.5) 

  auroc_lasso[i,]= AUROC(testset[,1], predicted_lasso) 

} 

else  

{ 

  model_lasso <- glm(trainset[,1]~ 

trainset[,(1+c(as.numeric(as.character(select1[i,][1]))

))] 

+trainset[,(1+c(as.numeric(as.character(select1[i,][2])

)))], family=binomial,data=trainset) 

  

xbeta_lasso=exp(model_lasso$coefficients[1]+model_lasso

$coefficients[2]*testset[,(1+c(as.numeric(as.character(

select1[i,][1]))))]+model_lasso$coefficients[3]*testset

[,(1+c(as.numeric(as.character(select1[i,][2]))))]) 

  predicted_lasso=xbeta_lasso/(1+xbeta_lasso)   

  model_pred_y_lasso <- rep("0", nrow(testset)) 

  model_pred_y_lasso[predicted_lasso > 0.5] = "1" 

   

  error_lasso[i,] =misClassError(testset[,1], 

predicted_lasso,threshold = 0.5) 

  sen_lasso[i,] = sensitivity(testset[,1], 

predicted_lasso, threshold = 0.5) 

  spe_lasso[i,] = specificity(testset[,1], 

predicted_lasso, threshold = 0.5) 

  auroc_lasso[i,]= AUROC(testset[,1], predicted_lasso) 
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} 

} 

 

} 

 

#Average of classification accuracy, sensitivity, 

specificity and AUROC for T 

mean_error_T=round((1-mean(error_T))*100,2) 

mean_sen_T=round(mean(sen_T)*100,2) 

mean_spe_T=round(mean(spe_T)*100,2) 

mean_auroc_T=round(mean(auroc_T)*100,2) 

 

mean_error_T 

mean_sen_T 

mean_spe_T 

mean_auroc_T 

 

#Average of classification accuracy, sensitivity, 

specificity and AUROC for corT  

mean_error_corT=round((1-mean(error_corT))*100,2) 

mean_sen_corT=round(mean(sen_corT)*100,2) 

mean_spe_corT=round(mean(spe_corT)*100,2) 

mean_auroc_corT=round(mean(auroc_corT)*100,2) 

 

mean_error_corT 

mean_sen_corT 

mean_spe_corT 

mean_auroc_corT 

 

#Average of classification accuracy, sensitivity, 

specificity and AUROC for adjcorT 

mean_error_adjcorT=round((1-mean(error_adjcorT))*100,2) 

mean_sen_adjcorT=round(mean(sen_adjcorT)*100,2) 

mean_spe_adjcorT=round(mean(spe_adjcorT)*100,2) 

mean_auroc_adjcorT=round(mean(auroc_adjcorT)*100,2) 
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mean_error_adjcorT 

mean_sen_adjcorT 

mean_spe_adjcorT 

mean_auroc_adjcorT 

 

#Average of classification accuracy, sensitivity, 

specificity and AUROC for Lasso 

error_lasso1 = na.omit(error_lasso) 

sen_lasso1 = na.omit(sen_lasso) 

spe_lasso1 =na.omit(spe_lasso) 

auroc_lasso1 = na.omit(auroc_lasso) 

 

mean_error_lasso=round((1-mean(error_lasso1))*100,2) 

mean_sen_lasso=round(mean(sen_lasso1)*100,2) 

mean_spe_lasso=round(mean(spe_lasso1)*100,2) 

mean_auroc_lasso=round(mean(auroc_lasso1)*100,2) 

 

mean_error_lasso 

mean_sen_lasso 

mean_spe_lasso 

mean_auroc_lasso 
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Appendix II: Histograms of performance measures for n =76 and 300 
based on 100 iterations 
 

a) Histograms of performance measures for n=76 based on 100 iterations 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure S4. 1: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=76 and 0= -0.8, for the T method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 2: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=76 and 0= -0.8, for the corT method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 3: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=76 and 0= -0.8, for the adjcorT method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure S4. 4: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=76 and 0= -0.8, for the Lasso method. 
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Figure S4. 5: Distributions of AUCs for sample size n=76 and ! =-0.8 across methods (100 iterations)
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b) Histograms of performance measures for n =300 based on 100 iterations 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 6: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=300 and != -0.8, for the T method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure S4. 7: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=300 and != -0.8, for the corT method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 8: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=300 and != -0.8, for the adjcorT method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 9: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=300 and != -0.8, for the Lasso method 
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Appendix III: Histograms of performance measures for n =76 and 300 
based on 1000 iterations 

 
 

a) Histograms of performance measures for n =76 based on 1000 iterations 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 10: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n =76 and != -0.8, for the T method. 



