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Long-term autonomy requires autonomous systems to adapt as their capabilities no longer perform
as expected. To achieve this, a system must first be capable of detecting such changes. In this posi-
tion paper, we describe a system architecture for Belief-Desire-Intention (BDI) autonomous agents
capable of adapting to changes in a dynamic environment and outline the required research. Specif-
ically, we describe an agent-maintained self-model with accompanying theories of durative actions
and learning new action descriptions in BDI systems.

1 Introduction

Long-term autonomy requires autonomous systems to adapt as their capabilities no longer perform as
expected. To achieve this, a system must first be capable of detecting such changes. Creating and
maintaining a system ontology is a comprehensive solution for this; an agent-maintained formal self-
model will take the role of this system ontology. It would act as a repository of information about all
the processes and functionality of the autonomous system, forming a systematic approach for detecting
action failures.

Our work will focus on Belief-Desire-Intention (BDI) [25] programming languages as they are well
known for their use in developing intelligent agents [1, 6, 16, 21]. Agents that are capable of controlling
an array of cyber-physical autonomous systems such as autonomous vehicles, spacecraft and robot arms
have been programmed using BDI agents (e.g., Mars Rover [16], Earth-orbiting satellites [6] and robotic
arms for nuclear waste-processing [1]). Coupled with their use of plans and actions, BDI languages offer
an appropriate platform to build upon for the development of an adaptable autonomous system.

The agent-maintained self-model will include action descriptions, consisting of pre- and post-conditions
of all known actions/capabilities. An action’s pre-conditions are the environment conditions that must
exist for an action to be executed whilst post-conditions are defined as the expected changes in the en-
vironment made directly by a completed action. These action descriptions are based on the Planning
Domain Definition Language (PDDL) [22], commonly used in classical automated planning. The com-
plete availability of current system information will provide the ability to monitor the status of actions,
presenting the opportunity to detect failure. We use action life-cycles based on a theory of durative ac-
tions for BDI systems [10] to detect persistent abnormal behaviour from action executions that could
denote hardware degradation or other long-term causes of failure such as exposure to radiation or ex-
treme temperature. Once a failure has been detected, we can use machine learning methods to update the
action description in the self model. Then, we can repair or replace the actions in any existing plans by
using an automated planner to patch these plans. The resulting plans can then be verified to ensure the
system’s safety properties are intact.
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This is a position paper that outlines a program of research. The overarching aim of this research is
to create a framework for the verification of autonomous systems that are capable of learning new be-
haviour(s) descriptions and integrating them into existing BDI plans: using the framework as a route to
certification. In this paper, we discuss the current ability of BDI systems in adaptable reasoning, largely
focusing on actions. We also consider research in Artificial Intelligence (AI) planning on modelling ac-
tions and the methods and implications of introducing machine learning for replacing action descriptions.
Our main contribution is the initial design of a system architecture for BDI autonomous agents capable
of adapting to changes in a dynamic environment, consolidating the agent-maintained self-model with
the theory of durative actions and learning new action descriptions into a cohesive and adaptable BDI
system. It should be noted, our work relies upon assumptions that have been discussed further in the
relevant sections of this paper.

2 The Belief-Desire-Intention Model of Agency

Intelligent Agent systems conforming to the BDI software model largely follow the principles proposed
by Bratman’s Intentions, Plans, and Practical Reason [4] that was originally intended for modelling
practical reasoning in human psychology. Use of BDI agents is particularly suitable for high-level man-
agement and control tasks in complex dynamic environments [26] which justifies their implementation in
many practical applications. Since Georgeff and Lansky’s Procedural Reasoning System (PRS) emerged
in 1987 [14] a wide range of BDI programming languages have been developed [21], each building upon
the reach of PRS with a multitude of extensions for different applications.

