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Abstract

Purpose - This article presents the multi-state stress-strength reliability compu-
tation of a component having three states namely, working, deteriorating and failed
state.
Design/Methodology/Approach - The probabilistic approach is used to obtain
the reliability expression by considering the difference between the values of stress
and strength of a component, say, for example, the stress (load) and strength of a
power generating unit is in terms of Mega Watt. The range of values taken by the
difference variable determines the various states of the component. The method of
maximum likelihood and Bayesian estimation is used to obtain the estimators of the
parameters and system reliability.
Findings - The maximum likelihood and Bayesian estimates of the reliability ap-
proach the actual reliability for increasing sample size.
Originality/Value - Obtained a new expression for the multi-state stress-strength
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reliability of a component and the findings are positively supported by presenting
the general trend of estimated values of reliability approaching the actual value of
reliability.

Keywords: Multi-state; Stress-strength reliability; Maximum likelihood estimation; Bayesian

estimation; Gibbs sampling.

1 Introduction

Modern engineering systems are composed of components having a wide range of perfor-

mance levels that vary from perfect functioning to complete failure. Multi-state system

reliability evaluation helps in handling such situations. For example, a car engine consists

of several components and the strength is defined in terms of miles to failure distribution

of the components and the stress is defined in terms of usage mileage distribution. Sim-

ilarly, power systems, CPU of a computer, communications network are all composed of

multi-state components. The generating capacity, data processing speed and communi-

cation respectively measure the performance of these systems. These are all examples of

systems having different performance levels as seen in Jana, Kumar, & Chatterjee (2016).

A systematic review on multi-state system reliability can be seen in the work of Yingkui

& Jing (2012).

The basic concepts in multi-state system reliability has been well addressed by Ross

(1979), Lisnianski & Levitin (2003) and Natvig (2014). Multi-state reliability models are

effectively studied using random processes like Markov processes, Markov reward process

and semi-Markov process when failure and repair time of these components are exponen-

tially and non-exponentially distributed as seen in Lisnianski, Frenkel, & Ding (2010),

Trivedi (2008). Lisnianski (2007) presented an extended block diagram method to study a

repairable multi-state system. The author combined the random process and universal gen-

erating function method to reduce the dimension of states in this multi-state model. Natvig

& Mørch (2003) studied the multi-state reliability theory applied to Norwegian offshore gas

pipeline network in the north sea transporting gas to Emden in Germany in 2003. More

contributions to multi-state system reliability analysis can be seen in the works of Levitin,

Lisnianski, Ben-Haim, & Elmakis (1998), Eryılmaz (2011), Eryılmaz (2008), Wang, Li,
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Huang, & Chang (2012) and Eryılmaz & İşçioğlu (2011). Recently Calik (2017) performed

a study on stress-strength reliability evaluation on a multi-state component subject to two

stresses.

The main objective of this study is to evaluate the multi-state stress-strength reliability

of a component (system) by considering the difference between the stress and strength

values of the component. This can be applied to systems like power generating systems

where the stress and strength are defined in terms of the same units. The component having

three states namely, working, deteriorating and failed state is considered in obtaining the

reliability expression and the corresponding parameters are estimated using the method of

maximum-likelihood and Bayesian estimation.

The rest of the paper is organized as follows. Section 2 describes the problem considered

and presents the procedure of reliability evaluation. Sections 3 and 4 presents the method

of maximum likelihood and Bayesian estimation. The illustrations using assumed data sets

are given in Section 5 and Section 6 presents the conclusions.

2 Problem description and reliability evaluation

Let X denote the strength and Y denote the stress of the component. The components

having multi-state characteristic can be defined by considering the difference between the

stress and strength values. Consider the power generating unit whose strength is the power

generated in Mega Watts. The stress is the load acting on the generating unit also in terms

of Mega Watts. Let the difference X−Y = K. The range of values taken by K determines

the states of the component, namely working, deteriorating and failed state respectively.