 135 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 11: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=76 and != -0.8, for the corT method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 12: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n =76 and != -0.8, for the adjcorT method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure S4. 13: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=76 and != -0.8, for the Lasso method. 
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Figure S4.13: Distributions of AUCs for sample size n=76 and ! =-0.8 across methods (1000 iterations) 
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b) Histograms of performance measures for n=300 based on 1000 iterations 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure S4. 14: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=300 and != -0.8, for the T method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure S4. 15: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 
Specificity and (d) AUC for sample size n=300 and != -0.8, for the corT method. 

 
 
 
 



 141 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure S4. 16: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=300 and != -0.8, for the adjcorT method. 
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(a)  

(b) 

 
(c) 

 
(d) 

 
Figure S4. 17: Distribution of the estimates of (a) Accuracy, (b) Sensitivity, (c) 

Specificity and (d) AUC for sample size n=300 and != -0.8, for the Lasso method. 
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Appendix IV: Classification Accuracy, Sensitivity, Specificity and AUC of each method for all sample sizes and at different correlations 
 
 

 
Figure S4. 18: Classification Accuracy, Sensitivity, Specificity and AUC of each method for all sample sizes and !=0.8 
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Figure S4. 19: Classification Accuracy, Sensitivity, Specificity and AUC of each method for all sample sizes and !=0 
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Figure S4. 20: Classification Accuracy, Sensitivity, Specificity and AUC of each method for all sample sizes and !=-0.5 
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Appendix V: Correlation tables of the top 10 VOCs selected by each variable selection method for each dataset 

 

i) Colorectal cancer and non-cancer discrimination 

Table S5. 1: Correlation of the top 10 VOCs selected by T method 

  

X27.19_Penta
ne..2.3.4.trimet
hyl. 

X33.44_Hexanoic.
acid..2.methylbutyl
.ester 

X25.32_Propan
oic.acid..pentyl.
ester 

X17.93_Propan
oic.acid..propyl.
ester 

X22.19_
2.Hepta
nol 

X29.18
_3.Care
ne 

X22.01_Aceti
c.acid..pentyl.
ester 

X31.48_Cycloh
exanecarboxylic
.acid 

X29.47_H
eptanoic.a
cid 

X28.53_Benz
eneacetaldeh
yde 

X27.19_Pentane..2.
3.4.trimethyl. 1 0.16 0.49 0.34 0.00 -0.03 0.33 0.06 0.16 -0.26 
X33.44_Hexanoic.
acid..2.methylbutyl
.ester 0.16 1 0.04 -0.06 0.29 -0.11 0.12 -0.03 0.36 -0.18 
X25.32_Propanoic.
acid..pentyl.ester 0.49 0.04 1 0.56 -0.06 -0.07 0.88 0.13 -0.02 -0.17 
X17.93_Propanoic.
acid..propyl.ester 0.34 -0.06 0.56 1 -0.06 -0.06 0.52 0.17 -0.10 -0.18 
X22.19_2.Heptanol 0.00 0.29 -0.06 -0.06 1 0.00 -0.06 -0.04 0.42 -0.12 
X29.18_3.Carene -0.03 -0.11 -0.07 -0.06 0.00 1 -0.04 0.17 0.18 -0.04 
X22.01_Acetic.aci
d..pentyl.ester 0.33 0.12 0.88 0.52 -0.06 -0.04 1 0.11 -0.02 -0.21 
X31.48_Cyclohexa
necarboxylic.acid 0.06 -0.03 0.13 0.17 -0.04 0.17 0.11 1 0.00 -0.02 
X29.47_Heptanoic.
acid 0.16 0.36 -0.02 -0.10 0.42 0.18 -0.02 0.00 1 -0.22 
X28.53_Benzeneac
etaldehyde -0.26 -0.18 -0.17 -0.18 -0.12 -0.04 -0.21 -0.02 -0.22 1 
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Table S5. 2: Correlation of the top 10 VOCs selected by corT and adjcorT 

 

X27.19_Penta
ne..2.3.4.trime
thyl. 