2.1 Actions in BDI Systems

Typically, BDI languages use plans provided by a programmer at compile time and the language selects
an appropriate plan to react to a given situation. Some BDI languages model interaction with the ex-
ternal environment either as an action (e.g., Jason [3]) or as a capability (e.g., GOAL [19]). We view
capabilities as actions with explicit pre- and post-conditions.

Actions and capabilities can appear in the bodies of plans. The body of a plan is generally a sequence
of actions/capabilities, belief updates and subgoal manipulations (e.g., adopting or dropping goals). Plans
are selected by means-end reasoning in order to achieve the agent’s goals. Plans may have additional
components as well as the plan body. For instance, they generally have a guard which must hold before
the plan can be applied. Once a plan is selected for execution it is transformed into an intention which
represents a sequence of steps to be performed as part of executing the plan.

We intend to extend the GWENDOLEN agent programming language [7] for our research. We have
chosen to use GWENDOLEN as it is a BDI agent programming language capable of producing verifi-
able agents. It is integrated into the MCAPL (Model-Checking Agent Programming Languages) frame-
work [8]. Using MCAPL, agents can be programmed in GWENDOLEN and then verified using the AJPF
(Agent Java Pathfinder) model-checker [11]. Actions in GWENDOLEN are generally implemented in a
Java-based environment; at runtime they are requested and executed by agents. Whilst actions in GWEN-
DOLEN can exhibit characteristics of duration, this is implemented using a ‘wait for’ construct which
temporarily suspends an intention when encountered. When the predicate that is being waited for is
believed, the intention becomes unsuspended. This is the extent to which actions in GWENDOLEN are
treated as having significant durations and is largely typical of the treatment of actions in BDI languages.
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2.2 Durative Actions

BDI languages are increasingly being used for developing agents for physical systems where actions
could take considerable time to complete [10]. Currently, most BDI languages suspend an agent entirely
until an action completes or implement actions in such a way that an agent may start a process but then
must be programmed to explicitly track the progress of the action in some way.

Introducing an explicit notion of duration to actions will allow us to create principled mechanisms
to let an agent continue operating once an action is started, meaning the agent is available to monitor the
status of actions in progress. [16] introduced an abstract theory of goal life-cycles, whereby every goal
pursued by the agent moves through a series of states: Pending to Active; Active to either Suspended
or Aborted or a Successful end state; and so on. Dennis and Fisher [10] extended the formal semantics
provided by Harland et al. to show how the behaviour of durative actions could integrate into these life-
cycles. They advocate associating actions not only with pre- and post-conditions containing durations
but also with explicit success, failure and abort conditions (an abort is used if the action is ongoing but
needs to be stopped) and suggest goals be suspended while an action is executing and then the action’s
behaviour be monitored for the occurrence of its success, failure or abort conditions. When one of these
occurs the goal then moves to the Active or Pending (where re-planning may be required) part of its
life-cycle as appropriate. Adding these additional states to actions should not add to the cost of model
checking as this should not add branches. Adding states should only add more information which would
make no significant difference.

Brahms [28], a multi-agent modelling environment, is an example of an agent approach that imple-
ments durative actions. The Brahms equivalent of actions, activities, have duration. Brahms has a formal
semantics provided by Stocker et al. [29], although these semantics are primarily concerned with the ef-
fect of activity duration on simulation with mechanism for monitoring the behaviour of an activity during
its execution. Whilst the concept of durative actions seems to have been adequately explored in these
examples, there has not been a formal implementation that focuses on monitoring individual actions for
failure.

2.3 Action Failure

The idea of monitoring an action’s life-cycle exists in current literature [10,16,17]. A range of states can
be attributed to an action that can subsequently be traced for irregularities or consistent errors, providing
a basis for determining failure. If we assume that the performance of actions may degrade then we also
need to introduce the concept of an action life-cycle in which an action is introduced into the system
as Functional, may move into a Suspect state if it is failing and finally becomes Deprecated following
repeated failures.

