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TOA Estimation of Chirp Signal in Dense Multipath
Environment for Low-Cost Acoustic Ranging
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Abstract— In this paper, a novel time of arrival (TOA)
estimation method is proposed based on an iterative cleaning
process to extract the first path signal. The purpose is to
address the challenge in dense multipath indoor environments
that the power of the first path component is normally smaller
than other multipath components, where the traditional match
filtering (MF)-based TOA estimator causes huge errors. Along
with parameter estimation, the proposed process is trying to
detect and extract the first path component by eliminating the
strongest multipath component using a band-elimination filter in
fractional Fourier domain at each iterative procedure. To further
improve the stability, a slack threshold and a strict threshold are
introduced. Six simple and easily calculated termination criteria
are proposed to monitor the iterative process. When the iterative
“cleaning” process is done, the outputs include the enhanced first
path component and its estimated parameters. Based on these
outputs, an optimal reference signal for the MF estimator can
be constructed, and a more accurate TOA estimation can be
conveniently obtained. The results from numerical simulations
and experimental investigations verified that, for acoustic chirp
signal TOA estimation, the accuracy of the proposed method is
superior to those obtained by the conventional MF estimators.

Index Terms— Acoustic ranging, iterative “cleaning” process,
match filtering (MF), multipath, time of arrival (TOA) estimation.

I. INTRODUCTION

W ITH wide use of smartphones and high demand of
indoor location-based services, various approaches for

indoor positioning have been proposed using the technologies
based on sound, Global System for Mobile Communications,
Bluetooth, Wi-Fi, light, and magnetic fields [1]–[5]. Among
these approaches, the sound-based positioning technology has
attracted researchers’ attention [6] due to its advantages of
being fully compatible with commercial off-the-shelf (COTS)
smartphones, relatively higher positioning accuracy and low-
cost infrastructure. A low-cost acoustic ranging technology
is the base stone of this kind of indoor localization and
navigation systems. Most of the prototype systems are using
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time of arrival (TOA) estimation of an acoustic chirp signal
to realize ranging-based positioning [1], [7]–[10], because
TOA is apparently the most widely used ranging technique
in ranging systems [11].

The TOA estimation techniques have been discussed exten-
sively in the past few decades within radar and impulse
radio ultrawideband (IR-UWB) systems, and many methods
have been proposed, including match filtering (MF)-based
coherent methods [14], energy-detection-based noncoherent
methods [13], and super-resolution estimation method [19].
Benefiting from low-rate sampling, noncoherent methods can
be quickly converged [13], but the estimation accuracy is
not satisfactory. Coherent methods based on MF can obtain
a more robust performance. In [14], the peak of the MF
output is considered as the location of the direct path, but
this is only applicable for single-path channels with addi-
tive white Gaussian noise (AWGN) [15]. For a multipath
channel, a threshold detection method is studied and pro-
posed in [16]–[18], in order to detect the direct path based
on MF outputs. Different from noncoherent and coherent
methods, the super-resolution method is used to detect the
first path component in frequency domain, where a multi-
ple signal classification (MUSIC) and independent compo-
nent analysis-based method are proposed in [19] and [21],
respectively. In [20], a MUSIC-based super-resolution method
to realize TOA estimation of acoustic chirps is proposed.
However, it still needs to first estimate the channel impulse
response (CIR) using the MF method. Meanwhile, the fre-
quency domain techniques only improve the TOA resolution
in flat fading channels that are not feasible assumptions in
many applications, and the performance seriously degrades
when there are a number of highly correlated interference
signals in the same range, especially in lower signal-to-noise
ratio (SNR) situations [21].

Due to the similarities between acoustic ranging, radar
systems, and IR-UWB, a fixed-threshold-based MF method
is widely used to realize TOA estimation of acoustic chirp
signals, based on an assumption of full prior knowledge of
the source signals [1], [7]–[10], where the TOA value is
considered as the time delay of the first path component, which
is the direct path in line-of-sight scenarios. Unfortunately, this
assumption of full prior knowledge of source signals is unre-
alistic in practical applications, especially in low-cost acoustic
ranging systems due to the poor performance of electronic
components. Accurate TOA estimation in dense multipath
environments via smartphones and low-cost infrastructure is
still an open problem and many challenges still need to be
overcome:

0018-9456 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8771-8901
https://orcid.org/0000-0002-0490-2031


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

First, indoor multipath propagation is a well-known chal-
lenge to the TOA estimation [22]. Compared with radio
signals, indoor acoustic signals usually endure a denser mul-
tipath propagation due to their poor penetrating capacity.
In the geometrical room acoustic theory, the received acoustic
signal consists of multiple attenuated and delayed replicas of
the source signal due to the acoustic reflections and diffu-
sions [23]. This multipath propagation effect introduces echoes
and spectral distortions into the observed signal that severely
deteriorates the source signal [24]. In this case, it is common
that the first path component is not the strongest, especially in
large space environments. TOA estimation is the detection of
the direct path instead of the maximum MF output; otherwise,
a substantial ranging error occurs. Then, the first path detection
strategy of an MF estimator is a key to the accurate TOA
estimation.

Second, sampling frequency offset between the source
signal, transmitter, and receiver is another great challenge.
Acoustic ranging systems designed for smartphones are usu-
ally used on smart mobile devices and low-cost infrastructure,
which makes the full prior knowledge of the transmitted source
signals also very hard to be obtained. It is understood that
the low-cost acoustic-related COTS modules are used for
communications and entertainment. Once these modules are
used as sensors for ranging measurement, many defects will be
exposed. Except for the poor performance and nonconsistency
of microelectromechanical systems (MEMS) microphones and
speakers, the speed of the crystal oscillator, which provides
the clock of the audio sampling and broadcasting system,
is usually unstable. This could induce severe signal distortions
and frequency shift. For example, a discrete single-frequency
signal s[n] is designed under sampling frequency fs , and the
center frequency is fc; if s[n] is broadcast under an actual
sampling frequency fst, the center frequency of the received
signal will shift to fc · ( fst/ fs). If we still use the prior
knowledge of fc to realize the TOA estimation, a considerable
error will definitely occur.