X33.44_Hexan
oic.acid..2.met
hylb 

X25.32_Propan
oic.acid..pentyl.
ester 

X23.49_Butanoic.a
cid..2.methylpropyl
.ester 

X22.01_Aceti
c.acid..pentyl.
ester 

X17.93_Pr
opanoic.aci
d..p 

X29.18
_3.Care
ne 

X31.48_Cycloh
exanecarboxylic
.acid 

X22.19_
2.Hepta
nol 

X27.52_Butanoi
c.acid..4.penteny
l.ester 

X27.19_Pentane..2.
3.4.trimethyl. 1 0.12 0.55 0.72 0.42 0.33 -0.01 0.12 -0.02 0.64 
X33.44_Hexanoic.
acid..2.methylbutyl
.ester 0.12 1 0.01 0.21 0.09 -0.06 -0.11 -0.04 0.29 0.13 
X25.32_Propanoic.
acid..pentyl.ester 0.55 0.01 1 0.59 0.89 0.56 -0.04 0.15 -0.07 0.53 
X23.49_Butanoic.a
cid..2.methylpropyl
.ester 0.72 0.21 0.59 1 0.50 0.31 0.04 0.23 0.01 0.50 
X22.01_Acetic.aci
d..pentyl.ester 0.42 0.09 0.89 0.50 1  0.53 -0.02 0.16 -0.07 0.50 
X17.93_Propanoic.
acid..propyl.ester 0.33 -0.06 0.56 0.31 0.53 1 -0.05 0.04 -0.06 0.18 
X29.18_3.Carene -0.01 -0.11 -0.04 0.04 -0.02 -0.05 1 0.07 0.00 0.02 
X31.48_Cyclohexa
necarboxylic.acid 0.12 -0.04 0.15 0.23 0.16 0.04 0.07 1 -0.03 0.25 
X22.19_2.Heptanol -0.02 0.29 -0.07 0.01 -0.07 -0.06 0.00 -0.03 1 -0.03 
X27.52_Butanoic.a
cid..4.pentenyl.este
r 0.64 0.13 0.53 0.50 0.50 0.18 0.02 0.25 -0.03 1 
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Table S5. 3: Correlation of the top 10 VOCs selected by Lasso 

 
X33.44_Hexan
oi 

X27.19_ 
Pentane..2.3.
4. 

X32.25_dl.
M 

X28.53_Benzene
a 

X22.19_2
. 
Heptanol 

X31.48_ 
Cyclohexanecarb
o 

X24.00_ 
Propanoic.acid..
p 

X29.18
_ 
3.Ca Age 

X17.93
_ 
Propano
i 

X33.44_Hexanoic.acid..2.meth 1 0.11 -0.04 -0.17 0.29 -0.04 0.18 -0.11 0.04 -0.06 
X27.19_Pentane..2.3.4. 0.11 1 -0.06 -0.25 -0.02 0.12 0.10 -0.01 0.01 0.33 

X32.25_dl.Menthol -0.04 -0.06 1 0.05 -0.03 -0.02 0.03 0.06 
-

0.11 -0.07 

X28.53_Benzeneacetaldehyde -0.17 -0.25 0.05 1 -0.11 -0.05 -0.00 -0.03 
-

0.06 -0.19 
X22.19_2.Heptanol 0.29 -0.02 -0.03 -0.11 1 -0.03 0.00 0.00 0.11 -0.06 
X31.48_Cyclohexanecarboxylic.ac
id -0.04 0.12 -0.02 -0.05 -0.03 1 0.37 0.07 0.12 0.04 
X24.00_Propanoic.acid..pentyl.est
er 0.18 0.10 0.03 -0.00 0.00 0.37 1 -0.02 0.15 -0.01 