Cardoso et al. [5] assumes a framework along these lines and builds upon it to outline a mechanism
that allows reconfiguration of the agent’s plans in order to continue functioning as intended if some action
has become Deprecated. However, this assumed ability to detect persistent failures does not yet exist.
Our proposed framework should allow us to detect persistent abnormal behaviour from action executions
for use with Cardoso et al.’s reconfiguration mechanism.

3 AI Planners and Learning New Actions

AI Planning seeks to automate reasoning about plans; using a formal description of the domain, all
possible actions available in the domain, an initial state of the problem, and a goal condition to produce



4 Towards the Verification of Adaptable Reasoning in Autonomous Systems

a plan consisting of the actions that will achieve the goal condition when executed [18]. The formal
description of the domain and the problem can be considered a model of the environment, the accuracy
of which is fundamental to producing viable plans of reasonable quality. Significant advances have been
made in the modelling of actions [12,15,33,34] in automated planning, supporting actions that can have
variable duration, conditions and effects.

Actions in BDI systems are typically designed without a specified duration and are defined before
the execution of the program. As previously mentioned, BDI systems do not have a de facto theory of
durative actions. Additionally, there is no theory for learning new action descriptions. With an extension
of action theory for BDI systems (covering these two areas) paired with the self-model concept, actions
could adapt to change. However, learning a new action may not always be the best solution for a failing
action. Cardoso et al. [5] have developed a method for reasoning about replacing malfunctioning actions
with alternate existing actions to achieve the same desired goal, reusing the domain entities and predicates
that are already available.

In situations where a new action description is required at runtime, there are already suitable learning
methods that could be adapted to be incorporated into the framework [23, 24], enabling the discovery
of new entities and predicates in the domain. In [23], the Qualitative Learner of Action and Perception
(QLAP) is introduced. When deployed in an unknown, continuous and dynamic environment, QLAP
constructs a hierarchical structure of possible actions in an environment based upon the consequences of
actions that have happened before. Work in [24] explores the use of Machine Learning and probabilistic
planning in complex environments to cope with unexpected outcomes. A learning algorithm is used
to determine an action model with the greatest likelihood of attaining the perceived action effects of
another different set of actions. We have to acknowledge the risk that system properties could be violated
during machine learning, although this could be remedied by using a Safe Learning [13] approach,
the introduction of machine-learning presents great difficulty for verification as the algorithms cannot
(currently) be directly verified [31]. As a consequence, it should be noted that the proposed system could
be unsuitable for scenarios where learning from failure is not safe (e.g., autonomous drones), where it
would be safest to execute a controlled stop to the system rather than attempting a recovery.

4 System Architecture

The initial objective of this research is to formally define the concept of a self-model: an agent-maintained
ontology for the autonomous system. We intend to use PDDL (Planning Domain Definition Language)
as a starting point for creating a self-model. PDDL is a formalism for AI planning which is intended
to “express the ‘physics’ of a domain” [22]. More specifically, we intend to use features introduced in
PDDL2.1 [12] as our starting point. PDDL2.1 is an extension to PDDL for expressing temporal planning
domains. The self-model concept will build on this by enabling agents to access and maintain a domain
description, adding the capability of learning new action descriptions and allowing action life-cycles to
be monitored. As shown in Figure 1, the self-model is centrally linked to the other system components
as they are required to contribute into keeping the self-model accurate. It is important to note that the
self-model’s domain description is not assumed to be modelled soundly and completely, yet it is assumed
that all reports and updates received by the system are correct.

Our implementation will be developed for GWENDOLEN [9]. The GWENDOLEN agent programming
language follows the BDI software model. As part of the MCAPL Framework, GWENDOLEN interfaces
with the Java Pathfinder (JPF) model-checker [32]. Our intention is to implement self-models and the
theory of action life-cycles [10] in GWENDOLEN and integrate this with the existing work on plan re-
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configurability [5]. We will then exploit GWENDOLEN’s support for verification to verify the adapted
system against requirements. We propose representing actions in our self-model with explicit pre- and
post-conditions and either explicit success, fail and abort conditions or one’s that can be inferred from
the pre- and post-conditions. We will then adapt the GWENDOLEN goal life-cycle as suggested in [10]
to handle durative actions in a principled fashion.