X − Y = K =


0 ≤ K < s1, working state,

s1 ≤ K < s2, deteriorating state,

s2 ≤ K < s3, failed state

(1)

Assume the strength and stress of the component to be random variables. Let them be

statistically independent. Let f(x) and g(y) denote the density functions of the strength

and stress random variables. Let F (x) and G(y) denote the distribution functions of these

random variables. The reliability (R) of a multi-state component is the probability of
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working and deteriorating state.

R = P (working state) + P (deteriorating state)

= P (0 ≤ X − Y < s1) + P (s1 ≤ X − Y < s2)

=

∫ ∞
−∞

∫ y+s1

y

f(x)g(y)dxdy +

∫ ∞
−∞

∫ y+s2

y+s1

f(x)g(y)dxdy (2)

Assume the stress and strength random variables to follow exponential distribution with

parameters λ and θ respectively.

f(x) = λe−λx, λ > 0, x > 0 (3)

g(y) = θe−θy, θ > 0, y > 0. (4)

The multi-state stress strength reliability of a component having three states is obtained

to be

R =
θ

λ+ θ
(1− e−λs2) (5)

Since the reliability expression in Eqn. (5) involves parameters of stress and strength

variables, the classical and Bayesian estimation methods are used to obtain the estimators

of these parameters and thereby the estimates of reliability.

3 Maximum Likelihood Estimation - Classical Esti-

mation

Consider n copies of the multi-state component. Let Xi, i = 1, 2, ...n be the strength of

the ith copy of the component and Yi, i = 1, 2, ...n be the stress of the component. The

sample vector of random variables are X = (X1, X2, ...Xn) and Y = (Y1, Y2, ...Yn). These

random variables are independent and identical following exponential density functions

with parameters λ and θ respectively.

The likelihood function is given by

L(λ, θ;X,Y) = λne
−λ(

n∑
i=1

xi)
θne
−θ(

n∑
i=1

yi)
,

logL = nlogλ− λ
n∑
i=1

xi + nlogθ − θ
n∑
i=1

yi. (6)
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Taking the partial derivative with respect to λ and θ

(∂/∂λ)logL = 0 =⇒ n/λ−
n∑
i=1

xi = 0,

(∂/∂θ)logL = 0 =⇒ n/θ −
n∑
i=1

yi = 0, for i = 1, 2, ...n (7)

The maximum likelihood estimator of the respective parameters are obtained to be

λ̂ =
n
n∑
i=1

xi

for i = 1, 2, ..., n and (8)

θ̂ =
n
n∑
i=1

yi

, for i = 1, 2, ..., n (9)

Since the maximum likelihood estimator is invariant the maximum likelihood estimator of

system reliability is

R̂ =
θ̂

λ̂+ θ̂
(1− e−λ̂s2) (10)

4 Bayesian estimation

The Bayesian estimation method considers the distribution of observations of stresses and

strengths through density functions f(x/λ) and f(y/θ), where the the parameters λ and θ

are unknown. These unknown parameters are retrieved from the observations. The like-

lihood function represents the retrieving aspect and this function is represented by the

sample density function which is rewritten as the function of the parameters λ and θ.

The information apart from the current data is known as the prior information which can

be obtained from past experiments. This prior information can be either informative or

non-informative. The posterior information is obtained by updating this prior information

observed from the current data. Considering the Gamma informative priors, Gamma(a, b)

and Gamma(c, d) for the stress and strength parameters λ and θ as Π(λ) and Π(θ) respec-

tively,

Π(λ) =
ba

Γ(a)
λa−1e−bλ, a > 0, b > 0, λ > 0 (11)
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Π(θ) =
dc

Γ(c)
θc−1e−dθ, c > 0, d > 0, θ > 0, (12)

the joint posterior density is derived in the following theorem. The standard method given

in Bansal (2007) is adopted in proving the following theorem.

Theorem 4.1. The joint posterior density of λ and θ, given the stress and strength data

follow exponential distribution with parameters following Gamma(a, b) and Gamma(c, d)

informative prior is Gamma(n+ a, b+
∑n

i=1 xi)×Gamma(n+ c, d+
∑n

i=1 yi).