X29.18_3.Carene -0.11 -0.01 0.06 -0.03 0.00 0.07 -0.02 1 
-

0.02 -0.05 
Age 0.04 0.01 -0.11 -0.06 0.11 0.12 0.15 -0.02 1 -0.05 
X17.93_Propanoic.acid..propyl.est
er -0.06 0.33 -0.07 -0.19 -0.06 0.04 -0.01 -0.05 

-
0.05 1 
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ii) Healthy control and Adenoma discrimination 

Table S5. 4: Correlation of the top 10 VOCs selected by T method 

  

X27.19_Pent
ane..2.3.4.tri
methyl. 

X28.53_Be
nzeneacetal
dehyde 

X33.44_Hexanoi
c.acid..2.methylb
utyl.ester 

X25.32_Propa
noic.acid..pen
tyl.ester 

X22.01_Ace
tic.acid..pent
yl.ester 

X23.39
_Methi
onal 

X22.19
_2.Hep
tanol 

X25.22_D
imethyl.tri
sulfide 

X24.97_Penta
noic.acid..pro
pyl.ester 

X27.52_Butan
oic.acid..4.pent
enyl.ester 

X27.19_Pentane.
.2.3.4.trimethyl. 1 -0.32 0.12 0.56 0.44 -0.26 0.01 0.02 0.47 0.57 
X28.53_Benzene
acetaldehyde -0.32 1 -0.22 -0.24 -0.27 0.72 -0.10 -0.22 -0.26 -0.36 
X33.44_Hexanoi
c.acid..2.methylb
utyl.ester 0.12 -0.22 1 0.07 0.19 -0.13 0.45 0.10 0.07 0.22 
X25.32_Propano
ic.acid..pentyl.es
ter 0.56 -0.24 0.07 1 0.90 -0.27 -0.07 -0.13 0.95 0.56 
X22.01_Acetic.a
cid..pentyl.ester 0.44 -0.27 0.19 0.90 1 -0.28 -0.07 -0.12 0.90 0.58 
X23.39_Methion
al -0.26 0.72 -0.13 -0.27 -0.28 1 -0.12 -0.19 -0.26 -0.38 
X22.19_2.Hepta
nol 0.01 -0.10 0.45 -0.07 -0.07 -0.12 1 0.04 -0.07 -0.03 
X25.22_Dimeth
yl.trisulfide 0.02 -0.22 0.10 -0.13 -0.12 -0.19 0.04 1 -0.12 -0.02 
X24.97_Pentano
ic.acid..propyl.es
ter 0.47 -0.26 0.07 0.95 0.90 -0.26 -0.07 -0.12 1 0.54 
X27.52_Butanoi
c.acid..4.penteny
l.ester 0.57 -0.36 0.22 0.56 0.58 -0.38 -0.03 -0.02 0.54 1 
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Table S5. 5: Correlation of the top 10 VOCs selected by corT and adjcorT 

  

X28.53_Be
nzeneacetal
dehyde 

X27.19_Pen
tane..2.3.4.tr
imethyl. 

X33.44_Hexano
ic.acid..2.methyl
butyl.ester 

X27.52_Butan
oic.acid..4.pent
enyl.ester 

X23.49_Butanoi
c.acid..2.methylp
ropyl.ester 

X23.3
9_Met
hional 

X25.32_Prop
anoic.acid..pe
ntyl.ester 

X22.01_Ace
tic.acid..pen
tyl.ester 

X12.47_B
utanal..3.
methyl. 