Learning

Action Failure

Self-Model

Plan is patched
AI

Regular Action

BDI
Plan

Action Description Deprecated

AJPF

Failure

New Action Description

Reconfigure Reconfigure affected plans

Reverify program

Verified Patched Plan

If a plan can’t be BDI System

Execution

Detection

Re-attempt
Learned

Cardoso et al.’s Framework

reconfigured

Planner

containing patched plans

Figure 1: Diagram of Action Failure and Recovery Mechanisms. Arrows represent data flow and dotted
lines are for readability when a line goes through a component.

When an action changes, requiring plans to be modified, it is assumed that the agent must be verified
again in order to preserve the safety properties of the system as a whole. However, if a new action is
learnt in place of a failing action (fully or partially achieving the failing action’s post-conditions), the
whole system may not require reverification. We aim to further study this process in order to identify the
conditions where such reverification would not be necessary.

In Algorithm 1, we propose a primitive method for action failure monitoring. It is assumed that the
action status used in the algorithm is asserted as a belief by the system. We start monitoring an action
once it has been executed, retrieving some preliminary information about the action: an identifier and
the current status (lines 2-3). If the action is currently Pending; Suspended; or Aborting, this status is
returned (lines 4-5). If not, the action’s expected post-conditions are retrieved from the tuple (line 6).
Whilst an action’s state is ’Active’, we continue checking it for failure by comparing the perceived post-
conditions with those that are expected of that action (lines 7-11). If at any point during monitoring these
conditions do not match, the action’s state becomes ’Failed’. If an action is not working as expected,
the action can be re-attempted or suspended and replaced in the self-model. The replacement action
may be selected from an existing action in the self-model itself. Alternatively, using machine-learning
methods, a new action can be learnt to replace the failing action using current knowledge of the available
capabilities. Finally, a method for reconfiguring the BDI plan, such as in [5], is called (lines 12-15).

4.1 Scenario

To illustrate how the self-model would complement Cardoso et al.’s work on reconfigurability [5], we use
the same scenario: a Mars rover’s faulty movement capability. Figure 1 shows our proposed mechanisms
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Algorithm 1: Action Failure Monitoring

1 Function monitor(〈action identifier, action status, action post conditions〉)
2 ActionID←− action identi f ier;
3 Status←− action status;
4 if Status 6= Active∨Failed then
5 return Status;

6 ExpectedPostCond←− action post conditions;
7 while Status = Active do
8 ActualPostCond←− getPostConditions(ActionID);
9 if ActualPostCond = ExpectedPostCond then

10 Status←− Active;
11 monitor(ActionID, Status, ActualPostCond);
12 else
13 Status←− Failed;
14 reconfigure(ActionID);
15 return Status;

16 return Active;

for actions failure and recovery embedded into a system architecture including a BDI system, an AI Plan-
ner and Cardoso et al.’s [5] reconfigurability framework. The dotted line arrows crossing the self-model
represent incoming information from a component such as an action’s state. The system architecture in
the diagram relies upon a simplification of the successful, fault-free execution of actions that would nor-
mally occur in a BDI system. In the case of the rover, these fault-free actions can be represented by the
high-level task of movement between waypoints. Whilst mostly successful, these actions are susceptible
to failure.