Third, the frequency shift caused by the Doppler effect is
also a challenge, because smart mobile devices are usually
carried by human beings. The arbitrary movement of a human
being coupled with arm swinging makes the smart mobile
devices an extremely complex maneuvering movement with
a high speed. It could introduce an obvious frequency shift of
the received signals even at a slow walking speed, due to the
low speed of sound propagation.

In a summary, indoor multipath propagation, sampling fre-
quency offset, and Doppler effect severely degrade the TOA
estimation and pose great challenges for accurate acoustic
ranging. These problems are strongly needed to be resolved
to pave the way for the applications of sound-based indoor
localization in the real world. Therefore, aiming to realize
a robust TOA estimation via low-cost infrastructure in a
dense multipath environment for acoustic ranging, a novel
TOA estimation technique based on an iterative “cleaning”
process is proposed. The basic idea of this method is trying
to detect and extract the first path component and estimating
its TOA using an MF estimator with an optimal reference
signal by detecting the maximum of the MF outputs. In this

way, the performance of the MF-based TOA estimator can be
greatly improved in dense multipath environments.

The main contributions of this paper are as follows.
1) An iterative “cleaning” process is proposed using a

bandpass filter and a band-elimination filter in fractional
Fourier domain (FrFD). The first path component can be
detected and extracted from the received signals in FrFD
by eliminating the strongest multipath component at
each iterative procedure. Along with parameter estima-
tion of the filtered signal during the iterative “cleaning”
process, the influence of a sampling frequency offset
and the Doppler effect to accurate TOA estimation are
greatly mitigated.

2) A slack threshold and a strict threshold are proposed in
FrFD to dynamically determine a target area that con-
tains the first path component at each iterative procedure,
where the first path component is detected, locked, and
extracted. The strict threshold is dependent on the noise
energy, and the scaling factor of the slack threshold is
increased with the number of iterations. Through this
strategy, the stability of the first path detection can be
greatly improved.

3) Six termination criteria, which include four success-
ful detection criteria and two abnormal exit criteria,
are proposed to guarantee that the iterative “cleaning”
process can be terminated at right time and return the
right outputs. All the criteria are simple judgment of
logic relations which make it very convenient to use in
practical applications.

The remainder of this paper is organized as follows.
In Section II, we discuss the problems in TOA estimation of
acoustic chirps, and formulate the consequences of unreliable
prior knowledge and first path detection strategy to MF-
based TOA estimator. The details of our proposed novel
TOA estimation method is introduced in Section III, including
the calculation steps of the iterative “cleaning” process and
six termination criteria. In Section IV, simulations are run
to present the detailed process of the proposed method and
investigate the performance of TOA estimation and first path
detection. Experiments and results are introduced in Section V
to demonstrate the applications of the proposed method in an
underground car park. Finally, we draw our conclusions in
Section VI.

II. PROBLEM FORMULATION

With regard to the TOA estimation based on the MF output
for the low-cost acoustic ranging, two main influential factors
have severely limited its accuracy and practical applications,
which are the unreliable prior knowledge of the transmitted
signals and unreliable detection strategy of the first path
component.

A. Unreliable Prior Knowledge of the Transmitted Signals

The complex formation of a chirp signal is expressed as

s(t) = e j2π( f0t+ 1
2 k0 t2), t ∈ [0, T ] (1)
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where f0 and k0 are the initial frequency and modulation rate,
respectively, and T is the time duration of the chirp signal.
However, these prior knowledge of source signal becomes no
longer reliable when we consider the relative moving speed v
between the transmitter and receiver, and the poor performance
of COTS modules.

If the frequency of a digital-to-analog (DA) converter in the
transmitter is fst and the sampling frequency at the receiver is
fsr , the initial frequency and modulation rate will change to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f ′
0 = f0

[
fst

fsr

(
1 + v

c

)]

k ′
0 = k0

[
fst

fsr

(
1 + v

c

)]2

T ′ = T/

[
fst

fsr

(
1 + v

c

)]
(2)

when the received signal is analyzed with prior knowledge
of fs , and c is the propagation speed of the sound. From this
relation, we can clearly find that the sampling frequency offset
and Doppler effect can introduce a considerable bias to the
initial frequency and modulation rate. Accordingly, the signal
with the parameters f ′

0, k ′
0, and T ′ is the actual transmitted

signal and denoted as s′(t).
Then, when s′(t) is transmitted over an L path fading

channel, the complex form of the received signal x(t) can
be formulated as

x(t) = s′(t) ∗ h(t) =
L−1∑

i=0

αi s′(t − τi ) + n(t) (3)

where h(t) is the CIR of room acoustics, αi and τi are
the complex channel fading coefficient and propagation delay
of the i th propagation path, and n(t) is the additive noise,
respectively. Generally, τ0 < τ1 < . . . τL−1, and parameter τ0
is the TOA of the first path component.

Based on the prior knowledge of source signal to estimated
τ0, i.e., using s(t) as the reference signal, the MF output
Rxs(τ ) is

Rxs(τ ) =
L∑

i=1

∫ +∞

−∞
αi s′( f )s∗( f )e− j2π f τi e j2π f τ d f

+
∫ +∞

−∞
n( f )s∗( f )e j2π f τ d f

=
L∑

i=1

αi Rs ′s(τ ) ∗ δ(τ − τi ) + Rns(τ ) (4)

where Rs ′s(τ ) is the cross correlation result of s′(t) and s(t),
and Rns(τ ) is the result of noises n(t) and s(t).

In the real world, n(t) usually contains the colored noise.
The term Rns (τ ) submerges the weak multipath components
and degrades the TOA estimation performance of the MF
estimator at far distance in the practical use. Except Rns (τ ),
from (4), we can find that the representation of a multipath
time delay in Rxs(τ ) is mainly dependent on Rs ′s(τ ). The
properties of Rs ′s(τ ) are described as follows.

1) If s′(t) is identical to s(t) after both energy normal-
ization, which means the prior knowledge is reliable,

Fig. 1. MF output of received signals in a multipath environment.

Rs ′s(τ ) could be considered as the autocorrelation result.
Then, Rs ′s(τ ) ≤ Rs ′s(0). The time delay of each
multipath components can be correctly represented by
Rxs(τ ).