X22.19
_2.Hep
tanol 

X28.53_Benzene
acetaldehyde 1 -0.33 -0.24 -0.35 -0.36 0.69 -0.24 -0.27 0.56 -0.10 
X27.19_Pentane.
.2.3.4.trimethyl. -0.33 1 0.12 0.70 0.75 -0.24 0.57 0.42 -0.22 -0.01 
X33.44_Hexanoi
c.acid..2.methylb
utyl.ester -0.24 0.12 1 0.12 0.20 -0.10 0.06 0.08 -0.11 0.30 
X27.52_Butanoi
c.acid..4.penteny
l.ester -0.35 0.70 0.12 1 0.49 -0.34 0.54 0.51 -0.23 -0.03 
X23.49_Butanoi
c.acid..2.methylp
ropyl.ester -0.36 0.75 0.20 0.49 1 -0.26 0.59 0.50 -0.22 0.00 
X23.39_Methion
al 0.69 -0.24 -0.10 -0.34 -0.26 1 -0.26 -0.27 0.67 -0.12 
X25.32_Propano
ic.acid..pentyl.es
ter -0.24 0.57 0.06 0.54 0.59 -0.26 1 0.89 -0.14 -0.07 
X22.01_Acetic.a
cid..pentyl.ester -0.27 0.42 0.08 0.51 0.50 -0.27 0.89 1 -0.19 -0.06 
X12.47_Butanal.
.3.methyl. 0.56 -0.22 -0.11 -0.23 -0.22 0.67 -0.14 -0.19 1 -0.08 
X22.19_2.Hepta
nol -0.10 -0.01 0.30 -0.03 0.00 -0.12 -0.07 -0.06 -0.08 1 
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Table S5. 6: Correlation of the top 10 VOCs selected by Lasso 

  

X28.53_Be
nzeneacetal
dehyde 

X33.44_Hexanoi
c.acid..2.methylb
utyl.ester 

X27.19_Pent
ane..2.3.4.tri
methyl. 

X29.1
8_3.Ca
rene 

X22.19
_2.Hept
anol 

X23.27_S.Meth
yl.3.methylbuta
nethioate 

X31.48_Cyclo
hexanecarboxy
lic.acid 

X25.22_Di
methyl.tris
ulfide 

X33.63_P
henol..4.e
thyl. 

X24.26_2.H
eptanone..6.
methyl. 

X28.53_Benzene
acetaldehyde 1 -0.24 -0.33 0.03 -0.10 -0.06 -0.04 -0.21 -0.16 0.03 
X33.44_Hexanoi
c.acid..2.methylb
utyl.ester -0.24 1 0.12 -0.11 0.30 0.12 -0.05 0.14 0.20 -0.04 
X27.19_Pentane..
2.3.4.trimethyl. -0.33 0.12 1 0.01 -0.01 0.03 0.14 0.07 0.9 -0.13 
X29.18_3.Carene 0.03 -0.11 0.01 1 0.00 -0.05 0.06 0.01 0.05 -0.08 
X22.19_2.Heptan
ol -0.10 0.30 -0.01 0.00 1 -0.05 -0.03 0.04 0.06 0.09 
X23.27_S.Methyl
.3.methylbutanet
hioate -0.06 0.12 0.03 -0.05 -0.05 1 -0.06 0.03 -0.01 0.05 
X31.48_Cyclohe
xanecarboxylic.a
cid -0.04 -0.05 0.14 0.06 -0.03 -0.06 1 -0.08 -0.05 -0.05 
X25.22_Dimethy
l.trisulfide -0.21 0.14 0.07 0.01 0.04 0.03 -0.08 1 0.10 -0.06 
X33.63_Phenol..
4.ethyl. -0.16 0.20 0.09 0.05 0.06 -0.01 -0.05 0.10 1 -0.11 
X24.26_2.Heptan
one..6.methyl. 0.03 -0.04 -0.13 -0.08 0.09 0.05 -0.05 -0.06 -0.11 1 
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iii) Bacterial and non-bacterial sepsis discrimination 
 

Table S5. 7: Correlation of the top 10 VOCs selected by T method 

  
unknown
_7 

unknown_1
29 

phenylalanine
_8 

unknown_
34 

phenylalanine
_6 

unknown_
10 

creatine40_
33 

acetoacetate_
111 

mobile.lipids_
132 

mobile.lipids_
18 

unknown_7 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.09 -0.07 
unknown_129 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 -0.08 -0.06 
phenylalanine_
8 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 -0.06 -0.05 
unknown_34 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 -0.07 -0.06 
phenylalanine_
6 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 -0.07 -0.05 
unknown_10 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 -0.03 -0.02 
creatine40_33 1.00 1.00 1.00 1.00 1.00 1.00 1 1.00 -0.06 -0.05 
acetoacetate_1
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 -0.04 -0.03 
mobile.lipids_
132 -0.09 -0.08 -0.06 -0.07 -0.07 -0.03 -0.06 -0.04 1 0.94 
mobile.lipids_
18 -0.07 -0.06 -0.05 -0.06 -0.05 -0.02 -0.05 -0.03 0.94 1 
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Table S5. 8: Correlation of the top 10 VOCs selected by corT and adjcorT 