Proof. The joint posterior distribution of λ, θ given the data is derived using

Π(λ, θ/X, Y ) =
L(λ, θ/X, Y )Π(λ)Π(θ)∫∞

0

∫∞
0
L(λ, θ/X, Y )Π(λ)Π(θ)dλdθ

=
λne

−λ(
n∑

i=1
xi)
θne
−θ(

n∑
i=1

yi) ba

Γ(a)
λa−1e−bλ dc

Γ(c)
θc−1e−dθ∫∞

0

∫∞
0
λne

−λ(
n∑

i=1
xi)
θne
−θ(

n∑
i=1

yi) ba

Γ(a)
λa−1e−bλ dc

Γ(c)
θc−1e−dθdλdθ

=
λn+a−1e−λ(b+

∑n
i=1 xi)θn+c−1e−θ(d+

∑n
i=1 yi)∫∞

0

∫∞
0
λn+a−1e−λ(b+

∑n
i=1 xi)θn+c−1e−θ(d+

∑n
i=1 yi)dλdθ

=
(b+

∑n
i=1 xi)

n+a

Γ(n+ a)
λn+a−1e−λ(b+

∑n
i=1 xi) ×

(d+
∑n

i=1 yi)
n+c

Γ(n+ c)
θn+c−1e−θ(d+

∑n
i=1 yi)

Hence joint posterior distribution of the parameters λ and θ follows Gamma(n + a, b +∑n
i=1 xi)×Gamma(n+ c, d+

∑n
i=1 yi).

The conditional distribution of the parameters λ and θ given the data are Gamma(n+

a, b+
∑n

i=1 xi) and Gamma(n+ c, d+
∑n

i=1 yi). Under the squared error loss function the

Bayes estimator of the parameter λ is the posterior mean which implies

λ̂ =
n+ a

b+
∑n

i=1 xi
. (13)

Similarly the Bayes estimator of the parameter θ is

θ̂ =
n+ c

d+
∑n

i=1 yi
. (14)

6



The Bayes estimator of multi-state stress-strength reliability of the component is the pos-

terior expectation of R.

R̂ = E(R/X, Y )

=

∫ ∞
0

∫ ∞
0

R× Π(λ, θ/X, Y )dλdθ,

=

∫ ∞
0

∫ ∞
0

θ

λ+ θ
(1− e−λs2)(b+

∑n
i=1 xi)

n+a

Γ(n+ a)
λn+a−1e−λ(b+

∑n
i=1 xi) ×

(d+
∑n

i=1 yi)
n+c

Γ(n+ c)
θn+c−1e−θ(d+

∑n
i=1 yi)dλdθ.

The Gibbs sampling algorithm is used to simplify the above double integral.

4.0.1 Method of simulation

This method is used to evaluate the double integral using the posterior distribution of

the parameters involved in the obtained expression for reliability (Eqn. (5)). When the

posterior distribution is in a known form the following Gibbs sampling procedure may be

employed in computing the system reliability. The following steps are used to obtain the

component reliability.

Gibbs sampling procedure

1. Assume initial value for the parameter λ(0), θ(0), .

2. Let p=1.

3. Generate random value for the parameter (λ(p) and θ(p) ), from the obtained distri-

bution of the parameter.

4. Compute the system reliability (Rp), for the value of the parameter obtained in step

3.

5. Set p=p+1.

6. Repeat the steps 3 to 5 for K number of times.
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7. Obtain the approximate posterior mean of system reliability as

R̂ = E(R/t) =
1

K

K∑
p=1

Rp (15)

This algorithm gives the Bayesian estimates of reliability.