2) If s′(t) approximates to s(t) after energy normalization,
which means the prior knowledge is no longer reliable,
Rs ′s(τ ) ≤ Rs ′s(ρ), where ρ is a constant value which
is determined by the difference between s′(t) and s(t).
Then, the estimated TOA will be embedded with a bias
related with ρ and Rns(τ ).

Therefore, if we still use the prior knowledge of initial
frequency and modulation rate, which is no longer reliable
in the real world, to construct the reference signal for the
MF estimator, it will introduce a substantial error to TOA
estimation. Thus, the parameters of the received signal should
be estimated to construct the reference signal for the MF
estimator, in order to mitigate the influence of frequency shift
caused by the sampling frequency offset and Doppler effect.

B. Unreliable Detection Strategy of the First Path Component

Assuming that s′(t) = s(t), at each τ = τi , a positive
extremum will definitely appear at the peak envelope of
Rxs(τ ). Thus, the estimated path delay τ̂i can be calculated
by

τ̂i = Extremum
τ

{peaks[|Rxs(τ )|]} (5)

where peaks[·] is the peak finding operator, and Extremum{·}
is the extremum extraction operator. Using a threshold-based
first path detection method, the TOA estimation of the first
path component τ̂0 can be obtained by

τ̂0 = min
i

{|Rxs(τ̂i )| ≥ λ max[|Rxs(τ )|]} (6)

where λ is a scaling factor of the threshold used to detect
the first path component. The TOA is considered as the first
extremum peak exceeding this threshold. Due to the existence
of colored noise, the term Rns(τ ) is not equals zero, and the
value of λ should be carefully chosen.

Shown in Fig. 1 is the MF output of received signals
in a dense multipath environment. Each extremum can be
considered as a signal component received from a propagation
path. We can clearly find that the signal component from first
path is no longer the one with the strongest power, and then
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the maximum peak selection strategy for TOA estimation is
no longer reliable. When a threshold is chosen appropriately,
the first path can be correctly detected and an accurate TOA
could be obtained. Otherwise, a substantial TOA estimation
bias will occur. If λ is too small, a high false alarm rate or early
detection is expected where the peak prior to the first path
is detected due to the corruption of colored noise. On the
other hand, if λ is too large, there is a high chance of late
detection because the actual TOA peak is possible below λ due
to fading. All of these cases introduce large TOA estimation
errors and degrade the performance of acoustic positioning
systems dramatically.

Actually, the optimal value of λ is very hard to choose
due to the complexity of an indoor environment in the real
world, because it mainly depends on the power ratio of the
background noise, the first path component, and the strongest
multipath component. To theoretically estimate, an optimal
value or a rough range of λ needs more additional prior
knowledge, such as the geometrical information of the room
and the absorption factors of absorbers. A fast and commonly
used approach is to experimentally calibrate λ through a few
ranging tests.

In addition, the unreliable prior knowledge of the source
signal further degrades the performance of a fixed-threshold-
based MF estimator. Thus, to achieve a higher ranging accu-
racy and improve the stability of the MF-based TOA estimator,
a new technology is needed to mitigate the effects of the
sampling frequency offset, Doppler effect, and unreliable
detection strategy of the first path component.

III. PROPOSED METHOD

In this section, a novel TOA estimation method based on
an iterative “cleaning” process is proposed, aiming to realize
a robust TOA estimation via low-cost infrastructure in dense
multipath environments for acoustic ranging. The framework
of our proposed method is shown in Fig. 2. The received
signal x[n] is sent into the iterative “cleaning” process to
detect and extract the first path component in FrFD. At each
iterative procedure, the parameters of input signal are first
estimated to guarantee that all the operations are within the
optimal FrFD. The current strongest multipath component is
eliminated under the monitoring of termination strategy. When
the iterative “cleaning” process is done, the outputs include
the enhanced first path component x ′[n] and its estimated
parameters f̂ and k̂. At last, based on these outputs, an optimal
reference signal can be constructed for the MF estimator, and
a more accurate TOA estimation of acoustic chirp signal can
be conveniently obtained in the dense multipath environment
for low-cost acoustic ranging.

A. Description of Iterative “Cleaning” Process

Benefiting from the superior time–frequency representation
capacity for the chirp signal [26], a fractional Fourier trans-
form (FrFT) technique is chosen to realize the iterative “clean-
ing” process. The conventional FrFT-based TOA estimation
framework, which is proposed in [25], directly extracts the
target component using a bandpass filter in the optimal FrFD.

Fig. 2. Diagram of the proposed TOA estimation method.

Fig. 3. Diagram of the proposed iterative “cleaning” process.

Unfortunately, same as the MF estimator, the performance
is greatly degraded due to the unreliability of the threshold
strategy and the prior knowledge of the source signal.

The block diagram of the proposed iterative “cleaning”
process is shown in Fig. 3. Different from the frame-
work in [25], our proposed iterative “cleaning” process is
mainly using a band-elimination filter to eliminate the current
strongest multipath component in the optimal FrFD at each
iterative procedure. Compared with directly claiming a com-
ponent being the first path component in the nonoptimal FrFD,
it is safer to eliminate the strongest component that is more
certain to be a multipath component. Therefore, instead of
directly detecting the first path component, we use the iterative
“cleaning” process to conservatively “wait” for the appearance
of the first path component.

It is essential to guarantee that all the operations are
within the optimal FrFD, where the strongest components
always have the best representation, in order to reduce the
energy losing of the weak first path component during the
elimination operation. Then, parameter estimation is always
the first operation at each iterative procedure to obtain the
parameters of the strongest multipath component.

At the i th iterative procedure, the input signal is denoted
as xi [n]. The first operation is estimating the parameters of
xi [n], which are the angle of FrFT α, initial frequency f̂ i ,
and modulation rate k̂i . Xi

α[u] is the digital fractional Fourier
spectrum of xi [n] using FrFT with angle α. By eliminating
the strongest multipath component in Xi

α[u], the filtered signal
xi+1[n] is obtained using inverse FrFT (IFrFT).

With the progression of the iterative “cleaning” process,
the first path component will gradually become the strongest
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one. And if any criterion of termination strategy is triggered,
the iterative process will be terminated immediately and the
filtered signal x ′[n] with its parameters is returned.