Consider the task of moving from a waypoint A to another waypoint B, in order to collect a rock
sample to analyse at another waypoint C. Using the monitoring method for failure detection in Algo-
rithm 1, a failed movement action between any of these waypoints could be found. Given the dynamic
environment that the rover operates in, it is plausible that previously clear and usable routes could be-
come blocked at any time. A failure can be flagged when an action is exceeding a predetermined time or
energy threshold described in the action post-conditions. Once failure has been detected and confirmed,
we can update the self-model to show that the action description has deprecated and no longer affords
it’s post-conditions. The rover now attempts to reconfigure the current plan to resolve the failure using
an AI planner to search for a replacement (e.g., by finding a different route) before attempting to learn a
completely new action description. In both cases, the time and energy consumption required to accom-
plish the original post-conditions is updated in the reconfigured/new action description. If it is found that
the reconfigured plan is now too time or energy intensive, the latter method of learning a new action de-
scription is invoked. If at any point the failing action is found to achieve all post-conditions but does not
perform the action within the time or energy threshold (e.g., the rover now navigates around a blockage
and arrives at the correct waypoint but now takes longer to do so), this can be managed by learning new
actions descriptions with an updated time and/or energy threshold.

The action may not be deprecated if the failure is considered anomalous; for instance, the action
normally succeeds and only fails on one isolated occasion. If the action description is not deprecated,
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then the action will be re-attempted without resorting to reconfiguration or learning methods. The rover
can continue progressing towards the goal if the failure was anomalous. If a new action description is
learned, the original plan will be patched with the new action description by the AI planner. This plan
could require reverification to preserve previously verified properties which can be handled by using
AJPF. Ensuring these properties are maintained is crucial for avoiding failure. The verified patched plan
can then be used in the BDI system where regular action execution continues and the rover can continue
to complete it’s mission.

5 Related Work

The work in [5] describes a reconfigurability framework that is capable of replacing faulty action descrip-
tions based on formal definitions of action descriptions, plans, and plan replacement. The implementa-
tion uses an AI planner to search for viable action replacements. We plan on extending their approach by
adding the concept of a self-model, durative actions, and failure detection. Furthermore, we also envision
adding a learning component to the framework in order to be able to cope with dynamic environment
events that require new action descriptions to be formulated at runtime.

Troquard et al.’s work on logic for agency in [30] considers the modelling of actions with durations
although a different approach was taken: actions are given duration using continuations from STIT
(Seeing To It That) logic. In BDI systems, the focus of handling plan failure is the effect that failure has
on goals [2, 27]. This is a reasonable focus considering the central role that goals have in agent-oriented
programming. Consequently, action failure recovery has not been explored as an option for managing
plan failure.

6 Conclusions and Future Work

In this position paper we have described a system architecture for BDI autonomous agents capable of
adapting to changes in a dynamic environment. We also introduced the idea of an agent-maintained self-
model with durative actions and learning new action descriptions. Our proposed system aims to resolve
the following: develop the concept of a self-model; produce and develop a method to detect the failure
of an action performed by a BDI Agent; develop a theory of durative actions for BDI languages; adapt
existing system to allow new actions to be learnt and used in place of failing ones whilst preserving safety
properties, and finally to integrate into the existing GWENDOLEN infrastructure.

To illustrate the applicability of the discussed mechanisms, a practical example of how a Mars rover
could make use of the framework was provided. Future work includes defining the learning component
to be able to handle dynamic environment events that require the creation of new action descriptions
at runtime, a formal definition of the self-model with an outline of the concepts included in this, the
implementation of the system architecture, and the evaluation of the approach.

A number of questions and challenges have been identified whilst outlining this program of research.
Firstly, it has been noted that the term ’persistent failure’ is subjective and should be accompanied by a
formal and precise specification to avoid ambiguity. Secondly, considerations for the steps taken after
reconfiguration and the learning process require further work (e.g. What happens to failing actions in
the model after reconfiguring?). Finally, the proposed learning strategy has produced many challenges
which will be considered once implementation has reached this stage. Notably, we will consider how the
learning method can ensure valid solutions; how planning time could be minimised and how an action’s
state could influence the learning strategy. These challenges will serve as guidance for future work.
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