5 Illustration

This section presents the verification of a statistically known fact in sampling theory that

the estimated values of multi-state stress-strength system reliability approaches the actual

values of reliability for increasing sample size. This method of illustration justifies the ob-

tained expressions of system reliability under maximum likelihood (Eqn,(3)) and Bayesian

estimation methodology (Eqn. (4)). The illustration is presented for an assumed data set

which consists of three sets of values of parameters λ, θ and s2. The values are given in

Table 1 for maximum likelihood and Table 3 for Bayesian estimation methodology respec-

tively. It may be noted that the actual values of system reliability are computed using

Eqn (5) for each case in the assumed data given in Table 1. Table 2 shows the general

trend of maximum likelihood estimates of system reliability approaching actual reliability

for increasing sample size n = {20, 40, 60, 100}. Similarly, the illustration for Bayesian

estimates of system reliability is presented in Table 4. The calculations are performed us-

ing MATLAB Programming. The standard deviation and 95% confidence interval are also

presented. The graphical representations of the same are given in Figs. 1 and 2.

6 Conclusions

This article presents the reliability computation of stress-strength reliability of a compo-

nent (system) having three states. The evaluations are performed by assuming the stress

and strength random variables to follow an exponential distribution. The maximum likeli-

hood estimator and Bayesian estimator of the parameters of stress, strength and thereby

the estimates of system reliability are computed. The Bayesian estimation is provided by

assuming informative Gamma prior for the stress and strength parameters. The posterior
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distribution of the strength and stress parameters are obtained to follow Gamma distribu-

tion with parameters (n+a, b+
∑n

i=1 xi) and (n+c, d+
∑n

i=1 yi). The maximum likelihood

and Bayesian estimates of reliability approaching actual values of reliability for increasing

sample size are presented in Tables 2, 4 and Figs. 1 and 2 respectively.

Table 1: Stress and strength parameters of exponential distribution

Cases λ θ s2

1 0.05 0.9 40

2 0.1 2.0 40

3 0.3 6.0 40

Table 2: Maximum Likelihood estimates of system reliability using Exponential distribution

(using values of parameters given in Table 1)

Cases n R R̂ S.D 95%− C.I

1 20 0.809618 0.819156 0.044385 0.793292 0.825945

40 0.811562 0.819156 0.038026 0.801672 0.821452

60 0.815633 0.819156 0.026896 0.809921 0.821345

100 0.815640 0.819156 0.021338 0.812130 0.819150

2 20 0.924841 0.934937 0.016881 0.918631 0.931050

40 0.930228 0.934937 0.009457 0.927768 0.932688

60 0.931967 0.934937 0.008534 0.930154 0.933779

100 0.932133 0.934937 0.006507 0.931063 0.933204

3 20 0.950294 0.952375 0.014615 0.944918 0.955670

40 0.951887 0.952375 0.010503 0.949155 0.954619

60 0.952707 0.952375 0.008077 0.950992 0.954422

100 0.951981 0.952375 0.006324 0.950940 0.953021
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Figure 1: Exponential model - Graphical representation of maximum likelihood estimates

of system reliability approaching the value of system reliability with increasing sample size.

Table 3: Values of stress and strength hyperparameters under informative prior distribu-

tion.

Cases a, b c, d

1 2,3 2,4

2 4,9 8,10

3 1,5 2,5
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Table 4: Bayesian estimates of system reliability using Exponential distribution - Modern

approach (using values of parameters given in Table 3).

Cases n R̂ R S.D 95%− C.I

1 20 0.821876 0.819156 0.055536 0.801448 0.842304

40 0.815164 0.819156 0.053835 0.801162 0.829167

60 0.816061 0.819156 0.033653 0.808914 0.823208

100 0.820662 0.819156 0.032318 0.815346 0.825979

2 20 0.904346 0.934937 0.022801 0.895959 0.912733

40 0.918616 0.934937 0.015858 0.914491 0.922741

60 0.923566 0.934937 0.011364 0.921153 0.925979

100 0.927805 0.934937 0.007396 0.926589 0.929022

3 20 0.889853 0.952375 0.040515 0.874950 0.904756

40 0.920305 0.952375 0.023324 0.914238 0.926371

60 0.931918 0.952375 0.015946 0.928531 0.935304

100 0.939558 0.952375 0.011284 0.937702 0.941414

Figure 2: Exponential model - Graphical representation of Bayesian estimates of system

reliability approaching the value of system reliability with increasing sample size.
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