B. Parameter Estimation

Many methods for chirp parameter estimation have been
proposed in the literature, including maximum likelihood (ML)
estimation [27] and time–frequency analysis-based estima-
tion such as multinomial phase parameter estimation [28],
Wigner–Hough transform [29], and Radon-ambiguity trans-
form [31]. Computation load is an especially concerned prob-
lem in the parameter estimation. In our approach, the ML
estimator can be calculated by general cross correlation to
reduce the computation load.

In the presence of AWGN, an ML estimator can achieve
the Cramer–Rao lower bound in a single-path channel [30].
This performance cannot be achieved in the dense multipath
environment, due to the interference between multipath com-
ponents. But, the ML estimator still can be used to estimate
the parameters of the strongest multipath component.

When the digital time duration of the received signal
x[n] is N , based on the ML estimator, the estimated initial
frequency f̂ and modulation rate k̂ are given by finding

[ f̂ , k̂] = max
f,k,d

|G( f, k)| = max
f,k,d

∣∣∣∣∣

N−1∑

n=0

x[n]r∗[n − d]
∣∣∣∣∣ (7)

where r [n] = e j2π[ f n'+(1/2)k(n')2], n = 1, 2, . . . , N ′, is the
reference signal. N ′ is the time duration of r [n], and can
be calculated by N ′ = ⌊T ′/'⌋, where ' = 1/ f s. To obtain
the values of f̂ and k̂, we need to search a three-dimension
parameter space that makes it not being used via low-cost
infrastructures.

According to (2), we can establish the relation between f̂
and k̂ as

f̂ = f0

√
k̂
k0

. (8)

Due to the unknown value of T ′, we can construct the refer-
ence signal r [n] by setting f = 0 and N ′ = min[N, ⌊ fs /2k⌋]
to further reduce the dimension of the searched parameter
space. Equation (7) can be rewritten as

k̂ = max
k,d

∣∣∣∣∣∣

N+N ′−1∑

n=−N ′
x[n]r∗[n − d]

∣∣∣∣∣∣
= max

k,d
|Rxr [k, d]| (9)

where Rxr [k, d] is the cross correlation result of x[n]
and r [n].

Through (9), we can scan the whole time–frequency plane to
estimate k̂ using a fast Fourier transform (FFT), and the dimen-
sion of searched parameter space is reduced to one. In order to
further reduce the computation load, the modulation rate could
be searched over a limited parameter space |k − k0| ≤ ρ.

C. Filtering in FrFD

The FrFT of signal s(t) is considered as a rotation in
the time–frequency plane with an angle α, which is defined

as [32]

Fα[s(t)] = Sα(u) =
∫ +∞

−∞
s(t)Kα(u, t)dt (10)

Kα(t, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
1− j cot α

2π
e

j
(

u2+t2
2 cot α−ut csc α

)

α ̸=nπ

δ(u − t) α=2nπ

δ(u + t) α=(2n−1)π

(11)

where Kα(t, u) is the transformation kernel and n is an integer.
The signal can be easily recovered from FrFD using IFrFT,
which is the FrFT with angle −α

s(t) = F−α[Sα(u)] =
∫ +∞

−∞
Sα(u)K−α(u, t)dt . (12)

Applying (10) to (1), when k0 + cot α = 0, the fractional
Fourier spectrum s(t) is

|Sα(u)| = T

|sin α|1/2 sinc[π( f0 − u csc α)T ] (13)

where sinc[·] represents the sinc function. It is very clear to
find that the energy of the chirp signal is concentrated in the
bandwidth of Bm = |2 · sin α/T |. If and only if k0 + cot α = 0
and f0 − u csc α = 0, |Sα(u)| reaches the peak value. When
signal s(t) is delayed by τ , the FrFT of the delayed signal
s(t − τ ) can be written as

Fα[s(t − τ )] = Sα(u − τ cos α)e
j
(

τ2 sin α cos α
2 −uτ sin α

)

(14)

which suggests that |Fα[s(t − τ )]| reaches the peak value at
u = τ cos α. Thus, we denote this position in FrFD as u0
corresponding to τ0 in MF output.

Then, the delay estimation based on FrFT can behave with
respect to the location of the extremum of the fractional
Fourier spectrum. Based on these properties, we can very
easily extract or eliminate a signal component in x(t) by mul-
tiplying a window function to its fractional Fourier spectrum
Xα(u) and transform the result into time domain. This process
is expressed as

x ′(t) = F−α[Xα(u)w(u)] (15)

where x ′(t) is the filtered signal and w(u) is a specially
designed window function. The digital form is

x ′[n] = F−α[Xα[u]w[u]]. (16)

In this paper, we use the digital FrFT algorithm proposed by
Ozaktas et al. [33] to realize the transform operation between
time domain and FrFD.

The optimal rotation angle α can be obtained from the
relation k0 + cot α = 0 and the estimated k̂. Due to the dimen-
sional normalization in the digital FrFT algorithm, α is given
as

α =
{

π + arccot(−k̂N'2), k̂ ≥ 0
arccot(−k̂N'2), k̂ < 0.

(17)
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Fig. 4. Diagrams of window function in FrFD. (a) wP [n]. (b) wA[n].

For the bandpass filter in FrFD, we propose a window
function that is the combination of a Blackman window and
a rectangular window, and the digital expression is

wP [n] =

⎧
⎪⎨

⎪⎩

B[n + G + 1], −G ≤ n ≤ −1 − Nr

1, −Nr ≤ n ≤ Nr

B[n + Nb − Nr ], Nr + 1 ≤ n ≤ G

(18)

where B[n] is the Blackman function in time domain, which
is

B[n] = 0.42 − 0.5 cos(πn/Nb) + 0.08 cos(2πn/Nb). (19)

Nr is the half-length of the rectangular window or bandpass
in FrFD, Nb is the half-length of the Blackman function, and
G = Nb + Nr . Accordingly, the window function of the band-
elimination filter is

wA[n] = 1 − gw[n] (20)

where g is the gain in the attenuation band. Shown in Fig. 4
are the diagrams of wP [n] and wA[n] in FrFD with the
parameters of Nr = 10, Nb = 20, and g = 0.95. In order to
extract or eliminate one chirp component, these parameters
should be chosen carefully to reduce the interference of other
components and avoid introducing a “ghost” signal.