 
unknown
_7 

unknown_1
29 

phenylalanine
_6 

phenylalanine
_8 

unknown_
34 

acetoacetate_1
11 

creatine40_
33 

unknown_
10 

glucose_
35 

mobile.lipids_1
32 

unknown_7 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 -0.06 
unknown_129 0.99 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.06 
phenylalanine_
6 0.99 0.99 1 0.99 0.99 0.99 0.99 0.99 0.99 0.01 
phenylalanine_
8 0.99 0.99 0.99 1 0.99 0.99 0.99 0.99 0.99 0.02 
unknown_34 0.99 0.99 0.99 0.99 1 0.99 1.00 0.99 0.99 0.01 
acetoacetate_1
11 0.99 0.99 0.99 0.99 0.99 1 0.99 0.99 0.99 0.04 
creatine40_33 0.99 0.99 0.99 0.99 1.00 0.99 1 0.99 1.00 0.02 
unknown_10 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 0.99 0.05 
glucose_35 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 1 0.05 
mobile.lipids_1
32 -0.06 0.06 0.01 0.02 0.01 0.04 0.02 0.05 0.05 1 
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Table S5. 9: Correlation of the top 10 VOCs selected by Lasso 

 
mobile.lipids_1

32 
unknown_

94 
glucose_4

5 
phenylalanine

_4 
unknown_

10 
glucose_6

5 
unknown_

7 
desaminotyrosine_

16 
glucose_5

8 
glucose_6

2 
mobile.lipids_132 1 0.21 0.26 0.73 0.05 0.76 0.00 0.51 0.62 0.65 

unknown_94 0.21 1 0.83 0.19 0.91 0.52 0.89 0.69 0.76 0.72 
glucose_45 0.26 0.83 1 0.32 0.80 0.59 0.78 0.79 0.74 0.68 

phenylalanine_4 0.73 0.19 0.32 1 0.16 0.69 0.13 0.61 0.58 0.57 
unknown_10 0.05 0.91 0.80 0.16 1 0.43 0.99 0.65 0.72 0.68 
glucose_65 0.76 0.52 0.59 0.69 0.43 1 0.38 0.71 0.83 0.90 
unknown_7 0.00 0.89 0.78 0.13 0.99 0.38 1 0.63 0.69 0.64 

desaminotyrosine_
16 0.51 0.69 0.79 0.61 0.65 0.71 0.63 1 0.83 0.74 

glucose_58 0.62 0.76 0.74 0.58 0.72 0.83 0.69 0.83 1 0.95 
glucose_62 0.65 0.72 0.68 0.57 0.68 0.90 0.64 0.74 0.95 1 
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iv) Healthy control and Kidney Disease discrimination 