From (13), the most energy of a chirp signal is concentrated
in the bandwidth of Bm in FrFD. Thus, the value of Nr should
equal Bm to guarantee that the most energy of a chirp signal is
extracted or eliminated. Due to the dimensional normalization
in the digital FrFT algorithm, the value of Nr can be given as

Nr =
⌈

1
2

Bm N'

⌉
. (21)

Generally, we can set Nb = 2Nr + 1 for simplicity in practical
applications.

D. Algorithm of Iterative “Cleaning” Process

The successful rate of the first path detection directly
impacts the performance of TOA estimation. In order to
improve the successful rate, a slack threshold and a strict
threshold are proposed in FrFD to dynamically determine a
target area that contains the first path component at each
iterative procedure. The first path component is detected and
extracted from this target area, which is between ui

λ and uγ

in FrFD. ui
λ and uγ are estimated positions obtained by a

slack threshold and a strict threshold, where the superscript

i denotes the i th iterative procedure. The slack threshold is
a criterion same as (6) and the scaling factor increases with
iterative process. The strict threshold is based on the noise
power. Generally, uγ ≤ u0 ≤ ui

λ.
The main steps of the “cleaning” process are as follows.
Step 1 (Bandpass Filtering and Initialization)

1) Prefilter x[n] using a finite impulse response digital
bandpass filter to eliminate the frequency components
out of band [ f0, k0T'], and the obtained signal is
denoted as x0[n].

2) Estimate the parameters of x0[n] using (8) and (9),
and denote the initially estimated parameters as k̂0, f̂ 0,
where the superscript 0 denotes the initial step of the
iterative process.

3) Calculate angle α by (17) with initially estimated k̂0;
calculate FrFT of signal x0[n] with angle α and denote
it as X0

α[u].
4) Estimate the time delay of the strongest multipath com-

ponent in X0
α[u] by using

u0
max = max

u

[∣∣X0
α[u]

∣∣]. (22)

Estimate the time delay of the first path component in
FrFD based on the slack threshold method and the strict
threshold method using

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u p = peaks
[∣∣X0

α[u]
∣∣]

u0
λ = min

u p

{∣∣X0
α[u p]

∣∣ ≥ λ0
∣∣X0

α[u0
max]

∣∣}

uγ = min
u p

{∣∣X0
α[u p]

∣∣ ≥ γ
} (23)

where λ0 denotes the initial value of the scaling factor
λ of the slack threshold, and γ is the strict threshold
obtained by choosing the maximum value of noise part
in

∣∣X0
α[u]

∣∣. It is certain that the relationship of u0
max, u0

λ,
and uγ is uγ ≤ u0

λ ≤ u0
max.

5) Design the window function w[u] of the bandpass filter
as

w[u] =
{

wP [u − u0
max], u0

max − G ≤ u ≤ u0
max + G

0, others
(24)

where G = Nr + Nb , Nr = |uγ − u0
max| + Bp and

Nb ≥ ⌈Bm N'⌉ + 1. Bp is a protection band to ensure
that the first path component is contained in the
passband of the designed filter.

6) Use (16) to filter out a part of multipath com-
ponents and noise in the signal x0[n] in FrFD,
and recover the result into time domain with −α,
i.e., x1[n] = F−α[X0

α[u]w[u]].
7) Input x1[n] into step 2, the iterative “cleaning” stage.

Step 2: (Iterative “Cleaning” Stage)
Assuming that the current iterative time is i , then as follows.

1) Estimate parameters k̂i and f̂ i of xi [n]; renew α with
k̂i ; calculate the FrFT of signal xi [n] with α and denote
it as Xi

α[u].
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2) Estimate ui
max and ui

λ using
⎧
⎪⎪⎨

⎪⎪⎩

u p = peaks
[∣∣Xi

α[u p]
∣∣]

ui
max = max

u

[∣∣Xi
α[u]

∣∣]

ui
λ = min

u p

{∣∣Xi
α[u p]

∣∣ ≥ λi
∣∣Xi

α[ui
max]

∣∣}
(25)

where the scaling factor of the slack threshold
λi = λi−1 + δλ, and δλ is a factor compensation value
of λ to improve the stability of first path detection during
the iterative process.

3) Estimate the set of target components ul by finding

ul = {∀u p|u p ≥ ui
max,

∣∣Xi
α[u p]

∣∣ > 0.3 ·
∣∣Xi

α[ui
max]

∣∣}
(26)

where the elements, denoted as ul j , are the strongest
multipath component and the other target components
to be eliminated.

4) Update the window function w[u] of the band-
elimination filter as

w[u] =
∏

w j [u],

w j [u] =
{

wA[u − ul j ], ul j − G ≤ u ≤ ul j + G
1, others

(27)

where G = Nr + Nb , the value of Nr is obtained by
(21), Nb ≥ 2Nr + 1 and g = 0.8.

5) Use (16) to filter out the strongest multipath component
and the other target components in the signal xi [n] in
FrFD, and recover the result into time domain with α,
i.e., xi+1[n] = F−α

[
Xi

α[u]w[u]].
6) Calculate the termination criteria and judge whether the

iterative process is completed or not based on termi-
nation strategy; if any termination criterion is satisfied,
the iterative process will be terminated immediately.
A signal will be sent to step 3 as the input signal based
on the case category of termination criteria; otherwise,
continue to execute the rest operations.

7) Start the (i + 1)th iterative procedure with xi+1[n] as
the input signal.

Step 3 (Signal Enhancement and Result Output) Assuming
that the input signal is x p[n], we need to repeat operations
1)–5) of step 2 once again. And the set of target components
ul of operation 3) is given as

ul = {∀u p|u p < u p
max,

∣∣X p
α [u p]

∣∣ ≥ 0.3 ·
∣∣X p

α [u p
max]

∣∣} (28)

to enhance the filtered signal. The output of the iterative
“cleaning” process includes the filtered signal x ′[n] = x p+1[n]
and its parameters: k̂ = k̂ p and f̂ = f̂ p .