Table S5. 10: Correlation of the top 10 VOCs selected by T method 

  
Creatin
ine 

Hydroxyphenylpyru
vic.acid 

Methylmalo
nate 

D.Glucoronic
.acid 

myoinos
itol 

X1.Methyladen
osine 

Choli
ne 

X2.Aminoisobutyr
ic.acid 

Fumaric.
Acid 

Xanthos
ine 

Creatinine 1 0.89 0.85 0.72 0.88 0.74 0.78 0.74 0.78 0.68 
Hydroxyphenylpyru
vic.acid 0.89 1 0.88 0.72 0.98 0.60 0.74 0.71 0.74 0.56 
Methylmalonate 0.85 0.88 1 0.74 0.87 0.64 0.79 0.76 0.80 0.64 
D.Glucoronic.acid 0.72 0.72 0.74 1 0.69 0.55 0.66 0.63 0.68 0.58 
myoinositol 0.88 0.98 0.87 0.69 1 0.59 0.73 0.70 0.75 0.56 
X1.Methyladenosine 0.74 0.60 0.64 0.55 0.59 1 0.66 0.66 0.55 0.63 
Choline 0.78 0.74 0.79 0.66 0.73 0.66 1 0.97 0.62 0.61 
X2.Aminoisobutyric
.acid 0.74 0.71 0.76 0.63 0.70 0.66 0.97 1 0.58 0.59 
Fumaric.Acid 0.78 0.74 0.80 0.68 0.75 0.55 0.62 0.58 1 0.54 
Xanthosine 0.68 0.56 0.64 0.58 0.56 0.63 0.61 0.59 0.54 1 
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Table S5. 11: Correlation of the top 10 VOCs selected by corT and adjcorT 

  
Creatin
ine 

Hydroxyphenylpyr
uvic.acid 

myoino
sitol 

Methylmal
onate 

X2.Hydroxygl
utarate 

Choli
ne 

X2.Aminoisobuty
ric.acid 

Oxaloac
etate 

D.Glucoroni
c.acid 

X1.Methylade
nosine 

Creatinine 1 0.87 0.87 0.84 0.80 0.76 0.72 0.80 0.72 0.74 
Hydroxyphenylpyr
uvic.acid 0.87 1 0.98 0.87 0.75 0.70 0.67 0.82 0.71 0.59 
myoinositol 0.87 0.98 1 0.86 0.74 0.70 0.67 0.83 0.69 0.57 
Methylmalonate 0.84 0.87 0.86 1 0.73 0.74 0.72 0.80 0.74 0.63 
X2.Hydroxyglutara
te 0.80 0.75 0.74 0.73 1 0.55 0.53 0.71 0.60 0.70 
Choline 0.76 0.70 0.70 0.74 0.55 1 0.97 0.65 0.63 0.66 
X2.Aminoisobutyri
c.acid 0.72 0.67 0.67 0.72 0.53 0.97 1 0.64 0.61 0.66 
Oxaloacetate 0.80 0.82 0.83 0.80 0.71 0.65 0.64 1 0.67 0.52 
D.Glucoronic.acid 0.72 0.72 0.69 0.74 0.60 0.63 0.61 0.68 1 0.57 
X1.Methyladenosin
e 0.74 0.59 0.57 0.63 0.70 0.66 0.66 0.52 0.57 1 
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Table S5. 12: Correlation of the top 10 VOCs selected by Lasso 

  
Creatini
ne 

Urat
e 

X1.Methyladen
osine 

Xanthosi
ne 

D.Glucoronic.
acid 

Fumaric.A
cid 

Guanidinoace
tate 

X2.Aminoisobutyri
c.acid 

X1.Methylhisti
dine 

myoinosi
tol 

Creatinine 1 0.58 0.74 0.67 0.72 0.71 -0.26 0.72 0.47 0.87 
Urate 0.58 1 0.45 0.38 0.46 0.38 -0.11 0.38 0.27 0.42 
X1.Methyladenosin
e 0.74 0.44 1 0.63 0.57 0.53 -0.25 0.66 0.38 0.57 
Xanthosine 0.67 0.38 0.63 1 0.55 0.55 -0.25 0.54 0.37 0.51 
D.Glucoronic.acid 0.72 0.46 0.57 0.55 1 0.68 -0.18 0.61 0.45 0.69 
Fumaric.Acid 0.71 0.38 0.53 0.55 0.68 1 -0.17 0.54 0.47 0.66 

Guanidinoacetate -0.26 
-

0.11 -0.25 -0.25 -0.18 -0.17 1 -0.21 -0.20 -0.27 
X2.Aminoisobutyri
c.acid 0.72 0.38 0.66 0.54 0.61 0.54 -0.21 1 0.29 0.67 
X1.Methylhistidine 0.46 0.27 0.38 0.37 0.45 0.47 -0.20 0.29 1 0.49 
myoinositol 0.87 0.42 0.57 0.51 0.69 0.66 -0.27 0.67 0.49 1 

 

 

 

 

 

 

 