E. Termination Strategy

The termination strategy is essential for the stability of
the proposed iterative “cleaning” process. The proposed ter-
mination strategy must guarantee that the iterative process
could be terminated at right time. For this purpose, the first
approach we thought was using the machine learning to

Fig. 5. Termination conditions of iterative process and detected first path.

identify the spectrum change at each iterative procedure.
However, it usually has to endure heavy computation load.
Aiming to make this method being used on COTS mobile
devices and low-cost infrastructure, the proposed termination
strategy must be simply and easily calculated. Under this
condition, the proposed termination strategy includes four
successful detection criteria and two abnormal exit criteria.
The successful detection criteria are used to avoid “inadequacy
cleaning,” and the abnormal exit criteria are designed for
avoiding “overcleaning.”

All the criteria are simple judgment of logic relations which
make them very convenient to use in practical applications.
The iterative process will be terminated when any criterion is
triggered.

1) Successful Detection Criteria: There are four conditions
being considered as successful detection of the first path
component, as shown in Fig. 5, and listed as follows.

1) Case 1: ui
max = ui

λ = uγ , the iterative process is termi-
nated at the i th iterative procedure, and the input signal
of step 3 is xi [n].

2) Case 2: ui
max = uγ and uγ − ui

λ ≤ δu, the iterative
process is terminated at the i th iterative procedure, and
the input signal of step 3 is xi+1[n].

3) Case 3: ui
max = uγ and uγ − ui

λ > δu, the iterative
process is terminated at the i th iterative procedure, and
the input signal of step 3 is xi [n].

4) Case 4: ui
max = ui

λ > uγ , the iterative process is termi-
nated at the i th iterative procedure, and the input signal
of step 3 is xi [n].

Compared with uγ , we give a higher confidence level to ui
λ.

Cases 1 and 4 are the two normal results when the strongest
component appears in the target area. Cases 2 and 3 are
the two special conditions that happened when the initially
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Fig. 6. Contrast of |Xα [u]| before and after eliminating s[n]. (a) Spectrum
of received signal x[n]. (b) Spectrum after eliminating s[n].

estimated parameters have a substantial bias that makes the
spectrum in FrFD unable to correctly express the energy
and delay properties of chirp components. This will greatly
increase the probability of a condition that the first path
component falls outside of the target area [uγ , ui

λ]. By elimi-
nating the components with the strongest power and estimating
the modulation rate k̂i during the iterative process, the first
path will appear and could be detected by setting a safe
distance δu.

2) Abnormal Exit Criteria: To further improve the stability
of the proposed iterative process, abnormal exit criteria are
necessary to break the iterative process when the first path
is falsely eliminated, by monitoring the spectrum change in
FrFD at real time. Thus, we first compare the differences of
spectrum in FrFD before and after eliminating the correct first
path component. Those differences can be characterized as the
criteria to break the iterative process.

Shown in Fig. 6 is the comparison of the fractional Fourier
spectrum before and after eliminating a main component of
a received single x[n] in FrFD. x[n] is a monocomponent
signal and expressed as x[n] = s[n] + N[n]. The parameters
of source signal s[n] are: f0 = 3 kHz, k0 = 100 kHz/s,
T = 50 ms, and fs = 44.1 kHz. The noise N[n] is additive
Gaussian noise and the SNR is 0 dB. The fractional Fourier
spectrum of x[n] is calculated with optimal rotation angle
α = 0.536 · π and shown in Fig. 6(a). It is clear that the energy
of s[n] is well concentrated in a quit narrowband and the noise
spectrum is well suppressed in FrFD.

Eliminating component s[n] by the band-elimination filter
based on the window function of (27) with Nr = 1 and
Nb = 3, the result is shown in Fig. 6(b). There is a big
difference before and after eliminating s[n] from x[n] in FrFD.
Based on this change, we can characterize the abnormal exit
criteria.

One exit criterion is to set up a bound to the number of
peaks exceeding a peak power threshold which is the same
as (6). This variable is denoted as ni

p at the i th iterative
procedure. To improve the stability, another supplementary
criterion is proposed using the ratio of peak number at the
i th and (i − 1)th iterative procedure which is expressed as
r i = ni−1

p /ni
p. Then, the abnormal exit criteria are:

1) if ni
p > Np , the iterative process is terminated at the

i th iterative procedure, and the input signal of step 3 is
xi−1[n];

Fig. 7. Ghost phenomenon of band-elimination filter when parameters are
chosen as Nr = ⌈ 1

2 Bm N'⌉ and Nb = 2Nr + 1 at high SNR. (a) Spectrum of
received signal x[n]. (b) Spectrum after eliminating s[n]. (c) WVD of received
signal x[n]. (d) WVD after eliminating s[n].

2) if r i > 4, the iterative process is terminated at the i th
iterative procedure, and the input signal of step 3 is
xi−1[n];

where Np is a threshold of the peak number.
In practical applications, Np can be set to 15 from expe-

rience, and n0
p = 1000 to avoid iterative process being termi-

nated at first cycle. The value selection of threshold r i , which
equals to 4, should consider the “ghost” phenomenon after
eliminating a component at a high SNR. Shown in Fig. 7
is the “ghost” phenomenon when the first path component
is eliminated by a band-elimination filter with Nr and Nb
obtained by (21) under SNR = 20 dB.

It should be noted that “ghost” phenomenon only appears
at high SNRs, and the cause is the rudimental energy of a
target component. Because the band-elimination filter with
parameters obtained by (21) only eliminates the most power
of the target component, the rudimental energy is still large
enough to make it observed at the time–frequency plane.
If we extend the value of Nr and Nb , the “ghost” of
the target component can be completely killed. However,
based on the projection property of FrFT, the bandwidth of
Nr in time domain is given as Br = Nr sec(α). It is very
clear that the oversized value of Nr and Nb can greatly
decrease the time resolution of the filter. Actually, the pro-
posed Nr and Nb from (21) can be considered as a tradeoff
between high time resolution and filtering performance. When
the SNR is low, this “ghost” is submerged by the noise
components.

IV. NUMERICAL SIMULATION

Simulations have been run on MATLAB to demonstrate
the detailed process of the proposed method, and investigate
the performance of TOA estimation and first path detection.
We will first use a simple indoor propagation model to demon-
strate the detailed process of the proposed method. Then,
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Fig. 8. Calculating process of our proposed method.

the performance of TOA estimation and successful rate for first
path detection is evaluated based on an indoor CIR generator.
The following setting has been chosen. The formation of
the source signal s[n] is chosen as the digital formation
of (1). The simulation parameters and applied values are given
in Table I.

A. Detailed Process of the Proposed Method

Assuming that an indoor channel has eight propagation
paths with AWGN noise, and SNR = 0 dB. The parameter
sets of CIR are {αi } = {0.4, 0.6, 0.75, 0.9, 0.95, 0.7, 0.6, 0.5}
and {τi/'} = {500, 550, 680, 760, 880, 1040, 1140, 1240},

TABLE I

SIMULATION PARAMETERS AND APPLIED VALUES

respectively, where i = 0, 1, . . . , 7 and ' = 1/ fs . The moving
speed of a receiver v is a relative speed corresponding to a
transmitter which equals 1 m/s. Accordingly, the parameters
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TABLE II

VALUE OF PROCEDURE PARAMETERS

of the actual transmitted signal s′[n] are f ′
0 = 3022.5 Hz,

k ′
0 = 101504 Hz/s, and T ′ = 49.6 ms. The observation time

of the received signal x[n] is N = 4096.
Shown in Fig. 8 is the calculating process of the proposed

method. We also use time–frequency distribution Wigner–
Ville distribution (WVD) to show the details of signal
change at each step. The WVD and spectrum in FrFD of
the received signal x[n] are shown in Fig. 8(a-1) and (a-2),
respectively. Based on step 1 of the proposed itera-
tive “cleaning” process, the last four components with
{τi/'} = {880, 1040, 1140, 1240} are eliminated, including
the strongest power component. The filtered signals are shown
in Fig. 8(b-1) and (b-2). The parameters used in step 1 are
chosen as B = 1000 and Nb = 50. Fig. 8(c)–8(d) is obtained
by step 2 with three iterative procedures. Multiple compo-
nents are gradually eliminated from τ3 to τ1. At the fourth
iterative procedure, the process is terminated by the successful
detection criterion case 1. Then, the recovered signal is input
into step 3 to further filter out noise and enhance the detected
signal component. In the end, the output of iterative “cleaning”
process is the signal x ′[n] shown in Fig. 8(e-1) and (e-2) with
k̂ = 101526 Hz/s. The values of parameters during each
iterative procedure are given in Table II.

Based on the MF output of x[n] and s[n], as shown
in Fig. 8(f-1), the estimated TOA is τ̂0 = 476' based
on the threshold method, where λ = 0.3. Fig. 8(f-2) is the
MF output of x ′[n] and designed reference signal r [n] with
k̂ = 101526 Hz/s and f̂ = 3022.8 Hz. Using detection of the
maximum MF output based on the reference signal constructed
with estimated parameters, the estimated TOA is τ̂0 = 503'.
Comparing the two TOA estimation methods, the proposed
method can achieve a more accurate result.

B. Performance Investigation

The following simulation is designed to investigate the
performance of TOA estimation and the successful rate of
the first path detection under dense multipath environments.
The root-mean-square error (RMSE) is used to analyze the
statistical performance of our method and the conventional
fixed-threshold-based MF estimator. A room impulse response
generator proposed in [34] is used to simulate the dense
multipath propagations. The environment is chosen as a 3-D
room with 40 × 3 × 2.7 (m). The positions of the receiver
and transmitter are at [2, 1.5, 1] and [2 + D, 1.5, 1] (m),
respectively. The variable D = 1, 2, . . . , 30 (m) is the dis-
tance between the transmitter and the receiver. At the same
time, the reflection coefficient and order are chosen as
0.5 and −1. The simulation at each distance is calculated
1000 times. The TOA estimation performance is shown

Fig. 9. RMSE performance of TOA estimation.

in Fig. 9, and the successful rate of the first path detection
is shown in Fig. 10. At last, the performance of TOA esti-
mation under AWGN with SNR ∈ [−5, 5] dB is presented
in Fig. 11.

The result of Fig. 9 is obtained under AWGN noise and
SNR = 0 dB. The performance of the conventional MF
estimator with the fixed threshold and our proposed method
is compared. We can find that our proposed method can
achieve a higher accurate TOA estimation and more stable
than other MF estimators. For the method of MF estimator
using prior knowledge, performance can be greatly improved
by constructing the reference signal with initially estimated
parameters, when the ranging distance is within 15 m. How-
ever, with ranging distance exceeding 20 m, TOA estimation
accuracy decreases rapidly and becomes unstable. Within
shorter ranging distance, the SNR of received signal is higher
than the longer distance. Because the reliability of initially
estimated parameter is decreased as the increase in ranging
distance, the performance of initial parameter estimation based
on ML estimator decreases rapidly when ranging distance
increases.

The performance of the MF estimator using prior knowledge
of the received signal seems abnormal. This phenomenon is
caused by signal parameter setting in this simulation. We can
check the TOA estimation result in Fig. 8. Due to prior knowl-
edge of initial frequency and modulation frequency being
smaller than actual value, i.e., f0 < f ′

0 and k0 < k ′
0, time delay

estimation τ̂0 = 476' is smaller than the true value. While
the ranging distance is larger and SNR is lower, the energy
of earlier arrived component will be greatly impaired which
makes them unable to be detected in the MF output. The TOA
estimation result will become larger and larger, and gradually
approach the true value, and exceeds it finally. Under this
condition, the RMSE of the TOA estimation will appear as
a decreased trend, which is shown in Fig. 9, and an increased
trend soon afterward.

Our proposed method can achieve a higher TOA estima-
tion performance and stability. This is benefiting from the
successful rate of the first path detection. The performance
of detecting the first path component is also investigated and
shown in Fig. 10.

The successful rate of first path detection is investigated at
three often encountered noise levels in practical applications,
which are −2, 0, and 5 dB. We can find that the performance
of first path detection is satisfactory within 10-m ranging
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Fig. 10. Successful rate of first path detection under different SNRs.

Fig. 11. Performance of TOA estimation under different SNRs.

distance. The successful detection rate is higher than 75%
even under SNR = −2 dB. While ranging distance is longer
than 10 m, detection performance starts decreasing as the
raging distance increases. The maximum ranging area shown
in Fig. 10 is 20 m. When the ranging distance reaches 30 m,
the first path is very hard to be detected, where probability
will become lower than 10%. This is because the first path is
submerged in noise and cannot be audible due to the lower
SNR.

The TOA estimation performance under different SNRs is
shown in Fig. 11. Four distances are chosen to evaluate TOA
performance under AWGN with SNR ∈ [−5, 5] dB. We can
achieve an accuracy of ranging error smaller than 30 cm
within 30 m when SNR ≥ −1 dB and within 20 m when
SNR ≥ −3 dB. Furthermore, the time consumption of TOA
estimation is from 65 to 95 ms, which is counted by the tic
and toc function of MATLAB on a computer with 3.2-GHz
4-core processor and 12-GB RAM. Due to the SNR of the
received signal being usually larger than −2 dB in practical
applications, our proposed method can meet the demand of
accurate TOA estimation of chirp signal for low-cost acoustic
ranging in a real world.

V. EXPERIMENT AND RESULTS

Experiments are conducted in an underground car park near
Yuquan Campus of Zhejiang University to test the performance
of the proposed method in the real world. The size of this
car park is 86 × 18 × 3.5 (m3). The scenario and device used
in this experiment are shown in Fig. 12. The device is a
specially designed low-cost module with acoustic broadcasting
and sampling function. The main chips of the acoustic part

Fig. 12. Test scenario and device used in experiment. (a) Underground car
park. (b) Device.

Fig. 13. Performance of MF estimator with different scaling factors.

are STM32F407 and WM8978, which are very cheap and
easily accessible. Microphones and speakers also use low-
cost MEMS component. Total cost of them is less than 5$.
To realize one-way ranging, the local time of the transmitter
and receiver is synchronized by ZigBee module which can pro-
vide a high time synchronization precision for low propagation
speed of an acoustic signal. Two devices are used during this
test, where one of them is used as the transmitter and another
one is used as the receiver.

The parameters of acoustic chirp signal used in this test
is the same as the source signal, which is listed in Table I.
The tested distances are uniformly distributed from 1 to 30 m.
Sound pressure level (SPL) of background noise measured in
the underground car park is 40 dB and the SPL of source
signal is measured as 65 dB. RMSE of TOA estimation is
calculated with 100 signal samples at each selected position.

The optimal value of λ is determined by searching the
parameter space between 0 and 1 with interval 0.1. Test results
under λ = {0.2, 0.3, 0.4, 0.5} are shown in Fig. 13. When λ
equals to 0.1 or is greater than 0.5, the performance decreases
rapidly. The performance of λ = 0.2 and 0.3 is close to
each other within short ranging distance. At some distance,
the performance of λ = 0.2 is better than λ = 0.3. But when
the ranging distance is longer than 21 m, the performance of
λ = 0.3 is better than λ = 0.2. Comprehensively considering
the TOA estimation precision and stability, the performance
of the MF estimator is better when the value of λ is set
as 0.3.

From test result which is shown in Fig. 14, we can find that
the proposed method could provide a higher TOA estimation
precision than the conventional threshold-based MF estimator
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Fig. 14. Performance of TOA estimation in the real world.

using prior knowledge and initially estimated parameter, where
the RMSE of TOA estimation is smaller than 33.92 cm within
30-m ranging distance. The performance of the proposed
method and MF estimator using initially estimated parameters
are close to each other within 10 m, with an accuracy smaller
than 12 cm, because the initially estimated parameter is still
reliable for the MF estimator. While the ranging distance
increases, the performance of proposed method gradually
exceeds the MF estimator with initially estimated parameter.
Thus, through testing in the real world, we can conclude that
the proposed method could realize an accurate and robust TOA
estimation for acoustic ranging in dense multipath environ-
ments.

In addition, the performance of our proposed method was
tested and verified in the latest “Microsoft Indoor Localiza-
tion Competition” of the International Conference on Infor-
mation Processing in Sensor Networks, cyber-physical sys-
tem Week 2018, in Porto. The evaluated prototype systems,
“RA2Loc” [35] and “AidLoc” [36], which are designed based
on a reduced version of the proposed method, achieved an
average 3-D localization error of 70 and 71 cm, respectively,
under a dynamic real scenario [37].

VI. CONCLUSION

In this paper, a novel TOA estimation method is proposed
for an acoustic chirp signal based on an iterative “cleaning”
process in FrFD, aiming to realize robust low-cost acoustic
ranging in dense multipath environments. First, it has been
confirmed that the conventional TOA estimator based on
the MF method usually cannot offer sufficient TOA estima-
tion accuracy in situations of dense multipath environments,
especially for low-cost acoustic ranging. Threshold-based MF
estimator cannot obtain a reliable TOA estimation. Second,
the frequency shift of a transmitted signal via low-cost
infrastructure widely exists due to the sampling frequency
offset between the transmitter and the receiver. It makes the
prior knowledge of source signal no longer reliable for the
MF estimator. To mitigate these limitations, this novel TOA
estimation method is introduced in FrFD.

The core of this method is an iterative “cleaning” process
based on FrFT to detect and extract the first path component
from the received signal. To further improve the stability of
the first path detection, the slack threshold and strict threshold
are used during the iterative process. The design approach of

window functions for bandpass filter and band-elimination
filter in FrFD are also introduced in detail. Meanwhile,
the optimal parameters of window function are given. In order
to make the proposed method used in practical applications, six
simple and easy calculated termination criteria are proposed
to monitor the iterative process. At each iterative proce-
dure, the parameters of the input signal are first estimated
to guarantee that all the operations are within the optimal
FrFD. The current strongest multipath component is elimi-
nated under the monitoring of termination strategy. When the
iterative “cleaning” process is done, the outputs include the
enhanced first path component and its estimated parameters.
Using the estimated parameter of the extracted first path
component, we can construct an optimal reference signal for
the MF estimator, and a more accurate TOA estimation of
acoustic chirp signal can be conveniently obtained in dense
multipath environments for low-cost acoustic ranging. The
results obtained from numerical simulations and experimental
investigations verified that, for acoustic chirp signal TOA
estimation, the accuracy of the proposed method is superior
to those obtained by the conventional MF estimator.
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